4c48e595841a43428b0015aedb32bba7736bc128
[gcc.git] / gcc / config / sh / sh.h
1 /* Definitions of target machine for GNU compiler, for Hitachi Super-H.
2 Copyright (C) 1993 Free Software Foundation, Inc.
3
4 Contributed by Steve Chamberlain (sac@cygnus.com)
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 \f
23 /* Run-time Target Specification. */
24 #define TARGET_SH
25
26 #define TARGET_VERSION \
27 fputs (" (Hitachi SH)", stderr);
28
29 /* Generate SDB debugging information. */
30
31 #define SDB_DEBUGGING_INFO 1
32
33 #define SDB_DELIM ";"
34
35 #define CPP_PREDEFINES "-D__sh__ -Acpu(sh) -Amachine(sh)"
36
37
38 /* Omitting the frame pointer is a very good idea on the SH */
39
40 #define OPTIMIZATION_OPTIONS(OPTIMIZE) \
41 { \
42 if (OPTIMIZE) \
43 flag_omit_frame_pointer = 1; \
44 if (OPTIMIZE==0)OPTIMIZE=1; \
45 }
46 \f
47 /* Run-time compilation parameters selecting different hardware subsets. */
48
49 extern int target_flags;
50 #define ISIZE_BIT 1
51 #define FAST_BIT 2
52
53 #define MAC_BIT 8
54 #define RTL_BIT 16
55 #define DT_BIT 32
56 #define DALIGN_BIT 64
57 #define SH0_BIT 128
58 #define SH1_BIT 256
59 #define SH2_BIT 512
60 #define SH3_BIT 1024
61 #define C_BIT 2048
62 #define R_BIT (1<<12)
63 #define SPACE_BIT (1<<13)
64
65 /* Nonzero if we should generate code using type 0 insns */
66 #define TARGET_SH0 (target_flags & SH0_BIT)
67
68 /* Nonzero if we should generate code using type 1 insns */
69 #define TARGET_SH1 (target_flags & SH1_BIT)
70
71 /* Nonzero if we should generate code using type 2 insns */
72 #define TARGET_SH2 (target_flags & SH2_BIT)
73
74 /* Nonzero if we should generate code using type 3 insns */
75 #define TARGET_SH3 (target_flags & SH3_BIT)
76
77 /* Nonzero if we should generate faster code rather than smaller code */
78 #define TARGET_FASTCODE (target_flags & FAST_BIT)
79
80 /* Nonzero if we should generate faster code rather than smaller code */
81 #define TARGET_SMALLCODE (target_flags & SPACE_BIT)
82
83 /* Nonzero if we should dump out instruction size info */
84 #define TARGET_DUMPISIZE (target_flags & ISIZE_BIT)
85
86 /* Nonzero if we should try to generate mac instructions */
87 #define TARGET_MAC (target_flags & MAC_BIT)
88
89 /* Nonzero if we should dump the rtl in the assembly file. */
90 #define TARGET_DUMP_RTL (target_flags & RTL_BIT)
91
92 /* Nonzero if we should dump the rtl somewher else. */
93 #define TARGET_DUMP_R (target_flags & R_BIT)
94
95 /* Nonzero to align doubles on 64 bit boundaries */
96 #define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT)
97
98
99 /* Nonzero if Combine dumping wanted */
100 #define TARGET_CDUMP (target_flags & C_BIT)
101
102 #define TARGET_SWITCHES \
103 { {"isize", ( ISIZE_BIT) },\
104 {"space", ( SPACE_BIT) },\
105 {"0", ( SH0_BIT) },\
106 {"1", ( SH1_BIT) },\
107 {"2", ( SH2_BIT) },\
108 {"3", ( SH3_BIT) },\
109 {"ac", ( MAC_BIT) },\
110 {"dalign", ( DALIGN_BIT) },\
111 {"c", ( C_BIT) },\
112 {"r", ( RTL_BIT) },\
113 {"R", ( R_BIT) },\
114 {"", TARGET_DEFAULT} \
115 }
116
117 #define TARGET_DEFAULT FAST_BIT
118
119 #define OVERRIDE_OPTIONS override_options();
120
121 \f
122 /* Target machine storage Layout. */
123
124 /* Define to use software floating point emulator for REAL_ARITHMETIC and
125 decimal <-> binary conversion. */
126 #define REAL_ARITHMETIC
127
128 /* Define this if most significant bit is lowest numbered
129 in instructions that operate on numbered bit-fields. */
130 #define BITS_BIG_ENDIAN 0
131
132 /* Define this if most significant byte of a word is the lowest numbered. */
133 #define BYTES_BIG_ENDIAN 1
134
135 /* Define this if most significant word of a multiword number is the lowest
136 numbered. */
137 #define WORDS_BIG_ENDIAN 1
138
139 /* Number of bits in an addressable storage unit */
140 #define BITS_PER_UNIT 8
141
142 /* Width in bits of a "word", which is the contents of a machine register.
143 Note that this is not necessarily the width of data type `int';
144 if using 16-bit ints on a 68000, this would still be 32.
145 But on a machine with 16-bit registers, this would be 16. */
146 #define BITS_PER_WORD 32
147 #define MAX_BITS_PER_WORD 32
148
149 /* Width of a word, in units (bytes). */
150 #define UNITS_PER_WORD 4
151
152 /* Width in bits of a pointer.
153 See also the macro `Pmode' defined below. */
154 #define POINTER_SIZE 32
155
156 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
157 #define PARM_BOUNDARY 32
158
159 /* Boundary (in *bits*) on which stack pointer should be aligned. */
160 #define STACK_BOUNDARY 32
161
162 /* Allocation boundary (in *bits*) for the code of a function. */
163 #define FUNCTION_BOUNDARY 16
164
165 /* Alignment of field after `int : 0' in a structure. */
166 #define EMPTY_FIELD_BOUNDARY 32
167
168 /* No data type wants to be aligned rounder than this. */
169 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
170
171 /* The best alignment to use in cases where we have a choice. */
172 #define FASTEST_ALIGNMENT 32
173
174 /* Every structures size must be a multiple of 32 bits. */
175 #define STRUCTURE_SIZE_BOUNDARY 32
176
177 /* Make strings word-aligned so strcpy from constants will be faster. */
178 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
179 ((TREE_CODE (EXP) == STRING_CST \
180 && (ALIGN) < FASTEST_ALIGNMENT) \
181 ? FASTEST_ALIGNMENT : (ALIGN))
182
183 /* Make arrays of chars word-aligned for the same reasons. */
184 #define DATA_ALIGNMENT(TYPE, ALIGN) \
185 (TREE_CODE (TYPE) == ARRAY_TYPE \
186 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
187 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
188
189 /* Set this nonzero if move instructions will actually fail to work
190 when given unaligned data. */
191 #define STRICT_ALIGNMENT 1
192
193 \f
194 /* Standard register usage. */
195
196 /* Register allocation for our first guess
197
198 r0-r3 scratch
199 r4-r7 args in and out
200 r8-r12 call saved
201 r13 assembler temp
202 r14 frame pointer
203 r15 stack pointer
204 ap arg pointer (doesn't really exist, always eliminated)
205 pr subroutine return address
206 t t bit
207 mach multiply/accumulate result
208 macl
209 */
210
211 /* Number of actual hardware registers.
212 The hardware registers are assigned numbers for the compiler
213 from 0 to just below FIRST_PSEUDO_REGISTER.
214 All registers that the compiler knows about must be given numbers,
215 even those that are not normally considered general registers.
216
217 SH has 16 integer registers and 4 control registers + the arg
218 pointer */
219
220 #define FIRST_PSEUDO_REGISTER 22
221
222 #define PR_REG 17
223 #define T_REG 18
224 #define GBR_REG 19
225 #define MACH_REG 20
226 #define MACL_REG 21
227
228
229 /* 1 for registers that have pervasive standard uses
230 and are not available for the register allocator. */
231 /* r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 ap pr t gbr mh ml */
232 #define FIXED_REGISTERS \
233 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1}
234
235 /* 1 for registers not available across function calls.
236 These must include the FIXED_REGISTERS and also any
237 registers that can be used without being saved.
238 The latter must include the registers where values are returned
239 and the register where structure-value addresses are passed.
240 Aside from that, you can include as many other registers as you like. */
241
242 /* r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 ap pr t gbr mh ml */
243 #define CALL_USED_REGISTERS \
244 { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1}
245
246 /* Return number of consecutive hard regs needed starting at reg REGNO
247 to hold something of mode MODE.
248 This is ordinarily the length in words of a value of mode MODE
249 but can be less for certain modes in special long registers.
250
251 On the SH regs are UNITS_PER_WORD bits wide; */
252 #define HARD_REGNO_NREGS(REGNO, MODE) \
253 (((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
254
255 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
256 We may keep double values in even registers */
257
258 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
259 ((TARGET_ALIGN_DOUBLE && GET_MODE_SIZE(MODE) > 4) ? (((REGNO)&1)==0) : 1)
260
261 /* Value is 1 if it is a good idea to tie two pseudo registers
262 when one has mode MODE1 and one has mode MODE2.
263 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
264 for any hard reg, then this must be 0 for correct output. */
265
266 #define MODES_TIEABLE_P(MODE1, MODE2) \
267 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
268
269 /* Specify the registers used for certain standard purposes.
270 The values of these macros are register numbers. */
271
272 /* Define this if the program counter is overloaded on a register. */
273 /* #define PC_REGNUM 15*/
274
275 /* Register to use for pushing function arguments. */
276 #define STACK_POINTER_REGNUM 15
277
278 /* Base register for access to local variables of the function. */
279 #define FRAME_POINTER_REGNUM 14
280
281 /* Value should be nonzero if functions must have frame pointers.
282 Zero means the frame pointer need not be set up (and parms may be accessed
283 via the stack pointer) in functions that seem suitable. */
284
285
286 #define FRAME_POINTER_REQUIRED (get_frame_size() > 1000)
287
288 /* Definitions for register eliminations.
289
290 We have two registers that can be eliminated on the m88k. First, the
291 frame pointer register can often be eliminated in favor of the stack
292 pointer register. Secondly, the argument pointer register can always be
293 eliminated; it is replaced with either the stack or frame pointer. */
294
295 /* This is an array of structures. Each structure initializes one pair
296 of eliminable registers. The "from" register number is given first,
297 followed by "to". Eliminations of the same "from" register are listed
298 in order of preference. */
299
300 #define ELIMINABLE_REGS \
301 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
302 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
303 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
304
305 /* Given FROM and TO register numbers, say whether this elimination
306 is allowed. */
307 #define CAN_ELIMINATE(FROM, TO) \
308 (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
309
310 /* Define the offset between two registers, one to be eliminated, and the other
311 its replacement, at the start of a routine. */
312
313 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
314 OFFSET = initial_elimination_offset (FROM, TO)
315
316 /* Base register for access to arguments of the function. */
317 #define ARG_POINTER_REGNUM 16
318
319 /* Register in which the static-chain is passed to a function. */
320 #define STATIC_CHAIN_REGNUM 13
321
322 /* The register in which a struct value address is passed */
323
324 #define STRUCT_VALUE_REGNUM 3
325
326
327 \f
328 /* Define the classes of registers for register constraints in the
329 machine description. Also define ranges of constants.
330
331 One of the classes must always be named ALL_REGS and include all hard regs.
332 If there is more than one class, another class must be named NO_REGS
333 and contain no registers.
334
335 The name GENERAL_REGS must be the name of a class (or an alias for
336 another name such as ALL_REGS). This is the class of registers
337 that is allowed by "g" or "r" in a register constraint.
338 Also, registers outside this class are allocated only when
339 instructions express preferences for them.
340
341 The classes must be numbered in nondecreasing order; that is,
342 a larger-numbered class must never be contained completely
343 in a smaller-numbered class.
344
345 For any two classes, it is very desirable that there be another
346 class that represents their union. */
347
348 /* The SH has two sorts of general registers, R0 and the rest. R0 can
349 be used as the destination of some of the arithmetic ops. There are
350 also some special purpose registers; the T bit register, the
351 Procedure Return Register and the Multipy Accumulate Registers */
352
353 enum reg_class
354 {
355 NO_REGS,
356 R0_REGS,
357 GENERAL_REGS,
358 PR_REGS,
359 T_REGS,
360 MAC_REGS,
361 ALL_REGS,
362 LIM_REG_CLASSES
363 };
364
365 #define N_REG_CLASSES (int) LIM_REG_CLASSES
366
367 /* Give names of register classes as strings for dump file. */
368 #define REG_CLASS_NAMES \
369 { \
370 "NO_REGS", \
371 "R0_REGS", \
372 "GENERAL_REGS", \
373 "PR_REGS", \
374 "T_REGS", \
375 "MAC_REGS", \
376 "ALL_REGS", \
377 }
378
379 /* Define which registers fit in which classes.
380 This is an initializer for a vector of HARD_REG_SET
381 of length N_REG_CLASSES. */
382
383 #define REG_CLASS_CONTENTS \
384 { \
385 0x000000, /* NO_REGS */ \
386 0x000001, /* R0_REGS */ \
387 0x01FFFF, /* GENERAL_REGS */ \
388 0x020000, /* PR_REGS */ \
389 0x040000, /* T_REGS */ \
390 0x300000, /* MAC_REGS */ \
391 0x37FFFF /* ALL_REGS */ \
392 }
393
394 /* The same information, inverted:
395 Return the class number of the smallest class containing
396 reg number REGNO. This could be a conditional expression
397 or could index an array. */
398
399 extern int regno_reg_class[];
400 #define REGNO_REG_CLASS(REGNO) regno_reg_class[REGNO]
401
402 /* The order in which register should be allocated. */
403 #define REG_ALLOC_ORDER \
404 { 1,2,3,7,4,5,6,0,8,9,10,11,12,13,14,15,16,17,18,19,20,21}
405
406 /* The class value for index registers, and the one for base regs. */
407 #define INDEX_REG_CLASS R0_REGS
408 #define BASE_REG_CLASS GENERAL_REGS
409
410 /* Get reg_class from a letter such as appears in the machine
411 description. */
412 extern enum reg_class reg_class_from_letter[];
413
414 #define REG_CLASS_FROM_LETTER(C) \
415 ( (C) >= 'a' && (C) <= 'z' ? reg_class_from_letter[(C)-'a'] : NO_REGS )
416
417
418 /* The letters I, J, K, L and M in a register constraint string
419 can be used to stand for particular ranges of immediate operands.
420 This macro defines what the ranges are.
421 C is the letter, and VALUE is a constant value.
422 Return 1 if VALUE is in the range specified by C.
423 I: arithmetic operand -127..128, as used in add, sub, etc
424 L: logical operand 0..255, as used in and, or, etc.
425 M: constant 1
426 K: shift operand 1,2,8 or 16 */
427
428
429 #define CONST_OK_FOR_I(VALUE) (((int)(VALUE))>= -128 && ((int)(VALUE)) <= 127)
430 #define CONST_OK_FOR_L(VALUE) (((int)(VALUE))>= 0 && ((int)(VALUE)) <= 255)
431 #define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
432 #define CONST_OK_FOR_K(VALUE) ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
433
434 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
435 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
436 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
437 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
438 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
439 : 0)
440
441 /* Similar, but for floating constants, and defining letters G and H.
442 Here VALUE is the CONST_DOUBLE rtx itself. */
443
444 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
445 ((C) == 'G' ? CONST_OK_FOR_I (CONST_DOUBLE_HIGH (VALUE)) \
446 && CONST_OK_FOR_I (CONST_DOUBLE_LOW (VALUE)) \
447 : 0)
448
449 /* Given an rtx X being reloaded into a reg required to be
450 in class CLASS, return the class of reg to actually use.
451 In general this is just CLASS; but on some machines
452 in some cases it is preferable to use a more restrictive class. */
453
454 #define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
455
456 /* Return the register class of a scratch register needed to copy IN into
457 or out of a register in CLASS in MODE. If it can be done directly,
458 NO_REGS is returned. */
459
460 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) NO_REGS
461
462 /* Return the maximum number of consecutive registers
463 needed to represent mode MODE in a register of class CLASS.
464
465 On SH this is the size of MODE in words */
466 #define CLASS_MAX_NREGS(CLASS, MODE) \
467 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
468
469 \f
470 /* Stack layout; function entry, exit and calling. */
471
472 /* Define the number of register that can hold parameters.
473 These two macros are used only in other macro definitions below. */
474 #define NPARM_REGS 4
475 #define FIRST_PARM_REG 4
476 #define FIRST_RET_REG 4
477
478 /* Define this if pushing a word on the stack
479 makes the stack pointer a smaller address. */
480 #define STACK_GROWS_DOWNWARD
481
482 /* Define this if the nominal address of the stack frame
483 is at the high-address end of the local variables;
484 that is, each additional local variable allocated
485 goes at a more negative offset in the frame. */
486 #define FRAME_GROWS_DOWNWARD
487
488 /* Offset within stack frame to start allocating local variables at.
489 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
490 first local allocated. Otherwise, it is the offset to the BEGINNING
491 of the first local allocated. */
492 #define STARTING_FRAME_OFFSET 0
493
494 /* If we generate an insn to push BYTES bytes,
495 this says how many the stack pointer really advances by. */
496 #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
497
498 /* Offset of first parameter from the argument pointer register value. */
499 #define FIRST_PARM_OFFSET(FNDECL) 0
500
501 /* Value is the number of byte of arguments automatically
502 popped when returning from a subroutine call.
503 FUNTYPE is the data type of the function (as a tree),
504 or for a library call it is an identifier node for the subroutine name.
505 SIZE is the number of bytes of arguments passed on the stack.
506
507 On the SH, the caller does not pop any of its arguments that were passed
508 on the stack. */
509 #define RETURN_POPS_ARGS(FUNTYPE, SIZE) 0
510
511 /* Define how to find the value returned by a function.
512 VALTYPE is the data type of the value (as a tree).
513 If the precise function being called is known, FUNC is its FUNCTION_DECL;
514 otherwise, FUNC is 0. */
515 #define FUNCTION_VALUE(VALTYPE, FUNC) \
516 gen_rtx (REG, TYPE_MODE (VALTYPE), FIRST_RET_REG)
517
518 /* Define how to find the value returned by a library function
519 assuming the value has mode MODE. */
520 #define LIBCALL_VALUE(MODE) \
521 gen_rtx (REG, MODE, FIRST_RET_REG)
522
523 /* 1 if N is a possible register number for a function value.
524 On the SH, only r4 can return results. */
525 #define FUNCTION_VALUE_REGNO_P(REGNO) \
526 ((REGNO) == FIRST_RET_REG)
527
528 /* 1 if N is a possible register number for function argument passing.*/
529
530 #define FUNCTION_ARG_REGNO_P(REGNO) \
531 ((REGNO) >= FIRST_PARM_REG && (REGNO) < (NPARM_REGS + FIRST_PARM_REG))
532
533
534 \f
535 /* Define a data type for recording info about an argument list
536 during the scan of that argument list. This data type should
537 hold all necessary information about the function itself
538 and about the args processed so far, enough to enable macros
539 such as FUNCTION_ARG to determine where the next arg should go.
540
541 On SH, this is a single integer, which is a number of words
542 of arguments scanned so far (including the invisible argument,
543 if any, which holds the structure-value-address).
544 Thus NARGREGS or more means all following args should go on the stack. */
545
546 #define CUMULATIVE_ARGS int
547
548 #define ROUND_ADVANCE(SIZE) \
549 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
550
551 /* Round a register number up to a proper boundary for an arg of mode
552 MODE.
553
554 We round to an even reg for things larger than a word */
555
556 #define ROUND_REG(X, MODE) \
557 ((TARGET_ALIGN_DOUBLE \
558 && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
559 ? ((X) + ((X) & 1)) : (X))
560
561
562 /* Initialize a variable CUM of type CUMULATIVE_ARGS
563 for a call to a function whose data type is FNTYPE.
564 For a library call, FNTYPE is 0.
565
566 On SH, the offset always starts at 0: the first parm reg is always
567 the same reg. */
568
569 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME) \
570 ((CUM) = 0)
571
572 /* Update the data in CUM to advance over an argument
573 of mode MODE and data type TYPE.
574 (TYPE is null for libcalls where that information may not be
575 available.) */
576
577 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
578 ((CUM) = (ROUND_REG ((CUM), (MODE)) \
579 + ((MODE) != BLKmode \
580 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
581 : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
582
583 /* Define where to put the arguments to a function.
584 Value is zero to push the argument on the stack,
585 or a hard register in which to store the argument.
586
587 MODE is the argument's machine mode.
588 TYPE is the data type of the argument (as a tree).
589 This is null for libcalls where that information may
590 not be available.
591 CUM is a variable of type CUMULATIVE_ARGS which gives info about
592 the preceding args and about the function being called.
593 NAMED is nonzero if this argument is a named parameter
594 (otherwise it is an extra parameter matching an ellipsis).
595
596 On SH the first args are normally in registers
597 and the rest are pushed. Any arg that starts within the first
598 NPARM_REGS words is at least partially passed in a register unless
599 its data type forbids. */
600
601 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
602 (NAMED && ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
603 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
604 && ((TYPE)==0 || (MODE) != BLKmode \
605 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
606 ? gen_rtx (REG, (MODE), \
607 (FIRST_PARM_REG + ROUND_REG ((CUM), (MODE)))) \
608 : 0)
609
610 /* For an arg passed partly in registers and partly in memory,
611 this is the number of registers used.
612 For args passed entirely in registers or entirely in memory, zero.
613 Any arg that starts in the first NPARM_REGS regs but won't entirely
614 fit in them needs partial registers on the SH. */
615
616 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
617 ((ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
618 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
619 && ((TYPE)==0 || (MODE) != BLKmode \
620 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
621 && (ROUND_REG ((CUM), (MODE)) \
622 + ((MODE) == BLKmode \
623 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
624 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))) - NPARM_REGS > 0) \
625 ? (NPARM_REGS - ROUND_REG ((CUM), (MODE))) \
626 : 0)
627
628 extern int current_function_anonymous_args;
629
630 /* Perform any needed actions needed for a function that is receiving a
631 variable number of arguments. */
632
633 #define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \
634 current_function_anonymous_args = 1;
635
636
637 /* Call the function profiler with a given profile label. */
638
639 #define FUNCTION_PROFILER(STREAM,LABELNO) \
640 { \
641 fprintf(STREAM, " trapa #5\n"); \
642 fprintf(STREAM, " .align 2\n"); \
643 fprintf(STREAM, " .long LP%d\n", (LABELNO)); \
644 }
645
646
647 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
648 the stack pointer does not matter. The value is tested only in
649 functions that have frame pointers.
650 No definition is equivalent to always zero. */
651
652 #define EXIT_IGNORE_STACK 0
653
654 /* Generate the assembly code for function exit
655 Just dump out any accumulated constant table.*/
656
657 #define FUNCTION_EPILOGUE(STREAM, SIZE) \
658 dump_constants(0);
659
660 /* Output assembler code for a block containing the constant parts
661 of a trampoline, leaving space for the variable parts.
662
663 On the SH, the trapoline looks like
664 1 0000 D301 mov.l l1,r3
665 2 0002 DD02 mov.l l2,r13
666 3 0004 4D2B jmp @r13
667 4 0006 200B or r0,r0
668 5 0008 00000000 l1: .long function
669 6 000c 00000000 l2: .long area
670 */
671 #define TRAMPOLINE_TEMPLATE(FILE) \
672 { \
673 fprintf ((FILE), " .word 0xd301\n"); \
674 fprintf ((FILE), " .word 0xdd02\n"); \
675 fprintf ((FILE), " .word 0x4d2b\n"); \
676 fprintf ((FILE), " .word 0x200b\n"); \
677 fprintf ((FILE), " .long 0\n"); \
678 fprintf ((FILE), " .long 0\n"); \
679 }
680
681 /* Length in units of the trampoline for entering a nested function. */
682 #define TRAMPOLINE_SIZE 16
683
684 /* Alignment required for a trampoline in units. */
685 #define TRAMPOLINE_ALIGN 4
686
687 /* Emit RTL insns to initialize the variable parts of a trampoline.
688 FNADDR is an RTX for the address of the function's pure code.
689 CXT is an RTX for the static chain value for the function. */
690
691 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
692 { \
693 emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \
694 (CXT)); \
695 emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \
696 (FNADDR)); \
697 }
698
699 \f
700 /* Addressing modes, and classification of registers for them. */
701
702 /*#define HAVE_POST_INCREMENT 1*/
703 /*#define HAVE_PRE_INCREMENT 1*/
704 /*#define HAVE_POST_DECREMENT 1*/
705 /*#define HAVE_PRE_DECREMENT 1*/
706
707 /* Macros to check register numbers against specific register classes. */
708
709 /* These assume that REGNO is a hard or pseudo reg number.
710 They give nonzero only if REGNO is a hard reg of the suitable class
711 or a pseudo reg currently allocated to a suitable hard reg.
712 Since they use reg_renumber, they are safe only once reg_renumber
713 has been allocated, which happens in local-alloc.c.
714
715 */
716 #define REGNO_OK_FOR_BASE_P(REGNO) \
717 ((REGNO) < PR_REG || (unsigned) reg_renumber[(REGNO)] < PR_REG)
718
719 #define REGNO_OK_FOR_INDEX_P(REGNO) ((REGNO)==0)
720
721 /* Maximum number of registers that can appear in a valid memory
722 address. */
723
724 #define MAX_REGS_PER_ADDRESS 4
725
726 /* Recognize any constant value that is a valid address. */
727
728 #define CONSTANT_ADDRESS_P(X) \
729 (GET_CODE (X) == LABEL_REF)
730
731 /* Nonzero if the constant value X is a legitimate general operand.
732 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
733
734 On the SH, allow anything but a double */
735
736 #define LEGITIMATE_CONSTANT_P(X) (GET_CODE(X) != CONST_DOUBLE)
737
738 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
739 and check its validity for a certain class.
740 We have two alternate definitions for each of them.
741 The usual definition accepts all pseudo regs; the other rejects
742 them unless they have been allocated suitable hard regs.
743 The symbol REG_OK_STRICT causes the latter definition to be used. */
744
745 #ifndef REG_OK_STRICT
746
747 /* Nonzero if X is a hard reg that can be used as a base reg
748 or if it is a pseudo reg. */
749 #define REG_OK_FOR_BASE_P(X) \
750 (REGNO (X) <= 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
751
752 /* Nonzero if X is a hard reg that can be used as an index
753 or if it is a pseudo reg. */
754 #define REG_OK_FOR_INDEX_P(X) \
755 (REGNO (X) == 0 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
756
757 #define REG_OK_FOR_PRE_POST_P(X) \
758 (REGNO (X) <= 16)
759
760 #else
761
762 /* Nonzero if X is a hard reg that can be used as a base reg. */
763 #define REG_OK_FOR_BASE_P(X) \
764 REGNO_OK_FOR_BASE_P (REGNO (X))
765
766 /* Nonzero if X is a hard reg that can be used as an index. */
767 #define REG_OK_FOR_INDEX_P(X) \
768 REGNO_OK_FOR_INDEX_P (REGNO (X))
769
770 #define REG_OK_FOR_PRE_POST_P(X) \
771 (REGNO (X) <= 16 || (unsigned) reg_renumber[REGNO (X)] <=16)
772 #endif
773 \f
774 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
775 that is a valid memory address for an instruction.
776 The MODE argument is the machine mode for the MEM expression
777 that wants to use this address.
778
779 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
780
781 #define BASE_REGISTER_RTX_P(X) \
782 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
783
784 #define INDEX_REGISTER_RTX_P(X) \
785 (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
786
787
788 /* Jump to LABEL if X is a valid address RTX. This must also take
789 REG_OK_STRICT into account when deciding about valid registers, but it uses
790 the above macros so we are in luck.
791
792 Allow REG
793 REG+disp
794 REG+r0
795 REG++
796 --REG
797 */
798
799 /* The SH allows a displacement in a QI or HI amode, but only when the
800 other operand is R0. GCC doesn't handle this very well, so we forgo
801 all of that.
802
803 A legitimate index for a QI or HI is 0, SI and above can be any
804 number 0..63 */
805
806 #define GO_IF_LEGITIMATE_INDEX(MODE, REGNO, OP, LABEL) \
807 do { \
808 if (GET_CODE (OP) == CONST_INT) \
809 { \
810 if (0&&GET_MODE_SIZE (MODE) == 2 && ((unsigned)INTVAL(OP)) <=30)\
811 goto LABEL; \
812 if (0&&GET_MODE_SIZE (MODE) == 1 && ((unsigned)INTVAL(OP)) <=15)\
813 goto LABEL; \
814 if (GET_MODE_SIZE (MODE) >=4 \
815 && ((unsigned)INTVAL(OP)) < 64) \
816 goto LABEL; \
817 } \
818 } while(0)
819
820
821 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
822 { \
823 if (BASE_REGISTER_RTX_P (X)) \
824 goto LABEL; \
825 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
826 && GET_CODE (XEXP (X, 0)) == REG \
827 && REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
828 goto LABEL; \
829 else if (GET_CODE (X) == PLUS || GET_CODE(X) == LO_SUM) \
830 { \
831 rtx xop0 = XEXP(X,0); \
832 rtx xop1 = XEXP(X,1); \
833 if (GET_MODE_SIZE(MODE) >= 4 && BASE_REGISTER_RTX_P (xop0)) \
834 GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
835 if (GET_MODE_SIZE(MODE) >= 4 && BASE_REGISTER_RTX_P (xop1)) \
836 GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
837 if (GET_MODE_SIZE(MODE)<=4) { \
838 if(BASE_REGISTER_RTX_P(xop1) && \
839 INDEX_REGISTER_RTX_P(xop0)) goto LABEL; \
840 if(INDEX_REGISTER_RTX_P(xop1) && \
841 BASE_REGISTER_RTX_P(xop0)) goto LABEL; \
842 } \
843 } \
844 else if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_DEC) \
845 && GET_CODE (XEXP (X, 0)) == REG \
846 && REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
847 goto LABEL; \
848 }
849
850 \f
851 /* Try machine-dependent ways of modifying an illegitimate address
852 to be legitimate. If we find one, return the new, valid address.
853 This macro is used in only one place: `memory_address' in explow.c.
854
855 OLDX is the address as it was before break_out_memory_refs was called.
856 In some cases it is useful to look at this to decide what needs to be done.
857
858 MODE and WIN are passed so that this macro can use
859 GO_IF_LEGITIMATE_ADDRESS.
860
861 It is always safe for this macro to do nothing. It exists to recognize
862 opportunities to optimize the output.
863
864 On the SH we don't try anything */
865
866 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) ;
867
868 /* Go to LABEL if ADDR (a legitimate address expression)
869 has an effect that depends on the machine mode it is used for. */
870 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
871 { \
872 if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_DEC \
873 || GET_CODE(ADDR) == PRE_INC || GET_CODE(ADDR) == POST_INC) \
874 goto LABEL; \
875 }
876 \f
877 /* Specify the machine mode that this machine uses
878 for the index in the tablejump instruction. */
879 #define CASE_VECTOR_MODE SImode
880
881 /* Define this if the tablejump instruction expects the table
882 to contain offsets from the address of the table.
883 Do not define this if the table should contain absolute addresses. */
884 /* #define CASE_VECTOR_PC_RELATIVE */
885
886 /* Specify the tree operation to be used to convert reals to integers. */
887 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
888
889 /* This is the kind of divide that is easiest to do in the general case. */
890 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
891
892 /* 'char' is signed by default */
893 #define DEFAULT_SIGNED_CHAR 1
894
895 /* The type of size_t unsigned int. */
896 #define SIZE_TYPE "unsigned int"
897
898 /* Don't cse the address of the function being compiled. */
899 #define NO_RECURSIVE_FUNCTION_CSE 1
900
901 /* Max number of bytes we can move from memory to memory
902 in one reasonably fast instruction. */
903 #define MOVE_MAX 4
904
905 /* Define if operations between registers always perform the operation
906 on the full register even if a narrower mode is specified. */
907 #define WORD_REGISTER_OPERATIONS
908
909 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
910 will either zero-extend or sign-extend. The value of this macro should
911 be the code that says which one of the two operations is implicitly
912 done, NIL if none. */
913 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
914
915 /* Define this if zero-extension is slow (more than one real instruction).
916 On the SH, it's only one instruction */
917 /* #define SLOW_ZERO_EXTEND */
918
919 /* Nonzero if access to memory by bytes is slow and undesirable. */
920 #define SLOW_BYTE_ACCESS 0
921
922 /* We assume that the store-condition-codes instructions store 0 for false
923 and some other value for true. This is the value stored for true. */
924
925 #define STORE_FLAG_VALUE 1
926
927 /* Immediate shift counts are truncated by the output routines (or was it
928 the assembler?). Shift counts in a register are truncated by ARM. Note
929 that the native compiler puts too large (> 32) immediate shift counts
930 into a register and shifts by the register, letting the ARM decide what
931 to do instead of doing that itself. */
932 #define SHIFT_COUNT_TRUNCATED 1
933
934 /* All integers have the same format so truncation is easy. */
935 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
936
937 /* Define this if addresses of constant functions
938 shouldn't be put through pseudo regs where they can be cse'd.
939 Desirable on machines where ordinary constants are expensive
940 but a CALL with constant address is cheap. */
941 /*#define NO_FUNCTION_CSE 1*/
942
943 /* Chars and shorts should be passed as ints. */
944 #define PROMOTE_PROTOTYPES 1
945
946 /* The machine modes of pointers and functions */
947 #define Pmode SImode
948 #define FUNCTION_MODE Pmode
949
950 /* The structure type of the machine dependent info field of insns
951 No uses for this yet. */
952 /* #define INSN_MACHINE_INFO struct machine_info */
953
954 /* The relative costs of various types of constants. Note that cse.c defines
955 REG = 1, SUBREG = 2, any node = (2 + sum of subnodes). */
956
957 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
958 case CONST_INT: \
959 if (CONST_OK_FOR_I (INTVAL(RTX))) \
960 return 1; \
961 else \
962 return 8; \
963 case CONST: \
964 case LABEL_REF: \
965 case SYMBOL_REF: \
966 return 5; \
967 case CONST_DOUBLE: \
968 return 10;
969
970 #define RTX_COSTS(X, CODE, OUTER_CODE) \
971 case MULT: \
972 return COSTS_N_INSNS (multcosts (X)); \
973 case ASHIFT: \
974 case ASHIFTRT: \
975 case LSHIFT: \
976 return COSTS_N_INSNS (shiftcosts (X)) ; \
977 case DIV: \
978 case UDIV: \
979 case MOD: \
980 case UMOD: \
981 return COSTS_N_INSNS (100); \
982 case FLOAT: \
983 case FIX: \
984 return 100;
985
986 /* Compute extra cost of moving data between one register class
987 and another.
988
989 On the SH it is hard to move into the T reg, but simple to load
990 from it.
991 */
992
993 #define REGISTER_MOVE_COST(SRCCLASS, DSTCLASS) \
994 ((DSTCLASS == T_REGS) ? 10 : 1)
995 \f
996 /* Assembler output control */
997
998 /* The text to go at the start of the assembler file */
999 #define ASM_FILE_START(STREAM) \
1000 output_file_start (STREAM, f_options, sizeof f_options / sizeof f_options[0], \
1001 W_options, sizeof W_options / sizeof W_options[0]);
1002
1003
1004 #define ASM_FILE_END(STREAM) \
1005 dump_constants(0);
1006
1007 #define ASM_APP_ON ""
1008 #define ASM_APP_OFF ""
1009
1010 #define FILE_ASM_OP "\t.file\n"
1011 #define IDENT_ASM_OP "\t.ident\n"
1012
1013
1014 /* Switch to the text or data segment. */
1015 #define TEXT_SECTION_ASM_OP "\t.text"
1016 #define DATA_SECTION_ASM_OP "\t.data"
1017 #define CTORS_SECTION_ASM_OP "\t.section\t.ctors\n"
1018 #define DTORS_SECTION_ASM_OP "\t.section\t.dtors\n"
1019
1020 #define EXTRA_SECTIONS in_ctors, in_dtors
1021 #define EXTRA_SECTION_FUNCTIONS \
1022 void \
1023 ctors_section() \
1024 { \
1025 if (in_section != in_ctors) \
1026 { \
1027 fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
1028 in_section = in_ctors; \
1029 } \
1030 } \
1031 void \
1032 dtors_section() \
1033 { \
1034 if (in_section != in_dtors) \
1035 { \
1036 fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
1037 in_section = in_dtors; \
1038 } \
1039 }
1040
1041 #define ASM_OUTPUT_SECTION(file, nam) \
1042 do { fprintf (file, "\t.section\t%s\n", nam); } while(0)
1043
1044 #define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
1045 do { ctors_section(); fprintf(FILE,"\t.long\t_%s\n", NAME); } while (0)
1046
1047 #define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
1048 do { dtors_section(); fprintf(FILE,"\t.long\t_%s\n", NAME); } while (0)
1049
1050
1051 #undef DO_GLOBAL_CTORS_BODY
1052 #define DO_GLOBAL_CTORS_BODY \
1053 { \
1054 typedef (*pfunc)(); \
1055 extern pfunc __ctors[]; \
1056 extern pfunc __ctors_end[]; \
1057 pfunc *p; \
1058 for (p = __ctors; p < __ctors_end; p++) \
1059 { \
1060 (*p)(); \
1061 } \
1062 }
1063
1064 #undef DO_GLOBAL_DTORS_BODY
1065 #define DO_GLOBAL_DTORS_BODY \
1066 { \
1067 typedef (*pfunc)(); \
1068 extern pfunc __dtors[]; \
1069 extern pfunc __dtors_end[]; \
1070 pfunc *p; \
1071 for (p = __dtors; p < __dtors_end; p++) \
1072 { \
1073 (*p)(); \
1074 } \
1075 }
1076
1077
1078
1079 #define ASM_OUTPUT_REG_PUSH(file, v) \
1080 fprintf (file, "\tmov.l r%s,-@r15\n", v);
1081
1082 #define ASM_OUTPUT_REG_POP(file, v) \
1083 fprintf (file, "\tmov.l @r15+,r%s\n", v);
1084
1085
1086
1087 /* The assembler's names for the registers. RFP need not always be used as
1088 the Real framepointer; it can also be used as a normal general register.
1089 Note that the name `fp' is horribly misleading since `fp' is in fact only
1090 the argument-and-return-context pointer. */
1091 #define REGISTER_NAMES \
1092 { \
1093 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1094 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1095 "ap", "pr", "t", "gbr", "mach","macl" \
1096 }
1097
1098 /* DBX register number for a given compiler register number */
1099 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1100
1101 /* Output a label definition. */
1102 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1103 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1104
1105
1106 /* This is how to output an assembler line
1107 that says to advance the location counter
1108 to a multiple of 2**LOG bytes. */
1109
1110 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1111 if ((LOG) != 0) \
1112 fprintf (FILE, "\t.align %d\n", LOG)
1113
1114 /* Output a function label definition. */
1115 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
1116 ASM_OUTPUT_LABEL(STREAM, NAME)
1117
1118 /* Output a globalising directive for a label. */
1119 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
1120 (fprintf (STREAM, "\t.global\t"), \
1121 assemble_name (STREAM, NAME), \
1122 fputc ('\n',STREAM)) \
1123
1124 /* Output a reference to a label. */
1125 #define ASM_OUTPUT_LABELREF(STREAM,NAME) \
1126 fprintf (STREAM, "_%s", NAME)
1127
1128 /* Make an internal label into a string. */
1129 #define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
1130 sprintf (STRING, "*%s%d", PREFIX, NUM)
1131
1132 /* Output an internal label definition. */
1133 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1134 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1135
1136 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
1137
1138 /* Construct a private name. */
1139 #define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
1140 ((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
1141 sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
1142
1143 /* Jump tables must be 32 bit aligned. */
1144 #define ASM_OUTPUT_CASE_LABEL(STREAM,PREFIX,NUM,TABLE) \
1145 fprintf (STREAM, "\t.align 2\n%s%d:\n", PREFIX, NUM);
1146
1147 /* Output a relative address. Not needed since jump tables are absolute
1148 but we must define it anyway. */
1149 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,VALUE,REL) \
1150 fputs ("- - - ASM_OUTPUT_ADDR_DIFF_ELT called!\n", STREAM)
1151
1152 /* Output an element of a dispatch table. */
1153 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
1154 fprintf (STREAM, "\t.long\tL%d\n", VALUE)
1155
1156 /* Output various types of constants. */
1157
1158
1159 /* This is how to output an assembler line defining a `double' */
1160
1161 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1162 do { char dstr[30]; \
1163 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1164 fprintf (FILE, "\t.double %s\n", dstr); \
1165 } while (0)
1166
1167
1168 /* This is how to output an assembler line defining a `float' constant. */
1169 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1170 do { char dstr[30]; \
1171 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1172 fprintf (FILE, "\t.float %s\n", dstr); \
1173 } while (0)
1174
1175
1176 #define ASM_OUTPUT_INT(STREAM, EXP) \
1177 (fprintf (STREAM, "\t.long\t"), \
1178 output_addr_const (STREAM, (EXP)), \
1179 fputc ('\n', STREAM))
1180
1181 #define ASM_OUTPUT_SHORT(STREAM, EXP) \
1182 (fprintf (STREAM, "\t.short\t"), \
1183 output_addr_const (STREAM, (EXP)), \
1184 fputc ('\n', STREAM))
1185
1186 #define ASM_OUTPUT_CHAR(STREAM, EXP) \
1187 (fprintf (STREAM, "\t.byte\t"), \
1188 output_addr_const (STREAM, (EXP)), \
1189 fputc ('\n', STREAM))
1190
1191 #define ASM_OUTPUT_BYTE(STREAM, VALUE) \
1192 fprintf (STREAM, "\t.byte\t%d\n", VALUE) \
1193
1194 /* This is how to output an assembler line
1195 that says to advance the location counter by SIZE bytes. */
1196
1197 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1198 fprintf (FILE, "\t.space %d\n", (SIZE))
1199
1200 /* This says how to output an assembler line
1201 to define a global common symbol. */
1202
1203 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1204 ( fputs ("\t.comm ", (FILE)), \
1205 assemble_name ((FILE), (NAME)), \
1206 fprintf ((FILE), ",%d\n", (SIZE)))
1207
1208 /* This says how to output an assembler line
1209 to define a local common symbol. */
1210
1211 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1212 ( fputs ("\t.lcomm ", (FILE)), \
1213 assemble_name ((FILE), (NAME)), \
1214 fprintf ((FILE), ",%d\n", (SIZE)))
1215
1216
1217 /* The assembler's parentheses characters. */
1218 #define ASM_OPEN_PAREN "("
1219 #define ASM_CLOSE_PAREN ")"
1220
1221 /* Target characters. */
1222 #define TARGET_BELL 007
1223 #define TARGET_BS 010
1224 #define TARGET_TAB 011
1225 #define TARGET_NEWLINE 012
1226 #define TARGET_VT 013
1227 #define TARGET_FF 014
1228 #define TARGET_CR 015
1229 \f
1230
1231 /* Only perform branch elimination (by making instructions conditional) if
1232 we're optimising. Otherwise it's of no use anyway. */
1233 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1234 final_prescan_insn (INSN, OPVEC, NOPERANDS)
1235
1236 /* Print operand X (an rtx) in assembler syntax to file FILE.
1237 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1238 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1239
1240 #define PRINT_OPERAND(STREAM, X, CODE) print_operand (STREAM, X, CODE)
1241
1242 /* Print a memory address as an operand to reference that memory location. */
1243
1244 #define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address (STREAM, X)
1245
1246 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1247 ((CHAR)=='.' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '!')
1248
1249 \f
1250 /* Define the information needed to generate branch insns. This is stored
1251 from the compare operation. Note that we can't use "rtx" here since it
1252 hasn't been defined! */
1253
1254 extern struct rtx_def *sh_compare_op0;
1255 extern struct rtx_def *sh_compare_op1;
1256 extern struct rtx_def *prepare_scc_operands();
1257
1258 extern enum attr_cpu sh_cpu; /* target cpu */
1259
1260 /* Declare functions defined in sh.c and used in templates. */
1261
1262 extern char *output_branch();
1263 extern char *output_shift();
1264 extern char *output_movedouble();
1265 extern char *output_movepcrel();
1266
1267
1268 #define ADJUST_INSN_LENGTH(insn, length) \
1269 adjust_insn_length (insn, insn_lengths)
1270
1271
1272
1273
1274