final.c (count_basic_block, [...]): Kill.
[gcc.git] / gcc / config / s390 / s390.h
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
4 Ulrich Weigand (uweigand@de.ibm.com).
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef _S390_H
23 #define _S390_H
24
25 #define TARGET_VERSION fprintf (stderr, " (S/390)");
26
27 extern int flag_pic;
28
29 /* Run-time compilation parameters selecting different hardware subsets. */
30
31 extern int target_flags;
32
33 /* Target macros checked at runtime of compiler. */
34
35 #define TARGET_HARD_FLOAT (target_flags & 1)
36 #define TARGET_BACKCHAIN (target_flags & 2)
37 #define TARGET_SMALL_EXEC (target_flags & 4)
38 #define TARGET_DEBUG_ARG (target_flags & 8)
39 #define TARGET_64BIT (target_flags & 16)
40 #define TARGET_MVCLE (target_flags & 32)
41
42 #define TARGET_DEFAULT 0x3
43 #define TARGET_SOFT_FLOAT (!(target_flags & 1))
44
45 /* Macro to define tables used to set the flags. This is a list in braces
46 of pairs in braces, each pair being { "NAME", VALUE }
47 where VALUE is the bits to set or minus the bits to clear.
48 An empty string NAME is used to identify the default VALUE. */
49
50 #define TARGET_SWITCHES \
51 { { "hard-float", 1, N_("Use hardware fp")}, \
52 { "soft-float", -1, N_("Don't use hardware fp")}, \
53 { "backchain", 2, N_("Set backchain")}, \
54 { "no-backchain", -2, N_("Don't set backchain (faster, but debug harder")}, \
55 { "small-exec", 4, N_("Use bras for execucable < 64k")}, \
56 { "no-small-exec",-4, N_("Don't use bras")}, \
57 { "debug", 8, N_("Additional debug prints")}, \
58 { "no-debug", -8, N_("Don't print additional debug prints")}, \
59 { "64", 16, N_("64 bit mode")}, \
60 { "31", -16, N_("31 bit mode")}, \
61 { "mvcle", 32, N_("mvcle use")}, \
62 { "no-mvcle", -32, N_("mvc&ex")}, \
63 { "", TARGET_DEFAULT, 0 } }
64
65 /* Define this to change the optimizations performed by default. */
66 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
67
68 /* Defines for REAL_ARITHMETIC. */
69 #define IEEE_FLOAT 1
70 #define TARGET_IBM_FLOAT 0
71 #define TARGET_IEEE_FLOAT 1
72
73 /* The current function count for create unique internal labels. */
74
75 extern int s390_function_count;
76
77 /* The amount of space used for outgoing arguments. */
78
79 extern int current_function_outgoing_args_size;
80
81 /* Target machine storage layout. */
82
83 /* Define this if most significant bit is lowest numbered in instructions
84 that operate on numbered bit-fields. */
85
86 #define BITS_BIG_ENDIAN 1
87
88 /* Define this if most significant byte of a word is the lowest numbered. */
89
90 #define BYTES_BIG_ENDIAN 1
91
92 /* Define this if MS word of a multiword is the lowest numbered. */
93
94 #define WORDS_BIG_ENDIAN 1
95
96 /* Number of bits in an addressable storage unit. */
97
98 #define BITS_PER_UNIT 8
99
100 /* Width in bits of a "word", which is the contents of a machine register. */
101
102 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
103 #define MAX_BITS_PER_WORD 64
104
105 /* Width of a word, in units (bytes). */
106
107 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
108 #define MIN_UNITS_PER_WORD 4
109
110 /* Width in bits of a pointer. See also the macro `Pmode' defined below. */
111
112 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
113
114 /* A C expression for the size in bits of the type `short' on the
115 target machine. If you don't define this, the default is half a
116 word. (If this would be less than one storage unit, it is
117 rounded up to one unit.) */
118 #define SHORT_TYPE_SIZE 16
119
120 /* A C expression for the size in bits of the type `int' on the
121 target machine. If you don't define this, the default is one
122 word. */
123 #define INT_TYPE_SIZE 32
124
125 /* A C expression for the size in bits of the type `long' on the
126 target machine. If you don't define this, the default is one
127 word. */
128 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
129 #define MAX_LONG_TYPE_SIZE 64
130
131 /* A C expression for the size in bits of the type `long long' on the
132 target machine. If you don't define this, the default is two
133 words. */
134 #define LONG_LONG_TYPE_SIZE 64
135
136 /* Right now we only support two floating point formats, the
137 32 and 64 bit ieee formats. */
138
139 #define FLOAT_TYPE_SIZE 32
140 #define DOUBLE_TYPE_SIZE 64
141 #define LONG_DOUBLE_TYPE_SIZE 64
142
143 /* Define this macro if it is advisable to hold scalars in registers
144 in a wider mode than that declared by the program. In such cases,
145 the value is constrained to be within the bounds of the declared
146 type, but kept valid in the wider mode. The signedness of the
147 extension may differ from that of the type. */
148
149 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
150 if (INTEGRAL_MODE_P (MODE) && \
151 GET_MODE_SIZE (MODE) < UNITS_PER_WORD) { \
152 (MODE) = Pmode; \
153 }
154
155 /* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
156 extensions applied to char/short functions arguments. Defining
157 PROMOTE_FUNCTION_RETURN does the same for function returns. */
158
159 #define PROMOTE_FUNCTION_ARGS
160 #define PROMOTE_FUNCTION_RETURN
161 #define PROMOTE_FOR_CALL_ONLY
162
163 /* Allocation boundary (in *bits*) for storing pointers in memory. */
164
165 #define POINTER_BOUNDARY 32
166
167 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
168
169 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
170
171 /* Boundary (in *bits*) on which stack pointer should be aligned. */
172
173 #define STACK_BOUNDARY 64
174
175 /* Allocation boundary (in *bits*) for the code of a function. */
176
177 #define FUNCTION_BOUNDARY 32
178
179 /* There is no point aligning anything to a rounder boundary than this. */
180
181 #define BIGGEST_ALIGNMENT 64
182
183 /* Alignment of field after `int : 0' in a structure. */
184
185 #define EMPTY_FIELD_BOUNDARY 32
186
187 /* Alignment on even addresses for LARL instruction. */
188
189 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
190
191 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
192
193 /* Define this if move instructions will actually fail to work when given
194 unaligned data. */
195
196 #define STRICT_ALIGNMENT 0
197
198 /* real arithmetic */
199
200 #define REAL_ARITHMETIC
201
202 /* Define target floating point format. */
203
204 #undef TARGET_FLOAT_FORMAT
205 #ifdef IEEE_FLOAT
206 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
207 #else
208 #define TARGET_FLOAT_FORMAT IBM_FLOAT_FORMAT
209 #endif
210
211 /* Define if special allocation order desired. */
212
213 #define REG_ALLOC_ORDER \
214 { 1, 2, 3, 4, 5, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, \
215 16, 17, 18, 19, 20, 21, 22, 23, \
216 24, 25, 26, 27, 28, 29, 30, 31, \
217 15, 32, 33 }
218
219 /* Standard register usage. */
220
221 #define INT_REGNO_P(N) ( (int)(N) >= 0 && (N) < 16 )
222 #ifdef IEEE_FLOAT
223 #define FLOAT_REGNO_P(N) ( (N) >= 16 && (N) < 32 )
224 #else
225 #define FLOAT_REGNO_P(N) ( (N) >= 16 && (N) < 20 )
226 #endif
227 #define CC_REGNO_P(N) ( (N) == 33 )
228
229 /* Number of actual hardware registers. The hardware registers are
230 assigned numbers for the compiler from 0 to just below
231 FIRST_PSEUDO_REGISTER.
232 All registers that the compiler knows about must be given numbers,
233 even those that are not normally considered general registers.
234 For the 390, we give the data registers numbers 0-15,
235 and the floating point registers numbers 16-19.
236 G5 and following have 16 IEEE floating point register,
237 which get numbers 16-31. */
238
239 #define FIRST_PSEUDO_REGISTER 34
240
241 /* The following register have a fix usage
242 GPR 12: GOT register points to the GOT, setup in prologue,
243 GOT contains pointer to variables in shared libraries
244 GPR 13: Base register setup in prologue to point to the
245 literal table of each function
246 GPR 14: Return registers holds the return address
247 GPR 15: Stack pointer */
248
249 #define PIC_OFFSET_TABLE_REGNUM 12
250 #define BASE_REGISTER 13
251 #define RETURN_REGNUM 14
252 #define STACK_POINTER_REGNUM 15
253
254 #define FIXED_REGISTERS \
255 { 0, 0, 0, 0, \
256 0, 0, 0, 0, \
257 0, 0, 0, 0, \
258 0, 1, 1, 1, \
259 0, 0, 0, 0, \
260 0, 0, 0, 0, \
261 0, 0, 0, 0, \
262 0, 0, 0, 0, \
263 1, 1 }
264
265 /* 1 for registers not available across function calls. These must include
266 the FIXED_REGISTERS and also any registers that can be used without being
267 saved.
268 The latter must include the registers where values are returned
269 and the register where structure-value addresses are passed. */
270
271 #define CALL_USED_REGISTERS \
272 { 1, 1, 1, 1, \
273 1, 1, 0, 0, \
274 0, 0, 0, 0, \
275 0, 1, 1, 1, \
276 1, 1, 0, 0, \
277 1, 1, 1, 1, \
278 1, 1, 1, 1, \
279 1, 1, 1, 1, \
280 1, 1 }
281
282 /* If not pic code, gpr 12 can be used. */
283
284 #define CONDITIONAL_REGISTER_USAGE \
285 do \
286 { \
287 if (flag_pic) \
288 { \
289 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
290 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
291 } \
292 } while (0)
293
294 /* The following register have a special usage
295 GPR 11: Frame pointer if needed to point to automatic variables.
296 GPR 32: In functions with more the 5 args this register
297 points to that arguments, it is always eliminated
298 with stack- or frame-pointer.
299 GPR 33: Condition code 'register' */
300
301 #define FRAME_POINTER_REGNUM 11
302
303 #define ARG_POINTER_REGNUM 32
304
305 #define CC_REGNUM 33
306
307 /* We use the register %r0 to pass the static chain to a nested function.
308
309 Note: It is assumed that this register is call-clobbered!
310 We can't use any of the function-argument registers either,
311 and register 1 is needed by the trampoline code, so we have
312 no other choice but using this one ... */
313
314 #define STATIC_CHAIN_REGNUM 0
315
316 /* Return number of consecutive hard regs needed starting at reg REGNO
317 to hold something of mode MODE.
318 This is ordinarily the length in words of a value of mode MODE
319 but can be less for certain modes in special long registers. */
320
321 #define HARD_REGNO_NREGS(REGNO, MODE) \
322 (FLOAT_REGNO_P(REGNO)? \
323 (GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
324 INT_REGNO_P(REGNO)? \
325 ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) : \
326 1)
327
328 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
329 The gprs can hold QI, HI, SI, SF, DF, SC and DC.
330 Even gprs can hold DI.
331 The floating point registers can hold DF, SF, DC and SC. */
332
333 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
334 (FLOAT_REGNO_P(REGNO)? \
335 (GET_MODE_CLASS(MODE) == MODE_FLOAT || \
336 GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT) : \
337 INT_REGNO_P(REGNO)? \
338 (HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1)) : \
339 CC_REGNO_P(REGNO)? \
340 GET_MODE_CLASS (MODE) == MODE_CC : \
341 0)
342
343 /* Value is 1 if it is a good idea to tie two pseudo registers when one has
344 mode MODE1 and one has mode MODE2.
345 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
346 for any hard reg, then this must be 0 for correct output. */
347
348 #define MODES_TIEABLE_P(MODE1, MODE2) \
349 (((MODE1) == SFmode || (MODE1) == DFmode) \
350 == ((MODE2) == SFmode || (MODE2) == DFmode))
351
352
353 /* Define this macro if references to a symbol must be treated
354 differently depending on something about the variable or
355 function named by the symbol (such as what section it is in).
356
357 On s390, if using PIC, mark a SYMBOL_REF for a non-global symbol
358 so that we may access it directly in the GOT. */
359
360 #define ENCODE_SECTION_INFO(DECL) \
361 do \
362 { \
363 if (flag_pic) \
364 { \
365 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
366 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
367 \
368 if (GET_CODE (rtl) == MEM) \
369 { \
370 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
371 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
372 || ! TREE_PUBLIC (DECL)); \
373 } \
374 } \
375 } \
376 while (0)
377
378
379 /* This is an array of structures. Each structure initializes one pair
380 of eliminable registers. The "from" register number is given first,
381 followed by "to". Eliminations of the same "from" register are listed
382 in order of preference. */
383
384 #define ELIMINABLE_REGS \
385 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
386 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
387 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}}
388
389 #define CAN_ELIMINATE(FROM, TO) (1)
390
391 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
392 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
393 { (OFFSET) = 0; } \
394 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
395 { (OFFSET) = s390_arg_frame_offset (); } \
396 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
397 { (OFFSET) = s390_arg_frame_offset (); } \
398 }
399
400 #define CAN_DEBUG_WITHOUT_FP
401
402 /* Value should be nonzero if functions must have frame pointers.
403 Zero means the frame pointer need not be set up (and parms may be
404 accessed via the stack pointer) in functions that seem suitable.
405 This is computed in `reload', in reload1.c. */
406
407 #define FRAME_POINTER_REQUIRED 0
408
409 /* Define the classes of registers for register constraints in the
410 machine description. Also define ranges of constants.
411
412 One of the classes must always be named ALL_REGS and include all hard regs.
413 If there is more than one class, another class must be named NO_REGS
414 and contain no registers.
415
416 The name GENERAL_REGS must be the name of a class (or an alias for
417 another name such as ALL_REGS). This is the class of registers
418 that is allowed by "g" or "r" in a register constraint.
419 Also, registers outside this class are allocated only when
420 instructions express preferences for them.
421
422 The classes must be numbered in nondecreasing order; that is,
423 a larger-numbered class must never be contained completely
424 in a smaller-numbered class.
425
426 For any two classes, it is very desirable that there be another
427 class that represents their union. */
428
429 /*#define SMALL_REGISTER_CLASSES 1*/
430
431 enum reg_class
432 {
433 NO_REGS, ADDR_REGS, GENERAL_REGS,
434 FP_REGS, ALL_REGS, LIM_REG_CLASSES
435 };
436
437 #define N_REG_CLASSES (int) LIM_REG_CLASSES
438
439 /* Give names of register classes as strings for dump file. */
440
441 #define REG_CLASS_NAMES \
442 { "NO_REGS","ADDR_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
443
444 /* Define which registers fit in which classes. This is an initializer for
445 a vector of HARD_REG_SET of length N_REG_CLASSES.
446 G5 and latter have 16 register and support IEEE floating point operations. */
447
448 #define REG_CLASS_CONTENTS \
449 { \
450 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
451 { 0x0000fffe, 0x00000001 }, /* ADDR_REGS */ \
452 { 0x0000ffff, 0x00000001 }, /* GENERAL_REGS */ \
453 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
454 { 0xffffffff, 0x00000003 }, /* ALL_REGS */ \
455 }
456
457
458 /* The same information, inverted:
459 Return the class number of the smallest class containing
460 reg number REGNO. This could be a conditional expression
461 or could index an array. */
462
463 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
464
465 extern enum reg_class regclass_map[]; /* smalled class containing REGNO */
466
467 /* The class value for index registers, and the one for base regs. */
468
469 #define INDEX_REG_CLASS ADDR_REGS
470 #define BASE_REG_CLASS ADDR_REGS
471
472 /* Get reg_class from a letter such as appears in the machine description. */
473
474 #define REG_CLASS_FROM_LETTER(C) \
475 ((C) == 'a' ? ADDR_REGS : \
476 (C) == 'd' ? GENERAL_REGS : \
477 (C) == 'f' ? FP_REGS : NO_REGS)
478
479 /* The letters I, J, K, L and M in a register constraint string can be used
480 to stand for particular ranges of immediate operands.
481 This macro defines what the ranges are.
482 C is the letter, and VALUE is a constant value.
483 Return 1 if VALUE is in the range specified by C. */
484
485 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
486 ((C) == 'I' ? (unsigned long) (VALUE) < 256 : \
487 (C) == 'J' ? (unsigned long) (VALUE) < 4096 : \
488 (C) == 'K' ? (VALUE) >= -32768 && (VALUE) < 32768 : \
489 (C) == 'L' ? (unsigned long) (VALUE) < 65536 : 0)
490
491 /* Similar, but for floating constants, and defining letters G and H.
492 Here VALUE is the CONST_DOUBLE rtx itself. */
493
494 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
495
496 /* 'Q' means a memory-reference for a S-type operand. */
497
498 #define EXTRA_CONSTRAINT(OP, C) \
499 ((C) == 'Q' ? s_operand (OP, GET_MODE (OP)) : \
500 (C) == 'S' ? larl_operand (OP, GET_MODE (OP)) : 0)
501
502 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
503 return the class of reg to actually use. In general this is just CLASS;
504 but on some machines in some cases it is preferable to use a more
505 restrictive class. */
506
507 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
508 (GET_CODE (X) == CONST_DOUBLE ? \
509 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? FP_REGS : ADDR_REGS) :\
510 (GET_CODE (X) == CONST_INT ? \
511 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? FP_REGS : ADDR_REGS) :\
512 GET_CODE (X) == PLUS || \
513 GET_CODE (X) == LABEL_REF || \
514 GET_CODE (X) == SYMBOL_REF || \
515 GET_CODE (X) == CONST ? ADDR_REGS : (CLASS)))
516
517 /* Return the maximum number of consecutive registers needed to represent
518 mode MODE in a register of class CLASS. */
519
520 #define CLASS_MAX_NREGS(CLASS, MODE) \
521 ((CLASS) == FP_REGS ? \
522 (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
523 (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
524
525 /* If we are copying between FP registers and anything else, we need a memory
526 location. */
527
528 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
529 ((CLASS1) != (CLASS2) && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS))
530
531 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
532 because the movsi and movsf patterns don't handle r/f moves. */
533
534 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
535 (GET_MODE_BITSIZE (MODE) < 32 \
536 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
537 : MODE)
538
539
540 /* A C expression whose value is nonzero if pseudos that have been
541 assigned to registers of class CLASS would likely be spilled
542 because registers of CLASS are needed for spill registers.
543
544 The default value of this macro returns 1 if CLASS has exactly one
545 register and zero otherwise. On most machines, this default
546 should be used. Only define this macro to some other expression
547 if pseudo allocated by `local-alloc.c' end up in memory because
548 their hard registers were needed for spill registers. If this
549 macro returns nonzero for those classes, those pseudos will only
550 be allocated by `global.c', which knows how to reallocate the
551 pseudo to another register. If there would not be another
552 register available for reallocation, you should not change the
553 definition of this macro since the only effect of such a
554 definition would be to slow down register allocation. */
555
556 /* Stack layout; function entry, exit and calling. */
557
558 /* The current return address is on Offset 56 of the current frame
559 if we are in an leaf_function. Otherwise we have to go one stack
560 back.
561 The return address of anything farther back is accessed normally
562 at an offset of 56 from the frame pointer.
563
564 FIXME: builtin_return_addr does not work correctly in a leaf
565 function, we need to find way to find out, if we
566 are in a leaf function
567 */
568
569 #define _RETURN_ADDR_OFFSET (TARGET_64BIT ? 112 : 56)
570
571 #define RETURN_ADDR_RTX(count, frame) \
572 gen_rtx (MEM, Pmode, \
573 memory_address (Pmode, \
574 plus_constant ( \
575 copy_to_reg (gen_rtx (MEM, Pmode, \
576 memory_address (Pmode, frame))), \
577 _RETURN_ADDR_OFFSET)));
578
579 /* The following macros will turn on dwarf2 exception hndling
580 Other code location for this exception handling are
581 in s390.md (eh_return insn) and in linux.c in the prologue. */
582
583 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
584
585 /* We have 31 bit mode. */
586
587 #define MASK_RETURN_ADDR (GEN_INT (0x7fffffff))
588
589 /* Location, from where return address to load. */
590
591 #define DWARF_FRAME_RETURN_COLUMN 14
592
593 /* Describe how we implement __builtin_eh_return. */
594 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
595 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
596 #define EH_RETURN_HANDLER_RTX \
597 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, \
598 TARGET_64BIT? -48 : -40))
599
600 /* Define this if pushing a word on the stack makes the stack pointer a
601 smaller address. */
602
603 #define STACK_GROWS_DOWNWARD
604
605 /* Define this if the nominal address of the stack frame is at the
606 high-address end of the local variables; that is, each additional local
607 variable allocated goes at a more negative offset in the frame. */
608
609 /* #define FRAME_GROWS_DOWNWARD */
610
611 /* Offset from stack-pointer to first location of outgoing args. */
612
613 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
614
615 /* Offset within stack frame to start allocating local variables at.
616 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
617 first local allocated. Otherwise, it is the offset to the BEGINNING
618 of the first local allocated. */
619
620 #define STARTING_FRAME_OFFSET \
621 (STACK_POINTER_OFFSET + current_function_outgoing_args_size)
622
623 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0
624
625 /* If we generate an insn to push BYTES bytes, this says how many the stack
626 pointer really advances by. On S/390, we have no push instruction. */
627
628 /* #define PUSH_ROUNDING(BYTES) */
629
630 /* Accumulate the outgoing argument count so we can request the right
631 DSA size and determine stack offset. */
632
633 #define ACCUMULATE_OUTGOING_ARGS 1
634
635 /* Offset from the stack pointer register to an item dynamically
636 allocated on the stack, e.g., by `alloca'.
637
638 The default value for this macro is `STACK_POINTER_OFFSET' plus the
639 length of the outgoing arguments. The default is correct for most
640 machines. See `function.c' for details. */
641 #define STACK_DYNAMIC_OFFSET(FUNDECL) (STARTING_FRAME_OFFSET)
642
643 /* Offset of first parameter from the argument pointer register value.
644 On the S/390, we define the argument pointer to the start of the fixed
645 area. */
646 #define FIRST_PARM_OFFSET(FNDECL) 0
647
648 /* Define this if stack space is still allocated for a parameter passed
649 in a register. The value is the number of bytes allocated to this
650 area. */
651 /* #define REG_PARM_STACK_SPACE(FNDECL) 32 */
652
653 /* Define this if the above stack space is to be considered part of the
654 space allocated by the caller. */
655 /* #define OUTGOING_REG_PARM_STACK_SPACE */
656
657 /* 1 if N is a possible register number for function argument passing.
658 On S390, general registers 2 - 6 and floating point register 0 and 2
659 are used in this way. */
660
661 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
662 (N) == 16 || (N) == 17)
663
664 /* Define a data type for recording info about an argument list during
665 the scan of that argument list. This data type should hold all
666 necessary information about the function itself and about the args
667 processed so far, enough to enable macros such as FUNCTION_ARG to
668 determine where the next arg should go. */
669
670 typedef struct s390_arg_structure
671 {
672 int gprs; /* gpr so far */
673 int fprs; /* fpr so far */
674 }
675 CUMULATIVE_ARGS;
676
677
678 /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to
679 a function whose data type is FNTYPE.
680 For a library call, FNTYPE is 0. */
681
682 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN) \
683 ((CUM).gprs=0, (CUM).fprs=0)
684
685 /* Update the data in CUM to advance over an argument of mode MODE and
686 data type TYPE. (TYPE is null for libcalls where that information
687 may not be available.) */
688
689 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
690 s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
691
692 /* Define where to put the arguments to a function. Value is zero to push
693 the argument on the stack, or a hard register in which to store the
694 argument. */
695
696 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
697 s390_function_arg (&CUM, MODE, TYPE, NAMED)
698
699 /* Define where to expect the arguments of a function. Value is zero, if
700 the argument is on the stack, or a hard register in which the argument
701 is stored. It is the same like FUNCTION_ARG, except for unnamed args
702 That means, that all in case of varargs used, the arguments are expected
703 from the stack.
704 S/390 has already space on the stack for args coming in registers,
705 they are pushed in prologue, if needed. */
706
707
708 /* Define the `__builtin_va_list' type. */
709
710 #define BUILD_VA_LIST_TYPE(VALIST) \
711 (VALIST) = s390_build_va_list ()
712
713 /* Implement `va_start' for varargs and stdarg. */
714
715 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
716 s390_va_start (stdarg, valist, nextarg)
717
718 /* Implement `va_arg'. */
719
720 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
721 s390_va_arg (valist, type)
722
723 /* For an arg passed partly in registers and partly in memory, this is the
724 number of registers used. For args passed entirely in registers or
725 entirely in memory, zero. */
726
727 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
728
729
730 /* Define if returning from a function call automatically pops the
731 arguments described by the number-of-args field in the call. */
732
733 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
734
735
736 /* Define how to find the value returned by a function. VALTYPE is the
737 data type of the value (as a tree).
738 If the precise function being called is known, FUNC is its FUNCTION_DECL;
739 otherwise, FUNC is 15. */
740
741 #define RET_REG(MODE) ((GET_MODE_CLASS (MODE) == MODE_INT \
742 || TARGET_SOFT_FLOAT ) ? 2 : 16)
743
744
745 /* for structs the address is passed, and the Callee makes a
746 copy, only if needed */
747
748 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
749 s390_function_arg_pass_by_reference (MODE, TYPE)
750
751
752 /* Register 2 (and 3) for integral values
753 or floating point register 0 (and 2) for fp values are used. */
754
755 #define FUNCTION_VALUE(VALTYPE, FUNC) \
756 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
757 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
758 || POINTER_TYPE_P (VALTYPE) \
759 ? word_mode : TYPE_MODE (VALTYPE), \
760 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 16 : 2)
761
762 /* Define how to find the value returned by a library function assuming
763 the value has mode MODE. */
764
765 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, RET_REG (MODE))
766
767 /* 1 if N is a possible register number for a function value. */
768
769 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
770
771 /* The definition of this macro implies that there are cases where
772 a scalar value cannot be returned in registers. */
773
774 #define RETURN_IN_MEMORY(type) \
775 (TYPE_MODE (type) == BLKmode || \
776 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_INT || \
777 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT)
778
779 /* Mode of stack savearea.
780 FUNCTION is VOIDmode because calling convention maintains SP.
781 BLOCK needs Pmode for SP.
782 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
783
784 #define STACK_SAVEAREA_MODE(LEVEL) \
785 (LEVEL == SAVE_FUNCTION ? VOIDmode \
786 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
787
788 /* Structure value address is passed as invisible first argument (gpr 2). */
789
790 #define STRUCT_VALUE 0
791
792 /* This macro definition sets up a default value for `main' to return. */
793
794 #define DEFAULT_MAIN_RETURN c_expand_return (integer_zero_node)
795
796 /* Length in units of the trampoline for entering a nested function. */
797
798 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 36 : 20)
799
800 /* Initialize the dynamic part of trampoline. */
801
802 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
803 s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
804
805 /* Template for constant part of trampoline. */
806
807 #define TRAMPOLINE_TEMPLATE(FILE) \
808 s390_trampoline_template (FILE)
809
810 /* Output assembler code to FILE to increment profiler label # LABELNO
811 for profiling a function entry. */
812
813 #define FUNCTION_PROFILER(FILE, LABELNO) \
814 do { \
815 extern rtx s390_profile[]; \
816 extern int s390_pool_count; \
817 static char label[128]; \
818 fprintf (FILE, "# function profiler \n"); \
819 if (TARGET_64BIT) \
820 { \
821 rtx tmp[1]; \
822 output_asm_insn ("stg\t14,8(15)", tmp); \
823 sprintf (label, "%sP%d", LPREFIX, LABELNO); \
824 tmp[0] = gen_rtx_SYMBOL_REF (Pmode, label); \
825 SYMBOL_REF_FLAG (tmp[0]) = 1; \
826 output_asm_insn ("larl\t1,%0", tmp); \
827 tmp[0] = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); \
828 if (flag_pic) \
829 { \
830 tmp[0] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, tmp[0]), 113); \
831 tmp[0] = gen_rtx_CONST (Pmode, tmp[0]); \
832 } \
833 output_asm_insn ("brasl\t14,%0", tmp); \
834 output_asm_insn ("lg\t14,8(15)", tmp); \
835 } \
836 else \
837 { \
838 output_asm_insn ("l 14,4(15)", s390_profile); \
839 s390_pool_count = 0; \
840 output_asm_insn ("st 14,4(15)", s390_profile); \
841 output_asm_insn ("l 14,%4", s390_profile); \
842 output_asm_insn ("l 1,%9", s390_profile); \
843 if (flag_pic) \
844 { \
845 output_asm_insn ("ar 1,13", s390_profile); \
846 output_asm_insn ("bas 14,0(14,13)", s390_profile); \
847 } \
848 else \
849 { \
850 output_asm_insn ("basr 14,14", s390_profile); \
851 } \
852 output_asm_insn ("l 14,4(15)", s390_profile); \
853 } \
854 } while (0)
855
856 /* #define PROFILE_BEFORE_PROLOGUE */
857
858 /* Define EXIT_IGNORE_STACK if, when returning from a function, the stack
859 pointer does not matter (provided there is a frame pointer). */
860
861 #define EXIT_IGNORE_STACK 1
862
863 /* Addressing modes, and classification of registers for them. */
864
865 /* #define HAVE_POST_INCREMENT */
866 /* #define HAVE_POST_DECREMENT */
867
868 /* #define HAVE_PRE_DECREMENT */
869 /* #define HAVE_PRE_INCREMENT */
870
871 /* These assume that REGNO is a hard or pseudo reg number. They give
872 nonzero only if REGNO is a hard reg of the suitable class or a pseudo
873 reg currently allocated to a suitable hard reg.
874 These definitions are NOT overridden anywhere. */
875
876 #define REGNO_OK_FOR_INDEX_P(REGNO) \
877 (((REGNO) > 0 && (REGNO) < 16) || (REGNO) == ARG_POINTER_REGNUM \
878 /* || (REGNO) == FRAME_POINTER_REGNUM */ \
879 || (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
880
881 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
882
883 #define REGNO_OK_FOR_DATA_P(REGNO) \
884 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
885
886 #define REGNO_OK_FOR_FP_P(REGNO) \
887 FLOAT_REGNO_P (REGNO)
888
889 /* Now macros that check whether X is a register and also,
890 strictly, whether it is in a specified class. */
891
892 /* 1 if X is a data register. */
893
894 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
895
896 /* 1 if X is an fp register. */
897
898 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
899
900 /* 1 if X is an address register. */
901
902 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
903
904 /* Maximum number of registers that can appear in a valid memory address. */
905
906 #define MAX_REGS_PER_ADDRESS 2
907
908 /* Recognize any constant value that is a valid address. */
909
910 #define CONSTANT_ADDRESS_P(X) 0
911
912 #define SYMBOLIC_CONST(X) \
913 (GET_CODE (X) == SYMBOL_REF \
914 || GET_CODE (X) == LABEL_REF \
915 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
916
917 /* General operand is everything except SYMBOL_REF, CONST and CONST_DOUBLE
918 they have to be forced to constant pool
919 CONST_INT have to be forced into constant pool, if greater than
920 64k. Depending on the insn they have to be force into constant pool
921 for smaller value; in this case we have to work with nonimmediate operand. */
922
923 #define LEGITIMATE_PIC_OPERAND_P(X) \
924 legitimate_pic_operand_p (X)
925
926 /* Nonzero if the constant value X is a legitimate general operand.
927 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
928
929 #define LEGITIMATE_CONSTANT_P(X) \
930 legitimate_constant_p (X)
931
932 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
933 its validity for a certain class. We have two alternate definitions
934 for each of them. The usual definition accepts all pseudo regs; the
935 other rejects them all. The symbol REG_OK_STRICT causes the latter
936 definition to be used.
937
938 Most source files want to accept pseudo regs in the hope that they will
939 get allocated to the class that the insn wants them to be in.
940 Some source files that are used after register allocation
941 need to be strict. */
942
943 /*
944 * Nonzero if X is a hard reg that can be used as an index or if it is
945 * a pseudo reg.
946 */
947
948 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
949 ((GET_MODE (X) == Pmode) && \
950 ((REGNO (X) > 0 && REGNO (X) < 16) || \
951 (REGNO (X) == ARG_POINTER_REGNUM) || \
952 (REGNO (X) >= FIRST_PSEUDO_REGISTER)))
953
954 /* Nonzero if X is a hard reg that can be used as a base reg or if it is
955 a pseudo reg. */
956
957 #define REG_OK_FOR_BASE_NONSTRICT_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
958
959 /* Nonzero if X is a hard reg that can be used as an index. */
960
961 #define REG_OK_FOR_INDEX_STRICT_P(X) \
962 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_INDEX_P (REGNO (X))))
963
964 /* Nonzero if X is a hard reg that can be used as a base reg. */
965
966 #define REG_OK_FOR_BASE_STRICT_P(X) \
967 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_BASE_P (REGNO (X))))
968
969
970 #ifndef REG_OK_STRICT
971 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
972 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
973 #else
974 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
975 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
976 #endif
977
978
979 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
980 valid memory address for an instruction.
981 The MODE argument is the machine mode for the MEM expression
982 that wants to use this address.
983
984 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
985 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
986
987 #ifdef REG_OK_STRICT
988 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
989 { \
990 if (legitimate_address_p (MODE, X, 1)) \
991 goto ADDR; \
992 }
993 #else
994 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
995 { \
996 if (legitimate_address_p (MODE, X, 0)) \
997 goto ADDR; \
998 }
999 #endif
1000
1001
1002 /* S/390 has no mode dependent addresses. */
1003
1004 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
1005
1006 /* Try machine-dependent ways of modifying an illegitimate address
1007 to be legitimate. If we find one, return the new, valid address.
1008 This macro is used in only one place: `memory_address' in explow.c. */
1009
1010 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1011 { \
1012 (X) = legitimize_address (X, OLDX, MODE); \
1013 if (memory_address_p (MODE, X)) \
1014 goto WIN; \
1015 }
1016
1017 /* Specify the machine mode that this machine uses for the index in the
1018 tablejump instruction. */
1019
1020 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
1021
1022 /* Define this if the tablejump instruction expects the table to contain
1023 offsets from the address of the table.
1024 Do not define this if the table should contain absolute addresses. */
1025
1026 /* #define CASE_VECTOR_PC_RELATIVE */
1027
1028 /* Load from integral MODE < SI from memory into register makes sign_extend
1029 or zero_extend
1030 In our case sign_extension happens for Halfwords, other no extension. */
1031
1032 #define LOAD_EXTEND_OP(MODE) \
1033 (TARGET_64BIT ? ((MODE) == QImode ? ZERO_EXTEND : \
1034 (MODE) == HImode ? SIGN_EXTEND : NIL) \
1035 : ((MODE) == HImode ? SIGN_EXTEND : NIL))
1036
1037 /* Specify the tree operation to be used to convert reals to integers. */
1038
1039 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1040
1041 /* Define this if fixuns_trunc is the same as fix_trunc. */
1042
1043 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1044
1045 /* We use "unsigned char" as default. */
1046
1047 #define DEFAULT_SIGNED_CHAR 0
1048
1049 /* This is the kind of divide that is easiest to do in the general case. */
1050
1051 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1052
1053 /* Max number of bytes we can move from memory to memory in one reasonably
1054 fast instruction. */
1055
1056 #define MOVE_MAX 256
1057
1058 /* Define this if zero-extension is slow (more than one real instruction). */
1059
1060 #define SLOW_ZERO_EXTEND
1061
1062 /* Nonzero if access to memory by bytes is slow and undesirable. */
1063
1064 #define SLOW_BYTE_ACCESS 1
1065
1066 /* Define if shifts truncate the shift count which implies one can omit
1067 a sign-extension or zero-extension of a shift count. */
1068
1069 /* #define SHIFT_COUNT_TRUNCATED */
1070
1071 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1072 is done just by pretending it is already truncated. */
1073
1074 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1075
1076 /* We assume that the store-condition-codes instructions store 0 for false
1077 and some other value for true. This is the value stored for true. */
1078
1079 /* #define STORE_FLAG_VALUE -1 */
1080
1081 /* When a prototype says `char' or `short', really pass an `int'. */
1082
1083 #define PROMOTE_PROTOTYPES 1
1084
1085 /* Don't perform CSE on function addresses. */
1086
1087 #define NO_FUNCTION_CSE
1088
1089 /* Specify the machine mode that pointers have.
1090 After generation of rtl, the compiler makes no further distinction
1091 between pointers and any other objects of this machine mode. */
1092
1093 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
1094
1095 /* A function address in a call instruction is a byte address (for
1096 indexing purposes) so give the MEM rtx a byte's mode. */
1097
1098 #define FUNCTION_MODE QImode
1099
1100
1101 /* A part of a C `switch' statement that describes the relative costs
1102 of constant RTL expressions. It must contain `case' labels for
1103 expression codes `const_int', `const', `symbol_ref', `label_ref'
1104 and `const_double'. Each case must ultimately reach a `return'
1105 statement to return the relative cost of the use of that kind of
1106 constant value in an expression. The cost may depend on the
1107 precise value of the constant, which is available for examination
1108 in X, and the rtx code of the expression in which it is contained,
1109 found in OUTER_CODE.
1110
1111 CODE is the expression code--redundant, since it can be obtained
1112 with `GET_CODE (X)'. */
1113 /* Force_const_mem does not work out of reload, because the saveable_obstack
1114 is set to reload_obstack, which does not live long enough.
1115 Because of this we cannot use force_const_mem in addsi3.
1116 This leads to problems with gen_add2_insn with a constant greater
1117 than a short. Because of that we give an addition of greater
1118 constants a cost of 3 (reload1.c 10096). */
1119
1120
1121 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1122 case CONST: \
1123 if ((GET_CODE (XEXP (RTX, 0)) == MINUS) && \
1124 (GET_CODE (XEXP (XEXP (RTX, 0), 1)) != CONST_INT)) \
1125 return 1000; \
1126 case CONST_INT: \
1127 if ((OUTER_CODE == PLUS) && \
1128 ((INTVAL (RTX) > 32767) || \
1129 (INTVAL (RTX) < -32768))) \
1130 return COSTS_N_INSNS (3); \
1131 case LABEL_REF: \
1132 case SYMBOL_REF: \
1133 case CONST_DOUBLE: \
1134 return 0; \
1135
1136
1137 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1138 This can be used, for example, to indicate how costly a multiply
1139 instruction is. In writing this macro, you can use the construct
1140 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1141 instructions. OUTER_CODE is the code of the expression in which X
1142 is contained.
1143
1144 This macro is optional; do not define it if the default cost
1145 assumptions are adequate for the target machine. */
1146
1147 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1148 case ASHIFT: \
1149 case ASHIFTRT: \
1150 case LSHIFTRT: \
1151 case PLUS: \
1152 case AND: \
1153 case IOR: \
1154 case XOR: \
1155 case MINUS: \
1156 case NEG: \
1157 case NOT: \
1158 return 1; \
1159 case MULT: \
1160 if (GET_MODE (XEXP (X, 0)) == DImode) \
1161 return 40; \
1162 else \
1163 return 7; \
1164 case DIV: \
1165 case UDIV: \
1166 case MOD: \
1167 case UMOD: \
1168 return 33;
1169
1170
1171 /* An expression giving the cost of an addressing mode that contains
1172 ADDRESS. If not defined, the cost is computed from the ADDRESS
1173 expression and the `CONST_COSTS' values.
1174
1175 For most CISC machines, the default cost is a good approximation
1176 of the true cost of the addressing mode. However, on RISC
1177 machines, all instructions normally have the same length and
1178 execution time. Hence all addresses will have equal costs.
1179
1180 In cases where more than one form of an address is known, the form
1181 with the lowest cost will be used. If multiple forms have the
1182 same, lowest, cost, the one that is the most complex will be used.
1183
1184 For example, suppose an address that is equal to the sum of a
1185 register and a constant is used twice in the same basic block.
1186 When this macro is not defined, the address will be computed in a
1187 register and memory references will be indirect through that
1188 register. On machines where the cost of the addressing mode
1189 containing the sum is no higher than that of a simple indirect
1190 reference, this will produce an additional instruction and
1191 possibly require an additional register. Proper specification of
1192 this macro eliminates this overhead for such machines.
1193
1194 Similar use of this macro is made in strength reduction of loops.
1195
1196 ADDRESS need not be valid as an address. In such a case, the cost
1197 is not relevant and can be any value; invalid addresses need not be
1198 assigned a different cost.
1199
1200 On machines where an address involving more than one register is as
1201 cheap as an address computation involving only one register,
1202 defining `ADDRESS_COST' to reflect this can cause two registers to
1203 be live over a region of code where only one would have been if
1204 `ADDRESS_COST' were not defined in that manner. This effect should
1205 be considered in the definition of this macro. Equivalent costs
1206 should probably only be given to addresses with different numbers
1207 of registers on machines with lots of registers.
1208
1209 This macro will normally either not be defined or be defined as a
1210 constant.
1211
1212 On s390 symbols are expensive if compiled with fpic
1213 lifetimes. */
1214
1215 #define ADDRESS_COST(RTX) \
1216 ((flag_pic && GET_CODE (RTX) == SYMBOL_REF) ? 2 : 1)
1217
1218 /* On s390, copy between fprs and gprs is expensive. */
1219
1220 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1221 (((CLASS1 != CLASS2) && \
1222 (CLASS1 == FP_REGS || CLASS2 == FP_REGS)) ? 10 : 1)
1223
1224
1225 /* A C expression for the cost of moving data of mode M between a
1226 register and memory. A value of 2 is the default; this cost is
1227 relative to those in `REGISTER_MOVE_COST'.
1228
1229 If moving between registers and memory is more expensive than
1230 between two registers, you should define this macro to express the
1231 relative cost. */
1232
1233 #define MEMORY_MOVE_COST(M, C, I) 1
1234
1235 /* A C expression for the cost of a branch instruction. A value of 1
1236 is the default; other values are interpreted relative to that. */
1237
1238 #define BRANCH_COST 1
1239
1240 /* Add any extra modes needed to represent the condition code. */
1241 #define EXTRA_CC_MODES \
1242 CC (CCZmode, "CCZ") \
1243 CC (CCAmode, "CCA") \
1244 CC (CCLmode, "CCL") \
1245 CC (CCUmode, "CCU") \
1246 CC (CCSmode, "CCS") \
1247 CC (CCTmode, "CCT")
1248
1249 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1250 return the mode to be used for the comparison. */
1251
1252 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
1253
1254
1255 /* Define the information needed to generate branch and scc insns. This is
1256 stored from the compare operation. Note that we can't use "rtx" here
1257 since it hasn't been defined! */
1258
1259 extern struct rtx_def *s390_compare_op0, *s390_compare_op1;
1260
1261
1262 /* How to refer to registers in assembler output. This sequence is
1263 indexed by compiler's hard-register-number (see above). */
1264
1265 #define REGISTER_NAMES \
1266 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
1267 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
1268 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
1269 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
1270 "%ap", "%cc" \
1271 }
1272
1273 /* implicit call of memcpy, not bcopy */
1274
1275 #define TARGET_MEM_FUNCTIONS
1276
1277 /* Print operand X (an rtx) in assembler syntax to file FILE.
1278 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1279 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1280
1281 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1282
1283 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1284
1285
1286 /* Define the codes that are matched by predicates in aux-output.c. */
1287
1288 #define PREDICATE_CODES \
1289 {"s_operand", { MEM }}, \
1290 {"bras_sym_operand",{ SYMBOL_REF, CONST }}, \
1291 {"r_or_s_operand", { MEM, SUBREG, REG }}, \
1292 {"r_or_im8_operand", { CONST_INT, SUBREG, REG }}, \
1293 {"r_or_s_or_im8_operand", { MEM, SUBREG, REG, CONST_INT }}, \
1294 {"r_or_x_or_im16_operand", { MEM, SUBREG, REG, CONST_INT }}, \
1295 {"const0_operand", { CONST_INT, CONST_DOUBLE }}, \
1296 {"const1_operand", { CONST_INT, CONST_DOUBLE }}, \
1297 {"tmxx_operand", { CONST_INT, MEM }},
1298
1299
1300 /* Constant Pool for all symbols operands which are changed with
1301 force_const_mem during insn generation (expand_insn). */
1302
1303 extern struct rtx_def *s390_pool_start_insn;
1304 extern int s390_pool_count;
1305 extern int s390_nr_constants;
1306
1307 /* Function is splitted in chunk, if literal pool could overflow
1308 Value need to be lowered, if problems with displacement overflow. */
1309
1310 #define S390_REL_MAX 55000
1311 #define S390_CHUNK_MAX 0x2000
1312 #define S390_CHUNK_OV 0x8000
1313 #define S390_POOL_MAX 0xe00
1314
1315 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, fndecl, size) \
1316 { \
1317 register rtx insn; \
1318 struct pool_constant *pool; \
1319 \
1320 if (s390_pool_count == -1) \
1321 { \
1322 s390_nr_constants = 0; \
1323 for (pool = first_pool; pool; pool = pool->next) \
1324 if (pool->mark) s390_nr_constants++; \
1325 return; \
1326 } \
1327 if (first_pool == 0) { \
1328 s390_asm_output_pool_prologue (FILE, FUNNAME, fndecl, size); \
1329 return; \
1330 } \
1331 for (pool = first_pool; pool; pool = pool->next) \
1332 pool->mark = 0; \
1333 \
1334 insn = s390_pool_start_insn; \
1335 \
1336 if (insn==NULL_RTX) \
1337 insn = get_insns (); \
1338 else \
1339 insn = NEXT_INSN (insn); \
1340 for (; insn; insn = NEXT_INSN (insn)) { \
1341 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { \
1342 if (s390_stop_dump_lit_p (insn)) { \
1343 mark_constants (PATTERN (insn)); \
1344 break; \
1345 } else \
1346 mark_constants (PATTERN (insn)); \
1347 } \
1348 } \
1349 \
1350 /* Mark entries referenced by other entries */ \
1351 for (pool = first_pool; pool; pool = pool->next) \
1352 if (pool->mark) \
1353 mark_constants (pool->constant); \
1354 \
1355 s390_asm_output_pool_prologue (FILE, FUNNAME, fndecl, size); \
1356 }
1357
1358 /* We need to return, because otherwise the pool is deleted of the
1359 constant pool after the first output. */
1360
1361 #define ASM_OUTPUT_POOL_EPILOGUE(FILE, FUNNAME, fndecl, size) return;
1362
1363 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, EXP, MODE, ALIGN, LABELNO, WIN) \
1364 { \
1365 if ((s390_pool_count == 0) || (s390_pool_count > 0 && LABELNO >= 0)) \
1366 { \
1367 fprintf (FILE, ".LC%d:\n", LABELNO); \
1368 LABELNO = ~LABELNO; \
1369 } \
1370 if (s390_pool_count > 0) \
1371 { \
1372 fprintf (FILE, ".LC%d_%X:\n", ~LABELNO, s390_pool_count); \
1373 } \
1374 \
1375 /* Output the value of the constant itself. */ \
1376 switch (GET_MODE_CLASS (MODE)) \
1377 { \
1378 case MODE_FLOAT: \
1379 if (GET_CODE (EXP) != CONST_DOUBLE) \
1380 abort (); \
1381 \
1382 memcpy ((char *) &u, (char *) &CONST_DOUBLE_LOW (EXP), sizeof u); \
1383 assemble_real (u.d, MODE, ALIGN); \
1384 break; \
1385 \
1386 case MODE_INT: \
1387 case MODE_PARTIAL_INT: \
1388 if (flag_pic \
1389 && (GET_CODE (EXP) == CONST \
1390 || GET_CODE (EXP) == SYMBOL_REF \
1391 || GET_CODE (EXP) == LABEL_REF )) \
1392 { \
1393 fprintf (FILE, "%s\t",TARGET_64BIT ? ASM_QUAD : ASM_LONG); \
1394 s390_output_symbolic_const (FILE, EXP); \
1395 fputc ('\n', (FILE)); \
1396 } \
1397 else \
1398 assemble_integer (EXP, GET_MODE_SIZE (MODE), ALIGN, 1); \
1399 break; \
1400 \
1401 default: \
1402 abort (); \
1403 } \
1404 goto WIN; \
1405 }
1406
1407 #endif