toplev.c (target_options): Add value field.
[gcc.git] / gcc / config / s390 / s390.h
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
4 Ulrich Weigand (uweigand@de.ibm.com).
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef _S390_H
23 #define _S390_H
24
25 /* Override the __fixdfdi etc. routines when building libgcc2.
26 ??? This should be done in a cleaner way ... */
27 #if defined (IN_LIBGCC2) && !defined (__s390x__)
28 #include <s390/fixdfdi.h>
29 #endif
30
31 /* Which processor to generate code or schedule for. The cpu attribute
32 defines a list that mirrors this list, so changes to s390.md must be
33 made at the same time. */
34
35 enum processor_type
36 {
37 PROCESSOR_9672_G5,
38 PROCESSOR_9672_G6,
39 PROCESSOR_2064_Z900,
40 PROCESSOR_max
41 };
42
43 extern enum processor_type s390_cpu;
44 extern const char *s390_tune_string;
45
46 extern enum processor_type s390_arch;
47 extern const char *s390_arch_string;
48
49 #define TARGET_CPU_DEFAULT_9672 0
50 #define TARGET_CPU_DEFAULT_2064 2
51
52 #define TARGET_CPU_DEFAULT_NAMES {"g5", "g6", "z900"}
53
54 /* Run-time target specification. */
55
56 /* Target CPU builtins. */
57 #define TARGET_CPU_CPP_BUILTINS() \
58 do \
59 { \
60 builtin_assert ("cpu=s390"); \
61 builtin_assert ("machine=s390"); \
62 builtin_define ("__s390__"); \
63 if (TARGET_64BIT) \
64 builtin_define ("__s390x__"); \
65 } \
66 while (0)
67
68 /* Optional target features. */
69 extern int target_flags;
70
71 #define MASK_HARD_FLOAT 0x01
72 #define MASK_BACKCHAIN 0x02
73 #define MASK_SMALL_EXEC 0x04
74 #define MASK_DEBUG_ARG 0x08
75 #define MASK_64BIT 0x10
76 #define MASK_ZARCH 0x20
77 #define MASK_MVCLE 0x40
78
79 #define TARGET_HARD_FLOAT (target_flags & MASK_HARD_FLOAT)
80 #define TARGET_SOFT_FLOAT (!(target_flags & MASK_HARD_FLOAT))
81 #define TARGET_BACKCHAIN (target_flags & MASK_BACKCHAIN)
82 #define TARGET_SMALL_EXEC (target_flags & MASK_SMALL_EXEC)
83 #define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
84 #define TARGET_64BIT (target_flags & MASK_64BIT)
85 #define TARGET_ZARCH (target_flags & MASK_ZARCH)
86 #define TARGET_MVCLE (target_flags & MASK_MVCLE)
87
88 /* ??? Once this actually works, it could be made a runtime option. */
89 #define TARGET_IBM_FLOAT 0
90 #define TARGET_IEEE_FLOAT 1
91
92 #ifdef DEFAULT_TARGET_64BIT
93 #define TARGET_DEFAULT 0x33
94 #else
95 #define TARGET_DEFAULT 0x3
96 #endif
97
98 #define TARGET_SWITCHES \
99 { { "hard-float", 1, N_("Use hardware fp")}, \
100 { "soft-float", -1, N_("Don't use hardware fp")}, \
101 { "backchain", 2, N_("Set backchain")}, \
102 { "no-backchain", -2, N_("Don't set backchain (faster, but debug harder")}, \
103 { "small-exec", 4, N_("Use bras for execucable < 64k")}, \
104 { "no-small-exec",-4, N_("Don't use bras")}, \
105 { "debug", 8, N_("Additional debug prints")}, \
106 { "no-debug", -8, N_("Don't print additional debug prints")}, \
107 { "64", 16, N_("64 bit ABI")}, \
108 { "31", -16, N_("31 bit ABI")}, \
109 { "zarch", 32, N_("z/Architecture")}, \
110 { "esa", -32, N_("ESA/390 architecture")}, \
111 { "mvcle", 64, N_("mvcle use")}, \
112 { "no-mvcle", -64, N_("mvc&ex")}, \
113 { "", TARGET_DEFAULT, 0 } }
114
115 #define TARGET_OPTIONS \
116 { { "tune=", &s390_tune_string, \
117 N_("Schedule code for given CPU"), 0}, \
118 { "arch=", &s390_arch_string, \
119 N_("Generate code for given CPU"), 0}, \
120 }
121
122 /* Target version string. Overridden by the OS header. */
123 #ifdef DEFAULT_TARGET_64BIT
124 #define TARGET_VERSION fprintf (stderr, " (zSeries)");
125 #else
126 #define TARGET_VERSION fprintf (stderr, " (S/390)");
127 #endif
128
129 /* Hooks to override options. */
130 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
131 #define OVERRIDE_OPTIONS override_options ()
132
133 /* Frame pointer is not used for debugging. */
134 #define CAN_DEBUG_WITHOUT_FP
135
136
137 /* In libgcc2, determine target settings as compile-time constants. */
138 #ifdef IN_LIBGCC2
139 #undef TARGET_64BIT
140 #ifdef __s390x__
141 #define TARGET_64BIT 1
142 #else
143 #define TARGET_64BIT 0
144 #endif
145 #endif
146
147
148 /* Target machine storage layout. */
149
150 /* Everything is big-endian. */
151 #define BITS_BIG_ENDIAN 1
152 #define BYTES_BIG_ENDIAN 1
153 #define WORDS_BIG_ENDIAN 1
154
155 /* Width of a word, in units (bytes). */
156 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
157 #ifndef IN_LIBGCC2
158 #define MIN_UNITS_PER_WORD 4
159 #endif
160 #define MAX_BITS_PER_WORD 64
161
162 /* Function arguments and return values are promoted to word size. */
163 #define PROMOTE_FUNCTION_ARGS
164 #define PROMOTE_FUNCTION_RETURN
165 #define PROMOTE_FOR_CALL_ONLY
166
167 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
168 if (INTEGRAL_MODE_P (MODE) && \
169 GET_MODE_SIZE (MODE) < UNITS_PER_WORD) { \
170 (MODE) = Pmode; \
171 }
172
173 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
174 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
175
176 /* Boundary (in *bits*) on which stack pointer should be aligned. */
177 #define STACK_BOUNDARY 64
178
179 /* Allocation boundary (in *bits*) for the code of a function. */
180 #define FUNCTION_BOUNDARY 32
181
182 /* There is no point aligning anything to a rounder boundary than this. */
183 #define BIGGEST_ALIGNMENT 64
184
185 /* Alignment of field after `int : 0' in a structure. */
186 #define EMPTY_FIELD_BOUNDARY 32
187
188 /* Alignment on even addresses for LARL instruction. */
189 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
190 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
191
192 /* Alignment is not required by the hardware. */
193 #define STRICT_ALIGNMENT 0
194
195 /* Mode of stack savearea.
196 FUNCTION is VOIDmode because calling convention maintains SP.
197 BLOCK needs Pmode for SP.
198 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
199 #define STACK_SAVEAREA_MODE(LEVEL) \
200 (LEVEL == SAVE_FUNCTION ? VOIDmode \
201 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
202
203 /* Define target floating point format. */
204 #define TARGET_FLOAT_FORMAT \
205 (TARGET_IEEE_FLOAT? IEEE_FLOAT_FORMAT : IBM_FLOAT_FORMAT)
206
207
208 /* Type layout. */
209
210 /* Sizes in bits of the source language data types. */
211 #define SHORT_TYPE_SIZE 16
212 #define INT_TYPE_SIZE 32
213 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
214 #define MAX_LONG_TYPE_SIZE 64
215 #define LONG_LONG_TYPE_SIZE 64
216 #define FLOAT_TYPE_SIZE 32
217 #define DOUBLE_TYPE_SIZE 64
218 #define LONG_DOUBLE_TYPE_SIZE 64 /* ??? Should support extended format. */
219
220 /* We use "unsigned char" as default. */
221 #define DEFAULT_SIGNED_CHAR 0
222
223
224 /* Register usage. */
225
226 /* We have 16 general purpose registers (registers 0-15),
227 and 16 floating point registers (registers 16-31).
228 (On non-IEEE machines, we have only 4 fp registers.)
229
230 Amongst the general purpose registers, some are used
231 for specific purposes:
232 GPR 11: Hard frame pointer (if needed)
233 GPR 12: Global offset table pointer (if needed)
234 GPR 13: Literal pool base register
235 GPR 14: Return address register
236 GPR 15: Stack pointer
237
238 Registers 32-34 are 'fake' hard registers that do not
239 correspond to actual hardware:
240 Reg 32: Argument pointer
241 Reg 33: Condition code
242 Reg 34: Frame pointer */
243
244 #define FIRST_PSEUDO_REGISTER 35
245
246 /* Standard register usage. */
247 #define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
248 #define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
249 #define FP_REGNO_P(N) ((N) >= 16 && (N) < (TARGET_IEEE_FLOAT? 32 : 20))
250 #define CC_REGNO_P(N) ((N) == 33)
251 #define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34)
252
253 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
254 #define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
255 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
256 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
257 #define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
258
259 #define BASE_REGISTER 13
260 #define RETURN_REGNUM 14
261 #define CC_REGNUM 33
262
263 /* Set up fixed registers and calling convention:
264
265 GPRs 0-5 are always call-clobbered,
266 GPRs 6-15 are always call-saved.
267 GPR 12 is fixed if used as GOT pointer.
268 GPR 13 is always fixed (as literal pool pointer).
269 GPR 14 is always fixed (as return address).
270 GPR 15 is always fixed (as stack pointer).
271 The 'fake' hard registers are call-clobbered and fixed.
272
273 On 31-bit, FPRs 18-19 are call-clobbered;
274 on 64-bit, FPRs 24-31 are call-clobbered.
275 The remaining FPRs are call-saved. */
276
277 #define FIXED_REGISTERS \
278 { 0, 0, 0, 0, \
279 0, 0, 0, 0, \
280 0, 0, 0, 0, \
281 0, 1, 1, 1, \
282 0, 0, 0, 0, \
283 0, 0, 0, 0, \
284 0, 0, 0, 0, \
285 0, 0, 0, 0, \
286 1, 1, 1 }
287
288 #define CALL_USED_REGISTERS \
289 { 1, 1, 1, 1, \
290 1, 1, 0, 0, \
291 0, 0, 0, 0, \
292 0, 1, 1, 1, \
293 1, 1, 1, 1, \
294 1, 1, 1, 1, \
295 1, 1, 1, 1, \
296 1, 1, 1, 1, \
297 1, 1, 1 }
298
299 #define CALL_REALLY_USED_REGISTERS \
300 { 1, 1, 1, 1, \
301 1, 1, 0, 0, \
302 0, 0, 0, 0, \
303 0, 0, 0, 0, \
304 1, 1, 1, 1, \
305 1, 1, 1, 1, \
306 1, 1, 1, 1, \
307 1, 1, 1, 1, \
308 1, 1, 1 }
309
310 #define CONDITIONAL_REGISTER_USAGE \
311 do \
312 { \
313 int i; \
314 \
315 if (flag_pic) \
316 { \
317 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
318 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
319 } \
320 if (TARGET_64BIT) \
321 { \
322 for (i = 24; i < 32; i++) \
323 call_used_regs[i] = call_really_used_regs[i] = 0; \
324 } \
325 else \
326 { \
327 for (i = 18; i < 20; i++) \
328 call_used_regs[i] = call_really_used_regs[i] = 0; \
329 } \
330 } while (0)
331
332 /* Preferred register allocation order. */
333 #define REG_ALLOC_ORDER \
334 { 1, 2, 3, 4, 5, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, \
335 16, 17, 18, 19, 20, 21, 22, 23, \
336 24, 25, 26, 27, 28, 29, 30, 31, \
337 15, 32, 33, 34 }
338
339
340 /* Fitting values into registers. */
341
342 /* Integer modes <= word size fit into any GPR.
343 Integer modes > word size fit into successive GPRs, starting with
344 an even-numbered register.
345 SImode and DImode fit into FPRs as well.
346
347 Floating point modes <= word size fit into any FPR or GPR.
348 Floating point modes > word size (i.e. DFmode on 32-bit) fit
349 into any FPR, or an even-odd GPR pair.
350
351 Complex floating point modes fit either into two FPRs, or into
352 successive GPRs (again starting with an even number).
353
354 Condition code modes fit only into the CC register. */
355
356 #define HARD_REGNO_NREGS(REGNO, MODE) \
357 (FP_REGNO_P(REGNO)? \
358 (GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
359 GENERAL_REGNO_P(REGNO)? \
360 ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) : \
361 1)
362
363 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
364 (FP_REGNO_P(REGNO)? \
365 ((MODE) == SImode || (MODE) == DImode || \
366 GET_MODE_CLASS(MODE) == MODE_FLOAT || \
367 GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT) : \
368 GENERAL_REGNO_P(REGNO)? \
369 (HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1)) : \
370 CC_REGNO_P(REGNO)? \
371 GET_MODE_CLASS (MODE) == MODE_CC : \
372 FRAME_REGNO_P(REGNO)? \
373 (enum machine_mode) (MODE) == Pmode : \
374 0)
375
376 #define MODES_TIEABLE_P(MODE1, MODE2) \
377 (((MODE1) == SFmode || (MODE1) == DFmode) \
378 == ((MODE2) == SFmode || (MODE2) == DFmode))
379
380 /* Maximum number of registers to represent a value of mode MODE
381 in a register of class CLASS. */
382 #define CLASS_MAX_NREGS(CLASS, MODE) \
383 ((CLASS) == FP_REGS ? \
384 (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
385 (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
386
387 /* If a 4-byte value is loaded into a FPR, it is placed into the
388 *upper* half of the register, not the lower. Therefore, we
389 cannot use SUBREGs to switch between modes in FP registers. */
390 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
391 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
392 ? reg_classes_intersect_p (FP_REGS, CLASS) : 0)
393
394 /* Register classes. */
395
396 /* We use the following register classes:
397 GENERAL_REGS All general purpose registers
398 ADDR_REGS All general purpose registers except %r0
399 (These registers can be used in address generation)
400 FP_REGS All floating point registers
401
402 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
403 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
404
405 NO_REGS No registers
406 ALL_REGS All registers
407
408 Note that the 'fake' frame pointer and argument pointer registers
409 are included amongst the address registers here. The condition
410 code register is only included in ALL_REGS. */
411
412 enum reg_class
413 {
414 NO_REGS, ADDR_REGS, GENERAL_REGS,
415 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
416 ALL_REGS, LIM_REG_CLASSES
417 };
418 #define N_REG_CLASSES (int) LIM_REG_CLASSES
419
420 #define REG_CLASS_NAMES \
421 { "NO_REGS", "ADDR_REGS", "GENERAL_REGS", \
422 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
423
424 /* Class -> register mapping. */
425 #define REG_CLASS_CONTENTS \
426 { \
427 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
428 { 0x0000fffe, 0x00000005 }, /* ADDR_REGS */ \
429 { 0x0000ffff, 0x00000005 }, /* GENERAL_REGS */ \
430 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
431 { 0xfffffffe, 0x00000005 }, /* ADDR_FP_REGS */ \
432 { 0xffffffff, 0x00000005 }, /* GENERAL_FP_REGS */ \
433 { 0xffffffff, 0x00000007 }, /* ALL_REGS */ \
434 }
435
436 /* Register -> class mapping. */
437 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
438 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
439
440 /* ADDR_REGS can be used as base or index register. */
441 #define INDEX_REG_CLASS ADDR_REGS
442 #define BASE_REG_CLASS ADDR_REGS
443
444 /* Check whether REGNO is a hard register of the suitable class
445 or a pseudo register currently allocated to one such. */
446 #define REGNO_OK_FOR_INDEX_P(REGNO) \
447 (((REGNO) < FIRST_PSEUDO_REGISTER \
448 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
449 || (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
450 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
451
452
453 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
454 return the class of reg to actually use. */
455 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
456 s390_preferred_reload_class ((X), (CLASS))
457
458 /* We need a secondary reload when loading a PLUS which is
459 not a valid operand for LOAD ADDRESS. */
460 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
461 s390_secondary_input_reload_class ((CLASS), (MODE), (IN))
462
463 /* We need secondary memory to move data between GPRs and FPRs. */
464 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
465 ((CLASS1) != (CLASS2) && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS))
466
467 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
468 because the movsi and movsf patterns don't handle r/f moves. */
469 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
470 (GET_MODE_BITSIZE (MODE) < 32 \
471 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
472 : MODE)
473
474
475 /* Define various machine-dependent constraint letters. */
476
477 #define REG_CLASS_FROM_LETTER(C) \
478 ((C) == 'a' ? ADDR_REGS : \
479 (C) == 'd' ? GENERAL_REGS : \
480 (C) == 'f' ? FP_REGS : NO_REGS)
481
482 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
483 ((C) == 'I' ? (unsigned long) (VALUE) < 256 : \
484 (C) == 'J' ? (unsigned long) (VALUE) < 4096 : \
485 (C) == 'K' ? (VALUE) >= -32768 && (VALUE) < 32768 : \
486 (C) == 'L' ? (unsigned long) (VALUE) < 65536 : 0)
487
488 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
489
490 #define EXTRA_CONSTRAINT(OP, C) \
491 ((C) == 'Q' ? q_constraint (OP) : \
492 (C) == 'S' ? larl_operand (OP, GET_MODE (OP)) : 0)
493
494 #define EXTRA_MEMORY_CONSTRAINT(C,STR) ((C) == 'Q')
495
496
497 /* Stack layout and calling conventions. */
498
499 /* Our stack grows from higher to lower addresses. However, local variables
500 are accessed by positive offsets, and function arguments are stored at
501 increasing addresses. */
502 #define STACK_GROWS_DOWNWARD
503 /* #undef FRAME_GROWS_DOWNWARD */
504 /* #undef ARGS_GROW_DOWNWARD */
505
506 /* The basic stack layout looks like this: the stack pointer points
507 to the register save area for called functions. Above that area
508 is the location to place outgoing arguments. Above those follow
509 dynamic allocations (alloca), and finally the local variables. */
510
511 /* Offset from stack-pointer to first location of outgoing args. */
512 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
513
514 /* Offset within stack frame to start allocating local variables at. */
515 extern int current_function_outgoing_args_size;
516 #define STARTING_FRAME_OFFSET \
517 (STACK_POINTER_OFFSET + current_function_outgoing_args_size)
518
519 /* Offset from the stack pointer register to an item dynamically
520 allocated on the stack, e.g., by `alloca'. */
521 #define STACK_DYNAMIC_OFFSET(FUNDECL) (STARTING_FRAME_OFFSET)
522
523 /* Offset of first parameter from the argument pointer register value.
524 We have a fake argument pointer register that points directly to
525 the argument area. */
526 #define FIRST_PARM_OFFSET(FNDECL) 0
527
528 /* The return address of the current frame is retrieved
529 from the initial value of register RETURN_REGNUM.
530 For frames farther back, we use the stack slot where
531 the corresponding RETURN_REGNUM register was saved. */
532
533 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
534 ((FRAME) != hard_frame_pointer_rtx ? (FRAME) : \
535 plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
536
537 #define RETURN_ADDR_RTX(COUNT, FRAME) \
538 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
539
540 /* In 31-bit mode, we need to mask off the high bit of return addresses. */
541 #define MASK_RETURN_ADDR (TARGET_64BIT ? GEN_INT (-1) : GEN_INT (0x7fffffff))
542
543
544 /* Exception handling. */
545
546 /* Describe calling conventions for DWARF-2 exception handling. */
547 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
548 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
549 #define DWARF_FRAME_RETURN_COLUMN 14
550
551 /* Describe how we implement __builtin_eh_return. */
552 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
553 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
554 #define EH_RETURN_HANDLER_RTX \
555 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, \
556 TARGET_64BIT? -48 : -40))
557
558 /* Select a format to encode pointers in exception handling data. */
559 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
560 (flag_pic \
561 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
562 : DW_EH_PE_absptr)
563
564
565 /* Frame registers. */
566
567 #define STACK_POINTER_REGNUM 15
568 #define FRAME_POINTER_REGNUM 34
569 #define HARD_FRAME_POINTER_REGNUM 11
570 #define ARG_POINTER_REGNUM 32
571
572 /* The static chain must be call-clobbered, but not used for
573 function argument passing. As register 1 is clobbered by
574 the trampoline code, we only have one option. */
575 #define STATIC_CHAIN_REGNUM 0
576
577 /* Number of hardware registers that go into the DWARF-2 unwind info.
578 To avoid ABI incompatibility, this number must not change even as
579 'fake' hard registers are added or removed. */
580 #define DWARF_FRAME_REGISTERS 34
581
582
583 /* Frame pointer and argument pointer elimination. */
584
585 #define FRAME_POINTER_REQUIRED 0
586
587 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0
588
589 #define ELIMINABLE_REGS \
590 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
591 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
592 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
593 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
594
595 #define CAN_ELIMINATE(FROM, TO) (1)
596
597 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
598 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
599 { (OFFSET) = 0; } \
600 else if ((FROM) == FRAME_POINTER_REGNUM \
601 && (TO) == HARD_FRAME_POINTER_REGNUM) \
602 { (OFFSET) = 0; } \
603 else if ((FROM) == ARG_POINTER_REGNUM \
604 && (TO) == HARD_FRAME_POINTER_REGNUM) \
605 { (OFFSET) = s390_arg_frame_offset (); } \
606 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
607 { (OFFSET) = s390_arg_frame_offset (); } \
608 else \
609 abort(); \
610 }
611
612
613 /* Stack arguments. */
614
615 /* We need current_function_outgoing_args to be valid. */
616 #define ACCUMULATE_OUTGOING_ARGS 1
617
618 /* Return doesn't modify the stack. */
619 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
620
621
622 /* Register arguments. */
623
624 typedef struct s390_arg_structure
625 {
626 int gprs; /* gpr so far */
627 int fprs; /* fpr so far */
628 }
629 CUMULATIVE_ARGS;
630
631 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN) \
632 ((CUM).gprs=0, (CUM).fprs=0)
633
634 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
635 s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
636
637 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
638 s390_function_arg (&CUM, MODE, TYPE, NAMED)
639
640 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
641 s390_function_arg_pass_by_reference (MODE, TYPE)
642
643 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
644
645 /* Arguments can be placed in general registers 2 to 6,
646 or in floating point registers 0 and 2. */
647 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
648 (N) == 16 || (N) == 17)
649
650
651 /* Scalar return values. */
652
653 /* We return scalars in general purpose register 2 for integral values,
654 and floating point register 0 for fp values. */
655 #define FUNCTION_VALUE(VALTYPE, FUNC) \
656 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
657 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
658 || POINTER_TYPE_P (VALTYPE) \
659 ? word_mode : TYPE_MODE (VALTYPE), \
660 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 16 : 2)
661
662 /* Define how to find the value returned by a library function assuming
663 the value has mode MODE. */
664 #define RET_REG(MODE) ((GET_MODE_CLASS (MODE) == MODE_INT \
665 || TARGET_SOFT_FLOAT ) ? 2 : 16)
666 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, RET_REG (MODE))
667
668 /* Only gpr 2 and fpr 0 are ever used as return registers. */
669 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
670
671
672 /* Aggregate return values. */
673
674 /* The definition of this macro implies that there are cases where
675 a scalar value cannot be returned in registers. */
676 #define RETURN_IN_MEMORY(type) \
677 (TYPE_MODE (type) == BLKmode || \
678 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_INT || \
679 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT)
680
681 /* Structure value address is passed as invisible first argument (gpr 2). */
682 #define STRUCT_VALUE 0
683
684
685 /* Function entry and exit. */
686
687 /* When returning from a function, the stack pointer does not matter. */
688 #define EXIT_IGNORE_STACK 1
689
690
691 /* Profiling. */
692
693 #define FUNCTION_PROFILER(FILE, LABELNO) \
694 s390_function_profiler ((FILE), ((LABELNO)))
695
696 #define PROFILE_BEFORE_PROLOGUE 1
697
698
699 /* Implementing the varargs macros. */
700
701 #define BUILD_VA_LIST_TYPE(VALIST) \
702 (VALIST) = s390_build_va_list ()
703
704 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
705 s390_va_start (valist, nextarg)
706
707 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
708 s390_va_arg (valist, type)
709
710
711 /* Trampolines for nested functions. */
712
713 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 36 : 20)
714
715 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
716 s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
717
718 #define TRAMPOLINE_TEMPLATE(FILE) \
719 s390_trampoline_template (FILE)
720
721
722 /* Library calls. */
723
724 /* We should use memcpy, not bcopy. */
725 #define TARGET_MEM_FUNCTIONS
726
727
728 /* Addressing modes, and classification of registers for them. */
729
730 /* Recognize any constant value that is a valid address. */
731 #define CONSTANT_ADDRESS_P(X) 0
732
733 /* Maximum number of registers that can appear in a valid memory address. */
734 #define MAX_REGS_PER_ADDRESS 2
735
736 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
737 its validity for a certain class. We have two alternate definitions
738 for each of them. The usual definition accepts all pseudo regs; the
739 other rejects them all. The symbol REG_OK_STRICT causes the latter
740 definition to be used.
741
742 Most source files want to accept pseudo regs in the hope that they will
743 get allocated to the class that the insn wants them to be in.
744 Some source files that are used after register allocation
745 need to be strict. */
746
747 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
748 ((GET_MODE (X) == Pmode) && \
749 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) \
750 || REGNO_REG_CLASS (REGNO (X)) == ADDR_REGS))
751
752 #define REG_OK_FOR_BASE_NONSTRICT_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
753
754 #define REG_OK_FOR_INDEX_STRICT_P(X) \
755 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_INDEX_P (REGNO (X))))
756
757 #define REG_OK_FOR_BASE_STRICT_P(X) \
758 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_BASE_P (REGNO (X))))
759
760 #ifndef REG_OK_STRICT
761 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
762 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
763 #else
764 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
765 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
766 #endif
767
768 /* S/390 has no mode dependent addresses. */
769 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
770
771 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
772 valid memory address for an instruction.
773 The MODE argument is the machine mode for the MEM expression
774 that wants to use this address. */
775 #ifdef REG_OK_STRICT
776 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
777 { \
778 if (legitimate_address_p (MODE, X, 1)) \
779 goto ADDR; \
780 }
781 #else
782 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
783 { \
784 if (legitimate_address_p (MODE, X, 0)) \
785 goto ADDR; \
786 }
787 #endif
788
789 /* Try machine-dependent ways of modifying an illegitimate address
790 to be legitimate. If we find one, return the new, valid address.
791 This macro is used in only one place: `memory_address' in explow.c. */
792 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
793 { \
794 (X) = legitimize_address (X, OLDX, MODE); \
795 if (memory_address_p (MODE, X)) \
796 goto WIN; \
797 }
798
799 /* Nonzero if the constant value X is a legitimate general operand.
800 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
801 #define LEGITIMATE_CONSTANT_P(X) \
802 legitimate_constant_p (X)
803
804 /* Helper macro for s390.c and s390.md to check for symbolic constants. */
805 #define SYMBOLIC_CONST(X) \
806 (GET_CODE (X) == SYMBOL_REF \
807 || GET_CODE (X) == LABEL_REF \
808 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
809
810 #define TLS_SYMBOLIC_CONST(X) \
811 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
812 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
813
814
815 /* Condition codes. */
816
817 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
818 return the mode to be used for the comparison. */
819 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
820
821 /* Define the information needed to generate branch and scc insns. This is
822 stored from the compare operation. Note that we can't use "rtx" here
823 since it hasn't been defined! */
824 extern struct rtx_def *s390_compare_op0, *s390_compare_op1;
825
826
827 /* Relative costs of operations. */
828
829 /* On s390, copy between fprs and gprs is expensive. */
830 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
831 (( ( reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
832 && reg_classes_intersect_p ((CLASS2), FP_REGS)) \
833 || ( reg_classes_intersect_p ((CLASS1), FP_REGS) \
834 && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
835
836 /* A C expression for the cost of moving data of mode M between a
837 register and memory. A value of 2 is the default; this cost is
838 relative to those in `REGISTER_MOVE_COST'. */
839 #define MEMORY_MOVE_COST(M, C, I) 1
840
841 /* A C expression for the cost of a branch instruction. A value of 1
842 is the default; other values are interpreted relative to that. */
843 #define BRANCH_COST 1
844
845 /* Nonzero if access to memory by bytes is slow and undesirable. */
846 #define SLOW_BYTE_ACCESS 1
847
848 /* The maximum number of bytes that a single instruction can move quickly
849 between memory and registers or between two memory locations. */
850 #define MOVE_MAX (TARGET_64BIT ? 16 : 8)
851 #define MAX_MOVE_MAX 16
852
853 /* Determine whether to use move_by_pieces or block move insn. */
854 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
855 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
856 || (TARGET_64BIT && (SIZE) == 8) )
857
858 /* Determine whether to use clear_by_pieces or block clear insn. */
859 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
860 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
861 || (TARGET_64BIT && (SIZE) == 8) )
862
863 /* Don't perform CSE on function addresses. */
864 #define NO_FUNCTION_CSE
865
866
867 /* Sections. */
868
869 /* Output before read-only data. */
870 #define TEXT_SECTION_ASM_OP ".text"
871
872 /* Output before writable (initialized) data. */
873 #define DATA_SECTION_ASM_OP ".data"
874
875 /* Output before writable (uninitialized) data. */
876 #define BSS_SECTION_ASM_OP ".bss"
877
878 /* S/390 constant pool breaks the devices in crtstuff.c to control section
879 in where code resides. We have to write it as asm code. */
880 #ifndef __s390x__
881 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
882 asm (SECTION_OP "\n\
883 bras\t%r2,1f\n\
884 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
885 1: l\t%r3,0(%r2)\n\
886 bas\t%r14,0(%r3,%r2)\n\
887 .previous");
888 #endif
889
890
891 /* Position independent code. */
892
893 extern int flag_pic;
894
895 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
896
897 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
898
899
900 /* Assembler file format. */
901
902 /* Character to start a comment. */
903 #define ASM_COMMENT_START "#"
904
905 /* Declare an uninitialized external linkage data object. */
906 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
907 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
908
909 /* Globalizing directive for a label. */
910 #define GLOBAL_ASM_OP ".globl "
911
912 /* Advance the location counter to a multiple of 2**LOG bytes. */
913 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
914 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
915
916 /* Advance the location counter by SIZE bytes. */
917 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
918 fprintf ((FILE), "\t.set\t.,.+%u\n", (SIZE))
919
920 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
921 #define LOCAL_LABEL_PREFIX "."
922
923 /* How to refer to registers in assembler output. This sequence is
924 indexed by compiler's hard-register-number (see above). */
925 #define REGISTER_NAMES \
926 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
927 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
928 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
929 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
930 "%ap", "%cc", "%fp" \
931 }
932
933 /* Emit a dtp-relative reference to a TLS variable. */
934
935 #ifdef HAVE_AS_TLS
936 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
937 s390_output_dwarf_dtprel (FILE, SIZE, X)
938 #endif
939
940 /* Print operand X (an rtx) in assembler syntax to file FILE. */
941 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
942 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
943
944 /* Output an element of a case-vector that is absolute. */
945 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
946 do { \
947 char buf[32]; \
948 fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE)); \
949 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
950 assemble_name ((FILE), buf); \
951 fputc ('\n', (FILE)); \
952 } while (0)
953
954 /* Output an element of a case-vector that is relative. */
955 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
956 do { \
957 char buf[32]; \
958 fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE)); \
959 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
960 assemble_name ((FILE), buf); \
961 fputc ('-', (FILE)); \
962 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
963 assemble_name ((FILE), buf); \
964 fputc ('\n', (FILE)); \
965 } while (0)
966
967
968 /* Constant Pool for all symbols operands which are changed with
969 force_const_mem during insn generation (expand_insn). */
970
971 extern int s390_pool_count;
972 extern int s390_nr_constants;
973
974 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, fndecl, size) \
975 { \
976 struct pool_constant *pool; \
977 \
978 if (s390_pool_count == -1) \
979 { \
980 s390_nr_constants = 0; \
981 for (pool = first_pool; pool; pool = pool->next) \
982 if (pool->mark) s390_nr_constants++; \
983 return; \
984 } \
985 }
986
987 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, EXP, MODE, ALIGN, LABELNO, WIN) \
988 { \
989 fprintf (FILE, ".LC%d:\n", LABELNO); \
990 \
991 /* Output the value of the constant itself. */ \
992 switch (GET_MODE_CLASS (MODE)) \
993 { \
994 case MODE_FLOAT: \
995 if (GET_CODE (EXP) != CONST_DOUBLE) \
996 abort (); \
997 \
998 REAL_VALUE_FROM_CONST_DOUBLE (r, EXP); \
999 assemble_real (r, MODE, ALIGN); \
1000 break; \
1001 \
1002 case MODE_INT: \
1003 case MODE_PARTIAL_INT: \
1004 if (GET_CODE (EXP) == CONST \
1005 || GET_CODE (EXP) == SYMBOL_REF \
1006 || GET_CODE (EXP) == LABEL_REF) \
1007 { \
1008 fputs (integer_asm_op (UNITS_PER_WORD, TRUE), FILE); \
1009 s390_output_symbolic_const (FILE, EXP); \
1010 fputc ('\n', (FILE)); \
1011 } \
1012 else \
1013 { \
1014 assemble_integer (EXP, GET_MODE_SIZE (MODE), ALIGN, 1); \
1015 if (GET_MODE_SIZE (MODE) == 1) \
1016 ASM_OUTPUT_SKIP ((FILE), 1); \
1017 } \
1018 break; \
1019 \
1020 default: \
1021 abort (); \
1022 } \
1023 goto WIN; \
1024 }
1025
1026
1027 /* Miscellaneous parameters. */
1028
1029 /* Define the codes that are matched by predicates in aux-output.c. */
1030 #define PREDICATE_CODES \
1031 {"s_operand", { SUBREG, MEM }}, \
1032 {"s_imm_operand", { CONST_INT, CONST_DOUBLE, SUBREG, MEM }}, \
1033 {"bras_sym_operand",{ SYMBOL_REF, CONST }}, \
1034 {"larl_operand", { SYMBOL_REF, CONST, CONST_INT, CONST_DOUBLE }}, \
1035 {"load_multiple_operation", {PARALLEL}}, \
1036 {"store_multiple_operation", {PARALLEL}}, \
1037 {"const0_operand", { CONST_INT, CONST_DOUBLE }}, \
1038 {"consttable_operand", { SYMBOL_REF, LABEL_REF, CONST, \
1039 CONST_INT, CONST_DOUBLE }}, \
1040 {"s390_plus_operand", { PLUS }},
1041
1042 /* Specify the machine mode that this machine uses for the index in the
1043 tablejump instruction. */
1044 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
1045
1046 /* Load from integral MODE < SI from memory into register makes sign_extend
1047 or zero_extend
1048 In our case sign_extension happens for Halfwords, other no extension. */
1049 #define LOAD_EXTEND_OP(MODE) \
1050 (TARGET_64BIT ? ((MODE) == QImode ? ZERO_EXTEND : \
1051 (MODE) == HImode ? SIGN_EXTEND : NIL) \
1052 : ((MODE) == HImode ? SIGN_EXTEND : NIL))
1053
1054 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1055 is done just by pretending it is already truncated. */
1056 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1057
1058 /* Specify the machine mode that pointers have.
1059 After generation of rtl, the compiler makes no further distinction
1060 between pointers and any other objects of this machine mode. */
1061 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
1062
1063 /* A function address in a call instruction is a byte address (for
1064 indexing purposes) so give the MEM rtx a byte's mode. */
1065 #define FUNCTION_MODE QImode
1066
1067 /* This macro definition sets up a default value for `main' to return. */
1068 #define DEFAULT_MAIN_RETURN c_expand_return (integer_zero_node)
1069
1070 /* In rare cases, correct code generation requires extra machine dependent
1071 processing between the second jump optimization pass and delayed branch
1072 scheduling. On those machines, define this macro as a C statement to act on
1073 the code starting at INSN. */
1074 #define MACHINE_DEPENDENT_REORG(INSN) s390_machine_dependent_reorg (INSN)
1075
1076 #endif