tm.texi.in (OVERRIDE_OPTIONS): Remove documentation.
[gcc.git] / gcc / config / s390 / s390.h
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
5 Ulrich Weigand (uweigand@de.ibm.com).
6 Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #ifndef _S390_H
25 #define _S390_H
26
27 /* Which processor to generate code or schedule for. The cpu attribute
28 defines a list that mirrors this list, so changes to s390.md must be
29 made at the same time. */
30
31 enum processor_type
32 {
33 PROCESSOR_9672_G5,
34 PROCESSOR_9672_G6,
35 PROCESSOR_2064_Z900,
36 PROCESSOR_2084_Z990,
37 PROCESSOR_2094_Z9_109,
38 PROCESSOR_2097_Z10,
39 PROCESSOR_max
40 };
41
42 /* Optional architectural facilities supported by the processor. */
43
44 enum processor_flags
45 {
46 PF_IEEE_FLOAT = 1,
47 PF_ZARCH = 2,
48 PF_LONG_DISPLACEMENT = 4,
49 PF_EXTIMM = 8,
50 PF_DFP = 16,
51 PF_Z10 = 32
52 };
53
54 extern enum processor_type s390_tune;
55 extern int s390_tune_flags;
56
57 /* This is necessary to avoid a warning about comparing different enum
58 types. */
59 #define s390_tune_attr ((enum attr_cpu)s390_tune)
60
61 extern enum processor_type s390_arch;
62 extern int s390_arch_flags;
63
64 /* These flags indicate that the generated code should run on a cpu
65 providing the respective hardware facility regardless of the
66 current cpu mode (ESA or z/Architecture). */
67
68 #define TARGET_CPU_IEEE_FLOAT \
69 (s390_arch_flags & PF_IEEE_FLOAT)
70 #define TARGET_CPU_ZARCH \
71 (s390_arch_flags & PF_ZARCH)
72 #define TARGET_CPU_LONG_DISPLACEMENT \
73 (s390_arch_flags & PF_LONG_DISPLACEMENT)
74 #define TARGET_CPU_EXTIMM \
75 (s390_arch_flags & PF_EXTIMM)
76 #define TARGET_CPU_DFP \
77 (s390_arch_flags & PF_DFP)
78 #define TARGET_CPU_Z10 \
79 (s390_arch_flags & PF_Z10)
80
81 /* These flags indicate that the generated code should run on a cpu
82 providing the respective hardware facility when run in
83 z/Architecture mode. */
84
85 #define TARGET_LONG_DISPLACEMENT \
86 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
87 #define TARGET_EXTIMM \
88 (TARGET_ZARCH && TARGET_CPU_EXTIMM)
89 #define TARGET_DFP \
90 (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
91 #define TARGET_Z10 \
92 (TARGET_ZARCH && TARGET_CPU_Z10)
93
94 /* Run-time target specification. */
95
96 /* Defaults for option flags defined only on some subtargets. */
97 #ifndef TARGET_TPF_PROFILING
98 #define TARGET_TPF_PROFILING 0
99 #endif
100
101 /* This will be overridden by OS headers. */
102 #define TARGET_TPF 0
103
104 /* Target CPU builtins. */
105 #define TARGET_CPU_CPP_BUILTINS() \
106 do \
107 { \
108 builtin_assert ("cpu=s390"); \
109 builtin_assert ("machine=s390"); \
110 builtin_define ("__s390__"); \
111 if (TARGET_ZARCH) \
112 builtin_define ("__zarch__"); \
113 if (TARGET_64BIT) \
114 builtin_define ("__s390x__"); \
115 if (TARGET_LONG_DOUBLE_128) \
116 builtin_define ("__LONG_DOUBLE_128__"); \
117 } \
118 while (0)
119
120 #ifdef DEFAULT_TARGET_64BIT
121 #define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP)
122 #else
123 #define TARGET_DEFAULT 0
124 #endif
125
126 /* Support for configure-time defaults. */
127 #define OPTION_DEFAULT_SPECS \
128 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
129 { "arch", "%{!march=*:-march=%(VALUE)}" }, \
130 { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
131
132 /* Defaulting rules. */
133 #ifdef DEFAULT_TARGET_64BIT
134 #define DRIVER_SELF_SPECS \
135 "%{!m31:%{!m64:-m64}}", \
136 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
137 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
138 #else
139 #define DRIVER_SELF_SPECS \
140 "%{!m31:%{!m64:-m31}}", \
141 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
142 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
143 #endif
144
145 /* Target version string. Overridden by the OS header. */
146 #ifdef DEFAULT_TARGET_64BIT
147 #define TARGET_VERSION fprintf (stderr, " (zSeries)");
148 #else
149 #define TARGET_VERSION fprintf (stderr, " (S/390)");
150 #endif
151
152 /* Hook to override options. */
153 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
154
155 /* Frame pointer is not used for debugging. */
156 #define CAN_DEBUG_WITHOUT_FP
157
158 /* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
159 #define S390_TDC_POSITIVE_ZERO (1 << 11)
160 #define S390_TDC_NEGATIVE_ZERO (1 << 10)
161 #define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
162 #define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
163 #define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
164 #define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
165 #define S390_TDC_POSITIVE_INFINITY (1 << 5)
166 #define S390_TDC_NEGATIVE_INFINITY (1 << 4)
167 #define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
168 #define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
169 #define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
170 #define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
171
172 /* The following values are different for DFP. */
173 #define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
174 #define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
175 #define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
176 #define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
177
178 /* For signbit, the BFP-DFP-difference makes no difference. */
179 #define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
180 | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
181 | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
182 | S390_TDC_NEGATIVE_INFINITY \
183 | S390_TDC_NEGATIVE_QUIET_NAN \
184 | S390_TDC_NEGATIVE_SIGNALING_NAN )
185
186 #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
187 | S390_TDC_NEGATIVE_INFINITY )
188
189 /* Target machine storage layout. */
190
191 /* Everything is big-endian. */
192 #define BITS_BIG_ENDIAN 1
193 #define BYTES_BIG_ENDIAN 1
194 #define WORDS_BIG_ENDIAN 1
195
196 #define STACK_SIZE_MODE (Pmode)
197
198 #ifndef IN_LIBGCC2
199
200 /* Width of a word, in units (bytes). */
201 #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
202
203 /* Width of a pointer. To be used instead of UNITS_PER_WORD in
204 ABI-relevant contexts. This always matches
205 GET_MODE_SIZE (Pmode). */
206 #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
207 #define MIN_UNITS_PER_WORD 4
208 #define MAX_BITS_PER_WORD 64
209 #else
210
211 /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
212 the library should export TImode functions or not. Thus, we have
213 to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
214 #ifdef __s390x__
215 #define UNITS_PER_WORD 8
216 #else
217 #define UNITS_PER_WORD 4
218 #endif
219 #endif
220
221 /* Width of a pointer, in bits. */
222 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
223
224 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
225 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
226
227 /* Boundary (in *bits*) on which stack pointer should be aligned. */
228 #define STACK_BOUNDARY 64
229
230 /* Allocation boundary (in *bits*) for the code of a function. */
231 #define FUNCTION_BOUNDARY 32
232
233 /* There is no point aligning anything to a rounder boundary than this. */
234 #define BIGGEST_ALIGNMENT 64
235
236 /* Alignment of field after `int : 0' in a structure. */
237 #define EMPTY_FIELD_BOUNDARY 32
238
239 /* Alignment on even addresses for LARL instruction. */
240 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
241 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
242
243 /* Alignment is not required by the hardware. */
244 #define STRICT_ALIGNMENT 0
245
246 /* Mode of stack savearea.
247 FUNCTION is VOIDmode because calling convention maintains SP.
248 BLOCK needs Pmode for SP.
249 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
250 #define STACK_SAVEAREA_MODE(LEVEL) \
251 (LEVEL == SAVE_FUNCTION ? VOIDmode \
252 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
253
254
255 /* Type layout. */
256
257 /* Sizes in bits of the source language data types. */
258 #define SHORT_TYPE_SIZE 16
259 #define INT_TYPE_SIZE 32
260 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
261 #define LONG_LONG_TYPE_SIZE 64
262 #define FLOAT_TYPE_SIZE 32
263 #define DOUBLE_TYPE_SIZE 64
264 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
265
266 /* Define this to set long double type size to use in libgcc2.c, which can
267 not depend on target_flags. */
268 #ifdef __LONG_DOUBLE_128__
269 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
270 #else
271 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
272 #endif
273
274 /* Work around target_flags dependency in ada/targtyps.c. */
275 #define WIDEST_HARDWARE_FP_SIZE 64
276
277 /* We use "unsigned char" as default. */
278 #define DEFAULT_SIGNED_CHAR 0
279
280
281 /* Register usage. */
282
283 /* We have 16 general purpose registers (registers 0-15),
284 and 16 floating point registers (registers 16-31).
285 (On non-IEEE machines, we have only 4 fp registers.)
286
287 Amongst the general purpose registers, some are used
288 for specific purposes:
289 GPR 11: Hard frame pointer (if needed)
290 GPR 12: Global offset table pointer (if needed)
291 GPR 13: Literal pool base register
292 GPR 14: Return address register
293 GPR 15: Stack pointer
294
295 Registers 32-35 are 'fake' hard registers that do not
296 correspond to actual hardware:
297 Reg 32: Argument pointer
298 Reg 33: Condition code
299 Reg 34: Frame pointer
300 Reg 35: Return address pointer
301
302 Registers 36 and 37 are mapped to access registers
303 0 and 1, used to implement thread-local storage. */
304
305 #define FIRST_PSEUDO_REGISTER 38
306
307 /* Standard register usage. */
308 #define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
309 #define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
310 #define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
311 #define CC_REGNO_P(N) ((N) == 33)
312 #define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
313 #define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
314
315 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
316 #define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
317 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
318 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
319 #define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
320 #define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
321
322 /* Set up fixed registers and calling convention:
323
324 GPRs 0-5 are always call-clobbered,
325 GPRs 6-15 are always call-saved.
326 GPR 12 is fixed if used as GOT pointer.
327 GPR 13 is always fixed (as literal pool pointer).
328 GPR 14 is always fixed on S/390 machines (as return address).
329 GPR 15 is always fixed (as stack pointer).
330 The 'fake' hard registers are call-clobbered and fixed.
331 The access registers are call-saved and fixed.
332
333 On 31-bit, FPRs 18-19 are call-clobbered;
334 on 64-bit, FPRs 24-31 are call-clobbered.
335 The remaining FPRs are call-saved. */
336
337 #define FIXED_REGISTERS \
338 { 0, 0, 0, 0, \
339 0, 0, 0, 0, \
340 0, 0, 0, 0, \
341 0, 1, 1, 1, \
342 0, 0, 0, 0, \
343 0, 0, 0, 0, \
344 0, 0, 0, 0, \
345 0, 0, 0, 0, \
346 1, 1, 1, 1, \
347 1, 1 }
348
349 #define CALL_USED_REGISTERS \
350 { 1, 1, 1, 1, \
351 1, 1, 0, 0, \
352 0, 0, 0, 0, \
353 0, 1, 1, 1, \
354 1, 1, 1, 1, \
355 1, 1, 1, 1, \
356 1, 1, 1, 1, \
357 1, 1, 1, 1, \
358 1, 1, 1, 1, \
359 1, 1 }
360
361 #define CALL_REALLY_USED_REGISTERS \
362 { 1, 1, 1, 1, \
363 1, 1, 0, 0, \
364 0, 0, 0, 0, \
365 0, 0, 0, 0, \
366 1, 1, 1, 1, \
367 1, 1, 1, 1, \
368 1, 1, 1, 1, \
369 1, 1, 1, 1, \
370 1, 1, 1, 1, \
371 0, 0 }
372
373 #define CONDITIONAL_REGISTER_USAGE s390_conditional_register_usage ()
374
375 /* Preferred register allocation order. */
376 #define REG_ALLOC_ORDER \
377 { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
378 16, 17, 18, 19, 20, 21, 22, 23, \
379 24, 25, 26, 27, 28, 29, 30, 31, \
380 15, 32, 33, 34, 35, 36, 37 }
381
382
383 /* Fitting values into registers. */
384
385 /* Integer modes <= word size fit into any GPR.
386 Integer modes > word size fit into successive GPRs, starting with
387 an even-numbered register.
388 SImode and DImode fit into FPRs as well.
389
390 Floating point modes <= word size fit into any FPR or GPR.
391 Floating point modes > word size (i.e. DFmode on 32-bit) fit
392 into any FPR, or an even-odd GPR pair.
393 TFmode fits only into an even-odd FPR pair.
394
395 Complex floating point modes fit either into two FPRs, or into
396 successive GPRs (again starting with an even number).
397 TCmode fits only into two successive even-odd FPR pairs.
398
399 Condition code modes fit only into the CC register. */
400
401 /* Because all registers in a class have the same size HARD_REGNO_NREGS
402 is equivalent to CLASS_MAX_NREGS. */
403 #define HARD_REGNO_NREGS(REGNO, MODE) \
404 s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))
405
406 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
407 s390_hard_regno_mode_ok ((REGNO), (MODE))
408
409 #define HARD_REGNO_RENAME_OK(FROM, TO) \
410 s390_hard_regno_rename_ok (FROM, TO)
411
412 #define MODES_TIEABLE_P(MODE1, MODE2) \
413 (((MODE1) == SFmode || (MODE1) == DFmode) \
414 == ((MODE2) == SFmode || (MODE2) == DFmode))
415
416 /* When generating code that runs in z/Architecture mode,
417 but conforms to the 31-bit ABI, GPRs can hold 8 bytes;
418 the ABI guarantees only that the lower 4 bytes are
419 saved across calls, however. */
420 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
421 (!TARGET_64BIT && TARGET_ZARCH \
422 && GET_MODE_SIZE (MODE) > 4 \
423 && (((REGNO) >= 6 && (REGNO) <= 15) || (REGNO) == 32))
424
425 /* Maximum number of registers to represent a value of mode MODE
426 in a register of class CLASS. */
427 #define CLASS_MAX_NREGS(CLASS, MODE) \
428 s390_class_max_nregs ((CLASS), (MODE))
429
430 /* If a 4-byte value is loaded into a FPR, it is placed into the
431 *upper* half of the register, not the lower. Therefore, we
432 cannot use SUBREGs to switch between modes in FP registers.
433 Likewise for access registers, since they have only half the
434 word size on 64-bit. */
435 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
436 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
437 ? ((reg_classes_intersect_p (FP_REGS, CLASS) \
438 && (GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8)) \
439 || reg_classes_intersect_p (ACCESS_REGS, CLASS)) : 0)
440
441 /* Register classes. */
442
443 /* We use the following register classes:
444 GENERAL_REGS All general purpose registers
445 ADDR_REGS All general purpose registers except %r0
446 (These registers can be used in address generation)
447 FP_REGS All floating point registers
448 CC_REGS The condition code register
449 ACCESS_REGS The access registers
450
451 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
452 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
453 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
454 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
455
456 NO_REGS No registers
457 ALL_REGS All registers
458
459 Note that the 'fake' frame pointer and argument pointer registers
460 are included amongst the address registers here. */
461
462 enum reg_class
463 {
464 NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
465 ADDR_CC_REGS, GENERAL_CC_REGS,
466 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
467 ALL_REGS, LIM_REG_CLASSES
468 };
469 #define N_REG_CLASSES (int) LIM_REG_CLASSES
470
471 #define REG_CLASS_NAMES \
472 { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
473 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
474 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
475
476 /* Class -> register mapping. */
477 #define REG_CLASS_CONTENTS \
478 { \
479 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
480 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
481 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
482 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
483 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
484 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
485 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
486 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
487 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
488 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
489 { 0xffffffff, 0x0000003f }, /* ALL_REGS */ \
490 }
491
492 /* The following macro defines cover classes for Integrated Register
493 Allocator. Cover classes is a set of non-intersected register
494 classes covering all hard registers used for register allocation
495 purpose. Any move between two registers of a cover class should be
496 cheaper than load or store of the registers. The macro value is
497 array of register classes with LIM_REG_CLASSES used as the end
498 marker. */
499
500 #define IRA_COVER_CLASSES \
501 { \
502 GENERAL_REGS, FP_REGS, CC_REGS, ACCESS_REGS, LIM_REG_CLASSES \
503 }
504
505 /* In some case register allocation order is not enough for IRA to
506 generate a good code. The following macro (if defined) increases
507 cost of REGNO for a pseudo approximately by pseudo usage frequency
508 multiplied by the macro value.
509
510 We avoid usage of BASE_REGNUM by nonzero macro value because the
511 reload can decide not to use the hard register because some
512 constant was forced to be in memory. */
513 #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
514 (regno == BASE_REGNUM ? 0.0 : 0.5)
515
516 /* Register -> class mapping. */
517 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
518 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
519
520 /* ADDR_REGS can be used as base or index register. */
521 #define INDEX_REG_CLASS ADDR_REGS
522 #define BASE_REG_CLASS ADDR_REGS
523
524 /* Check whether REGNO is a hard register of the suitable class
525 or a pseudo register currently allocated to one such. */
526 #define REGNO_OK_FOR_INDEX_P(REGNO) \
527 (((REGNO) < FIRST_PSEUDO_REGISTER \
528 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
529 || ADDR_REGNO_P (reg_renumber[REGNO]))
530 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
531
532
533 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
534 return the class of reg to actually use. */
535 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
536 s390_preferred_reload_class ((X), (CLASS))
537
538 /* We need secondary memory to move data between GPRs and FPRs. With
539 DFP the ldgr lgdr instructions are available. But these
540 instructions do not handle GPR pairs so it is not possible for 31
541 bit. */
542 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
543 ((CLASS1) != (CLASS2) \
544 && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS) \
545 && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8))
546
547 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
548 because the movsi and movsf patterns don't handle r/f moves. */
549 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
550 (GET_MODE_BITSIZE (MODE) < 32 \
551 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
552 : MODE)
553
554
555 /* Stack layout and calling conventions. */
556
557 /* Our stack grows from higher to lower addresses. However, local variables
558 are accessed by positive offsets, and function arguments are stored at
559 increasing addresses. */
560 #define STACK_GROWS_DOWNWARD
561 #define FRAME_GROWS_DOWNWARD 1
562 /* #undef ARGS_GROW_DOWNWARD */
563
564 /* The basic stack layout looks like this: the stack pointer points
565 to the register save area for called functions. Above that area
566 is the location to place outgoing arguments. Above those follow
567 dynamic allocations (alloca), and finally the local variables. */
568
569 /* Offset from stack-pointer to first location of outgoing args. */
570 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
571
572 /* Offset within stack frame to start allocating local variables at. */
573 #define STARTING_FRAME_OFFSET 0
574
575 /* Offset from the stack pointer register to an item dynamically
576 allocated on the stack, e.g., by `alloca'. */
577 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
578 (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
579
580 /* Offset of first parameter from the argument pointer register value.
581 We have a fake argument pointer register that points directly to
582 the argument area. */
583 #define FIRST_PARM_OFFSET(FNDECL) 0
584
585 /* Defining this macro makes __builtin_frame_address(0) and
586 __builtin_return_address(0) work with -fomit-frame-pointer. */
587 #define INITIAL_FRAME_ADDRESS_RTX \
588 (plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
589
590 /* The return address of the current frame is retrieved
591 from the initial value of register RETURN_REGNUM.
592 For frames farther back, we use the stack slot where
593 the corresponding RETURN_REGNUM register was saved. */
594 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
595 (TARGET_PACKED_STACK ? \
596 plus_constant ((FRAME), STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
597
598 /* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
599 builtin_frame_address. Otherwise arg pointer -
600 STACK_POINTER_OFFSET would be returned for
601 __builtin_frame_address(0) what might result in an address pointing
602 somewhere into the middle of the local variables since the packed
603 stack layout generally does not need all the bytes in the register
604 save area. */
605 #define FRAME_ADDR_RTX(FRAME) \
606 DYNAMIC_CHAIN_ADDRESS ((FRAME))
607
608 #define RETURN_ADDR_RTX(COUNT, FRAME) \
609 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
610
611 /* In 31-bit mode, we need to mask off the high bit of return addresses. */
612 #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
613
614
615 /* Exception handling. */
616
617 /* Describe calling conventions for DWARF-2 exception handling. */
618 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
619 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
620 #define DWARF_FRAME_RETURN_COLUMN 14
621
622 /* Describe how we implement __builtin_eh_return. */
623 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
624 #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
625
626 /* Select a format to encode pointers in exception handling data. */
627 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
628 (flag_pic \
629 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
630 : DW_EH_PE_absptr)
631
632 /* Register save slot alignment. */
633 #define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
634
635
636 /* Frame registers. */
637
638 #define STACK_POINTER_REGNUM 15
639 #define FRAME_POINTER_REGNUM 34
640 #define HARD_FRAME_POINTER_REGNUM 11
641 #define ARG_POINTER_REGNUM 32
642 #define RETURN_ADDRESS_POINTER_REGNUM 35
643
644 /* The static chain must be call-clobbered, but not used for
645 function argument passing. As register 1 is clobbered by
646 the trampoline code, we only have one option. */
647 #define STATIC_CHAIN_REGNUM 0
648
649 /* Number of hardware registers that go into the DWARF-2 unwind info.
650 To avoid ABI incompatibility, this number must not change even as
651 'fake' hard registers are added or removed. */
652 #define DWARF_FRAME_REGISTERS 34
653
654
655 /* Frame pointer and argument pointer elimination. */
656
657 #define ELIMINABLE_REGS \
658 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
659 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
660 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
661 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
662 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
663 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
664 { BASE_REGNUM, BASE_REGNUM }}
665
666 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
667 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
668
669
670 /* Stack arguments. */
671
672 /* We need current_function_outgoing_args to be valid. */
673 #define ACCUMULATE_OUTGOING_ARGS 1
674
675
676 /* Register arguments. */
677
678 typedef struct s390_arg_structure
679 {
680 int gprs; /* gpr so far */
681 int fprs; /* fpr so far */
682 }
683 CUMULATIVE_ARGS;
684
685 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
686 ((CUM).gprs=0, (CUM).fprs=0)
687
688 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
689 s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
690
691 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
692 s390_function_arg (&CUM, MODE, TYPE, NAMED)
693
694 /* Arguments can be placed in general registers 2 to 6, or in floating
695 point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
696 bit. */
697 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
698 (N) == 16 || (N) == 17 || (TARGET_64BIT && ((N) == 18 || (N) == 19)))
699
700
701 /* Scalar return values. */
702
703 #define FUNCTION_VALUE(VALTYPE, FUNC) \
704 s390_function_value ((VALTYPE), (FUNC), VOIDmode)
705
706 #define LIBCALL_VALUE(MODE) \
707 s390_function_value (NULL, NULL, (MODE))
708
709 /* Only gpr 2 and fpr 0 are ever used as return registers. */
710 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
711
712
713 /* Function entry and exit. */
714
715 /* When returning from a function, the stack pointer does not matter. */
716 #define EXIT_IGNORE_STACK 1
717
718
719 /* Profiling. */
720
721 #define FUNCTION_PROFILER(FILE, LABELNO) \
722 s390_function_profiler ((FILE), ((LABELNO)))
723
724 #define PROFILE_BEFORE_PROLOGUE 1
725
726
727 /* Trampolines for nested functions. */
728
729 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
730 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
731
732 /* Addressing modes, and classification of registers for them. */
733
734 /* Recognize any constant value that is a valid address. */
735 #define CONSTANT_ADDRESS_P(X) 0
736
737 /* Maximum number of registers that can appear in a valid memory address. */
738 #define MAX_REGS_PER_ADDRESS 2
739
740 /* This definition replaces the formerly used 'm' constraint with a
741 different constraint letter in order to avoid changing semantics of
742 the 'm' constraint when accepting new address formats in
743 TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
744 must not be used in insn definitions or inline assemblies. */
745 #define TARGET_MEM_CONSTRAINT 'e'
746
747 /* Try a machine-dependent way of reloading an illegitimate address
748 operand. If we find one, push the reload and jump to WIN. This
749 macro is used in only one place: `find_reloads_address' in reload.c. */
750 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
751 do { \
752 rtx new_rtx = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE)); \
753 if (new_rtx) \
754 { \
755 (AD) = new_rtx; \
756 goto WIN; \
757 } \
758 } while (0)
759
760 /* Nonzero if the constant value X is a legitimate general operand.
761 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
762 #define LEGITIMATE_CONSTANT_P(X) \
763 legitimate_constant_p (X)
764
765 /* Helper macro for s390.c and s390.md to check for symbolic constants. */
766 #define SYMBOLIC_CONST(X) \
767 (GET_CODE (X) == SYMBOL_REF \
768 || GET_CODE (X) == LABEL_REF \
769 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
770
771 #define TLS_SYMBOLIC_CONST(X) \
772 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
773 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
774
775
776 /* Condition codes. */
777
778 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
779 return the mode to be used for the comparison. */
780 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
781
782 /* Canonicalize a comparison from one we don't have to one we do have. */
783 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
784 s390_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
785
786 /* Relative costs of operations. */
787
788 /* On s390, copy between fprs and gprs is expensive. */
789 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
790 (( ( reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
791 && reg_classes_intersect_p ((CLASS2), FP_REGS)) \
792 || ( reg_classes_intersect_p ((CLASS1), FP_REGS) \
793 && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
794
795 /* A C expression for the cost of moving data of mode M between a
796 register and memory. A value of 2 is the default; this cost is
797 relative to those in `REGISTER_MOVE_COST'. */
798 #define MEMORY_MOVE_COST(M, C, I) 1
799
800 /* A C expression for the cost of a branch instruction. A value of 1
801 is the default; other values are interpreted relative to that. */
802 #define BRANCH_COST(speed_p, predictable_p) 1
803
804 /* Nonzero if access to memory by bytes is slow and undesirable. */
805 #define SLOW_BYTE_ACCESS 1
806
807 /* An integer expression for the size in bits of the largest integer machine
808 mode that should actually be used. We allow pairs of registers. */
809 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
810
811 /* The maximum number of bytes that a single instruction can move quickly
812 between memory and registers or between two memory locations. */
813 #define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
814 #define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
815 #define MAX_MOVE_MAX 16
816
817 /* Determine whether to use move_by_pieces or block move insn. */
818 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
819 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
820 || (TARGET_ZARCH && (SIZE) == 8) )
821
822 /* Determine whether to use clear_by_pieces or block clear insn. */
823 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
824 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
825 || (TARGET_ZARCH && (SIZE) == 8) )
826
827 /* This macro is used to determine whether store_by_pieces should be
828 called to "memcpy" storage when the source is a constant string. */
829 #define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN)
830
831 /* Likewise to decide whether to "memset" storage with byte values
832 other than zero. */
833 #define SET_BY_PIECES_P(SIZE, ALIGN) STORE_BY_PIECES_P (SIZE, ALIGN)
834
835 /* Don't perform CSE on function addresses. */
836 #define NO_FUNCTION_CSE
837
838 /* This value is used in tree-sra to decide whether it might benefical
839 to split a struct move into several word-size moves. For S/390
840 only small values make sense here since struct moves are relatively
841 cheap thanks to mvc so the small default value choosen for archs
842 with memmove patterns should be ok. But this value is multiplied
843 in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
844 here to compensate for that factor since mvc costs exactly the same
845 on 31 and 64 bit. */
846 #define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
847
848
849 /* Sections. */
850
851 /* Output before read-only data. */
852 #define TEXT_SECTION_ASM_OP ".text"
853
854 /* Output before writable (initialized) data. */
855 #define DATA_SECTION_ASM_OP ".data"
856
857 /* Output before writable (uninitialized) data. */
858 #define BSS_SECTION_ASM_OP ".bss"
859
860 /* S/390 constant pool breaks the devices in crtstuff.c to control section
861 in where code resides. We have to write it as asm code. */
862 #ifndef __s390x__
863 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
864 asm (SECTION_OP "\n\
865 bras\t%r2,1f\n\
866 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
867 1: l\t%r3,0(%r2)\n\
868 bas\t%r14,0(%r3,%r2)\n\
869 .previous");
870 #endif
871
872
873 /* Position independent code. */
874
875 extern int flag_pic;
876
877 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
878
879 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
880
881
882 /* Assembler file format. */
883
884 /* Character to start a comment. */
885 #define ASM_COMMENT_START "#"
886
887 /* Declare an uninitialized external linkage data object. */
888 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
889 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
890
891 /* Globalizing directive for a label. */
892 #define GLOBAL_ASM_OP ".globl "
893
894 /* Advance the location counter to a multiple of 2**LOG bytes. */
895 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
896 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
897
898 /* Advance the location counter by SIZE bytes. */
899 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
900 fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
901
902 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
903 #define LOCAL_LABEL_PREFIX "."
904
905 /* How to refer to registers in assembler output. This sequence is
906 indexed by compiler's hard-register-number (see above). */
907 #define REGISTER_NAMES \
908 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
909 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
910 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
911 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
912 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1" \
913 }
914
915 /* Print operand X (an rtx) in assembler syntax to file FILE. */
916 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
917 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
918
919 /* Output machine-dependent UNSPECs in address constants. */
920 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
921 do { \
922 if (!s390_output_addr_const_extra (FILE, (X))) \
923 goto FAIL; \
924 } while (0);
925
926 /* Output an element of a case-vector that is absolute. */
927 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
928 do { \
929 char buf[32]; \
930 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
931 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
932 assemble_name ((FILE), buf); \
933 fputc ('\n', (FILE)); \
934 } while (0)
935
936 /* Output an element of a case-vector that is relative. */
937 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
938 do { \
939 char buf[32]; \
940 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
941 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
942 assemble_name ((FILE), buf); \
943 fputc ('-', (FILE)); \
944 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
945 assemble_name ((FILE), buf); \
946 fputc ('\n', (FILE)); \
947 } while (0)
948
949
950 /* Miscellaneous parameters. */
951
952 /* Specify the machine mode that this machine uses for the index in the
953 tablejump instruction. */
954 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
955
956 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
957 is done just by pretending it is already truncated. */
958 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
959
960 /* Specify the machine mode that pointers have.
961 After generation of rtl, the compiler makes no further distinction
962 between pointers and any other objects of this machine mode. */
963 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
964
965 /* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
966 #define POINTERS_EXTEND_UNSIGNED -1
967
968 /* A function address in a call instruction is a byte address (for
969 indexing purposes) so give the MEM rtx a byte's mode. */
970 #define FUNCTION_MODE QImode
971
972 /* Specify the value which is used when clz operand is zero. */
973 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
974
975 /* Machine-specific symbol_ref flags. */
976 #define SYMBOL_FLAG_ALIGN1 (SYMBOL_FLAG_MACH_DEP << 0)
977 #define SYMBOL_REF_ALIGN1_P(X) \
978 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN1))
979 #define SYMBOL_FLAG_NOT_NATURALLY_ALIGNED (SYMBOL_FLAG_MACH_DEP << 1)
980 #define SYMBOL_REF_NOT_NATURALLY_ALIGNED_P(X) \
981 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_NOT_NATURALLY_ALIGNED))
982
983 /* Check whether integer displacement is in range. */
984 #define DISP_IN_RANGE(d) \
985 (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
986 : ((d) >= 0 && (d) <= 4095))
987
988 /* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
989 #define READ_CAN_USE_WRITE_PREFETCH 1
990 #endif