reload.c (find_reloads): Handle constraint letters marked by EXTRA_ADDRESS_CONSTRAINT...
[gcc.git] / gcc / config / s390 / s390.h
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
4 Ulrich Weigand (uweigand@de.ibm.com).
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef _S390_H
23 #define _S390_H
24
25 extern int flag_pic;
26
27 /* Run-time compilation parameters selecting different hardware subsets. */
28
29 extern int target_flags;
30
31 /* Target macros checked at runtime of compiler. */
32
33 #define TARGET_HARD_FLOAT (target_flags & 1)
34 #define TARGET_SOFT_FLOAT (!(target_flags & 1))
35 #define TARGET_BACKCHAIN (target_flags & 2)
36 #define TARGET_SMALL_EXEC (target_flags & 4)
37 #define TARGET_DEBUG_ARG (target_flags & 8)
38 #define TARGET_64BIT (target_flags & 16)
39 #define TARGET_MVCLE (target_flags & 32)
40
41 #ifdef DEFAULT_TARGET_64BIT
42 #define TARGET_DEFAULT 0x13
43 #define TARGET_VERSION fprintf (stderr, " (zSeries)");
44 #else
45 #define TARGET_DEFAULT 0x3
46 #define TARGET_VERSION fprintf (stderr, " (S/390)");
47 #endif
48
49
50 /* Macro to define tables used to set the flags. This is a list in braces
51 of pairs in braces, each pair being { "NAME", VALUE }
52 where VALUE is the bits to set or minus the bits to clear.
53 An empty string NAME is used to identify the default VALUE. */
54
55 #define TARGET_SWITCHES \
56 { { "hard-float", 1, N_("Use hardware fp")}, \
57 { "soft-float", -1, N_("Don't use hardware fp")}, \
58 { "backchain", 2, N_("Set backchain")}, \
59 { "no-backchain", -2, N_("Don't set backchain (faster, but debug harder")}, \
60 { "small-exec", 4, N_("Use bras for execucable < 64k")}, \
61 { "no-small-exec",-4, N_("Don't use bras")}, \
62 { "debug", 8, N_("Additional debug prints")}, \
63 { "no-debug", -8, N_("Don't print additional debug prints")}, \
64 { "64", 16, N_("64 bit mode")}, \
65 { "31", -16, N_("31 bit mode")}, \
66 { "mvcle", 32, N_("mvcle use")}, \
67 { "no-mvcle", -32, N_("mvc&ex")}, \
68 { "", TARGET_DEFAULT, 0 } }
69
70 /* Define this to change the optimizations performed by default. */
71 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
72
73 /* Sometimes certain combinations of command options do not make sense
74 on a particular target machine. You can define a macro
75 `OVERRIDE_OPTIONS' to take account of this. This macro, if
76 defined, is executed once just after all the command options have
77 been parsed. */
78 #define OVERRIDE_OPTIONS override_options ()
79
80 /* Target CPU builtins. */
81 #define TARGET_CPU_CPP_BUILTINS() \
82 do \
83 { \
84 builtin_assert ("cpu=s390"); \
85 builtin_assert ("machine=s390"); \
86 builtin_define ("__s390__"); \
87 if (TARGET_64BIT) \
88 builtin_define ("__s390x__"); \
89 } \
90 while (0)
91
92 /* Defines for real.c. */
93 #define IEEE_FLOAT 1
94 #define TARGET_IBM_FLOAT 0
95 #define TARGET_IEEE_FLOAT 1
96
97 /* The current function count for create unique internal labels. */
98
99 extern int s390_function_count;
100
101 /* The amount of space used for outgoing arguments. */
102
103 extern int current_function_outgoing_args_size;
104
105 /* Target machine storage layout. */
106
107 /* Define this if most significant bit is lowest numbered in instructions
108 that operate on numbered bit-fields. */
109
110 #define BITS_BIG_ENDIAN 1
111
112 /* Define this if most significant byte of a word is the lowest numbered. */
113
114 #define BYTES_BIG_ENDIAN 1
115
116 /* Define this if MS word of a multiword is the lowest numbered. */
117
118 #define WORDS_BIG_ENDIAN 1
119
120 #define MAX_BITS_PER_WORD 64
121
122 /* Width of a word, in units (bytes). */
123
124 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
125 #define MIN_UNITS_PER_WORD 4
126
127 /* A C expression for the size in bits of the type `short' on the
128 target machine. If you don't define this, the default is half a
129 word. (If this would be less than one storage unit, it is
130 rounded up to one unit.) */
131 #define SHORT_TYPE_SIZE 16
132
133 /* A C expression for the size in bits of the type `int' on the
134 target machine. If you don't define this, the default is one
135 word. */
136 #define INT_TYPE_SIZE 32
137
138 /* A C expression for the size in bits of the type `long' on the
139 target machine. If you don't define this, the default is one
140 word. */
141 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
142 #define MAX_LONG_TYPE_SIZE 64
143
144 /* A C expression for the size in bits of the type `long long' on the
145 target machine. If you don't define this, the default is two
146 words. */
147 #define LONG_LONG_TYPE_SIZE 64
148
149 /* Right now we only support two floating point formats, the
150 32 and 64 bit ieee formats. */
151
152 #define FLOAT_TYPE_SIZE 32
153 #define DOUBLE_TYPE_SIZE 64
154 #define LONG_DOUBLE_TYPE_SIZE 64
155
156 /* Define this macro if it is advisable to hold scalars in registers
157 in a wider mode than that declared by the program. In such cases,
158 the value is constrained to be within the bounds of the declared
159 type, but kept valid in the wider mode. The signedness of the
160 extension may differ from that of the type. */
161
162 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
163 if (INTEGRAL_MODE_P (MODE) && \
164 GET_MODE_SIZE (MODE) < UNITS_PER_WORD) { \
165 (MODE) = Pmode; \
166 }
167
168 /* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
169 extensions applied to char/short functions arguments. Defining
170 PROMOTE_FUNCTION_RETURN does the same for function returns. */
171
172 #define PROMOTE_FUNCTION_ARGS
173 #define PROMOTE_FUNCTION_RETURN
174 #define PROMOTE_FOR_CALL_ONLY
175
176 /* Allocation boundary (in *bits*) for storing pointers in memory. */
177
178 #define POINTER_BOUNDARY 32
179
180 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
181
182 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
183
184 /* Boundary (in *bits*) on which stack pointer should be aligned. */
185
186 #define STACK_BOUNDARY 64
187
188 /* Allocation boundary (in *bits*) for the code of a function. */
189
190 #define FUNCTION_BOUNDARY 32
191
192 /* There is no point aligning anything to a rounder boundary than this. */
193
194 #define BIGGEST_ALIGNMENT 64
195
196 /* Alignment of field after `int : 0' in a structure. */
197
198 #define EMPTY_FIELD_BOUNDARY 32
199
200 /* Alignment on even addresses for LARL instruction. */
201
202 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
203
204 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
205
206 /* Define this if move instructions will actually fail to work when given
207 unaligned data. */
208
209 #define STRICT_ALIGNMENT 0
210
211 /* Define target floating point format. */
212
213 #undef TARGET_FLOAT_FORMAT
214 #ifdef IEEE_FLOAT
215 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
216 #else
217 #define TARGET_FLOAT_FORMAT IBM_FLOAT_FORMAT
218 #endif
219
220 /* Define if special allocation order desired. */
221
222 #define REG_ALLOC_ORDER \
223 { 1, 2, 3, 4, 5, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, \
224 16, 17, 18, 19, 20, 21, 22, 23, \
225 24, 25, 26, 27, 28, 29, 30, 31, \
226 15, 32, 33, 34 }
227
228 /* Standard register usage. */
229
230 #define INT_REGNO_P(N) ( (int)(N) >= 0 && (N) < 16 )
231 #ifdef IEEE_FLOAT
232 #define FLOAT_REGNO_P(N) ( (N) >= 16 && (N) < 32 )
233 #else
234 #define FLOAT_REGNO_P(N) ( (N) >= 16 && (N) < 20 )
235 #endif
236 #define CC_REGNO_P(N) ( (N) == 33 )
237
238 /* Number of actual hardware registers. The hardware registers are
239 assigned numbers for the compiler from 0 to just below
240 FIRST_PSEUDO_REGISTER.
241 All registers that the compiler knows about must be given numbers,
242 even those that are not normally considered general registers.
243 For the 390, we give the data registers numbers 0-15,
244 and the floating point registers numbers 16-19.
245 G5 and following have 16 IEEE floating point register,
246 which get numbers 16-31. */
247
248 #define FIRST_PSEUDO_REGISTER 35
249
250 /* Number of hardware registers that go into the DWARF-2 unwind info.
251 If not defined, equals FIRST_PSEUDO_REGISTER. */
252
253 #define DWARF_FRAME_REGISTERS 34
254
255 /* The following register have a fix usage
256 GPR 12: GOT register points to the GOT, setup in prologue,
257 GOT contains pointer to variables in shared libraries
258 GPR 13: Base register setup in prologue to point to the
259 literal table of each function
260 GPR 14: Return registers holds the return address
261 GPR 15: Stack pointer */
262
263 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
264 #define BASE_REGISTER 13
265 #define RETURN_REGNUM 14
266 #define STACK_POINTER_REGNUM 15
267
268 #define FIXED_REGISTERS \
269 { 0, 0, 0, 0, \
270 0, 0, 0, 0, \
271 0, 0, 0, 0, \
272 0, 1, 1, 1, \
273 0, 0, 0, 0, \
274 0, 0, 0, 0, \
275 0, 0, 0, 0, \
276 0, 0, 0, 0, \
277 1, 1, 1 }
278
279 /* 1 for registers not available across function calls. These must include
280 the FIXED_REGISTERS and also any registers that can be used without being
281 saved.
282 The latter must include the registers where values are returned
283 and the register where structure-value addresses are passed. */
284
285 #define CALL_USED_REGISTERS \
286 { 1, 1, 1, 1, \
287 1, 1, 0, 0, \
288 0, 0, 0, 0, \
289 0, 1, 1, 1, \
290 1, 1, 1, 1, \
291 1, 1, 1, 1, \
292 1, 1, 1, 1, \
293 1, 1, 1, 1, \
294 1, 1, 1 }
295
296 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
297 the entire set of `FIXED_REGISTERS' be included.
298 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS'). */
299
300 #define CALL_REALLY_USED_REGISTERS \
301 { 1, 1, 1, 1, \
302 1, 1, 0, 0, \
303 0, 0, 0, 0, \
304 0, 0, 0, 0, \
305 1, 1, 1, 1, \
306 1, 1, 1, 1, \
307 1, 1, 1, 1, \
308 1, 1, 1, 1, \
309 1, 1, 1 }
310
311 /* Macro to conditionally modify fixed_regs/call_used_regs. */
312
313 #define CONDITIONAL_REGISTER_USAGE \
314 do \
315 { \
316 int i; \
317 \
318 if (flag_pic) \
319 { \
320 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
321 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
322 } \
323 if (TARGET_64BIT) \
324 { \
325 for (i = 24; i < 32; i++) \
326 call_used_regs[i] = call_really_used_regs[i] = 0; \
327 } \
328 else \
329 { \
330 for (i = 18; i < 20; i++) \
331 call_used_regs[i] = call_really_used_regs[i] = 0; \
332 } \
333 } while (0)
334
335 /* The following register have a special usage
336 GPR 11: Frame pointer if needed to point to automatic variables.
337 GPR 32: In functions with more the 5 args this register
338 points to that arguments, it is always eliminated
339 with stack- or frame-pointer.
340 GPR 33: Condition code 'register' */
341
342 #define HARD_FRAME_POINTER_REGNUM 11
343 #define FRAME_POINTER_REGNUM 34
344
345 #define ARG_POINTER_REGNUM 32
346
347 #define CC_REGNUM 33
348
349 /* We use the register %r0 to pass the static chain to a nested function.
350
351 Note: It is assumed that this register is call-clobbered!
352 We can't use any of the function-argument registers either,
353 and register 1 is needed by the trampoline code, so we have
354 no other choice but using this one ... */
355
356 #define STATIC_CHAIN_REGNUM 0
357
358 /* Return number of consecutive hard regs needed starting at reg REGNO
359 to hold something of mode MODE.
360 This is ordinarily the length in words of a value of mode MODE
361 but can be less for certain modes in special long registers. */
362
363 #define HARD_REGNO_NREGS(REGNO, MODE) \
364 (FLOAT_REGNO_P(REGNO)? \
365 (GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
366 INT_REGNO_P(REGNO)? \
367 ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) : \
368 1)
369
370 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
371 The gprs can hold QI, HI, SI, SF, DF, SC and DC.
372 Even gprs can hold DI.
373 The floating point registers can hold DF, SF, DC and SC. */
374
375 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
376 (FLOAT_REGNO_P(REGNO)? \
377 (GET_MODE_CLASS(MODE) == MODE_FLOAT || \
378 GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT || \
379 (MODE) == SImode || (MODE) == DImode) : \
380 INT_REGNO_P(REGNO)? \
381 (HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1)) : \
382 CC_REGNO_P(REGNO)? \
383 GET_MODE_CLASS (MODE) == MODE_CC : \
384 0)
385
386 /* Value is 1 if it is a good idea to tie two pseudo registers when one has
387 mode MODE1 and one has mode MODE2.
388 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
389 for any hard reg, then this must be 0 for correct output. */
390
391 #define MODES_TIEABLE_P(MODE1, MODE2) \
392 (((MODE1) == SFmode || (MODE1) == DFmode) \
393 == ((MODE2) == SFmode || (MODE2) == DFmode))
394
395 /* If defined, gives a class of registers that cannot be used as the
396 operand of a SUBREG that changes the mode of the object illegally. */
397
398 #define CLASS_CANNOT_CHANGE_MODE FP_REGS
399
400 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
401
402 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
403 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
404
405 /* This is an array of structures. Each structure initializes one pair
406 of eliminable registers. The "from" register number is given first,
407 followed by "to". Eliminations of the same "from" register are listed
408 in order of preference. */
409
410 #define ELIMINABLE_REGS \
411 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
412 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
413 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
414 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
415
416 #define CAN_ELIMINATE(FROM, TO) (1)
417
418 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
419 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
420 { (OFFSET) = 0; } \
421 else if ((FROM) == FRAME_POINTER_REGNUM \
422 && (TO) == HARD_FRAME_POINTER_REGNUM) \
423 { (OFFSET) = 0; } \
424 else if ((FROM) == ARG_POINTER_REGNUM \
425 && (TO) == HARD_FRAME_POINTER_REGNUM) \
426 { (OFFSET) = s390_arg_frame_offset (); } \
427 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
428 { (OFFSET) = s390_arg_frame_offset (); } \
429 else \
430 abort(); \
431 }
432
433 #define CAN_DEBUG_WITHOUT_FP
434
435 /* Value should be nonzero if functions must have frame pointers.
436 Zero means the frame pointer need not be set up (and parms may be
437 accessed via the stack pointer) in functions that seem suitable.
438 This is computed in `reload', in reload1.c. */
439
440 #define FRAME_POINTER_REQUIRED 0
441
442 /* Define the classes of registers for register constraints in the
443 machine description. Also define ranges of constants.
444
445 One of the classes must always be named ALL_REGS and include all hard regs.
446 If there is more than one class, another class must be named NO_REGS
447 and contain no registers.
448
449 The name GENERAL_REGS must be the name of a class (or an alias for
450 another name such as ALL_REGS). This is the class of registers
451 that is allowed by "g" or "r" in a register constraint.
452 Also, registers outside this class are allocated only when
453 instructions express preferences for them.
454
455 The classes must be numbered in nondecreasing order; that is,
456 a larger-numbered class must never be contained completely
457 in a smaller-numbered class.
458
459 For any two classes, it is very desirable that there be another
460 class that represents their union. */
461
462 /*#define SMALL_REGISTER_CLASSES 1*/
463
464 enum reg_class
465 {
466 NO_REGS, ADDR_REGS, GENERAL_REGS,
467 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
468 ALL_REGS, LIM_REG_CLASSES
469 };
470
471 #define N_REG_CLASSES (int) LIM_REG_CLASSES
472
473 /* Give names of register classes as strings for dump file. */
474
475 #define REG_CLASS_NAMES \
476 { "NO_REGS", "ADDR_REGS", "GENERAL_REGS", \
477 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
478
479 /* Define which registers fit in which classes. This is an initializer for
480 a vector of HARD_REG_SET of length N_REG_CLASSES.
481 G5 and latter have 16 register and support IEEE floating point operations. */
482
483 #define REG_CLASS_CONTENTS \
484 { \
485 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
486 { 0x0000fffe, 0x00000005 }, /* ADDR_REGS */ \
487 { 0x0000ffff, 0x00000005 }, /* GENERAL_REGS */ \
488 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
489 { 0xfffffffe, 0x00000005 }, /* ADDR_FP_REGS */ \
490 { 0xffffffff, 0x00000005 }, /* GENERAL_FP_REGS */ \
491 { 0xffffffff, 0x00000007 }, /* ALL_REGS */ \
492 }
493
494
495 /* The same information, inverted:
496 Return the class number of the smallest class containing
497 reg number REGNO. This could be a conditional expression
498 or could index an array. */
499
500 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
501
502 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */
503
504 /* The class value for index registers, and the one for base regs. */
505
506 #define INDEX_REG_CLASS ADDR_REGS
507 #define BASE_REG_CLASS ADDR_REGS
508
509 /* Get reg_class from a letter such as appears in the machine description. */
510
511 #define REG_CLASS_FROM_LETTER(C) \
512 ((C) == 'a' ? ADDR_REGS : \
513 (C) == 'd' ? GENERAL_REGS : \
514 (C) == 'f' ? FP_REGS : NO_REGS)
515
516 /* The letters I, J, K, L and M in a register constraint string can be used
517 to stand for particular ranges of immediate operands.
518 This macro defines what the ranges are.
519 C is the letter, and VALUE is a constant value.
520 Return 1 if VALUE is in the range specified by C. */
521
522 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
523 ((C) == 'I' ? (unsigned long) (VALUE) < 256 : \
524 (C) == 'J' ? (unsigned long) (VALUE) < 4096 : \
525 (C) == 'K' ? (VALUE) >= -32768 && (VALUE) < 32768 : \
526 (C) == 'L' ? (unsigned long) (VALUE) < 65536 : 0)
527
528 /* Similar, but for floating constants, and defining letters G and H.
529 Here VALUE is the CONST_DOUBLE rtx itself. */
530
531 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
532
533 /* 'Q' means a memory-reference for a S-type operand. */
534
535 #define EXTRA_CONSTRAINT(OP, C) \
536 ((C) == 'Q' ? q_constraint (OP) : \
537 (C) == 'S' ? larl_operand (OP, GET_MODE (OP)) : 0)
538
539 #define EXTRA_MEMORY_CONSTRAINT(C) ((C) == 'Q')
540
541 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
542 return the class of reg to actually use. In general this is just CLASS;
543 but on some machines in some cases it is preferable to use a more
544 restrictive class. */
545
546 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
547 s390_preferred_reload_class ((X), (CLASS))
548
549 /* Return the maximum number of consecutive registers needed to represent
550 mode MODE in a register of class CLASS. */
551
552 #define CLASS_MAX_NREGS(CLASS, MODE) \
553 ((CLASS) == FP_REGS ? \
554 (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
555 (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
556
557 /* We need a secondary reload when loading a PLUS which is
558 not a valid operand for LOAD ADDRESS. */
559
560 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
561 s390_secondary_input_reload_class ((CLASS), (MODE), (IN))
562
563 /* If we are copying between FP registers and anything else, we need a memory
564 location. */
565
566 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
567 ((CLASS1) != (CLASS2) && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS))
568
569 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
570 because the movsi and movsf patterns don't handle r/f moves. */
571
572 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
573 (GET_MODE_BITSIZE (MODE) < 32 \
574 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
575 : MODE)
576
577
578 /* A C expression whose value is nonzero if pseudos that have been
579 assigned to registers of class CLASS would likely be spilled
580 because registers of CLASS are needed for spill registers.
581
582 The default value of this macro returns 1 if CLASS has exactly one
583 register and zero otherwise. On most machines, this default
584 should be used. Only define this macro to some other expression
585 if pseudo allocated by `local-alloc.c' end up in memory because
586 their hard registers were needed for spill registers. If this
587 macro returns nonzero for those classes, those pseudos will only
588 be allocated by `global.c', which knows how to reallocate the
589 pseudo to another register. If there would not be another
590 register available for reallocation, you should not change the
591 definition of this macro since the only effect of such a
592 definition would be to slow down register allocation. */
593
594 /* Stack layout; function entry, exit and calling. */
595
596 /* The return address of the current frame is retrieved
597 from the initial value of register RETURN_REGNUM.
598 For frames farther back, we use the stack slot where
599 the corresponding RETURN_REGNUM register was saved. */
600
601 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
602 ((FRAME) != hard_frame_pointer_rtx ? (FRAME) : \
603 plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
604
605 #define RETURN_ADDR_RTX(COUNT, FRAME) \
606 ((COUNT) == 0 ? get_hard_reg_initial_val (Pmode, RETURN_REGNUM) : \
607 gen_rtx_MEM (Pmode, \
608 memory_address (Pmode, \
609 plus_constant (DYNAMIC_CHAIN_ADDRESS ((FRAME)), \
610 RETURN_REGNUM * UNITS_PER_WORD))))
611
612 /* The following macros will turn on dwarf2 exception hndling
613 Other code location for this exception handling are
614 in s390.md (eh_return insn) and in linux.c in the prologue. */
615
616 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
617
618 /* We have 31 bit mode. */
619
620 #define MASK_RETURN_ADDR (TARGET_64BIT ? GEN_INT (-1) : GEN_INT (0x7fffffff))
621
622 /* The offset from the incoming value of %sp to the top of the stack frame
623 for the current function. */
624
625 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
626
627 /* Location, from where return address to load. */
628
629 #define DWARF_FRAME_RETURN_COLUMN 14
630
631 /* Describe how we implement __builtin_eh_return. */
632 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
633 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
634 #define EH_RETURN_HANDLER_RTX \
635 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, \
636 TARGET_64BIT? -48 : -40))
637
638 /* Define this if pushing a word on the stack makes the stack pointer a
639 smaller address. */
640
641 #define STACK_GROWS_DOWNWARD
642
643 /* Define this if the nominal address of the stack frame is at the
644 high-address end of the local variables; that is, each additional local
645 variable allocated goes at a more negative offset in the frame. */
646
647 /* #define FRAME_GROWS_DOWNWARD */
648
649 /* Offset from stack-pointer to first location of outgoing args. */
650
651 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
652
653 /* Offset within stack frame to start allocating local variables at.
654 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
655 first local allocated. Otherwise, it is the offset to the BEGINNING
656 of the first local allocated. */
657
658 #define STARTING_FRAME_OFFSET \
659 (STACK_POINTER_OFFSET + current_function_outgoing_args_size)
660
661 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0
662
663 /* If we generate an insn to push BYTES bytes, this says how many the stack
664 pointer really advances by. On S/390, we have no push instruction. */
665
666 /* #define PUSH_ROUNDING(BYTES) */
667
668 /* Accumulate the outgoing argument count so we can request the right
669 DSA size and determine stack offset. */
670
671 #define ACCUMULATE_OUTGOING_ARGS 1
672
673 /* Offset from the stack pointer register to an item dynamically
674 allocated on the stack, e.g., by `alloca'.
675
676 The default value for this macro is `STACK_POINTER_OFFSET' plus the
677 length of the outgoing arguments. The default is correct for most
678 machines. See `function.c' for details. */
679 #define STACK_DYNAMIC_OFFSET(FUNDECL) (STARTING_FRAME_OFFSET)
680
681 /* Offset of first parameter from the argument pointer register value.
682 On the S/390, we define the argument pointer to the start of the fixed
683 area. */
684 #define FIRST_PARM_OFFSET(FNDECL) 0
685
686 /* Define this if stack space is still allocated for a parameter passed
687 in a register. The value is the number of bytes allocated to this
688 area. */
689 /* #define REG_PARM_STACK_SPACE(FNDECL) 32 */
690
691 /* Define this if the above stack space is to be considered part of the
692 space allocated by the caller. */
693 /* #define OUTGOING_REG_PARM_STACK_SPACE */
694
695 /* 1 if N is a possible register number for function argument passing.
696 On S390, general registers 2 - 6 and floating point register 0 and 2
697 are used in this way. */
698
699 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
700 (N) == 16 || (N) == 17)
701
702 /* Define a data type for recording info about an argument list during
703 the scan of that argument list. This data type should hold all
704 necessary information about the function itself and about the args
705 processed so far, enough to enable macros such as FUNCTION_ARG to
706 determine where the next arg should go. */
707
708 typedef struct s390_arg_structure
709 {
710 int gprs; /* gpr so far */
711 int fprs; /* fpr so far */
712 }
713 CUMULATIVE_ARGS;
714
715
716 /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to
717 a function whose data type is FNTYPE.
718 For a library call, FNTYPE is 0. */
719
720 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN) \
721 ((CUM).gprs=0, (CUM).fprs=0)
722
723 /* Update the data in CUM to advance over an argument of mode MODE and
724 data type TYPE. (TYPE is null for libcalls where that information
725 may not be available.) */
726
727 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
728 s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
729
730 /* Define where to put the arguments to a function. Value is zero to push
731 the argument on the stack, or a hard register in which to store the
732 argument. */
733
734 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
735 s390_function_arg (&CUM, MODE, TYPE, NAMED)
736
737 /* Define where to expect the arguments of a function. Value is zero, if
738 the argument is on the stack, or a hard register in which the argument
739 is stored. It is the same like FUNCTION_ARG, except for unnamed args
740 That means, that all in case of varargs used, the arguments are expected
741 from the stack.
742 S/390 has already space on the stack for args coming in registers,
743 they are pushed in prologue, if needed. */
744
745
746 /* Define the `__builtin_va_list' type. */
747
748 #define BUILD_VA_LIST_TYPE(VALIST) \
749 (VALIST) = s390_build_va_list ()
750
751 /* Implement `va_start' for varargs and stdarg. */
752
753 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
754 s390_va_start (valist, nextarg)
755
756 /* Implement `va_arg'. */
757
758 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
759 s390_va_arg (valist, type)
760
761 /* For an arg passed partly in registers and partly in memory, this is the
762 number of registers used. For args passed entirely in registers or
763 entirely in memory, zero. */
764
765 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
766
767
768 /* Define if returning from a function call automatically pops the
769 arguments described by the number-of-args field in the call. */
770
771 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
772
773
774 /* Define how to find the value returned by a function. VALTYPE is the
775 data type of the value (as a tree).
776 If the precise function being called is known, FUNC is its FUNCTION_DECL;
777 otherwise, FUNC is 15. */
778
779 #define RET_REG(MODE) ((GET_MODE_CLASS (MODE) == MODE_INT \
780 || TARGET_SOFT_FLOAT ) ? 2 : 16)
781
782
783 /* for structs the address is passed, and the Callee makes a
784 copy, only if needed */
785
786 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
787 s390_function_arg_pass_by_reference (MODE, TYPE)
788
789
790 /* Register 2 (and 3) for integral values
791 or floating point register 0 (and 2) for fp values are used. */
792
793 #define FUNCTION_VALUE(VALTYPE, FUNC) \
794 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
795 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
796 || POINTER_TYPE_P (VALTYPE) \
797 ? word_mode : TYPE_MODE (VALTYPE), \
798 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 16 : 2)
799
800 /* Define how to find the value returned by a library function assuming
801 the value has mode MODE. */
802
803 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, RET_REG (MODE))
804
805 /* 1 if N is a possible register number for a function value. */
806
807 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
808
809 /* The definition of this macro implies that there are cases where
810 a scalar value cannot be returned in registers. */
811
812 #define RETURN_IN_MEMORY(type) \
813 (TYPE_MODE (type) == BLKmode || \
814 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_INT || \
815 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT)
816
817 /* Mode of stack savearea.
818 FUNCTION is VOIDmode because calling convention maintains SP.
819 BLOCK needs Pmode for SP.
820 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
821
822 #define STACK_SAVEAREA_MODE(LEVEL) \
823 (LEVEL == SAVE_FUNCTION ? VOIDmode \
824 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
825
826 /* Structure value address is passed as invisible first argument (gpr 2). */
827
828 #define STRUCT_VALUE 0
829
830 /* This macro definition sets up a default value for `main' to return. */
831
832 #define DEFAULT_MAIN_RETURN c_expand_return (integer_zero_node)
833
834 /* Length in units of the trampoline for entering a nested function. */
835
836 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 36 : 20)
837
838 /* Initialize the dynamic part of trampoline. */
839
840 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
841 s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
842
843 /* Template for constant part of trampoline. */
844
845 #define TRAMPOLINE_TEMPLATE(FILE) \
846 s390_trampoline_template (FILE)
847
848 /* Output assembler code to FILE to increment profiler label # LABELNO
849 for profiling a function entry. */
850
851 #define FUNCTION_PROFILER(FILE, LABELNO) \
852 s390_function_profiler ((FILE), ((LABELNO)))
853
854 #define PROFILE_BEFORE_PROLOGUE 1
855
856 /* Define EXIT_IGNORE_STACK if, when returning from a function, the stack
857 pointer does not matter (provided there is a frame pointer). */
858
859 #define EXIT_IGNORE_STACK 1
860
861 /* Addressing modes, and classification of registers for them. */
862
863 /* #define HAVE_POST_INCREMENT */
864 /* #define HAVE_POST_DECREMENT */
865
866 /* #define HAVE_PRE_DECREMENT */
867 /* #define HAVE_PRE_INCREMENT */
868
869 /* These assume that REGNO is a hard or pseudo reg number. They give
870 nonzero only if REGNO is a hard reg of the suitable class or a pseudo
871 reg currently allocated to a suitable hard reg.
872 These definitions are NOT overridden anywhere. */
873
874 #define REGNO_OK_FOR_INDEX_P(REGNO) \
875 (((REGNO) < FIRST_PSEUDO_REGISTER \
876 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
877 || (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
878
879 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
880
881 #define REGNO_OK_FOR_DATA_P(REGNO) \
882 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
883
884 #define REGNO_OK_FOR_FP_P(REGNO) \
885 FLOAT_REGNO_P (REGNO)
886
887 /* Now macros that check whether X is a register and also,
888 strictly, whether it is in a specified class. */
889
890 /* 1 if X is a data register. */
891
892 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
893
894 /* 1 if X is an fp register. */
895
896 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
897
898 /* 1 if X is an address register. */
899
900 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
901
902 /* Maximum number of registers that can appear in a valid memory address. */
903
904 #define MAX_REGS_PER_ADDRESS 2
905
906 /* Recognize any constant value that is a valid address. */
907
908 #define CONSTANT_ADDRESS_P(X) 0
909
910 #define SYMBOLIC_CONST(X) \
911 (GET_CODE (X) == SYMBOL_REF \
912 || GET_CODE (X) == LABEL_REF \
913 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
914
915 /* General operand is everything except SYMBOL_REF, CONST and CONST_DOUBLE
916 they have to be forced to constant pool
917 CONST_INT have to be forced into constant pool, if greater than
918 64k. Depending on the insn they have to be force into constant pool
919 for smaller value; in this case we have to work with nonimmediate operand. */
920
921 #define LEGITIMATE_PIC_OPERAND_P(X) \
922 legitimate_pic_operand_p (X)
923
924 /* Nonzero if the constant value X is a legitimate general operand.
925 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
926
927 #define LEGITIMATE_CONSTANT_P(X) \
928 legitimate_constant_p (X)
929
930 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
931 its validity for a certain class. We have two alternate definitions
932 for each of them. The usual definition accepts all pseudo regs; the
933 other rejects them all. The symbol REG_OK_STRICT causes the latter
934 definition to be used.
935
936 Most source files want to accept pseudo regs in the hope that they will
937 get allocated to the class that the insn wants them to be in.
938 Some source files that are used after register allocation
939 need to be strict. */
940
941 /*
942 * Nonzero if X is a hard reg that can be used as an index or if it is
943 * a pseudo reg.
944 */
945
946 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
947 ((GET_MODE (X) == Pmode) && \
948 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) \
949 || REGNO_REG_CLASS (REGNO (X)) == ADDR_REGS))
950
951 /* Nonzero if X is a hard reg that can be used as a base reg or if it is
952 a pseudo reg. */
953
954 #define REG_OK_FOR_BASE_NONSTRICT_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
955
956 /* Nonzero if X is a hard reg that can be used as an index. */
957
958 #define REG_OK_FOR_INDEX_STRICT_P(X) \
959 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_INDEX_P (REGNO (X))))
960
961 /* Nonzero if X is a hard reg that can be used as a base reg. */
962
963 #define REG_OK_FOR_BASE_STRICT_P(X) \
964 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_BASE_P (REGNO (X))))
965
966
967 #ifndef REG_OK_STRICT
968 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
969 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
970 #else
971 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
972 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
973 #endif
974
975
976 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
977 valid memory address for an instruction.
978 The MODE argument is the machine mode for the MEM expression
979 that wants to use this address.
980
981 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
982 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
983
984 #ifdef REG_OK_STRICT
985 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
986 { \
987 if (legitimate_address_p (MODE, X, 1)) \
988 goto ADDR; \
989 }
990 #else
991 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
992 { \
993 if (legitimate_address_p (MODE, X, 0)) \
994 goto ADDR; \
995 }
996 #endif
997
998
999 /* S/390 has no mode dependent addresses. */
1000
1001 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
1002
1003 /* Try machine-dependent ways of modifying an illegitimate address
1004 to be legitimate. If we find one, return the new, valid address.
1005 This macro is used in only one place: `memory_address' in explow.c. */
1006
1007 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1008 { \
1009 (X) = legitimize_address (X, OLDX, MODE); \
1010 if (memory_address_p (MODE, X)) \
1011 goto WIN; \
1012 }
1013
1014 /* Specify the machine mode that this machine uses for the index in the
1015 tablejump instruction. */
1016
1017 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
1018
1019 /* Define this if the tablejump instruction expects the table to contain
1020 offsets from the address of the table.
1021 Do not define this if the table should contain absolute addresses. */
1022
1023 /* #define CASE_VECTOR_PC_RELATIVE */
1024
1025 /* Load from integral MODE < SI from memory into register makes sign_extend
1026 or zero_extend
1027 In our case sign_extension happens for Halfwords, other no extension. */
1028
1029 #define LOAD_EXTEND_OP(MODE) \
1030 (TARGET_64BIT ? ((MODE) == QImode ? ZERO_EXTEND : \
1031 (MODE) == HImode ? SIGN_EXTEND : NIL) \
1032 : ((MODE) == HImode ? SIGN_EXTEND : NIL))
1033
1034 /* Define this if fixuns_trunc is the same as fix_trunc. */
1035
1036 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1037
1038 /* We use "unsigned char" as default. */
1039
1040 #define DEFAULT_SIGNED_CHAR 0
1041
1042 /* Max number of bytes we can move from memory to memory in one reasonably
1043 fast instruction. */
1044
1045 #define MOVE_MAX 256
1046
1047 /* Nonzero if access to memory by bytes is slow and undesirable. */
1048
1049 #define SLOW_BYTE_ACCESS 1
1050
1051 /* Define if shifts truncate the shift count which implies one can omit
1052 a sign-extension or zero-extension of a shift count. */
1053
1054 /* #define SHIFT_COUNT_TRUNCATED */
1055
1056 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1057 is done just by pretending it is already truncated. */
1058
1059 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1060
1061 /* We assume that the store-condition-codes instructions store 0 for false
1062 and some other value for true. This is the value stored for true. */
1063
1064 /* #define STORE_FLAG_VALUE -1 */
1065
1066 /* Don't perform CSE on function addresses. */
1067
1068 #define NO_FUNCTION_CSE
1069
1070 /* Specify the machine mode that pointers have.
1071 After generation of rtl, the compiler makes no further distinction
1072 between pointers and any other objects of this machine mode. */
1073
1074 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
1075
1076 /* A function address in a call instruction is a byte address (for
1077 indexing purposes) so give the MEM rtx a byte's mode. */
1078
1079 #define FUNCTION_MODE QImode
1080
1081
1082 /* A part of a C `switch' statement that describes the relative costs
1083 of constant RTL expressions. It must contain `case' labels for
1084 expression codes `const_int', `const', `symbol_ref', `label_ref'
1085 and `const_double'. Each case must ultimately reach a `return'
1086 statement to return the relative cost of the use of that kind of
1087 constant value in an expression. The cost may depend on the
1088 precise value of the constant, which is available for examination
1089 in X, and the rtx code of the expression in which it is contained,
1090 found in OUTER_CODE.
1091
1092 CODE is the expression code--redundant, since it can be obtained
1093 with `GET_CODE (X)'. */
1094 /* Force_const_mem does not work out of reload, because the saveable_obstack
1095 is set to reload_obstack, which does not live long enough.
1096 Because of this we cannot use force_const_mem in addsi3.
1097 This leads to problems with gen_add2_insn with a constant greater
1098 than a short. Because of that we give an addition of greater
1099 constants a cost of 3 (reload1.c 10096). */
1100
1101
1102 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1103 case CONST: \
1104 if ((GET_CODE (XEXP (RTX, 0)) == MINUS) && \
1105 (GET_CODE (XEXP (XEXP (RTX, 0), 1)) != CONST_INT)) \
1106 return 1000; \
1107 case CONST_INT: \
1108 if ((OUTER_CODE == PLUS) && \
1109 ((INTVAL (RTX) > 32767) || \
1110 (INTVAL (RTX) < -32768))) \
1111 return COSTS_N_INSNS (3); \
1112 case LABEL_REF: \
1113 case SYMBOL_REF: \
1114 case CONST_DOUBLE: \
1115 return 0; \
1116
1117
1118 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1119 This can be used, for example, to indicate how costly a multiply
1120 instruction is. In writing this macro, you can use the construct
1121 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1122 instructions. OUTER_CODE is the code of the expression in which X
1123 is contained.
1124
1125 This macro is optional; do not define it if the default cost
1126 assumptions are adequate for the target machine. */
1127
1128 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1129 case ASHIFT: \
1130 case ASHIFTRT: \
1131 case LSHIFTRT: \
1132 case PLUS: \
1133 case AND: \
1134 case IOR: \
1135 case XOR: \
1136 case MINUS: \
1137 case NEG: \
1138 case NOT: \
1139 return 1; \
1140 case MULT: \
1141 if (GET_MODE (XEXP (X, 0)) == DImode) \
1142 return 40; \
1143 else \
1144 return 7; \
1145 case DIV: \
1146 case UDIV: \
1147 case MOD: \
1148 case UMOD: \
1149 return 33;
1150
1151
1152 /* An expression giving the cost of an addressing mode that contains
1153 ADDRESS. If not defined, the cost is computed from the ADDRESS
1154 expression and the `CONST_COSTS' values.
1155
1156 For most CISC machines, the default cost is a good approximation
1157 of the true cost of the addressing mode. However, on RISC
1158 machines, all instructions normally have the same length and
1159 execution time. Hence all addresses will have equal costs.
1160
1161 In cases where more than one form of an address is known, the form
1162 with the lowest cost will be used. If multiple forms have the
1163 same, lowest, cost, the one that is the most complex will be used.
1164
1165 For example, suppose an address that is equal to the sum of a
1166 register and a constant is used twice in the same basic block.
1167 When this macro is not defined, the address will be computed in a
1168 register and memory references will be indirect through that
1169 register. On machines where the cost of the addressing mode
1170 containing the sum is no higher than that of a simple indirect
1171 reference, this will produce an additional instruction and
1172 possibly require an additional register. Proper specification of
1173 this macro eliminates this overhead for such machines.
1174
1175 Similar use of this macro is made in strength reduction of loops.
1176
1177 ADDRESS need not be valid as an address. In such a case, the cost
1178 is not relevant and can be any value; invalid addresses need not be
1179 assigned a different cost.
1180
1181 On machines where an address involving more than one register is as
1182 cheap as an address computation involving only one register,
1183 defining `ADDRESS_COST' to reflect this can cause two registers to
1184 be live over a region of code where only one would have been if
1185 `ADDRESS_COST' were not defined in that manner. This effect should
1186 be considered in the definition of this macro. Equivalent costs
1187 should probably only be given to addresses with different numbers
1188 of registers on machines with lots of registers.
1189
1190 This macro will normally either not be defined or be defined as a
1191 constant.
1192
1193 On s390 symbols are expensive if compiled with fpic
1194 lifetimes. */
1195
1196 #define ADDRESS_COST(RTX) \
1197 ((flag_pic && GET_CODE (RTX) == SYMBOL_REF) ? 2 : 1)
1198
1199 /* On s390, copy between fprs and gprs is expensive. */
1200
1201 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1202 (( ( reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
1203 && reg_classes_intersect_p ((CLASS2), FP_REGS)) \
1204 || ( reg_classes_intersect_p ((CLASS1), FP_REGS) \
1205 && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
1206
1207
1208 /* A C expression for the cost of moving data of mode M between a
1209 register and memory. A value of 2 is the default; this cost is
1210 relative to those in `REGISTER_MOVE_COST'.
1211
1212 If moving between registers and memory is more expensive than
1213 between two registers, you should define this macro to express the
1214 relative cost. */
1215
1216 #define MEMORY_MOVE_COST(M, C, I) 1
1217
1218 /* A C expression for the cost of a branch instruction. A value of 1
1219 is the default; other values are interpreted relative to that. */
1220
1221 #define BRANCH_COST 1
1222
1223 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1224 return the mode to be used for the comparison. */
1225
1226 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
1227
1228
1229 /* Define the information needed to generate branch and scc insns. This is
1230 stored from the compare operation. Note that we can't use "rtx" here
1231 since it hasn't been defined! */
1232
1233 extern struct rtx_def *s390_compare_op0, *s390_compare_op1;
1234
1235
1236 /* How to refer to registers in assembler output. This sequence is
1237 indexed by compiler's hard-register-number (see above). */
1238
1239 #define REGISTER_NAMES \
1240 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
1241 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
1242 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
1243 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
1244 "%ap", "%cc", "%fp" \
1245 }
1246
1247 /* implicit call of memcpy, not bcopy */
1248
1249 #define TARGET_MEM_FUNCTIONS
1250
1251 /* Either simplify a location expression, or return the original. */
1252
1253 #define ASM_SIMPLIFY_DWARF_ADDR(X) \
1254 s390_simplify_dwarf_addr (X)
1255
1256 /* Print operand X (an rtx) in assembler syntax to file FILE.
1257 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1258 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1259
1260 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1261
1262 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1263
1264
1265 /* Define the codes that are matched by predicates in aux-output.c. */
1266
1267 #define PREDICATE_CODES \
1268 {"s_operand", { SUBREG, MEM }}, \
1269 {"s_imm_operand", { CONST_INT, CONST_DOUBLE, SUBREG, MEM }}, \
1270 {"bras_sym_operand",{ SYMBOL_REF, CONST }}, \
1271 {"larl_operand", { SYMBOL_REF, CONST, CONST_INT, CONST_DOUBLE }}, \
1272 {"load_multiple_operation", {PARALLEL}}, \
1273 {"store_multiple_operation", {PARALLEL}}, \
1274 {"const0_operand", { CONST_INT, CONST_DOUBLE }}, \
1275 {"consttable_operand", { SYMBOL_REF, LABEL_REF, CONST, \
1276 CONST_INT, CONST_DOUBLE }}, \
1277 {"s390_plus_operand", { PLUS }},
1278
1279
1280 /* S/390 constant pool breaks the devices in crtstuff.c to control section
1281 in where code resides. We have to write it as asm code. */
1282 #ifndef __s390x__
1283 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1284 asm (SECTION_OP "\n\
1285 bras\t%r2,1f\n\
1286 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
1287 1: l\t%r3,0(%r2)\n\
1288 bas\t%r14,0(%r3,%r2)\n\
1289 .previous");
1290 #endif
1291
1292 /* Constant Pool for all symbols operands which are changed with
1293 force_const_mem during insn generation (expand_insn). */
1294
1295 extern int s390_pool_count;
1296 extern int s390_nr_constants;
1297 extern int s390_pool_overflow;
1298
1299 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, fndecl, size) \
1300 { \
1301 struct pool_constant *pool; \
1302 \
1303 if (s390_pool_count == -1) \
1304 { \
1305 s390_nr_constants = 0; \
1306 for (pool = first_pool; pool; pool = pool->next) \
1307 if (pool->mark) s390_nr_constants++; \
1308 return; \
1309 } \
1310 }
1311
1312 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, EXP, MODE, ALIGN, LABELNO, WIN) \
1313 { \
1314 fprintf (FILE, ".LC%d:\n", LABELNO); \
1315 \
1316 /* Output the value of the constant itself. */ \
1317 switch (GET_MODE_CLASS (MODE)) \
1318 { \
1319 case MODE_FLOAT: \
1320 if (GET_CODE (EXP) != CONST_DOUBLE) \
1321 abort (); \
1322 \
1323 REAL_VALUE_FROM_CONST_DOUBLE (r, EXP); \
1324 assemble_real (r, MODE, ALIGN); \
1325 break; \
1326 \
1327 case MODE_INT: \
1328 case MODE_PARTIAL_INT: \
1329 if (flag_pic \
1330 && (GET_CODE (EXP) == CONST \
1331 || GET_CODE (EXP) == SYMBOL_REF \
1332 || GET_CODE (EXP) == LABEL_REF )) \
1333 { \
1334 fputs (integer_asm_op (UNITS_PER_WORD, TRUE), FILE); \
1335 s390_output_symbolic_const (FILE, EXP); \
1336 fputc ('\n', (FILE)); \
1337 } \
1338 else \
1339 { \
1340 assemble_integer (EXP, GET_MODE_SIZE (MODE), ALIGN, 1); \
1341 if (GET_MODE_SIZE (MODE) == 1) \
1342 ASM_OUTPUT_SKIP ((FILE), 1); \
1343 } \
1344 break; \
1345 \
1346 default: \
1347 abort (); \
1348 } \
1349 goto WIN; \
1350 }
1351
1352 #endif