c4x.c (c4x_fp_reglist): Const-ify.
[gcc.git] / gcc / config / s390 / s390.h
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
4 Ulrich Weigand (uweigand@de.ibm.com).
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef _S390_H
23 #define _S390_H
24
25 extern int flag_pic;
26
27 /* Run-time compilation parameters selecting different hardware subsets. */
28
29 extern int target_flags;
30
31 /* Target macros checked at runtime of compiler. */
32
33 #define TARGET_HARD_FLOAT (target_flags & 1)
34 #define TARGET_SOFT_FLOAT (!(target_flags & 1))
35 #define TARGET_BACKCHAIN (target_flags & 2)
36 #define TARGET_SMALL_EXEC (target_flags & 4)
37 #define TARGET_DEBUG_ARG (target_flags & 8)
38 #define TARGET_64BIT (target_flags & 16)
39 #define TARGET_MVCLE (target_flags & 32)
40
41 #ifdef DEFAULT_TARGET_64BIT
42 #define TARGET_DEFAULT 0x13
43 #define TARGET_VERSION fprintf (stderr, " (zSeries)");
44 #else
45 #define TARGET_DEFAULT 0x3
46 #define TARGET_VERSION fprintf (stderr, " (S/390)");
47 #endif
48
49
50 /* Macro to define tables used to set the flags. This is a list in braces
51 of pairs in braces, each pair being { "NAME", VALUE }
52 where VALUE is the bits to set or minus the bits to clear.
53 An empty string NAME is used to identify the default VALUE. */
54
55 #define TARGET_SWITCHES \
56 { { "hard-float", 1, N_("Use hardware fp")}, \
57 { "soft-float", -1, N_("Don't use hardware fp")}, \
58 { "backchain", 2, N_("Set backchain")}, \
59 { "no-backchain", -2, N_("Don't set backchain (faster, but debug harder")}, \
60 { "small-exec", 4, N_("Use bras for execucable < 64k")}, \
61 { "no-small-exec",-4, N_("Don't use bras")}, \
62 { "debug", 8, N_("Additional debug prints")}, \
63 { "no-debug", -8, N_("Don't print additional debug prints")}, \
64 { "64", 16, N_("64 bit mode")}, \
65 { "31", -16, N_("31 bit mode")}, \
66 { "mvcle", 32, N_("mvcle use")}, \
67 { "no-mvcle", -32, N_("mvc&ex")}, \
68 { "", TARGET_DEFAULT, 0 } }
69
70 /* Define this to change the optimizations performed by default. */
71 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
72
73 /* Sometimes certain combinations of command options do not make sense
74 on a particular target machine. You can define a macro
75 `OVERRIDE_OPTIONS' to take account of this. This macro, if
76 defined, is executed once just after all the command options have
77 been parsed. */
78 #define OVERRIDE_OPTIONS override_options ()
79
80
81 /* Defines for real.c. */
82 #define IEEE_FLOAT 1
83 #define TARGET_IBM_FLOAT 0
84 #define TARGET_IEEE_FLOAT 1
85
86 /* The current function count for create unique internal labels. */
87
88 extern int s390_function_count;
89
90 /* The amount of space used for outgoing arguments. */
91
92 extern int current_function_outgoing_args_size;
93
94 /* Target machine storage layout. */
95
96 /* Define this if most significant bit is lowest numbered in instructions
97 that operate on numbered bit-fields. */
98
99 #define BITS_BIG_ENDIAN 1
100
101 /* Define this if most significant byte of a word is the lowest numbered. */
102
103 #define BYTES_BIG_ENDIAN 1
104
105 /* Define this if MS word of a multiword is the lowest numbered. */
106
107 #define WORDS_BIG_ENDIAN 1
108
109 #define MAX_BITS_PER_WORD 64
110
111 /* Width of a word, in units (bytes). */
112
113 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
114 #define MIN_UNITS_PER_WORD 4
115
116 /* Width in bits of a pointer. See also the macro `Pmode' defined below. */
117
118 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
119
120 /* A C expression for the size in bits of the type `short' on the
121 target machine. If you don't define this, the default is half a
122 word. (If this would be less than one storage unit, it is
123 rounded up to one unit.) */
124 #define SHORT_TYPE_SIZE 16
125
126 /* A C expression for the size in bits of the type `int' on the
127 target machine. If you don't define this, the default is one
128 word. */
129 #define INT_TYPE_SIZE 32
130
131 /* A C expression for the size in bits of the type `long' on the
132 target machine. If you don't define this, the default is one
133 word. */
134 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
135 #define MAX_LONG_TYPE_SIZE 64
136
137 /* A C expression for the size in bits of the type `long long' on the
138 target machine. If you don't define this, the default is two
139 words. */
140 #define LONG_LONG_TYPE_SIZE 64
141
142 /* Right now we only support two floating point formats, the
143 32 and 64 bit ieee formats. */
144
145 #define FLOAT_TYPE_SIZE 32
146 #define DOUBLE_TYPE_SIZE 64
147 #define LONG_DOUBLE_TYPE_SIZE 64
148
149 /* Define this macro if it is advisable to hold scalars in registers
150 in a wider mode than that declared by the program. In such cases,
151 the value is constrained to be within the bounds of the declared
152 type, but kept valid in the wider mode. The signedness of the
153 extension may differ from that of the type. */
154
155 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
156 if (INTEGRAL_MODE_P (MODE) && \
157 GET_MODE_SIZE (MODE) < UNITS_PER_WORD) { \
158 (MODE) = Pmode; \
159 }
160
161 /* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
162 extensions applied to char/short functions arguments. Defining
163 PROMOTE_FUNCTION_RETURN does the same for function returns. */
164
165 #define PROMOTE_FUNCTION_ARGS
166 #define PROMOTE_FUNCTION_RETURN
167 #define PROMOTE_FOR_CALL_ONLY
168
169 /* Allocation boundary (in *bits*) for storing pointers in memory. */
170
171 #define POINTER_BOUNDARY 32
172
173 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
174
175 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
176
177 /* Boundary (in *bits*) on which stack pointer should be aligned. */
178
179 #define STACK_BOUNDARY 64
180
181 /* Allocation boundary (in *bits*) for the code of a function. */
182
183 #define FUNCTION_BOUNDARY 32
184
185 /* There is no point aligning anything to a rounder boundary than this. */
186
187 #define BIGGEST_ALIGNMENT 64
188
189 /* Alignment of field after `int : 0' in a structure. */
190
191 #define EMPTY_FIELD_BOUNDARY 32
192
193 /* Alignment on even addresses for LARL instruction. */
194
195 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
196
197 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
198
199 /* Define this if move instructions will actually fail to work when given
200 unaligned data. */
201
202 #define STRICT_ALIGNMENT 0
203
204 /* Define target floating point format. */
205
206 #undef TARGET_FLOAT_FORMAT
207 #ifdef IEEE_FLOAT
208 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
209 #else
210 #define TARGET_FLOAT_FORMAT IBM_FLOAT_FORMAT
211 #endif
212
213 /* Define if special allocation order desired. */
214
215 #define REG_ALLOC_ORDER \
216 { 1, 2, 3, 4, 5, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, \
217 16, 17, 18, 19, 20, 21, 22, 23, \
218 24, 25, 26, 27, 28, 29, 30, 31, \
219 15, 32, 33 }
220
221 /* Standard register usage. */
222
223 #define INT_REGNO_P(N) ( (int)(N) >= 0 && (N) < 16 )
224 #ifdef IEEE_FLOAT
225 #define FLOAT_REGNO_P(N) ( (N) >= 16 && (N) < 32 )
226 #else
227 #define FLOAT_REGNO_P(N) ( (N) >= 16 && (N) < 20 )
228 #endif
229 #define CC_REGNO_P(N) ( (N) == 33 )
230
231 /* Number of actual hardware registers. The hardware registers are
232 assigned numbers for the compiler from 0 to just below
233 FIRST_PSEUDO_REGISTER.
234 All registers that the compiler knows about must be given numbers,
235 even those that are not normally considered general registers.
236 For the 390, we give the data registers numbers 0-15,
237 and the floating point registers numbers 16-19.
238 G5 and following have 16 IEEE floating point register,
239 which get numbers 16-31. */
240
241 #define FIRST_PSEUDO_REGISTER 35
242
243 /* Number of hardware registers that go into the DWARF-2 unwind info.
244 If not defined, equals FIRST_PSEUDO_REGISTER. */
245
246 #define DWARF_FRAME_REGISTERS 34
247
248 /* The following register have a fix usage
249 GPR 12: GOT register points to the GOT, setup in prologue,
250 GOT contains pointer to variables in shared libraries
251 GPR 13: Base register setup in prologue to point to the
252 literal table of each function
253 GPR 14: Return registers holds the return address
254 GPR 15: Stack pointer */
255
256 #define PIC_OFFSET_TABLE_REGNUM 12
257 #define BASE_REGISTER 13
258 #define RETURN_REGNUM 14
259 #define STACK_POINTER_REGNUM 15
260
261 #define FIXED_REGISTERS \
262 { 0, 0, 0, 0, \
263 0, 0, 0, 0, \
264 0, 0, 0, 0, \
265 0, 1, 1, 1, \
266 0, 0, 0, 0, \
267 0, 0, 0, 0, \
268 0, 0, 0, 0, \
269 0, 0, 0, 0, \
270 1, 1, 1 }
271
272 /* 1 for registers not available across function calls. These must include
273 the FIXED_REGISTERS and also any registers that can be used without being
274 saved.
275 The latter must include the registers where values are returned
276 and the register where structure-value addresses are passed. */
277
278 #define CALL_USED_REGISTERS \
279 { 1, 1, 1, 1, \
280 1, 1, 0, 0, \
281 0, 0, 0, 0, \
282 0, 1, 1, 1, \
283 1, 1, 1, 1, \
284 1, 1, 1, 1, \
285 1, 1, 1, 1, \
286 1, 1, 1, 1, \
287 1, 1, 1 }
288
289 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
290 the entire set of `FIXED_REGISTERS' be included.
291 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS'). */
292
293 #define CALL_REALLY_USED_REGISTERS \
294 { 1, 1, 1, 1, \
295 1, 1, 0, 0, \
296 0, 0, 0, 0, \
297 0, 0, 0, 0, \
298 1, 1, 1, 1, \
299 1, 1, 1, 1, \
300 1, 1, 1, 1, \
301 1, 1, 1, 1, \
302 1, 1, 1 }
303
304 /* Macro to conditionally modify fixed_regs/call_used_regs. */
305
306 #define CONDITIONAL_REGISTER_USAGE \
307 do \
308 { \
309 int i; \
310 \
311 if (flag_pic) \
312 { \
313 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
314 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
315 } \
316 if (TARGET_64BIT) \
317 { \
318 for (i = 24; i < 32; i++) \
319 call_used_regs[i] = call_really_used_regs[i] = 0; \
320 } \
321 else \
322 { \
323 for (i = 18; i < 20; i++) \
324 call_used_regs[i] = call_really_used_regs[i] = 0; \
325 } \
326 } while (0)
327
328 /* The following register have a special usage
329 GPR 11: Frame pointer if needed to point to automatic variables.
330 GPR 32: In functions with more the 5 args this register
331 points to that arguments, it is always eliminated
332 with stack- or frame-pointer.
333 GPR 33: Condition code 'register' */
334
335 #define HARD_FRAME_POINTER_REGNUM 11
336 #define FRAME_POINTER_REGNUM 34
337
338 #define ARG_POINTER_REGNUM 32
339
340 #define CC_REGNUM 33
341
342 /* We use the register %r0 to pass the static chain to a nested function.
343
344 Note: It is assumed that this register is call-clobbered!
345 We can't use any of the function-argument registers either,
346 and register 1 is needed by the trampoline code, so we have
347 no other choice but using this one ... */
348
349 #define STATIC_CHAIN_REGNUM 0
350
351 /* Return number of consecutive hard regs needed starting at reg REGNO
352 to hold something of mode MODE.
353 This is ordinarily the length in words of a value of mode MODE
354 but can be less for certain modes in special long registers. */
355
356 #define HARD_REGNO_NREGS(REGNO, MODE) \
357 (FLOAT_REGNO_P(REGNO)? \
358 (GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
359 INT_REGNO_P(REGNO)? \
360 ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) : \
361 1)
362
363 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
364 The gprs can hold QI, HI, SI, SF, DF, SC and DC.
365 Even gprs can hold DI.
366 The floating point registers can hold DF, SF, DC and SC. */
367
368 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
369 (FLOAT_REGNO_P(REGNO)? \
370 (GET_MODE_CLASS(MODE) == MODE_FLOAT || \
371 GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT || \
372 (MODE) == SImode || (MODE) == DImode) : \
373 INT_REGNO_P(REGNO)? \
374 (HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1)) : \
375 CC_REGNO_P(REGNO)? \
376 GET_MODE_CLASS (MODE) == MODE_CC : \
377 0)
378
379 /* Value is 1 if it is a good idea to tie two pseudo registers when one has
380 mode MODE1 and one has mode MODE2.
381 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
382 for any hard reg, then this must be 0 for correct output. */
383
384 #define MODES_TIEABLE_P(MODE1, MODE2) \
385 (((MODE1) == SFmode || (MODE1) == DFmode) \
386 == ((MODE2) == SFmode || (MODE2) == DFmode))
387
388 /* If defined, gives a class of registers that cannot be used as the
389 operand of a SUBREG that changes the mode of the object illegally. */
390
391 #define CLASS_CANNOT_CHANGE_MODE FP_REGS
392
393 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
394
395 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
396 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
397
398 /* Define this macro if references to a symbol must be treated
399 differently depending on something about the variable or
400 function named by the symbol (such as what section it is in).
401
402 On s390, if using PIC, mark a SYMBOL_REF for a non-global symbol
403 so that we may access it directly in the GOT. */
404
405 #define ENCODE_SECTION_INFO(DECL, FIRST) \
406 do \
407 { \
408 if (flag_pic) \
409 { \
410 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
411 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
412 \
413 if (GET_CODE (rtl) == MEM) \
414 { \
415 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
416 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
417 || ! TREE_PUBLIC (DECL)); \
418 } \
419 } \
420 } \
421 while (0)
422
423
424 /* This is an array of structures. Each structure initializes one pair
425 of eliminable registers. The "from" register number is given first,
426 followed by "to". Eliminations of the same "from" register are listed
427 in order of preference. */
428
429 #define ELIMINABLE_REGS \
430 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
431 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
432 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
433 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
434
435 #define CAN_ELIMINATE(FROM, TO) (1)
436
437 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
438 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
439 { (OFFSET) = 0; } \
440 else if ((FROM) == FRAME_POINTER_REGNUM \
441 && (TO) == HARD_FRAME_POINTER_REGNUM) \
442 { (OFFSET) = 0; } \
443 else if ((FROM) == ARG_POINTER_REGNUM \
444 && (TO) == HARD_FRAME_POINTER_REGNUM) \
445 { (OFFSET) = s390_arg_frame_offset (); } \
446 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
447 { (OFFSET) = s390_arg_frame_offset (); } \
448 else \
449 abort(); \
450 }
451
452 #define CAN_DEBUG_WITHOUT_FP
453
454 /* Value should be nonzero if functions must have frame pointers.
455 Zero means the frame pointer need not be set up (and parms may be
456 accessed via the stack pointer) in functions that seem suitable.
457 This is computed in `reload', in reload1.c. */
458
459 #define FRAME_POINTER_REQUIRED 0
460
461 /* Define the classes of registers for register constraints in the
462 machine description. Also define ranges of constants.
463
464 One of the classes must always be named ALL_REGS and include all hard regs.
465 If there is more than one class, another class must be named NO_REGS
466 and contain no registers.
467
468 The name GENERAL_REGS must be the name of a class (or an alias for
469 another name such as ALL_REGS). This is the class of registers
470 that is allowed by "g" or "r" in a register constraint.
471 Also, registers outside this class are allocated only when
472 instructions express preferences for them.
473
474 The classes must be numbered in nondecreasing order; that is,
475 a larger-numbered class must never be contained completely
476 in a smaller-numbered class.
477
478 For any two classes, it is very desirable that there be another
479 class that represents their union. */
480
481 /*#define SMALL_REGISTER_CLASSES 1*/
482
483 enum reg_class
484 {
485 NO_REGS, ADDR_REGS, GENERAL_REGS,
486 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
487 ALL_REGS, LIM_REG_CLASSES
488 };
489
490 #define N_REG_CLASSES (int) LIM_REG_CLASSES
491
492 /* Give names of register classes as strings for dump file. */
493
494 #define REG_CLASS_NAMES \
495 { "NO_REGS", "ADDR_REGS", "GENERAL_REGS", \
496 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
497
498 /* Define which registers fit in which classes. This is an initializer for
499 a vector of HARD_REG_SET of length N_REG_CLASSES.
500 G5 and latter have 16 register and support IEEE floating point operations. */
501
502 #define REG_CLASS_CONTENTS \
503 { \
504 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
505 { 0x0000fffe, 0x00000005 }, /* ADDR_REGS */ \
506 { 0x0000ffff, 0x00000005 }, /* GENERAL_REGS */ \
507 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
508 { 0xfffffffe, 0x00000005 }, /* ADDR_FP_REGS */ \
509 { 0xffffffff, 0x00000005 }, /* GENERAL_FP_REGS */ \
510 { 0xffffffff, 0x00000007 }, /* ALL_REGS */ \
511 }
512
513
514 /* The same information, inverted:
515 Return the class number of the smallest class containing
516 reg number REGNO. This could be a conditional expression
517 or could index an array. */
518
519 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
520
521 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */
522
523 /* The class value for index registers, and the one for base regs. */
524
525 #define INDEX_REG_CLASS ADDR_REGS
526 #define BASE_REG_CLASS ADDR_REGS
527
528 /* Get reg_class from a letter such as appears in the machine description. */
529
530 #define REG_CLASS_FROM_LETTER(C) \
531 ((C) == 'a' ? ADDR_REGS : \
532 (C) == 'd' ? GENERAL_REGS : \
533 (C) == 'f' ? FP_REGS : NO_REGS)
534
535 /* The letters I, J, K, L and M in a register constraint string can be used
536 to stand for particular ranges of immediate operands.
537 This macro defines what the ranges are.
538 C is the letter, and VALUE is a constant value.
539 Return 1 if VALUE is in the range specified by C. */
540
541 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
542 ((C) == 'I' ? (unsigned long) (VALUE) < 256 : \
543 (C) == 'J' ? (unsigned long) (VALUE) < 4096 : \
544 (C) == 'K' ? (VALUE) >= -32768 && (VALUE) < 32768 : \
545 (C) == 'L' ? (unsigned long) (VALUE) < 65536 : 0)
546
547 /* Similar, but for floating constants, and defining letters G and H.
548 Here VALUE is the CONST_DOUBLE rtx itself. */
549
550 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
551
552 /* 'Q' means a memory-reference for a S-type operand. */
553
554 #define EXTRA_CONSTRAINT(OP, C) \
555 ((C) == 'Q' ? s_operand (OP, GET_MODE (OP)) : \
556 (C) == 'S' ? larl_operand (OP, GET_MODE (OP)) : 0)
557
558 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
559 return the class of reg to actually use. In general this is just CLASS;
560 but on some machines in some cases it is preferable to use a more
561 restrictive class. */
562
563 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
564 s390_preferred_reload_class ((X), (CLASS))
565
566 /* Return the maximum number of consecutive registers needed to represent
567 mode MODE in a register of class CLASS. */
568
569 #define CLASS_MAX_NREGS(CLASS, MODE) \
570 ((CLASS) == FP_REGS ? \
571 (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
572 (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
573
574 /* We need a secondary reload when loading a PLUS which is
575 not a valid operand for LOAD ADDRESS. */
576
577 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
578 s390_secondary_input_reload_class ((CLASS), (MODE), (IN))
579
580 /* If we are copying between FP registers and anything else, we need a memory
581 location. */
582
583 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
584 ((CLASS1) != (CLASS2) && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS))
585
586 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
587 because the movsi and movsf patterns don't handle r/f moves. */
588
589 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
590 (GET_MODE_BITSIZE (MODE) < 32 \
591 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
592 : MODE)
593
594
595 /* A C expression whose value is nonzero if pseudos that have been
596 assigned to registers of class CLASS would likely be spilled
597 because registers of CLASS are needed for spill registers.
598
599 The default value of this macro returns 1 if CLASS has exactly one
600 register and zero otherwise. On most machines, this default
601 should be used. Only define this macro to some other expression
602 if pseudo allocated by `local-alloc.c' end up in memory because
603 their hard registers were needed for spill registers. If this
604 macro returns nonzero for those classes, those pseudos will only
605 be allocated by `global.c', which knows how to reallocate the
606 pseudo to another register. If there would not be another
607 register available for reallocation, you should not change the
608 definition of this macro since the only effect of such a
609 definition would be to slow down register allocation. */
610
611 /* Stack layout; function entry, exit and calling. */
612
613 /* The return address of the current frame is retrieved
614 from the initial value of register RETURN_REGNUM.
615 For frames farther back, we use the stack slot where
616 the corresponding RETURN_REGNUM register was saved. */
617
618 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
619 ((FRAME) != hard_frame_pointer_rtx ? (FRAME) : \
620 plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
621
622 #define RETURN_ADDR_RTX(COUNT, FRAME) \
623 ((COUNT) == 0 ? get_hard_reg_initial_val (Pmode, RETURN_REGNUM) : \
624 gen_rtx_MEM (Pmode, \
625 memory_address (Pmode, \
626 plus_constant (DYNAMIC_CHAIN_ADDRESS ((FRAME)), \
627 RETURN_REGNUM * UNITS_PER_WORD))))
628
629 /* The following macros will turn on dwarf2 exception hndling
630 Other code location for this exception handling are
631 in s390.md (eh_return insn) and in linux.c in the prologue. */
632
633 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
634
635 /* We have 31 bit mode. */
636
637 #define MASK_RETURN_ADDR (TARGET_64BIT ? GEN_INT (-1) : GEN_INT (0x7fffffff))
638
639 /* The offset from the incoming value of %sp to the top of the stack frame
640 for the current function. */
641
642 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
643
644 /* Location, from where return address to load. */
645
646 #define DWARF_FRAME_RETURN_COLUMN 14
647
648 /* Describe how we implement __builtin_eh_return. */
649 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
650 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
651 #define EH_RETURN_HANDLER_RTX \
652 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, \
653 TARGET_64BIT? -48 : -40))
654
655 /* Define this if pushing a word on the stack makes the stack pointer a
656 smaller address. */
657
658 #define STACK_GROWS_DOWNWARD
659
660 /* Define this if the nominal address of the stack frame is at the
661 high-address end of the local variables; that is, each additional local
662 variable allocated goes at a more negative offset in the frame. */
663
664 /* #define FRAME_GROWS_DOWNWARD */
665
666 /* Offset from stack-pointer to first location of outgoing args. */
667
668 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
669
670 /* Offset within stack frame to start allocating local variables at.
671 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
672 first local allocated. Otherwise, it is the offset to the BEGINNING
673 of the first local allocated. */
674
675 #define STARTING_FRAME_OFFSET \
676 (STACK_POINTER_OFFSET + current_function_outgoing_args_size)
677
678 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0
679
680 /* If we generate an insn to push BYTES bytes, this says how many the stack
681 pointer really advances by. On S/390, we have no push instruction. */
682
683 /* #define PUSH_ROUNDING(BYTES) */
684
685 /* Accumulate the outgoing argument count so we can request the right
686 DSA size and determine stack offset. */
687
688 #define ACCUMULATE_OUTGOING_ARGS 1
689
690 /* Offset from the stack pointer register to an item dynamically
691 allocated on the stack, e.g., by `alloca'.
692
693 The default value for this macro is `STACK_POINTER_OFFSET' plus the
694 length of the outgoing arguments. The default is correct for most
695 machines. See `function.c' for details. */
696 #define STACK_DYNAMIC_OFFSET(FUNDECL) (STARTING_FRAME_OFFSET)
697
698 /* Offset of first parameter from the argument pointer register value.
699 On the S/390, we define the argument pointer to the start of the fixed
700 area. */
701 #define FIRST_PARM_OFFSET(FNDECL) 0
702
703 /* Define this if stack space is still allocated for a parameter passed
704 in a register. The value is the number of bytes allocated to this
705 area. */
706 /* #define REG_PARM_STACK_SPACE(FNDECL) 32 */
707
708 /* Define this if the above stack space is to be considered part of the
709 space allocated by the caller. */
710 /* #define OUTGOING_REG_PARM_STACK_SPACE */
711
712 /* 1 if N is a possible register number for function argument passing.
713 On S390, general registers 2 - 6 and floating point register 0 and 2
714 are used in this way. */
715
716 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
717 (N) == 16 || (N) == 17)
718
719 /* Define a data type for recording info about an argument list during
720 the scan of that argument list. This data type should hold all
721 necessary information about the function itself and about the args
722 processed so far, enough to enable macros such as FUNCTION_ARG to
723 determine where the next arg should go. */
724
725 typedef struct s390_arg_structure
726 {
727 int gprs; /* gpr so far */
728 int fprs; /* fpr so far */
729 }
730 CUMULATIVE_ARGS;
731
732
733 /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to
734 a function whose data type is FNTYPE.
735 For a library call, FNTYPE is 0. */
736
737 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN) \
738 ((CUM).gprs=0, (CUM).fprs=0)
739
740 /* Update the data in CUM to advance over an argument of mode MODE and
741 data type TYPE. (TYPE is null for libcalls where that information
742 may not be available.) */
743
744 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
745 s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
746
747 /* Define where to put the arguments to a function. Value is zero to push
748 the argument on the stack, or a hard register in which to store the
749 argument. */
750
751 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
752 s390_function_arg (&CUM, MODE, TYPE, NAMED)
753
754 /* Define where to expect the arguments of a function. Value is zero, if
755 the argument is on the stack, or a hard register in which the argument
756 is stored. It is the same like FUNCTION_ARG, except for unnamed args
757 That means, that all in case of varargs used, the arguments are expected
758 from the stack.
759 S/390 has already space on the stack for args coming in registers,
760 they are pushed in prologue, if needed. */
761
762
763 /* Define the `__builtin_va_list' type. */
764
765 #define BUILD_VA_LIST_TYPE(VALIST) \
766 (VALIST) = s390_build_va_list ()
767
768 /* Implement `va_start' for varargs and stdarg. */
769
770 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
771 s390_va_start (stdarg, valist, nextarg)
772
773 /* Implement `va_arg'. */
774
775 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
776 s390_va_arg (valist, type)
777
778 /* For an arg passed partly in registers and partly in memory, this is the
779 number of registers used. For args passed entirely in registers or
780 entirely in memory, zero. */
781
782 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
783
784
785 /* Define if returning from a function call automatically pops the
786 arguments described by the number-of-args field in the call. */
787
788 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
789
790
791 /* Define how to find the value returned by a function. VALTYPE is the
792 data type of the value (as a tree).
793 If the precise function being called is known, FUNC is its FUNCTION_DECL;
794 otherwise, FUNC is 15. */
795
796 #define RET_REG(MODE) ((GET_MODE_CLASS (MODE) == MODE_INT \
797 || TARGET_SOFT_FLOAT ) ? 2 : 16)
798
799
800 /* for structs the address is passed, and the Callee makes a
801 copy, only if needed */
802
803 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
804 s390_function_arg_pass_by_reference (MODE, TYPE)
805
806
807 /* Register 2 (and 3) for integral values
808 or floating point register 0 (and 2) for fp values are used. */
809
810 #define FUNCTION_VALUE(VALTYPE, FUNC) \
811 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
812 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
813 || POINTER_TYPE_P (VALTYPE) \
814 ? word_mode : TYPE_MODE (VALTYPE), \
815 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 16 : 2)
816
817 /* Define how to find the value returned by a library function assuming
818 the value has mode MODE. */
819
820 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, RET_REG (MODE))
821
822 /* 1 if N is a possible register number for a function value. */
823
824 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
825
826 /* The definition of this macro implies that there are cases where
827 a scalar value cannot be returned in registers. */
828
829 #define RETURN_IN_MEMORY(type) \
830 (TYPE_MODE (type) == BLKmode || \
831 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_INT || \
832 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT)
833
834 /* Mode of stack savearea.
835 FUNCTION is VOIDmode because calling convention maintains SP.
836 BLOCK needs Pmode for SP.
837 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
838
839 #define STACK_SAVEAREA_MODE(LEVEL) \
840 (LEVEL == SAVE_FUNCTION ? VOIDmode \
841 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
842
843 /* Structure value address is passed as invisible first argument (gpr 2). */
844
845 #define STRUCT_VALUE 0
846
847 /* This macro definition sets up a default value for `main' to return. */
848
849 #define DEFAULT_MAIN_RETURN c_expand_return (integer_zero_node)
850
851 /* Length in units of the trampoline for entering a nested function. */
852
853 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 36 : 20)
854
855 /* Initialize the dynamic part of trampoline. */
856
857 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
858 s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
859
860 /* Template for constant part of trampoline. */
861
862 #define TRAMPOLINE_TEMPLATE(FILE) \
863 s390_trampoline_template (FILE)
864
865 /* Output assembler code to FILE to increment profiler label # LABELNO
866 for profiling a function entry. */
867
868 #define FUNCTION_PROFILER(FILE, LABELNO) \
869 s390_function_profiler ((FILE), ((LABELNO)))
870
871 /* #define PROFILE_BEFORE_PROLOGUE */
872
873 /* Define EXIT_IGNORE_STACK if, when returning from a function, the stack
874 pointer does not matter (provided there is a frame pointer). */
875
876 #define EXIT_IGNORE_STACK 1
877
878 /* Addressing modes, and classification of registers for them. */
879
880 /* #define HAVE_POST_INCREMENT */
881 /* #define HAVE_POST_DECREMENT */
882
883 /* #define HAVE_PRE_DECREMENT */
884 /* #define HAVE_PRE_INCREMENT */
885
886 /* These assume that REGNO is a hard or pseudo reg number. They give
887 nonzero only if REGNO is a hard reg of the suitable class or a pseudo
888 reg currently allocated to a suitable hard reg.
889 These definitions are NOT overridden anywhere. */
890
891 #define REGNO_OK_FOR_INDEX_P(REGNO) \
892 (((REGNO) < FIRST_PSEUDO_REGISTER \
893 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
894 || (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
895
896 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
897
898 #define REGNO_OK_FOR_DATA_P(REGNO) \
899 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
900
901 #define REGNO_OK_FOR_FP_P(REGNO) \
902 FLOAT_REGNO_P (REGNO)
903
904 /* Now macros that check whether X is a register and also,
905 strictly, whether it is in a specified class. */
906
907 /* 1 if X is a data register. */
908
909 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
910
911 /* 1 if X is an fp register. */
912
913 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
914
915 /* 1 if X is an address register. */
916
917 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
918
919 /* Maximum number of registers that can appear in a valid memory address. */
920
921 #define MAX_REGS_PER_ADDRESS 2
922
923 /* Recognize any constant value that is a valid address. */
924
925 #define CONSTANT_ADDRESS_P(X) 0
926
927 #define SYMBOLIC_CONST(X) \
928 (GET_CODE (X) == SYMBOL_REF \
929 || GET_CODE (X) == LABEL_REF \
930 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
931
932 /* General operand is everything except SYMBOL_REF, CONST and CONST_DOUBLE
933 they have to be forced to constant pool
934 CONST_INT have to be forced into constant pool, if greater than
935 64k. Depending on the insn they have to be force into constant pool
936 for smaller value; in this case we have to work with nonimmediate operand. */
937
938 #define LEGITIMATE_PIC_OPERAND_P(X) \
939 legitimate_pic_operand_p (X)
940
941 /* Nonzero if the constant value X is a legitimate general operand.
942 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
943
944 #define LEGITIMATE_CONSTANT_P(X) \
945 legitimate_constant_p (X)
946
947 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
948 its validity for a certain class. We have two alternate definitions
949 for each of them. The usual definition accepts all pseudo regs; the
950 other rejects them all. The symbol REG_OK_STRICT causes the latter
951 definition to be used.
952
953 Most source files want to accept pseudo regs in the hope that they will
954 get allocated to the class that the insn wants them to be in.
955 Some source files that are used after register allocation
956 need to be strict. */
957
958 /*
959 * Nonzero if X is a hard reg that can be used as an index or if it is
960 * a pseudo reg.
961 */
962
963 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
964 ((GET_MODE (X) == Pmode) && \
965 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) \
966 || REGNO_REG_CLASS (REGNO (X)) == ADDR_REGS))
967
968 /* Nonzero if X is a hard reg that can be used as a base reg or if it is
969 a pseudo reg. */
970
971 #define REG_OK_FOR_BASE_NONSTRICT_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
972
973 /* Nonzero if X is a hard reg that can be used as an index. */
974
975 #define REG_OK_FOR_INDEX_STRICT_P(X) \
976 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_INDEX_P (REGNO (X))))
977
978 /* Nonzero if X is a hard reg that can be used as a base reg. */
979
980 #define REG_OK_FOR_BASE_STRICT_P(X) \
981 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_BASE_P (REGNO (X))))
982
983
984 #ifndef REG_OK_STRICT
985 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
986 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
987 #else
988 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
989 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
990 #endif
991
992
993 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
994 valid memory address for an instruction.
995 The MODE argument is the machine mode for the MEM expression
996 that wants to use this address.
997
998 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
999 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
1000
1001 #ifdef REG_OK_STRICT
1002 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1003 { \
1004 if (legitimate_address_p (MODE, X, 1)) \
1005 goto ADDR; \
1006 }
1007 #else
1008 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1009 { \
1010 if (legitimate_address_p (MODE, X, 0)) \
1011 goto ADDR; \
1012 }
1013 #endif
1014
1015
1016 /* S/390 has no mode dependent addresses. */
1017
1018 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
1019
1020 /* Try machine-dependent ways of modifying an illegitimate address
1021 to be legitimate. If we find one, return the new, valid address.
1022 This macro is used in only one place: `memory_address' in explow.c. */
1023
1024 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1025 { \
1026 (X) = legitimize_address (X, OLDX, MODE); \
1027 if (memory_address_p (MODE, X)) \
1028 goto WIN; \
1029 }
1030
1031 /* Specify the machine mode that this machine uses for the index in the
1032 tablejump instruction. */
1033
1034 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
1035
1036 /* Define this if the tablejump instruction expects the table to contain
1037 offsets from the address of the table.
1038 Do not define this if the table should contain absolute addresses. */
1039
1040 /* #define CASE_VECTOR_PC_RELATIVE */
1041
1042 /* Load from integral MODE < SI from memory into register makes sign_extend
1043 or zero_extend
1044 In our case sign_extension happens for Halfwords, other no extension. */
1045
1046 #define LOAD_EXTEND_OP(MODE) \
1047 (TARGET_64BIT ? ((MODE) == QImode ? ZERO_EXTEND : \
1048 (MODE) == HImode ? SIGN_EXTEND : NIL) \
1049 : ((MODE) == HImode ? SIGN_EXTEND : NIL))
1050
1051 /* Define this if fixuns_trunc is the same as fix_trunc. */
1052
1053 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1054
1055 /* We use "unsigned char" as default. */
1056
1057 #define DEFAULT_SIGNED_CHAR 0
1058
1059 /* Max number of bytes we can move from memory to memory in one reasonably
1060 fast instruction. */
1061
1062 #define MOVE_MAX 256
1063
1064 /* Nonzero if access to memory by bytes is slow and undesirable. */
1065
1066 #define SLOW_BYTE_ACCESS 1
1067
1068 /* Define if shifts truncate the shift count which implies one can omit
1069 a sign-extension or zero-extension of a shift count. */
1070
1071 /* #define SHIFT_COUNT_TRUNCATED */
1072
1073 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1074 is done just by pretending it is already truncated. */
1075
1076 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1077
1078 /* We assume that the store-condition-codes instructions store 0 for false
1079 and some other value for true. This is the value stored for true. */
1080
1081 /* #define STORE_FLAG_VALUE -1 */
1082
1083 /* Don't perform CSE on function addresses. */
1084
1085 #define NO_FUNCTION_CSE
1086
1087 /* Specify the machine mode that pointers have.
1088 After generation of rtl, the compiler makes no further distinction
1089 between pointers and any other objects of this machine mode. */
1090
1091 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
1092
1093 /* A function address in a call instruction is a byte address (for
1094 indexing purposes) so give the MEM rtx a byte's mode. */
1095
1096 #define FUNCTION_MODE QImode
1097
1098
1099 /* A part of a C `switch' statement that describes the relative costs
1100 of constant RTL expressions. It must contain `case' labels for
1101 expression codes `const_int', `const', `symbol_ref', `label_ref'
1102 and `const_double'. Each case must ultimately reach a `return'
1103 statement to return the relative cost of the use of that kind of
1104 constant value in an expression. The cost may depend on the
1105 precise value of the constant, which is available for examination
1106 in X, and the rtx code of the expression in which it is contained,
1107 found in OUTER_CODE.
1108
1109 CODE is the expression code--redundant, since it can be obtained
1110 with `GET_CODE (X)'. */
1111 /* Force_const_mem does not work out of reload, because the saveable_obstack
1112 is set to reload_obstack, which does not live long enough.
1113 Because of this we cannot use force_const_mem in addsi3.
1114 This leads to problems with gen_add2_insn with a constant greater
1115 than a short. Because of that we give an addition of greater
1116 constants a cost of 3 (reload1.c 10096). */
1117
1118
1119 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1120 case CONST: \
1121 if ((GET_CODE (XEXP (RTX, 0)) == MINUS) && \
1122 (GET_CODE (XEXP (XEXP (RTX, 0), 1)) != CONST_INT)) \
1123 return 1000; \
1124 case CONST_INT: \
1125 if ((OUTER_CODE == PLUS) && \
1126 ((INTVAL (RTX) > 32767) || \
1127 (INTVAL (RTX) < -32768))) \
1128 return COSTS_N_INSNS (3); \
1129 case LABEL_REF: \
1130 case SYMBOL_REF: \
1131 case CONST_DOUBLE: \
1132 return 0; \
1133
1134
1135 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1136 This can be used, for example, to indicate how costly a multiply
1137 instruction is. In writing this macro, you can use the construct
1138 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1139 instructions. OUTER_CODE is the code of the expression in which X
1140 is contained.
1141
1142 This macro is optional; do not define it if the default cost
1143 assumptions are adequate for the target machine. */
1144
1145 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1146 case ASHIFT: \
1147 case ASHIFTRT: \
1148 case LSHIFTRT: \
1149 case PLUS: \
1150 case AND: \
1151 case IOR: \
1152 case XOR: \
1153 case MINUS: \
1154 case NEG: \
1155 case NOT: \
1156 return 1; \
1157 case MULT: \
1158 if (GET_MODE (XEXP (X, 0)) == DImode) \
1159 return 40; \
1160 else \
1161 return 7; \
1162 case DIV: \
1163 case UDIV: \
1164 case MOD: \
1165 case UMOD: \
1166 return 33;
1167
1168
1169 /* An expression giving the cost of an addressing mode that contains
1170 ADDRESS. If not defined, the cost is computed from the ADDRESS
1171 expression and the `CONST_COSTS' values.
1172
1173 For most CISC machines, the default cost is a good approximation
1174 of the true cost of the addressing mode. However, on RISC
1175 machines, all instructions normally have the same length and
1176 execution time. Hence all addresses will have equal costs.
1177
1178 In cases where more than one form of an address is known, the form
1179 with the lowest cost will be used. If multiple forms have the
1180 same, lowest, cost, the one that is the most complex will be used.
1181
1182 For example, suppose an address that is equal to the sum of a
1183 register and a constant is used twice in the same basic block.
1184 When this macro is not defined, the address will be computed in a
1185 register and memory references will be indirect through that
1186 register. On machines where the cost of the addressing mode
1187 containing the sum is no higher than that of a simple indirect
1188 reference, this will produce an additional instruction and
1189 possibly require an additional register. Proper specification of
1190 this macro eliminates this overhead for such machines.
1191
1192 Similar use of this macro is made in strength reduction of loops.
1193
1194 ADDRESS need not be valid as an address. In such a case, the cost
1195 is not relevant and can be any value; invalid addresses need not be
1196 assigned a different cost.
1197
1198 On machines where an address involving more than one register is as
1199 cheap as an address computation involving only one register,
1200 defining `ADDRESS_COST' to reflect this can cause two registers to
1201 be live over a region of code where only one would have been if
1202 `ADDRESS_COST' were not defined in that manner. This effect should
1203 be considered in the definition of this macro. Equivalent costs
1204 should probably only be given to addresses with different numbers
1205 of registers on machines with lots of registers.
1206
1207 This macro will normally either not be defined or be defined as a
1208 constant.
1209
1210 On s390 symbols are expensive if compiled with fpic
1211 lifetimes. */
1212
1213 #define ADDRESS_COST(RTX) \
1214 ((flag_pic && GET_CODE (RTX) == SYMBOL_REF) ? 2 : 1)
1215
1216 /* On s390, copy between fprs and gprs is expensive. */
1217
1218 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1219 (( ( reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
1220 && reg_classes_intersect_p ((CLASS2), FP_REGS)) \
1221 || ( reg_classes_intersect_p ((CLASS1), FP_REGS) \
1222 && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
1223
1224
1225 /* A C expression for the cost of moving data of mode M between a
1226 register and memory. A value of 2 is the default; this cost is
1227 relative to those in `REGISTER_MOVE_COST'.
1228
1229 If moving between registers and memory is more expensive than
1230 between two registers, you should define this macro to express the
1231 relative cost. */
1232
1233 #define MEMORY_MOVE_COST(M, C, I) 1
1234
1235 /* A C expression for the cost of a branch instruction. A value of 1
1236 is the default; other values are interpreted relative to that. */
1237
1238 #define BRANCH_COST 1
1239
1240 /* Add any extra modes needed to represent the condition code. */
1241 #define EXTRA_CC_MODES \
1242 CC (CCZmode, "CCZ") \
1243 CC (CCAmode, "CCA") \
1244 CC (CCLmode, "CCL") \
1245 CC (CCUmode, "CCU") \
1246 CC (CCSmode, "CCS") \
1247 CC (CCTmode, "CCT")
1248
1249 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1250 return the mode to be used for the comparison. */
1251
1252 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
1253
1254
1255 /* Define the information needed to generate branch and scc insns. This is
1256 stored from the compare operation. Note that we can't use "rtx" here
1257 since it hasn't been defined! */
1258
1259 extern struct rtx_def *s390_compare_op0, *s390_compare_op1;
1260
1261
1262 /* How to refer to registers in assembler output. This sequence is
1263 indexed by compiler's hard-register-number (see above). */
1264
1265 #define REGISTER_NAMES \
1266 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
1267 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
1268 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
1269 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
1270 "%ap", "%cc", "%fp" \
1271 }
1272
1273 /* implicit call of memcpy, not bcopy */
1274
1275 #define TARGET_MEM_FUNCTIONS
1276
1277
1278 /* Print operand X (an rtx) in assembler syntax to file FILE.
1279 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1280 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1281
1282 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1283
1284 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1285
1286
1287 /* Define the codes that are matched by predicates in aux-output.c. */
1288
1289 #define PREDICATE_CODES \
1290 {"s_operand", { SUBREG, MEM }}, \
1291 {"s_imm_operand", { CONST_INT, CONST_DOUBLE, SUBREG, MEM }}, \
1292 {"bras_sym_operand",{ SYMBOL_REF, CONST }}, \
1293 {"larl_operand", { SYMBOL_REF, CONST, CONST_INT, CONST_DOUBLE }}, \
1294 {"load_multiple_operation", {PARALLEL}}, \
1295 {"store_multiple_operation", {PARALLEL}}, \
1296 {"const0_operand", { CONST_INT, CONST_DOUBLE }}, \
1297 {"s390_plus_operand", { PLUS }},
1298
1299
1300 /* S/390 constant pool breaks the devices in crtstuff.c to control section
1301 in where code resides. We have to write it as asm code. */
1302 #ifndef __s390x__
1303 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1304 asm (SECTION_OP "\n\
1305 bras\t%r2,1f\n\
1306 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
1307 1: l\t%r3,0(%r2)\n\
1308 bas\t%r14,0(%r3,%r2)\n\
1309 .previous");
1310 #endif
1311
1312 /* Constant Pool for all symbols operands which are changed with
1313 force_const_mem during insn generation (expand_insn). */
1314
1315 extern struct rtx_def *s390_pool_start_insn;
1316 extern int s390_pool_count;
1317 extern int s390_nr_constants;
1318
1319 /* Function is splitted in chunk, if literal pool could overflow
1320 Value need to be lowered, if problems with displacement overflow. */
1321
1322 #define S390_CHUNK_MAX 0xe00
1323 #define S390_CHUNK_OV 0x1000
1324 #define S390_POOL_MAX 0xe00
1325
1326 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, fndecl, size) \
1327 { \
1328 register rtx insn; \
1329 struct pool_constant *pool; \
1330 \
1331 if (s390_pool_count == -1) \
1332 { \
1333 s390_nr_constants = 0; \
1334 for (pool = first_pool; pool; pool = pool->next) \
1335 if (pool->mark) s390_nr_constants++; \
1336 return; \
1337 } \
1338 if (first_pool == 0) { \
1339 s390_asm_output_pool_prologue (FILE, FUNNAME, fndecl, size); \
1340 return; \
1341 } \
1342 for (pool = first_pool; pool; pool = pool->next) \
1343 pool->mark = 0; \
1344 \
1345 insn = s390_pool_start_insn; \
1346 \
1347 if (insn==NULL_RTX) \
1348 insn = get_insns (); \
1349 else \
1350 insn = NEXT_INSN (insn); \
1351 for (; insn; insn = NEXT_INSN (insn)) { \
1352 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { \
1353 if (s390_stop_dump_lit_p (insn)) { \
1354 mark_constants (PATTERN (insn)); \
1355 break; \
1356 } else \
1357 mark_constants (PATTERN (insn)); \
1358 } \
1359 } \
1360 \
1361 /* Mark entries referenced by other entries */ \
1362 for (pool = first_pool; pool; pool = pool->next) \
1363 if (pool->mark) \
1364 mark_constants (pool->constant); \
1365 \
1366 s390_asm_output_pool_prologue (FILE, FUNNAME, fndecl, size); \
1367 }
1368
1369 /* We need to return, because otherwise the pool is deleted of the
1370 constant pool after the first output. */
1371
1372 #define ASM_OUTPUT_POOL_EPILOGUE(FILE, FUNNAME, fndecl, size) return;
1373
1374 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, EXP, MODE, ALIGN, LABELNO, WIN) \
1375 { \
1376 if ((s390_pool_count == 0) || (s390_pool_count > 0 && LABELNO >= 0)) \
1377 { \
1378 fprintf (FILE, ".LC%d:\n", LABELNO); \
1379 LABELNO = ~LABELNO; \
1380 } \
1381 if (s390_pool_count > 0) \
1382 { \
1383 fprintf (FILE, ".LC%d_%X:\n", ~LABELNO, s390_pool_count); \
1384 } \
1385 \
1386 /* Output the value of the constant itself. */ \
1387 switch (GET_MODE_CLASS (MODE)) \
1388 { \
1389 case MODE_FLOAT: \
1390 if (GET_CODE (EXP) != CONST_DOUBLE) \
1391 abort (); \
1392 \
1393 memcpy ((char *) &u, (char *) &CONST_DOUBLE_LOW (EXP), sizeof u); \
1394 assemble_real (u.d, MODE, ALIGN); \
1395 break; \
1396 \
1397 case MODE_INT: \
1398 case MODE_PARTIAL_INT: \
1399 if (flag_pic \
1400 && (GET_CODE (EXP) == CONST \
1401 || GET_CODE (EXP) == SYMBOL_REF \
1402 || GET_CODE (EXP) == LABEL_REF )) \
1403 { \
1404 fputs (integer_asm_op (UNITS_PER_WORD, TRUE), FILE); \
1405 s390_output_symbolic_const (FILE, EXP); \
1406 fputc ('\n', (FILE)); \
1407 } \
1408 else \
1409 { \
1410 assemble_integer (EXP, GET_MODE_SIZE (MODE), ALIGN, 1); \
1411 if (GET_MODE_SIZE (MODE) == 1) \
1412 ASM_OUTPUT_SKIP ((FILE), 1); \
1413 } \
1414 break; \
1415 \
1416 default: \
1417 abort (); \
1418 } \
1419 goto WIN; \
1420 }
1421
1422 #endif