6ca3aa4683ae5a633d32ebfa9b4797ef3cf4b269
[gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26
27 /* Names to predefine in the preprocessor for this target machine. */
28
29 #define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 \
30 -Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
31
32 /* Print subsidiary information on the compiler version in use. */
33 #define TARGET_VERSION ;
34
35 /* Default string to use for cpu if not specified. */
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT ((char *)0)
38 #endif
39
40 /* Tell the assembler to assume that all undefined names are external.
41
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
47
48 /* #define ASM_SPEC "-u %(asm_cpu)" */
49
50 /* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
52
53 #define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
54
55 /* Common CPP definitions used by CPP_SPEC amonst the various targets
56 for handling -mcpu=xxx switches. */
57 #define CPP_CPU_SPEC \
58 "%{!mcpu*: \
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
64 %{mcpu=common: -D_ARCH_COM} \
65 %{mcpu=power: -D_ARCH_PWR} \
66 %{mcpu=power2: -D_ARCH_PWR2} \
67 %{mcpu=powerpc: -D_ARCH_PPC} \
68 %{mcpu=rios: -D_ARCH_PWR} \
69 %{mcpu=rios1: -D_ARCH_PWR} \
70 %{mcpu=rios2: -D_ARCH_PWR2} \
71 %{mcpu=rsc: -D_ARCH_PWR} \
72 %{mcpu=rsc1: -D_ARCH_PWR} \
73 %{mcpu=403: -D_ARCH_PPC} \
74 %{mcpu=505: -D_ARCH_PPC} \
75 %{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
76 %{mcpu=602: -D_ARCH_PPC} \
77 %{mcpu=603: -D_ARCH_PPC} \
78 %{mcpu=603e: -D_ARCH_PPC} \
79 %{mcpu=604: -D_ARCH_PPC} \
80 %{mcpu=620: -D_ARCH_PPC} \
81 %{mcpu=821: -D_ARCH_PPC} \
82 %{mcpu=860: -D_ARCH_PPC}"
83
84 #ifndef CPP_DEFAULT_SPEC
85 #define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
86 #endif
87
88 #ifndef CPP_SYSV_SPEC
89 #define CPP_SYSV_SPEC ""
90 #endif
91
92 #ifndef CPP_ENDIAN_SPEC
93 #define CPP_ENDIAN_SPEC ""
94 #endif
95
96 #ifndef CPP_ENDIAN_DEFAULT_SPEC
97 #define CPP_ENDIAN_DEFAULT_SPEC ""
98 #endif
99
100 #ifndef CPP_SYSV_DEFAULT_SPEC
101 #define CPP_SYSV_DEFAULT_SPEC ""
102 #endif
103
104 /* Common ASM definitions used by ASM_SPEC amonst the various targets
105 for handling -mcpu=xxx switches. */
106 #define ASM_CPU_SPEC \
107 "%{!mcpu*: \
108 %{mpower: %{!mpower2: -mpwr}} \
109 %{mpower2: -mpwrx} \
110 %{mpowerpc*: -mppc} \
111 %{mno-power: %{!mpowerpc*: -mcom}} \
112 %{!mno-power: %{!mpower2: %(asm_default)}}} \
113 %{mcpu=common: -mcom} \
114 %{mcpu=power: -mpwr} \
115 %{mcpu=power2: -mpwrx} \
116 %{mcpu=powerpc: -mppc} \
117 %{mcpu=rios: -mpwr} \
118 %{mcpu=rios1: -mpwr} \
119 %{mcpu=rios2: -mpwrx} \
120 %{mcpu=rsc: -mpwr} \
121 %{mcpu=rsc1: -mpwr} \
122 %{mcpu=403: -mppc} \
123 %{mcpu=505: -mppc} \
124 %{mcpu=601: -m601} \
125 %{mcpu=602: -mppc} \
126 %{mcpu=603: -mppc} \
127 %{mcpu=603e: -mppc} \
128 %{mcpu=604: -mppc} \
129 %{mcpu=620: -mppc} \
130 %{mcpu=821: -mppc} \
131 %{mcpu=860: -mppc}"
132
133 #ifndef ASM_DEFAULT_SPEC
134 #define ASM_DEFAULT_SPEC ""
135 #endif
136
137 /* This macro defines names of additional specifications to put in the specs
138 that can be used in various specifications like CC1_SPEC. Its definition
139 is an initializer with a subgrouping for each command option.
140
141 Each subgrouping contains a string constant, that defines the
142 specification name, and a string constant that used by the GNU CC driver
143 program.
144
145 Do not define this macro if it does not need to do anything. */
146
147 #ifndef SUBTARGET_EXTRA_SPECS
148 #define SUBTARGET_EXTRA_SPECS
149 #endif
150
151 #define EXTRA_SPECS \
152 { "cpp_cpu", CPP_CPU_SPEC }, \
153 { "cpp_default", CPP_DEFAULT_SPEC }, \
154 { "cpp_sysv", CPP_SYSV_SPEC }, \
155 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
156 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
157 { "cpp_endian", CPP_ENDIAN_SPEC }, \
158 { "asm_cpu", ASM_CPU_SPEC }, \
159 { "asm_default", ASM_DEFAULT_SPEC }, \
160 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
161 { "link_libg", LINK_LIBG_SPEC }, \
162 SUBTARGET_EXTRA_SPECS
163
164 /* Default location of syscalls.exp under AIX */
165 #ifndef CROSS_COMPILE
166 #define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
167 #else
168 #define LINK_SYSCALLS_SPEC ""
169 #endif
170
171 /* Default location of libg.exp under AIX */
172 #ifndef CROSS_COMPILE
173 #define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
174 #else
175 #define LINK_LIBG_SPEC ""
176 #endif
177
178 /* Define the options for the binder: Start text at 512, align all segments
179 to 512 bytes, and warn if there is text relocation.
180
181 The -bhalt:4 option supposedly changes the level at which ld will abort,
182 but it also suppresses warnings about multiply defined symbols and is
183 used by the AIX cc command. So we use it here.
184
185 -bnodelcsect undoes a poor choice of default relating to multiply-defined
186 csects. See AIX documentation for more information about this.
187
188 -bM:SRE tells the linker that the output file is Shared REusable. Note
189 that to actually build a shared library you will also need to specify an
190 export list with the -Wl,-bE option. */
191
192 #define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
193 %{static:-bnso %(link_syscalls) } \
194 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
195
196 /* Profiled library versions are used by linking with special directories. */
197 #define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
198 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
199
200 /* gcc must do the search itself to find libgcc.a, not use -l. */
201 #define LIBGCC_SPEC "libgcc.a%s"
202
203 /* Don't turn -B into -L if the argument specifies a relative file name. */
204 #define RELATIVE_PREFIX_NOT_LINKDIR
205
206 /* Architecture type. */
207
208 extern int target_flags;
209
210 /* Use POWER architecture instructions and MQ register. */
211 #define MASK_POWER 0x01
212
213 /* Use POWER2 extensions to POWER architecture. */
214 #define MASK_POWER2 0x02
215
216 /* Use PowerPC architecture instructions. */
217 #define MASK_POWERPC 0x04
218
219 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
220 #define MASK_PPC_GPOPT 0x08
221
222 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
223 #define MASK_PPC_GFXOPT 0x10
224
225 /* Use PowerPC-64 architecture instructions. */
226 #define MASK_POWERPC64 0x20
227
228 /* Use revised mnemonic names defined for PowerPC architecture. */
229 #define MASK_NEW_MNEMONICS 0x40
230
231 /* Disable placing fp constants in the TOC; can be turned on when the
232 TOC overflows. */
233 #define MASK_NO_FP_IN_TOC 0x80
234
235 /* Disable placing symbol+offset constants in the TOC; can be turned on when
236 the TOC overflows. */
237 #define MASK_NO_SUM_IN_TOC 0x100
238
239 /* Output only one TOC entry per module. Normally linking fails if
240 there are more than 16K unique variables/constants in an executable. With
241 this option, linking fails only if there are more than 16K modules, or
242 if there are more than 16K unique variables/constant in a single module.
243
244 This is at the cost of having 2 extra loads and one extra store per
245 function, and one less allocatable register. */
246 #define MASK_MINIMAL_TOC 0x200
247
248 /* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
249 #define MASK_64BIT 0x400
250
251 /* Disable use of FPRs. */
252 #define MASK_SOFT_FLOAT 0x800
253
254 /* Enable load/store multiple, even on powerpc */
255 #define MASK_MULTIPLE 0x1000
256 #define MASK_MULTIPLE_SET 0x2000
257
258 /* Use string instructions for block moves */
259 #define MASK_STRING 0x4000
260 #define MASK_STRING_SET 0x8000
261
262 /* Temporary debug switches */
263 #define MASK_DEBUG_STACK 0x10000
264 #define MASK_DEBUG_ARG 0x20000
265
266 #define TARGET_POWER (target_flags & MASK_POWER)
267 #define TARGET_POWER2 (target_flags & MASK_POWER2)
268 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
269 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
270 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
271 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
272 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
273 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
274 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
275 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
276 #define TARGET_64BIT (target_flags & MASK_64BIT)
277 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
278 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
279 #define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
280 #define TARGET_STRING (target_flags & MASK_STRING)
281 #define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
282 #define TARGET_DEBUG_STACK (target_flags & MASK_DEBUG_STACK)
283 #define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
284
285 #define TARGET_32BIT (! TARGET_64BIT)
286 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
287
288 /* Pseudo target to indicate whether the object format is ELF
289 (to get around not having conditional compilation in the md file) */
290 #ifndef TARGET_ELF
291 #define TARGET_ELF 0
292 #endif
293
294 /* If this isn't V.4, don't support -mno-toc. */
295 #ifndef TARGET_NO_TOC
296 #define TARGET_NO_TOC 0
297 #define TARGET_TOC 1
298 #endif
299
300 /* Pseudo target to say whether this is Windows NT */
301 #ifndef TARGET_WINDOWS_NT
302 #define TARGET_WINDOWS_NT 0
303 #endif
304
305 /* Pseudo target to say whether this is MAC */
306 #ifndef TARGET_MACOS
307 #define TARGET_MACOS 0
308 #endif
309
310 /* Pseudo target to say whether this is AIX */
311 #ifndef TARGET_AIX
312 #if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
313 #define TARGET_AIX 0
314 #else
315 #define TARGET_AIX 1
316 #endif
317 #endif
318
319 #ifndef TARGET_XL_CALL
320 #define TARGET_XL_CALL 0
321 #endif
322
323 /* Run-time compilation parameters selecting different hardware subsets.
324
325 Macro to define tables used to set the flags.
326 This is a list in braces of pairs in braces,
327 each pair being { "NAME", VALUE }
328 where VALUE is the bits to set or minus the bits to clear.
329 An empty string NAME is used to identify the default VALUE. */
330
331 /* This is meant to be redefined in the host dependent files */
332 #ifndef SUBTARGET_SWITCHES
333 #define SUBTARGET_SWITCHES
334 #endif
335
336 #define TARGET_SWITCHES \
337 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
338 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
339 | MASK_POWER2)}, \
340 {"no-power2", - MASK_POWER2}, \
341 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
342 | MASK_STRING)}, \
343 {"powerpc", MASK_POWERPC}, \
344 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
345 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
346 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
347 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
348 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
349 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
350 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
351 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
352 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
353 | MASK_MINIMAL_TOC)}, \
354 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
355 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
356 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
357 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
358 {"minimal-toc", MASK_MINIMAL_TOC}, \
359 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
360 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
361 {"hard-float", - MASK_SOFT_FLOAT}, \
362 {"soft-float", MASK_SOFT_FLOAT}, \
363 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
364 {"no-multiple", - MASK_MULTIPLE}, \
365 {"no-multiple", MASK_MULTIPLE_SET}, \
366 {"string", MASK_STRING | MASK_STRING_SET}, \
367 {"no-string", - MASK_STRING}, \
368 {"no-string", MASK_STRING_SET}, \
369 {"debug-stack", MASK_DEBUG_STACK}, \
370 {"debug-arg", MASK_DEBUG_ARG}, \
371 SUBTARGET_SWITCHES \
372 {"", TARGET_DEFAULT}}
373
374 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
375
376 /* Processor type. */
377 enum processor_type
378 {PROCESSOR_RIOS1,
379 PROCESSOR_RIOS2,
380 PROCESSOR_MPCCORE,
381 PROCESSOR_PPC403,
382 PROCESSOR_PPC601,
383 PROCESSOR_PPC603,
384 PROCESSOR_PPC604,
385 PROCESSOR_PPC620};
386
387 extern enum processor_type rs6000_cpu;
388
389 /* Recast the processor type to the cpu attribute. */
390 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
391
392 /* Define generic processor types based upon current deployment. */
393 #define PROCESSOR_COMMON PROCESSOR_PPC601
394 #define PROCESSOR_POWER PROCESSOR_RIOS1
395 #define PROCESSOR_POWERPC PROCESSOR_PPC604
396
397 /* Define the default processor. This is overridden by other tm.h files. */
398 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
399
400 /* Specify the dialect of assembler to use. New mnemonics is dialect one
401 and the old mnemonics are dialect zero. */
402 #define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
403
404 /* This macro is similar to `TARGET_SWITCHES' but defines names of
405 command options that have values. Its definition is an
406 initializer with a subgrouping for each command option.
407
408 Each subgrouping contains a string constant, that defines the
409 fixed part of the option name, and the address of a variable.
410 The variable, type `char *', is set to the variable part of the
411 given option if the fixed part matches. The actual option name
412 is made by appending `-m' to the specified name.
413
414 Here is an example which defines `-mshort-data-NUMBER'. If the
415 given option is `-mshort-data-512', the variable `m88k_short_data'
416 will be set to the string `"512"'.
417
418 extern char *m88k_short_data;
419 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
420
421 /* This is meant to be overriden in target specific files. */
422 #ifndef SUBTARGET_OPTIONS
423 #define SUBTARGET_OPTIONS
424 #endif
425
426 #define TARGET_OPTIONS \
427 { \
428 {"cpu=", &rs6000_select[1].string}, \
429 {"tune=", &rs6000_select[2].string}, \
430 SUBTARGET_OPTIONS \
431 }
432
433 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
434 struct rs6000_cpu_select
435 {
436 char *string;
437 char *name;
438 int set_tune_p;
439 int set_arch_p;
440 };
441
442 extern struct rs6000_cpu_select rs6000_select[];
443
444 /* Sometimes certain combinations of command options do not make sense
445 on a particular target machine. You can define a macro
446 `OVERRIDE_OPTIONS' to take account of this. This macro, if
447 defined, is executed once just after all the command options have
448 been parsed.
449
450 On the RS/6000 this is used to define the target cpu type. */
451
452 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
453
454 /* Show we can debug even without a frame pointer. */
455 #define CAN_DEBUG_WITHOUT_FP
456 \f
457 /* target machine storage layout */
458
459 /* Define to support cross compilation to an RS6000 target. */
460 #define REAL_ARITHMETIC
461
462 /* Define this macro if it is advisable to hold scalars in registers
463 in a wider mode than that declared by the program. In such cases,
464 the value is constrained to be within the bounds of the declared
465 type, but kept valid in the wider mode. The signedness of the
466 extension may differ from that of the type. */
467
468 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
469 if (GET_MODE_CLASS (MODE) == MODE_INT \
470 && GET_MODE_SIZE (MODE) < 4) \
471 (MODE) = SImode;
472
473 /* Define this if most significant bit is lowest numbered
474 in instructions that operate on numbered bit-fields. */
475 /* That is true on RS/6000. */
476 #define BITS_BIG_ENDIAN 1
477
478 /* Define this if most significant byte of a word is the lowest numbered. */
479 /* That is true on RS/6000. */
480 #define BYTES_BIG_ENDIAN 1
481
482 /* Define this if most significant word of a multiword number is lowest
483 numbered.
484
485 For RS/6000 we can decide arbitrarily since there are no machine
486 instructions for them. Might as well be consistent with bits and bytes. */
487 #define WORDS_BIG_ENDIAN 1
488
489 /* number of bits in an addressable storage unit */
490 #define BITS_PER_UNIT 8
491
492 /* Width in bits of a "word", which is the contents of a machine register.
493 Note that this is not necessarily the width of data type `int';
494 if using 16-bit ints on a 68000, this would still be 32.
495 But on a machine with 16-bit registers, this would be 16. */
496 #define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
497 #define MAX_BITS_PER_WORD 64
498
499 /* Width of a word, in units (bytes). */
500 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
501 #define MIN_UNITS_PER_WORD 4
502 #define UNITS_PER_FP_WORD 8
503
504 /* Type used for ptrdiff_t, as a string used in a declaration. */
505 #define PTRDIFF_TYPE "int"
506
507 /* Type used for wchar_t, as a string used in a declaration. */
508 #define WCHAR_TYPE "short unsigned int"
509
510 /* Width of wchar_t in bits. */
511 #define WCHAR_TYPE_SIZE 16
512
513 /* A C expression for the size in bits of the type `short' on the
514 target machine. If you don't define this, the default is half a
515 word. (If this would be less than one storage unit, it is
516 rounded up to one unit.) */
517 #define SHORT_TYPE_SIZE 16
518
519 /* A C expression for the size in bits of the type `int' on the
520 target machine. If you don't define this, the default is one
521 word. */
522 #define INT_TYPE_SIZE 32
523
524 /* A C expression for the size in bits of the type `long' on the
525 target machine. If you don't define this, the default is one
526 word. */
527 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
528 #define MAX_LONG_TYPE_SIZE 64
529
530 /* A C expression for the size in bits of the type `long long' on the
531 target machine. If you don't define this, the default is two
532 words. */
533 #define LONG_LONG_TYPE_SIZE 64
534
535 /* A C expression for the size in bits of the type `char' on the
536 target machine. If you don't define this, the default is one
537 quarter of a word. (If this would be less than one storage unit,
538 it is rounded up to one unit.) */
539 #define CHAR_TYPE_SIZE BITS_PER_UNIT
540
541 /* A C expression for the size in bits of the type `float' on the
542 target machine. If you don't define this, the default is one
543 word. */
544 #define FLOAT_TYPE_SIZE 32
545
546 /* A C expression for the size in bits of the type `double' on the
547 target machine. If you don't define this, the default is two
548 words. */
549 #define DOUBLE_TYPE_SIZE 64
550
551 /* A C expression for the size in bits of the type `long double' on
552 the target machine. If you don't define this, the default is two
553 words. */
554 #define LONG_DOUBLE_TYPE_SIZE 64
555
556 /* Width in bits of a pointer.
557 See also the macro `Pmode' defined below. */
558 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
559
560 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
561 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
562
563 /* Boundary (in *bits*) on which stack pointer should be aligned. */
564 #define STACK_BOUNDARY 64
565
566 /* Allocation boundary (in *bits*) for the code of a function. */
567 #define FUNCTION_BOUNDARY 32
568
569 /* No data type wants to be aligned rounder than this. */
570 #define BIGGEST_ALIGNMENT 64
571
572 /* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
573 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
574 (DECL_MODE (FIELD) != DFmode ? (COMPUTED) : MIN ((COMPUTED), 32))
575
576 /* Alignment of field after `int : 0' in a structure. */
577 #define EMPTY_FIELD_BOUNDARY 32
578
579 /* Every structure's size must be a multiple of this. */
580 #define STRUCTURE_SIZE_BOUNDARY 8
581
582 /* A bitfield declared as `int' forces `int' alignment for the struct. */
583 #define PCC_BITFIELD_TYPE_MATTERS 1
584
585 /* AIX increases natural record alignment to doubleword if the first
586 field is an FP double while the FP fields remain word aligned. */
587 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
588 ((TREE_CODE (STRUCT) == RECORD_TYPE \
589 || TREE_CODE (STRUCT) == UNION_TYPE \
590 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
591 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
592 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
593 : MAX ((COMPUTED), (SPECIFIED)))
594
595 /* Make strings word-aligned so strcpy from constants will be faster. */
596 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
597 (TREE_CODE (EXP) == STRING_CST \
598 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
599
600 /* Make arrays of chars word-aligned for the same reasons. */
601 #define DATA_ALIGNMENT(TYPE, ALIGN) \
602 (TREE_CODE (TYPE) == ARRAY_TYPE \
603 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
604 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
605
606 /* Non-zero if move instructions will actually fail to work
607 when given unaligned data. */
608 #define STRICT_ALIGNMENT 0
609 \f
610 /* Standard register usage. */
611
612 /* Number of actual hardware registers.
613 The hardware registers are assigned numbers for the compiler
614 from 0 to just below FIRST_PSEUDO_REGISTER.
615 All registers that the compiler knows about must be given numbers,
616 even those that are not normally considered general registers.
617
618 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
619 an MQ register, a count register, a link register, and 8 condition
620 register fields, which we view here as separate registers.
621
622 In addition, the difference between the frame and argument pointers is
623 a function of the number of registers saved, so we need to have a
624 register for AP that will later be eliminated in favor of SP or FP.
625 This is a normal register, but it is fixed.
626
627 We also create a pseudo register for float/int conversions, that will
628 really represent the memory location used. It is represented here as
629 a register, in order to work around problems in allocating stack storage
630 in inline functions. */
631
632 #define FIRST_PSEUDO_REGISTER 77
633
634 /* 1 for registers that have pervasive standard uses
635 and are not available for the register allocator.
636
637 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
638
639 cr5 is not supposed to be used.
640
641 On System V implementations, r13 is fixed and not available for use. */
642
643 #ifndef FIXED_R13
644 #define FIXED_R13 0
645 #endif
646
647 #define FIXED_REGISTERS \
648 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
649 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
650 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
651 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
652 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
653
654 /* 1 for registers not available across function calls.
655 These must include the FIXED_REGISTERS and also any
656 registers that can be used without being saved.
657 The latter must include the registers where values are returned
658 and the register where structure-value addresses are passed.
659 Aside from that, you can include as many other registers as you like. */
660
661 #define CALL_USED_REGISTERS \
662 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
663 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
664 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
665 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
666 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
667
668 /* List the order in which to allocate registers. Each register must be
669 listed once, even those in FIXED_REGISTERS.
670
671 We allocate in the following order:
672 fp0 (not saved or used for anything)
673 fp13 - fp2 (not saved; incoming fp arg registers)
674 fp1 (not saved; return value)
675 fp31 - fp14 (saved; order given to save least number)
676 cr1, cr6, cr7 (not saved or special)
677 cr0 (not saved, but used for arithmetic operations)
678 cr2, cr3, cr4 (saved)
679 r0 (not saved; cannot be base reg)
680 r9 (not saved; best for TImode)
681 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
682 r3 (not saved; return value register)
683 r31 - r13 (saved; order given to save least number)
684 r12 (not saved; if used for DImode or DFmode would use r13)
685 mq (not saved; best to use it if we can)
686 ctr (not saved; when we have the choice ctr is better)
687 lr (saved)
688 cr5, r1, r2, ap (fixed) */
689
690 #define REG_ALLOC_ORDER \
691 {32, \
692 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
693 33, \
694 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
695 50, 49, 48, 47, 46, \
696 69, 74, 75, 68, 70, 71, 72, \
697 0, \
698 9, 11, 10, 8, 7, 6, 5, 4, \
699 3, \
700 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
701 18, 17, 16, 15, 14, 13, 12, \
702 64, 66, 65, \
703 73, 1, 2, 67, 76}
704
705 /* True if register is floating-point. */
706 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
707
708 /* True if register is a condition register. */
709 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
710
711 /* True if register is an integer register. */
712 #define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
713
714 /* True if register is the temporary memory location used for int/float
715 conversion. */
716 #define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
717
718 /* Return number of consecutive hard regs needed starting at reg REGNO
719 to hold something of mode MODE.
720 This is ordinarily the length in words of a value of mode MODE
721 but can be less for certain modes in special long registers.
722
723 On RS/6000, ordinary registers hold 32 bits worth;
724 a single floating point register holds 64 bits worth. */
725
726 #define HARD_REGNO_NREGS(REGNO, MODE) \
727 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
728 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
729 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
730
731 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
732 For POWER and PowerPC, the GPRs can hold any mode, but the float
733 registers only can hold floating modes and DImode, and CR register only
734 can hold CC modes. We cannot put TImode anywhere except general
735 register and it must be able to fit within the register set. */
736
737 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
738 (FP_REGNO_P (REGNO) ? \
739 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
740 || (GET_MODE_CLASS (MODE) == MODE_INT \
741 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
742 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
743 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
744 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
745 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
746 : 1)
747
748 /* Value is 1 if it is a good idea to tie two pseudo registers
749 when one has mode MODE1 and one has mode MODE2.
750 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
751 for any hard reg, then this must be 0 for correct output. */
752 #define MODES_TIEABLE_P(MODE1, MODE2) \
753 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
754 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
755 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
756 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
757 : GET_MODE_CLASS (MODE1) == MODE_CC \
758 ? GET_MODE_CLASS (MODE2) == MODE_CC \
759 : GET_MODE_CLASS (MODE2) == MODE_CC \
760 ? GET_MODE_CLASS (MODE1) == MODE_CC \
761 : 1)
762
763 /* A C expression returning the cost of moving data from a register of class
764 CLASS1 to one of CLASS2.
765
766 On the RS/6000, copying between floating-point and fixed-point
767 registers is expensive. */
768
769 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
770 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
771 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
772 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
773 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
774 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
775 || (CLASS1) == LINK_OR_CTR_REGS) \
776 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
777 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
778 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
779 : 2)
780
781 /* A C expressions returning the cost of moving data of MODE from a register to
782 or from memory.
783
784 On the RS/6000, bump this up a bit. */
785
786 #define MEMORY_MOVE_COST(MODE) \
787 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
788 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
789 ? 3 : 2) \
790 + 4)
791
792 /* Specify the cost of a branch insn; roughly the number of extra insns that
793 should be added to avoid a branch.
794
795 Set this to 3 on the RS/6000 since that is roughly the average cost of an
796 unscheduled conditional branch. */
797
798 #define BRANCH_COST 3
799
800 /* A C statement (sans semicolon) to update the integer variable COST
801 based on the relationship between INSN that is dependent on
802 DEP_INSN through the dependence LINK. The default is to make no
803 adjustment to COST. On the RS/6000, ignore the cost of anti- and
804 output-dependencies. In fact, output dependencies on the CR do have
805 a cost, but it is probably not worthwhile to track it. */
806
807 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
808 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
809
810 /* Define this macro to change register usage conditional on target flags.
811 Set MQ register fixed (already call_used) if not POWER architecture
812 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
813 Conditionally disable FPRs. */
814
815 #define CONDITIONAL_REGISTER_USAGE \
816 { \
817 if (! TARGET_POWER) \
818 fixed_regs[64] = 1; \
819 if (TARGET_SOFT_FLOAT) \
820 for (i = 32; i < 64; i++) \
821 fixed_regs[i] = call_used_regs[i] = 1; \
822 }
823
824 /* Specify the registers used for certain standard purposes.
825 The values of these macros are register numbers. */
826
827 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
828 /* #define PC_REGNUM */
829
830 /* Register to use for pushing function arguments. */
831 #define STACK_POINTER_REGNUM 1
832
833 /* Base register for access to local variables of the function. */
834 #define FRAME_POINTER_REGNUM 31
835
836 /* Value should be nonzero if functions must have frame pointers.
837 Zero means the frame pointer need not be set up (and parms
838 may be accessed via the stack pointer) in functions that seem suitable.
839 This is computed in `reload', in reload1.c. */
840 #define FRAME_POINTER_REQUIRED 0
841
842 /* Base register for access to arguments of the function. */
843 #define ARG_POINTER_REGNUM 67
844
845 /* Place to put static chain when calling a function that requires it. */
846 #define STATIC_CHAIN_REGNUM 11
847
848 /* count register number for special purposes */
849 #define COUNT_REGISTER_REGNUM 66
850
851 /* Special register that represents memory, used for float/int conversions. */
852 #define FPMEM_REGNUM 76
853
854 /* Register to use as a placeholder for the GOT/allocated TOC register.
855 FINALIZE_PIC will change all uses of this register to a an appropriate
856 pseudo register when it adds the code to setup the GOT. We use r2
857 because it is a reserved register in all of the ABI's. */
858 #define GOT_TOC_REGNUM 2
859
860 /* Place that structure value return address is placed.
861
862 On the RS/6000, it is passed as an extra parameter. */
863 #define STRUCT_VALUE 0
864 \f
865 /* Define the classes of registers for register constraints in the
866 machine description. Also define ranges of constants.
867
868 One of the classes must always be named ALL_REGS and include all hard regs.
869 If there is more than one class, another class must be named NO_REGS
870 and contain no registers.
871
872 The name GENERAL_REGS must be the name of a class (or an alias for
873 another name such as ALL_REGS). This is the class of registers
874 that is allowed by "g" or "r" in a register constraint.
875 Also, registers outside this class are allocated only when
876 instructions express preferences for them.
877
878 The classes must be numbered in nondecreasing order; that is,
879 a larger-numbered class must never be contained completely
880 in a smaller-numbered class.
881
882 For any two classes, it is very desirable that there be another
883 class that represents their union. */
884
885 /* The RS/6000 has three types of registers, fixed-point, floating-point,
886 and condition registers, plus three special registers, MQ, CTR, and the
887 link register.
888
889 However, r0 is special in that it cannot be used as a base register.
890 So make a class for registers valid as base registers.
891
892 Also, cr0 is the only condition code register that can be used in
893 arithmetic insns, so make a separate class for it.
894
895 There is a special 'registrer' (76), which is not a register, but a
896 placeholder for memory allocated to convert between floating point and
897 integral types. This works around a problem where if we allocate memory
898 with allocate_stack_{local,temp} and the function is an inline function, the
899 memory allocated will clobber memory in the caller. So we use a special
900 register, and if that is used, we allocate stack space for it. */
901
902 enum reg_class
903 {
904 NO_REGS,
905 BASE_REGS,
906 GENERAL_REGS,
907 FLOAT_REGS,
908 NON_SPECIAL_REGS,
909 MQ_REGS,
910 LINK_REGS,
911 CTR_REGS,
912 LINK_OR_CTR_REGS,
913 SPECIAL_REGS,
914 SPEC_OR_GEN_REGS,
915 CR0_REGS,
916 CR_REGS,
917 NON_FLOAT_REGS,
918 FPMEM_REGS,
919 FLOAT_OR_FPMEM_REGS,
920 ALL_REGS,
921 LIM_REG_CLASSES
922 };
923
924 #define N_REG_CLASSES (int) LIM_REG_CLASSES
925
926 /* Give names of register classes as strings for dump file. */
927
928 #define REG_CLASS_NAMES \
929 { \
930 "NO_REGS", \
931 "BASE_REGS", \
932 "GENERAL_REGS", \
933 "FLOAT_REGS", \
934 "NON_SPECIAL_REGS", \
935 "MQ_REGS", \
936 "LINK_REGS", \
937 "CTR_REGS", \
938 "LINK_OR_CTR_REGS", \
939 "SPECIAL_REGS", \
940 "SPEC_OR_GEN_REGS", \
941 "CR0_REGS", \
942 "CR_REGS", \
943 "NON_FLOAT_REGS", \
944 "FPMEM_REGS", \
945 "FLOAT_OR_FPMEM_REGS", \
946 "ALL_REGS" \
947 }
948
949 /* Define which registers fit in which classes.
950 This is an initializer for a vector of HARD_REG_SET
951 of length N_REG_CLASSES. */
952
953 #define REG_CLASS_CONTENTS \
954 { \
955 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
956 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
957 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
958 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
959 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
960 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
961 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
962 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
963 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
964 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
965 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
966 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
967 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
968 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
969 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
970 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
971 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
972 }
973
974 /* The same information, inverted:
975 Return the class number of the smallest class containing
976 reg number REGNO. This could be a conditional expression
977 or could index an array. */
978
979 #define REGNO_REG_CLASS(REGNO) \
980 ((REGNO) == 0 ? GENERAL_REGS \
981 : (REGNO) < 32 ? BASE_REGS \
982 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
983 : (REGNO) == 68 ? CR0_REGS \
984 : CR_REGNO_P (REGNO) ? CR_REGS \
985 : (REGNO) == 64 ? MQ_REGS \
986 : (REGNO) == 65 ? LINK_REGS \
987 : (REGNO) == 66 ? CTR_REGS \
988 : (REGNO) == 67 ? BASE_REGS \
989 : (REGNO) == 76 ? FPMEM_REGS \
990 : NO_REGS)
991
992 /* The class value for index registers, and the one for base regs. */
993 #define INDEX_REG_CLASS GENERAL_REGS
994 #define BASE_REG_CLASS BASE_REGS
995
996 /* Get reg_class from a letter such as appears in the machine description. */
997
998 #define REG_CLASS_FROM_LETTER(C) \
999 ((C) == 'f' ? FLOAT_REGS \
1000 : (C) == 'b' ? BASE_REGS \
1001 : (C) == 'h' ? SPECIAL_REGS \
1002 : (C) == 'q' ? MQ_REGS \
1003 : (C) == 'c' ? CTR_REGS \
1004 : (C) == 'l' ? LINK_REGS \
1005 : (C) == 'x' ? CR0_REGS \
1006 : (C) == 'y' ? CR_REGS \
1007 : (C) == 'z' ? FPMEM_REGS \
1008 : NO_REGS)
1009
1010 /* The letters I, J, K, L, M, N, and P in a register constraint string
1011 can be used to stand for particular ranges of immediate operands.
1012 This macro defines what the ranges are.
1013 C is the letter, and VALUE is a constant value.
1014 Return 1 if VALUE is in the range specified by C.
1015
1016 `I' is signed 16-bit constants
1017 `J' is a constant with only the high-order 16 bits non-zero
1018 `K' is a constant with only the low-order 16 bits non-zero
1019 `L' is a constant that can be placed into a mask operand
1020 `M' is a constant that is greater than 31
1021 `N' is a constant that is an exact power of two
1022 `O' is the constant zero
1023 `P' is a constant whose negation is a signed 16-bit constant */
1024
1025 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1026 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1027 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
1028 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
1029 : (C) == 'L' ? mask_constant (VALUE) \
1030 : (C) == 'M' ? (VALUE) > 31 \
1031 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1032 : (C) == 'O' ? (VALUE) == 0 \
1033 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x1000 \
1034 : 0)
1035
1036 /* Similar, but for floating constants, and defining letters G and H.
1037 Here VALUE is the CONST_DOUBLE rtx itself.
1038
1039 We flag for special constants when we can copy the constant into
1040 a general register in two insns for DF/DI and one insn for SF.
1041
1042 'H' is used for DI/DF constants that take 3 insns. */
1043
1044 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1045 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1046 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1047 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1048 : 0)
1049
1050 /* Optional extra constraints for this machine.
1051
1052 'Q' means that is a memory operand that is just an offset from a reg.
1053 'R' is for AIX TOC entries.
1054 'S' is for Windows NT SYMBOL_REFs
1055 'T' is for Windows NT LABEL_REFs.
1056 'U' is for V.4 small data references. */
1057
1058 #define EXTRA_CONSTRAINT(OP, C) \
1059 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1060 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
1061 : (C) == 'S' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == SYMBOL_REF)\
1062 : (C) == 'T' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == LABEL_REF) \
1063 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1064 && small_data_operand (OP, GET_MODE (OP))) \
1065 : 0)
1066
1067 /* Given an rtx X being reloaded into a reg required to be
1068 in class CLASS, return the class of reg to actually use.
1069 In general this is just CLASS; but on some machines
1070 in some cases it is preferable to use a more restrictive class.
1071
1072 On the RS/6000, we have to return NO_REGS when we want to reload a
1073 floating-point CONST_DOUBLE to force it to be copied to memory. */
1074
1075 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1076 ((GET_CODE (X) == CONST_DOUBLE \
1077 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1078 ? NO_REGS : (CLASS))
1079
1080 /* Return the register class of a scratch register needed to copy IN into
1081 or out of a register in CLASS in MODE. If it can be done directly,
1082 NO_REGS is returned. */
1083
1084 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1085 secondary_reload_class (CLASS, MODE, IN)
1086
1087 /* If we are copying between FP registers and anything else, we need a memory
1088 location. */
1089
1090 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1091 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1092
1093 /* Return the maximum number of consecutive registers
1094 needed to represent mode MODE in a register of class CLASS.
1095
1096 On RS/6000, this is the size of MODE in words,
1097 except in the FP regs, where a single reg is enough for two words. */
1098 #define CLASS_MAX_NREGS(CLASS, MODE) \
1099 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1100 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
1101 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1102 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1103
1104 /* If defined, gives a class of registers that cannot be used as the
1105 operand of a SUBREG that changes the size of the object. */
1106
1107 #define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
1108 \f
1109 /* Stack layout; function entry, exit and calling. */
1110
1111 /* Enumeration to give which calling sequence to use. */
1112 enum rs6000_abi {
1113 ABI_NONE,
1114 ABI_AIX, /* IBM's AIX */
1115 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1116 ABI_V4, /* System V.4/eabi */
1117 ABI_NT, /* Windows/NT */
1118 ABI_SOLARIS /* Solaris */
1119 };
1120
1121 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1122
1123 /* Default ABI to compile code for */
1124 #ifndef DEFAULT_ABI
1125 #define DEFAULT_ABI ABI_AIX
1126 /* The prefix to add to user-visible assembler symbols. */
1127 #define USER_LABEL_PREFIX "."
1128 #endif
1129
1130 /* Structure used to define the rs6000 stack */
1131 typedef struct rs6000_stack {
1132 int first_gp_reg_save; /* first callee saved GP register used */
1133 int first_fp_reg_save; /* first callee saved FP register used */
1134 int lr_save_p; /* true if the link reg needs to be saved */
1135 int cr_save_p; /* true if the CR reg needs to be saved */
1136 int toc_save_p; /* true if the TOC needs to be saved */
1137 int push_p; /* true if we need to allocate stack space */
1138 int calls_p; /* true if the function makes any calls */
1139 int main_p; /* true if this is main */
1140 int main_save_p; /* true if this is main and we need to save args */
1141 int fpmem_p; /* true if float/int conversion temp needed */
1142 enum rs6000_abi abi; /* which ABI to use */
1143 int gp_save_offset; /* offset to save GP regs from initial SP */
1144 int fp_save_offset; /* offset to save FP regs from initial SP */
1145 int lr_save_offset; /* offset to save LR from initial SP */
1146 int cr_save_offset; /* offset to save CR from initial SP */
1147 int toc_save_offset; /* offset to save the TOC pointer */
1148 int varargs_save_offset; /* offset to save the varargs registers */
1149 int main_save_offset; /* offset to save main's args */
1150 int fpmem_offset; /* offset for float/int conversion temp */
1151 int reg_size; /* register size (4 or 8) */
1152 int varargs_size; /* size to hold V.4 args passed in regs */
1153 int vars_size; /* variable save area size */
1154 int parm_size; /* outgoing parameter size */
1155 int main_size; /* size to hold saving main's args */
1156 int save_size; /* save area size */
1157 int fixed_size; /* fixed size of stack frame */
1158 int gp_size; /* size of saved GP registers */
1159 int fp_size; /* size of saved FP registers */
1160 int cr_size; /* size to hold CR if not in save_size */
1161 int lr_size; /* size to hold LR if not in save_size */
1162 int fpmem_size; /* size to hold float/int conversion */
1163 int toc_size; /* size to hold TOC if not in save_size */
1164 int total_size; /* total bytes allocated for stack */
1165 } rs6000_stack_t;
1166
1167 /* Define this if pushing a word on the stack
1168 makes the stack pointer a smaller address. */
1169 #define STACK_GROWS_DOWNWARD
1170
1171 /* Define this if the nominal address of the stack frame
1172 is at the high-address end of the local variables;
1173 that is, each additional local variable allocated
1174 goes at a more negative offset in the frame.
1175
1176 On the RS/6000, we grow upwards, from the area after the outgoing
1177 arguments. */
1178 /* #define FRAME_GROWS_DOWNWARD */
1179
1180 /* Size of the outgoing register save area */
1181 #define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
1182
1183 /* Size of the fixed area on the stack */
1184 #define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
1185
1186 /* Address to save the TOC register */
1187 #define RS6000_SAVE_TOC plus_constant (stack_pointer_rtx, 20)
1188
1189 /* Offset & size for fpmem stack locations used for converting between
1190 float and integral types. */
1191 extern int rs6000_fpmem_offset;
1192 extern int rs6000_fpmem_size;
1193
1194 /* Size of the V.4 varargs area if needed */
1195 #define RS6000_VARARGS_AREA 0
1196
1197 /* Whether a V.4 varargs area is needed */
1198 extern int rs6000_sysv_varargs_p;
1199
1200 /* Align an address */
1201 #define ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1202
1203 /* Initialize data used by insn expanders. This is called from
1204 init_emit, once for each function, before code is generated. */
1205 #define INIT_EXPANDERS rs6000_init_expanders ()
1206
1207 /* Size of V.4 varargs area in bytes */
1208 #define RS6000_VARARGS_SIZE \
1209 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1210
1211 /* Offset of V.4 varargs area */
1212 #define RS6000_VARARGS_OFFSET \
1213 (ALIGN (current_function_outgoing_args_size, 8) \
1214 + RS6000_SAVE_AREA)
1215
1216 /* Offset within stack frame to start allocating local variables at.
1217 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1218 first local allocated. Otherwise, it is the offset to the BEGINNING
1219 of the first local allocated.
1220
1221 On the RS/6000, the frame pointer is the same as the stack pointer,
1222 except for dynamic allocations. So we start after the fixed area and
1223 outgoing parameter area. */
1224
1225 #define STARTING_FRAME_OFFSET \
1226 (ALIGN (current_function_outgoing_args_size, 8) \
1227 + RS6000_VARARGS_AREA \
1228 + RS6000_SAVE_AREA)
1229
1230 /* Offset from the stack pointer register to an item dynamically
1231 allocated on the stack, e.g., by `alloca'.
1232
1233 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1234 length of the outgoing arguments. The default is correct for most
1235 machines. See `function.c' for details. */
1236 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1237 (ALIGN (current_function_outgoing_args_size, 8) \
1238 + (STACK_POINTER_OFFSET))
1239
1240 /* If we generate an insn to push BYTES bytes,
1241 this says how many the stack pointer really advances by.
1242 On RS/6000, don't define this because there are no push insns. */
1243 /* #define PUSH_ROUNDING(BYTES) */
1244
1245 /* Offset of first parameter from the argument pointer register value.
1246 On the RS/6000, we define the argument pointer to the start of the fixed
1247 area. */
1248 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1249
1250 /* Define this if stack space is still allocated for a parameter passed
1251 in a register. The value is the number of bytes allocated to this
1252 area. */
1253 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1254
1255 /* Define this if the above stack space is to be considered part of the
1256 space allocated by the caller. */
1257 #define OUTGOING_REG_PARM_STACK_SPACE
1258
1259 /* This is the difference between the logical top of stack and the actual sp.
1260
1261 For the RS/6000, sp points past the fixed area. */
1262 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1263
1264 /* Define this if the maximum size of all the outgoing args is to be
1265 accumulated and pushed during the prologue. The amount can be
1266 found in the variable current_function_outgoing_args_size. */
1267 #define ACCUMULATE_OUTGOING_ARGS
1268
1269 /* Value is the number of bytes of arguments automatically
1270 popped when returning from a subroutine call.
1271 FUNDECL is the declaration node of the function (as a tree),
1272 FUNTYPE is the data type of the function (as a tree),
1273 or for a library call it is an identifier node for the subroutine name.
1274 SIZE is the number of bytes of arguments passed on the stack. */
1275
1276 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1277
1278 /* Define how to find the value returned by a function.
1279 VALTYPE is the data type of the value (as a tree).
1280 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1281 otherwise, FUNC is 0.
1282
1283 On RS/6000 an integer value is in r3 and a floating-point value is in
1284 fp1, unless -msoft-float. */
1285
1286 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1287 gen_rtx (REG, TYPE_MODE (VALTYPE), \
1288 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
1289
1290 /* Define how to find the value returned by a library function
1291 assuming the value has mode MODE. */
1292
1293 #define LIBCALL_VALUE(MODE) \
1294 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
1295
1296 /* The definition of this macro implies that there are cases where
1297 a scalar value cannot be returned in registers.
1298
1299 For the RS/6000, any structure or union type is returned in memory, except for
1300 Solaris, which returns structures <= 8 bytes in registers. */
1301
1302 #define RETURN_IN_MEMORY(TYPE) \
1303 (TYPE_MODE (TYPE) == BLKmode \
1304 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
1305
1306 /* Minimum and maximum general purpose registers used to hold arguments. */
1307 #define GP_ARG_MIN_REG 3
1308 #define GP_ARG_MAX_REG 10
1309 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1310
1311 /* Minimum and maximum floating point registers used to hold arguments. */
1312 #define FP_ARG_MIN_REG 33
1313 #define FP_ARG_AIX_MAX_REG 45
1314 #define FP_ARG_V4_MAX_REG 40
1315 #define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
1316 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1317
1318 /* Return registers */
1319 #define GP_ARG_RETURN GP_ARG_MIN_REG
1320 #define FP_ARG_RETURN FP_ARG_MIN_REG
1321
1322 /* Flags for the call/call_value rtl operations set up by function_arg */
1323 #define CALL_NORMAL 0x00000000 /* no special processing */
1324 #define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1325 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1326 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1327 #define CALL_LONG 0x00000008 /* always call indirect */
1328
1329 /* Define cutoff for using external functions to save floating point */
1330 #define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1331
1332 /* 1 if N is a possible register number for a function value
1333 as seen by the caller.
1334
1335 On RS/6000, this is r3 and fp1. */
1336 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
1337
1338 /* 1 if N is a possible register number for function argument passing.
1339 On RS/6000, these are r3-r10 and fp1-fp13. */
1340 #define FUNCTION_ARG_REGNO_P(N) \
1341 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1342 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
1343
1344 \f
1345 /* Define a data type for recording info about an argument list
1346 during the scan of that argument list. This data type should
1347 hold all necessary information about the function itself
1348 and about the args processed so far, enough to enable macros
1349 such as FUNCTION_ARG to determine where the next arg should go.
1350
1351 On the RS/6000, this is a structure. The first element is the number of
1352 total argument words, the second is used to store the next
1353 floating-point register number, and the third says how many more args we
1354 have prototype types for.
1355
1356 The System V.4 varargs/stdarg support requires that this structure's size
1357 be a multiple of sizeof(int), and that WORDS, FREGNO, NARGS_PROTOTYPE,
1358 ORIG_NARGS, and VARARGS_OFFSET be the first five ints. */
1359
1360 typedef struct rs6000_args
1361 {
1362 int words; /* # words uses for passing GP registers */
1363 int fregno; /* next available FP register */
1364 int nargs_prototype; /* # args left in the current prototype */
1365 int orig_nargs; /* Original value of nargs_prototype */
1366 int varargs_offset; /* offset of the varargs save area */
1367 int prototype; /* Whether a prototype was defined */
1368 int call_cookie; /* Do special things for this call */
1369 } CUMULATIVE_ARGS;
1370
1371 /* Define intermediate macro to compute the size (in registers) of an argument
1372 for the RS/6000. */
1373
1374 #define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1375 (! (NAMED) ? 0 \
1376 : (MODE) != BLKmode \
1377 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1378 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1379
1380 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1381 for a call to a function whose data type is FNTYPE.
1382 For a library call, FNTYPE is 0. */
1383
1384 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1385 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
1386
1387 /* Similar, but when scanning the definition of a procedure. We always
1388 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1389
1390 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1391 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
1392
1393 /* Update the data in CUM to advance over an argument
1394 of mode MODE and data type TYPE.
1395 (TYPE is null for libcalls where that information may not be available.) */
1396
1397 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1398 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1399
1400 /* Non-zero if we can use a floating-point register to pass this arg. */
1401 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1402 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1403 && (CUM).fregno <= FP_ARG_MAX_REG \
1404 && TARGET_HARD_FLOAT)
1405
1406 /* Determine where to put an argument to a function.
1407 Value is zero to push the argument on the stack,
1408 or a hard register in which to store the argument.
1409
1410 MODE is the argument's machine mode.
1411 TYPE is the data type of the argument (as a tree).
1412 This is null for libcalls where that information may
1413 not be available.
1414 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1415 the preceding args and about the function being called.
1416 NAMED is nonzero if this argument is a named parameter
1417 (otherwise it is an extra parameter matching an ellipsis).
1418
1419 On RS/6000 the first eight words of non-FP are normally in registers
1420 and the rest are pushed. The first 13 FP args are in registers.
1421
1422 If this is floating-point and no prototype is specified, we use
1423 both an FP and integer register (or possibly FP reg and stack). Library
1424 functions (when TYPE is zero) always have the proper types for args,
1425 so we can pass the FP value just in one register. emit_library_function
1426 doesn't support EXPR_LIST anyway. */
1427
1428 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1429 function_arg (&CUM, MODE, TYPE, NAMED)
1430
1431 /* For an arg passed partly in registers and partly in memory,
1432 this is the number of registers used.
1433 For args passed entirely in registers or entirely in memory, zero. */
1434
1435 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1436 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1437
1438 /* A C expression that indicates when an argument must be passed by
1439 reference. If nonzero for an argument, a copy of that argument is
1440 made in memory and a pointer to the argument is passed instead of
1441 the argument itself. The pointer is passed in whatever way is
1442 appropriate for passing a pointer to that type. */
1443
1444 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1445 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1446
1447 /* If defined, a C expression that gives the alignment boundary, in bits,
1448 of an argument with the specified mode and type. If it is not defined,
1449 PARM_BOUNDARY is used for all arguments. */
1450
1451 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1452 function_arg_boundary (MODE, TYPE)
1453
1454 /* Perform any needed actions needed for a function that is receiving a
1455 variable number of arguments.
1456
1457 CUM is as above.
1458
1459 MODE and TYPE are the mode and type of the current parameter.
1460
1461 PRETEND_SIZE is a variable that should be set to the amount of stack
1462 that must be pushed by the prolog to pretend that our caller pushed
1463 it.
1464
1465 Normally, this macro will push all remaining incoming registers on the
1466 stack and set PRETEND_SIZE to the length of the registers pushed. */
1467
1468 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1469 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1470
1471 /* If defined, is a C expression that produces the machine-specific
1472 code for a call to `__builtin_saveregs'. This code will be moved
1473 to the very beginning of the function, before any parameter access
1474 are made. The return value of this function should be an RTX that
1475 contains the value to use as the return of `__builtin_saveregs'.
1476
1477 The argument ARGS is a `tree_list' containing the arguments that
1478 were passed to `__builtin_saveregs'.
1479
1480 If this macro is not defined, the compiler will output an ordinary
1481 call to the library function `__builtin_saveregs'. */
1482
1483 #define EXPAND_BUILTIN_SAVEREGS(ARGS) \
1484 expand_builtin_saveregs (ARGS)
1485
1486 /* This macro generates the assembly code for function entry.
1487 FILE is a stdio stream to output the code to.
1488 SIZE is an int: how many units of temporary storage to allocate.
1489 Refer to the array `regs_ever_live' to determine which registers
1490 to save; `regs_ever_live[I]' is nonzero if register number I
1491 is ever used in the function. This macro is responsible for
1492 knowing which registers should not be saved even if used. */
1493
1494 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1495
1496 /* Output assembler code to FILE to increment profiler label # LABELNO
1497 for profiling a function entry. */
1498
1499 #define FUNCTION_PROFILER(FILE, LABELNO) \
1500 output_function_profiler ((FILE), (LABELNO));
1501
1502 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1503 the stack pointer does not matter. No definition is equivalent to
1504 always zero.
1505
1506 On the RS/6000, this is non-zero because we can restore the stack from
1507 its backpointer, which we maintain. */
1508 #define EXIT_IGNORE_STACK 1
1509
1510 /* This macro generates the assembly code for function exit,
1511 on machines that need it. If FUNCTION_EPILOGUE is not defined
1512 then individual return instructions are generated for each
1513 return statement. Args are same as for FUNCTION_PROLOGUE.
1514
1515 The function epilogue should not depend on the current stack pointer!
1516 It should use the frame pointer only. This is mandatory because
1517 of alloca; we also take advantage of it to omit stack adjustments
1518 before returning. */
1519
1520 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1521 \f
1522 /* TRAMPOLINE_TEMPLATE deleted */
1523
1524 /* Length in units of the trampoline for entering a nested function. */
1525
1526 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1527
1528 /* Emit RTL insns to initialize the variable parts of a trampoline.
1529 FNADDR is an RTX for the address of the function's pure code.
1530 CXT is an RTX for the static chain value for the function. */
1531
1532 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1533 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1534 \f
1535 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1536 with arguments ARGS is a valid machine specific attribute for DECL.
1537 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1538
1539 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1540 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1541
1542 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1543 with arguments ARGS is a valid machine specific attribute for TYPE.
1544 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1545
1546 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1547 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1548
1549 /* If defined, a C expression whose value is zero if the attributes on
1550 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1551 two if they are nearly compatible (which causes a warning to be
1552 generated). */
1553
1554 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1555 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1556
1557 /* If defined, a C statement that assigns default attributes to newly
1558 defined TYPE. */
1559
1560 #define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1561 (rs6000_set_default_type_attributes (TYPE))
1562
1563 \f
1564 /* Definitions for __builtin_return_address and __builtin_frame_address.
1565 __builtin_return_address (0) should give link register (65), enable
1566 this. */
1567 /* This should be uncommented, so that the link register is used, but
1568 currently this would result in unmatched insns and spilling fixed
1569 registers so we'll leave it for another day. When these problems are
1570 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1571 (mrs) */
1572 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1573
1574 /* Number of bytes into the frame return addresses can be found. See
1575 rs6000_stack_info in rs6000.c for more information on how the different
1576 abi's store the return address. */
1577 #define RETURN_ADDRESS_OFFSET \
1578 ((DEFAULT_ABI == ABI_AIX \
1579 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
1580 (DEFAULT_ABI == ABI_V4 \
1581 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
1582 (DEFAULT_ABI == ABI_NT) ? -4 : \
1583 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
1584
1585 /* The current return address is in link register (65). The return address
1586 of anything farther back is accessed normally at an offset of 8 from the
1587 frame pointer. */
1588 #define RETURN_ADDR_RTX(count, frame) \
1589 ((count == -1) \
1590 ? gen_rtx (REG, Pmode, 65) \
1591 : gen_rtx (MEM, Pmode, \
1592 memory_address (Pmode, \
1593 plus_constant (copy_to_reg (gen_rtx (MEM, Pmode, \
1594 memory_address (Pmode, frame))), \
1595 RETURN_ADDRESS_OFFSET))))
1596 \f
1597 /* Definitions for register eliminations.
1598
1599 We have two registers that can be eliminated on the RS/6000. First, the
1600 frame pointer register can often be eliminated in favor of the stack
1601 pointer register. Secondly, the argument pointer register can always be
1602 eliminated; it is replaced with either the stack or frame pointer.
1603
1604 In addition, we use the elimination mechanism to see if r30 is needed
1605 Initially we assume that it isn't. If it is, we spill it. This is done
1606 by making it an eliminable register. We replace it with itself so that
1607 if it isn't needed, then existing uses won't be modified. */
1608
1609 /* This is an array of structures. Each structure initializes one pair
1610 of eliminable registers. The "from" register number is given first,
1611 followed by "to". Eliminations of the same "from" register are listed
1612 in order of preference. */
1613 #define ELIMINABLE_REGS \
1614 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1615 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1616 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1617 { 30, 30} }
1618
1619 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1620 Frame pointer elimination is automatically handled.
1621
1622 For the RS/6000, if frame pointer elimination is being done, we would like
1623 to convert ap into fp, not sp.
1624
1625 We need r30 if -mminimal-toc was specified, and there are constant pool
1626 references. */
1627
1628 #define CAN_ELIMINATE(FROM, TO) \
1629 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1630 ? ! frame_pointer_needed \
1631 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1632 : 1)
1633
1634 /* Define the offset between two registers, one to be eliminated, and the other
1635 its replacement, at the start of a routine. */
1636 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1637 { \
1638 rs6000_stack_t *info = rs6000_stack_info (); \
1639 \
1640 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1641 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1642 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1643 (OFFSET) = info->total_size; \
1644 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1645 (OFFSET) = (info->push_p) ? info->total_size : 0; \
1646 else if ((FROM) == 30) \
1647 (OFFSET) = 0; \
1648 else \
1649 abort (); \
1650 }
1651 \f
1652 /* Addressing modes, and classification of registers for them. */
1653
1654 /* #define HAVE_POST_INCREMENT */
1655 /* #define HAVE_POST_DECREMENT */
1656
1657 #define HAVE_PRE_DECREMENT
1658 #define HAVE_PRE_INCREMENT
1659
1660 /* Macros to check register numbers against specific register classes. */
1661
1662 /* These assume that REGNO is a hard or pseudo reg number.
1663 They give nonzero only if REGNO is a hard reg of the suitable class
1664 or a pseudo reg currently allocated to a suitable hard reg.
1665 Since they use reg_renumber, they are safe only once reg_renumber
1666 has been allocated, which happens in local-alloc.c. */
1667
1668 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1669 ((REGNO) < FIRST_PSEUDO_REGISTER \
1670 ? (REGNO) <= 31 || (REGNO) == 67 \
1671 : (reg_renumber[REGNO] >= 0 \
1672 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1673
1674 #define REGNO_OK_FOR_BASE_P(REGNO) \
1675 ((REGNO) < FIRST_PSEUDO_REGISTER \
1676 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1677 : (reg_renumber[REGNO] > 0 \
1678 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1679 \f
1680 /* Maximum number of registers that can appear in a valid memory address. */
1681
1682 #define MAX_REGS_PER_ADDRESS 2
1683
1684 /* Recognize any constant value that is a valid address. */
1685
1686 #define CONSTANT_ADDRESS_P(X) \
1687 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1688 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1689 || GET_CODE (X) == HIGH)
1690
1691 /* Nonzero if the constant value X is a legitimate general operand.
1692 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1693
1694 On the RS/6000, all integer constants are acceptable, most won't be valid
1695 for particular insns, though. Only easy FP constants are
1696 acceptable. */
1697
1698 #define LEGITIMATE_CONSTANT_P(X) \
1699 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1700 || easy_fp_constant (X, GET_MODE (X)))
1701
1702 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1703 and check its validity for a certain class.
1704 We have two alternate definitions for each of them.
1705 The usual definition accepts all pseudo regs; the other rejects
1706 them unless they have been allocated suitable hard regs.
1707 The symbol REG_OK_STRICT causes the latter definition to be used.
1708
1709 Most source files want to accept pseudo regs in the hope that
1710 they will get allocated to the class that the insn wants them to be in.
1711 Source files for reload pass need to be strict.
1712 After reload, it makes no difference, since pseudo regs have
1713 been eliminated by then. */
1714
1715 #ifndef REG_OK_STRICT
1716
1717 /* Nonzero if X is a hard reg that can be used as an index
1718 or if it is a pseudo reg. */
1719 #define REG_OK_FOR_INDEX_P(X) \
1720 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1721
1722 /* Nonzero if X is a hard reg that can be used as a base reg
1723 or if it is a pseudo reg. */
1724 #define REG_OK_FOR_BASE_P(X) \
1725 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1726
1727 #else
1728
1729 /* Nonzero if X is a hard reg that can be used as an index. */
1730 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1731 /* Nonzero if X is a hard reg that can be used as a base reg. */
1732 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1733
1734 #endif
1735 \f
1736 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1737 that is a valid memory address for an instruction.
1738 The MODE argument is the machine mode for the MEM expression
1739 that wants to use this address.
1740
1741 On the RS/6000, there are four valid address: a SYMBOL_REF that
1742 refers to a constant pool entry of an address (or the sum of it
1743 plus a constant), a short (16-bit signed) constant plus a register,
1744 the sum of two registers, or a register indirect, possibly with an
1745 auto-increment. For DFmode and DImode with an constant plus register,
1746 we must ensure that both words are addressable or PowerPC64 with offset
1747 word aligned. */
1748
1749 #define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
1750 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1751 && CONSTANT_POOL_ADDRESS_P (X) \
1752 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1753
1754 /* TARGET_64BIT TOC64 guaranteed to have 64 bit alignment. */
1755 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1756 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
1757 || (TARGET_TOC \
1758 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1759 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1760 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1761
1762 #define LEGITIMATE_SMALL_DATA_P(MODE, X) \
1763 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1764 && !flag_pic && !TARGET_TOC \
1765 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1766 && small_data_operand (X, MODE))
1767
1768 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1769 (GET_CODE (X) == CONST_INT \
1770 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1771
1772 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1773 (GET_CODE (X) == PLUS \
1774 && GET_CODE (XEXP (X, 0)) == REG \
1775 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1776 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1777 && (((MODE) != DFmode && (MODE) != DImode) \
1778 || (TARGET_32BIT \
1779 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1780 : ! (INTVAL (XEXP (X, 1)) & 3))) \
1781 && ((MODE) != TImode \
1782 || (TARGET_32BIT \
1783 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1784 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1785 && ! (INTVAL (XEXP (X, 1)) & 3)))))
1786
1787 #define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1788 (GET_CODE (X) == PLUS \
1789 && GET_CODE (XEXP (X, 0)) == REG \
1790 && GET_CODE (XEXP (X, 1)) == REG \
1791 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1792 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1793 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1794 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1795
1796 #define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1797 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1798
1799 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1800 (TARGET_ELF \
1801 && !flag_pic && !TARGET_TOC \
1802 && (MODE) != DImode \
1803 && (MODE) != TImode \
1804 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1805 && GET_CODE (X) == LO_SUM \
1806 && GET_CODE (XEXP (X, 0)) == REG \
1807 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1808 && CONSTANT_P (XEXP (X, 1)))
1809
1810 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1811 { if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1812 goto ADDR; \
1813 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
1814 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1815 goto ADDR; \
1816 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1817 goto ADDR; \
1818 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1819 goto ADDR; \
1820 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1821 goto ADDR; \
1822 if ((MODE) != TImode \
1823 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1824 && (TARGET_64BIT || (MODE) != DImode) \
1825 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1826 goto ADDR; \
1827 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1828 goto ADDR; \
1829 }
1830 \f
1831 /* Try machine-dependent ways of modifying an illegitimate address
1832 to be legitimate. If we find one, return the new, valid address.
1833 This macro is used in only one place: `memory_address' in explow.c.
1834
1835 OLDX is the address as it was before break_out_memory_refs was called.
1836 In some cases it is useful to look at this to decide what needs to be done.
1837
1838 MODE and WIN are passed so that this macro can use
1839 GO_IF_LEGITIMATE_ADDRESS.
1840
1841 It is always safe for this macro to do nothing. It exists to recognize
1842 opportunities to optimize the output.
1843
1844 On RS/6000, first check for the sum of a register with a constant
1845 integer that is out of range. If so, generate code to add the
1846 constant with the low-order 16 bits masked to the register and force
1847 this result into another register (this can be done with `cau').
1848 Then generate an address of REG+(CONST&0xffff), allowing for the
1849 possibility of bit 16 being a one.
1850
1851 Then check for the sum of a register and something not constant, try to
1852 load the other things into a register and return the sum. */
1853
1854 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1855 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1856 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1857 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1858 { HOST_WIDE_INT high_int, low_int; \
1859 rtx sum; \
1860 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
1861 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1862 if (low_int & 0x8000) \
1863 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
1864 sum = force_operand (gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1865 GEN_INT (high_int)), 0); \
1866 (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (low_int)); \
1867 goto WIN; \
1868 } \
1869 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1870 && GET_CODE (XEXP (X, 1)) != CONST_INT \
1871 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1872 && (TARGET_64BIT || (MODE) != DImode) \
1873 && (MODE) != TImode) \
1874 { \
1875 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1876 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
1877 goto WIN; \
1878 } \
1879 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
1880 && !flag_pic \
1881 && GET_CODE (X) != CONST_INT \
1882 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
1883 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1884 && (MODE) != DImode && (MODE) != TImode) \
1885 { \
1886 rtx reg = gen_reg_rtx (Pmode); \
1887 emit_insn (gen_elf_high (reg, (X))); \
1888 (X) = gen_rtx (LO_SUM, Pmode, reg, (X)); \
1889 } \
1890 }
1891
1892 /* Go to LABEL if ADDR (a legitimate address expression)
1893 has an effect that depends on the machine mode it is used for.
1894
1895 On the RS/6000 this is true if the address is valid with a zero offset
1896 but not with an offset of four (this means it cannot be used as an
1897 address for DImode or DFmode) or is a pre-increment or decrement. Since
1898 we know it is valid, we just check for an address that is not valid with
1899 an offset of four. */
1900
1901 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1902 { if (GET_CODE (ADDR) == PLUS \
1903 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
1904 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
1905 (TARGET_32BIT ? 4 : 8))) \
1906 goto LABEL; \
1907 if (GET_CODE (ADDR) == PRE_INC) \
1908 goto LABEL; \
1909 if (GET_CODE (ADDR) == PRE_DEC) \
1910 goto LABEL; \
1911 if (GET_CODE (ADDR) == LO_SUM) \
1912 goto LABEL; \
1913 }
1914 \f
1915 /* The register number of the register used to address a table of
1916 static data addresses in memory. In some cases this register is
1917 defined by a processor's "application binary interface" (ABI).
1918 When this macro is defined, RTL is generated for this register
1919 once, as with the stack pointer and frame pointer registers. If
1920 this macro is not defined, it is up to the machine-dependent files
1921 to allocate such a register (if necessary). */
1922
1923 /* #define PIC_OFFSET_TABLE_REGNUM */
1924
1925 /* Define this macro if the register defined by
1926 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1927 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
1928
1929 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1930
1931 /* By generating position-independent code, when two different
1932 programs (A and B) share a common library (libC.a), the text of
1933 the library can be shared whether or not the library is linked at
1934 the same address for both programs. In some of these
1935 environments, position-independent code requires not only the use
1936 of different addressing modes, but also special code to enable the
1937 use of these addressing modes.
1938
1939 The `FINALIZE_PIC' macro serves as a hook to emit these special
1940 codes once the function is being compiled into assembly code, but
1941 not before. (It is not done before, because in the case of
1942 compiling an inline function, it would lead to multiple PIC
1943 prologues being included in functions which used inline functions
1944 and were compiled to assembly language.) */
1945
1946 #define FINALIZE_PIC rs6000_finalize_pic ()
1947
1948 /* A C expression that is nonzero if X is a legitimate immediate
1949 operand on the target machine when generating position independent
1950 code. You can assume that X satisfies `CONSTANT_P', so you need
1951 not check this. You can also assume FLAG_PIC is true, so you need
1952 not check it either. You need not define this macro if all
1953 constants (including `SYMBOL_REF') can be immediate operands when
1954 generating position independent code. */
1955
1956 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1957
1958 /* In rare cases, correct code generation requires extra machine
1959 dependent processing between the second jump optimization pass and
1960 delayed branch scheduling. On those machines, define this macro
1961 as a C statement to act on the code starting at INSN.
1962
1963 On the RS/6000, we use it to make sure the GOT_TOC register marker
1964 that FINALIZE_PIC is supposed to remove actually got removed. */
1965
1966 #define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
1967
1968 \f
1969 /* Define this if some processing needs to be done immediately before
1970 emitting code for an insn. */
1971
1972 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1973
1974 /* Specify the machine mode that this machine uses
1975 for the index in the tablejump instruction. */
1976 #define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
1977
1978 /* Define this if the tablejump instruction expects the table
1979 to contain offsets from the address of the table.
1980 Do not define this if the table should contain absolute addresses. */
1981 #define CASE_VECTOR_PC_RELATIVE
1982
1983 /* Specify the tree operation to be used to convert reals to integers. */
1984 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1985
1986 /* This is the kind of divide that is easiest to do in the general case. */
1987 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1988
1989 /* Define this as 1 if `char' should by default be signed; else as 0. */
1990 #define DEFAULT_SIGNED_CHAR 0
1991
1992 /* This flag, if defined, says the same insns that convert to a signed fixnum
1993 also convert validly to an unsigned one. */
1994
1995 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1996
1997 /* Max number of bytes we can move from memory to memory
1998 in one reasonably fast instruction. */
1999 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2000 #define MAX_MOVE_MAX 8
2001
2002 /* Nonzero if access to memory by bytes is no faster than for words.
2003 Also non-zero if doing byte operations (specifically shifts) in registers
2004 is undesirable. */
2005 #define SLOW_BYTE_ACCESS 1
2006
2007 /* Define if operations between registers always perform the operation
2008 on the full register even if a narrower mode is specified. */
2009 #define WORD_REGISTER_OPERATIONS
2010
2011 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2012 will either zero-extend or sign-extend. The value of this macro should
2013 be the code that says which one of the two operations is implicitly
2014 done, NIL if none. */
2015 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2016
2017 /* Define if loading short immediate values into registers sign extends. */
2018 #define SHORT_IMMEDIATES_SIGN_EXTEND
2019 \f
2020 /* The RS/6000 uses the XCOFF format. */
2021
2022 #define XCOFF_DEBUGGING_INFO
2023
2024 /* Define if the object format being used is COFF or a superset. */
2025 #define OBJECT_FORMAT_COFF
2026
2027 /* Define the magic numbers that we recognize as COFF. */
2028
2029 #define MY_ISCOFF(magic) \
2030 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC)
2031
2032 /* This is the only version of nm that collect2 can work with. */
2033 #define REAL_NM_FILE_NAME "/usr/ucb/nm"
2034
2035 /* We don't have GAS for the RS/6000 yet, so don't write out special
2036 .stabs in cc1plus. */
2037
2038 #define FASCIST_ASSEMBLER
2039
2040 #ifndef ASM_OUTPUT_CONSTRUCTOR
2041 #define ASM_OUTPUT_CONSTRUCTOR(file, name)
2042 #endif
2043 #ifndef ASM_OUTPUT_DESTRUCTOR
2044 #define ASM_OUTPUT_DESTRUCTOR(file, name)
2045 #endif
2046
2047 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2048 is done just by pretending it is already truncated. */
2049 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2050
2051 /* Specify the machine mode that pointers have.
2052 After generation of rtl, the compiler makes no further distinction
2053 between pointers and any other objects of this machine mode. */
2054 #define Pmode (TARGET_32BIT ? SImode : DImode)
2055
2056 /* Mode of a function address in a call instruction (for indexing purposes).
2057
2058 Doesn't matter on RS/6000. */
2059 #define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
2060
2061 /* Define this if addresses of constant functions
2062 shouldn't be put through pseudo regs where they can be cse'd.
2063 Desirable on machines where ordinary constants are expensive
2064 but a CALL with constant address is cheap. */
2065 #define NO_FUNCTION_CSE
2066
2067 /* Define this to be nonzero if shift instructions ignore all but the low-order
2068 few bits.
2069
2070 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2071 have been dropped from the PowerPC architecture. */
2072
2073 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2074
2075 /* Use atexit for static constructors/destructors, instead of defining
2076 our own exit function. */
2077 #define HAVE_ATEXIT
2078
2079 /* Compute the cost of computing a constant rtl expression RTX
2080 whose rtx-code is CODE. The body of this macro is a portion
2081 of a switch statement. If the code is computed here,
2082 return it with a return statement. Otherwise, break from the switch.
2083
2084 On the RS/6000, if it is valid in the insn, it is free. So this
2085 always returns 0. */
2086
2087 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2088 case CONST_INT: \
2089 case CONST: \
2090 case LABEL_REF: \
2091 case SYMBOL_REF: \
2092 case CONST_DOUBLE: \
2093 case HIGH: \
2094 return 0;
2095
2096 /* Provide the costs of a rtl expression. This is in the body of a
2097 switch on CODE. */
2098
2099 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2100 case MULT: \
2101 switch (rs6000_cpu) \
2102 { \
2103 case PROCESSOR_RIOS1: \
2104 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2105 ? COSTS_N_INSNS (5) \
2106 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2107 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2108 case PROCESSOR_RIOS2: \
2109 case PROCESSOR_MPCCORE: \
2110 return COSTS_N_INSNS (2); \
2111 case PROCESSOR_PPC601: \
2112 return COSTS_N_INSNS (5); \
2113 case PROCESSOR_PPC603: \
2114 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2115 ? COSTS_N_INSNS (5) \
2116 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2117 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2118 case PROCESSOR_PPC403: \
2119 case PROCESSOR_PPC604: \
2120 case PROCESSOR_PPC620: \
2121 return COSTS_N_INSNS (4); \
2122 } \
2123 case DIV: \
2124 case MOD: \
2125 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2126 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2127 return COSTS_N_INSNS (2); \
2128 /* otherwise fall through to normal divide. */ \
2129 case UDIV: \
2130 case UMOD: \
2131 switch (rs6000_cpu) \
2132 { \
2133 case PROCESSOR_RIOS1: \
2134 return COSTS_N_INSNS (19); \
2135 case PROCESSOR_RIOS2: \
2136 return COSTS_N_INSNS (13); \
2137 case PROCESSOR_MPCCORE: \
2138 return COSTS_N_INSNS (6); \
2139 case PROCESSOR_PPC403: \
2140 return COSTS_N_INSNS (33); \
2141 case PROCESSOR_PPC601: \
2142 return COSTS_N_INSNS (36); \
2143 case PROCESSOR_PPC603: \
2144 return COSTS_N_INSNS (37); \
2145 case PROCESSOR_PPC604: \
2146 case PROCESSOR_PPC620: \
2147 return COSTS_N_INSNS (20); \
2148 } \
2149 case FFS: \
2150 return COSTS_N_INSNS (4); \
2151 case MEM: \
2152 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2153 return 5;
2154
2155 /* Compute the cost of an address. This is meant to approximate the size
2156 and/or execution delay of an insn using that address. If the cost is
2157 approximated by the RTL complexity, including CONST_COSTS above, as
2158 is usually the case for CISC machines, this macro should not be defined.
2159 For aggressively RISCy machines, only one insn format is allowed, so
2160 this macro should be a constant. The value of this macro only matters
2161 for valid addresses.
2162
2163 For the RS/6000, everything is cost 0. */
2164
2165 #define ADDRESS_COST(RTX) 0
2166
2167 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2168 should be adjusted to reflect any required changes. This macro is used when
2169 there is some systematic length adjustment required that would be difficult
2170 to express in the length attribute. */
2171
2172 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2173
2174 /* Add any extra modes needed to represent the condition code.
2175
2176 For the RS/6000, we need separate modes when unsigned (logical) comparisons
2177 are being done and we need a separate mode for floating-point. We also
2178 use a mode for the case when we are comparing the results of two
2179 comparisons. */
2180
2181 #define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
2182
2183 /* Define the names for the modes specified above. */
2184 #define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
2185
2186 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2187 return the mode to be used for the comparison. For floating-point, CCFPmode
2188 should be used. CCUNSmode should be used for unsigned comparisons.
2189 CCEQmode should be used when we are doing an inequality comparison on
2190 the result of a comparison. CCmode should be used in all other cases. */
2191
2192 #define SELECT_CC_MODE(OP,X,Y) \
2193 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2194 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2195 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2196 ? CCEQmode : CCmode))
2197
2198 /* Define the information needed to generate branch and scc insns. This is
2199 stored from the compare operation. Note that we can't use "rtx" here
2200 since it hasn't been defined! */
2201
2202 extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2203 extern int rs6000_compare_fp_p;
2204
2205 /* Set to non-zero by "fix" operation to indicate that itrunc and
2206 uitrunc must be defined. */
2207
2208 extern int rs6000_trunc_used;
2209
2210 /* Function names to call to do floating point truncation. */
2211
2212 #define RS6000_ITRUNC "itrunc"
2213 #define RS6000_UITRUNC "uitrunc"
2214
2215 /* Prefix and suffix to use to saving floating point */
2216 #ifndef SAVE_FP_PREFIX
2217 #define SAVE_FP_PREFIX "._savef"
2218 #define SAVE_FP_SUFFIX ""
2219 #endif
2220
2221 /* Prefix and suffix to use to restoring floating point */
2222 #ifndef RESTORE_FP_PREFIX
2223 #define RESTORE_FP_PREFIX "._restf"
2224 #define RESTORE_FP_SUFFIX ""
2225 #endif
2226
2227 \f
2228 /* Control the assembler format that we output. */
2229
2230 /* A C string constant describing how to begin a comment in the target
2231 assembler language. The compiler assumes that the comment will end at
2232 the end of the line. */
2233 #define ASM_COMMENT_START " #"
2234
2235 /* Output at beginning of assembler file.
2236
2237 Initialize the section names for the RS/6000 at this point.
2238
2239 Specify filename to assembler.
2240
2241 We want to go into the TOC section so at least one .toc will be emitted.
2242 Also, in order to output proper .bs/.es pairs, we need at least one static
2243 [RW] section emitted.
2244
2245 We then switch back to text to force the gcc2_compiled. label and the space
2246 allocated after it (when profiling) into the text section.
2247
2248 Finally, declare mcount when profiling to make the assembler happy. */
2249
2250 #define ASM_FILE_START(FILE) \
2251 { \
2252 rs6000_gen_section_name (&xcoff_bss_section_name, \
2253 main_input_filename, ".bss_"); \
2254 rs6000_gen_section_name (&xcoff_private_data_section_name, \
2255 main_input_filename, ".rw_"); \
2256 rs6000_gen_section_name (&xcoff_read_only_section_name, \
2257 main_input_filename, ".ro_"); \
2258 \
2259 output_file_directive (FILE, main_input_filename); \
2260 toc_section (); \
2261 if (write_symbols != NO_DEBUG) \
2262 private_data_section (); \
2263 text_section (); \
2264 if (profile_flag) \
2265 fputs ("\t.extern .mcount\n", FILE); \
2266 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
2267 }
2268
2269 /* Output at end of assembler file.
2270
2271 On the RS/6000, referencing data should automatically pull in text. */
2272
2273 #define ASM_FILE_END(FILE) \
2274 { \
2275 text_section (); \
2276 fputs ("_section_.text:\n", FILE); \
2277 data_section (); \
2278 fputs ("\t.long _section_.text\n", FILE); \
2279 }
2280
2281 /* We define this to prevent the name mangler from putting dollar signs into
2282 function names. */
2283
2284 #define NO_DOLLAR_IN_LABEL
2285
2286 /* We define this to 0 so that gcc will never accept a dollar sign in a
2287 variable name. This is needed because the AIX assembler will not accept
2288 dollar signs. */
2289
2290 #define DOLLARS_IN_IDENTIFIERS 0
2291
2292 /* Implicit library calls should use memcpy, not bcopy, etc. */
2293
2294 #define TARGET_MEM_FUNCTIONS
2295
2296 /* Define the extra sections we need. We define three: one is the read-only
2297 data section which is used for constants. This is a csect whose name is
2298 derived from the name of the input file. The second is for initialized
2299 global variables. This is a csect whose name is that of the variable.
2300 The third is the TOC. */
2301
2302 #define EXTRA_SECTIONS \
2303 read_only_data, private_data, read_only_private_data, toc, bss
2304
2305 /* Define the name of our readonly data section. */
2306
2307 #define READONLY_DATA_SECTION read_only_data_section
2308
2309
2310 /* Define the name of the section to use for the exception tables.
2311 TODO: test and see if we can use read_only_data_section, if so,
2312 remove this. */
2313
2314 #define EXCEPTION_SECTION data_section
2315
2316 /* If we are referencing a function that is static or is known to be
2317 in this file, make the SYMBOL_REF special. We can use this to indicate
2318 that we can branch to this function without emitting a no-op after the
2319 call. */
2320
2321 #define ENCODE_SECTION_INFO(DECL) \
2322 if (TREE_CODE (DECL) == FUNCTION_DECL \
2323 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2324 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2325
2326 /* Indicate that jump tables go in the text section. */
2327
2328 #define JUMP_TABLES_IN_TEXT_SECTION
2329
2330 /* Define the routines to implement these extra sections. */
2331
2332 #define EXTRA_SECTION_FUNCTIONS \
2333 \
2334 void \
2335 read_only_data_section () \
2336 { \
2337 if (in_section != read_only_data) \
2338 { \
2339 fprintf (asm_out_file, ".csect %s[RO]\n", \
2340 xcoff_read_only_section_name); \
2341 in_section = read_only_data; \
2342 } \
2343 } \
2344 \
2345 void \
2346 private_data_section () \
2347 { \
2348 if (in_section != private_data) \
2349 { \
2350 fprintf (asm_out_file, ".csect %s[RW]\n", \
2351 xcoff_private_data_section_name); \
2352 \
2353 in_section = private_data; \
2354 } \
2355 } \
2356 \
2357 void \
2358 read_only_private_data_section () \
2359 { \
2360 if (in_section != read_only_private_data) \
2361 { \
2362 fprintf (asm_out_file, ".csect %s[RO]\n", \
2363 xcoff_private_data_section_name); \
2364 in_section = read_only_private_data; \
2365 } \
2366 } \
2367 \
2368 void \
2369 toc_section () \
2370 { \
2371 if (TARGET_MINIMAL_TOC) \
2372 { \
2373 static int toc_initialized = 0; \
2374 \
2375 /* toc_section is always called at least once from ASM_FILE_START, \
2376 so this is guaranteed to always be defined once and only once \
2377 in each file. */ \
2378 if (! toc_initialized) \
2379 { \
2380 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2381 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
2382 toc_initialized = 1; \
2383 } \
2384 \
2385 if (in_section != toc) \
2386 fputs (".csect toc_table[RW]\n", asm_out_file); \
2387 } \
2388 else \
2389 { \
2390 if (in_section != toc) \
2391 fputs (".toc\n", asm_out_file); \
2392 } \
2393 in_section = toc; \
2394 }
2395
2396 /* This macro produces the initial definition of a function name.
2397 On the RS/6000, we need to place an extra '.' in the function name and
2398 output the function descriptor.
2399
2400 The csect for the function will have already been created by the
2401 `text_section' call previously done. We do have to go back to that
2402 csect, however. */
2403
2404 /* ??? What do the 16 and 044 in the .function line really mean? */
2405
2406 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2407 { if (TREE_PUBLIC (DECL)) \
2408 { \
2409 fputs ("\t.globl .", FILE); \
2410 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2411 putc ('\n', FILE); \
2412 } \
2413 else \
2414 { \
2415 fputs ("\t.lglobl .", FILE); \
2416 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2417 putc ('\n', FILE); \
2418 } \
2419 fputs (".csect ", FILE); \
2420 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2421 fputs ("[DS]\n", FILE); \
2422 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2423 fputs (":\n", FILE); \
2424 fputs ((TARGET_32BIT) ? "\t.long ." : "\t.llong .", FILE); \
2425 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2426 fputs (", TOC[tc0], 0\n", FILE); \
2427 fputs (".csect .text[PR]\n.", FILE); \
2428 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2429 fputs (":\n", FILE); \
2430 if (write_symbols == XCOFF_DEBUG) \
2431 xcoffout_declare_function (FILE, DECL, NAME); \
2432 }
2433
2434 /* Return non-zero if this entry is to be written into the constant pool
2435 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2436 containing one of them. If -mfp-in-toc (the default), we also do
2437 this for floating-point constants. We actually can only do this
2438 if the FP formats of the target and host machines are the same, but
2439 we can't check that since not every file that uses
2440 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2441
2442 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2443 (TARGET_TOC \
2444 && (GET_CODE (X) == SYMBOL_REF \
2445 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2446 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2447 || GET_CODE (X) == LABEL_REF \
2448 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2449 && GET_CODE (X) == CONST_DOUBLE \
2450 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2451 && BITS_PER_WORD == HOST_BITS_PER_INT)))
2452
2453 /* Select section for constant in constant pool.
2454
2455 On RS/6000, all constants are in the private read-only data area.
2456 However, if this is being placed in the TOC it must be output as a
2457 toc entry. */
2458
2459 #define SELECT_RTX_SECTION(MODE, X) \
2460 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2461 toc_section (); \
2462 else \
2463 read_only_private_data_section (); \
2464 }
2465
2466 /* Macro to output a special constant pool entry. Go to WIN if we output
2467 it. Otherwise, it is written the usual way.
2468
2469 On the RS/6000, toc entries are handled this way. */
2470
2471 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2472 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2473 { \
2474 output_toc (FILE, X, LABELNO); \
2475 goto WIN; \
2476 } \
2477 }
2478
2479 /* Select the section for an initialized data object.
2480
2481 On the RS/6000, we have a special section for all variables except those
2482 that are static. */
2483
2484 #define SELECT_SECTION(EXP,RELOC) \
2485 { \
2486 if ((TREE_CODE (EXP) == STRING_CST \
2487 && !flag_writable_strings) \
2488 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
2489 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
2490 && DECL_INITIAL (EXP) \
2491 && (DECL_INITIAL (EXP) == error_mark_node \
2492 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2493 && ! (RELOC))) \
2494 { \
2495 if (TREE_PUBLIC (EXP)) \
2496 read_only_data_section (); \
2497 else \
2498 read_only_private_data_section (); \
2499 } \
2500 else \
2501 { \
2502 if (TREE_PUBLIC (EXP)) \
2503 data_section (); \
2504 else \
2505 private_data_section (); \
2506 } \
2507 }
2508
2509 /* This outputs NAME to FILE up to the first null or '['. */
2510
2511 #define RS6000_OUTPUT_BASENAME(FILE, NAME) \
2512 { \
2513 char *_p; \
2514 \
2515 STRIP_NAME_ENCODING (_p, (NAME)); \
2516 assemble_name ((FILE), _p); \
2517 }
2518
2519 /* Remove any trailing [DS] or the like from the symbol name. */
2520
2521 #define STRIP_NAME_ENCODING(VAR,NAME) \
2522 do \
2523 { \
2524 char *_name = (NAME); \
2525 int _len; \
2526 if (_name[0] == '*') \
2527 _name++; \
2528 _len = strlen (_name); \
2529 if (_name[_len - 1] != ']') \
2530 (VAR) = _name; \
2531 else \
2532 { \
2533 (VAR) = (char *) alloca (_len + 1); \
2534 strcpy ((VAR), _name); \
2535 (VAR)[_len - 4] = '\0'; \
2536 } \
2537 } \
2538 while (0)
2539
2540 /* Output something to declare an external symbol to the assembler. Most
2541 assemblers don't need this.
2542
2543 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2544 name. Normally we write this out along with the name. In the few cases
2545 where we can't, it gets stripped off. */
2546
2547 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2548 { rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2549 if ((TREE_CODE (DECL) == VAR_DECL \
2550 || TREE_CODE (DECL) == FUNCTION_DECL) \
2551 && (NAME)[strlen (NAME) - 1] != ']') \
2552 { \
2553 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2554 strcpy (_name, XSTR (_symref, 0)); \
2555 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2556 XSTR (_symref, 0) = _name; \
2557 } \
2558 fputs ("\t.extern ", FILE); \
2559 assemble_name (FILE, XSTR (_symref, 0)); \
2560 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2561 { \
2562 fputs ("\n\t.extern .", FILE); \
2563 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2564 } \
2565 putc ('\n', FILE); \
2566 }
2567
2568 /* Similar, but for libcall. We only have to worry about the function name,
2569 not that of the descriptor. */
2570
2571 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
2572 { fputs ("\t.extern .", FILE); \
2573 assemble_name (FILE, XSTR (FUN, 0)); \
2574 putc ('\n', FILE); \
2575 }
2576
2577 /* Output to assembler file text saying following lines
2578 may contain character constants, extra white space, comments, etc. */
2579
2580 #define ASM_APP_ON ""
2581
2582 /* Output to assembler file text saying following lines
2583 no longer contain unusual constructs. */
2584
2585 #define ASM_APP_OFF ""
2586
2587 /* Output before instructions. */
2588
2589 #define TEXT_SECTION_ASM_OP ".csect .text[PR]"
2590
2591 /* Output before writable data. */
2592
2593 #define DATA_SECTION_ASM_OP ".csect .data[RW]"
2594
2595 /* How to refer to registers in assembler output.
2596 This sequence is indexed by compiler's hard-register-number (see above). */
2597
2598 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2599
2600 #define REGISTER_NAMES \
2601 { \
2602 &rs6000_reg_names[ 0][0], /* r0 */ \
2603 &rs6000_reg_names[ 1][0], /* r1 */ \
2604 &rs6000_reg_names[ 2][0], /* r2 */ \
2605 &rs6000_reg_names[ 3][0], /* r3 */ \
2606 &rs6000_reg_names[ 4][0], /* r4 */ \
2607 &rs6000_reg_names[ 5][0], /* r5 */ \
2608 &rs6000_reg_names[ 6][0], /* r6 */ \
2609 &rs6000_reg_names[ 7][0], /* r7 */ \
2610 &rs6000_reg_names[ 8][0], /* r8 */ \
2611 &rs6000_reg_names[ 9][0], /* r9 */ \
2612 &rs6000_reg_names[10][0], /* r10 */ \
2613 &rs6000_reg_names[11][0], /* r11 */ \
2614 &rs6000_reg_names[12][0], /* r12 */ \
2615 &rs6000_reg_names[13][0], /* r13 */ \
2616 &rs6000_reg_names[14][0], /* r14 */ \
2617 &rs6000_reg_names[15][0], /* r15 */ \
2618 &rs6000_reg_names[16][0], /* r16 */ \
2619 &rs6000_reg_names[17][0], /* r17 */ \
2620 &rs6000_reg_names[18][0], /* r18 */ \
2621 &rs6000_reg_names[19][0], /* r19 */ \
2622 &rs6000_reg_names[20][0], /* r20 */ \
2623 &rs6000_reg_names[21][0], /* r21 */ \
2624 &rs6000_reg_names[22][0], /* r22 */ \
2625 &rs6000_reg_names[23][0], /* r23 */ \
2626 &rs6000_reg_names[24][0], /* r24 */ \
2627 &rs6000_reg_names[25][0], /* r25 */ \
2628 &rs6000_reg_names[26][0], /* r26 */ \
2629 &rs6000_reg_names[27][0], /* r27 */ \
2630 &rs6000_reg_names[28][0], /* r28 */ \
2631 &rs6000_reg_names[29][0], /* r29 */ \
2632 &rs6000_reg_names[30][0], /* r30 */ \
2633 &rs6000_reg_names[31][0], /* r31 */ \
2634 \
2635 &rs6000_reg_names[32][0], /* fr0 */ \
2636 &rs6000_reg_names[33][0], /* fr1 */ \
2637 &rs6000_reg_names[34][0], /* fr2 */ \
2638 &rs6000_reg_names[35][0], /* fr3 */ \
2639 &rs6000_reg_names[36][0], /* fr4 */ \
2640 &rs6000_reg_names[37][0], /* fr5 */ \
2641 &rs6000_reg_names[38][0], /* fr6 */ \
2642 &rs6000_reg_names[39][0], /* fr7 */ \
2643 &rs6000_reg_names[40][0], /* fr8 */ \
2644 &rs6000_reg_names[41][0], /* fr9 */ \
2645 &rs6000_reg_names[42][0], /* fr10 */ \
2646 &rs6000_reg_names[43][0], /* fr11 */ \
2647 &rs6000_reg_names[44][0], /* fr12 */ \
2648 &rs6000_reg_names[45][0], /* fr13 */ \
2649 &rs6000_reg_names[46][0], /* fr14 */ \
2650 &rs6000_reg_names[47][0], /* fr15 */ \
2651 &rs6000_reg_names[48][0], /* fr16 */ \
2652 &rs6000_reg_names[49][0], /* fr17 */ \
2653 &rs6000_reg_names[50][0], /* fr18 */ \
2654 &rs6000_reg_names[51][0], /* fr19 */ \
2655 &rs6000_reg_names[52][0], /* fr20 */ \
2656 &rs6000_reg_names[53][0], /* fr21 */ \
2657 &rs6000_reg_names[54][0], /* fr22 */ \
2658 &rs6000_reg_names[55][0], /* fr23 */ \
2659 &rs6000_reg_names[56][0], /* fr24 */ \
2660 &rs6000_reg_names[57][0], /* fr25 */ \
2661 &rs6000_reg_names[58][0], /* fr26 */ \
2662 &rs6000_reg_names[59][0], /* fr27 */ \
2663 &rs6000_reg_names[60][0], /* fr28 */ \
2664 &rs6000_reg_names[61][0], /* fr29 */ \
2665 &rs6000_reg_names[62][0], /* fr30 */ \
2666 &rs6000_reg_names[63][0], /* fr31 */ \
2667 \
2668 &rs6000_reg_names[64][0], /* mq */ \
2669 &rs6000_reg_names[65][0], /* lr */ \
2670 &rs6000_reg_names[66][0], /* ctr */ \
2671 &rs6000_reg_names[67][0], /* ap */ \
2672 \
2673 &rs6000_reg_names[68][0], /* cr0 */ \
2674 &rs6000_reg_names[69][0], /* cr1 */ \
2675 &rs6000_reg_names[70][0], /* cr2 */ \
2676 &rs6000_reg_names[71][0], /* cr3 */ \
2677 &rs6000_reg_names[72][0], /* cr4 */ \
2678 &rs6000_reg_names[73][0], /* cr5 */ \
2679 &rs6000_reg_names[74][0], /* cr6 */ \
2680 &rs6000_reg_names[75][0], /* cr7 */ \
2681 \
2682 &rs6000_reg_names[76][0], /* fpmem */ \
2683 }
2684
2685 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2686 following for it. Switch to use the alternate names since
2687 they are more mnemonic. */
2688
2689 #define DEBUG_REGISTER_NAMES \
2690 { \
2691 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2692 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2693 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2694 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2695 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2696 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2697 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2698 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2699 "mq", "lr", "ctr", "ap", \
2700 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2701 "fpmem" \
2702 }
2703
2704 /* Table of additional register names to use in user input. */
2705
2706 #define ADDITIONAL_REGISTER_NAMES \
2707 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
2708 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
2709 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
2710 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
2711 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
2712 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
2713 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
2714 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
2715 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
2716 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
2717 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
2718 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
2719 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
2720 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
2721 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
2722 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
2723 /* no additional names for: mq, lr, ctr, ap */ \
2724 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
2725 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
2726 "cc", 68, "sp", 1, "toc", 2 }
2727
2728 /* How to renumber registers for dbx and gdb. */
2729
2730 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2731
2732 /* Text to write out after a CALL that may be replaced by glue code by
2733 the loader. This depends on the AIX version. */
2734 #define RS6000_CALL_GLUE "cror 31,31,31"
2735
2736 /* This is how to output the definition of a user-level label named NAME,
2737 such as the label on a static function or variable NAME. */
2738
2739 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2740 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2741
2742 /* This is how to output a command to make the user-level label named NAME
2743 defined for reference from other files. */
2744
2745 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2746 do { fputs ("\t.globl ", FILE); \
2747 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
2748
2749 /* This is how to output a reference to a user-level label named NAME.
2750 `assemble_name' uses this. */
2751
2752 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2753 fputs (NAME, FILE)
2754
2755 /* This is how to output an internal numbered label where
2756 PREFIX is the class of label and NUM is the number within the class. */
2757
2758 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2759 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2760
2761 /* This is how to output an internal label prefix. rs6000.c uses this
2762 when generating traceback tables. */
2763
2764 #define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2765 fprintf (FILE, "%s..", PREFIX)
2766
2767 /* This is how to output a label for a jump table. Arguments are the same as
2768 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2769 passed. */
2770
2771 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2772 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2773
2774 /* This is how to store into the string LABEL
2775 the symbol_ref name of an internal numbered label where
2776 PREFIX is the class of label and NUM is the number within the class.
2777 This is suitable for output with `assemble_name'. */
2778
2779 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2780 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
2781
2782 /* This is how to output an assembler line defining a `double' constant. */
2783
2784 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
2785 { \
2786 if (REAL_VALUE_ISINF (VALUE) \
2787 || REAL_VALUE_ISNAN (VALUE) \
2788 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2789 { \
2790 long t[2]; \
2791 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2792 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
2793 t[0] & 0xffffffff, t[1] & 0xffffffff); \
2794 } \
2795 else \
2796 { \
2797 char str[30]; \
2798 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2799 fprintf (FILE, "\t.double 0d%s\n", str); \
2800 } \
2801 }
2802
2803 /* This is how to output an assembler line defining a `float' constant. */
2804
2805 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
2806 { \
2807 if (REAL_VALUE_ISINF (VALUE) \
2808 || REAL_VALUE_ISNAN (VALUE) \
2809 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2810 { \
2811 long t; \
2812 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2813 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2814 } \
2815 else \
2816 { \
2817 char str[30]; \
2818 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2819 fprintf (FILE, "\t.float 0d%s\n", str); \
2820 } \
2821 }
2822
2823 /* This is how to output an assembler line defining an `int' constant. */
2824
2825 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2826 do { \
2827 if (TARGET_32BIT) \
2828 { \
2829 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
2830 UNITS_PER_WORD, 1); \
2831 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
2832 UNITS_PER_WORD, 1); \
2833 } \
2834 else \
2835 { \
2836 fputs ("\t.llong ", FILE); \
2837 output_addr_const (FILE, (VALUE)); \
2838 putc ('\n', FILE); \
2839 } \
2840 } while (0)
2841
2842 #define ASM_OUTPUT_INT(FILE,VALUE) \
2843 ( fputs ("\t.long ", FILE), \
2844 output_addr_const (FILE, (VALUE)), \
2845 putc ('\n', FILE))
2846
2847 /* Likewise for `char' and `short' constants. */
2848
2849 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2850 ( fputs ("\t.short ", FILE), \
2851 output_addr_const (FILE, (VALUE)), \
2852 putc ('\n', FILE))
2853
2854 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2855 ( fputs ("\t.byte ", FILE), \
2856 output_addr_const (FILE, (VALUE)), \
2857 putc ('\n', FILE))
2858
2859 /* This is how to output an assembler line for a numeric constant byte. */
2860
2861 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2862 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
2863
2864 /* This is how to output an assembler line to define N characters starting
2865 at P to FILE. */
2866
2867 #define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
2868
2869 /* This is how to output code to push a register on the stack.
2870 It need not be very fast code. */
2871
2872 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2873 do { \
2874 extern char *reg_names[]; \
2875 asm_fprintf (FILE, "\{tstu|stwu} %s,-4(%s)\n", reg_names[REGNO], \
2876 reg_names[1]); \
2877 } while (0)
2878
2879 /* This is how to output an insn to pop a register from the stack.
2880 It need not be very fast code. */
2881
2882 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2883 do { \
2884 extern char *reg_names[]; \
2885 asm_fprintf (FILE, "\t{l|lwz} %s,0(%s)\n\t{ai|addic} %s,%s,4\n", \
2886 reg_names[REGNO], reg_names[1], reg_names[1], \
2887 reg_names[1]); \
2888 } while (0)
2889
2890 /* This is how to output an element of a case-vector that is absolute.
2891 (RS/6000 does not use such vectors, but we must define this macro
2892 anyway.) */
2893
2894 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2895 do { char buf[100]; \
2896 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
2897 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2898 assemble_name (FILE, buf); \
2899 putc ('\n', FILE); \
2900 } while (0)
2901
2902 /* This is how to output an element of a case-vector that is relative. */
2903
2904 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2905 do { char buf[100]; \
2906 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
2907 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2908 assemble_name (FILE, buf); \
2909 putc ('-', FILE); \
2910 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2911 assemble_name (FILE, buf); \
2912 putc ('\n', FILE); \
2913 } while (0)
2914
2915 /* This is how to output an assembler line
2916 that says to advance the location counter
2917 to a multiple of 2**LOG bytes. */
2918
2919 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2920 if ((LOG) != 0) \
2921 fprintf (FILE, "\t.align %d\n", (LOG))
2922
2923 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2924 fprintf (FILE, "\t.space %d\n", (SIZE))
2925
2926 /* This says how to output an assembler line
2927 to define a global common symbol. */
2928
2929 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
2930 do { fputs (".comm ", (FILE)); \
2931 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2932 if ( (SIZE) > 4) \
2933 fprintf ((FILE), ",%d,3\n", (SIZE)); \
2934 else \
2935 fprintf( (FILE), ",%d\n", (SIZE)); \
2936 } while (0)
2937
2938 /* This says how to output an assembler line
2939 to define a local common symbol. */
2940
2941 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2942 do { fputs (".lcomm ", (FILE)); \
2943 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2944 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
2945 } while (0)
2946
2947 /* Store in OUTPUT a string (made with alloca) containing
2948 an assembler-name for a local static variable named NAME.
2949 LABELNO is an integer which is different for each call. */
2950
2951 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2952 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2953 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2954
2955 /* Define the parentheses used to group arithmetic operations
2956 in assembler code. */
2957
2958 #define ASM_OPEN_PAREN "("
2959 #define ASM_CLOSE_PAREN ")"
2960
2961 /* Define results of standard character escape sequences. */
2962 #define TARGET_BELL 007
2963 #define TARGET_BS 010
2964 #define TARGET_TAB 011
2965 #define TARGET_NEWLINE 012
2966 #define TARGET_VT 013
2967 #define TARGET_FF 014
2968 #define TARGET_CR 015
2969
2970 /* Print operand X (an rtx) in assembler syntax to file FILE.
2971 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2972 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2973
2974 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2975
2976 /* Define which CODE values are valid. */
2977
2978 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2979 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
2980
2981 /* Print a memory address as an operand to reference that memory location. */
2982
2983 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2984
2985 /* Define the codes that are matched by predicates in rs6000.c. */
2986
2987 #define PREDICATE_CODES \
2988 {"short_cint_operand", {CONST_INT}}, \
2989 {"u_short_cint_operand", {CONST_INT}}, \
2990 {"non_short_cint_operand", {CONST_INT}}, \
2991 {"gpc_reg_operand", {SUBREG, REG}}, \
2992 {"cc_reg_operand", {SUBREG, REG}}, \
2993 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2994 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2995 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2996 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2997 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2998 {"easy_fp_constant", {CONST_DOUBLE}}, \
2999 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
3000 {"lwa_operand", {SUBREG, MEM, REG}}, \
3001 {"volatile_mem_operand", {MEM}}, \
3002 {"offsettable_addr_operand", {REG, SUBREG, PLUS}}, \
3003 {"fp_reg_or_mem_operand", {SUBREG, MEM, REG}}, \
3004 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
3005 {"add_operand", {SUBREG, REG, CONST_INT}}, \
3006 {"non_add_cint_operand", {CONST_INT}}, \
3007 {"and_operand", {SUBREG, REG, CONST_INT}}, \
3008 {"non_and_cint_operand", {CONST_INT}}, \
3009 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
3010 {"non_logical_cint_operand", {CONST_INT}}, \
3011 {"mask_operand", {CONST_INT}}, \
3012 {"count_register_operand", {REG}}, \
3013 {"fpmem_operand", {REG}}, \
3014 {"call_operand", {SYMBOL_REF, REG}}, \
3015 {"current_file_function_operand", {SYMBOL_REF}}, \
3016 {"input_operand", {SUBREG, MEM, REG, CONST_INT, SYMBOL_REF}}, \
3017 {"load_multiple_operation", {PARALLEL}}, \
3018 {"store_multiple_operation", {PARALLEL}}, \
3019 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
3020 GT, LEU, LTU, GEU, GTU}}, \
3021 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
3022 GT, LEU, LTU, GEU, GTU}},
3023
3024
3025 /* uncomment for disabling the corresponding default options */
3026 /* #define MACHINE_no_sched_interblock */
3027 /* #define MACHINE_no_sched_speculative */
3028 /* #define MACHINE_no_sched_speculative_load */
3029
3030 /* indicate that issue rate is defined for this machine
3031 (no need to use the default) */
3032 #define MACHINE_issue_rate
3033
3034 /* General flags. */
3035 extern int flag_pic;
3036 extern int optimize;
3037 extern int flag_expensive_optimizations;
3038 extern int frame_pointer_needed;
3039
3040 /* Declare functions in rs6000.c */
3041 extern void output_options ();
3042 extern void rs6000_override_options ();
3043 extern void rs6000_file_start ();
3044 extern struct rtx_def *rs6000_float_const ();
3045 extern struct rtx_def *rs6000_immed_double_const ();
3046 extern struct rtx_def *rs6000_got_register ();
3047 extern int direct_return ();
3048 extern int any_operand ();
3049 extern int short_cint_operand ();
3050 extern int u_short_cint_operand ();
3051 extern int non_short_cint_operand ();
3052 extern int gpc_reg_operand ();
3053 extern int cc_reg_operand ();
3054 extern int reg_or_short_operand ();
3055 extern int reg_or_neg_short_operand ();
3056 extern int reg_or_u_short_operand ();
3057 extern int reg_or_cint_operand ();
3058 extern int got_operand ();
3059 extern int num_insns_constant ();
3060 extern int easy_fp_constant ();
3061 extern int volatile_mem_operand ();
3062 extern int offsettable_addr_operand ();
3063 extern int fp_reg_or_mem_operand ();
3064 extern int mem_or_easy_const_operand ();
3065 extern int add_operand ();
3066 extern int non_add_cint_operand ();
3067 extern int logical_operand ();
3068 extern int non_logical_operand ();
3069 extern int mask_constant ();
3070 extern int mask_operand ();
3071 extern int and_operand ();
3072 extern int count_register_operand ();
3073 extern int fpmem_operand ();
3074 extern int non_and_cint_operand ();
3075 extern int reg_or_mem_operand ();
3076 extern int lwa_operand ();
3077 extern int call_operand ();
3078 extern int current_file_function_operand ();
3079 extern int input_operand ();
3080 extern int small_data_operand ();
3081 extern void init_cumulative_args ();
3082 extern void function_arg_advance ();
3083 extern int function_arg_boundary ();
3084 extern struct rtx_def *function_arg ();
3085 extern int function_arg_partial_nregs ();
3086 extern int function_arg_pass_by_reference ();
3087 extern void setup_incoming_varargs ();
3088 extern struct rtx_def *expand_builtin_saveregs ();
3089 extern struct rtx_def *rs6000_stack_temp ();
3090 extern int expand_block_move ();
3091 extern int load_multiple_operation ();
3092 extern int store_multiple_operation ();
3093 extern int branch_comparison_operator ();
3094 extern int scc_comparison_operator ();
3095 extern int includes_lshift_p ();
3096 extern int includes_rshift_p ();
3097 extern int registers_ok_for_quad_peep ();
3098 extern int addrs_ok_for_quad_peep ();
3099 extern enum reg_class secondary_reload_class ();
3100 extern int ccr_bit ();
3101 extern void rs6000_finalize_pic ();
3102 extern void rs6000_reorg ();
3103 extern void rs6000_save_machine_status ();
3104 extern void rs6000_restore_machine_status ();
3105 extern void rs6000_init_expanders ();
3106 extern void print_operand ();
3107 extern void print_operand_address ();
3108 extern int first_reg_to_save ();
3109 extern int first_fp_reg_to_save ();
3110 extern int rs6000_makes_calls ();
3111 extern rs6000_stack_t *rs6000_stack_info ();
3112 extern void output_prolog ();
3113 extern void output_epilog ();
3114 extern void output_toc ();
3115 extern void output_ascii ();
3116 extern void rs6000_gen_section_name ();
3117 extern void output_function_profiler ();
3118 extern int rs6000_adjust_cost ();
3119 extern void rs6000_trampoline_template ();
3120 extern int rs6000_trampoline_size ();
3121 extern void rs6000_initialize_trampoline ();
3122 extern int rs6000_comp_type_attributes ();
3123 extern int rs6000_valid_decl_attribute_p ();
3124 extern int rs6000_valid_type_attribute_p ();
3125 extern void rs6000_set_default_type_attributes ();
3126 extern struct rtx_def *rs6000_dll_import_ref ();
3127 extern struct rtx_def *rs6000_longcall_ref ();