835f66922c5559c3b7c2b6601d58980ba506832a
[gcc.git] / gcc / config / sh / sh.h
1 /* Definitions of target machine for GNU compiler for Renesas / SuperH SH.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com).
5 Improved by Jim Wilson (wilson@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #ifndef GCC_SH_H
25 #define GCC_SH_H
26
27 #define TARGET_VERSION \
28 fputs (" (Hitachi SH)", stderr);
29
30 /* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
31 include it here, because bconfig.h is also included by gencodes.c . */
32 /* ??? No longer true. */
33 extern int code_for_indirect_jump_scratch;
34
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do { \
37 builtin_define ("__sh__"); \
38 builtin_assert ("cpu=sh"); \
39 builtin_assert ("machine=sh"); \
40 switch ((int) sh_cpu) \
41 { \
42 case PROCESSOR_SH1: \
43 builtin_define ("__sh1__"); \
44 break; \
45 case PROCESSOR_SH2: \
46 builtin_define ("__sh2__"); \
47 break; \
48 case PROCESSOR_SH2E: \
49 builtin_define ("__SH2E__"); \
50 break; \
51 case PROCESSOR_SH2A: \
52 builtin_define ("__SH2A__"); \
53 builtin_define (TARGET_SH2A_DOUBLE \
54 ? (TARGET_FPU_SINGLE ? "__SH2A_SINGLE__" : "__SH2A_DOUBLE__") \
55 : TARGET_FPU_ANY ? "__SH2A_SINGLE_ONLY__" \
56 : "__SH2A_NOFPU__"); \
57 break; \
58 case PROCESSOR_SH3: \
59 builtin_define ("__sh3__"); \
60 builtin_define ("__SH3__"); \
61 if (TARGET_HARD_SH4) \
62 builtin_define ("__SH4_NOFPU__"); \
63 break; \
64 case PROCESSOR_SH3E: \
65 builtin_define (TARGET_HARD_SH4 ? "__SH4_SINGLE_ONLY__" : "__SH3E__"); \
66 break; \
67 case PROCESSOR_SH4: \
68 builtin_define (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__"); \
69 break; \
70 case PROCESSOR_SH4A: \
71 builtin_define ("__SH4A__"); \
72 builtin_define (TARGET_SH4 \
73 ? (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__") \
74 : TARGET_FPU_ANY ? "__SH4_SINGLE_ONLY__" \
75 : "__SH4_NOFPU__"); \
76 break; \
77 case PROCESSOR_SH5: \
78 { \
79 builtin_define_with_value ("__SH5__", \
80 TARGET_SHMEDIA64 ? "64" : "32", 0); \
81 builtin_define_with_value ("__SHMEDIA__", \
82 TARGET_SHMEDIA ? "1" : "0", 0); \
83 if (! TARGET_FPU_DOUBLE) \
84 builtin_define ("__SH4_NOFPU__"); \
85 } \
86 } \
87 if (TARGET_FPU_ANY) \
88 builtin_define ("__SH_FPU_ANY__"); \
89 if (TARGET_FPU_DOUBLE) \
90 builtin_define ("__SH_FPU_DOUBLE__"); \
91 if (TARGET_HITACHI) \
92 builtin_define ("__HITACHI__"); \
93 builtin_define (TARGET_LITTLE_ENDIAN \
94 ? "__LITTLE_ENDIAN__" : "__BIG_ENDIAN__"); \
95 if (flag_pic) \
96 { \
97 builtin_define ("__pic__"); \
98 builtin_define ("__PIC__"); \
99 } \
100 } while (0)
101
102 /* We can not debug without a frame pointer. */
103 /* #define CAN_DEBUG_WITHOUT_FP */
104
105 #define CONDITIONAL_REGISTER_USAGE do \
106 { \
107 int regno; \
108 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++) \
109 if (! VALID_REGISTER_P (regno)) \
110 fixed_regs[regno] = call_used_regs[regno] = 1; \
111 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. */ \
112 if (TARGET_SH5) \
113 { \
114 call_used_regs[FIRST_GENERAL_REG + 8] \
115 = call_used_regs[FIRST_GENERAL_REG + 9] = 1; \
116 call_really_used_regs[FIRST_GENERAL_REG + 8] \
117 = call_really_used_regs[FIRST_GENERAL_REG + 9] = 1; \
118 } \
119 if (TARGET_SHMEDIA) \
120 { \
121 regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS; \
122 CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]); \
123 regno_reg_class[FIRST_FP_REG] = FP_REGS; \
124 } \
125 if (flag_pic) \
126 { \
127 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
128 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
129 } \
130 /* Renesas saves and restores mac registers on call. */ \
131 if (TARGET_HITACHI && ! TARGET_NOMACSAVE) \
132 { \
133 call_really_used_regs[MACH_REG] = 0; \
134 call_really_used_regs[MACL_REG] = 0; \
135 } \
136 for (regno = FIRST_FP_REG + (TARGET_LITTLE_ENDIAN != 0); \
137 regno <= LAST_FP_REG; regno += 2) \
138 SET_HARD_REG_BIT (reg_class_contents[DF_HI_REGS], regno); \
139 if (TARGET_SHMEDIA) \
140 { \
141 for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++)\
142 if (! fixed_regs[regno] && call_really_used_regs[regno]) \
143 SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
144 } \
145 else \
146 for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++) \
147 if (! fixed_regs[regno] && call_really_used_regs[regno]) \
148 SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
149 } while (0)
150 \f
151 /* Nonzero if this is an ELF target - compile time only */
152 #define TARGET_ELF 0
153
154 /* Nonzero if we should generate code using type 2E insns. */
155 #define TARGET_SH2E (TARGET_SH2 && TARGET_SH_E)
156
157 /* Nonzero if we should generate code using type 2A insns. */
158 #define TARGET_SH2A TARGET_HARD_SH2A
159 /* Nonzero if we should generate code using type 2A SF insns. */
160 #define TARGET_SH2A_SINGLE (TARGET_SH2A && TARGET_SH2E)
161 /* Nonzero if we should generate code using type 2A DF insns. */
162 #define TARGET_SH2A_DOUBLE (TARGET_HARD_SH2A_DOUBLE && TARGET_SH2A)
163
164 /* Nonzero if we should generate code using type 3E insns. */
165 #define TARGET_SH3E (TARGET_SH3 && TARGET_SH_E)
166
167 /* Nonzero if the cache line size is 32. */
168 #define TARGET_CACHE32 (TARGET_HARD_SH4 || TARGET_SH5)
169
170 /* Nonzero if we schedule for a superscalar implementation. */
171 #define TARGET_SUPERSCALAR TARGET_HARD_SH4
172
173 /* Nonzero if the target has separate instruction and data caches. */
174 #define TARGET_HARVARD (TARGET_HARD_SH4 || TARGET_SH5)
175
176 /* Nonzero if a double-precision FPU is available. */
177 #define TARGET_FPU_DOUBLE \
178 ((target_flags & MASK_SH4) != 0 || TARGET_SH2A_DOUBLE)
179
180 /* Nonzero if an FPU is available. */
181 #define TARGET_FPU_ANY (TARGET_SH2E || TARGET_FPU_DOUBLE)
182
183 /* Nonzero if we should generate code using type 4 insns. */
184 #undef TARGET_SH4
185 #define TARGET_SH4 ((target_flags & MASK_SH4) != 0 && TARGET_SH1)
186
187 /* Nonzero if we're generating code for the common subset of
188 instructions present on both SH4a and SH4al-dsp. */
189 #define TARGET_SH4A_ARCH TARGET_SH4A
190
191 /* Nonzero if we're generating code for SH4a, unless the use of the
192 FPU is disabled (which makes it compatible with SH4al-dsp). */
193 #define TARGET_SH4A_FP (TARGET_SH4A_ARCH && TARGET_FPU_ANY)
194
195 /* Nonzero if we should generate code using the SHcompact instruction
196 set and 32-bit ABI. */
197 #define TARGET_SHCOMPACT (TARGET_SH5 && TARGET_SH1)
198
199 /* Nonzero if we should generate code using the SHmedia instruction
200 set and ABI. */
201 #define TARGET_SHMEDIA (TARGET_SH5 && ! TARGET_SH1)
202
203 /* Nonzero if we should generate code using the SHmedia ISA and 32-bit
204 ABI. */
205 #define TARGET_SHMEDIA32 (TARGET_SH5 && ! TARGET_SH1 && TARGET_SH_E)
206
207 /* Nonzero if we should generate code using the SHmedia ISA and 64-bit
208 ABI. */
209 #define TARGET_SHMEDIA64 (TARGET_SH5 && ! TARGET_SH1 && ! TARGET_SH_E)
210
211 /* Nonzero if we should generate code using SHmedia FPU instructions. */
212 #define TARGET_SHMEDIA_FPU (TARGET_SHMEDIA && TARGET_FPU_DOUBLE)
213
214 /* This is not used by the SH2E calling convention */
215 #define TARGET_VARARGS_PRETEND_ARGS(FUN_DECL) \
216 (TARGET_SH1 && ! TARGET_SH2E && ! TARGET_SH5 \
217 && ! (TARGET_HITACHI || sh_attr_renesas_p (FUN_DECL)))
218
219 #ifndef TARGET_CPU_DEFAULT
220 #define TARGET_CPU_DEFAULT SELECT_SH1
221 #define SUPPORT_SH1 1
222 #define SUPPORT_SH2E 1
223 #define SUPPORT_SH4 1
224 #define SUPPORT_SH4_SINGLE 1
225 #define SUPPORT_SH2A 1
226 #define SUPPORT_SH2A_SINGLE 1
227 #endif
228
229 #define TARGET_DIVIDE_INV \
230 (sh_div_strategy == SH_DIV_INV || sh_div_strategy == SH_DIV_INV_MINLAT \
231 || sh_div_strategy == SH_DIV_INV20U || sh_div_strategy == SH_DIV_INV20L \
232 || sh_div_strategy == SH_DIV_INV_CALL \
233 || sh_div_strategy == SH_DIV_INV_CALL2 || sh_div_strategy == SH_DIV_INV_FP)
234 #define TARGET_DIVIDE_FP (sh_div_strategy == SH_DIV_FP)
235 #define TARGET_DIVIDE_INV_FP (sh_div_strategy == SH_DIV_INV_FP)
236 #define TARGET_DIVIDE_CALL2 (sh_div_strategy == SH_DIV_CALL2)
237 #define TARGET_DIVIDE_INV_MINLAT (sh_div_strategy == SH_DIV_INV_MINLAT)
238 #define TARGET_DIVIDE_INV20U (sh_div_strategy == SH_DIV_INV20U)
239 #define TARGET_DIVIDE_INV20L (sh_div_strategy == SH_DIV_INV20L)
240 #define TARGET_DIVIDE_INV_CALL (sh_div_strategy == SH_DIV_INV_CALL)
241 #define TARGET_DIVIDE_INV_CALL2 (sh_div_strategy == SH_DIV_INV_CALL2)
242
243 #define SELECT_SH1 (MASK_SH1)
244 #define SELECT_SH2 (MASK_SH2 | SELECT_SH1)
245 #define SELECT_SH2E (MASK_SH_E | MASK_SH2 | MASK_SH1 \
246 | MASK_FPU_SINGLE)
247 #define SELECT_SH2A (MASK_SH_E | MASK_HARD_SH2A \
248 | MASK_HARD_SH2A_DOUBLE \
249 | MASK_SH2 | MASK_SH1)
250 #define SELECT_SH2A_NOFPU (MASK_HARD_SH2A | MASK_SH2 | MASK_SH1)
251 #define SELECT_SH2A_SINGLE_ONLY (MASK_SH_E | MASK_HARD_SH2A | MASK_SH2 \
252 | MASK_SH1 | MASK_FPU_SINGLE)
253 #define SELECT_SH2A_SINGLE (MASK_SH_E | MASK_HARD_SH2A \
254 | MASK_FPU_SINGLE | MASK_HARD_SH2A_DOUBLE \
255 | MASK_SH2 | MASK_SH1)
256 #define SELECT_SH3 (MASK_SH3 | SELECT_SH2)
257 #define SELECT_SH3E (MASK_SH_E | MASK_FPU_SINGLE | SELECT_SH3)
258 #define SELECT_SH4_NOFPU (MASK_HARD_SH4 | SELECT_SH3)
259 #define SELECT_SH4_SINGLE_ONLY (MASK_HARD_SH4 | SELECT_SH3E)
260 #define SELECT_SH4 (MASK_SH4 | MASK_SH_E | MASK_HARD_SH4 \
261 | SELECT_SH3)
262 #define SELECT_SH4_SINGLE (MASK_FPU_SINGLE | SELECT_SH4)
263 #define SELECT_SH4A_NOFPU (MASK_SH4A | SELECT_SH4_NOFPU)
264 #define SELECT_SH4A_SINGLE_ONLY (MASK_SH4A | SELECT_SH4_SINGLE_ONLY)
265 #define SELECT_SH4A (MASK_SH4A | SELECT_SH4)
266 #define SELECT_SH4A_SINGLE (MASK_SH4A | SELECT_SH4_SINGLE)
267 #define SELECT_SH5_64MEDIA (MASK_SH5 | MASK_SH4)
268 #define SELECT_SH5_64MEDIA_NOFPU (MASK_SH5)
269 #define SELECT_SH5_32MEDIA (MASK_SH5 | MASK_SH4 | MASK_SH_E)
270 #define SELECT_SH5_32MEDIA_NOFPU (MASK_SH5 | MASK_SH_E)
271 #define SELECT_SH5_COMPACT (MASK_SH5 | MASK_SH4 | SELECT_SH3E)
272 #define SELECT_SH5_COMPACT_NOFPU (MASK_SH5 | SELECT_SH3)
273
274 #if SUPPORT_SH1
275 #define SUPPORT_SH2 1
276 #endif
277 #if SUPPORT_SH2
278 #define SUPPORT_SH3 1
279 #endif
280 #if SUPPORT_SH3
281 #define SUPPORT_SH4_NOFPU 1
282 #endif
283 #if SUPPORT_SH4_NOFPU
284 #define SUPPORT_SH4A_NOFPU 1
285 #define SUPPORT_SH4AL 1
286 #define SUPPORT_SH2A_NOFPU 1
287 #endif
288
289 #if SUPPORT_SH2E
290 #define SUPPORT_SH3E 1
291 #endif
292 #if SUPPORT_SH3E
293 #define SUPPORT_SH4_SINGLE_ONLY 1
294 #define SUPPORT_SH4A_SINGLE_ONLY 1
295 #define SUPPORT_SH2A_SINGLE_ONLY 1
296 #endif
297
298 #if SUPPORT_SH4
299 #define SUPPORT_SH4A 1
300 #endif
301
302 #if SUPPORT_SH4_SINGLE
303 #define SUPPORT_SH4A_SINGLE 1
304 #endif
305
306 #if SUPPORT_SH5_COMPAT
307 #define SUPPORT_SH5_32MEDIA 1
308 #endif
309
310 #if SUPPORT_SH5_COMPACT_NOFPU
311 #define SUPPORT_SH5_32MEDIA_NOFPU 1
312 #endif
313
314 #define SUPPORT_ANY_SH5_32MEDIA \
315 (SUPPORT_SH5_32MEDIA || SUPPORT_SH5_32MEDIA_NOFPU)
316 #define SUPPORT_ANY_SH5_64MEDIA \
317 (SUPPORT_SH5_64MEDIA || SUPPORT_SH5_64MEDIA_NOFPU)
318 #define SUPPORT_ANY_SH5 \
319 (SUPPORT_ANY_SH5_32MEDIA || SUPPORT_ANY_SH5_64MEDIA)
320
321 /* Reset all target-selection flags. */
322 #define MASK_ARCH (MASK_SH1 | MASK_SH2 | MASK_SH3 | MASK_SH_E | MASK_SH4 \
323 | MASK_HARD_SH2A | MASK_HARD_SH2A_DOUBLE | MASK_SH4A \
324 | MASK_HARD_SH4 | MASK_FPU_SINGLE | MASK_SH5)
325
326 /* This defaults us to big-endian. */
327 #ifndef TARGET_ENDIAN_DEFAULT
328 #define TARGET_ENDIAN_DEFAULT 0
329 #endif
330
331 #ifndef TARGET_OPT_DEFAULT
332 #define TARGET_OPT_DEFAULT MASK_ADJUST_UNROLL
333 #endif
334
335 #define TARGET_DEFAULT \
336 (TARGET_CPU_DEFAULT | TARGET_ENDIAN_DEFAULT | TARGET_OPT_DEFAULT)
337
338 #ifndef SH_MULTILIB_CPU_DEFAULT
339 #define SH_MULTILIB_CPU_DEFAULT "m1"
340 #endif
341
342 #if TARGET_ENDIAN_DEFAULT
343 #define MULTILIB_DEFAULTS { "ml", SH_MULTILIB_CPU_DEFAULT }
344 #else
345 #define MULTILIB_DEFAULTS { "mb", SH_MULTILIB_CPU_DEFAULT }
346 #endif
347
348 #define CPP_SPEC " %(subtarget_cpp_spec) "
349
350 #ifndef SUBTARGET_CPP_SPEC
351 #define SUBTARGET_CPP_SPEC ""
352 #endif
353
354 #ifndef SUBTARGET_EXTRA_SPECS
355 #define SUBTARGET_EXTRA_SPECS
356 #endif
357
358 #define EXTRA_SPECS \
359 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
360 { "link_emul_prefix", LINK_EMUL_PREFIX }, \
361 { "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL }, \
362 { "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX }, \
363 { "subtarget_link_spec", SUBTARGET_LINK_SPEC }, \
364 { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC }, \
365 { "subtarget_asm_relax_spec", SUBTARGET_ASM_RELAX_SPEC }, \
366 { "subtarget_asm_isa_spec", SUBTARGET_ASM_ISA_SPEC }, \
367 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
368 SUBTARGET_EXTRA_SPECS
369
370 #if TARGET_CPU_DEFAULT & MASK_HARD_SH4
371 #define SUBTARGET_ASM_RELAX_SPEC "%{!m1:%{!m2:%{!m3*:%{!m5*:-isa=sh4}}}}"
372 #else
373 #define SUBTARGET_ASM_RELAX_SPEC "%{m4*:-isa=sh4}"
374 #endif
375
376 #define SH_ASM_SPEC \
377 "%(subtarget_asm_endian_spec) %{mrelax:-relax %(subtarget_asm_relax_spec)}\
378 %(subtarget_asm_isa_spec) %(subtarget_asm_spec)\
379 %{m2a:--isa=sh2a} \
380 %{m2a-single:--isa=sh2a} \
381 %{m2a-single-only:--isa=sh2a} \
382 %{m2a-nofpu:--isa=sh2a-nofpu} \
383 %{m5-compact*:--isa=SHcompact} \
384 %{m5-32media*:--isa=SHmedia --abi=32} \
385 %{m5-64media*:--isa=SHmedia --abi=64} \
386 %{m4al:-dsp} %{mcut2-workaround:-cut2-workaround}"
387
388 #define ASM_SPEC SH_ASM_SPEC
389
390 #ifndef SUBTARGET_ASM_ENDIAN_SPEC
391 #if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
392 #define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
393 #else
394 #define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
395 #endif
396 #endif
397
398 #if STRICT_NOFPU == 1
399 /* Strict nofpu means that the compiler should tell the assembler
400 to reject FPU instructions. E.g. from ASM inserts. */
401 #if TARGET_CPU_DEFAULT & MASK_HARD_SH4 && !(TARGET_CPU_DEFAULT & MASK_SH_E)
402 #define SUBTARGET_ASM_ISA_SPEC "%{!m1:%{!m2:%{!m3*:%{m4-nofpu|!m4*:%{!m5:-isa=sh4-nofpu}}}}}"
403 #else
404 /* If there were an -isa option for sh5-nofpu then it would also go here. */
405 #define SUBTARGET_ASM_ISA_SPEC \
406 "%{m4-nofpu:-isa=sh4-nofpu} " ASM_ISA_DEFAULT_SPEC
407 #endif
408 #else /* ! STRICT_NOFPU */
409 #define SUBTARGET_ASM_ISA_SPEC ASM_ISA_DEFAULT_SPEC
410 #endif
411
412 #ifndef SUBTARGET_ASM_SPEC
413 #define SUBTARGET_ASM_SPEC ""
414 #endif
415
416 #if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
417 #define LINK_EMUL_PREFIX "sh%{!mb:l}"
418 #else
419 #define LINK_EMUL_PREFIX "sh%{ml:l}"
420 #endif
421
422 #if TARGET_CPU_DEFAULT & MASK_SH5
423 #if TARGET_CPU_DEFAULT & MASK_SH_E
424 #define LINK_DEFAULT_CPU_EMUL "32"
425 #if TARGET_CPU_DEFAULT & MASK_SH1
426 #define ASM_ISA_SPEC_DEFAULT "--isa=SHcompact"
427 #else
428 #define ASM_ISA_SPEC_DEFAULT "--isa=SHmedia --abi=32"
429 #endif /* MASK_SH1 */
430 #else /* !MASK_SH_E */
431 #define LINK_DEFAULT_CPU_EMUL "64"
432 #define ASM_ISA_SPEC_DEFAULT "--isa=SHmedia --abi=64"
433 #endif /* MASK_SH_E */
434 #define ASM_ISA_DEFAULT_SPEC \
435 " %{!m1:%{!m2*:%{!m3*:%{!m4*:%{!m5*:" ASM_ISA_SPEC_DEFAULT "}}}}}"
436 #else /* !MASK_SH5 */
437 #define LINK_DEFAULT_CPU_EMUL ""
438 #define ASM_ISA_DEFAULT_SPEC ""
439 #endif /* MASK_SH5 */
440
441 #define SUBTARGET_LINK_EMUL_SUFFIX ""
442 #define SUBTARGET_LINK_SPEC ""
443
444 /* svr4.h redefines LINK_SPEC inappropriately, so go via SH_LINK_SPEC,
445 so that we can undo the damage without code replication. */
446 #define LINK_SPEC SH_LINK_SPEC
447
448 #define SH_LINK_SPEC "\
449 -m %(link_emul_prefix)\
450 %{m5-compact*|m5-32media*:32}\
451 %{m5-64media*:64}\
452 %{!m1:%{!m2:%{!m3*:%{!m4*:%{!m5*:%(link_default_cpu_emul)}}}}}\
453 %(subtarget_link_emul_suffix) \
454 %{mrelax:-relax} %(subtarget_link_spec)"
455
456 #ifndef SH_DIV_STR_FOR_SIZE
457 #define SH_DIV_STR_FOR_SIZE "call"
458 #endif
459
460 #define DRIVER_SELF_SPECS "%{m2a:%{ml:%eSH2a does not support little-endian}}"
461 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
462 do { \
463 if (LEVEL) \
464 { \
465 flag_omit_frame_pointer = -1; \
466 if (! SIZE) \
467 sh_div_str = "inv:minlat"; \
468 } \
469 if (SIZE) \
470 { \
471 target_flags |= MASK_SMALLCODE; \
472 sh_div_str = SH_DIV_STR_FOR_SIZE ; \
473 } \
474 /* We can't meaningfully test TARGET_SHMEDIA here, because -m options \
475 haven't been parsed yet, hence we';d read only the default. \
476 sh_target_reg_class will return NO_REGS if this is not SHMEDIA, so \
477 it's OK to always set flag_branch_target_load_optimize. */ \
478 if (LEVEL > 1) \
479 { \
480 flag_branch_target_load_optimize = 1; \
481 if (! (SIZE)) \
482 target_flags |= MASK_SAVE_ALL_TARGET_REGS; \
483 } \
484 /* Likewise, we can't meaningfully test TARGET_SH2E / TARGET_IEEE \
485 here, so leave it to OVERRIDE_OPTIONS to set \
486 flag_finite_math_only. We set it to 2 here so we know if the user \
487 explicitly requested this to be on or off. */ \
488 flag_finite_math_only = 2; \
489 } while (0)
490
491 #define ASSEMBLER_DIALECT assembler_dialect
492
493 extern int assembler_dialect;
494
495 enum sh_divide_strategy_e {
496 SH_DIV_CALL,
497 SH_DIV_CALL2,
498 SH_DIV_FP,
499 SH_DIV_INV,
500 SH_DIV_INV_MINLAT,
501 SH_DIV_INV20U,
502 SH_DIV_INV20L,
503 SH_DIV_INV_CALL,
504 SH_DIV_INV_CALL2,
505 SH_DIV_INV_FP
506 };
507
508 extern enum sh_divide_strategy_e sh_div_strategy;
509
510 #ifndef SH_DIV_STRATEGY_DEFAULT
511 #define SH_DIV_STRATEGY_DEFAULT SH_DIV_CALL
512 #endif
513
514 #define OVERRIDE_OPTIONS \
515 do { \
516 int regno; \
517 \
518 if (flag_finite_math_only == 2) \
519 flag_finite_math_only \
520 = !flag_signaling_nans && TARGET_SH2E && ! TARGET_IEEE; \
521 if (TARGET_SH2E && !flag_finite_math_only) \
522 target_flags |= MASK_IEEE; \
523 sh_cpu = CPU_SH1; \
524 assembler_dialect = 0; \
525 if (TARGET_SH2) \
526 sh_cpu = CPU_SH2; \
527 if (TARGET_SH2E) \
528 sh_cpu = CPU_SH2E; \
529 if (TARGET_SH2A) \
530 { \
531 sh_cpu = CPU_SH2A; \
532 if (TARGET_SH2A_DOUBLE) \
533 target_flags |= MASK_FMOVD; \
534 } \
535 if (TARGET_SH3) \
536 sh_cpu = CPU_SH3; \
537 if (TARGET_SH3E) \
538 sh_cpu = CPU_SH3E; \
539 if (TARGET_SH4) \
540 { \
541 assembler_dialect = 1; \
542 sh_cpu = CPU_SH4; \
543 } \
544 if (TARGET_SH4A_ARCH) \
545 { \
546 assembler_dialect = 1; \
547 sh_cpu = CPU_SH4A; \
548 } \
549 if (TARGET_SH5) \
550 { \
551 sh_cpu = CPU_SH5; \
552 target_flags |= MASK_ALIGN_DOUBLE; \
553 if (TARGET_SHMEDIA_FPU) \
554 target_flags |= MASK_FMOVD; \
555 if (TARGET_SHMEDIA) \
556 { \
557 /* There are no delay slots on SHmedia. */ \
558 flag_delayed_branch = 0; \
559 /* Relaxation isn't yet supported for SHmedia */ \
560 target_flags &= ~MASK_RELAX; \
561 /* After reload, if conversion does little good but can cause \
562 ICEs: \
563 - find_if_block doesn't do anything for SH because we don't\
564 have conditional execution patterns. (We use conditional\
565 move patterns, which are handled differently, and only \
566 before reload). \
567 - find_cond_trap doesn't do anything for the SH because we \
568 don't have conditional traps. \
569 - find_if_case_1 uses redirect_edge_and_branch_force in \
570 the only path that does an optimization, and this causes \
571 an ICE when branch targets are in registers. \
572 - find_if_case_2 doesn't do anything for the SHmedia after \
573 reload except when it can redirect a tablejump - and \
574 that's rather rare. */ \
575 flag_if_conversion2 = 0; \
576 if (! strcmp (sh_div_str, "call")) \
577 sh_div_strategy = SH_DIV_CALL; \
578 else if (! strcmp (sh_div_str, "call2")) \
579 sh_div_strategy = SH_DIV_CALL2; \
580 if (! strcmp (sh_div_str, "fp") && TARGET_FPU_ANY) \
581 sh_div_strategy = SH_DIV_FP; \
582 else if (! strcmp (sh_div_str, "inv")) \
583 sh_div_strategy = SH_DIV_INV; \
584 else if (! strcmp (sh_div_str, "inv:minlat")) \
585 sh_div_strategy = SH_DIV_INV_MINLAT; \
586 else if (! strcmp (sh_div_str, "inv20u")) \
587 sh_div_strategy = SH_DIV_INV20U; \
588 else if (! strcmp (sh_div_str, "inv20l")) \
589 sh_div_strategy = SH_DIV_INV20L; \
590 else if (! strcmp (sh_div_str, "inv:call2")) \
591 sh_div_strategy = SH_DIV_INV_CALL2; \
592 else if (! strcmp (sh_div_str, "inv:call")) \
593 sh_div_strategy = SH_DIV_INV_CALL; \
594 else if (! strcmp (sh_div_str, "inv:fp")) \
595 { \
596 if (TARGET_FPU_ANY) \
597 sh_div_strategy = SH_DIV_INV_FP; \
598 else \
599 sh_div_strategy = SH_DIV_INV; \
600 } \
601 } \
602 /* -fprofile-arcs needs a working libgcov . In unified tree \
603 configurations with newlib, this requires to configure with \
604 --with-newlib --with-headers. But there is no way to check \
605 here we have a working libgcov, so just assume that we have. */\
606 if (profile_flag) \
607 warning (0, "profiling is still experimental for this target");\
608 } \
609 else \
610 { \
611 /* Only the sh64-elf assembler fully supports .quad properly. */\
612 targetm.asm_out.aligned_op.di = NULL; \
613 targetm.asm_out.unaligned_op.di = NULL; \
614 } \
615 if (sh_divsi3_libfunc[0]) \
616 ; /* User supplied - leave it alone. */ \
617 else if (TARGET_HARD_SH4 && TARGET_SH2E) \
618 sh_divsi3_libfunc = "__sdivsi3_i4"; \
619 else if (TARGET_SH5) \
620 { \
621 if (TARGET_FPU_ANY && TARGET_SH1) \
622 sh_divsi3_libfunc = "__sdivsi3_i4"; \
623 else \
624 sh_divsi3_libfunc = "__sdivsi3_1"; \
625 } \
626 else \
627 sh_divsi3_libfunc = "__sdivsi3"; \
628 if (TARGET_FMOVD) \
629 reg_class_from_letter['e' - 'a'] = NO_REGS; \
630 \
631 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
632 if (! VALID_REGISTER_P (regno)) \
633 sh_register_names[regno][0] = '\0'; \
634 \
635 for (regno = 0; regno < ADDREGNAMES_SIZE; regno++) \
636 if (! VALID_REGISTER_P (ADDREGNAMES_REGNO (regno))) \
637 sh_additional_register_names[regno][0] = '\0'; \
638 \
639 if (flag_omit_frame_pointer < 0) \
640 { \
641 /* The debugging information is sufficient, \
642 but gdb doesn't implement this yet */ \
643 if (0) \
644 flag_omit_frame_pointer \
645 = (PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG); \
646 else \
647 flag_omit_frame_pointer = 0; \
648 } \
649 \
650 if ((flag_pic && ! TARGET_PREFERGOT) \
651 || (TARGET_SHMEDIA && !TARGET_PT_FIXED)) \
652 flag_no_function_cse = 1; \
653 \
654 if (SMALL_REGISTER_CLASSES) \
655 { \
656 /* Never run scheduling before reload, since that can \
657 break global alloc, and generates slower code anyway due \
658 to the pressure on R0. */ \
659 /* Enable sched1 for SH4; ready queue will be reordered by \
660 the target hooks when pressure is high. We can not do this for \
661 SH3 and lower as they give spill failures for R0. */ \
662 if (!TARGET_HARD_SH4) \
663 flag_schedule_insns = 0; \
664 } \
665 \
666 if (align_loops == 0) \
667 align_loops = 1 << (TARGET_SH5 ? 3 : 2); \
668 if (align_jumps == 0) \
669 align_jumps = 1 << CACHE_LOG; \
670 else if (align_jumps < (TARGET_SHMEDIA ? 4 : 2)) \
671 align_jumps = TARGET_SHMEDIA ? 4 : 2; \
672 \
673 /* Allocation boundary (in *bytes*) for the code of a function. \
674 SH1: 32 bit alignment is faster, because instructions are always \
675 fetched as a pair from a longword boundary. \
676 SH2 .. SH5 : align to cache line start. */ \
677 if (align_functions == 0) \
678 align_functions \
679 = TARGET_SMALLCODE ? FUNCTION_BOUNDARY/8 : (1 << CACHE_LOG); \
680 /* The linker relaxation code breaks when a function contains \
681 alignments that are larger than that at the start of a \
682 compilation unit. */ \
683 if (TARGET_RELAX) \
684 { \
685 int min_align \
686 = align_loops > align_jumps ? align_loops : align_jumps; \
687 \
688 /* Also take possible .long constants / mova tables int account. */\
689 if (min_align < 4) \
690 min_align = 4; \
691 if (align_functions < min_align) \
692 align_functions = min_align; \
693 } \
694 } while (0)
695 \f
696 /* Target machine storage layout. */
697
698 /* Define this if most significant bit is lowest numbered
699 in instructions that operate on numbered bit-fields. */
700
701 #define BITS_BIG_ENDIAN 0
702
703 /* Define this if most significant byte of a word is the lowest numbered. */
704 #define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
705
706 /* Define this if most significant word of a multiword number is the lowest
707 numbered. */
708 #define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
709
710 /* Define this to set the endianness to use in libgcc2.c, which can
711 not depend on target_flags. */
712 #if defined(__LITTLE_ENDIAN__)
713 #define LIBGCC2_WORDS_BIG_ENDIAN 0
714 #else
715 #define LIBGCC2_WORDS_BIG_ENDIAN 1
716 #endif
717
718 #define MAX_BITS_PER_WORD 64
719
720 /* Width in bits of an `int'. We want just 32-bits, even if words are
721 longer. */
722 #define INT_TYPE_SIZE 32
723
724 /* Width in bits of a `long'. */
725 #define LONG_TYPE_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
726
727 /* Width in bits of a `long long'. */
728 #define LONG_LONG_TYPE_SIZE 64
729
730 /* Width in bits of a `long double'. */
731 #define LONG_DOUBLE_TYPE_SIZE 64
732
733 /* Width of a word, in units (bytes). */
734 #define UNITS_PER_WORD (TARGET_SHMEDIA ? 8 : 4)
735 #define MIN_UNITS_PER_WORD 4
736
737 /* Scaling factor for Dwarf data offsets for CFI information.
738 The dwarf2out.c default would use -UNITS_PER_WORD, which is -8 for
739 SHmedia; however, since we do partial register saves for the registers
740 visible to SHcompact, and for target registers for SHMEDIA32, we have
741 to allow saves that are only 4-byte aligned. */
742 #define DWARF_CIE_DATA_ALIGNMENT -4
743
744 /* Width in bits of a pointer.
745 See also the macro `Pmode' defined below. */
746 #define POINTER_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
747
748 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
749 #define PARM_BOUNDARY (TARGET_SH5 ? 64 : 32)
750
751 /* Boundary (in *bits*) on which stack pointer should be aligned. */
752 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
753
754 /* The log (base 2) of the cache line size, in bytes. Processors prior to
755 SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
756 The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
757 #define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2)
758
759 /* ABI given & required minimum allocation boundary (in *bits*) for the
760 code of a function. */
761 #define FUNCTION_BOUNDARY (16 << TARGET_SHMEDIA)
762
763 /* On SH5, the lowest bit is used to indicate SHmedia functions, so
764 the vbit must go into the delta field of
765 pointers-to-member-functions. */
766 #define TARGET_PTRMEMFUNC_VBIT_LOCATION \
767 (TARGET_SH5 ? ptrmemfunc_vbit_in_delta : ptrmemfunc_vbit_in_pfn)
768
769 /* Alignment of field after `int : 0' in a structure. */
770 #define EMPTY_FIELD_BOUNDARY 32
771
772 /* No data type wants to be aligned rounder than this. */
773 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
774
775 /* The best alignment to use in cases where we have a choice. */
776 #define FASTEST_ALIGNMENT (TARGET_SH5 ? 64 : 32)
777
778 /* Make strings word-aligned so strcpy from constants will be faster. */
779 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
780 ((TREE_CODE (EXP) == STRING_CST \
781 && (ALIGN) < FASTEST_ALIGNMENT) \
782 ? FASTEST_ALIGNMENT : (ALIGN))
783
784 /* get_mode_alignment assumes complex values are always held in multiple
785 registers, but that is not the case on the SH; CQImode and CHImode are
786 held in a single integer register. SH5 also holds CSImode and SCmode
787 values in integer registers. This is relevant for argument passing on
788 SHcompact as we use a stack temp in order to pass CSImode by reference. */
789 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
790 ((GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_INT \
791 || GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_FLOAT) \
792 ? (unsigned) MIN (BIGGEST_ALIGNMENT, GET_MODE_BITSIZE (TYPE_MODE (TYPE))) \
793 : (unsigned) ALIGN)
794
795 /* Make arrays of chars word-aligned for the same reasons. */
796 #define DATA_ALIGNMENT(TYPE, ALIGN) \
797 (TREE_CODE (TYPE) == ARRAY_TYPE \
798 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
799 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
800
801 /* Number of bits which any structure or union's size must be a
802 multiple of. Each structure or union's size is rounded up to a
803 multiple of this. */
804 #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
805
806 /* Set this nonzero if move instructions will actually fail to work
807 when given unaligned data. */
808 #define STRICT_ALIGNMENT 1
809
810 /* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */
811 #define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
812 barrier_align (LABEL_AFTER_BARRIER)
813
814 #define LOOP_ALIGN(A_LABEL) \
815 ((! optimize || TARGET_HARD_SH4 || TARGET_SMALLCODE) \
816 ? 0 : sh_loop_align (A_LABEL))
817
818 #define LABEL_ALIGN(A_LABEL) \
819 ( \
820 (PREV_INSN (A_LABEL) \
821 && GET_CODE (PREV_INSN (A_LABEL)) == INSN \
822 && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \
823 && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN) \
824 /* explicit alignment insn in constant tables. */ \
825 ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \
826 : 0)
827
828 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
829 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
830
831 /* The base two logarithm of the known minimum alignment of an insn length. */
832 #define INSN_LENGTH_ALIGNMENT(A_INSN) \
833 (GET_CODE (A_INSN) == INSN \
834 ? 1 << TARGET_SHMEDIA \
835 : GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN \
836 ? 1 << TARGET_SHMEDIA \
837 : CACHE_LOG)
838 \f
839 /* Standard register usage. */
840
841 /* Register allocation for the Renesas calling convention:
842
843 r0 arg return
844 r1..r3 scratch
845 r4..r7 args in
846 r8..r13 call saved
847 r14 frame pointer/call saved
848 r15 stack pointer
849 ap arg pointer (doesn't really exist, always eliminated)
850 pr subroutine return address
851 t t bit
852 mach multiply/accumulate result, high part
853 macl multiply/accumulate result, low part.
854 fpul fp/int communication register
855 rap return address pointer register
856 fr0 fp arg return
857 fr1..fr3 scratch floating point registers
858 fr4..fr11 fp args in
859 fr12..fr15 call saved floating point registers */
860
861 #define MAX_REGISTER_NAME_LENGTH 5
862 extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
863
864 #define SH_REGISTER_NAMES_INITIALIZER \
865 { \
866 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
867 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
868 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
869 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
870 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
871 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
872 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
873 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
874 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
875 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
876 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
877 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
878 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
879 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
880 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
881 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
882 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
883 "xd0", "xd2", "xd4", "xd6", "xd8", "xd10", "xd12", "xd14", \
884 "gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", \
885 "rap", "sfp" \
886 }
887
888 #define REGNAMES_ARR_INDEX_1(index) \
889 (sh_register_names[index])
890 #define REGNAMES_ARR_INDEX_2(index) \
891 REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
892 #define REGNAMES_ARR_INDEX_4(index) \
893 REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
894 #define REGNAMES_ARR_INDEX_8(index) \
895 REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
896 #define REGNAMES_ARR_INDEX_16(index) \
897 REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
898 #define REGNAMES_ARR_INDEX_32(index) \
899 REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
900 #define REGNAMES_ARR_INDEX_64(index) \
901 REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
902
903 #define REGISTER_NAMES \
904 { \
905 REGNAMES_ARR_INDEX_64 (0), \
906 REGNAMES_ARR_INDEX_64 (64), \
907 REGNAMES_ARR_INDEX_8 (128), \
908 REGNAMES_ARR_INDEX_8 (136), \
909 REGNAMES_ARR_INDEX_8 (144), \
910 REGNAMES_ARR_INDEX_2 (152) \
911 }
912
913 #define ADDREGNAMES_SIZE 32
914 #define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
915 extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
916 [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
917
918 #define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER \
919 { \
920 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", \
921 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30", \
922 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46", \
923 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62" \
924 }
925
926 #define ADDREGNAMES_REGNO(index) \
927 ((index < 32) ? (FIRST_FP_REG + (index) * 2) \
928 : (-1))
929
930 #define ADDREGNAMES_ARR_INDEX_1(index) \
931 { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
932 #define ADDREGNAMES_ARR_INDEX_2(index) \
933 ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
934 #define ADDREGNAMES_ARR_INDEX_4(index) \
935 ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
936 #define ADDREGNAMES_ARR_INDEX_8(index) \
937 ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
938 #define ADDREGNAMES_ARR_INDEX_16(index) \
939 ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
940 #define ADDREGNAMES_ARR_INDEX_32(index) \
941 ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
942
943 #define ADDITIONAL_REGISTER_NAMES \
944 { \
945 ADDREGNAMES_ARR_INDEX_32 (0) \
946 }
947
948 /* Number of actual hardware registers.
949 The hardware registers are assigned numbers for the compiler
950 from 0 to just below FIRST_PSEUDO_REGISTER.
951 All registers that the compiler knows about must be given numbers,
952 even those that are not normally considered general registers. */
953
954 /* There are many other relevant definitions in sh.md's md_constants. */
955
956 #define FIRST_GENERAL_REG R0_REG
957 #define LAST_GENERAL_REG (FIRST_GENERAL_REG + (TARGET_SHMEDIA ? 63 : 15))
958 #define FIRST_FP_REG DR0_REG
959 #define LAST_FP_REG (FIRST_FP_REG + \
960 (TARGET_SHMEDIA_FPU ? 63 : TARGET_SH2E ? 15 : -1))
961 #define FIRST_XD_REG XD0_REG
962 #define LAST_XD_REG (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
963 #define FIRST_TARGET_REG TR0_REG
964 #define LAST_TARGET_REG (FIRST_TARGET_REG + (TARGET_SHMEDIA ? 7 : -1))
965
966 #define GENERAL_REGISTER_P(REGNO) \
967 IN_RANGE ((REGNO), \
968 (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
969 (unsigned HOST_WIDE_INT) LAST_GENERAL_REG)
970
971 #define GENERAL_OR_AP_REGISTER_P(REGNO) \
972 (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG) \
973 || ((REGNO) == FRAME_POINTER_REGNUM))
974
975 #define FP_REGISTER_P(REGNO) \
976 ((int) (REGNO) >= FIRST_FP_REG && (int) (REGNO) <= LAST_FP_REG)
977
978 #define XD_REGISTER_P(REGNO) \
979 ((int) (REGNO) >= FIRST_XD_REG && (int) (REGNO) <= LAST_XD_REG)
980
981 #define FP_OR_XD_REGISTER_P(REGNO) \
982 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
983
984 #define FP_ANY_REGISTER_P(REGNO) \
985 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
986
987 #define SPECIAL_REGISTER_P(REGNO) \
988 ((REGNO) == GBR_REG || (REGNO) == T_REG \
989 || (REGNO) == MACH_REG || (REGNO) == MACL_REG)
990
991 #define TARGET_REGISTER_P(REGNO) \
992 ((int) (REGNO) >= FIRST_TARGET_REG && (int) (REGNO) <= LAST_TARGET_REG)
993
994 #define SHMEDIA_REGISTER_P(REGNO) \
995 (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
996 || TARGET_REGISTER_P (REGNO))
997
998 /* This is to be used in CONDITIONAL_REGISTER_USAGE, to mark registers
999 that should be fixed. */
1000 #define VALID_REGISTER_P(REGNO) \
1001 (SHMEDIA_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) \
1002 || (REGNO) == AP_REG || (REGNO) == RAP_REG \
1003 || (REGNO) == FRAME_POINTER_REGNUM \
1004 || (TARGET_SH1 && (SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
1005 || (TARGET_SH2E && (REGNO) == FPUL_REG))
1006
1007 /* The mode that should be generally used to store a register by
1008 itself in the stack, or to load it back. */
1009 #define REGISTER_NATURAL_MODE(REGNO) \
1010 (FP_REGISTER_P (REGNO) ? SFmode \
1011 : XD_REGISTER_P (REGNO) ? DFmode \
1012 : TARGET_SHMEDIA && ! HARD_REGNO_CALL_PART_CLOBBERED ((REGNO), DImode) \
1013 ? DImode \
1014 : SImode)
1015
1016 #define FIRST_PSEUDO_REGISTER 154
1017
1018 /* Don't count soft frame pointer. */
1019 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
1020
1021 /* 1 for registers that have pervasive standard uses
1022 and are not available for the register allocator.
1023
1024 Mach register is fixed 'cause it's only 10 bits wide for SH1.
1025 It is 32 bits wide for SH2. */
1026
1027 #define FIXED_REGISTERS \
1028 { \
1029 /* Regular registers. */ \
1030 0, 0, 0, 0, 0, 0, 0, 0, \
1031 0, 0, 0, 0, 0, 0, 0, 1, \
1032 /* r16 is reserved, r18 is the former pr. */ \
1033 1, 0, 0, 0, 0, 0, 0, 0, \
1034 /* r24 is reserved for the OS; r25, for the assembler or linker. */ \
1035 /* r26 is a global variable data pointer; r27 is for constants. */ \
1036 1, 1, 1, 1, 0, 0, 0, 0, \
1037 0, 0, 0, 0, 0, 0, 0, 0, \
1038 0, 0, 0, 0, 0, 0, 0, 0, \
1039 0, 0, 0, 0, 0, 0, 0, 0, \
1040 0, 0, 0, 0, 0, 0, 0, 1, \
1041 /* FP registers. */ \
1042 0, 0, 0, 0, 0, 0, 0, 0, \
1043 0, 0, 0, 0, 0, 0, 0, 0, \
1044 0, 0, 0, 0, 0, 0, 0, 0, \
1045 0, 0, 0, 0, 0, 0, 0, 0, \
1046 0, 0, 0, 0, 0, 0, 0, 0, \
1047 0, 0, 0, 0, 0, 0, 0, 0, \
1048 0, 0, 0, 0, 0, 0, 0, 0, \
1049 0, 0, 0, 0, 0, 0, 0, 0, \
1050 /* Branch target registers. */ \
1051 0, 0, 0, 0, 0, 0, 0, 0, \
1052 /* XD registers. */ \
1053 0, 0, 0, 0, 0, 0, 0, 0, \
1054 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
1055 1, 1, 1, 1, 1, 1, 0, 1, \
1056 /*"rap", "sfp" */ \
1057 1, 1, \
1058 }
1059
1060 /* 1 for registers not available across function calls.
1061 These must include the FIXED_REGISTERS and also any
1062 registers that can be used without being saved.
1063 The latter must include the registers where values are returned
1064 and the register where structure-value addresses are passed.
1065 Aside from that, you can include as many other registers as you like. */
1066
1067 #define CALL_USED_REGISTERS \
1068 { \
1069 /* Regular registers. */ \
1070 1, 1, 1, 1, 1, 1, 1, 1, \
1071 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
1072 Only the lower 32bits of R10-R14 are guaranteed to be preserved \
1073 across SH5 function calls. */ \
1074 0, 0, 0, 0, 0, 0, 0, 1, \
1075 1, 1, 1, 1, 1, 1, 1, 1, \
1076 1, 1, 1, 1, 0, 0, 0, 0, \
1077 0, 0, 0, 0, 1, 1, 1, 1, \
1078 1, 1, 1, 1, 0, 0, 0, 0, \
1079 0, 0, 0, 0, 0, 0, 0, 0, \
1080 0, 0, 0, 0, 1, 1, 1, 1, \
1081 /* FP registers. */ \
1082 1, 1, 1, 1, 1, 1, 1, 1, \
1083 1, 1, 1, 1, 0, 0, 0, 0, \
1084 1, 1, 1, 1, 1, 1, 1, 1, \
1085 1, 1, 1, 1, 1, 1, 1, 1, \
1086 1, 1, 1, 1, 0, 0, 0, 0, \
1087 0, 0, 0, 0, 0, 0, 0, 0, \
1088 0, 0, 0, 0, 0, 0, 0, 0, \
1089 0, 0, 0, 0, 0, 0, 0, 0, \
1090 /* Branch target registers. */ \
1091 1, 1, 1, 1, 1, 0, 0, 0, \
1092 /* XD registers. */ \
1093 1, 1, 1, 1, 1, 1, 0, 0, \
1094 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
1095 1, 1, 1, 1, 1, 1, 1, 1, \
1096 /*"rap", "sfp" */ \
1097 1, 1, \
1098 }
1099
1100 /* CONDITIONAL_REGISTER_USAGE might want to make a register call-used, yet
1101 fixed, like PIC_OFFSET_TABLE_REGNUM. */
1102 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
1103
1104 /* Only the lower 32-bits of R10-R14 are guaranteed to be preserved
1105 across SHcompact function calls. We can't tell whether a called
1106 function is SHmedia or SHcompact, so we assume it may be when
1107 compiling SHmedia code with the 32-bit ABI, since that's the only
1108 ABI that can be linked with SHcompact code. */
1109 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO,MODE) \
1110 (TARGET_SHMEDIA32 \
1111 && GET_MODE_SIZE (MODE) > 4 \
1112 && (((REGNO) >= FIRST_GENERAL_REG + 10 \
1113 && (REGNO) <= FIRST_GENERAL_REG + 15) \
1114 || TARGET_REGISTER_P (REGNO) \
1115 || (REGNO) == PR_MEDIA_REG))
1116
1117 /* Return number of consecutive hard regs needed starting at reg REGNO
1118 to hold something of mode MODE.
1119 This is ordinarily the length in words of a value of mode MODE
1120 but can be less for certain modes in special long registers.
1121
1122 On the SH all but the XD regs are UNITS_PER_WORD bits wide. */
1123
1124 #define HARD_REGNO_NREGS(REGNO, MODE) \
1125 (XD_REGISTER_P (REGNO) \
1126 ? ((GET_MODE_SIZE (MODE) + (2*UNITS_PER_WORD - 1)) / (2*UNITS_PER_WORD)) \
1127 : (TARGET_SHMEDIA && FP_REGISTER_P (REGNO)) \
1128 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2)) \
1129 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1130
1131 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1132 We can allow any mode in any general register. The special registers
1133 only allow SImode. Don't allow any mode in the PR. */
1134
1135 /* We cannot hold DCmode values in the XD registers because alter_reg
1136 handles subregs of them incorrectly. We could work around this by
1137 spacing the XD registers like the DR registers, but this would require
1138 additional memory in every compilation to hold larger register vectors.
1139 We could hold SFmode / SCmode values in XD registers, but that
1140 would require a tertiary reload when reloading from / to memory,
1141 and a secondary reload to reload from / to general regs; that
1142 seems to be a loosing proposition. */
1143 /* We want to allow TImode FP regs so that when V4SFmode is loaded as TImode,
1144 it won't be ferried through GP registers first. */
1145 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1146 (SPECIAL_REGISTER_P (REGNO) ? (MODE) == SImode \
1147 : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \
1148 : FP_REGISTER_P (REGNO) && (MODE) == SFmode \
1149 ? 1 \
1150 : (MODE) == V2SFmode \
1151 ? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 2 == 0) \
1152 || GENERAL_REGISTER_P (REGNO)) \
1153 : (MODE) == V4SFmode \
1154 ? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 4 == 0) \
1155 || (! TARGET_SHMEDIA && GENERAL_REGISTER_P (REGNO))) \
1156 : (MODE) == V16SFmode \
1157 ? (TARGET_SHMEDIA \
1158 ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 16 == 0) \
1159 : (REGNO) == FIRST_XD_REG) \
1160 : FP_REGISTER_P (REGNO) \
1161 ? ((MODE) == SFmode || (MODE) == SImode \
1162 || ((TARGET_SH2E || TARGET_SHMEDIA) && (MODE) == SCmode) \
1163 || ((((TARGET_SH4 || TARGET_SH2A_DOUBLE) && (MODE) == DFmode) || (MODE) == DCmode \
1164 || (TARGET_SHMEDIA && ((MODE) == DFmode || (MODE) == DImode \
1165 || (MODE) == V2SFmode || (MODE) == TImode))) \
1166 && (((REGNO) - FIRST_FP_REG) & 1) == 0) \
1167 || ((TARGET_SH4 || TARGET_SHMEDIA) \
1168 && (MODE) == TImode \
1169 && (((REGNO) - FIRST_FP_REG) & 3) == 0)) \
1170 : XD_REGISTER_P (REGNO) \
1171 ? (MODE) == DFmode \
1172 : TARGET_REGISTER_P (REGNO) \
1173 ? ((MODE) == DImode || (MODE) == SImode || (MODE) == PDImode) \
1174 : (REGNO) == PR_REG ? (MODE) == SImode \
1175 : (REGNO) == FPSCR_REG ? (MODE) == PSImode \
1176 : 1)
1177
1178 /* Value is 1 if it is a good idea to tie two pseudo registers
1179 when one has mode MODE1 and one has mode MODE2.
1180 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1181 for any hard reg, then this must be 0 for correct output.
1182 That's the case for xd registers: we don't hold SFmode values in
1183 them, so we can't tie an SFmode pseudos with one in another
1184 floating-point mode. */
1185
1186 #define MODES_TIEABLE_P(MODE1, MODE2) \
1187 ((MODE1) == (MODE2) \
1188 || (TARGET_SHMEDIA \
1189 && GET_MODE_SIZE (MODE1) == GET_MODE_SIZE (MODE2) \
1190 && INTEGRAL_MODE_P (MODE1) && INTEGRAL_MODE_P (MODE2)) \
1191 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1192 && (TARGET_SHMEDIA ? ((GET_MODE_SIZE (MODE1) <= 4) \
1193 && (GET_MODE_SIZE (MODE2) <= 4)) \
1194 : ((MODE1) != SFmode && (MODE2) != SFmode))))
1195
1196 /* A C expression that is nonzero if hard register NEW_REG can be
1197 considered for use as a rename register for OLD_REG register */
1198
1199 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
1200 sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
1201
1202 /* Specify the registers used for certain standard purposes.
1203 The values of these macros are register numbers. */
1204
1205 /* Define this if the program counter is overloaded on a register. */
1206 /* #define PC_REGNUM 15*/
1207
1208 /* Register to use for pushing function arguments. */
1209 #define STACK_POINTER_REGNUM SP_REG
1210
1211 /* Base register for access to local variables of the function. */
1212 #define HARD_FRAME_POINTER_REGNUM FP_REG
1213
1214 /* Base register for access to local variables of the function. */
1215 #define FRAME_POINTER_REGNUM 153
1216
1217 /* Fake register that holds the address on the stack of the
1218 current function's return address. */
1219 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
1220
1221 /* Register to hold the addressing base for position independent
1222 code access to data items. */
1223 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REG : INVALID_REGNUM)
1224
1225 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
1226
1227 /* Value should be nonzero if functions must have frame pointers.
1228 Zero means the frame pointer need not be set up (and parms may be accessed
1229 via the stack pointer) in functions that seem suitable. */
1230
1231 #define FRAME_POINTER_REQUIRED 0
1232
1233 /* Definitions for register eliminations.
1234
1235 We have three registers that can be eliminated on the SH. First, the
1236 frame pointer register can often be eliminated in favor of the stack
1237 pointer register. Secondly, the argument pointer register can always be
1238 eliminated; it is replaced with either the stack or frame pointer.
1239 Third, there is the return address pointer, which can also be replaced
1240 with either the stack or the frame pointer. */
1241
1242 /* This is an array of structures. Each structure initializes one pair
1243 of eliminable registers. The "from" register number is given first,
1244 followed by "to". Eliminations of the same "from" register are listed
1245 in order of preference. */
1246
1247 /* If you add any registers here that are not actually hard registers,
1248 and that have any alternative of elimination that doesn't always
1249 apply, you need to amend calc_live_regs to exclude it, because
1250 reload spills all eliminable registers where it sees an
1251 can_eliminate == 0 entry, thus making them 'live' .
1252 If you add any hard registers that can be eliminated in different
1253 ways, you have to patch reload to spill them only when all alternatives
1254 of elimination fail. */
1255
1256 #define ELIMINABLE_REGS \
1257 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1258 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1259 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1260 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1261 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1262 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1263 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},}
1264
1265 /* Given FROM and TO register numbers, say whether this elimination
1266 is allowed. */
1267 #define CAN_ELIMINATE(FROM, TO) \
1268 (!((FROM) == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
1269
1270 /* Define the offset between two registers, one to be eliminated, and the other
1271 its replacement, at the start of a routine. */
1272
1273 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1274 OFFSET = initial_elimination_offset ((FROM), (TO))
1275
1276 /* Base register for access to arguments of the function. */
1277 #define ARG_POINTER_REGNUM AP_REG
1278
1279 /* Register in which the static-chain is passed to a function. */
1280 #define STATIC_CHAIN_REGNUM (TARGET_SH5 ? 1 : 3)
1281
1282 /* Don't default to pcc-struct-return, because we have already specified
1283 exactly how to return structures in the TARGET_RETURN_IN_MEMORY
1284 target hook. */
1285
1286 #define DEFAULT_PCC_STRUCT_RETURN 0
1287
1288 #define SHMEDIA_REGS_STACK_ADJUST() \
1289 (TARGET_SHCOMPACT && current_function_has_nonlocal_label \
1290 ? (8 * (/* r28-r35 */ 8 + /* r44-r59 */ 16 + /* tr5-tr7 */ 3) \
1291 + (TARGET_FPU_ANY ? 4 * (/* fr36 - fr63 */ 28) : 0)) \
1292 : 0)
1293
1294 \f
1295 /* Define the classes of registers for register constraints in the
1296 machine description. Also define ranges of constants.
1297
1298 One of the classes must always be named ALL_REGS and include all hard regs.
1299 If there is more than one class, another class must be named NO_REGS
1300 and contain no registers.
1301
1302 The name GENERAL_REGS must be the name of a class (or an alias for
1303 another name such as ALL_REGS). This is the class of registers
1304 that is allowed by "g" or "r" in a register constraint.
1305 Also, registers outside this class are allocated only when
1306 instructions express preferences for them.
1307
1308 The classes must be numbered in nondecreasing order; that is,
1309 a larger-numbered class must never be contained completely
1310 in a smaller-numbered class.
1311
1312 For any two classes, it is very desirable that there be another
1313 class that represents their union. */
1314
1315 /* The SH has two sorts of general registers, R0 and the rest. R0 can
1316 be used as the destination of some of the arithmetic ops. There are
1317 also some special purpose registers; the T bit register, the
1318 Procedure Return Register and the Multiply Accumulate Registers. */
1319 /* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
1320 reg_class_subunion. We don't want to have an actual union class
1321 of these, because it would only be used when both classes are calculated
1322 to give the same cost, but there is only one FPUL register.
1323 Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
1324 applying to the actual instruction alternative considered. E.g., the
1325 y/r alternative of movsi_ie is considered to have no more cost that
1326 the r/r alternative, which is patently untrue. */
1327
1328 enum reg_class
1329 {
1330 NO_REGS,
1331 R0_REGS,
1332 PR_REGS,
1333 T_REGS,
1334 MAC_REGS,
1335 FPUL_REGS,
1336 SIBCALL_REGS,
1337 GENERAL_REGS,
1338 FP0_REGS,
1339 FP_REGS,
1340 DF_HI_REGS,
1341 DF_REGS,
1342 FPSCR_REGS,
1343 GENERAL_FP_REGS,
1344 TARGET_REGS,
1345 ALL_REGS,
1346 LIM_REG_CLASSES
1347 };
1348
1349 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1350
1351 /* Give names of register classes as strings for dump file. */
1352 #define REG_CLASS_NAMES \
1353 { \
1354 "NO_REGS", \
1355 "R0_REGS", \
1356 "PR_REGS", \
1357 "T_REGS", \
1358 "MAC_REGS", \
1359 "FPUL_REGS", \
1360 "SIBCALL_REGS", \
1361 "GENERAL_REGS", \
1362 "FP0_REGS", \
1363 "FP_REGS", \
1364 "DF_HI_REGS", \
1365 "DF_REGS", \
1366 "FPSCR_REGS", \
1367 "GENERAL_FP_REGS", \
1368 "TARGET_REGS", \
1369 "ALL_REGS", \
1370 }
1371
1372 /* Define which registers fit in which classes.
1373 This is an initializer for a vector of HARD_REG_SET
1374 of length N_REG_CLASSES. */
1375
1376 #define REG_CLASS_CONTENTS \
1377 { \
1378 /* NO_REGS: */ \
1379 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1380 /* R0_REGS: */ \
1381 { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1382 /* PR_REGS: */ \
1383 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, \
1384 /* T_REGS: */ \
1385 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 }, \
1386 /* MAC_REGS: */ \
1387 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 }, \
1388 /* FPUL_REGS: */ \
1389 { 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0x00400000 }, \
1390 /* SIBCALL_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \
1391 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1392 /* GENERAL_REGS: */ \
1393 { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 }, \
1394 /* FP0_REGS: */ \
1395 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 }, \
1396 /* FP_REGS: */ \
1397 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
1398 /* DF_HI_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \
1399 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
1400 /* DF_REGS: */ \
1401 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
1402 /* FPSCR_REGS: */ \
1403 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 }, \
1404 /* GENERAL_FP_REGS: */ \
1405 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0102ff00 }, \
1406 /* TARGET_REGS: */ \
1407 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff }, \
1408 /* ALL_REGS: */ \
1409 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03ffffff }, \
1410 }
1411
1412 /* The same information, inverted:
1413 Return the class number of the smallest class containing
1414 reg number REGNO. This could be a conditional expression
1415 or could index an array. */
1416
1417 extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
1418 #define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
1419
1420 /* When defined, the compiler allows registers explicitly used in the
1421 rtl to be used as spill registers but prevents the compiler from
1422 extending the lifetime of these registers. */
1423
1424 #define SMALL_REGISTER_CLASSES (! TARGET_SHMEDIA)
1425
1426 /* The order in which register should be allocated. */
1427 /* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
1428 and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
1429 spilled or used otherwise, we better have the FP_REGS allocated first. */
1430 #define REG_ALLOC_ORDER \
1431 {/* Caller-saved FPRs */ \
1432 65, 66, 67, 68, 69, 70, 71, 64, \
1433 72, 73, 74, 75, 80, 81, 82, 83, \
1434 84, 85, 86, 87, 88, 89, 90, 91, \
1435 92, 93, 94, 95, 96, 97, 98, 99, \
1436 /* Callee-saved FPRs */ \
1437 76, 77, 78, 79,100,101,102,103, \
1438 104,105,106,107,108,109,110,111, \
1439 112,113,114,115,116,117,118,119, \
1440 120,121,122,123,124,125,126,127, \
1441 136,137,138,139,140,141,142,143, \
1442 /* FPSCR */ 151, \
1443 /* Caller-saved GPRs (except 8/9 on SH1-4) */ \
1444 1, 2, 3, 7, 6, 5, 4, 0, \
1445 8, 9, 17, 19, 20, 21, 22, 23, \
1446 36, 37, 38, 39, 40, 41, 42, 43, \
1447 60, 61, 62, \
1448 /* SH1-4 callee-saved saved GPRs / SH5 partially-saved GPRs */ \
1449 10, 11, 12, 13, 14, 18, \
1450 /* SH5 callee-saved GPRs */ \
1451 28, 29, 30, 31, 32, 33, 34, 35, \
1452 44, 45, 46, 47, 48, 49, 50, 51, \
1453 52, 53, 54, 55, 56, 57, 58, 59, \
1454 /* FPUL */ 150, \
1455 /* SH5 branch target registers */ \
1456 128,129,130,131,132,133,134,135, \
1457 /* Fixed registers */ \
1458 15, 16, 24, 25, 26, 27, 63,144, \
1459 145,146,147,148,149,152,153 }
1460
1461 /* The class value for index registers, and the one for base regs. */
1462 #define INDEX_REG_CLASS \
1463 (!ALLOW_INDEXED_ADDRESS ? NO_REGS : TARGET_SHMEDIA ? GENERAL_REGS : R0_REGS)
1464 #define BASE_REG_CLASS GENERAL_REGS
1465
1466 /* Get reg_class from a letter such as appears in the machine
1467 description. */
1468 extern enum reg_class reg_class_from_letter[];
1469
1470 /* We might use 'Rxx' constraints in the future for exotic reg classes.*/
1471 #define REG_CLASS_FROM_CONSTRAINT(C, STR) \
1472 (ISLOWER (C) ? reg_class_from_letter[(C)-'a'] : NO_REGS )
1473 \f
1474 /* Overview of uppercase letter constraints:
1475 A: Addresses (constraint len == 3)
1476 Ac4: sh4 cache operations
1477 Ac5: sh5 cache operations
1478 Bxx: miscellaneous constraints
1479 Bsc: SCRATCH - for the scratch register in movsi_ie in the
1480 fldi0 / fldi0 cases
1481 C: Constants other than only CONST_INT (constraint len == 3)
1482 C16: 16 bit constant, literal or symbolic
1483 Csy: label or symbol
1484 Cpg: non-explicit constants that can be directly loaded into a general
1485 purpose register in PIC code. like 's' except we don't allow
1486 PIC_DIRECT_ADDR_P
1487 IJKLMNOP: CONT_INT constants
1488 Ixx: signed xx bit
1489 J16: 0xffffffff00000000 | 0x00000000ffffffff
1490 Kxx: unsigned xx bit
1491 M: 1
1492 N: 0
1493 P27: 1 | 2 | 8 | 16
1494 Q: pc relative load operand
1495 Rxx: reserved for exotic register classes.
1496 S: extra memory (storage) constraints (constraint len == 3)
1497 Sua: unaligned memory operations
1498 W: vector
1499 Z: zero in any mode
1500
1501 unused CONST_INT constraint letters: LO
1502 unused EXTRA_CONSTRAINT letters: D T U Y */
1503
1504 #define CONSTRAINT_LEN(C,STR) \
1505 (((C) == 'A' || (C) == 'B' || (C) == 'C' \
1506 || (C) == 'I' || (C) == 'J' || (C) == 'K' || (C) == 'P' \
1507 || (C) == 'R' || (C) == 'S') \
1508 ? 3 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1509
1510 /* The letters I, J, K, L and M in a register constraint string
1511 can be used to stand for particular ranges of immediate operands.
1512 This macro defines what the ranges are.
1513 C is the letter, and VALUE is a constant value.
1514 Return 1 if VALUE is in the range specified by C.
1515 I08: arithmetic operand -127..128, as used in add, sub, etc
1516 I16: arithmetic operand -32768..32767, as used in SHmedia movi and shori
1517 P27: shift operand 1,2,8 or 16
1518 K08: logical operand 0..255, as used in and, or, etc.
1519 M: constant 1
1520 N: constant 0
1521 I06: arithmetic operand -32..31, as used in SHmedia beqi, bnei and xori
1522 I10: arithmetic operand -512..511, as used in SHmedia andi, ori
1523 */
1524
1525 #define CONST_OK_FOR_I06(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32 \
1526 && ((HOST_WIDE_INT)(VALUE)) <= 31)
1527 #define CONST_OK_FOR_I08(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
1528 && ((HOST_WIDE_INT)(VALUE)) <= 127)
1529 #define CONST_OK_FOR_I10(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -512 \
1530 && ((HOST_WIDE_INT)(VALUE)) <= 511)
1531 #define CONST_OK_FOR_I16(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32768 \
1532 && ((HOST_WIDE_INT)(VALUE)) <= 32767)
1533 #define CONST_OK_FOR_I20(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -524288 \
1534 && ((HOST_WIDE_INT)(VALUE)) <= 524287 \
1535 && TARGET_SH2A)
1536 #define CONST_OK_FOR_I(VALUE, STR) \
1537 ((STR)[1] == '0' && (STR)[2] == '6' ? CONST_OK_FOR_I06 (VALUE) \
1538 : (STR)[1] == '0' && (STR)[2] == '8' ? CONST_OK_FOR_I08 (VALUE) \
1539 : (STR)[1] == '1' && (STR)[2] == '0' ? CONST_OK_FOR_I10 (VALUE) \
1540 : (STR)[1] == '1' && (STR)[2] == '6' ? CONST_OK_FOR_I16 (VALUE) \
1541 : (STR)[1] == '2' && (STR)[2] == '0' ? CONST_OK_FOR_I20 (VALUE) \
1542 : 0)
1543
1544 #define CONST_OK_FOR_J16(VALUE) \
1545 ((HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) 0xffffffff) \
1546 || (HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) -1 << 32))
1547 #define CONST_OK_FOR_J(VALUE, STR) \
1548 ((STR)[1] == '1' && (STR)[2] == '6' ? CONST_OK_FOR_J16 (VALUE) \
1549 : 0)
1550
1551 #define CONST_OK_FOR_K08(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
1552 && ((HOST_WIDE_INT)(VALUE)) <= 255)
1553 #define CONST_OK_FOR_K(VALUE, STR) \
1554 ((STR)[1] == '0' && (STR)[2] == '8' ? CONST_OK_FOR_K08 (VALUE) \
1555 : 0)
1556 #define CONST_OK_FOR_P27(VALUE) \
1557 ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
1558 #define CONST_OK_FOR_P(VALUE, STR) \
1559 ((STR)[1] == '2' && (STR)[2] == '7' ? CONST_OK_FOR_P27 (VALUE) \
1560 : 0)
1561 #define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
1562 #define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
1563 #define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
1564 ((C) == 'I' ? CONST_OK_FOR_I ((VALUE), (STR)) \
1565 : (C) == 'J' ? CONST_OK_FOR_J ((VALUE), (STR)) \
1566 : (C) == 'K' ? CONST_OK_FOR_K ((VALUE), (STR)) \
1567 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1568 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1569 : (C) == 'P' ? CONST_OK_FOR_P ((VALUE), (STR)) \
1570 : 0)
1571
1572 /* Similar, but for floating constants, and defining letters G and H.
1573 Here VALUE is the CONST_DOUBLE rtx itself. */
1574
1575 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1576 ((C) == 'G' ? (fp_zero_operand (VALUE) && fldi_ok ()) \
1577 : (C) == 'H' ? (fp_one_operand (VALUE) && fldi_ok ()) \
1578 : (C) == 'F')
1579
1580 /* Given an rtx X being reloaded into a reg required to be
1581 in class CLASS, return the class of reg to actually use.
1582 In general this is just CLASS; but on some machines
1583 in some cases it is preferable to use a more restrictive class. */
1584
1585 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1586 ((CLASS) == NO_REGS && TARGET_SHMEDIA \
1587 && (GET_CODE (X) == CONST_DOUBLE \
1588 || GET_CODE (X) == SYMBOL_REF \
1589 || PIC_DIRECT_ADDR_P (X)) \
1590 ? GENERAL_REGS \
1591 : (CLASS)) \
1592
1593 #define SECONDARY_INOUT_RELOAD_CLASS(CLASS,MODE,X,ELSE) \
1594 ((((REGCLASS_HAS_FP_REG (CLASS) \
1595 && (GET_CODE (X) == REG \
1596 && (GENERAL_OR_AP_REGISTER_P (REGNO (X)) \
1597 || (FP_REGISTER_P (REGNO (X)) && (MODE) == SImode \
1598 && TARGET_FMOVD)))) \
1599 || (REGCLASS_HAS_GENERAL_REG (CLASS) \
1600 && GET_CODE (X) == REG \
1601 && FP_REGISTER_P (REGNO (X)))) \
1602 && ! TARGET_SHMEDIA \
1603 && ((MODE) == SFmode || (MODE) == SImode)) \
1604 ? FPUL_REGS \
1605 : (((CLASS) == FPUL_REGS \
1606 || (REGCLASS_HAS_FP_REG (CLASS) \
1607 && ! TARGET_SHMEDIA && MODE == SImode)) \
1608 && (GET_CODE (X) == MEM \
1609 || (GET_CODE (X) == REG \
1610 && (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1611 || REGNO (X) == T_REG \
1612 || system_reg_operand (X, VOIDmode))))) \
1613 ? GENERAL_REGS \
1614 : (((CLASS) == TARGET_REGS \
1615 || (TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS)) \
1616 && !EXTRA_CONSTRAINT_Csy (X) \
1617 && (GET_CODE (X) != REG || ! GENERAL_REGISTER_P (REGNO (X)))) \
1618 ? GENERAL_REGS \
1619 : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS) \
1620 && GET_CODE (X) == REG && ! GENERAL_REGISTER_P (REGNO (X)) \
1621 && (CLASS) != REGNO_REG_CLASS (REGNO (X))) \
1622 ? GENERAL_REGS \
1623 : ((CLASS) != GENERAL_REGS && GET_CODE (X) == REG \
1624 && TARGET_REGISTER_P (REGNO (X))) \
1625 ? GENERAL_REGS : (ELSE))
1626
1627 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
1628 SECONDARY_INOUT_RELOAD_CLASS(CLASS,MODE,X,NO_REGS)
1629
1630 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
1631 ((REGCLASS_HAS_FP_REG (CLASS) \
1632 && ! TARGET_SHMEDIA \
1633 && immediate_operand ((X), (MODE)) \
1634 && ! ((fp_zero_operand (X) || fp_one_operand (X)) \
1635 && (MODE) == SFmode && fldi_ok ())) \
1636 ? R0_REGS \
1637 : ((CLASS) == FPUL_REGS \
1638 && ((GET_CODE (X) == REG \
1639 && (REGNO (X) == MACL_REG || REGNO (X) == MACH_REG \
1640 || REGNO (X) == T_REG)) \
1641 || GET_CODE (X) == PLUS)) \
1642 ? GENERAL_REGS \
1643 : (CLASS) == FPUL_REGS && immediate_operand ((X), (MODE)) \
1644 ? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I08 (INTVAL (X)) \
1645 ? GENERAL_REGS \
1646 : R0_REGS) \
1647 : ((CLASS) == FPSCR_REGS \
1648 && ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1649 || (GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)))\
1650 ? GENERAL_REGS \
1651 : (REGCLASS_HAS_FP_REG (CLASS) \
1652 && TARGET_SHMEDIA \
1653 && immediate_operand ((X), (MODE)) \
1654 && (X) != CONST0_RTX (GET_MODE (X)) \
1655 && GET_MODE (X) != V4SFmode) \
1656 ? GENERAL_REGS \
1657 : (((MODE) == QImode || (MODE) == HImode) \
1658 && TARGET_SHMEDIA && inqhi_operand ((X), (MODE))) \
1659 ? GENERAL_REGS \
1660 : (TARGET_SHMEDIA && (CLASS) == GENERAL_REGS \
1661 && (GET_CODE (X) == LABEL_REF || PIC_DIRECT_ADDR_P (X))) \
1662 ? TARGET_REGS \
1663 : SECONDARY_INOUT_RELOAD_CLASS((CLASS),(MODE),(X), NO_REGS))
1664
1665 /* Return the maximum number of consecutive registers
1666 needed to represent mode MODE in a register of class CLASS.
1667
1668 If TARGET_SHMEDIA, we need two FP registers per word.
1669 Otherwise we will need at most one register per word. */
1670 #define CLASS_MAX_NREGS(CLASS, MODE) \
1671 (TARGET_SHMEDIA \
1672 && TEST_HARD_REG_BIT (reg_class_contents[CLASS], FIRST_FP_REG) \
1673 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2) \
1674 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1675
1676 /* If defined, gives a class of registers that cannot be used as the
1677 operand of a SUBREG that changes the mode of the object illegally. */
1678 /* ??? We need to renumber the internal numbers for the frnn registers
1679 when in little endian in order to allow mode size changes. */
1680
1681 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1682 sh_cannot_change_mode_class (FROM, TO, CLASS)
1683 \f
1684 /* Stack layout; function entry, exit and calling. */
1685
1686 /* Define the number of registers that can hold parameters.
1687 These macros are used only in other macro definitions below. */
1688
1689 #define NPARM_REGS(MODE) \
1690 (TARGET_FPU_ANY && (MODE) == SFmode \
1691 ? (TARGET_SH5 ? 12 : 8) \
1692 : (TARGET_SH4 || TARGET_SH2A_DOUBLE) && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1693 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1694 ? (TARGET_SH5 ? 12 : 8) \
1695 : (TARGET_SH5 ? 8 : 4))
1696
1697 #define FIRST_PARM_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 4))
1698 #define FIRST_RET_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 0))
1699
1700 #define FIRST_FP_PARM_REG (FIRST_FP_REG + (TARGET_SH5 ? 0 : 4))
1701 #define FIRST_FP_RET_REG FIRST_FP_REG
1702
1703 /* Define this if pushing a word on the stack
1704 makes the stack pointer a smaller address. */
1705 #define STACK_GROWS_DOWNWARD
1706
1707 /* Define this macro to non-zero if the addresses of local variable slots
1708 are at negative offsets from the frame pointer. */
1709 #define FRAME_GROWS_DOWNWARD 1
1710
1711 /* Offset from the frame pointer to the first local variable slot to
1712 be allocated. */
1713 #define STARTING_FRAME_OFFSET 0
1714
1715 /* If we generate an insn to push BYTES bytes,
1716 this says how many the stack pointer really advances by. */
1717 /* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
1718 When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
1719 do correct alignment. */
1720 #if 0
1721 #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
1722 #endif
1723
1724 /* Offset of first parameter from the argument pointer register value. */
1725 #define FIRST_PARM_OFFSET(FNDECL) 0
1726
1727 /* Value is the number of byte of arguments automatically
1728 popped when returning from a subroutine call.
1729 FUNDECL is the declaration node of the function (as a tree),
1730 FUNTYPE is the data type of the function (as a tree),
1731 or for a library call it is an identifier node for the subroutine name.
1732 SIZE is the number of bytes of arguments passed on the stack.
1733
1734 On the SH, the caller does not pop any of its arguments that were passed
1735 on the stack. */
1736 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1737
1738 /* Value is the number of bytes of arguments automatically popped when
1739 calling a subroutine.
1740 CUM is the accumulated argument list.
1741
1742 On SHcompact, the call trampoline pops arguments off the stack. */
1743 #define CALL_POPS_ARGS(CUM) (TARGET_SHCOMPACT ? (CUM).stack_regs * 8 : 0)
1744
1745 /* Some subroutine macros specific to this machine. */
1746
1747 #define BASE_RETURN_VALUE_REG(MODE) \
1748 ((TARGET_FPU_ANY && ((MODE) == SFmode)) \
1749 ? FIRST_FP_RET_REG \
1750 : TARGET_FPU_ANY && (MODE) == SCmode \
1751 ? FIRST_FP_RET_REG \
1752 : (TARGET_FPU_DOUBLE \
1753 && ((MODE) == DFmode || (MODE) == SFmode \
1754 || (MODE) == DCmode || (MODE) == SCmode )) \
1755 ? FIRST_FP_RET_REG \
1756 : FIRST_RET_REG)
1757
1758 #define BASE_ARG_REG(MODE) \
1759 ((TARGET_SH2E && ((MODE) == SFmode)) \
1760 ? FIRST_FP_PARM_REG \
1761 : (TARGET_SH4 || TARGET_SH2A_DOUBLE) && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1762 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1763 ? FIRST_FP_PARM_REG \
1764 : FIRST_PARM_REG)
1765
1766 /* Define how to find the value returned by a function.
1767 VALTYPE is the data type of the value (as a tree).
1768 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1769 otherwise, FUNC is 0.
1770 For the SH, this is like LIBCALL_VALUE, except that we must change the
1771 mode like PROMOTE_MODE does.
1772 ??? PROMOTE_MODE is ignored for non-scalar types. The set of types
1773 tested here has to be kept in sync with the one in explow.c:promote_mode. */
1774
1775 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1776 gen_rtx_REG ( \
1777 ((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT \
1778 && GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < 4 \
1779 && (TREE_CODE (VALTYPE) == INTEGER_TYPE \
1780 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
1781 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
1782 || TREE_CODE (VALTYPE) == CHAR_TYPE \
1783 || TREE_CODE (VALTYPE) == REAL_TYPE \
1784 || TREE_CODE (VALTYPE) == OFFSET_TYPE)) \
1785 && sh_promote_prototypes (VALTYPE) \
1786 ? (TARGET_SHMEDIA64 ? DImode : SImode) : TYPE_MODE (VALTYPE)), \
1787 BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
1788
1789 /* Define how to find the value returned by a library function
1790 assuming the value has mode MODE. */
1791 #define LIBCALL_VALUE(MODE) \
1792 gen_rtx_REG ((MODE), BASE_RETURN_VALUE_REG (MODE));
1793
1794 /* 1 if N is a possible register number for a function value. */
1795 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1796 ((REGNO) == FIRST_RET_REG || (TARGET_SH2E && (REGNO) == FIRST_FP_RET_REG) \
1797 || (TARGET_SHMEDIA_FPU && (REGNO) == FIRST_FP_RET_REG))
1798
1799 /* 1 if N is a possible register number for function argument passing. */
1800 /* ??? There are some callers that pass REGNO as int, and others that pass
1801 it as unsigned. We get warnings unless we do casts everywhere. */
1802 #define FUNCTION_ARG_REGNO_P(REGNO) \
1803 (((unsigned) (REGNO) >= (unsigned) FIRST_PARM_REG \
1804 && (unsigned) (REGNO) < (unsigned) (FIRST_PARM_REG + NPARM_REGS (SImode)))\
1805 || (TARGET_FPU_ANY \
1806 && (unsigned) (REGNO) >= (unsigned) FIRST_FP_PARM_REG \
1807 && (unsigned) (REGNO) < (unsigned) (FIRST_FP_PARM_REG \
1808 + NPARM_REGS (SFmode))))
1809 \f
1810 /* Define a data type for recording info about an argument list
1811 during the scan of that argument list. This data type should
1812 hold all necessary information about the function itself
1813 and about the args processed so far, enough to enable macros
1814 such as FUNCTION_ARG to determine where the next arg should go.
1815
1816 On SH, this is a single integer, which is a number of words
1817 of arguments scanned so far (including the invisible argument,
1818 if any, which holds the structure-value-address).
1819 Thus NARGREGS or more means all following args should go on the stack. */
1820
1821 enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1822 struct sh_args {
1823 int arg_count[2];
1824 int force_mem;
1825 /* Nonzero if a prototype is available for the function. */
1826 int prototype_p;
1827 /* The number of an odd floating-point register, that should be used
1828 for the next argument of type float. */
1829 int free_single_fp_reg;
1830 /* Whether we're processing an outgoing function call. */
1831 int outgoing;
1832 /* The number of general-purpose registers that should have been
1833 used to pass partial arguments, that are passed totally on the
1834 stack. On SHcompact, a call trampoline will pop them off the
1835 stack before calling the actual function, and, if the called
1836 function is implemented in SHcompact mode, the incoming arguments
1837 decoder will push such arguments back onto the stack. For
1838 incoming arguments, STACK_REGS also takes into account other
1839 arguments passed by reference, that the decoder will also push
1840 onto the stack. */
1841 int stack_regs;
1842 /* The number of general-purpose registers that should have been
1843 used to pass arguments, if the arguments didn't have to be passed
1844 by reference. */
1845 int byref_regs;
1846 /* Set as by shcompact_byref if the current argument is to be passed
1847 by reference. */
1848 int byref;
1849
1850 /* call_cookie is a bitmask used by call expanders, as well as
1851 function prologue and epilogues, to allow SHcompact to comply
1852 with the SH5 32-bit ABI, that requires 64-bit registers to be
1853 used even though only the lower 32-bit half is visible in
1854 SHcompact mode. The strategy is to call SHmedia trampolines.
1855
1856 The alternatives for each of the argument-passing registers are
1857 (a) leave it unchanged; (b) pop it off the stack; (c) load its
1858 contents from the address in it; (d) add 8 to it, storing the
1859 result in the next register, then (c); (e) copy it from some
1860 floating-point register,
1861
1862 Regarding copies from floating-point registers, r2 may only be
1863 copied from dr0. r3 may be copied from dr0 or dr2. r4 maybe
1864 copied from dr0, dr2 or dr4. r5 maybe copied from dr0, dr2,
1865 dr4 or dr6. r6 may be copied from dr0, dr2, dr4, dr6 or dr8.
1866 r7 through to r9 may be copied from dr0, dr2, dr4, dr8, dr8 or
1867 dr10.
1868
1869 The bit mask is structured as follows:
1870
1871 - 1 bit to tell whether to set up a return trampoline.
1872
1873 - 3 bits to count the number consecutive registers to pop off the
1874 stack.
1875
1876 - 4 bits for each of r9, r8, r7 and r6.
1877
1878 - 3 bits for each of r5, r4, r3 and r2.
1879
1880 - 3 bits set to 0 (the most significant ones)
1881
1882 3 2 1 0
1883 1098 7654 3210 9876 5432 1098 7654 3210
1884 FLPF LPFL PFLP FFLP FFLP FFLP FFLP SSST
1885 2223 3344 4555 6666 7777 8888 9999 SSS-
1886
1887 - If F is set, the register must be copied from an FP register,
1888 whose number is encoded in the remaining bits.
1889
1890 - Else, if L is set, the register must be loaded from the address
1891 contained in it. If the P bit is *not* set, the address of the
1892 following dword should be computed first, and stored in the
1893 following register.
1894
1895 - Else, if P is set, the register alone should be popped off the
1896 stack.
1897
1898 - After all this processing, the number of registers represented
1899 in SSS will be popped off the stack. This is an optimization
1900 for pushing/popping consecutive registers, typically used for
1901 varargs and large arguments partially passed in registers.
1902
1903 - If T is set, a return trampoline will be set up for 64-bit
1904 return values to be split into 2 32-bit registers. */
1905 #define CALL_COOKIE_RET_TRAMP_SHIFT 0
1906 #define CALL_COOKIE_RET_TRAMP(VAL) ((VAL) << CALL_COOKIE_RET_TRAMP_SHIFT)
1907 #define CALL_COOKIE_STACKSEQ_SHIFT 1
1908 #define CALL_COOKIE_STACKSEQ(VAL) ((VAL) << CALL_COOKIE_STACKSEQ_SHIFT)
1909 #define CALL_COOKIE_STACKSEQ_GET(COOKIE) \
1910 (((COOKIE) >> CALL_COOKIE_STACKSEQ_SHIFT) & 7)
1911 #define CALL_COOKIE_INT_REG_SHIFT(REG) \
1912 (4 * (7 - (REG)) + (((REG) <= 2) ? ((REG) - 2) : 1) + 3)
1913 #define CALL_COOKIE_INT_REG(REG, VAL) \
1914 ((VAL) << CALL_COOKIE_INT_REG_SHIFT (REG))
1915 #define CALL_COOKIE_INT_REG_GET(COOKIE, REG) \
1916 (((COOKIE) >> CALL_COOKIE_INT_REG_SHIFT (REG)) & ((REG) < 4 ? 7 : 15))
1917 long call_cookie;
1918
1919 /* This is set to nonzero when the call in question must use the Renesas ABI,
1920 even without the -mrenesas option. */
1921 int renesas_abi;
1922 };
1923
1924 #define CUMULATIVE_ARGS struct sh_args
1925
1926 #define GET_SH_ARG_CLASS(MODE) \
1927 ((TARGET_FPU_ANY && (MODE) == SFmode) \
1928 ? SH_ARG_FLOAT \
1929 /* There's no mention of complex float types in the SH5 ABI, so we
1930 should presumably handle them as aggregate types. */ \
1931 : TARGET_SH5 && GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1932 ? SH_ARG_INT \
1933 : TARGET_FPU_DOUBLE && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1934 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1935 ? SH_ARG_FLOAT : SH_ARG_INT)
1936
1937 #define ROUND_ADVANCE(SIZE) \
1938 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1939
1940 /* Round a register number up to a proper boundary for an arg of mode
1941 MODE.
1942
1943 The SH doesn't care about double alignment, so we only
1944 round doubles to even regs when asked to explicitly. */
1945
1946 #define ROUND_REG(CUM, MODE) \
1947 (((TARGET_ALIGN_DOUBLE \
1948 || ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && ((MODE) == DFmode || (MODE) == DCmode) \
1949 && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
1950 && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
1951 ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
1952 + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1)) \
1953 : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
1954
1955 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1956 for a call to a function whose data type is FNTYPE.
1957 For a library call, FNTYPE is 0.
1958
1959 On SH, the offset always starts at 0: the first parm reg is always
1960 the same reg for a given argument class.
1961
1962 For TARGET_HITACHI, the structure value pointer is passed in memory. */
1963
1964 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1965 sh_init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL), (N_NAMED_ARGS), VOIDmode)
1966
1967 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1968 sh_init_cumulative_args (& (CUM), NULL_TREE, (LIBNAME), NULL_TREE, 0, (MODE))
1969
1970 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1971 sh_function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1972 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1973 sh_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1974
1975 /* Return boolean indicating arg of mode MODE will be passed in a reg.
1976 This macro is only used in this file. */
1977
1978 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1979 (((TYPE) == 0 \
1980 || (! TREE_ADDRESSABLE ((tree)(TYPE)) \
1981 && (! (TARGET_HITACHI || (CUM).renesas_abi) \
1982 || ! (AGGREGATE_TYPE_P (TYPE) \
1983 || (!TARGET_FPU_ANY \
1984 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1985 && GET_MODE_SIZE (MODE) > GET_MODE_SIZE (SFmode))))))) \
1986 && ! (CUM).force_mem \
1987 && (TARGET_SH2E \
1988 ? ((MODE) == BLKmode \
1989 ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
1990 + int_size_in_bytes (TYPE)) \
1991 <= NPARM_REGS (SImode) * UNITS_PER_WORD) \
1992 : ((ROUND_REG((CUM), (MODE)) \
1993 + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
1994 <= NPARM_REGS (MODE))) \
1995 : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
1996
1997 /* By accident we got stuck with passing SCmode on SH4 little endian
1998 in two registers that are nominally successive - which is different from
1999 two single SFmode values, where we take endianness translation into
2000 account. That does not work at all if an odd number of registers is
2001 already in use, so that got fixed, but library functions are still more
2002 likely to use complex numbers without mixing them with SFmode arguments
2003 (which in C would have to be structures), so for the sake of ABI
2004 compatibility the way SCmode values are passed when an even number of
2005 FP registers is in use remains different from a pair of SFmode values for
2006 now.
2007 I.e.:
2008 foo (double); a: fr5,fr4
2009 foo (float a, float b); a: fr5 b: fr4
2010 foo (__complex float a); a.real fr4 a.imag: fr5 - for consistency,
2011 this should be the other way round...
2012 foo (float a, __complex float b); a: fr5 b.real: fr4 b.imag: fr7 */
2013 #define FUNCTION_ARG_SCmode_WART 1
2014
2015 /* If an argument of size 5, 6 or 7 bytes is to be passed in a 64-bit
2016 register in SHcompact mode, it must be padded in the most
2017 significant end. This means that passing it by reference wouldn't
2018 pad properly on a big-endian machine. In this particular case, we
2019 pass this argument on the stack, in a way that the call trampoline
2020 will load its value into the appropriate register. */
2021 #define SHCOMPACT_FORCE_ON_STACK(MODE,TYPE) \
2022 ((MODE) == BLKmode \
2023 && TARGET_SHCOMPACT \
2024 && ! TARGET_LITTLE_ENDIAN \
2025 && int_size_in_bytes (TYPE) > 4 \
2026 && int_size_in_bytes (TYPE) < 8)
2027
2028 /* Minimum alignment for an argument to be passed by callee-copy
2029 reference. We need such arguments to be aligned to 8 byte
2030 boundaries, because they'll be loaded using quad loads. */
2031 #define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
2032
2033 /* The SH5 ABI requires floating-point arguments to be passed to
2034 functions without a prototype in both an FP register and a regular
2035 register or the stack. When passing the argument in both FP and
2036 general-purpose registers, list the FP register first. */
2037 #define SH5_PROTOTYPELESS_FLOAT_ARG(CUM,MODE) \
2038 (gen_rtx_PARALLEL \
2039 ((MODE), \
2040 gen_rtvec (2, \
2041 gen_rtx_EXPR_LIST \
2042 (VOIDmode, \
2043 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
2044 ? gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
2045 + (CUM).arg_count[(int) SH_ARG_FLOAT]) \
2046 : NULL_RTX), \
2047 const0_rtx), \
2048 gen_rtx_EXPR_LIST \
2049 (VOIDmode, \
2050 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
2051 ? gen_rtx_REG ((MODE), FIRST_PARM_REG \
2052 + (CUM).arg_count[(int) SH_ARG_INT]) \
2053 : gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
2054 + (CUM).arg_count[(int) SH_ARG_FLOAT])), \
2055 const0_rtx))))
2056
2057 /* The SH5 ABI requires regular registers or stack slots to be
2058 reserved for floating-point arguments. Registers are taken care of
2059 in FUNCTION_ARG_ADVANCE, but stack slots must be reserved here.
2060 Unfortunately, there's no way to just reserve a stack slot, so
2061 we'll end up needlessly storing a copy of the argument in the
2062 stack. For incoming arguments, however, the PARALLEL will be
2063 optimized to the register-only form, and the value in the stack
2064 slot won't be used at all. */
2065 #define SH5_PROTOTYPED_FLOAT_ARG(CUM,MODE,REG) \
2066 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
2067 ? gen_rtx_REG ((MODE), (REG)) \
2068 : gen_rtx_PARALLEL ((MODE), \
2069 gen_rtvec (2, \
2070 gen_rtx_EXPR_LIST \
2071 (VOIDmode, NULL_RTX, \
2072 const0_rtx), \
2073 gen_rtx_EXPR_LIST \
2074 (VOIDmode, gen_rtx_REG ((MODE), \
2075 (REG)), \
2076 const0_rtx))))
2077
2078 #define SH5_WOULD_BE_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2079 (TARGET_SH5 \
2080 && ((MODE) == BLKmode || (MODE) == TImode || (MODE) == CDImode \
2081 || (MODE) == DCmode) \
2082 && ((CUM).arg_count[(int) SH_ARG_INT] \
2083 + (int_size_in_bytes (TYPE) + 7) / 8) > NPARM_REGS (SImode))
2084
2085 /* Perform any needed actions needed for a function that is receiving a
2086 variable number of arguments. */
2087
2088 /* Implement `va_start' for varargs and stdarg. */
2089 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2090 sh_va_start (valist, nextarg)
2091
2092 /* Call the function profiler with a given profile label.
2093 We use two .aligns, so as to make sure that both the .long is aligned
2094 on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
2095 from the trapa instruction. */
2096
2097 #define FUNCTION_PROFILER(STREAM,LABELNO) \
2098 { \
2099 if (TARGET_SHMEDIA) \
2100 { \
2101 fprintf((STREAM), "\tmovi\t33,r0\n"); \
2102 fprintf((STREAM), "\ttrapa\tr0\n"); \
2103 asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
2104 } \
2105 else \
2106 { \
2107 fprintf((STREAM), "\t.align\t2\n"); \
2108 fprintf((STREAM), "\ttrapa\t#33\n"); \
2109 fprintf((STREAM), "\t.align\t2\n"); \
2110 asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
2111 } \
2112 }
2113
2114 /* Define this macro if the code for function profiling should come
2115 before the function prologue. Normally, the profiling code comes
2116 after. */
2117
2118 #define PROFILE_BEFORE_PROLOGUE
2119
2120 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2121 the stack pointer does not matter. The value is tested only in
2122 functions that have frame pointers.
2123 No definition is equivalent to always zero. */
2124
2125 #define EXIT_IGNORE_STACK 1
2126
2127 /*
2128 On the SH, the trampoline looks like
2129 2 0002 D202 mov.l l2,r2
2130 1 0000 D301 mov.l l1,r3
2131 3 0004 422B jmp @r2
2132 4 0006 0009 nop
2133 5 0008 00000000 l1: .long area
2134 6 000c 00000000 l2: .long function */
2135
2136 /* Length in units of the trampoline for entering a nested function. */
2137 #define TRAMPOLINE_SIZE (TARGET_SHMEDIA64 ? 40 : TARGET_SH5 ? 24 : 16)
2138
2139 /* Alignment required for a trampoline in bits . */
2140 #define TRAMPOLINE_ALIGNMENT \
2141 ((CACHE_LOG < 3 || (TARGET_SMALLCODE && ! TARGET_HARVARD)) ? 32 \
2142 : TARGET_SHMEDIA ? 256 : 64)
2143
2144 /* Emit RTL insns to initialize the variable parts of a trampoline.
2145 FNADDR is an RTX for the address of the function's pure code.
2146 CXT is an RTX for the static chain value for the function. */
2147
2148 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
2149 sh_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
2150
2151 /* On SH5, trampolines are SHmedia code, so add 1 to the address. */
2152
2153 #define TRAMPOLINE_ADJUST_ADDRESS(TRAMP) do \
2154 { \
2155 if (TARGET_SHMEDIA) \
2156 (TRAMP) = expand_simple_binop (Pmode, PLUS, (TRAMP), const1_rtx, \
2157 gen_reg_rtx (Pmode), 0, \
2158 OPTAB_LIB_WIDEN); \
2159 } while (0)
2160
2161 /* A C expression whose value is RTL representing the value of the return
2162 address for the frame COUNT steps up from the current frame.
2163 FRAMEADDR is already the frame pointer of the COUNT frame, so we
2164 can ignore COUNT. */
2165
2166 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2167 (((COUNT) == 0) ? sh_get_pr_initial_val () : (rtx) 0)
2168
2169 /* A C expression whose value is RTL representing the location of the
2170 incoming return address at the beginning of any function, before the
2171 prologue. This RTL is either a REG, indicating that the return
2172 value is saved in REG, or a MEM representing a location in
2173 the stack. */
2174 #define INCOMING_RETURN_ADDR_RTX \
2175 gen_rtx_REG (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG)
2176 \f
2177 /* Addressing modes, and classification of registers for them. */
2178 #define HAVE_POST_INCREMENT TARGET_SH1
2179 #define HAVE_PRE_DECREMENT TARGET_SH1
2180
2181 #define USE_LOAD_POST_INCREMENT(mode) ((mode == SImode || mode == DImode) \
2182 ? 0 : TARGET_SH1)
2183 #define USE_LOAD_PRE_DECREMENT(mode) 0
2184 #define USE_STORE_POST_INCREMENT(mode) 0
2185 #define USE_STORE_PRE_DECREMENT(mode) ((mode == SImode || mode == DImode) \
2186 ? 0 : TARGET_SH1)
2187
2188 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2189 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
2190 < (TARGET_SMALLCODE ? 2 : ((ALIGN >= 32) ? 16 : 2)))
2191
2192 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
2193 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
2194 < (TARGET_SMALLCODE ? 2 : ((ALIGN >= 32) ? 16 : 2)))
2195
2196 /* Macros to check register numbers against specific register classes. */
2197
2198 /* These assume that REGNO is a hard or pseudo reg number.
2199 They give nonzero only if REGNO is a hard reg of the suitable class
2200 or a pseudo reg currently allocated to a suitable hard reg.
2201 Since they use reg_renumber, they are safe only once reg_renumber
2202 has been allocated, which happens in local-alloc.c. */
2203
2204 #define REGNO_OK_FOR_BASE_P(REGNO) \
2205 (GENERAL_OR_AP_REGISTER_P (REGNO) \
2206 || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
2207 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2208 (TARGET_SHMEDIA \
2209 ? (GENERAL_REGISTER_P (REGNO) \
2210 || GENERAL_REGISTER_P ((unsigned) reg_renumber[(REGNO)])) \
2211 : (REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
2212
2213 /* Maximum number of registers that can appear in a valid memory
2214 address. */
2215
2216 #define MAX_REGS_PER_ADDRESS 2
2217
2218 /* Recognize any constant value that is a valid address. */
2219
2220 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
2221
2222 /* Nonzero if the constant value X is a legitimate general operand. */
2223
2224 #define LEGITIMATE_CONSTANT_P(X) \
2225 (TARGET_SHMEDIA \
2226 ? ((GET_MODE (X) != DFmode \
2227 && GET_MODE_CLASS (GET_MODE (X)) != MODE_VECTOR_FLOAT) \
2228 || (X) == CONST0_RTX (GET_MODE (X)) \
2229 || ! TARGET_SHMEDIA_FPU \
2230 || TARGET_SHMEDIA64) \
2231 : (GET_CODE (X) != CONST_DOUBLE \
2232 || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode \
2233 || (TARGET_SH2E && (fp_zero_operand (X) || fp_one_operand (X)))))
2234
2235 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2236 and check its validity for a certain class.
2237 We have two alternate definitions for each of them.
2238 The usual definition accepts all pseudo regs; the other rejects
2239 them unless they have been allocated suitable hard regs.
2240 The symbol REG_OK_STRICT causes the latter definition to be used. */
2241
2242 #ifndef REG_OK_STRICT
2243
2244 /* Nonzero if X is a hard reg that can be used as a base reg
2245 or if it is a pseudo reg. */
2246 #define REG_OK_FOR_BASE_P(X) \
2247 (GENERAL_OR_AP_REGISTER_P (REGNO (X)) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2248
2249 /* Nonzero if X is a hard reg that can be used as an index
2250 or if it is a pseudo reg. */
2251 #define REG_OK_FOR_INDEX_P(X) \
2252 ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2253 : REGNO (X) == R0_REG) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2254
2255 /* Nonzero if X/OFFSET is a hard reg that can be used as an index
2256 or if X is a pseudo reg. */
2257 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2258 ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2259 : REGNO (X) == R0_REG && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2260
2261 #else
2262
2263 /* Nonzero if X is a hard reg that can be used as a base reg. */
2264 #define REG_OK_FOR_BASE_P(X) \
2265 REGNO_OK_FOR_BASE_P (REGNO (X))
2266
2267 /* Nonzero if X is a hard reg that can be used as an index. */
2268 #define REG_OK_FOR_INDEX_P(X) \
2269 REGNO_OK_FOR_INDEX_P (REGNO (X))
2270
2271 /* Nonzero if X/OFFSET is a hard reg that can be used as an index. */
2272 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2273 (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
2274
2275 #endif
2276
2277 /* The 'Q' constraint is a pc relative load operand. */
2278 #define EXTRA_CONSTRAINT_Q(OP) \
2279 (GET_CODE (OP) == MEM \
2280 && ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF) \
2281 || (GET_CODE (XEXP ((OP), 0)) == CONST \
2282 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS \
2283 && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \
2284 && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
2285
2286 /* Extra address constraints. */
2287 #define EXTRA_CONSTRAINT_A(OP, STR) 0
2288
2289 /* Constraint for selecting FLDI0 or FLDI1 instruction. If the clobber
2290 operand is not SCRATCH (i.e. REG) then R0 is probably being
2291 used, hence mova is being used, hence do not select this pattern */
2292 #define EXTRA_CONSTRAINT_Bsc(OP) (GET_CODE(OP) == SCRATCH)
2293 #define EXTRA_CONSTRAINT_B(OP, STR) \
2294 ((STR)[1] == 's' && (STR)[2] == 'c' ? EXTRA_CONSTRAINT_Bsc (OP) \
2295 : 0)
2296
2297 /* The `C16' constraint is a 16-bit constant, literal or symbolic. */
2298 #define EXTRA_CONSTRAINT_C16(OP) \
2299 (GET_CODE (OP) == CONST \
2300 && GET_CODE (XEXP ((OP), 0)) == SIGN_EXTEND \
2301 && (GET_MODE (XEXP ((OP), 0)) == DImode \
2302 || GET_MODE (XEXP ((OP), 0)) == SImode) \
2303 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == TRUNCATE \
2304 && GET_MODE (XEXP (XEXP ((OP), 0), 0)) == HImode \
2305 && (MOVI_SHORI_BASE_OPERAND_P (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) \
2306 || (GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == ASHIFTRT \
2307 && (MOVI_SHORI_BASE_OPERAND_P \
2308 (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), 0))) \
2309 && GET_CODE (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), \
2310 1)) == CONST_INT)))
2311
2312 /* Check whether OP is a datalabel unspec. */
2313 #define DATALABEL_REF_NO_CONST_P(OP) \
2314 (GET_CODE (OP) == UNSPEC \
2315 && XINT ((OP), 1) == UNSPEC_DATALABEL \
2316 && XVECLEN ((OP), 0) == 1 \
2317 && GET_CODE (XVECEXP ((OP), 0, 0)) == LABEL_REF)
2318
2319 #define GOT_ENTRY_P(OP) \
2320 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2321 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
2322
2323 #define GOTPLT_ENTRY_P(OP) \
2324 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2325 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
2326
2327 #define UNSPEC_GOTOFF_P(OP) \
2328 (GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF)
2329
2330 #define GOTOFF_P(OP) \
2331 (GET_CODE (OP) == CONST \
2332 && (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \
2333 || (GET_CODE (XEXP ((OP), 0)) == PLUS \
2334 && UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \
2335 && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT)))
2336
2337 #define PIC_ADDR_P(OP) \
2338 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2339 && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
2340
2341 #define PIC_OFFSET_P(OP) \
2342 (PIC_ADDR_P (OP) \
2343 && GET_CODE (XVECEXP (XEXP ((OP), 0), 0, 0)) == MINUS \
2344 && reg_mentioned_p (pc_rtx, XEXP (XVECEXP (XEXP ((OP), 0), 0, 0), 1)))
2345
2346 #define PIC_DIRECT_ADDR_P(OP) \
2347 (PIC_ADDR_P (OP) && GET_CODE (XVECEXP (XEXP ((OP), 0), 0, 0)) != MINUS)
2348
2349 #define NON_PIC_REFERENCE_P(OP) \
2350 (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
2351 || (GET_CODE (OP) == CONST \
2352 && (GET_CODE (XEXP ((OP), 0)) == LABEL_REF \
2353 || GET_CODE (XEXP ((OP), 0)) == SYMBOL_REF \
2354 || DATALABEL_REF_NO_CONST_P (XEXP ((OP), 0)))) \
2355 || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
2356 && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
2357 || GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF \
2358 || DATALABEL_REF_NO_CONST_P (XEXP (XEXP ((OP), 0), 0))) \
2359 && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT))
2360
2361 #define PIC_REFERENCE_P(OP) \
2362 (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
2363 || GOTOFF_P (OP) || PIC_ADDR_P (OP))
2364
2365 #define MOVI_SHORI_BASE_OPERAND_P(OP) \
2366 (flag_pic \
2367 ? (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) || GOTOFF_P (OP) \
2368 || PIC_OFFSET_P (OP)) \
2369 : NON_PIC_REFERENCE_P (OP))
2370
2371 /* The `Csy' constraint is a label or a symbol. */
2372 #define EXTRA_CONSTRAINT_Csy(OP) \
2373 (NON_PIC_REFERENCE_P (OP) || PIC_DIRECT_ADDR_P (OP))
2374
2375 /* A zero in any shape or form. */
2376 #define EXTRA_CONSTRAINT_Z(OP) \
2377 ((OP) == CONST0_RTX (GET_MODE (OP)))
2378
2379 /* Any vector constant we can handle. */
2380 #define EXTRA_CONSTRAINT_W(OP) \
2381 (GET_CODE (OP) == CONST_VECTOR \
2382 && (sh_rep_vec ((OP), VOIDmode) \
2383 || (HOST_BITS_PER_WIDE_INT >= 64 \
2384 ? sh_const_vec ((OP), VOIDmode) \
2385 : sh_1el_vec ((OP), VOIDmode))))
2386
2387 /* A non-explicit constant that can be loaded directly into a general purpose
2388 register. This is like 's' except we don't allow PIC_DIRECT_ADDR_P. */
2389 #define EXTRA_CONSTRAINT_Cpg(OP) \
2390 (CONSTANT_P (OP) \
2391 && GET_CODE (OP) != CONST_INT \
2392 && GET_CODE (OP) != CONST_DOUBLE \
2393 && (!flag_pic \
2394 || (LEGITIMATE_PIC_OPERAND_P (OP) \
2395 && (! PIC_ADDR_P (OP) || PIC_OFFSET_P (OP)) \
2396 && GET_CODE (OP) != LABEL_REF)))
2397 #define EXTRA_CONSTRAINT_C(OP, STR) \
2398 ((STR)[1] == '1' && (STR)[2] == '6' ? EXTRA_CONSTRAINT_C16 (OP) \
2399 : (STR)[1] == 's' && (STR)[2] == 'y' ? EXTRA_CONSTRAINT_Csy (OP) \
2400 : (STR)[1] == 'p' && (STR)[2] == 'g' ? EXTRA_CONSTRAINT_Cpg (OP) \
2401 : 0)
2402
2403 #define EXTRA_MEMORY_CONSTRAINT(C,STR) ((C) == 'S')
2404 #define EXTRA_CONSTRAINT_Sr0(OP) \
2405 (memory_operand((OP), GET_MODE (OP)) \
2406 && ! refers_to_regno_p (R0_REG, R0_REG + 1, OP, (rtx *)0))
2407 #define EXTRA_CONSTRAINT_Sua(OP) \
2408 (memory_operand((OP), GET_MODE (OP)) \
2409 && GET_CODE (XEXP (OP, 0)) != PLUS)
2410 #define EXTRA_CONSTRAINT_S(OP, STR) \
2411 ((STR)[1] == 'r' && (STR)[2] == '0' ? EXTRA_CONSTRAINT_Sr0 (OP) \
2412 : (STR)[1] == 'u' && (STR)[2] == 'a' ? EXTRA_CONSTRAINT_Sua (OP) \
2413 : 0)
2414
2415 #define EXTRA_CONSTRAINT_STR(OP, C, STR) \
2416 ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \
2417 : (C) == 'A' ? EXTRA_CONSTRAINT_A ((OP), (STR)) \
2418 : (C) == 'B' ? EXTRA_CONSTRAINT_B ((OP), (STR)) \
2419 : (C) == 'C' ? EXTRA_CONSTRAINT_C ((OP), (STR)) \
2420 : (C) == 'S' ? EXTRA_CONSTRAINT_S ((OP), (STR)) \
2421 : (C) == 'W' ? EXTRA_CONSTRAINT_W (OP) \
2422 : (C) == 'Z' ? EXTRA_CONSTRAINT_Z (OP) \
2423 : 0)
2424 \f
2425 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2426 that is a valid memory address for an instruction.
2427 The MODE argument is the machine mode for the MEM expression
2428 that wants to use this address. */
2429
2430 #define MODE_DISP_OK_4(X,MODE) \
2431 (GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
2432 && ! (INTVAL (X) & 3) && ! (TARGET_SH2E && (MODE) == SFmode))
2433
2434 #define MODE_DISP_OK_8(X,MODE) \
2435 ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
2436 && ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode))
2437
2438 #undef MODE_DISP_OK_4
2439 #define MODE_DISP_OK_4(X,MODE) \
2440 ((GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
2441 && ! (INTVAL (X) & 3) && ! (TARGET_SH2E && (MODE) == SFmode)) \
2442 || ((GET_MODE_SIZE(MODE)==4) && ((unsigned)INTVAL(X)<16383) \
2443 && ! (INTVAL(X) & 3) && TARGET_SH2A))
2444
2445 #undef MODE_DISP_OK_8
2446 #define MODE_DISP_OK_8(X,MODE) \
2447 (((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
2448 && ! (INTVAL(X) & 3) && ! ((TARGET_SH4 || TARGET_SH2A) && (MODE) == DFmode)) \
2449 || ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<8192) \
2450 && ! (INTVAL(X) & (TARGET_SH2A_DOUBLE ? 7 : 3)) && (TARGET_SH2A && (MODE) == DFmode)))
2451
2452 #define BASE_REGISTER_RTX_P(X) \
2453 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2454 || (GET_CODE (X) == SUBREG \
2455 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
2456 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
2457 && GET_CODE (SUBREG_REG (X)) == REG \
2458 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2459
2460 /* Since this must be r0, which is a single register class, we must check
2461 SUBREGs more carefully, to be sure that we don't accept one that extends
2462 outside the class. */
2463 #define INDEX_REGISTER_RTX_P(X) \
2464 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2465 || (GET_CODE (X) == SUBREG \
2466 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
2467 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
2468 && GET_CODE (SUBREG_REG (X)) == REG \
2469 && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X))))
2470
2471 /* Jump to LABEL if X is a valid address RTX. This must also take
2472 REG_OK_STRICT into account when deciding about valid registers, but it uses
2473 the above macros so we are in luck.
2474
2475 Allow REG
2476 REG+disp
2477 REG+r0
2478 REG++
2479 --REG */
2480
2481 /* ??? The SH2e does not have the REG+disp addressing mode when loading values
2482 into the FRx registers. We implement this by setting the maximum offset
2483 to zero when the value is SFmode. This also restricts loading of SFmode
2484 values into the integer registers, but that can't be helped. */
2485
2486 /* The SH allows a displacement in a QI or HI amode, but only when the
2487 other operand is R0. GCC doesn't handle this very well, so we forgo
2488 all of that.
2489
2490 A legitimate index for a QI or HI is 0, SI can be any number 0..63,
2491 DI can be any number 0..60. */
2492
2493 #define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL) \
2494 do { \
2495 if (GET_CODE (OP) == CONST_INT) \
2496 { \
2497 if (TARGET_SHMEDIA) \
2498 { \
2499 int MODE_SIZE; \
2500 /* Check if this the address of an unaligned load / store. */\
2501 if ((MODE) == VOIDmode) \
2502 { \
2503 if (CONST_OK_FOR_I06 (INTVAL (OP))) \
2504 goto LABEL; \
2505 break; \
2506 } \
2507 MODE_SIZE = GET_MODE_SIZE (MODE); \
2508 if (! (INTVAL (OP) & (MODE_SIZE - 1)) \
2509 && INTVAL (OP) >= -512 * MODE_SIZE \
2510 && INTVAL (OP) < 512 * MODE_SIZE) \
2511 goto LABEL; \
2512 else \
2513 break; \
2514 } \
2515 if (MODE_DISP_OK_4 ((OP), (MODE))) goto LABEL; \
2516 if (MODE_DISP_OK_8 ((OP), (MODE))) goto LABEL; \
2517 } \
2518 } while(0)
2519
2520 #define ALLOW_INDEXED_ADDRESS \
2521 ((!TARGET_SHMEDIA32 && !TARGET_SHCOMPACT) || TARGET_ALLOW_INDEXED_ADDRESS)
2522
2523 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
2524 { \
2525 if (BASE_REGISTER_RTX_P (X)) \
2526 goto LABEL; \
2527 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
2528 && ! TARGET_SHMEDIA \
2529 && BASE_REGISTER_RTX_P (XEXP ((X), 0))) \
2530 goto LABEL; \
2531 else if (GET_CODE (X) == PLUS \
2532 && ((MODE) != PSImode || reload_completed)) \
2533 { \
2534 rtx xop0 = XEXP ((X), 0); \
2535 rtx xop1 = XEXP ((X), 1); \
2536 if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \
2537 GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL); \
2538 if ((ALLOW_INDEXED_ADDRESS || GET_MODE (X) == DImode \
2539 || ((xop0 == stack_pointer_rtx \
2540 || xop0 == hard_frame_pointer_rtx) \
2541 && REG_P (xop1) && REGNO (xop1) == R0_REG) \
2542 || ((xop1 == stack_pointer_rtx \
2543 || xop1 == hard_frame_pointer_rtx) \
2544 && REG_P (xop0) && REGNO (xop0) == R0_REG)) \
2545 && ((!TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 4) \
2546 || (TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 8) \
2547 || ((TARGET_SH4 || TARGET_SH2A_DOUBLE) \
2548 && TARGET_FMOVD && MODE == DFmode))) \
2549 { \
2550 if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
2551 goto LABEL; \
2552 if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
2553 goto LABEL; \
2554 } \
2555 } \
2556 }
2557 \f
2558 /* Try machine-dependent ways of modifying an illegitimate address
2559 to be legitimate. If we find one, return the new, valid address.
2560 This macro is used in only one place: `memory_address' in explow.c.
2561
2562 OLDX is the address as it was before break_out_memory_refs was called.
2563 In some cases it is useful to look at this to decide what needs to be done.
2564
2565 MODE and WIN are passed so that this macro can use
2566 GO_IF_LEGITIMATE_ADDRESS.
2567
2568 It is always safe for this macro to do nothing. It exists to recognize
2569 opportunities to optimize the output.
2570
2571 For the SH, if X is almost suitable for indexing, but the offset is
2572 out of range, convert it into a normal form so that cse has a chance
2573 of reducing the number of address registers used. */
2574
2575 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2576 { \
2577 if (flag_pic) \
2578 (X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \
2579 if (GET_CODE (X) == PLUS \
2580 && (GET_MODE_SIZE (MODE) == 4 \
2581 || GET_MODE_SIZE (MODE) == 8) \
2582 && GET_CODE (XEXP ((X), 1)) == CONST_INT \
2583 && BASE_REGISTER_RTX_P (XEXP ((X), 0)) \
2584 && ! TARGET_SHMEDIA \
2585 && ! ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && (MODE) == DFmode) \
2586 && ! (TARGET_SH2E && (MODE) == SFmode)) \
2587 { \
2588 rtx index_rtx = XEXP ((X), 1); \
2589 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
2590 rtx sum; \
2591 \
2592 GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN); \
2593 /* On rare occasions, we might get an unaligned pointer \
2594 that is indexed in a way to give an aligned address. \
2595 Therefore, keep the lower two bits in offset_base. */ \
2596 /* Instead of offset_base 128..131 use 124..127, so that \
2597 simple add suffices. */ \
2598 if (offset > 127) \
2599 { \
2600 offset_base = ((offset + 4) & ~60) - 4; \
2601 } \
2602 else \
2603 offset_base = offset & ~60; \
2604 /* Sometimes the normal form does not suit DImode. We \
2605 could avoid that by using smaller ranges, but that \
2606 would give less optimized code when SImode is \
2607 prevalent. */ \
2608 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
2609 { \
2610 sum = expand_binop (Pmode, add_optab, XEXP ((X), 0), \
2611 GEN_INT (offset_base), NULL_RTX, 0, \
2612 OPTAB_LIB_WIDEN); \
2613 \
2614 (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); \
2615 goto WIN; \
2616 } \
2617 } \
2618 }
2619
2620 /* A C compound statement that attempts to replace X, which is an address
2621 that needs reloading, with a valid memory address for an operand of
2622 mode MODE. WIN is a C statement label elsewhere in the code.
2623
2624 Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
2625 of the address. That will allow inheritance of the address reloads. */
2626
2627 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2628 { \
2629 if (GET_CODE (X) == PLUS \
2630 && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
2631 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2632 && BASE_REGISTER_RTX_P (XEXP (X, 0)) \
2633 && ! TARGET_SHMEDIA \
2634 && ! (TARGET_SH4 && (MODE) == DFmode) \
2635 && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS) \
2636 && (ALLOW_INDEXED_ADDRESS \
2637 || XEXP ((X), 0) == stack_pointer_rtx \
2638 || XEXP ((X), 0) == hard_frame_pointer_rtx)) \
2639 { \
2640 rtx index_rtx = XEXP (X, 1); \
2641 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
2642 rtx sum; \
2643 \
2644 if (TARGET_SH2A && (MODE) == DFmode && (offset & 0x7)) \
2645 { \
2646 push_reload (X, NULL_RTX, &X, NULL, \
2647 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
2648 (TYPE)); \
2649 goto WIN; \
2650 } \
2651 if (TARGET_SH2E && MODE == SFmode) \
2652 { \
2653 X = copy_rtx (X); \
2654 push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL, \
2655 R0_REGS, Pmode, VOIDmode, 0, 0, (OPNUM), \
2656 (TYPE)); \
2657 goto WIN; \
2658 } \
2659 /* Instead of offset_base 128..131 use 124..127, so that \
2660 simple add suffices. */ \
2661 if (offset > 127) \
2662 { \
2663 offset_base = ((offset + 4) & ~60) - 4; \
2664 } \
2665 else \
2666 offset_base = offset & ~60; \
2667 /* Sometimes the normal form does not suit DImode. We \
2668 could avoid that by using smaller ranges, but that \
2669 would give less optimized code when SImode is \
2670 prevalent. */ \
2671 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
2672 { \
2673 sum = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2674 GEN_INT (offset_base)); \
2675 X = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base));\
2676 push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL, \
2677 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
2678 (TYPE)); \
2679 goto WIN; \
2680 } \
2681 } \
2682 /* We must re-recognize what we created before. */ \
2683 else if (GET_CODE (X) == PLUS \
2684 && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
2685 && GET_CODE (XEXP (X, 0)) == PLUS \
2686 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
2687 && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0)) \
2688 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2689 && ! TARGET_SHMEDIA \
2690 && ! (TARGET_SH2E && MODE == SFmode)) \
2691 { \
2692 /* Because this address is so complex, we know it must have \
2693 been created by LEGITIMIZE_RELOAD_ADDRESS before; thus, \
2694 it is already unshared, and needs no further unsharing. */ \
2695 push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL, \
2696 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
2697 goto WIN; \
2698 } \
2699 }
2700
2701 /* Go to LABEL if ADDR (a legitimate address expression)
2702 has an effect that depends on the machine mode it is used for.
2703
2704 ??? Strictly speaking, we should also include all indexed addressing,
2705 because the index scale factor is the length of the operand.
2706 However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
2707 high if we did that. So we rely on reload to fix things up. */
2708
2709 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2710 { \
2711 if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC) \
2712 goto LABEL; \
2713 }
2714 \f
2715 /* Specify the machine mode that this machine uses
2716 for the index in the tablejump instruction. */
2717 #define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode)
2718
2719 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
2720 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
2721 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
2722 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
2723 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
2724 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
2725 : SImode)
2726
2727 /* Define as C expression which evaluates to nonzero if the tablejump
2728 instruction expects the table to contain offsets from the address of the
2729 table.
2730 Do not define this if the table should contain absolute addresses. */
2731 #define CASE_VECTOR_PC_RELATIVE 1
2732
2733 /* Define it here, so that it doesn't get bumped to 64-bits on SHmedia. */
2734 #define FLOAT_TYPE_SIZE 32
2735
2736 /* Since the SH2e has only `float' support, it is desirable to make all
2737 floating point types equivalent to `float'. */
2738 #define DOUBLE_TYPE_SIZE ((TARGET_SH2E && ! TARGET_SH4 && ! TARGET_SH2A_DOUBLE) ? 32 : 64)
2739
2740 /* 'char' is signed by default. */
2741 #define DEFAULT_SIGNED_CHAR 1
2742
2743 /* The type of size_t unsigned int. */
2744 #define SIZE_TYPE (TARGET_SH5 ? "long unsigned int" : "unsigned int")
2745
2746 #undef PTRDIFF_TYPE
2747 #define PTRDIFF_TYPE (TARGET_SH5 ? "long int" : "int")
2748
2749 #define WCHAR_TYPE "short unsigned int"
2750 #define WCHAR_TYPE_SIZE 16
2751
2752 #define SH_ELF_WCHAR_TYPE "long int"
2753
2754 /* Max number of bytes we can move from memory to memory
2755 in one reasonably fast instruction. */
2756 #define MOVE_MAX (TARGET_SHMEDIA ? 8 : 4)
2757
2758 /* Maximum value possibly taken by MOVE_MAX. Must be defined whenever
2759 MOVE_MAX is not a compile-time constant. */
2760 #define MAX_MOVE_MAX 8
2761
2762 /* Max number of bytes we want move_by_pieces to be able to copy
2763 efficiently. */
2764 #define MOVE_MAX_PIECES (TARGET_SH4 || TARGET_SHMEDIA ? 8 : 4)
2765
2766 /* Define if operations between registers always perform the operation
2767 on the full register even if a narrower mode is specified. */
2768 #define WORD_REGISTER_OPERATIONS
2769
2770 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2771 will either zero-extend or sign-extend. The value of this macro should
2772 be the code that says which one of the two operations is implicitly
2773 done, UNKNOWN if none. */
2774 /* For SHmedia, we can truncate to QImode easier using zero extension. */
2775 /* FP registers can load SImode values, but don't implicitly sign-extend
2776 them to DImode. */
2777 #define LOAD_EXTEND_OP(MODE) \
2778 (((MODE) == QImode && TARGET_SHMEDIA) ? ZERO_EXTEND \
2779 : (MODE) != SImode ? SIGN_EXTEND : UNKNOWN)
2780
2781 /* Define if loading short immediate values into registers sign extends. */
2782 #define SHORT_IMMEDIATES_SIGN_EXTEND
2783
2784 /* Nonzero if access to memory by bytes is no faster than for words. */
2785 #define SLOW_BYTE_ACCESS 1
2786
2787 /* Immediate shift counts are truncated by the output routines (or was it
2788 the assembler?). Shift counts in a register are truncated by SH. Note
2789 that the native compiler puts too large (> 32) immediate shift counts
2790 into a register and shifts by the register, letting the SH decide what
2791 to do instead of doing that itself. */
2792 /* ??? The library routines in lib1funcs.asm truncate the shift count.
2793 However, the SH3 has hardware shifts that do not truncate exactly as gcc
2794 expects - the sign bit is significant - so it appears that we need to
2795 leave this zero for correct SH3 code. */
2796 #define SHIFT_COUNT_TRUNCATED (! TARGET_SH3 && ! TARGET_SH2A)
2797
2798 /* All integers have the same format so truncation is easy. */
2799 /* But SHmedia must sign-extend DImode when truncating to SImode. */
2800 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) \
2801 (!TARGET_SHMEDIA || (INPREC) < 64 || (OUTPREC) >= 64)
2802
2803 /* Define this if addresses of constant functions
2804 shouldn't be put through pseudo regs where they can be cse'd.
2805 Desirable on machines where ordinary constants are expensive
2806 but a CALL with constant address is cheap. */
2807 /*#define NO_FUNCTION_CSE 1*/
2808
2809 /* The machine modes of pointers and functions. */
2810 #define Pmode (TARGET_SHMEDIA64 ? DImode : SImode)
2811 #define FUNCTION_MODE Pmode
2812
2813 /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
2814 are actually function calls with some special constraints on arguments
2815 and register usage.
2816
2817 These macros tell reorg that the references to arguments and
2818 register clobbers for insns of type sfunc do not appear to happen
2819 until after the millicode call. This allows reorg to put insns
2820 which set the argument registers into the delay slot of the millicode
2821 call -- thus they act more like traditional CALL_INSNs.
2822
2823 get_attr_is_sfunc will try to recognize the given insn, so make sure to
2824 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
2825 in particular. */
2826
2827 #define INSN_SETS_ARE_DELAYED(X) \
2828 ((GET_CODE (X) == INSN \
2829 && GET_CODE (PATTERN (X)) != SEQUENCE \
2830 && GET_CODE (PATTERN (X)) != USE \
2831 && GET_CODE (PATTERN (X)) != CLOBBER \
2832 && get_attr_is_sfunc (X)))
2833
2834 #define INSN_REFERENCES_ARE_DELAYED(X) \
2835 ((GET_CODE (X) == INSN \
2836 && GET_CODE (PATTERN (X)) != SEQUENCE \
2837 && GET_CODE (PATTERN (X)) != USE \
2838 && GET_CODE (PATTERN (X)) != CLOBBER \
2839 && get_attr_is_sfunc (X)))
2840
2841 \f
2842 /* Position Independent Code. */
2843
2844 /* We can't directly access anything that contains a symbol,
2845 nor can we indirect via the constant pool. */
2846 #define LEGITIMATE_PIC_OPERAND_P(X) \
2847 ((! nonpic_symbol_mentioned_p (X) \
2848 && (GET_CODE (X) != SYMBOL_REF \
2849 || ! CONSTANT_POOL_ADDRESS_P (X) \
2850 || ! nonpic_symbol_mentioned_p (get_pool_constant (X)))) \
2851 || (TARGET_SHMEDIA && GET_CODE (X) == LABEL_REF))
2852
2853 #define SYMBOLIC_CONST_P(X) \
2854 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
2855 && nonpic_symbol_mentioned_p (X))
2856 \f
2857 /* Compute extra cost of moving data between one register class
2858 and another. */
2859
2860 /* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
2861 uses this information. Hence, the general register <-> floating point
2862 register information here is not used for SFmode. */
2863
2864 #define REGCLASS_HAS_GENERAL_REG(CLASS) \
2865 ((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS \
2866 || (! TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS))
2867
2868 #define REGCLASS_HAS_FP_REG(CLASS) \
2869 ((CLASS) == FP0_REGS || (CLASS) == FP_REGS \
2870 || (CLASS) == DF_REGS || (CLASS) == DF_HI_REGS)
2871
2872 #define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) \
2873 sh_register_move_cost ((MODE), (SRCCLASS), (DSTCLASS))
2874
2875 /* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
2876 would be so that people with slow memory systems could generate
2877 different code that does fewer memory accesses. */
2878
2879 /* A C expression for the cost of a branch instruction. A value of 1
2880 is the default; other values are interpreted relative to that.
2881 The SH1 does not have delay slots, hence we get a pipeline stall
2882 at every branch. The SH4 is superscalar, so the single delay slot
2883 is not sufficient to keep both pipelines filled. */
2884 #define BRANCH_COST (TARGET_SH5 ? 1 : ! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1)
2885 \f
2886 /* Assembler output control. */
2887
2888 /* A C string constant describing how to begin a comment in the target
2889 assembler language. The compiler assumes that the comment will end at
2890 the end of the line. */
2891 #define ASM_COMMENT_START "!"
2892
2893 #define ASM_APP_ON ""
2894 #define ASM_APP_OFF ""
2895 #define FILE_ASM_OP "\t.file\n"
2896 #define SET_ASM_OP "\t.set\t"
2897
2898 /* How to change between sections. */
2899
2900 #define TEXT_SECTION_ASM_OP (TARGET_SHMEDIA32 ? "\t.section\t.text..SHmedia32,\"ax\"" : "\t.text")
2901 #define DATA_SECTION_ASM_OP "\t.data"
2902
2903 #if defined CRT_BEGIN || defined CRT_END
2904 /* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant. */
2905 # undef TEXT_SECTION_ASM_OP
2906 # if __SHMEDIA__ == 1 && __SH5__ == 32
2907 # define TEXT_SECTION_ASM_OP "\t.section\t.text..SHmedia32,\"ax\""
2908 # else
2909 # define TEXT_SECTION_ASM_OP "\t.text"
2910 # endif
2911 #endif
2912
2913
2914 /* If defined, a C expression whose value is a string containing the
2915 assembler operation to identify the following data as
2916 uninitialized global data. If not defined, and neither
2917 `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2918 uninitialized global data will be output in the data section if
2919 `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2920 used. */
2921 #ifndef BSS_SECTION_ASM_OP
2922 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
2923 #endif
2924
2925 /* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
2926 separate, explicit argument. If you define this macro, it is used
2927 in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
2928 handling the required alignment of the variable. The alignment is
2929 specified as the number of bits.
2930
2931 Try to use function `asm_output_aligned_bss' defined in file
2932 `varasm.c' when defining this macro. */
2933 #ifndef ASM_OUTPUT_ALIGNED_BSS
2934 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2935 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
2936 #endif
2937
2938 /* Define this so that jump tables go in same section as the current function,
2939 which could be text or it could be a user defined section. */
2940 #define JUMP_TABLES_IN_TEXT_SECTION 1
2941
2942 #undef DO_GLOBAL_CTORS_BODY
2943 #define DO_GLOBAL_CTORS_BODY \
2944 { \
2945 typedef (*pfunc)(); \
2946 extern pfunc __ctors[]; \
2947 extern pfunc __ctors_end[]; \
2948 pfunc *p; \
2949 for (p = __ctors_end; p > __ctors; ) \
2950 { \
2951 (*--p)(); \
2952 } \
2953 }
2954
2955 #undef DO_GLOBAL_DTORS_BODY
2956 #define DO_GLOBAL_DTORS_BODY \
2957 { \
2958 typedef (*pfunc)(); \
2959 extern pfunc __dtors[]; \
2960 extern pfunc __dtors_end[]; \
2961 pfunc *p; \
2962 for (p = __dtors; p < __dtors_end; p++) \
2963 { \
2964 (*p)(); \
2965 } \
2966 }
2967
2968 #define ASM_OUTPUT_REG_PUSH(file, v) \
2969 { \
2970 if (TARGET_SHMEDIA) \
2971 { \
2972 fprintf ((file), "\taddi.l\tr15,-8,r15\n"); \
2973 fprintf ((file), "\tst.q\tr15,0,r%d\n", (v)); \
2974 } \
2975 else \
2976 fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v)); \
2977 }
2978
2979 #define ASM_OUTPUT_REG_POP(file, v) \
2980 { \
2981 if (TARGET_SHMEDIA) \
2982 { \
2983 fprintf ((file), "\tld.q\tr15,0,r%d\n", (v)); \
2984 fprintf ((file), "\taddi.l\tr15,8,r15\n"); \
2985 } \
2986 else \
2987 fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v)); \
2988 }
2989
2990 /* DBX register number for a given compiler register number. */
2991 /* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
2992 to match gdb. */
2993 /* svr4.h undefines this macro, yet we really want to use the same numbers
2994 for coff as for elf, so we go via another macro: SH_DBX_REGISTER_NUMBER. */
2995 /* expand_builtin_init_dwarf_reg_sizes uses this to test if a
2996 register exists, so we should return -1 for invalid register numbers. */
2997 #define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
2998
2999 /* SHcompact PR_REG used to use the encoding 241, and SHcompact FP registers
3000 used to use the encodings 245..260, but that doesn't make sense:
3001 PR_REG and PR_MEDIA_REG are actually the same register, and likewise
3002 the FP registers stay the same when switching between compact and media
3003 mode. Hence, we also need to use the same dwarf frame columns.
3004 Likewise, we need to support unwind information for SHmedia registers
3005 even in compact code. */
3006 #define SH_DBX_REGISTER_NUMBER(REGNO) \
3007 (IN_RANGE ((REGNO), \
3008 (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
3009 FIRST_GENERAL_REG + (TARGET_SH5 ? 63U :15U)) \
3010 ? ((unsigned) (REGNO) - FIRST_GENERAL_REG) \
3011 : ((int) (REGNO) >= FIRST_FP_REG \
3012 && ((int) (REGNO) \
3013 <= (FIRST_FP_REG + \
3014 ((TARGET_SH5 && TARGET_FPU_ANY) ? 63 : TARGET_SH2E ? 15 : -1)))) \
3015 ? ((unsigned) (REGNO) - FIRST_FP_REG \
3016 + (TARGET_SH5 ? 77 : 25)) \
3017 : XD_REGISTER_P (REGNO) \
3018 ? ((unsigned) (REGNO) - FIRST_XD_REG + (TARGET_SH5 ? 289 : 87)) \
3019 : TARGET_REGISTER_P (REGNO) \
3020 ? ((unsigned) (REGNO) - FIRST_TARGET_REG + 68) \
3021 : (REGNO) == PR_REG \
3022 ? (TARGET_SH5 ? 18 : 17) \
3023 : (REGNO) == PR_MEDIA_REG \
3024 ? (TARGET_SH5 ? 18 : (unsigned) -1) \
3025 : (REGNO) == T_REG \
3026 ? (TARGET_SH5 ? 242 : 18) \
3027 : (REGNO) == GBR_REG \
3028 ? (TARGET_SH5 ? 238 : 19) \
3029 : (REGNO) == MACH_REG \
3030 ? (TARGET_SH5 ? 239 : 20) \
3031 : (REGNO) == MACL_REG \
3032 ? (TARGET_SH5 ? 240 : 21) \
3033 : (REGNO) == FPUL_REG \
3034 ? (TARGET_SH5 ? 244 : 23) \
3035 : (unsigned) -1)
3036
3037 /* This is how to output a reference to a symbol_ref. On SH5,
3038 references to non-code symbols must be preceded by `datalabel'. */
3039 #define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
3040 do \
3041 { \
3042 if (TARGET_SH5 && !SYMBOL_REF_FUNCTION_P (SYM)) \
3043 fputs ("datalabel ", (FILE)); \
3044 assemble_name ((FILE), XSTR ((SYM), 0)); \
3045 } \
3046 while (0)
3047
3048 /* This is how to output an assembler line
3049 that says to advance the location counter
3050 to a multiple of 2**LOG bytes. */
3051
3052 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
3053 if ((LOG) != 0) \
3054 fprintf ((FILE), "\t.align %d\n", (LOG))
3055
3056 /* Globalizing directive for a label. */
3057 #define GLOBAL_ASM_OP "\t.global\t"
3058
3059 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
3060
3061 /* Output a relative address table. */
3062
3063 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
3064 switch (GET_MODE (BODY)) \
3065 { \
3066 case SImode: \
3067 if (TARGET_SH5) \
3068 { \
3069 asm_fprintf ((STREAM), "\t.long\t%LL%d-datalabel %LL%d\n", \
3070 (VALUE), (REL)); \
3071 break; \
3072 } \
3073 asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3074 break; \
3075 case HImode: \
3076 if (TARGET_SH5) \
3077 { \
3078 asm_fprintf ((STREAM), "\t.word\t%LL%d-datalabel %LL%d\n", \
3079 (VALUE), (REL)); \
3080 break; \
3081 } \
3082 asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3083 break; \
3084 case QImode: \
3085 if (TARGET_SH5) \
3086 { \
3087 asm_fprintf ((STREAM), "\t.byte\t%LL%d-datalabel %LL%d\n", \
3088 (VALUE), (REL)); \
3089 break; \
3090 } \
3091 asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3092 break; \
3093 default: \
3094 break; \
3095 }
3096
3097 /* Output an absolute table element. */
3098
3099 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
3100 if (! optimize || TARGET_BIGTABLE) \
3101 asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
3102 else \
3103 asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));
3104
3105 \f
3106 /* A C statement to be executed just prior to the output of
3107 assembler code for INSN, to modify the extracted operands so
3108 they will be output differently.
3109
3110 Here the argument OPVEC is the vector containing the operands
3111 extracted from INSN, and NOPERANDS is the number of elements of
3112 the vector which contain meaningful data for this insn.
3113 The contents of this vector are what will be used to convert the insn
3114 template into assembler code, so you can change the assembler output
3115 by changing the contents of the vector. */
3116
3117 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3118 final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
3119
3120 /* Print operand X (an rtx) in assembler syntax to file FILE.
3121 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3122 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3123
3124 #define PRINT_OPERAND(STREAM, X, CODE) print_operand ((STREAM), (X), (CODE))
3125
3126 /* Print a memory address as an operand to reference that memory location. */
3127
3128 #define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address ((STREAM), (X))
3129
3130 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
3131 ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ',' \
3132 || (CHAR) == '$' || (CHAR) == '\'' || (CHAR) == '>')
3133
3134 /* Recognize machine-specific patterns that may appear within
3135 constants. Used for PIC-specific UNSPECs. */
3136 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
3137 do \
3138 if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
3139 { \
3140 switch (XINT ((X), 1)) \
3141 { \
3142 case UNSPEC_DATALABEL: \
3143 fputs ("datalabel ", (STREAM)); \
3144 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3145 break; \
3146 case UNSPEC_PIC: \
3147 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
3148 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3149 break; \
3150 case UNSPEC_GOT: \
3151 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3152 fputs ("@GOT", (STREAM)); \
3153 break; \
3154 case UNSPEC_GOTOFF: \
3155 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3156 fputs ("@GOTOFF", (STREAM)); \
3157 break; \
3158 case UNSPEC_PLT: \
3159 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3160 fputs ("@PLT", (STREAM)); \
3161 break; \
3162 case UNSPEC_GOTPLT: \
3163 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3164 fputs ("@GOTPLT", (STREAM)); \
3165 break; \
3166 case UNSPEC_DTPOFF: \
3167 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3168 fputs ("@DTPOFF", (STREAM)); \
3169 break; \
3170 case UNSPEC_GOTTPOFF: \
3171 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3172 fputs ("@GOTTPOFF", (STREAM)); \
3173 break; \
3174 case UNSPEC_TPOFF: \
3175 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3176 fputs ("@TPOFF", (STREAM)); \
3177 break; \
3178 case UNSPEC_CALLER: \
3179 { \
3180 char name[32]; \
3181 /* LPCS stands for Label for PIC Call Site. */ \
3182 ASM_GENERATE_INTERNAL_LABEL \
3183 (name, "LPCS", INTVAL (XVECEXP ((X), 0, 0))); \
3184 assemble_name ((STREAM), name); \
3185 } \
3186 break; \
3187 default: \
3188 goto FAIL; \
3189 } \
3190 break; \
3191 } \
3192 else \
3193 goto FAIL; \
3194 while (0)
3195
3196 \f
3197 extern struct rtx_def *sh_compare_op0;
3198 extern struct rtx_def *sh_compare_op1;
3199
3200 /* Which processor to schedule for. The elements of the enumeration must
3201 match exactly the cpu attribute in the sh.md file. */
3202
3203 enum processor_type {
3204 PROCESSOR_SH1,
3205 PROCESSOR_SH2,
3206 PROCESSOR_SH2E,
3207 PROCESSOR_SH2A,
3208 PROCESSOR_SH3,
3209 PROCESSOR_SH3E,
3210 PROCESSOR_SH4,
3211 PROCESSOR_SH4A,
3212 PROCESSOR_SH5
3213 };
3214
3215 #define sh_cpu_attr ((enum attr_cpu)sh_cpu)
3216 extern enum processor_type sh_cpu;
3217
3218 extern int optimize; /* needed for gen_casesi. */
3219
3220 enum mdep_reorg_phase_e
3221 {
3222 SH_BEFORE_MDEP_REORG,
3223 SH_INSERT_USES_LABELS,
3224 SH_SHORTEN_BRANCHES0,
3225 SH_FIXUP_PCLOAD,
3226 SH_SHORTEN_BRANCHES1,
3227 SH_AFTER_MDEP_REORG
3228 };
3229
3230 extern enum mdep_reorg_phase_e mdep_reorg_phase;
3231
3232 /* Handle Renesas compiler's pragmas. */
3233 #define REGISTER_TARGET_PRAGMAS() do { \
3234 c_register_pragma (0, "interrupt", sh_pr_interrupt); \
3235 c_register_pragma (0, "trapa", sh_pr_trapa); \
3236 c_register_pragma (0, "nosave_low_regs", sh_pr_nosave_low_regs); \
3237 } while (0)
3238
3239 /* Set when processing a function with pragma interrupt turned on. */
3240
3241 extern int pragma_interrupt;
3242
3243 /* Set when processing a function with interrupt attribute. */
3244
3245 extern int current_function_interrupt;
3246
3247 /* Set to an RTX containing the address of the stack to switch to
3248 for interrupt functions. */
3249 extern struct rtx_def *sp_switch;
3250
3251 \f
3252 /* Instructions with unfilled delay slots take up an
3253 extra two bytes for the nop in the delay slot.
3254 sh-dsp parallel processing insns are four bytes long. */
3255
3256 #define ADJUST_INSN_LENGTH(X, LENGTH) \
3257 (LENGTH) += sh_insn_length_adjustment (X);
3258 \f
3259 /* Define this macro if it is advisable to hold scalars in registers
3260 in a wider mode than that declared by the program. In such cases,
3261 the value is constrained to be within the bounds of the declared
3262 type, but kept valid in the wider mode. The signedness of the
3263 extension may differ from that of the type.
3264
3265 Leaving the unsignedp unchanged gives better code than always setting it
3266 to 0. This is despite the fact that we have only signed char and short
3267 load instructions. */
3268 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
3269 if (GET_MODE_CLASS (MODE) == MODE_INT \
3270 && GET_MODE_SIZE (MODE) < 4/* ! UNITS_PER_WORD */)\
3271 (UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)), \
3272 (MODE) = (TARGET_SH1 ? SImode \
3273 : TARGET_SHMEDIA32 ? SImode : DImode);
3274
3275 #define MAX_FIXED_MODE_SIZE (TARGET_SH5 ? 128 : 64)
3276
3277 #define SIDI_OFF (TARGET_LITTLE_ENDIAN ? 0 : 4)
3278
3279 /* ??? Define ACCUMULATE_OUTGOING_ARGS? This is more efficient than pushing
3280 and popping arguments. However, we do have push/pop instructions, and
3281 rather limited offsets (4 bits) in load/store instructions, so it isn't
3282 clear if this would give better code. If implemented, should check for
3283 compatibility problems. */
3284
3285 #define SH_DYNAMIC_SHIFT_COST \
3286 (TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
3287
3288
3289 #define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
3290
3291 #define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_SH4 || TARGET_SH2A_DOUBLE)
3292
3293 #define ACTUAL_NORMAL_MODE(ENTITY) \
3294 (TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
3295
3296 #define NORMAL_MODE(ENTITY) \
3297 (sh_cfun_interrupt_handler_p () \
3298 ? (TARGET_FMOVD ? FP_MODE_DOUBLE : FP_MODE_NONE) \
3299 : ACTUAL_NORMAL_MODE (ENTITY))
3300
3301 #define MODE_ENTRY(ENTITY) NORMAL_MODE (ENTITY)
3302
3303 #define MODE_EXIT(ENTITY) \
3304 (sh_cfun_attr_renesas_p () ? FP_MODE_NONE : NORMAL_MODE (ENTITY))
3305
3306 #define EPILOGUE_USES(REGNO) ((TARGET_SH2E || TARGET_SH4) \
3307 && (REGNO) == FPSCR_REG)
3308
3309 #define MODE_NEEDED(ENTITY, INSN) \
3310 (recog_memoized (INSN) >= 0 \
3311 ? get_attr_fp_mode (INSN) \
3312 : FP_MODE_NONE)
3313
3314 #define MODE_AFTER(MODE, INSN) \
3315 (TARGET_HITACHI \
3316 && recog_memoized (INSN) >= 0 \
3317 && get_attr_fp_set (INSN) != FP_SET_NONE \
3318 ? (int) get_attr_fp_set (INSN) \
3319 : (MODE))
3320
3321 #define MODE_PRIORITY_TO_MODE(ENTITY, N) \
3322 ((TARGET_FPU_SINGLE != 0) ^ (N) ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
3323
3324 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3325 fpscr_set_from_mem ((MODE), (HARD_REGS_LIVE))
3326
3327 #define MD_CAN_REDIRECT_BRANCH(INSN, SEQ) \
3328 sh_can_redirect_branch ((INSN), (SEQ))
3329
3330 #define DWARF_FRAME_RETURN_COLUMN \
3331 (TARGET_SH5 ? DWARF_FRAME_REGNUM (PR_MEDIA_REG) : DWARF_FRAME_REGNUM (PR_REG))
3332
3333 #define EH_RETURN_DATA_REGNO(N) \
3334 ((N) < 4 ? (N) + (TARGET_SH5 ? 2U : 4U) : INVALID_REGNUM)
3335
3336 #define EH_RETURN_STACKADJ_REGNO STATIC_CHAIN_REGNUM
3337 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
3338
3339 /* We have to distinguish between code and data, so that we apply
3340 datalabel where and only where appropriate. Use sdataN for data. */
3341 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
3342 ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
3343 | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \
3344 | ((CODE) ? 0 : (TARGET_SHMEDIA64 ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)))
3345
3346 /* Handle special EH pointer encodings. Absolute, pc-relative, and
3347 indirect are handled automatically. */
3348 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
3349 do { \
3350 if (((ENCODING) & 0xf) != DW_EH_PE_sdata4 \
3351 && ((ENCODING) & 0xf) != DW_EH_PE_sdata8) \
3352 { \
3353 gcc_assert (GET_CODE (ADDR) == SYMBOL_REF); \
3354 SYMBOL_REF_FLAGS (ADDR) |= SYMBOL_FLAG_FUNCTION; \
3355 if (0) goto DONE; \
3356 } \
3357 } while (0)
3358
3359 #if (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__
3360 /* SH constant pool breaks the devices in crtstuff.c to control section
3361 in where code resides. We have to write it as asm code. */
3362 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3363 asm (SECTION_OP "\n\
3364 mov.l 1f,r1\n\
3365 mova 2f,r0\n\
3366 braf r1\n\
3367 lds r0,pr\n\
3368 0: .p2align 2\n\
3369 1: .long " USER_LABEL_PREFIX #FUNC " - 0b\n\
3370 2:\n" TEXT_SECTION_ASM_OP);
3371 #endif /* (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__ */
3372
3373 #define SIMULTANEOUS_PREFETCHES 2
3374
3375 /* FIXME: middle-end support for highpart optimizations is missing. */
3376 #define high_life_started reload_in_progress
3377
3378 #endif /* ! GCC_SH_H */