s390-protos.h (legitimize_la_operand, [...]): Add prototypes.
[gcc.git] / gcc / config / s390 / s390.h
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
4 Ulrich Weigand (uweigand@de.ibm.com).
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef _S390_H
23 #define _S390_H
24
25 #define TARGET_VERSION fprintf (stderr, " (S/390)");
26
27 extern int flag_pic;
28
29 /* Run-time compilation parameters selecting different hardware subsets. */
30
31 extern int target_flags;
32
33 /* Target macros checked at runtime of compiler. */
34
35 #define TARGET_HARD_FLOAT (target_flags & 1)
36 #define TARGET_BACKCHAIN (target_flags & 2)
37 #define TARGET_SMALL_EXEC (target_flags & 4)
38 #define TARGET_DEBUG_ARG (target_flags & 8)
39 #define TARGET_64BIT (target_flags & 16)
40 #define TARGET_MVCLE (target_flags & 32)
41
42 #define TARGET_DEFAULT 0x3
43 #define TARGET_SOFT_FLOAT (!(target_flags & 1))
44
45 /* Macro to define tables used to set the flags. This is a list in braces
46 of pairs in braces, each pair being { "NAME", VALUE }
47 where VALUE is the bits to set or minus the bits to clear.
48 An empty string NAME is used to identify the default VALUE. */
49
50 #define TARGET_SWITCHES \
51 { { "hard-float", 1, N_("Use hardware fp")}, \
52 { "soft-float", -1, N_("Don't use hardware fp")}, \
53 { "backchain", 2, N_("Set backchain")}, \
54 { "no-backchain", -2, N_("Don't set backchain (faster, but debug harder")}, \
55 { "small-exec", 4, N_("Use bras for execucable < 64k")}, \
56 { "no-small-exec",-4, N_("Don't use bras")}, \
57 { "debug", 8, N_("Additional debug prints")}, \
58 { "no-debug", -8, N_("Don't print additional debug prints")}, \
59 { "64", 16, N_("64 bit mode")}, \
60 { "31", -16, N_("31 bit mode")}, \
61 { "mvcle", 32, N_("mvcle use")}, \
62 { "no-mvcle", -32, N_("mvc&ex")}, \
63 { "", TARGET_DEFAULT, 0 } }
64
65 /* Define this to change the optimizations performed by default. */
66 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
67
68 /* Sometimes certain combinations of command options do not make sense
69 on a particular target machine. You can define a macro
70 `OVERRIDE_OPTIONS' to take account of this. This macro, if
71 defined, is executed once just after all the command options have
72 been parsed. */
73 #define OVERRIDE_OPTIONS override_options ()
74
75
76 /* Defines for REAL_ARITHMETIC. */
77 #define IEEE_FLOAT 1
78 #define TARGET_IBM_FLOAT 0
79 #define TARGET_IEEE_FLOAT 1
80
81 /* The current function count for create unique internal labels. */
82
83 extern int s390_function_count;
84
85 /* The amount of space used for outgoing arguments. */
86
87 extern int current_function_outgoing_args_size;
88
89 /* Target machine storage layout. */
90
91 /* Define this if most significant bit is lowest numbered in instructions
92 that operate on numbered bit-fields. */
93
94 #define BITS_BIG_ENDIAN 1
95
96 /* Define this if most significant byte of a word is the lowest numbered. */
97
98 #define BYTES_BIG_ENDIAN 1
99
100 /* Define this if MS word of a multiword is the lowest numbered. */
101
102 #define WORDS_BIG_ENDIAN 1
103
104 /* Number of bits in an addressable storage unit. */
105
106 #define BITS_PER_UNIT 8
107
108 /* Width in bits of a "word", which is the contents of a machine register. */
109
110 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
111 #define MAX_BITS_PER_WORD 64
112
113 /* Width of a word, in units (bytes). */
114
115 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
116 #define MIN_UNITS_PER_WORD 4
117
118 /* Width in bits of a pointer. See also the macro `Pmode' defined below. */
119
120 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
121
122 /* A C expression for the size in bits of the type `short' on the
123 target machine. If you don't define this, the default is half a
124 word. (If this would be less than one storage unit, it is
125 rounded up to one unit.) */
126 #define SHORT_TYPE_SIZE 16
127
128 /* A C expression for the size in bits of the type `int' on the
129 target machine. If you don't define this, the default is one
130 word. */
131 #define INT_TYPE_SIZE 32
132
133 /* A C expression for the size in bits of the type `long' on the
134 target machine. If you don't define this, the default is one
135 word. */
136 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
137 #define MAX_LONG_TYPE_SIZE 64
138
139 /* A C expression for the size in bits of the type `long long' on the
140 target machine. If you don't define this, the default is two
141 words. */
142 #define LONG_LONG_TYPE_SIZE 64
143
144 /* Right now we only support two floating point formats, the
145 32 and 64 bit ieee formats. */
146
147 #define FLOAT_TYPE_SIZE 32
148 #define DOUBLE_TYPE_SIZE 64
149 #define LONG_DOUBLE_TYPE_SIZE 64
150
151 /* Define this macro if it is advisable to hold scalars in registers
152 in a wider mode than that declared by the program. In such cases,
153 the value is constrained to be within the bounds of the declared
154 type, but kept valid in the wider mode. The signedness of the
155 extension may differ from that of the type. */
156
157 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
158 if (INTEGRAL_MODE_P (MODE) && \
159 GET_MODE_SIZE (MODE) < UNITS_PER_WORD) { \
160 (MODE) = Pmode; \
161 }
162
163 /* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
164 extensions applied to char/short functions arguments. Defining
165 PROMOTE_FUNCTION_RETURN does the same for function returns. */
166
167 #define PROMOTE_FUNCTION_ARGS
168 #define PROMOTE_FUNCTION_RETURN
169 #define PROMOTE_FOR_CALL_ONLY
170
171 /* Allocation boundary (in *bits*) for storing pointers in memory. */
172
173 #define POINTER_BOUNDARY 32
174
175 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
176
177 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
178
179 /* Boundary (in *bits*) on which stack pointer should be aligned. */
180
181 #define STACK_BOUNDARY 64
182
183 /* Allocation boundary (in *bits*) for the code of a function. */
184
185 #define FUNCTION_BOUNDARY 32
186
187 /* There is no point aligning anything to a rounder boundary than this. */
188
189 #define BIGGEST_ALIGNMENT 64
190
191 /* Alignment of field after `int : 0' in a structure. */
192
193 #define EMPTY_FIELD_BOUNDARY 32
194
195 /* Alignment on even addresses for LARL instruction. */
196
197 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
198
199 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
200
201 /* Define this if move instructions will actually fail to work when given
202 unaligned data. */
203
204 #define STRICT_ALIGNMENT 0
205
206 /* real arithmetic */
207
208 #define REAL_ARITHMETIC
209
210 /* Define target floating point format. */
211
212 #undef TARGET_FLOAT_FORMAT
213 #ifdef IEEE_FLOAT
214 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
215 #else
216 #define TARGET_FLOAT_FORMAT IBM_FLOAT_FORMAT
217 #endif
218
219 /* Define if special allocation order desired. */
220
221 #define REG_ALLOC_ORDER \
222 { 1, 2, 3, 4, 5, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, \
223 16, 17, 18, 19, 20, 21, 22, 23, \
224 24, 25, 26, 27, 28, 29, 30, 31, \
225 15, 32, 33 }
226
227 /* Standard register usage. */
228
229 #define INT_REGNO_P(N) ( (int)(N) >= 0 && (N) < 16 )
230 #ifdef IEEE_FLOAT
231 #define FLOAT_REGNO_P(N) ( (N) >= 16 && (N) < 32 )
232 #else
233 #define FLOAT_REGNO_P(N) ( (N) >= 16 && (N) < 20 )
234 #endif
235 #define CC_REGNO_P(N) ( (N) == 33 )
236
237 /* Number of actual hardware registers. The hardware registers are
238 assigned numbers for the compiler from 0 to just below
239 FIRST_PSEUDO_REGISTER.
240 All registers that the compiler knows about must be given numbers,
241 even those that are not normally considered general registers.
242 For the 390, we give the data registers numbers 0-15,
243 and the floating point registers numbers 16-19.
244 G5 and following have 16 IEEE floating point register,
245 which get numbers 16-31. */
246
247 #define FIRST_PSEUDO_REGISTER 35
248
249 /* Number of hardware registers that go into the DWARF-2 unwind info.
250 If not defined, equals FIRST_PSEUDO_REGISTER. */
251
252 #define DWARF_FRAME_REGISTERS 34
253
254 /* The following register have a fix usage
255 GPR 12: GOT register points to the GOT, setup in prologue,
256 GOT contains pointer to variables in shared libraries
257 GPR 13: Base register setup in prologue to point to the
258 literal table of each function
259 GPR 14: Return registers holds the return address
260 GPR 15: Stack pointer */
261
262 #define PIC_OFFSET_TABLE_REGNUM 12
263 #define BASE_REGISTER 13
264 #define RETURN_REGNUM 14
265 #define STACK_POINTER_REGNUM 15
266
267 #define FIXED_REGISTERS \
268 { 0, 0, 0, 0, \
269 0, 0, 0, 0, \
270 0, 0, 0, 0, \
271 0, 1, 1, 1, \
272 0, 0, 0, 0, \
273 0, 0, 0, 0, \
274 0, 0, 0, 0, \
275 0, 0, 0, 0, \
276 1, 1, 1 }
277
278 /* 1 for registers not available across function calls. These must include
279 the FIXED_REGISTERS and also any registers that can be used without being
280 saved.
281 The latter must include the registers where values are returned
282 and the register where structure-value addresses are passed. */
283
284 #define CALL_USED_REGISTERS \
285 { 1, 1, 1, 1, \
286 1, 1, 0, 0, \
287 0, 0, 0, 0, \
288 0, 1, 1, 1, \
289 1, 1, 1, 1, \
290 1, 1, 1, 1, \
291 1, 1, 1, 1, \
292 1, 1, 1, 1, \
293 1, 1, 1 }
294
295 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
296 the entire set of `FIXED_REGISTERS' be included.
297 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS'). */
298
299 #define CALL_REALLY_USED_REGISTERS \
300 { 1, 1, 1, 1, \
301 1, 1, 0, 0, \
302 0, 0, 0, 0, \
303 0, 0, 0, 0, \
304 1, 1, 1, 1, \
305 1, 1, 1, 1, \
306 1, 1, 1, 1, \
307 1, 1, 1, 1, \
308 1, 1, 1 }
309
310 /* Macro to conditionally modify fixed_regs/call_used_regs. */
311
312 #define CONDITIONAL_REGISTER_USAGE \
313 do \
314 { \
315 int i; \
316 \
317 if (flag_pic) \
318 { \
319 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
320 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
321 } \
322 if (TARGET_64BIT) \
323 { \
324 for (i = 24; i < 32; i++) \
325 call_used_regs[i] = call_really_used_regs[i] = 0; \
326 } \
327 else \
328 { \
329 for (i = 18; i < 20; i++) \
330 call_used_regs[i] = call_really_used_regs[i] = 0; \
331 } \
332 } while (0)
333
334 /* The following register have a special usage
335 GPR 11: Frame pointer if needed to point to automatic variables.
336 GPR 32: In functions with more the 5 args this register
337 points to that arguments, it is always eliminated
338 with stack- or frame-pointer.
339 GPR 33: Condition code 'register' */
340
341 #define HARD_FRAME_POINTER_REGNUM 11
342 #define FRAME_POINTER_REGNUM 34
343
344 #define ARG_POINTER_REGNUM 32
345
346 #define CC_REGNUM 33
347
348 /* We use the register %r0 to pass the static chain to a nested function.
349
350 Note: It is assumed that this register is call-clobbered!
351 We can't use any of the function-argument registers either,
352 and register 1 is needed by the trampoline code, so we have
353 no other choice but using this one ... */
354
355 #define STATIC_CHAIN_REGNUM 0
356
357 /* Return number of consecutive hard regs needed starting at reg REGNO
358 to hold something of mode MODE.
359 This is ordinarily the length in words of a value of mode MODE
360 but can be less for certain modes in special long registers. */
361
362 #define HARD_REGNO_NREGS(REGNO, MODE) \
363 (FLOAT_REGNO_P(REGNO)? \
364 (GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
365 INT_REGNO_P(REGNO)? \
366 ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) : \
367 1)
368
369 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
370 The gprs can hold QI, HI, SI, SF, DF, SC and DC.
371 Even gprs can hold DI.
372 The floating point registers can hold DF, SF, DC and SC. */
373
374 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
375 (FLOAT_REGNO_P(REGNO)? \
376 (GET_MODE_CLASS(MODE) == MODE_FLOAT || \
377 GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT || \
378 (MODE) == SImode || (MODE) == DImode) : \
379 INT_REGNO_P(REGNO)? \
380 (HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1)) : \
381 CC_REGNO_P(REGNO)? \
382 GET_MODE_CLASS (MODE) == MODE_CC : \
383 0)
384
385 /* Value is 1 if it is a good idea to tie two pseudo registers when one has
386 mode MODE1 and one has mode MODE2.
387 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
388 for any hard reg, then this must be 0 for correct output. */
389
390 #define MODES_TIEABLE_P(MODE1, MODE2) \
391 (((MODE1) == SFmode || (MODE1) == DFmode) \
392 == ((MODE2) == SFmode || (MODE2) == DFmode))
393
394 /* If defined, gives a class of registers that cannot be used as the
395 operand of a SUBREG that changes the mode of the object illegally. */
396
397 #define CLASS_CANNOT_CHANGE_MODE FP_REGS
398
399 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
400
401 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
402 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
403
404 /* Define this macro if references to a symbol must be treated
405 differently depending on something about the variable or
406 function named by the symbol (such as what section it is in).
407
408 On s390, if using PIC, mark a SYMBOL_REF for a non-global symbol
409 so that we may access it directly in the GOT. */
410
411 #define ENCODE_SECTION_INFO(DECL) \
412 do \
413 { \
414 if (flag_pic) \
415 { \
416 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
417 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
418 \
419 if (GET_CODE (rtl) == MEM) \
420 { \
421 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
422 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
423 || ! TREE_PUBLIC (DECL)); \
424 } \
425 } \
426 } \
427 while (0)
428
429
430 /* This is an array of structures. Each structure initializes one pair
431 of eliminable registers. The "from" register number is given first,
432 followed by "to". Eliminations of the same "from" register are listed
433 in order of preference. */
434
435 #define ELIMINABLE_REGS \
436 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
437 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
438 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
439 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
440
441 #define CAN_ELIMINATE(FROM, TO) (1)
442
443 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
444 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
445 { (OFFSET) = 0; } \
446 else if ((FROM) == FRAME_POINTER_REGNUM \
447 && (TO) == HARD_FRAME_POINTER_REGNUM) \
448 { (OFFSET) = 0; } \
449 else if ((FROM) == ARG_POINTER_REGNUM \
450 && (TO) == HARD_FRAME_POINTER_REGNUM) \
451 { (OFFSET) = s390_arg_frame_offset (); } \
452 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
453 { (OFFSET) = s390_arg_frame_offset (); } \
454 else \
455 abort(); \
456 }
457
458 #define CAN_DEBUG_WITHOUT_FP
459
460 /* Value should be nonzero if functions must have frame pointers.
461 Zero means the frame pointer need not be set up (and parms may be
462 accessed via the stack pointer) in functions that seem suitable.
463 This is computed in `reload', in reload1.c. */
464
465 #define FRAME_POINTER_REQUIRED 0
466
467 /* Define the classes of registers for register constraints in the
468 machine description. Also define ranges of constants.
469
470 One of the classes must always be named ALL_REGS and include all hard regs.
471 If there is more than one class, another class must be named NO_REGS
472 and contain no registers.
473
474 The name GENERAL_REGS must be the name of a class (or an alias for
475 another name such as ALL_REGS). This is the class of registers
476 that is allowed by "g" or "r" in a register constraint.
477 Also, registers outside this class are allocated only when
478 instructions express preferences for them.
479
480 The classes must be numbered in nondecreasing order; that is,
481 a larger-numbered class must never be contained completely
482 in a smaller-numbered class.
483
484 For any two classes, it is very desirable that there be another
485 class that represents their union. */
486
487 /*#define SMALL_REGISTER_CLASSES 1*/
488
489 enum reg_class
490 {
491 NO_REGS, ADDR_REGS, GENERAL_REGS,
492 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
493 ALL_REGS, LIM_REG_CLASSES
494 };
495
496 #define N_REG_CLASSES (int) LIM_REG_CLASSES
497
498 /* Give names of register classes as strings for dump file. */
499
500 #define REG_CLASS_NAMES \
501 { "NO_REGS", "ADDR_REGS", "GENERAL_REGS", \
502 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
503
504 /* Define which registers fit in which classes. This is an initializer for
505 a vector of HARD_REG_SET of length N_REG_CLASSES.
506 G5 and latter have 16 register and support IEEE floating point operations. */
507
508 #define REG_CLASS_CONTENTS \
509 { \
510 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
511 { 0x0000fffe, 0x00000005 }, /* ADDR_REGS */ \
512 { 0x0000ffff, 0x00000005 }, /* GENERAL_REGS */ \
513 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
514 { 0xfffffffe, 0x00000005 }, /* ADDR_FP_REGS */ \
515 { 0xffffffff, 0x00000005 }, /* GENERAL_FP_REGS */ \
516 { 0xffffffff, 0x00000007 }, /* ALL_REGS */ \
517 }
518
519
520 /* The same information, inverted:
521 Return the class number of the smallest class containing
522 reg number REGNO. This could be a conditional expression
523 or could index an array. */
524
525 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
526
527 extern enum reg_class regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */
528
529 /* The class value for index registers, and the one for base regs. */
530
531 #define INDEX_REG_CLASS ADDR_REGS
532 #define BASE_REG_CLASS ADDR_REGS
533
534 /* Get reg_class from a letter such as appears in the machine description. */
535
536 #define REG_CLASS_FROM_LETTER(C) \
537 ((C) == 'a' ? ADDR_REGS : \
538 (C) == 'd' ? GENERAL_REGS : \
539 (C) == 'f' ? FP_REGS : NO_REGS)
540
541 /* The letters I, J, K, L and M in a register constraint string can be used
542 to stand for particular ranges of immediate operands.
543 This macro defines what the ranges are.
544 C is the letter, and VALUE is a constant value.
545 Return 1 if VALUE is in the range specified by C. */
546
547 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
548 ((C) == 'I' ? (unsigned long) (VALUE) < 256 : \
549 (C) == 'J' ? (unsigned long) (VALUE) < 4096 : \
550 (C) == 'K' ? (VALUE) >= -32768 && (VALUE) < 32768 : \
551 (C) == 'L' ? (unsigned long) (VALUE) < 65536 : 0)
552
553 /* Similar, but for floating constants, and defining letters G and H.
554 Here VALUE is the CONST_DOUBLE rtx itself. */
555
556 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
557
558 /* 'Q' means a memory-reference for a S-type operand. */
559
560 #define EXTRA_CONSTRAINT(OP, C) \
561 ((C) == 'Q' ? s_operand (OP, GET_MODE (OP)) : \
562 (C) == 'S' ? larl_operand (OP, GET_MODE (OP)) : 0)
563
564 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
565 return the class of reg to actually use. In general this is just CLASS;
566 but on some machines in some cases it is preferable to use a more
567 restrictive class. */
568
569 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
570 s390_preferred_reload_class ((X), (CLASS))
571
572 /* Return the maximum number of consecutive registers needed to represent
573 mode MODE in a register of class CLASS. */
574
575 #define CLASS_MAX_NREGS(CLASS, MODE) \
576 ((CLASS) == FP_REGS ? \
577 (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
578 (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
579
580 /* We need a secondary reload when loading a PLUS which is
581 not a valid operand for LOAD ADDRESS. */
582
583 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
584 s390_secondary_input_reload_class ((CLASS), (MODE), (IN))
585
586 /* If we are copying between FP registers and anything else, we need a memory
587 location. */
588
589 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
590 ((CLASS1) != (CLASS2) && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS))
591
592 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
593 because the movsi and movsf patterns don't handle r/f moves. */
594
595 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
596 (GET_MODE_BITSIZE (MODE) < 32 \
597 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
598 : MODE)
599
600
601 /* A C expression whose value is nonzero if pseudos that have been
602 assigned to registers of class CLASS would likely be spilled
603 because registers of CLASS are needed for spill registers.
604
605 The default value of this macro returns 1 if CLASS has exactly one
606 register and zero otherwise. On most machines, this default
607 should be used. Only define this macro to some other expression
608 if pseudo allocated by `local-alloc.c' end up in memory because
609 their hard registers were needed for spill registers. If this
610 macro returns nonzero for those classes, those pseudos will only
611 be allocated by `global.c', which knows how to reallocate the
612 pseudo to another register. If there would not be another
613 register available for reallocation, you should not change the
614 definition of this macro since the only effect of such a
615 definition would be to slow down register allocation. */
616
617 /* Stack layout; function entry, exit and calling. */
618
619 /* The return address of the current frame is retrieved
620 from the initial value of register RETURN_REGNUM.
621 For frames farther back, we use the stack slot where
622 the corresponding RETURN_REGNUM register was saved. */
623
624 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
625 ((FRAME) != hard_frame_pointer_rtx ? (FRAME) : \
626 plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
627
628 #define RETURN_ADDR_RTX(COUNT, FRAME) \
629 ((COUNT) == 0 ? get_hard_reg_initial_val (Pmode, RETURN_REGNUM) : \
630 gen_rtx_MEM (Pmode, \
631 memory_address (Pmode, \
632 plus_constant (DYNAMIC_CHAIN_ADDRESS ((FRAME)), \
633 RETURN_REGNUM * UNITS_PER_WORD))))
634
635 /* The following macros will turn on dwarf2 exception hndling
636 Other code location for this exception handling are
637 in s390.md (eh_return insn) and in linux.c in the prologue. */
638
639 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
640
641 /* We have 31 bit mode. */
642
643 #define MASK_RETURN_ADDR (GEN_INT (0x7fffffff))
644
645 /* The offset from the incoming value of %sp to the top of the stack frame
646 for the current function. */
647
648 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
649
650 /* Location, from where return address to load. */
651
652 #define DWARF_FRAME_RETURN_COLUMN 14
653
654 /* Describe how we implement __builtin_eh_return. */
655 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
656 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
657 #define EH_RETURN_HANDLER_RTX \
658 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, \
659 TARGET_64BIT? -48 : -40))
660
661 /* Define this if pushing a word on the stack makes the stack pointer a
662 smaller address. */
663
664 #define STACK_GROWS_DOWNWARD
665
666 /* Define this if the nominal address of the stack frame is at the
667 high-address end of the local variables; that is, each additional local
668 variable allocated goes at a more negative offset in the frame. */
669
670 /* #define FRAME_GROWS_DOWNWARD */
671
672 /* Offset from stack-pointer to first location of outgoing args. */
673
674 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
675
676 /* Offset within stack frame to start allocating local variables at.
677 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
678 first local allocated. Otherwise, it is the offset to the BEGINNING
679 of the first local allocated. */
680
681 #define STARTING_FRAME_OFFSET \
682 (STACK_POINTER_OFFSET + current_function_outgoing_args_size)
683
684 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0
685
686 /* If we generate an insn to push BYTES bytes, this says how many the stack
687 pointer really advances by. On S/390, we have no push instruction. */
688
689 /* #define PUSH_ROUNDING(BYTES) */
690
691 /* Accumulate the outgoing argument count so we can request the right
692 DSA size and determine stack offset. */
693
694 #define ACCUMULATE_OUTGOING_ARGS 1
695
696 /* Offset from the stack pointer register to an item dynamically
697 allocated on the stack, e.g., by `alloca'.
698
699 The default value for this macro is `STACK_POINTER_OFFSET' plus the
700 length of the outgoing arguments. The default is correct for most
701 machines. See `function.c' for details. */
702 #define STACK_DYNAMIC_OFFSET(FUNDECL) (STARTING_FRAME_OFFSET)
703
704 /* Offset of first parameter from the argument pointer register value.
705 On the S/390, we define the argument pointer to the start of the fixed
706 area. */
707 #define FIRST_PARM_OFFSET(FNDECL) 0
708
709 /* Define this if stack space is still allocated for a parameter passed
710 in a register. The value is the number of bytes allocated to this
711 area. */
712 /* #define REG_PARM_STACK_SPACE(FNDECL) 32 */
713
714 /* Define this if the above stack space is to be considered part of the
715 space allocated by the caller. */
716 /* #define OUTGOING_REG_PARM_STACK_SPACE */
717
718 /* 1 if N is a possible register number for function argument passing.
719 On S390, general registers 2 - 6 and floating point register 0 and 2
720 are used in this way. */
721
722 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
723 (N) == 16 || (N) == 17)
724
725 /* Define a data type for recording info about an argument list during
726 the scan of that argument list. This data type should hold all
727 necessary information about the function itself and about the args
728 processed so far, enough to enable macros such as FUNCTION_ARG to
729 determine where the next arg should go. */
730
731 typedef struct s390_arg_structure
732 {
733 int gprs; /* gpr so far */
734 int fprs; /* fpr so far */
735 }
736 CUMULATIVE_ARGS;
737
738
739 /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to
740 a function whose data type is FNTYPE.
741 For a library call, FNTYPE is 0. */
742
743 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN) \
744 ((CUM).gprs=0, (CUM).fprs=0)
745
746 /* Update the data in CUM to advance over an argument of mode MODE and
747 data type TYPE. (TYPE is null for libcalls where that information
748 may not be available.) */
749
750 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
751 s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
752
753 /* Define where to put the arguments to a function. Value is zero to push
754 the argument on the stack, or a hard register in which to store the
755 argument. */
756
757 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
758 s390_function_arg (&CUM, MODE, TYPE, NAMED)
759
760 /* Define where to expect the arguments of a function. Value is zero, if
761 the argument is on the stack, or a hard register in which the argument
762 is stored. It is the same like FUNCTION_ARG, except for unnamed args
763 That means, that all in case of varargs used, the arguments are expected
764 from the stack.
765 S/390 has already space on the stack for args coming in registers,
766 they are pushed in prologue, if needed. */
767
768
769 /* Define the `__builtin_va_list' type. */
770
771 #define BUILD_VA_LIST_TYPE(VALIST) \
772 (VALIST) = s390_build_va_list ()
773
774 /* Implement `va_start' for varargs and stdarg. */
775
776 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
777 s390_va_start (stdarg, valist, nextarg)
778
779 /* Implement `va_arg'. */
780
781 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
782 s390_va_arg (valist, type)
783
784 /* For an arg passed partly in registers and partly in memory, this is the
785 number of registers used. For args passed entirely in registers or
786 entirely in memory, zero. */
787
788 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
789
790
791 /* Define if returning from a function call automatically pops the
792 arguments described by the number-of-args field in the call. */
793
794 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
795
796
797 /* Define how to find the value returned by a function. VALTYPE is the
798 data type of the value (as a tree).
799 If the precise function being called is known, FUNC is its FUNCTION_DECL;
800 otherwise, FUNC is 15. */
801
802 #define RET_REG(MODE) ((GET_MODE_CLASS (MODE) == MODE_INT \
803 || TARGET_SOFT_FLOAT ) ? 2 : 16)
804
805
806 /* for structs the address is passed, and the Callee makes a
807 copy, only if needed */
808
809 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
810 s390_function_arg_pass_by_reference (MODE, TYPE)
811
812
813 /* Register 2 (and 3) for integral values
814 or floating point register 0 (and 2) for fp values are used. */
815
816 #define FUNCTION_VALUE(VALTYPE, FUNC) \
817 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
818 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
819 || POINTER_TYPE_P (VALTYPE) \
820 ? word_mode : TYPE_MODE (VALTYPE), \
821 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 16 : 2)
822
823 /* Define how to find the value returned by a library function assuming
824 the value has mode MODE. */
825
826 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, RET_REG (MODE))
827
828 /* 1 if N is a possible register number for a function value. */
829
830 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
831
832 /* The definition of this macro implies that there are cases where
833 a scalar value cannot be returned in registers. */
834
835 #define RETURN_IN_MEMORY(type) \
836 (TYPE_MODE (type) == BLKmode || \
837 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_INT || \
838 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT)
839
840 /* Mode of stack savearea.
841 FUNCTION is VOIDmode because calling convention maintains SP.
842 BLOCK needs Pmode for SP.
843 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
844
845 #define STACK_SAVEAREA_MODE(LEVEL) \
846 (LEVEL == SAVE_FUNCTION ? VOIDmode \
847 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
848
849 /* Structure value address is passed as invisible first argument (gpr 2). */
850
851 #define STRUCT_VALUE 0
852
853 /* This macro definition sets up a default value for `main' to return. */
854
855 #define DEFAULT_MAIN_RETURN c_expand_return (integer_zero_node)
856
857 /* Length in units of the trampoline for entering a nested function. */
858
859 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 36 : 20)
860
861 /* Initialize the dynamic part of trampoline. */
862
863 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
864 s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
865
866 /* Template for constant part of trampoline. */
867
868 #define TRAMPOLINE_TEMPLATE(FILE) \
869 s390_trampoline_template (FILE)
870
871 /* Output assembler code to FILE to increment profiler label # LABELNO
872 for profiling a function entry. */
873
874 #define FUNCTION_PROFILER(FILE, LABELNO) \
875 s390_function_profiler ((FILE), ((LABELNO)))
876
877 /* #define PROFILE_BEFORE_PROLOGUE */
878
879 /* Define EXIT_IGNORE_STACK if, when returning from a function, the stack
880 pointer does not matter (provided there is a frame pointer). */
881
882 #define EXIT_IGNORE_STACK 1
883
884 /* Addressing modes, and classification of registers for them. */
885
886 /* #define HAVE_POST_INCREMENT */
887 /* #define HAVE_POST_DECREMENT */
888
889 /* #define HAVE_PRE_DECREMENT */
890 /* #define HAVE_PRE_INCREMENT */
891
892 /* These assume that REGNO is a hard or pseudo reg number. They give
893 nonzero only if REGNO is a hard reg of the suitable class or a pseudo
894 reg currently allocated to a suitable hard reg.
895 These definitions are NOT overridden anywhere. */
896
897 #define REGNO_OK_FOR_INDEX_P(REGNO) \
898 (((REGNO) < FIRST_PSEUDO_REGISTER \
899 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
900 || (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
901
902 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
903
904 #define REGNO_OK_FOR_DATA_P(REGNO) \
905 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
906
907 #define REGNO_OK_FOR_FP_P(REGNO) \
908 FLOAT_REGNO_P (REGNO)
909
910 /* Now macros that check whether X is a register and also,
911 strictly, whether it is in a specified class. */
912
913 /* 1 if X is a data register. */
914
915 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
916
917 /* 1 if X is an fp register. */
918
919 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
920
921 /* 1 if X is an address register. */
922
923 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
924
925 /* Maximum number of registers that can appear in a valid memory address. */
926
927 #define MAX_REGS_PER_ADDRESS 2
928
929 /* Recognize any constant value that is a valid address. */
930
931 #define CONSTANT_ADDRESS_P(X) 0
932
933 #define SYMBOLIC_CONST(X) \
934 (GET_CODE (X) == SYMBOL_REF \
935 || GET_CODE (X) == LABEL_REF \
936 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
937
938 /* General operand is everything except SYMBOL_REF, CONST and CONST_DOUBLE
939 they have to be forced to constant pool
940 CONST_INT have to be forced into constant pool, if greater than
941 64k. Depending on the insn they have to be force into constant pool
942 for smaller value; in this case we have to work with nonimmediate operand. */
943
944 #define LEGITIMATE_PIC_OPERAND_P(X) \
945 legitimate_pic_operand_p (X)
946
947 /* Nonzero if the constant value X is a legitimate general operand.
948 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
949
950 #define LEGITIMATE_CONSTANT_P(X) \
951 legitimate_constant_p (X)
952
953 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
954 its validity for a certain class. We have two alternate definitions
955 for each of them. The usual definition accepts all pseudo regs; the
956 other rejects them all. The symbol REG_OK_STRICT causes the latter
957 definition to be used.
958
959 Most source files want to accept pseudo regs in the hope that they will
960 get allocated to the class that the insn wants them to be in.
961 Some source files that are used after register allocation
962 need to be strict. */
963
964 /*
965 * Nonzero if X is a hard reg that can be used as an index or if it is
966 * a pseudo reg.
967 */
968
969 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
970 ((GET_MODE (X) == Pmode) && \
971 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) \
972 || REGNO_REG_CLASS (REGNO (X)) == ADDR_REGS))
973
974 /* Nonzero if X is a hard reg that can be used as a base reg or if it is
975 a pseudo reg. */
976
977 #define REG_OK_FOR_BASE_NONSTRICT_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
978
979 /* Nonzero if X is a hard reg that can be used as an index. */
980
981 #define REG_OK_FOR_INDEX_STRICT_P(X) \
982 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_INDEX_P (REGNO (X))))
983
984 /* Nonzero if X is a hard reg that can be used as a base reg. */
985
986 #define REG_OK_FOR_BASE_STRICT_P(X) \
987 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_BASE_P (REGNO (X))))
988
989
990 #ifndef REG_OK_STRICT
991 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
992 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
993 #else
994 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
995 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
996 #endif
997
998
999 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1000 valid memory address for an instruction.
1001 The MODE argument is the machine mode for the MEM expression
1002 that wants to use this address.
1003
1004 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1005 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
1006
1007 #ifdef REG_OK_STRICT
1008 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1009 { \
1010 if (legitimate_address_p (MODE, X, 1)) \
1011 goto ADDR; \
1012 }
1013 #else
1014 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1015 { \
1016 if (legitimate_address_p (MODE, X, 0)) \
1017 goto ADDR; \
1018 }
1019 #endif
1020
1021
1022 /* S/390 has no mode dependent addresses. */
1023
1024 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
1025
1026 /* Try machine-dependent ways of modifying an illegitimate address
1027 to be legitimate. If we find one, return the new, valid address.
1028 This macro is used in only one place: `memory_address' in explow.c. */
1029
1030 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1031 { \
1032 (X) = legitimize_address (X, OLDX, MODE); \
1033 if (memory_address_p (MODE, X)) \
1034 goto WIN; \
1035 }
1036
1037 /* Specify the machine mode that this machine uses for the index in the
1038 tablejump instruction. */
1039
1040 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
1041
1042 /* Define this if the tablejump instruction expects the table to contain
1043 offsets from the address of the table.
1044 Do not define this if the table should contain absolute addresses. */
1045
1046 /* #define CASE_VECTOR_PC_RELATIVE */
1047
1048 /* Load from integral MODE < SI from memory into register makes sign_extend
1049 or zero_extend
1050 In our case sign_extension happens for Halfwords, other no extension. */
1051
1052 #define LOAD_EXTEND_OP(MODE) \
1053 (TARGET_64BIT ? ((MODE) == QImode ? ZERO_EXTEND : \
1054 (MODE) == HImode ? SIGN_EXTEND : NIL) \
1055 : ((MODE) == HImode ? SIGN_EXTEND : NIL))
1056
1057 /* Define this if fixuns_trunc is the same as fix_trunc. */
1058
1059 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1060
1061 /* We use "unsigned char" as default. */
1062
1063 #define DEFAULT_SIGNED_CHAR 0
1064
1065 /* Max number of bytes we can move from memory to memory in one reasonably
1066 fast instruction. */
1067
1068 #define MOVE_MAX 256
1069
1070 /* Nonzero if access to memory by bytes is slow and undesirable. */
1071
1072 #define SLOW_BYTE_ACCESS 1
1073
1074 /* Define if shifts truncate the shift count which implies one can omit
1075 a sign-extension or zero-extension of a shift count. */
1076
1077 /* #define SHIFT_COUNT_TRUNCATED */
1078
1079 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1080 is done just by pretending it is already truncated. */
1081
1082 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1083
1084 /* We assume that the store-condition-codes instructions store 0 for false
1085 and some other value for true. This is the value stored for true. */
1086
1087 /* #define STORE_FLAG_VALUE -1 */
1088
1089 /* Don't perform CSE on function addresses. */
1090
1091 #define NO_FUNCTION_CSE
1092
1093 /* Specify the machine mode that pointers have.
1094 After generation of rtl, the compiler makes no further distinction
1095 between pointers and any other objects of this machine mode. */
1096
1097 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
1098
1099 /* A function address in a call instruction is a byte address (for
1100 indexing purposes) so give the MEM rtx a byte's mode. */
1101
1102 #define FUNCTION_MODE QImode
1103
1104
1105 /* A part of a C `switch' statement that describes the relative costs
1106 of constant RTL expressions. It must contain `case' labels for
1107 expression codes `const_int', `const', `symbol_ref', `label_ref'
1108 and `const_double'. Each case must ultimately reach a `return'
1109 statement to return the relative cost of the use of that kind of
1110 constant value in an expression. The cost may depend on the
1111 precise value of the constant, which is available for examination
1112 in X, and the rtx code of the expression in which it is contained,
1113 found in OUTER_CODE.
1114
1115 CODE is the expression code--redundant, since it can be obtained
1116 with `GET_CODE (X)'. */
1117 /* Force_const_mem does not work out of reload, because the saveable_obstack
1118 is set to reload_obstack, which does not live long enough.
1119 Because of this we cannot use force_const_mem in addsi3.
1120 This leads to problems with gen_add2_insn with a constant greater
1121 than a short. Because of that we give an addition of greater
1122 constants a cost of 3 (reload1.c 10096). */
1123
1124
1125 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1126 case CONST: \
1127 if ((GET_CODE (XEXP (RTX, 0)) == MINUS) && \
1128 (GET_CODE (XEXP (XEXP (RTX, 0), 1)) != CONST_INT)) \
1129 return 1000; \
1130 case CONST_INT: \
1131 if ((OUTER_CODE == PLUS) && \
1132 ((INTVAL (RTX) > 32767) || \
1133 (INTVAL (RTX) < -32768))) \
1134 return COSTS_N_INSNS (3); \
1135 case LABEL_REF: \
1136 case SYMBOL_REF: \
1137 case CONST_DOUBLE: \
1138 return 0; \
1139
1140
1141 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1142 This can be used, for example, to indicate how costly a multiply
1143 instruction is. In writing this macro, you can use the construct
1144 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1145 instructions. OUTER_CODE is the code of the expression in which X
1146 is contained.
1147
1148 This macro is optional; do not define it if the default cost
1149 assumptions are adequate for the target machine. */
1150
1151 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1152 case ASHIFT: \
1153 case ASHIFTRT: \
1154 case LSHIFTRT: \
1155 case PLUS: \
1156 case AND: \
1157 case IOR: \
1158 case XOR: \
1159 case MINUS: \
1160 case NEG: \
1161 case NOT: \
1162 return 1; \
1163 case MULT: \
1164 if (GET_MODE (XEXP (X, 0)) == DImode) \
1165 return 40; \
1166 else \
1167 return 7; \
1168 case DIV: \
1169 case UDIV: \
1170 case MOD: \
1171 case UMOD: \
1172 return 33;
1173
1174
1175 /* An expression giving the cost of an addressing mode that contains
1176 ADDRESS. If not defined, the cost is computed from the ADDRESS
1177 expression and the `CONST_COSTS' values.
1178
1179 For most CISC machines, the default cost is a good approximation
1180 of the true cost of the addressing mode. However, on RISC
1181 machines, all instructions normally have the same length and
1182 execution time. Hence all addresses will have equal costs.
1183
1184 In cases where more than one form of an address is known, the form
1185 with the lowest cost will be used. If multiple forms have the
1186 same, lowest, cost, the one that is the most complex will be used.
1187
1188 For example, suppose an address that is equal to the sum of a
1189 register and a constant is used twice in the same basic block.
1190 When this macro is not defined, the address will be computed in a
1191 register and memory references will be indirect through that
1192 register. On machines where the cost of the addressing mode
1193 containing the sum is no higher than that of a simple indirect
1194 reference, this will produce an additional instruction and
1195 possibly require an additional register. Proper specification of
1196 this macro eliminates this overhead for such machines.
1197
1198 Similar use of this macro is made in strength reduction of loops.
1199
1200 ADDRESS need not be valid as an address. In such a case, the cost
1201 is not relevant and can be any value; invalid addresses need not be
1202 assigned a different cost.
1203
1204 On machines where an address involving more than one register is as
1205 cheap as an address computation involving only one register,
1206 defining `ADDRESS_COST' to reflect this can cause two registers to
1207 be live over a region of code where only one would have been if
1208 `ADDRESS_COST' were not defined in that manner. This effect should
1209 be considered in the definition of this macro. Equivalent costs
1210 should probably only be given to addresses with different numbers
1211 of registers on machines with lots of registers.
1212
1213 This macro will normally either not be defined or be defined as a
1214 constant.
1215
1216 On s390 symbols are expensive if compiled with fpic
1217 lifetimes. */
1218
1219 #define ADDRESS_COST(RTX) \
1220 ((flag_pic && GET_CODE (RTX) == SYMBOL_REF) ? 2 : 1)
1221
1222 /* On s390, copy between fprs and gprs is expensive. */
1223
1224 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1225 (( ( reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
1226 && reg_classes_intersect_p ((CLASS2), FP_REGS)) \
1227 || ( reg_classes_intersect_p ((CLASS1), FP_REGS) \
1228 && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
1229
1230
1231 /* A C expression for the cost of moving data of mode M between a
1232 register and memory. A value of 2 is the default; this cost is
1233 relative to those in `REGISTER_MOVE_COST'.
1234
1235 If moving between registers and memory is more expensive than
1236 between two registers, you should define this macro to express the
1237 relative cost. */
1238
1239 #define MEMORY_MOVE_COST(M, C, I) 1
1240
1241 /* A C expression for the cost of a branch instruction. A value of 1
1242 is the default; other values are interpreted relative to that. */
1243
1244 #define BRANCH_COST 1
1245
1246 /* Add any extra modes needed to represent the condition code. */
1247 #define EXTRA_CC_MODES \
1248 CC (CCZmode, "CCZ") \
1249 CC (CCAmode, "CCA") \
1250 CC (CCLmode, "CCL") \
1251 CC (CCUmode, "CCU") \
1252 CC (CCSmode, "CCS") \
1253 CC (CCTmode, "CCT")
1254
1255 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1256 return the mode to be used for the comparison. */
1257
1258 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
1259
1260
1261 /* Define the information needed to generate branch and scc insns. This is
1262 stored from the compare operation. Note that we can't use "rtx" here
1263 since it hasn't been defined! */
1264
1265 extern struct rtx_def *s390_compare_op0, *s390_compare_op1;
1266
1267
1268 /* How to refer to registers in assembler output. This sequence is
1269 indexed by compiler's hard-register-number (see above). */
1270
1271 #define REGISTER_NAMES \
1272 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
1273 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
1274 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
1275 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
1276 "%ap", "%cc", "%fp" \
1277 }
1278
1279 /* implicit call of memcpy, not bcopy */
1280
1281 #define TARGET_MEM_FUNCTIONS
1282
1283
1284 /* Print operand X (an rtx) in assembler syntax to file FILE.
1285 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1286 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1287
1288 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1289
1290 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1291
1292
1293 /* Define the codes that are matched by predicates in aux-output.c. */
1294
1295 #define PREDICATE_CODES \
1296 {"s_operand", { SUBREG, MEM }}, \
1297 {"s_imm_operand", { CONST_INT, CONST_DOUBLE, SUBREG, MEM }}, \
1298 {"bras_sym_operand",{ SYMBOL_REF, CONST }}, \
1299 {"larl_operand", { SYMBOL_REF, CONST, CONST_INT, CONST_DOUBLE }}, \
1300 {"load_multiple_operation", {PARALLEL}}, \
1301 {"store_multiple_operation", {PARALLEL}}, \
1302 {"const0_operand", { CONST_INT, CONST_DOUBLE }}, \
1303 {"s390_plus_operand", { PLUS }},
1304
1305
1306 /* S/390 constant pool breaks the devices in crtstuff.c to control section
1307 in where code resides. We have to write it as asm code. */
1308 #ifndef __s390x__
1309 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1310 asm (SECTION_OP "\n\
1311 bras\t%r2,1f\n\
1312 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
1313 1: l\t%r3,0(%r2)\n\
1314 bas\t%r14,0(%r3,%r2)\n\
1315 .previous");
1316 #endif
1317
1318 /* Constant Pool for all symbols operands which are changed with
1319 force_const_mem during insn generation (expand_insn). */
1320
1321 extern struct rtx_def *s390_pool_start_insn;
1322 extern int s390_pool_count;
1323 extern int s390_nr_constants;
1324
1325 /* Function is splitted in chunk, if literal pool could overflow
1326 Value need to be lowered, if problems with displacement overflow. */
1327
1328 #define S390_REL_MAX 55000
1329 #define S390_CHUNK_MAX 0x2000
1330 #define S390_CHUNK_OV 0x8000
1331 #define S390_POOL_MAX 0xe00
1332
1333 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, fndecl, size) \
1334 { \
1335 register rtx insn; \
1336 struct pool_constant *pool; \
1337 \
1338 if (s390_pool_count == -1) \
1339 { \
1340 s390_nr_constants = 0; \
1341 for (pool = first_pool; pool; pool = pool->next) \
1342 if (pool->mark) s390_nr_constants++; \
1343 return; \
1344 } \
1345 if (first_pool == 0) { \
1346 s390_asm_output_pool_prologue (FILE, FUNNAME, fndecl, size); \
1347 return; \
1348 } \
1349 for (pool = first_pool; pool; pool = pool->next) \
1350 pool->mark = 0; \
1351 \
1352 insn = s390_pool_start_insn; \
1353 \
1354 if (insn==NULL_RTX) \
1355 insn = get_insns (); \
1356 else \
1357 insn = NEXT_INSN (insn); \
1358 for (; insn; insn = NEXT_INSN (insn)) { \
1359 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { \
1360 if (s390_stop_dump_lit_p (insn)) { \
1361 mark_constants (PATTERN (insn)); \
1362 break; \
1363 } else \
1364 mark_constants (PATTERN (insn)); \
1365 } \
1366 } \
1367 \
1368 /* Mark entries referenced by other entries */ \
1369 for (pool = first_pool; pool; pool = pool->next) \
1370 if (pool->mark) \
1371 mark_constants (pool->constant); \
1372 \
1373 s390_asm_output_pool_prologue (FILE, FUNNAME, fndecl, size); \
1374 }
1375
1376 /* We need to return, because otherwise the pool is deleted of the
1377 constant pool after the first output. */
1378
1379 #define ASM_OUTPUT_POOL_EPILOGUE(FILE, FUNNAME, fndecl, size) return;
1380
1381 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, EXP, MODE, ALIGN, LABELNO, WIN) \
1382 { \
1383 if ((s390_pool_count == 0) || (s390_pool_count > 0 && LABELNO >= 0)) \
1384 { \
1385 fprintf (FILE, ".LC%d:\n", LABELNO); \
1386 LABELNO = ~LABELNO; \
1387 } \
1388 if (s390_pool_count > 0) \
1389 { \
1390 fprintf (FILE, ".LC%d_%X:\n", ~LABELNO, s390_pool_count); \
1391 } \
1392 \
1393 /* Output the value of the constant itself. */ \
1394 switch (GET_MODE_CLASS (MODE)) \
1395 { \
1396 case MODE_FLOAT: \
1397 if (GET_CODE (EXP) != CONST_DOUBLE) \
1398 abort (); \
1399 \
1400 memcpy ((char *) &u, (char *) &CONST_DOUBLE_LOW (EXP), sizeof u); \
1401 assemble_real (u.d, MODE, ALIGN); \
1402 break; \
1403 \
1404 case MODE_INT: \
1405 case MODE_PARTIAL_INT: \
1406 if (flag_pic \
1407 && (GET_CODE (EXP) == CONST \
1408 || GET_CODE (EXP) == SYMBOL_REF \
1409 || GET_CODE (EXP) == LABEL_REF )) \
1410 { \
1411 fputs (integer_asm_op (UNITS_PER_WORD, TRUE), FILE); \
1412 s390_output_symbolic_const (FILE, EXP); \
1413 fputc ('\n', (FILE)); \
1414 } \
1415 else \
1416 { \
1417 assemble_integer (EXP, GET_MODE_SIZE (MODE), ALIGN, 1); \
1418 if (GET_MODE_SIZE (MODE) == 1) \
1419 ASM_OUTPUT_SKIP ((FILE), 1); \
1420 } \
1421 break; \
1422 \
1423 default: \
1424 abort (); \
1425 } \
1426 goto WIN; \
1427 }
1428
1429 #endif