invoke.texi: Document -mzarch, -mesa, -mcpu= and -march= option for S/390 and zSeries.
[gcc.git] / gcc / config / s390 / s390.h
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
4 Ulrich Weigand (uweigand@de.ibm.com).
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef _S390_H
23 #define _S390_H
24
25 /* Override the __fixdfdi etc. routines when building libgcc2.
26 ??? This should be done in a cleaner way ... */
27 #ifdef IN_LIBGCC2
28 #include <s390/fixdfdi.h>
29 #endif
30
31 /* Which processor to generate code or schedule for. The cpu attribute
32 defines a list that mirrors this list, so changes to s390.md must be
33 made at the same time. */
34
35 enum processor_type
36 {
37 PROCESSOR_9672_G5,
38 PROCESSOR_9672_G6,
39 PROCESSOR_2064_Z900,
40 PROCESSOR_max
41 };
42
43 extern enum processor_type s390_cpu;
44 extern const char *s390_cpu_string;
45
46 extern enum processor_type s390_arch;
47 extern const char *s390_arch_string;
48
49 #define TARGET_CPU_DEFAULT_9672 0
50 #define TARGET_CPU_DEFAULT_2064 2
51
52 #define TARGET_CPU_DEFAULT_NAMES {"g5", "g6", "z900"}
53
54 /* Run-time target specification. */
55
56 /* Target CPU builtins. */
57 #define TARGET_CPU_CPP_BUILTINS() \
58 do \
59 { \
60 builtin_assert ("cpu=s390"); \
61 builtin_assert ("machine=s390"); \
62 builtin_define ("__s390__"); \
63 if (TARGET_64BIT) \
64 builtin_define ("__s390x__"); \
65 } \
66 while (0)
67
68 /* Optional target features. */
69 extern int target_flags;
70
71 #define MASK_HARD_FLOAT 0x01
72 #define MASK_BACKCHAIN 0x02
73 #define MASK_SMALL_EXEC 0x04
74 #define MASK_DEBUG_ARG 0x08
75 #define MASK_64BIT 0x10
76 #define MASK_ZARCH 0x20
77 #define MASK_MVCLE 0x40
78
79 #define TARGET_HARD_FLOAT (target_flags & MASK_HARD_FLOAT)
80 #define TARGET_SOFT_FLOAT (!(target_flags & MASK_HARD_FLOAT))
81 #define TARGET_BACKCHAIN (target_flags & MASK_BACKCHAIN)
82 #define TARGET_SMALL_EXEC (target_flags & MASK_SMALL_EXEC)
83 #define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
84 #define TARGET_64BIT (target_flags & MASK_64BIT)
85 #define TARGET_ZARCH (target_flags & MASK_ZARCH)
86 #define TARGET_MVCLE (target_flags & MASK_MVCLE)
87
88 /* ??? Once this actually works, it could be made a runtime option. */
89 #define TARGET_IBM_FLOAT 0
90 #define TARGET_IEEE_FLOAT 1
91
92 #ifdef DEFAULT_TARGET_64BIT
93 #define TARGET_DEFAULT 0x33
94 #else
95 #define TARGET_DEFAULT 0x3
96 #endif
97
98 #define TARGET_SWITCHES \
99 { { "hard-float", 1, N_("Use hardware fp")}, \
100 { "soft-float", -1, N_("Don't use hardware fp")}, \
101 { "backchain", 2, N_("Set backchain")}, \
102 { "no-backchain", -2, N_("Don't set backchain (faster, but debug harder")}, \
103 { "small-exec", 4, N_("Use bras for execucable < 64k")}, \
104 { "no-small-exec",-4, N_("Don't use bras")}, \
105 { "debug", 8, N_("Additional debug prints")}, \
106 { "no-debug", -8, N_("Don't print additional debug prints")}, \
107 { "64", 16, N_("64 bit ABI")}, \
108 { "31", -16, N_("31 bit ABI")}, \
109 { "zarch", 32, N_("z/Architecture")}, \
110 { "esa", -32, N_("ESA/390 architecture")}, \
111 { "mvcle", 64, N_("mvcle use")}, \
112 { "no-mvcle", -64, N_("mvc&ex")}, \
113 { "", TARGET_DEFAULT, 0 } }
114
115 #define TARGET_OPTIONS \
116 { { "cpu=", &s390_cpu_string, \
117 N_("Schedule code for given CPU")}, \
118 { "arch=", &s390_arch_string, \
119 N_("Generate code for given CPU")}, \
120 }
121
122 /* Target version string. Overridden by the OS header. */
123 #ifdef DEFAULT_TARGET_64BIT
124 #define TARGET_VERSION fprintf (stderr, " (zSeries)");
125 #else
126 #define TARGET_VERSION fprintf (stderr, " (S/390)");
127 #endif
128
129 /* Hooks to override options. */
130 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
131 #define OVERRIDE_OPTIONS override_options ()
132
133 /* Frame pointer is not used for debugging. */
134 #define CAN_DEBUG_WITHOUT_FP
135
136
137 /* Target machine storage layout. */
138
139 /* Everything is big-endian. */
140 #define BITS_BIG_ENDIAN 1
141 #define BYTES_BIG_ENDIAN 1
142 #define WORDS_BIG_ENDIAN 1
143
144 /* Width of a word, in units (bytes). */
145 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
146 #define MIN_UNITS_PER_WORD 4
147 #define MAX_BITS_PER_WORD 64
148
149 /* Function arguments and return values are promoted to word size. */
150 #define PROMOTE_FUNCTION_ARGS
151 #define PROMOTE_FUNCTION_RETURN
152 #define PROMOTE_FOR_CALL_ONLY
153
154 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
155 if (INTEGRAL_MODE_P (MODE) && \
156 GET_MODE_SIZE (MODE) < UNITS_PER_WORD) { \
157 (MODE) = Pmode; \
158 }
159
160 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
161 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
162
163 /* Boundary (in *bits*) on which stack pointer should be aligned. */
164 #define STACK_BOUNDARY 64
165
166 /* Allocation boundary (in *bits*) for the code of a function. */
167 #define FUNCTION_BOUNDARY 32
168
169 /* There is no point aligning anything to a rounder boundary than this. */
170 #define BIGGEST_ALIGNMENT 64
171
172 /* Alignment of field after `int : 0' in a structure. */
173 #define EMPTY_FIELD_BOUNDARY 32
174
175 /* Alignment on even addresses for LARL instruction. */
176 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
177 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
178
179 /* Alignment is not required by the hardware. */
180 #define STRICT_ALIGNMENT 0
181
182 /* Mode of stack savearea.
183 FUNCTION is VOIDmode because calling convention maintains SP.
184 BLOCK needs Pmode for SP.
185 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
186 #define STACK_SAVEAREA_MODE(LEVEL) \
187 (LEVEL == SAVE_FUNCTION ? VOIDmode \
188 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
189
190 /* Define target floating point format. */
191 #define TARGET_FLOAT_FORMAT \
192 (TARGET_IEEE_FLOAT? IEEE_FLOAT_FORMAT : IBM_FLOAT_FORMAT)
193
194
195 /* Type layout. */
196
197 /* Sizes in bits of the source language data types. */
198 #define SHORT_TYPE_SIZE 16
199 #define INT_TYPE_SIZE 32
200 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
201 #define MAX_LONG_TYPE_SIZE 64
202 #define LONG_LONG_TYPE_SIZE 64
203 #define FLOAT_TYPE_SIZE 32
204 #define DOUBLE_TYPE_SIZE 64
205 #define LONG_DOUBLE_TYPE_SIZE 64 /* ??? Should support extended format. */
206
207 /* We use "unsigned char" as default. */
208 #define DEFAULT_SIGNED_CHAR 0
209
210
211 /* Register usage. */
212
213 /* We have 16 general purpose registers (registers 0-15),
214 and 16 floating point registers (registers 16-31).
215 (On non-IEEE machines, we have only 4 fp registers.)
216
217 Amongst the general purpose registers, some are used
218 for specific purposes:
219 GPR 11: Hard frame pointer (if needed)
220 GPR 12: Global offset table pointer (if needed)
221 GPR 13: Literal pool base register
222 GPR 14: Return address register
223 GPR 15: Stack pointer
224
225 Registers 32-34 are 'fake' hard registers that do not
226 correspond to actual hardware:
227 Reg 32: Argument pointer
228 Reg 33: Condition code
229 Reg 34: Frame pointer */
230
231 #define FIRST_PSEUDO_REGISTER 35
232
233 /* Standard register usage. */
234 #define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
235 #define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
236 #define FP_REGNO_P(N) ((N) >= 16 && (N) < (TARGET_IEEE_FLOAT? 32 : 20))
237 #define CC_REGNO_P(N) ((N) == 33)
238
239 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
240 #define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
241 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
242 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
243
244 #define BASE_REGISTER 13
245 #define RETURN_REGNUM 14
246 #define CC_REGNUM 33
247
248 /* Set up fixed registers and calling convention:
249
250 GPRs 0-5 are always call-clobbered,
251 GPRs 6-15 are always call-saved.
252 GPR 12 is fixed if used as GOT pointer.
253 GPR 13 is always fixed (as literal pool pointer).
254 GPR 14 is always fixed (as return address).
255 GPR 15 is always fixed (as stack pointer).
256 The 'fake' hard registers are call-clobbered and fixed.
257
258 On 31-bit, FPRs 18-19 are call-clobbered;
259 on 64-bit, FPRs 24-31 are call-clobbered.
260 The remaining FPRs are call-saved. */
261
262 #define FIXED_REGISTERS \
263 { 0, 0, 0, 0, \
264 0, 0, 0, 0, \
265 0, 0, 0, 0, \
266 0, 1, 1, 1, \
267 0, 0, 0, 0, \
268 0, 0, 0, 0, \
269 0, 0, 0, 0, \
270 0, 0, 0, 0, \
271 1, 1, 1 }
272
273 #define CALL_USED_REGISTERS \
274 { 1, 1, 1, 1, \
275 1, 1, 0, 0, \
276 0, 0, 0, 0, \
277 0, 1, 1, 1, \
278 1, 1, 1, 1, \
279 1, 1, 1, 1, \
280 1, 1, 1, 1, \
281 1, 1, 1, 1, \
282 1, 1, 1 }
283
284 #define CALL_REALLY_USED_REGISTERS \
285 { 1, 1, 1, 1, \
286 1, 1, 0, 0, \
287 0, 0, 0, 0, \
288 0, 0, 0, 0, \
289 1, 1, 1, 1, \
290 1, 1, 1, 1, \
291 1, 1, 1, 1, \
292 1, 1, 1, 1, \
293 1, 1, 1 }
294
295 #define CONDITIONAL_REGISTER_USAGE \
296 do \
297 { \
298 int i; \
299 \
300 if (flag_pic) \
301 { \
302 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
303 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
304 } \
305 if (TARGET_64BIT) \
306 { \
307 for (i = 24; i < 32; i++) \
308 call_used_regs[i] = call_really_used_regs[i] = 0; \
309 } \
310 else \
311 { \
312 for (i = 18; i < 20; i++) \
313 call_used_regs[i] = call_really_used_regs[i] = 0; \
314 } \
315 } while (0)
316
317 /* Preferred register allocation order. */
318 #define REG_ALLOC_ORDER \
319 { 1, 2, 3, 4, 5, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, \
320 16, 17, 18, 19, 20, 21, 22, 23, \
321 24, 25, 26, 27, 28, 29, 30, 31, \
322 15, 32, 33, 34 }
323
324
325 /* Fitting values into registers. */
326
327 /* Integer modes <= word size fit into any GPR.
328 Integer modes > word size fit into successive GPRs, starting with
329 an even-numbered register.
330 SImode and DImode fit into FPRs as well.
331
332 Floating point modes <= word size fit into any FPR or GPR.
333 Floating point modes > word size (i.e. DFmode on 32-bit) fit
334 into any FPR, or an even-odd GPR pair.
335
336 Complex floating point modes fit either into two FPRs, or into
337 successive GPRs (again starting with an even number).
338
339 Condition code modes fit only into the CC register. */
340
341 #define HARD_REGNO_NREGS(REGNO, MODE) \
342 (FP_REGNO_P(REGNO)? \
343 (GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
344 GENERAL_REGNO_P(REGNO)? \
345 ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) : \
346 1)
347
348 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
349 (FP_REGNO_P(REGNO)? \
350 ((MODE) == SImode || (MODE) == DImode || \
351 GET_MODE_CLASS(MODE) == MODE_FLOAT || \
352 GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT) : \
353 GENERAL_REGNO_P(REGNO)? \
354 (HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1)) : \
355 CC_REGNO_P(REGNO)? \
356 GET_MODE_CLASS (MODE) == MODE_CC : \
357 0)
358
359 #define MODES_TIEABLE_P(MODE1, MODE2) \
360 (((MODE1) == SFmode || (MODE1) == DFmode) \
361 == ((MODE2) == SFmode || (MODE2) == DFmode))
362
363 /* Maximum number of registers to represent a value of mode MODE
364 in a register of class CLASS. */
365 #define CLASS_MAX_NREGS(CLASS, MODE) \
366 ((CLASS) == FP_REGS ? \
367 (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
368 (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
369
370 /* If a 4-byte value is loaded into a FPR, it is placed into the
371 *upper* half of the register, not the lower. Therefore, we
372 cannot use SUBREGs to switch between modes in FP registers. */
373 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO) \
374 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) ? FP_REGS : NO_REGS)
375
376 /* Register classes. */
377
378 /* We use the following register classes:
379 GENERAL_REGS All general purpose registers
380 ADDR_REGS All general purpose registers except %r0
381 (These registers can be used in address generation)
382 FP_REGS All floating point registers
383
384 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
385 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
386
387 NO_REGS No registers
388 ALL_REGS All registers
389
390 Note that the 'fake' frame pointer and argument pointer registers
391 are included amongst the address registers here. The condition
392 code register is only included in ALL_REGS. */
393
394 enum reg_class
395 {
396 NO_REGS, ADDR_REGS, GENERAL_REGS,
397 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
398 ALL_REGS, LIM_REG_CLASSES
399 };
400 #define N_REG_CLASSES (int) LIM_REG_CLASSES
401
402 #define REG_CLASS_NAMES \
403 { "NO_REGS", "ADDR_REGS", "GENERAL_REGS", \
404 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
405
406 /* Class -> register mapping. */
407 #define REG_CLASS_CONTENTS \
408 { \
409 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
410 { 0x0000fffe, 0x00000005 }, /* ADDR_REGS */ \
411 { 0x0000ffff, 0x00000005 }, /* GENERAL_REGS */ \
412 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
413 { 0xfffffffe, 0x00000005 }, /* ADDR_FP_REGS */ \
414 { 0xffffffff, 0x00000005 }, /* GENERAL_FP_REGS */ \
415 { 0xffffffff, 0x00000007 }, /* ALL_REGS */ \
416 }
417
418 /* Register -> class mapping. */
419 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
420 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
421
422 /* ADDR_REGS can be used as base or index register. */
423 #define INDEX_REG_CLASS ADDR_REGS
424 #define BASE_REG_CLASS ADDR_REGS
425
426 /* Check whether REGNO is a hard register of the suitable class
427 or a pseudo register currently allocated to one such. */
428 #define REGNO_OK_FOR_INDEX_P(REGNO) \
429 (((REGNO) < FIRST_PSEUDO_REGISTER \
430 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
431 || (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
432 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
433
434
435 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
436 return the class of reg to actually use. */
437 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
438 s390_preferred_reload_class ((X), (CLASS))
439
440 /* We need a secondary reload when loading a PLUS which is
441 not a valid operand for LOAD ADDRESS. */
442 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
443 s390_secondary_input_reload_class ((CLASS), (MODE), (IN))
444
445 /* We need secondary memory to move data between GPRs and FPRs. */
446 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
447 ((CLASS1) != (CLASS2) && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS))
448
449 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
450 because the movsi and movsf patterns don't handle r/f moves. */
451 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
452 (GET_MODE_BITSIZE (MODE) < 32 \
453 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
454 : MODE)
455
456
457 /* Define various machine-dependent constraint letters. */
458
459 #define REG_CLASS_FROM_LETTER(C) \
460 ((C) == 'a' ? ADDR_REGS : \
461 (C) == 'd' ? GENERAL_REGS : \
462 (C) == 'f' ? FP_REGS : NO_REGS)
463
464 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
465 ((C) == 'I' ? (unsigned long) (VALUE) < 256 : \
466 (C) == 'J' ? (unsigned long) (VALUE) < 4096 : \
467 (C) == 'K' ? (VALUE) >= -32768 && (VALUE) < 32768 : \
468 (C) == 'L' ? (unsigned long) (VALUE) < 65536 : 0)
469
470 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
471
472 #define EXTRA_CONSTRAINT(OP, C) \
473 ((C) == 'Q' ? q_constraint (OP) : \
474 (C) == 'S' ? larl_operand (OP, GET_MODE (OP)) : 0)
475
476 #define EXTRA_MEMORY_CONSTRAINT(C) ((C) == 'Q')
477
478
479 /* Stack layout and calling conventions. */
480
481 /* Our stack grows from higher to lower addresses. However, local variables
482 are accessed by positive offsets, and function arguments are stored at
483 increasing addresses. */
484 #define STACK_GROWS_DOWNWARD
485 /* #undef FRAME_GROWS_DOWNWARD */
486 /* #undef ARGS_GROW_DOWNWARD */
487
488 /* The basic stack layout looks like this: the stack pointer points
489 to the register save area for called functions. Above that area
490 is the location to place outgoing arguments. Above those follow
491 dynamic allocations (alloca), and finally the local variables. */
492
493 /* Offset from stack-pointer to first location of outgoing args. */
494 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
495
496 /* Offset within stack frame to start allocating local variables at. */
497 extern int current_function_outgoing_args_size;
498 #define STARTING_FRAME_OFFSET \
499 (STACK_POINTER_OFFSET + current_function_outgoing_args_size)
500
501 /* Offset from the stack pointer register to an item dynamically
502 allocated on the stack, e.g., by `alloca'. */
503 #define STACK_DYNAMIC_OFFSET(FUNDECL) (STARTING_FRAME_OFFSET)
504
505 /* Offset of first parameter from the argument pointer register value.
506 We have a fake argument pointer register that points directly to
507 the argument area. */
508 #define FIRST_PARM_OFFSET(FNDECL) 0
509
510 /* The return address of the current frame is retrieved
511 from the initial value of register RETURN_REGNUM.
512 For frames farther back, we use the stack slot where
513 the corresponding RETURN_REGNUM register was saved. */
514
515 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
516 ((FRAME) != hard_frame_pointer_rtx ? (FRAME) : \
517 plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
518
519 #define RETURN_ADDR_RTX(COUNT, FRAME) \
520 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
521
522 /* In 31-bit mode, we need to mask off the high bit of return addresses. */
523 #define MASK_RETURN_ADDR (TARGET_64BIT ? GEN_INT (-1) : GEN_INT (0x7fffffff))
524
525
526 /* Exception handling. */
527
528 /* Describe calling conventions for DWARF-2 exception handling. */
529 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
530 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
531 #define DWARF_FRAME_RETURN_COLUMN 14
532
533 /* Describe how we implement __builtin_eh_return. */
534 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
535 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
536 #define EH_RETURN_HANDLER_RTX \
537 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, \
538 TARGET_64BIT? -48 : -40))
539
540 /* Select a format to encode pointers in exception handling data. */
541 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
542 (flag_pic \
543 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
544 : DW_EH_PE_absptr)
545
546
547 /* Frame registers. */
548
549 #define STACK_POINTER_REGNUM 15
550 #define FRAME_POINTER_REGNUM 34
551 #define HARD_FRAME_POINTER_REGNUM 11
552 #define ARG_POINTER_REGNUM 32
553
554 /* The static chain must be call-clobbered, but not used for
555 function argument passing. As register 1 is clobbered by
556 the trampoline code, we only have one option. */
557 #define STATIC_CHAIN_REGNUM 0
558
559 /* Number of hardware registers that go into the DWARF-2 unwind info.
560 To avoid ABI incompatibility, this number must not change even as
561 'fake' hard registers are added or removed. */
562 #define DWARF_FRAME_REGISTERS 34
563
564
565 /* Frame pointer and argument pointer elimination. */
566
567 #define FRAME_POINTER_REQUIRED 0
568
569 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0
570
571 #define ELIMINABLE_REGS \
572 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
573 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
574 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
575 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
576
577 #define CAN_ELIMINATE(FROM, TO) (1)
578
579 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
580 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
581 { (OFFSET) = 0; } \
582 else if ((FROM) == FRAME_POINTER_REGNUM \
583 && (TO) == HARD_FRAME_POINTER_REGNUM) \
584 { (OFFSET) = 0; } \
585 else if ((FROM) == ARG_POINTER_REGNUM \
586 && (TO) == HARD_FRAME_POINTER_REGNUM) \
587 { (OFFSET) = s390_arg_frame_offset (); } \
588 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
589 { (OFFSET) = s390_arg_frame_offset (); } \
590 else \
591 abort(); \
592 }
593
594
595 /* Stack arguments. */
596
597 /* We need current_function_outgoing_args to be valid. */
598 #define ACCUMULATE_OUTGOING_ARGS 1
599
600 /* Return doesn't modify the stack. */
601 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
602
603
604 /* Register arguments. */
605
606 typedef struct s390_arg_structure
607 {
608 int gprs; /* gpr so far */
609 int fprs; /* fpr so far */
610 }
611 CUMULATIVE_ARGS;
612
613 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN) \
614 ((CUM).gprs=0, (CUM).fprs=0)
615
616 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
617 s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
618
619 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
620 s390_function_arg (&CUM, MODE, TYPE, NAMED)
621
622 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
623 s390_function_arg_pass_by_reference (MODE, TYPE)
624
625 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
626
627 /* Arguments can be placed in general registers 2 to 6,
628 or in floating point registers 0 and 2. */
629 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
630 (N) == 16 || (N) == 17)
631
632
633 /* Scalar return values. */
634
635 /* We return scalars in general purpose register 2 for integral values,
636 and floating point register 0 for fp values. */
637 #define FUNCTION_VALUE(VALTYPE, FUNC) \
638 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
639 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
640 || POINTER_TYPE_P (VALTYPE) \
641 ? word_mode : TYPE_MODE (VALTYPE), \
642 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 16 : 2)
643
644 /* Define how to find the value returned by a library function assuming
645 the value has mode MODE. */
646 #define RET_REG(MODE) ((GET_MODE_CLASS (MODE) == MODE_INT \
647 || TARGET_SOFT_FLOAT ) ? 2 : 16)
648 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, RET_REG (MODE))
649
650 /* Only gpr 2 and fpr 0 are ever used as return registers. */
651 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
652
653
654 /* Aggregate return values. */
655
656 /* The definition of this macro implies that there are cases where
657 a scalar value cannot be returned in registers. */
658 #define RETURN_IN_MEMORY(type) \
659 (TYPE_MODE (type) == BLKmode || \
660 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_INT || \
661 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT)
662
663 /* Structure value address is passed as invisible first argument (gpr 2). */
664 #define STRUCT_VALUE 0
665
666
667 /* Function entry and exit. */
668
669 /* When returning from a function, the stack pointer does not matter. */
670 #define EXIT_IGNORE_STACK 1
671
672
673 /* Profiling. */
674
675 #define FUNCTION_PROFILER(FILE, LABELNO) \
676 s390_function_profiler ((FILE), ((LABELNO)))
677
678 #define PROFILE_BEFORE_PROLOGUE 1
679
680
681 /* Implementing the varargs macros. */
682
683 #define BUILD_VA_LIST_TYPE(VALIST) \
684 (VALIST) = s390_build_va_list ()
685
686 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
687 s390_va_start (valist, nextarg)
688
689 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
690 s390_va_arg (valist, type)
691
692
693 /* Trampolines for nested functions. */
694
695 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 36 : 20)
696
697 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
698 s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
699
700 #define TRAMPOLINE_TEMPLATE(FILE) \
701 s390_trampoline_template (FILE)
702
703
704 /* Library calls. */
705
706 /* We should use memcpy, not bcopy. */
707 #define TARGET_MEM_FUNCTIONS
708
709
710 /* Addressing modes, and classification of registers for them. */
711
712 /* Recognize any constant value that is a valid address. */
713 #define CONSTANT_ADDRESS_P(X) 0
714
715 /* Maximum number of registers that can appear in a valid memory address. */
716 #define MAX_REGS_PER_ADDRESS 2
717
718 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
719 its validity for a certain class. We have two alternate definitions
720 for each of them. The usual definition accepts all pseudo regs; the
721 other rejects them all. The symbol REG_OK_STRICT causes the latter
722 definition to be used.
723
724 Most source files want to accept pseudo regs in the hope that they will
725 get allocated to the class that the insn wants them to be in.
726 Some source files that are used after register allocation
727 need to be strict. */
728
729 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
730 ((GET_MODE (X) == Pmode) && \
731 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) \
732 || REGNO_REG_CLASS (REGNO (X)) == ADDR_REGS))
733
734 #define REG_OK_FOR_BASE_NONSTRICT_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
735
736 #define REG_OK_FOR_INDEX_STRICT_P(X) \
737 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_INDEX_P (REGNO (X))))
738
739 #define REG_OK_FOR_BASE_STRICT_P(X) \
740 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_BASE_P (REGNO (X))))
741
742 #ifndef REG_OK_STRICT
743 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
744 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
745 #else
746 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
747 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
748 #endif
749
750 /* S/390 has no mode dependent addresses. */
751 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
752
753 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
754 valid memory address for an instruction.
755 The MODE argument is the machine mode for the MEM expression
756 that wants to use this address. */
757 #ifdef REG_OK_STRICT
758 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
759 { \
760 if (legitimate_address_p (MODE, X, 1)) \
761 goto ADDR; \
762 }
763 #else
764 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
765 { \
766 if (legitimate_address_p (MODE, X, 0)) \
767 goto ADDR; \
768 }
769 #endif
770
771 /* Try machine-dependent ways of modifying an illegitimate address
772 to be legitimate. If we find one, return the new, valid address.
773 This macro is used in only one place: `memory_address' in explow.c. */
774 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
775 { \
776 (X) = legitimize_address (X, OLDX, MODE); \
777 if (memory_address_p (MODE, X)) \
778 goto WIN; \
779 }
780
781 /* Nonzero if the constant value X is a legitimate general operand.
782 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
783 #define LEGITIMATE_CONSTANT_P(X) \
784 legitimate_constant_p (X)
785
786 /* Helper macro for s390.c and s390.md to check for symbolic constants. */
787 #define SYMBOLIC_CONST(X) \
788 (GET_CODE (X) == SYMBOL_REF \
789 || GET_CODE (X) == LABEL_REF \
790 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
791
792
793 /* Condition codes. */
794
795 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
796 return the mode to be used for the comparison. */
797 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
798
799 /* Define the information needed to generate branch and scc insns. This is
800 stored from the compare operation. Note that we can't use "rtx" here
801 since it hasn't been defined! */
802 extern struct rtx_def *s390_compare_op0, *s390_compare_op1;
803
804
805 /* Relative costs of operations. */
806
807 /* A part of a C `switch' statement that describes the relative costs
808 of constant RTL expressions. It must contain `case' labels for
809 expression codes `const_int', `const', `symbol_ref', `label_ref'
810 and `const_double'. Each case must ultimately reach a `return'
811 statement to return the relative cost of the use of that kind of
812 constant value in an expression. The cost may depend on the
813 precise value of the constant, which is available for examination
814 in X, and the rtx code of the expression in which it is contained,
815 found in OUTER_CODE.
816
817 CODE is the expression code--redundant, since it can be obtained
818 with `GET_CODE (X)'. */
819 /* Force_const_mem does not work out of reload, because the saveable_obstack
820 is set to reload_obstack, which does not live long enough.
821 Because of this we cannot use force_const_mem in addsi3.
822 This leads to problems with gen_add2_insn with a constant greater
823 than a short. Because of that we give an addition of greater
824 constants a cost of 3 (reload1.c 10096). */
825
826 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
827 case CONST: \
828 if ((GET_CODE (XEXP (RTX, 0)) == MINUS) && \
829 (GET_CODE (XEXP (XEXP (RTX, 0), 1)) != CONST_INT)) \
830 return 1000; \
831 case CONST_INT: \
832 if ((OUTER_CODE == PLUS) && \
833 ((INTVAL (RTX) > 32767) || \
834 (INTVAL (RTX) < -32768))) \
835 return COSTS_N_INSNS (3); \
836 case LABEL_REF: \
837 case SYMBOL_REF: \
838 case CONST_DOUBLE: \
839 return 0; \
840
841
842 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
843 This can be used, for example, to indicate how costly a multiply
844 instruction is. In writing this macro, you can use the construct
845 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
846 instructions. OUTER_CODE is the code of the expression in which X
847 is contained. */
848
849 #define RTX_COSTS(X, CODE, OUTER_CODE) \
850 case ASHIFT: \
851 case ASHIFTRT: \
852 case LSHIFTRT: \
853 case PLUS: \
854 case AND: \
855 case IOR: \
856 case XOR: \
857 case MINUS: \
858 case NEG: \
859 case NOT: \
860 return COSTS_N_INSNS (1); \
861 case MULT: \
862 if (GET_MODE (XEXP (X, 0)) == DImode) \
863 return COSTS_N_INSNS (40); \
864 else \
865 return COSTS_N_INSNS (7); \
866 case DIV: \
867 case UDIV: \
868 case MOD: \
869 case UMOD: \
870 return COSTS_N_INSNS (33);
871
872
873 /* An expression giving the cost of an addressing mode that contains
874 ADDRESS. If not defined, the cost is computed from the ADDRESS
875 expression and the `CONST_COSTS' values. */
876 #define ADDRESS_COST(RTX) s390_address_cost ((RTX))
877
878 /* On s390, copy between fprs and gprs is expensive. */
879 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
880 (( ( reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
881 && reg_classes_intersect_p ((CLASS2), FP_REGS)) \
882 || ( reg_classes_intersect_p ((CLASS1), FP_REGS) \
883 && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
884
885 /* A C expression for the cost of moving data of mode M between a
886 register and memory. A value of 2 is the default; this cost is
887 relative to those in `REGISTER_MOVE_COST'. */
888 #define MEMORY_MOVE_COST(M, C, I) 1
889
890 /* A C expression for the cost of a branch instruction. A value of 1
891 is the default; other values are interpreted relative to that. */
892 #define BRANCH_COST 1
893
894 /* Nonzero if access to memory by bytes is slow and undesirable. */
895 #define SLOW_BYTE_ACCESS 1
896
897 /* The maximum number of bytes that a single instruction can move quickly
898 between memory and registers or between two memory locations. */
899 #define MOVE_MAX (TARGET_64BIT ? 16 : 8)
900 #define MAX_MOVE_MAX 16
901
902 /* Determine whether to use move_by_pieces or block move insn. */
903 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
904 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
905 || (TARGET_64BIT && (SIZE) == 8) )
906
907 /* Determine whether to use clear_by_pieces or block clear insn. */
908 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
909 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
910 || (TARGET_64BIT && (SIZE) == 8) )
911
912 /* Don't perform CSE on function addresses. */
913 #define NO_FUNCTION_CSE
914
915
916 /* Sections. */
917
918 /* Output before read-only data. */
919 #define TEXT_SECTION_ASM_OP ".text"
920
921 /* Output before writable (initialized) data. */
922 #define DATA_SECTION_ASM_OP ".data"
923
924 /* Output before writable (uninitialized) data. */
925 #define BSS_SECTION_ASM_OP ".bss"
926
927 /* S/390 constant pool breaks the devices in crtstuff.c to control section
928 in where code resides. We have to write it as asm code. */
929 #ifndef __s390x__
930 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
931 asm (SECTION_OP "\n\
932 bras\t%r2,1f\n\
933 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
934 1: l\t%r3,0(%r2)\n\
935 bas\t%r14,0(%r3,%r2)\n\
936 .previous");
937 #endif
938
939
940 /* Position independent code. */
941
942 extern int flag_pic;
943
944 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
945
946 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
947
948
949 /* Assembler file format. */
950
951 /* Character to start a comment. */
952 #define ASM_COMMENT_START "#"
953
954 /* Declare an uninitialized external linkage data object. */
955 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
956 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
957
958 /* Globalizing directive for a label. */
959 #define GLOBAL_ASM_OP ".globl "
960
961 /* Advance the location counter to a multiple of 2**LOG bytes. */
962 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
963 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
964
965 /* Advance the location counter by SIZE bytes. */
966 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
967 fprintf ((FILE), "\t.set\t.,.+%u\n", (SIZE))
968
969 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
970 #define LOCAL_LABEL_PREFIX "."
971
972 /* Either simplify a location expression, or return the original. */
973 #define ASM_SIMPLIFY_DWARF_ADDR(X) \
974 s390_simplify_dwarf_addr (X)
975
976 /* How to refer to registers in assembler output. This sequence is
977 indexed by compiler's hard-register-number (see above). */
978 #define REGISTER_NAMES \
979 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
980 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
981 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
982 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
983 "%ap", "%cc", "%fp" \
984 }
985
986 /* Print operand X (an rtx) in assembler syntax to file FILE. */
987 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
988 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
989
990 /* Output an element of a case-vector that is absolute. */
991 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
992 do { \
993 char buf[32]; \
994 fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE)); \
995 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
996 assemble_name ((FILE), buf); \
997 fputc ('\n', (FILE)); \
998 } while (0)
999
1000 /* Output an element of a case-vector that is relative. */
1001 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1002 do { \
1003 char buf[32]; \
1004 fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE)); \
1005 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
1006 assemble_name ((FILE), buf); \
1007 fputc ('-', (FILE)); \
1008 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
1009 assemble_name ((FILE), buf); \
1010 fputc ('\n', (FILE)); \
1011 } while (0)
1012
1013
1014 /* Constant Pool for all symbols operands which are changed with
1015 force_const_mem during insn generation (expand_insn). */
1016
1017 extern int s390_pool_count;
1018 extern int s390_nr_constants;
1019
1020 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, fndecl, size) \
1021 { \
1022 struct pool_constant *pool; \
1023 \
1024 if (s390_pool_count == -1) \
1025 { \
1026 s390_nr_constants = 0; \
1027 for (pool = first_pool; pool; pool = pool->next) \
1028 if (pool->mark) s390_nr_constants++; \
1029 return; \
1030 } \
1031 }
1032
1033 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, EXP, MODE, ALIGN, LABELNO, WIN) \
1034 { \
1035 fprintf (FILE, ".LC%d:\n", LABELNO); \
1036 \
1037 /* Output the value of the constant itself. */ \
1038 switch (GET_MODE_CLASS (MODE)) \
1039 { \
1040 case MODE_FLOAT: \
1041 if (GET_CODE (EXP) != CONST_DOUBLE) \
1042 abort (); \
1043 \
1044 REAL_VALUE_FROM_CONST_DOUBLE (r, EXP); \
1045 assemble_real (r, MODE, ALIGN); \
1046 break; \
1047 \
1048 case MODE_INT: \
1049 case MODE_PARTIAL_INT: \
1050 if (flag_pic \
1051 && (GET_CODE (EXP) == CONST \
1052 || GET_CODE (EXP) == SYMBOL_REF \
1053 || GET_CODE (EXP) == LABEL_REF )) \
1054 { \
1055 fputs (integer_asm_op (UNITS_PER_WORD, TRUE), FILE); \
1056 s390_output_symbolic_const (FILE, EXP); \
1057 fputc ('\n', (FILE)); \
1058 } \
1059 else \
1060 { \
1061 assemble_integer (EXP, GET_MODE_SIZE (MODE), ALIGN, 1); \
1062 if (GET_MODE_SIZE (MODE) == 1) \
1063 ASM_OUTPUT_SKIP ((FILE), 1); \
1064 } \
1065 break; \
1066 \
1067 default: \
1068 abort (); \
1069 } \
1070 goto WIN; \
1071 }
1072
1073
1074 /* Miscellaneous parameters. */
1075
1076 /* Define the codes that are matched by predicates in aux-output.c. */
1077 #define PREDICATE_CODES \
1078 {"s_operand", { SUBREG, MEM }}, \
1079 {"s_imm_operand", { CONST_INT, CONST_DOUBLE, SUBREG, MEM }}, \
1080 {"bras_sym_operand",{ SYMBOL_REF, CONST }}, \
1081 {"larl_operand", { SYMBOL_REF, CONST, CONST_INT, CONST_DOUBLE }}, \
1082 {"load_multiple_operation", {PARALLEL}}, \
1083 {"store_multiple_operation", {PARALLEL}}, \
1084 {"const0_operand", { CONST_INT, CONST_DOUBLE }}, \
1085 {"consttable_operand", { SYMBOL_REF, LABEL_REF, CONST, \
1086 CONST_INT, CONST_DOUBLE }}, \
1087 {"s390_plus_operand", { PLUS }},
1088
1089 /* Specify the machine mode that this machine uses for the index in the
1090 tablejump instruction. */
1091 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
1092
1093 /* Load from integral MODE < SI from memory into register makes sign_extend
1094 or zero_extend
1095 In our case sign_extension happens for Halfwords, other no extension. */
1096 #define LOAD_EXTEND_OP(MODE) \
1097 (TARGET_64BIT ? ((MODE) == QImode ? ZERO_EXTEND : \
1098 (MODE) == HImode ? SIGN_EXTEND : NIL) \
1099 : ((MODE) == HImode ? SIGN_EXTEND : NIL))
1100
1101 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1102 is done just by pretending it is already truncated. */
1103 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1104
1105 /* Specify the machine mode that pointers have.
1106 After generation of rtl, the compiler makes no further distinction
1107 between pointers and any other objects of this machine mode. */
1108 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
1109
1110 /* A function address in a call instruction is a byte address (for
1111 indexing purposes) so give the MEM rtx a byte's mode. */
1112 #define FUNCTION_MODE QImode
1113
1114 /* This macro definition sets up a default value for `main' to return. */
1115 #define DEFAULT_MAIN_RETURN c_expand_return (integer_zero_node)
1116
1117 /* In rare cases, correct code generation requires extra machine dependent
1118 processing between the second jump optimization pass and delayed branch
1119 scheduling. On those machines, define this macro as a C statement to act on
1120 the code starting at INSN. */
1121 #define MACHINE_DEPENDENT_REORG(INSN) s390_machine_dependent_reorg (INSN)
1122
1123 #endif