c30c5f64feaf4cab581faa60b51e6c2b37258d17
[gcc.git] / gcc / config / sh / sh.h
1 /* Definitions of target machine for GNU compiler for Hitachi / SuperH SH.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com).
5 Improved by Jim Wilson (wilson@cygnus.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #ifndef GCC_SH_H
25 #define GCC_SH_H
26
27 #define TARGET_VERSION \
28 fputs (" (Hitachi SH)", stderr);
29
30 /* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
31 include it here, because hconfig.h is also included by gencodes.c . */
32 /* ??? No longer true. */
33 extern int code_for_indirect_jump_scratch;
34
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do { \
37 builtin_define ("__sh__"); \
38 builtin_assert ("cpu=sh"); \
39 builtin_assert ("machine=sh"); \
40 switch ((int) sh_cpu) \
41 { \
42 case PROCESSOR_SH1: \
43 builtin_define ("__sh1__"); \
44 break; \
45 case PROCESSOR_SH2: \
46 builtin_define ("__sh2__"); \
47 break; \
48 case PROCESSOR_SH3: \
49 builtin_define ("__sh3__"); \
50 builtin_define ("__SH3__"); \
51 if (TARGET_HARD_SH4) \
52 builtin_define ("__SH4_NOFPU__"); \
53 break; \
54 case PROCESSOR_SH3E: \
55 builtin_define (TARGET_HARD_SH4 ? "__SH4_SINGLE_ONLY__" : "__SH3E__"); \
56 break; \
57 case PROCESSOR_SH4: \
58 builtin_define (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__"); \
59 break; \
60 case PROCESSOR_SH5: \
61 { \
62 builtin_define_with_value ("__SH5__", \
63 TARGET_SHMEDIA64 ? "64" : "32", 0); \
64 builtin_define_with_value ("__SHMEDIA__", \
65 TARGET_SHMEDIA ? "1" : "0", 0); \
66 if (! TARGET_FPU_DOUBLE) \
67 builtin_define ("__SH4_NOFPU__"); \
68 } \
69 } \
70 if (TARGET_HITACHI) \
71 builtin_define ("__HITACHI__"); \
72 builtin_define (TARGET_LITTLE_ENDIAN \
73 ? "__LITTLE_ENDIAN__" : "__BIG_ENDIAN__"); \
74 if (flag_pic) \
75 { \
76 builtin_define ("__pic__"); \
77 builtin_define ("__PIC__"); \
78 } \
79 TARGET_OBJFMT_CPP_BUILTINS (); \
80 } while (0)
81
82 /* We can not debug without a frame pointer. */
83 /* #define CAN_DEBUG_WITHOUT_FP */
84
85 #define CONDITIONAL_REGISTER_USAGE do \
86 { \
87 int regno; \
88 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++) \
89 if (! VALID_REGISTER_P (regno)) \
90 fixed_regs[regno] = call_used_regs[regno] = 1; \
91 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. */ \
92 if (TARGET_SH5) \
93 call_used_regs[FIRST_GENERAL_REG + 8] \
94 = call_used_regs[FIRST_GENERAL_REG + 9] = 1; \
95 if (TARGET_SHMEDIA) \
96 { \
97 regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS; \
98 CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]); \
99 regno_reg_class[FIRST_FP_REG] = FP_REGS; \
100 } \
101 if (flag_pic) \
102 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
103 /* Hitachi saves and restores mac registers on call. */ \
104 if (TARGET_HITACHI && ! TARGET_NOMACSAVE) \
105 { \
106 call_used_regs[MACH_REG] = 0; \
107 call_used_regs[MACL_REG] = 0; \
108 } \
109 if (TARGET_SHMEDIA) \
110 { \
111 for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++)\
112 if (! fixed_regs[regno] && call_used_regs[regno]) \
113 SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
114 } \
115 else \
116 for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++) \
117 if (! fixed_regs[regno] && call_used_regs[regno]) \
118 SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
119 } while (0)
120 \f
121 /* ??? Need to write documentation for all SH options and add it to the
122 invoke.texi file. */
123
124 /* Run-time compilation parameters selecting different hardware subsets. */
125
126 extern int target_flags;
127 #define ISIZE_BIT (1<<1)
128 #define DALIGN_BIT (1<<6)
129 #define SH1_BIT (1<<8)
130 #define SH2_BIT (1<<9)
131 #define SH3_BIT (1<<10)
132 #define SH3E_BIT (1<<11)
133 #define HARD_SH4_BIT (1<<5)
134 #define FPU_SINGLE_BIT (1<<7)
135 #define SH4_BIT (1<<12)
136 #define FMOVD_BIT (1<<4)
137 #define SH5_BIT (1<<0)
138 #define SPACE_BIT (1<<13)
139 #define BIGTABLE_BIT (1<<14)
140 #define RELAX_BIT (1<<15)
141 #define USERMODE_BIT (1<<16)
142 #define HITACHI_BIT (1<<22)
143 #define NOMACSAVE_BIT (1<<23)
144 #define PREFERGOT_BIT (1<<24)
145 #define PADSTRUCT_BIT (1<<28)
146 #define LITTLE_ENDIAN_BIT (1<<29)
147 #define IEEE_BIT (1<<30)
148
149 /* Nonzero if we should dump out instruction size info. */
150 #define TARGET_DUMPISIZE (target_flags & ISIZE_BIT)
151
152 /* Nonzero to align doubles on 64 bit boundaries. */
153 #define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT)
154
155 /* Nonzero if we should generate code using type 1 insns. */
156 #define TARGET_SH1 (target_flags & SH1_BIT)
157
158 /* Nonzero if we should generate code using type 2 insns. */
159 #define TARGET_SH2 (target_flags & SH2_BIT)
160
161 /* Nonzero if we should generate code using type 3 insns. */
162 #define TARGET_SH3 (target_flags & SH3_BIT)
163
164 /* Nonzero if we should generate code using type 3E insns. */
165 #define TARGET_SH3E ((target_flags & SH3E_BIT) && (target_flags & SH1_BIT))
166
167 /* Nonzero if the cache line size is 32. */
168 #define TARGET_CACHE32 (target_flags & HARD_SH4_BIT || TARGET_SH5)
169
170 /* Nonzero if we schedule for a superscalar implementation. */
171 #define TARGET_SUPERSCALAR (target_flags & HARD_SH4_BIT)
172
173 /* Nonzero if the target has separate instruction and data caches. */
174 #define TARGET_HARVARD (target_flags & HARD_SH4_BIT)
175
176 /* Nonzero if compiling for SH4 hardware (to be used for insn costs etc.) */
177 #define TARGET_HARD_SH4 (target_flags & HARD_SH4_BIT)
178
179 /* Nonzero if the default precision of th FPU is single */
180 #define TARGET_FPU_SINGLE (target_flags & FPU_SINGLE_BIT)
181
182 /* Nonzero if a double-precision FPU is available. */
183 #define TARGET_FPU_DOUBLE (target_flags & SH4_BIT)
184
185 /* Nonzero if an FPU is available. */
186 #define TARGET_FPU_ANY (TARGET_SH3E || TARGET_FPU_DOUBLE)
187
188 /* Nonzero if we should generate code using type 4 insns. */
189 #define TARGET_SH4 ((target_flags & SH4_BIT) && (target_flags & SH1_BIT))
190
191 /* Nonzero if we should generate code for a SH5 CPU (either ISA). */
192 #define TARGET_SH5 (target_flags & SH5_BIT)
193
194 /* Nonzero if we should generate code using the SHcompact instruction
195 set and 32-bit ABI. */
196 #define TARGET_SHCOMPACT (TARGET_SH5 && TARGET_SH1)
197
198 /* Nonzero if we should generate code using the SHmedia instruction
199 set and ABI. */
200 #define TARGET_SHMEDIA (TARGET_SH5 && ! TARGET_SH1)
201
202 /* Nonzero if we should generate code using the SHmedia ISA and 32-bit
203 ABI. */
204 #define TARGET_SHMEDIA32 (TARGET_SH5 && ! TARGET_SH1 \
205 && (target_flags & SH3E_BIT))
206
207 /* Nonzero if we should generate code using the SHmedia ISA and 64-bit
208 ABI. */
209 #define TARGET_SHMEDIA64 (TARGET_SH5 && ! TARGET_SH1 \
210 && ! (target_flags & SH3E_BIT))
211
212 /* Nonzero if we should generate code using SHmedia FPU instructions. */
213 #define TARGET_SHMEDIA_FPU (TARGET_SHMEDIA && TARGET_FPU_DOUBLE)
214 /* Nonzero if we should generate fmovd. */
215 #define TARGET_FMOVD (target_flags & FMOVD_BIT)
216
217 /* Nonzero if we respect NANs. */
218 #define TARGET_IEEE (target_flags & IEEE_BIT)
219
220 /* Nonzero if we should generate smaller code rather than faster code. */
221 #define TARGET_SMALLCODE (target_flags & SPACE_BIT)
222
223 /* Nonzero to use long jump tables. */
224 #define TARGET_BIGTABLE (target_flags & BIGTABLE_BIT)
225
226 /* Nonzero to generate pseudo-ops needed by the assembler and linker
227 to do function call relaxing. */
228 #define TARGET_RELAX (target_flags & RELAX_BIT)
229
230 /* Nonzero if using Hitachi's calling convention. */
231 #define TARGET_HITACHI (target_flags & HITACHI_BIT)
232
233 /* Nonzero if not saving macl/mach when using -mhitachi */
234 #define TARGET_NOMACSAVE (target_flags & NOMACSAVE_BIT)
235
236 /* Nonzero if padding structures to a multiple of 4 bytes. This is
237 incompatible with Hitachi's compiler, and gives unusual structure layouts
238 which confuse programmers.
239 ??? This option is not useful, but is retained in case there are people
240 who are still relying on it. It may be deleted in the future. */
241 #define TARGET_PADSTRUCT (target_flags & PADSTRUCT_BIT)
242
243 /* Nonzero if generating code for a little endian SH. */
244 #define TARGET_LITTLE_ENDIAN (target_flags & LITTLE_ENDIAN_BIT)
245
246 /* Nonzero if we should do everything in userland. */
247 #define TARGET_USERMODE (target_flags & USERMODE_BIT)
248
249 /* Nonzero if we should prefer @GOT calls when generating PIC. */
250 #define TARGET_PREFERGOT (target_flags & PREFERGOT_BIT)
251
252 #define SELECT_SH1 (SH1_BIT)
253 #define SELECT_SH2 (SH2_BIT | SELECT_SH1)
254 #define SELECT_SH3 (SH3_BIT | SELECT_SH2)
255 #define SELECT_SH3E (SH3E_BIT | FPU_SINGLE_BIT | SELECT_SH3)
256 #define SELECT_SH4_NOFPU (HARD_SH4_BIT | SELECT_SH3)
257 #define SELECT_SH4_SINGLE_ONLY (HARD_SH4_BIT | SELECT_SH3E)
258 #define SELECT_SH4 (SH4_BIT|SH3E_BIT|HARD_SH4_BIT | SELECT_SH3)
259 #define SELECT_SH4_SINGLE (FPU_SINGLE_BIT | SELECT_SH4)
260 #define SELECT_SH5_64 (SH5_BIT | SH4_BIT)
261 #define SELECT_SH5_64_NOFPU (SH5_BIT)
262 #define SELECT_SH5_32 (SH5_BIT | SH4_BIT | SH3E_BIT)
263 #define SELECT_SH5_32_NOFPU (SH5_BIT | SH3E_BIT)
264 #define SELECT_SH5_COMPACT (SH5_BIT | SH4_BIT | SELECT_SH3E)
265 #define SELECT_SH5_COMPACT_NOFPU (SH5_BIT | SELECT_SH3)
266
267 /* Reset all target-selection flags. */
268 #define TARGET_NONE -(SH1_BIT | SH2_BIT | SH3_BIT | SH3E_BIT | SH4_BIT \
269 | HARD_SH4_BIT | FPU_SINGLE_BIT | SH5_BIT)
270
271 #define TARGET_SWITCHES \
272 { {"1", TARGET_NONE, "" }, \
273 {"1", SELECT_SH1, "" }, \
274 {"2", TARGET_NONE, "" }, \
275 {"2", SELECT_SH2, "" }, \
276 {"3", TARGET_NONE, "" }, \
277 {"3", SELECT_SH3, "" }, \
278 {"3e", TARGET_NONE, "" }, \
279 {"3e", SELECT_SH3E, "" }, \
280 {"4-single-only", TARGET_NONE, "" }, \
281 {"4-single-only", SELECT_SH4_SINGLE_ONLY, "" }, \
282 {"4-single", TARGET_NONE, "" }, \
283 {"4-single", SELECT_SH4_SINGLE, "" },\
284 {"4-nofpu", TARGET_NONE, "" }, \
285 {"4-nofpu", SELECT_SH4_NOFPU, "" },\
286 {"4", TARGET_NONE, "" }, \
287 {"4", SELECT_SH4, "" }, \
288 {"5-64media", TARGET_NONE, "" }, \
289 {"5-64media", SELECT_SH5_64, "Generate 64-bit SHmedia code" }, \
290 {"5-64media-nofpu", TARGET_NONE, "" }, \
291 {"5-64media-nofpu", SELECT_SH5_64_NOFPU, "Generate 64-bit FPU-less SHmedia code" }, \
292 {"5-32media", TARGET_NONE, "" }, \
293 {"5-32media", SELECT_SH5_32, "Generate 32-bit SHmedia code" }, \
294 {"5-32media-nofpu", TARGET_NONE, "" }, \
295 {"5-32media-nofpu", SELECT_SH5_32_NOFPU, "Generate 32-bit FPU-less SHmedia code" }, \
296 {"5-compact", TARGET_NONE, "" }, \
297 {"5-compact", SELECT_SH5_COMPACT, "Generate SHcompact code" }, \
298 {"5-compact-nofpu", TARGET_NONE, "" }, \
299 {"5-compact-nofpu", SELECT_SH5_COMPACT_NOFPU, "Generate FPU-less SHcompact code" }, \
300 {"b", -LITTLE_ENDIAN_BIT, "" }, \
301 {"bigtable", BIGTABLE_BIT, "" }, \
302 {"dalign", DALIGN_BIT, "" }, \
303 {"fmovd", FMOVD_BIT, "" }, \
304 {"hitachi", HITACHI_BIT, "" }, \
305 {"nomacsave", NOMACSAVE_BIT, "" }, \
306 {"ieee", IEEE_BIT, "" }, \
307 {"isize", ISIZE_BIT, "" }, \
308 {"l", LITTLE_ENDIAN_BIT, "" }, \
309 {"no-ieee", -IEEE_BIT, "" }, \
310 {"padstruct", PADSTRUCT_BIT, "" }, \
311 {"prefergot", PREFERGOT_BIT, "" }, \
312 {"relax", RELAX_BIT, "" }, \
313 {"space", SPACE_BIT, "" }, \
314 {"usermode", USERMODE_BIT, "" }, \
315 SUBTARGET_SWITCHES \
316 {"", TARGET_DEFAULT, "" } \
317 }
318
319 /* This are meant to be redefined in the host dependent files */
320 #define SUBTARGET_SWITCHES
321
322 /* This defaults us to big-endian. */
323 #ifndef TARGET_ENDIAN_DEFAULT
324 #define TARGET_ENDIAN_DEFAULT 0
325 #endif
326
327 #ifndef TARGET_CPU_DEFAULT
328 #define TARGET_CPU_DEFAULT SELECT_SH1
329 #endif
330
331 #define TARGET_DEFAULT (TARGET_CPU_DEFAULT|TARGET_ENDIAN_DEFAULT)
332
333 #define CPP_SPEC " %(subtarget_cpp_spec) "
334
335 #ifndef SUBTARGET_CPP_SPEC
336 #define SUBTARGET_CPP_SPEC ""
337 #endif
338
339 #ifndef SUBTARGET_EXTRA_SPECS
340 #define SUBTARGET_EXTRA_SPECS
341 #endif
342
343 #define EXTRA_SPECS \
344 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
345 { "link_emul_prefix", LINK_EMUL_PREFIX }, \
346 { "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL }, \
347 { "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX }, \
348 { "subtarget_link_spec", SUBTARGET_LINK_SPEC }, \
349 { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC }, \
350 SUBTARGET_EXTRA_SPECS
351
352 #define ASM_SPEC "%(subtarget_asm_endian_spec) %{mrelax:-relax}"
353
354 #ifndef SUBTARGET_ASM_ENDIAN_SPEC
355 #if TARGET_ENDIAN_DEFAULT == LITTLE_ENDIAN_BIT
356 #define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
357 #else
358 #define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
359 #endif
360 #endif
361
362 #define LINK_EMUL_PREFIX "sh%{ml:l}"
363
364 #if TARGET_CPU_DEFAULT & SH5_BIT
365 #if TARGET_CPU_DEFAULT & SH3E_BIT
366 #define LINK_DEFAULT_CPU_EMUL "32"
367 #else
368 #define LINK_DEFAULT_CPU_EMUL "64"
369 #endif /* SH3E_BIT */
370 #else
371 #define LINK_DEFAULT_CPU_EMUL ""
372 #endif /* SH5_BIT */
373
374 #define SUBTARGET_LINK_EMUL_SUFFIX ""
375 #define SUBTARGET_LINK_SPEC ""
376
377 /* svr4.h redefines LINK_SPEC inappropriately, so go via SH_LINK_SPEC,
378 so that we can undo the damage without code replication. */
379 #define LINK_SPEC SH_LINK_SPEC
380
381 #define SH_LINK_SPEC "\
382 -m %(link_emul_prefix)\
383 %{m5-compact*|m5-32media*:32}\
384 %{m5-64media*:64}\
385 %{!m1:%{!m2:%{!m3*:%{!m4*:%{!m5*:%(link_default_cpu_emul)}}}}}\
386 %(subtarget_link_emul_suffix) \
387 %{mrelax:-relax} %(subtarget_link_spec)"
388
389 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
390 do { \
391 if (LEVEL) \
392 flag_omit_frame_pointer = -1; \
393 if (SIZE) \
394 target_flags |= SPACE_BIT; \
395 } while (0)
396
397 #define ASSEMBLER_DIALECT assembler_dialect
398
399 extern int assembler_dialect;
400
401 #define OVERRIDE_OPTIONS \
402 do { \
403 int regno; \
404 \
405 sh_cpu = CPU_SH1; \
406 assembler_dialect = 0; \
407 if (TARGET_SH2) \
408 sh_cpu = CPU_SH2; \
409 if (TARGET_SH3) \
410 sh_cpu = CPU_SH3; \
411 if (TARGET_SH3E) \
412 sh_cpu = CPU_SH3E; \
413 if (TARGET_SH4) \
414 { \
415 assembler_dialect = 1; \
416 sh_cpu = CPU_SH4; \
417 } \
418 if (TARGET_SH5) \
419 { \
420 sh_cpu = CPU_SH5; \
421 target_flags |= DALIGN_BIT; \
422 if (TARGET_FPU_ANY) \
423 target_flags |= FMOVD_BIT; \
424 if (TARGET_SHMEDIA) \
425 { \
426 /* There are no delay slots on SHmedia. */ \
427 flag_delayed_branch = 0; \
428 /* Relaxation isn't yet supported for SHmedia */ \
429 target_flags &= ~RELAX_BIT; \
430 } \
431 if (profile_flag || profile_arc_flag) \
432 { \
433 warning ("Profiling is not supported on this target."); \
434 profile_flag = profile_arc_flag = 0; \
435 } \
436 } \
437 else \
438 { \
439 /* Only the sh64-elf assembler fully supports .quad properly. */\
440 targetm.asm_out.aligned_op.di = NULL; \
441 targetm.asm_out.unaligned_op.di = NULL; \
442 } \
443 \
444 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
445 if (! VALID_REGISTER_P (regno)) \
446 sh_register_names[regno][0] = '\0'; \
447 \
448 for (regno = 0; regno < ADDREGNAMES_SIZE; regno++) \
449 if (! VALID_REGISTER_P (ADDREGNAMES_REGNO (regno))) \
450 sh_additional_register_names[regno][0] = '\0'; \
451 \
452 if (flag_omit_frame_pointer < 0) \
453 { \
454 /* The debugging information is sufficient, \
455 but gdb doesn't implement this yet */ \
456 if (0) \
457 flag_omit_frame_pointer \
458 = (PREFERRED_DEBUGGING_TYPE == DWARF_DEBUG \
459 || PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG); \
460 else \
461 flag_omit_frame_pointer = 0; \
462 } \
463 \
464 if (flag_pic && ! TARGET_PREFERGOT) \
465 flag_no_function_cse = 1; \
466 \
467 /* Never run scheduling before reload, since that can \
468 break global alloc, and generates slower code anyway due \
469 to the pressure on R0. */ \
470 flag_schedule_insns = 0; \
471 } while (0)
472 \f
473 /* Target machine storage layout. */
474
475 /* Define this if most significant bit is lowest numbered
476 in instructions that operate on numbered bit-fields. */
477
478 #define BITS_BIG_ENDIAN 0
479
480 /* Define this if most significant byte of a word is the lowest numbered. */
481 #define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
482
483 /* Define this if most significant word of a multiword number is the lowest
484 numbered. */
485 #define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
486
487 /* Define this to set the endianness to use in libgcc2.c, which can
488 not depend on target_flags. */
489 #if defined(__LITTLE_ENDIAN__)
490 #define LIBGCC2_WORDS_BIG_ENDIAN 0
491 #else
492 #define LIBGCC2_WORDS_BIG_ENDIAN 1
493 #endif
494
495 #define MAX_BITS_PER_WORD 64
496
497 #define MAX_LONG_TYPE_SIZE MAX_BITS_PER_WORD
498
499 /* Width in bits of an `int'. We want just 32-bits, even if words are
500 longer. */
501 #define INT_TYPE_SIZE 32
502
503 /* Width in bits of a `long'. */
504 #define LONG_TYPE_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
505
506 /* Width in bits of a `long long'. */
507 #define LONG_LONG_TYPE_SIZE 64
508
509 /* Width in bits of a `long double'. */
510 #define LONG_DOUBLE_TYPE_SIZE 64
511
512 /* Width of a word, in units (bytes). */
513 #define UNITS_PER_WORD (TARGET_SHMEDIA ? 8 : 4)
514 #define MIN_UNITS_PER_WORD 4
515
516 /* Width in bits of a pointer.
517 See also the macro `Pmode' defined below. */
518 #define POINTER_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
519
520 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
521 #define PARM_BOUNDARY (TARGET_SH5 ? 64 : 32)
522
523 /* Boundary (in *bits*) on which stack pointer should be aligned. */
524 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
525
526 /* The log (base 2) of the cache line size, in bytes. Processors prior to
527 SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
528 The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
529 #define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2)
530
531 /* Allocation boundary (in *bits*) for the code of a function.
532 32 bit alignment is faster, because instructions are always fetched as a
533 pair from a longword boundary. */
534 #define FUNCTION_BOUNDARY \
535 (TARGET_SMALLCODE ? 16 << TARGET_SHMEDIA : (1 << CACHE_LOG) * 8)
536
537 /* On SH5, the lowest bit is used to indicate SHmedia functions, so
538 the vbit must go into the delta field of
539 pointers-to-member-functions. */
540 #define TARGET_PTRMEMFUNC_VBIT_LOCATION \
541 (TARGET_SH5 ? ptrmemfunc_vbit_in_delta : ptrmemfunc_vbit_in_pfn)
542
543 /* Alignment of field after `int : 0' in a structure. */
544 #define EMPTY_FIELD_BOUNDARY 32
545
546 /* No data type wants to be aligned rounder than this. */
547 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
548
549 /* The best alignment to use in cases where we have a choice. */
550 #define FASTEST_ALIGNMENT (TARGET_SH5 ? 64 : 32)
551
552 /* Make strings word-aligned so strcpy from constants will be faster. */
553 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
554 ((TREE_CODE (EXP) == STRING_CST \
555 && (ALIGN) < FASTEST_ALIGNMENT) \
556 ? FASTEST_ALIGNMENT : (ALIGN))
557
558 /* Make arrays of chars word-aligned for the same reasons. */
559 #define DATA_ALIGNMENT(TYPE, ALIGN) \
560 (TREE_CODE (TYPE) == ARRAY_TYPE \
561 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
562 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
563
564 /* Number of bits which any structure or union's size must be a
565 multiple of. Each structure or union's size is rounded up to a
566 multiple of this. */
567 #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
568
569 /* Set this nonzero if move instructions will actually fail to work
570 when given unaligned data. */
571 #define STRICT_ALIGNMENT 1
572
573 /* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */
574 #define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
575 barrier_align (LABEL_AFTER_BARRIER)
576
577 #define LOOP_ALIGN(A_LABEL) \
578 ((! optimize || TARGET_HARVARD || TARGET_SMALLCODE) \
579 ? 0 : sh_loop_align (A_LABEL))
580
581 #define LABEL_ALIGN(A_LABEL) \
582 ( \
583 (PREV_INSN (A_LABEL) \
584 && GET_CODE (PREV_INSN (A_LABEL)) == INSN \
585 && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \
586 && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN) \
587 /* explicit alignment insn in constant tables. */ \
588 ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \
589 : 0)
590
591 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
592 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
593
594 /* The base two logarithm of the known minimum alignment of an insn length. */
595 #define INSN_LENGTH_ALIGNMENT(A_INSN) \
596 (GET_CODE (A_INSN) == INSN \
597 ? 1 << TARGET_SHMEDIA \
598 : GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN \
599 ? 1 << TARGET_SHMEDIA \
600 : CACHE_LOG)
601 \f
602 /* Standard register usage. */
603
604 /* Register allocation for the Hitachi calling convention:
605
606 r0 arg return
607 r1..r3 scratch
608 r4..r7 args in
609 r8..r13 call saved
610 r14 frame pointer/call saved
611 r15 stack pointer
612 ap arg pointer (doesn't really exist, always eliminated)
613 pr subroutine return address
614 t t bit
615 mach multiply/accumulate result, high part
616 macl multiply/accumulate result, low part.
617 fpul fp/int communication register
618 rap return address pointer register
619 fr0 fp arg return
620 fr1..fr3 scratch floating point registers
621 fr4..fr11 fp args in
622 fr12..fr15 call saved floating point registers */
623
624 #define MAX_REGISTER_NAME_LENGTH 5
625 extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
626
627 #define SH_REGISTER_NAMES_INITIALIZER \
628 { \
629 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
630 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
631 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
632 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
633 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
634 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
635 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
636 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
637 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
638 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
639 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
640 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
641 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
642 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
643 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
644 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
645 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
646 "xd0", "xd2", "xd4", "xd6", "xd8", "xd10", "xd12", "xd14", \
647 "gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", \
648 "rap" \
649 }
650
651 #define DEBUG_REGISTER_NAMES SH_REGISTER_NAMES_INITIALIZER
652
653 #define REGNAMES_ARR_INDEX_1(index) \
654 (sh_register_names[index])
655 #define REGNAMES_ARR_INDEX_2(index) \
656 REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
657 #define REGNAMES_ARR_INDEX_4(index) \
658 REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
659 #define REGNAMES_ARR_INDEX_8(index) \
660 REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
661 #define REGNAMES_ARR_INDEX_16(index) \
662 REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
663 #define REGNAMES_ARR_INDEX_32(index) \
664 REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
665 #define REGNAMES_ARR_INDEX_64(index) \
666 REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
667
668 #define REGISTER_NAMES \
669 { \
670 REGNAMES_ARR_INDEX_64 (0), \
671 REGNAMES_ARR_INDEX_64 (64), \
672 REGNAMES_ARR_INDEX_8 (128), \
673 REGNAMES_ARR_INDEX_8 (136), \
674 REGNAMES_ARR_INDEX_8 (144), \
675 REGNAMES_ARR_INDEX_1 (152) \
676 }
677
678 #define ADDREGNAMES_SIZE 32
679 #define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
680 extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
681 [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
682
683 #define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER \
684 { \
685 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", \
686 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30", \
687 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46", \
688 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62" \
689 }
690
691 #define ADDREGNAMES_REGNO(index) \
692 ((index < 32) ? (FIRST_FP_REG + (index) * 2) \
693 : (-1))
694
695 #define ADDREGNAMES_ARR_INDEX_1(index) \
696 { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
697 #define ADDREGNAMES_ARR_INDEX_2(index) \
698 ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
699 #define ADDREGNAMES_ARR_INDEX_4(index) \
700 ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
701 #define ADDREGNAMES_ARR_INDEX_8(index) \
702 ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
703 #define ADDREGNAMES_ARR_INDEX_16(index) \
704 ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
705 #define ADDREGNAMES_ARR_INDEX_32(index) \
706 ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
707
708 #define ADDITIONAL_REGISTER_NAMES \
709 { \
710 ADDREGNAMES_ARR_INDEX_32 (0) \
711 }
712
713 /* Number of actual hardware registers.
714 The hardware registers are assigned numbers for the compiler
715 from 0 to just below FIRST_PSEUDO_REGISTER.
716 All registers that the compiler knows about must be given numbers,
717 even those that are not normally considered general registers. */
718
719 /* There are many other relevant definitions in sh.md's md_constants. */
720
721 #define FIRST_GENERAL_REG R0_REG
722 #define LAST_GENERAL_REG (FIRST_GENERAL_REG + (TARGET_SHMEDIA ? 63 : 15))
723 #define FIRST_FP_REG DR0_REG
724 #define LAST_FP_REG (FIRST_FP_REG + \
725 (TARGET_SHMEDIA_FPU ? 63 : TARGET_SH3E ? 15 : -1))
726 #define FIRST_XD_REG XD0_REG
727 #define LAST_XD_REG (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
728 #define FIRST_TARGET_REG TR0_REG
729 #define LAST_TARGET_REG (FIRST_TARGET_REG + (TARGET_SHMEDIA ? 7 : -1))
730
731 #define GENERAL_REGISTER_P(REGNO) \
732 IN_RANGE ((REGNO), FIRST_GENERAL_REG, LAST_GENERAL_REG)
733
734 #define GENERAL_OR_AP_REGISTER_P(REGNO) \
735 (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG))
736
737 #define FP_REGISTER_P(REGNO) \
738 ((REGNO) >= FIRST_FP_REG && (REGNO) <= LAST_FP_REG)
739
740 #define XD_REGISTER_P(REGNO) \
741 ((REGNO) >= FIRST_XD_REG && (REGNO) <= LAST_XD_REG)
742
743 #define FP_OR_XD_REGISTER_P(REGNO) \
744 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
745
746 #define FP_ANY_REGISTER_P(REGNO) \
747 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
748
749 #define SPECIAL_REGISTER_P(REGNO) \
750 ((REGNO) == GBR_REG || (REGNO) == T_REG \
751 || (REGNO) == MACH_REG || (REGNO) == MACL_REG)
752
753 #define TARGET_REGISTER_P(REGNO) \
754 ((REGNO) >= FIRST_TARGET_REG && (REGNO) <= LAST_TARGET_REG)
755
756 #define SHMEDIA_REGISTER_P(REGNO) \
757 (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
758 || TARGET_REGISTER_P (REGNO))
759
760 /* This is to be used in CONDITIONAL_REGISTER_USAGE, to mark registers
761 that should be fixed. */
762 #define VALID_REGISTER_P(REGNO) \
763 (SHMEDIA_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) \
764 || (REGNO) == AP_REG || (REGNO) == RAP_REG \
765 || (TARGET_SH1 && (SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
766 || (TARGET_SH3E && (REGNO) == FPUL_REG))
767
768 /* The mode that should be generally used to store a register by
769 itself in the stack, or to load it back. */
770 #define REGISTER_NATURAL_MODE(REGNO) \
771 (FP_REGISTER_P (REGNO) ? SFmode \
772 : XD_REGISTER_P (REGNO) ? DFmode \
773 : TARGET_SHMEDIA && ! HARD_REGNO_CALL_PART_CLOBBERED ((REGNO), DImode) \
774 ? DImode \
775 : SImode)
776
777 #define FIRST_PSEUDO_REGISTER 153
778
779 /* 1 for registers that have pervasive standard uses
780 and are not available for the register allocator.
781
782 Mach register is fixed 'cause it's only 10 bits wide for SH1.
783 It is 32 bits wide for SH2. */
784
785 #define FIXED_REGISTERS \
786 { \
787 /* Regular registers. */ \
788 0, 0, 0, 0, 0, 0, 0, 0, \
789 0, 0, 0, 0, 0, 0, 0, 1, \
790 /* r16 is reserved, r18 is the former pr. */ \
791 1, 0, 0, 0, 0, 0, 0, 0, \
792 /* r24 is reserved for the OS; r25, for the assembler or linker. */ \
793 /* r26 is a global variable data pointer; r27 is for constants. */ \
794 1, 1, 1, 1, 0, 0, 0, 0, \
795 0, 0, 0, 0, 0, 0, 0, 0, \
796 0, 0, 0, 0, 0, 0, 0, 0, \
797 0, 0, 0, 0, 0, 0, 0, 0, \
798 0, 0, 0, 0, 0, 0, 0, 1, \
799 /* FP registers. */ \
800 0, 0, 0, 0, 0, 0, 0, 0, \
801 0, 0, 0, 0, 0, 0, 0, 0, \
802 0, 0, 0, 0, 0, 0, 0, 0, \
803 0, 0, 0, 0, 0, 0, 0, 0, \
804 0, 0, 0, 0, 0, 0, 0, 0, \
805 0, 0, 0, 0, 0, 0, 0, 0, \
806 0, 0, 0, 0, 0, 0, 0, 0, \
807 0, 0, 0, 0, 0, 0, 0, 0, \
808 /* Branch target registers. */ \
809 0, 0, 0, 0, 0, 0, 0, 0, \
810 /* XD registers. */ \
811 0, 0, 0, 0, 0, 0, 0, 0, \
812 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
813 1, 1, 1, 1, 1, 1, 0, 1, \
814 /*"rap" */ \
815 1, \
816 }
817
818 /* 1 for registers not available across function calls.
819 These must include the FIXED_REGISTERS and also any
820 registers that can be used without being saved.
821 The latter must include the registers where values are returned
822 and the register where structure-value addresses are passed.
823 Aside from that, you can include as many other registers as you like. */
824
825 #define CALL_USED_REGISTERS \
826 { \
827 /* Regular registers. */ \
828 1, 1, 1, 1, 1, 1, 1, 1, \
829 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
830 Only the lower 32bits of R10-R14 are guaranteed to be preserved \
831 across SH5 function calls. */ \
832 0, 0, 0, 0, 0, 0, 0, 1, \
833 1, 1, 0, 1, 1, 1, 1, 1, \
834 1, 1, 1, 1, 0, 0, 0, 0, \
835 0, 0, 0, 0, 1, 1, 1, 1, \
836 1, 1, 1, 1, 0, 0, 0, 0, \
837 0, 0, 0, 0, 0, 0, 0, 0, \
838 0, 0, 0, 0, 1, 1, 1, 1, \
839 /* FP registers. */ \
840 1, 1, 1, 1, 1, 1, 1, 1, \
841 1, 1, 1, 1, 0, 0, 0, 0, \
842 1, 1, 1, 1, 1, 1, 1, 1, \
843 1, 1, 1, 1, 1, 1, 1, 1, \
844 1, 1, 1, 1, 0, 0, 0, 0, \
845 0, 0, 0, 0, 0, 0, 0, 0, \
846 0, 0, 0, 0, 0, 0, 0, 0, \
847 0, 0, 0, 0, 0, 0, 0, 0, \
848 /* Branch target registers. */ \
849 1, 1, 1, 1, 1, 0, 0, 0, \
850 /* XD registers. */ \
851 1, 1, 1, 1, 1, 1, 0, 0, \
852 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
853 1, 1, 0, 1, 1, 1, 1, 1, \
854 /*"rap" */ \
855 1, \
856 }
857
858 /* Only the lower 32-bits of R10-R14 are guaranteed to be preserved
859 across SHcompact function calls. We can't tell whether a called
860 function is SHmedia or SHcompact, so we assume it may be when
861 compiling SHmedia code with the 32-bit ABI, since that's the only
862 ABI that can be linked with SHcompact code. */
863 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO,MODE) \
864 (TARGET_SHMEDIA32 \
865 && GET_MODE_SIZE (MODE) > 4 \
866 && (((REGNO) >= FIRST_GENERAL_REG + 10 \
867 && (REGNO) <= FIRST_GENERAL_REG + 14) \
868 || (REGNO) == PR_MEDIA_REG))
869
870 /* Return number of consecutive hard regs needed starting at reg REGNO
871 to hold something of mode MODE.
872 This is ordinarily the length in words of a value of mode MODE
873 but can be less for certain modes in special long registers.
874
875 On the SH all but the XD regs are UNITS_PER_WORD bits wide. */
876
877 #define HARD_REGNO_NREGS(REGNO, MODE) \
878 (XD_REGISTER_P (REGNO) \
879 ? (GET_MODE_SIZE (MODE) / (2 * UNITS_PER_WORD)) \
880 : (TARGET_SHMEDIA && FP_REGISTER_P (REGNO)) \
881 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2)) \
882 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
883
884 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
885 We can allow any mode in any general register. The special registers
886 only allow SImode. Don't allow any mode in the PR. */
887
888 /* We cannot hold DCmode values in the XD registers because alter_reg
889 handles subregs of them incorrectly. We could work around this by
890 spacing the XD registers like the DR registers, but this would require
891 additional memory in every compilation to hold larger register vectors.
892 We could hold SFmode / SCmode values in XD registers, but that
893 would require a tertiary reload when reloading from / to memory,
894 and a secondary reload to reload from / to general regs; that
895 seems to be a loosing proposition. */
896 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
897 (SPECIAL_REGISTER_P (REGNO) ? (MODE) == SImode \
898 : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \
899 : FP_REGISTER_P (REGNO) && (MODE) == SFmode \
900 ? 1 \
901 : (MODE) == V2SFmode \
902 ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 2 == 0) \
903 : (MODE) == V4SFmode \
904 ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 4 == 0) \
905 : (MODE) == V16SFmode \
906 ? (TARGET_SHMEDIA \
907 ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 16 == 0) \
908 : (REGNO) == FIRST_XD_REG) \
909 : FP_REGISTER_P (REGNO) \
910 ? ((MODE) == SFmode \
911 || (TARGET_SHMEDIA && (MODE) == SImode) \
912 || ((TARGET_SH3E || TARGET_SHMEDIA) && (MODE) == SCmode) \
913 || (((TARGET_SH4 && (MODE) == DFmode) || (MODE) == DCmode \
914 || (TARGET_SHMEDIA && ((MODE) == DFmode || (MODE) == DImode \
915 || (MODE) == V2SFmode))) \
916 && (((REGNO) - FIRST_FP_REG) & 1) == 0)) \
917 : XD_REGISTER_P (REGNO) \
918 ? (MODE) == DFmode \
919 : TARGET_REGISTER_P (REGNO) \
920 ? ((MODE) == DImode || (MODE) == SImode) \
921 : (REGNO) == PR_REG ? 0 \
922 : (REGNO) == FPSCR_REG ? (MODE) == PSImode \
923 : 1)
924
925 /* Value is 1 if MODE is a supported vector mode. */
926 #define VECTOR_MODE_SUPPORTED_P(MODE) \
927 ((TARGET_FPU_ANY \
928 && ((MODE) == V2SFmode || (MODE) == V4SFmode || (MODE) == V16SFmode)) \
929 || (TARGET_SHMEDIA \
930 && ((MODE) == V8QImode || (MODE) == V2HImode || (MODE) == V4HImode \
931 || (MODE) == V2SImode)))
932
933 /* Value is 1 if it is a good idea to tie two pseudo registers
934 when one has mode MODE1 and one has mode MODE2.
935 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
936 for any hard reg, then this must be 0 for correct output.
937 That's the case for xd registers: we don't hold SFmode values in
938 them, so we can't tie an SFmode pseudos with one in another
939 floating-point mode. */
940
941 #define MODES_TIEABLE_P(MODE1, MODE2) \
942 ((MODE1) == (MODE2) \
943 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
944 && (TARGET_SHMEDIA ? ((GET_MODE_SIZE (MODE1) <= 4) \
945 && (GET_MODE_SIZE (MODE2) <= 4)) \
946 : ((MODE1) != SFmode && (MODE2) != SFmode))))
947
948 /* A C expression that is nonzero if hard register NEW_REG can be
949 considered for use as a rename register for OLD_REG register */
950
951 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
952 sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
953
954 /* Specify the registers used for certain standard purposes.
955 The values of these macros are register numbers. */
956
957 /* Define this if the program counter is overloaded on a register. */
958 /* #define PC_REGNUM 15*/
959
960 /* Register to use for pushing function arguments. */
961 #define STACK_POINTER_REGNUM SP_REG
962
963 /* Base register for access to local variables of the function. */
964 #define FRAME_POINTER_REGNUM FP_REG
965
966 /* Fake register that holds the address on the stack of the
967 current function's return address. */
968 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
969
970 /* Register to hold the addressing base for position independent
971 code access to data items. */
972 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REG : INVALID_REGNUM)
973
974 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
975
976 /* Value should be nonzero if functions must have frame pointers.
977 Zero means the frame pointer need not be set up (and parms may be accessed
978 via the stack pointer) in functions that seem suitable. */
979
980 #define FRAME_POINTER_REQUIRED 0
981
982 /* Definitions for register eliminations.
983
984 We have three registers that can be eliminated on the SH. First, the
985 frame pointer register can often be eliminated in favor of the stack
986 pointer register. Secondly, the argument pointer register can always be
987 eliminated; it is replaced with either the stack or frame pointer.
988 Third, there is the return address pointer, which can also be replaced
989 with either the stack or the frame pointer. */
990
991 /* This is an array of structures. Each structure initializes one pair
992 of eliminable registers. The "from" register number is given first,
993 followed by "to". Eliminations of the same "from" register are listed
994 in order of preference. */
995
996 /* If you add any registers here that are not actually hard registers,
997 and that have any alternative of elimination that doesn't always
998 apply, you need to amend calc_live_regs to exclude it, because
999 reload spills all eliminable registers where it sees an
1000 can_eliminate == 0 entry, thus making them 'live' .
1001 If you add any hard registers that can be eliminated in different
1002 ways, you have to patch reload to spill them only when all alternatives
1003 of elimination fail. */
1004
1005 #define ELIMINABLE_REGS \
1006 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1007 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1008 { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1009 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1010 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
1011
1012 /* Given FROM and TO register numbers, say whether this elimination
1013 is allowed. */
1014 #define CAN_ELIMINATE(FROM, TO) \
1015 (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
1016
1017 /* Define the offset between two registers, one to be eliminated, and the other
1018 its replacement, at the start of a routine. */
1019
1020 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1021 OFFSET = initial_elimination_offset ((FROM), (TO))
1022
1023 /* Base register for access to arguments of the function. */
1024 #define ARG_POINTER_REGNUM AP_REG
1025
1026 /* Register in which the static-chain is passed to a function. */
1027 #define STATIC_CHAIN_REGNUM (TARGET_SH5 ? 1 : 3)
1028
1029 /* The register in which a struct value address is passed. */
1030
1031 #define STRUCT_VALUE_REGNUM 2
1032
1033 /* If the structure value address is not passed in a register, define
1034 `STRUCT_VALUE' as an expression returning an RTX for the place
1035 where the address is passed. If it returns 0, the address is
1036 passed as an "invisible" first argument. */
1037
1038 /* The Hitachi calling convention doesn't quite fit into this scheme since
1039 the address is passed like an invisible argument, but one that is always
1040 passed in memory. */
1041 #define STRUCT_VALUE \
1042 (TARGET_HITACHI ? 0 : gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM))
1043
1044 #define RETURN_IN_MEMORY(TYPE) \
1045 (TARGET_SH5 \
1046 ? ((TYPE_MODE (TYPE) == BLKmode \
1047 ? (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) \
1048 : GET_MODE_SIZE (TYPE_MODE (TYPE))) > 8) \
1049 : (TYPE_MODE (TYPE) == BLKmode \
1050 || TARGET_HITACHI && TREE_CODE (TYPE) == RECORD_TYPE))
1051
1052 /* Don't default to pcc-struct-return, because we have already specified
1053 exactly how to return structures in the RETURN_IN_MEMORY macro. */
1054
1055 #define DEFAULT_PCC_STRUCT_RETURN 0
1056
1057 #define SHMEDIA_REGS_STACK_ADJUST() \
1058 (TARGET_SHCOMPACT && current_function_has_nonlocal_label \
1059 ? (8 * (/* r28-r35 */ 8 + /* r44-r59 */ 16 + /* tr5-tr7 */ 3) \
1060 + (TARGET_FPU_ANY ? 4 * (/* fr36 - fr63 */ 28) : 0)) \
1061 : 0)
1062
1063 \f
1064 /* Define the classes of registers for register constraints in the
1065 machine description. Also define ranges of constants.
1066
1067 One of the classes must always be named ALL_REGS and include all hard regs.
1068 If there is more than one class, another class must be named NO_REGS
1069 and contain no registers.
1070
1071 The name GENERAL_REGS must be the name of a class (or an alias for
1072 another name such as ALL_REGS). This is the class of registers
1073 that is allowed by "g" or "r" in a register constraint.
1074 Also, registers outside this class are allocated only when
1075 instructions express preferences for them.
1076
1077 The classes must be numbered in nondecreasing order; that is,
1078 a larger-numbered class must never be contained completely
1079 in a smaller-numbered class.
1080
1081 For any two classes, it is very desirable that there be another
1082 class that represents their union. */
1083
1084 /* The SH has two sorts of general registers, R0 and the rest. R0 can
1085 be used as the destination of some of the arithmetic ops. There are
1086 also some special purpose registers; the T bit register, the
1087 Procedure Return Register and the Multiply Accumulate Registers. */
1088 /* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
1089 reg_class_subunion. We don't want to have an actual union class
1090 of these, because it would only be used when both classes are calculated
1091 to give the same cost, but there is only one FPUL register.
1092 Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
1093 applying to the actual instruction alternative considered. E.g., the
1094 y/r alternative of movsi_ie is considered to have no more cost that
1095 the r/r alternative, which is patently untrue. */
1096
1097 enum reg_class
1098 {
1099 NO_REGS,
1100 R0_REGS,
1101 PR_REGS,
1102 T_REGS,
1103 MAC_REGS,
1104 FPUL_REGS,
1105 SIBCALL_REGS,
1106 GENERAL_REGS,
1107 FP0_REGS,
1108 FP_REGS,
1109 DF_REGS,
1110 FPSCR_REGS,
1111 GENERAL_FP_REGS,
1112 TARGET_REGS,
1113 ALL_REGS,
1114 LIM_REG_CLASSES
1115 };
1116
1117 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1118
1119 /* Give names of register classes as strings for dump file. */
1120 #define REG_CLASS_NAMES \
1121 { \
1122 "NO_REGS", \
1123 "R0_REGS", \
1124 "PR_REGS", \
1125 "T_REGS", \
1126 "MAC_REGS", \
1127 "FPUL_REGS", \
1128 "SIBCALL_REGS", \
1129 "GENERAL_REGS", \
1130 "FP0_REGS", \
1131 "FP_REGS", \
1132 "DF_REGS", \
1133 "FPSCR_REGS", \
1134 "GENERAL_FP_REGS", \
1135 "TARGET_REGS", \
1136 "ALL_REGS", \
1137 }
1138
1139 /* Define which registers fit in which classes.
1140 This is an initializer for a vector of HARD_REG_SET
1141 of length N_REG_CLASSES. */
1142
1143 #define REG_CLASS_CONTENTS \
1144 { \
1145 /* NO_REGS: */ \
1146 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1147 /* R0_REGS: */ \
1148 { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1149 /* PR_REGS: */ \
1150 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, \
1151 /* T_REGS: */ \
1152 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 }, \
1153 /* MAC_REGS: */ \
1154 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 }, \
1155 /* FPUL_REGS: */ \
1156 { 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0x00400000 }, \
1157 /* SIBCALL_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \
1158 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1159 /* GENERAL_REGS: */ \
1160 { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x01020000 }, \
1161 /* FP0_REGS: */ \
1162 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 }, \
1163 /* FP_REGS: */ \
1164 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
1165 /* DF_REGS: */ \
1166 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
1167 /* FPSCR_REGS: */ \
1168 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 }, \
1169 /* GENERAL_FP_REGS: */ \
1170 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0102ff00 }, \
1171 /* TARGET_REGS: */ \
1172 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff }, \
1173 /* ALL_REGS: */ \
1174 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x01ffffff }, \
1175 }
1176
1177 /* The same information, inverted:
1178 Return the class number of the smallest class containing
1179 reg number REGNO. This could be a conditional expression
1180 or could index an array. */
1181
1182 extern int regno_reg_class[FIRST_PSEUDO_REGISTER];
1183 #define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
1184
1185 /* When defined, the compiler allows registers explicitly used in the
1186 rtl to be used as spill registers but prevents the compiler from
1187 extending the lifetime of these registers. */
1188
1189 #define SMALL_REGISTER_CLASSES (! TARGET_SHMEDIA)
1190
1191 /* The order in which register should be allocated. */
1192 /* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
1193 and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
1194 spilled or used otherwise, we better have the FP_REGS allocated first. */
1195 #define REG_ALLOC_ORDER \
1196 { 65, 66, 67, 68, 69, 70, 71, 64, \
1197 72, 73, 74, 75, 76, 77, 78, 79, \
1198 136,137,138,139,140,141,142,143, \
1199 80, 81, 82, 83, 84, 85, 86, 87, \
1200 88, 89, 90, 91, 92, 93, 94, 95, \
1201 96, 97, 98, 99,100,101,102,103, \
1202 104,105,106,107,108,109,110,111, \
1203 112,113,114,115,116,117,118,119, \
1204 120,121,122,123,124,125,126,127, \
1205 151, 1, 2, 3, 7, 6, 5, 4, \
1206 0, 8, 9, 10, 11, 12, 13, 14, \
1207 16, 17, 18, 19, 20, 21, 22, 23, \
1208 24, 25, 26, 27, 28, 29, 30, 31, \
1209 32, 33, 34, 35, 36, 37, 38, 39, \
1210 40, 41, 42, 43, 44, 45, 46, 47, \
1211 48, 49, 50, 51, 52, 53, 54, 55, \
1212 56, 57, 58, 59, 60, 61, 62, 63, \
1213 150, 15,145,146,147,144,148,149, \
1214 128,129,130,131,132,133,134,135, \
1215 152 }
1216
1217 /* The class value for index registers, and the one for base regs. */
1218 #define INDEX_REG_CLASS (TARGET_SHMEDIA ? GENERAL_REGS : R0_REGS)
1219 #define BASE_REG_CLASS GENERAL_REGS
1220
1221 /* Get reg_class from a letter such as appears in the machine
1222 description. */
1223 extern const enum reg_class reg_class_from_letter[];
1224
1225 #define REG_CLASS_FROM_LETTER(C) \
1226 ( ISLOWER (C) ? reg_class_from_letter[(C)-'a'] : NO_REGS )
1227 \f
1228 /* The letters I, J, K, L and M in a register constraint string
1229 can be used to stand for particular ranges of immediate operands.
1230 This macro defines what the ranges are.
1231 C is the letter, and VALUE is a constant value.
1232 Return 1 if VALUE is in the range specified by C.
1233 I: arithmetic operand -127..128, as used in add, sub, etc
1234 J: arithmetic operand -32768..32767, as used in SHmedia movi and shori
1235 K: shift operand 1,2,8 or 16
1236 L: logical operand 0..255, as used in and, or, etc.
1237 M: constant 1
1238 N: constant 0
1239 O: arithmetic operand -32..31, as used in SHmedia beqi, bnei and xori
1240 P: arithmetic operand -512..511, as used in SHmedia andi, ori
1241 */
1242
1243 #define CONST_OK_FOR_I(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
1244 && ((HOST_WIDE_INT)(VALUE)) <= 127)
1245 #define CONST_OK_FOR_J(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32768 \
1246 && ((HOST_WIDE_INT)(VALUE)) <= 32767)
1247 #define CONST_OK_FOR_K(VALUE) ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
1248 #define CONST_OK_FOR_L(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
1249 && ((HOST_WIDE_INT)(VALUE)) <= 255)
1250 #define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
1251 #define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
1252 #define CONST_OK_FOR_O(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32 \
1253 && ((HOST_WIDE_INT)(VALUE)) <= 31)
1254 #define CONST_OK_FOR_P(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -512 \
1255 && ((HOST_WIDE_INT)(VALUE)) <= 511)
1256 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1257 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1258 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1259 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1260 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1261 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1262 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1263 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1264 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1265 : 0)
1266
1267 /* Similar, but for floating constants, and defining letters G and H.
1268 Here VALUE is the CONST_DOUBLE rtx itself. */
1269
1270 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1271 ((C) == 'G' ? (fp_zero_operand (VALUE) && fldi_ok ()) \
1272 : (C) == 'H' ? (fp_one_operand (VALUE) && fldi_ok ()) \
1273 : (C) == 'F')
1274
1275 /* Given an rtx X being reloaded into a reg required to be
1276 in class CLASS, return the class of reg to actually use.
1277 In general this is just CLASS; but on some machines
1278 in some cases it is preferable to use a more restrictive class. */
1279
1280 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1281 ((CLASS) == NO_REGS && TARGET_SHMEDIA \
1282 && (GET_CODE (X) == CONST_DOUBLE \
1283 || GET_CODE (X) == SYMBOL_REF) \
1284 ? GENERAL_REGS \
1285 : (CLASS)) \
1286
1287 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
1288 ((((((CLASS) == FP_REGS || (CLASS) == FP0_REGS \
1289 || (CLASS) == DF_REGS) \
1290 && (GET_CODE (X) == REG && GENERAL_OR_AP_REGISTER_P (REGNO (X)))) \
1291 || (((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS) \
1292 && GET_CODE (X) == REG \
1293 && FP_REGISTER_P (REGNO (X)))) \
1294 && ! TARGET_SHMEDIA \
1295 && MODE == SFmode) \
1296 ? FPUL_REGS \
1297 : ((CLASS) == FPUL_REGS \
1298 && (GET_CODE (X) == MEM \
1299 || (GET_CODE (X) == REG \
1300 && (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1301 || REGNO (X) == T_REG \
1302 || system_reg_operand (X, VOIDmode))))) \
1303 ? GENERAL_REGS \
1304 : (((CLASS) == FP_REGS || (CLASS) == DF_REGS) && TARGET_SHMEDIA \
1305 && immediate_operand ((X), (MODE))) \
1306 ? GENERAL_REGS \
1307 : ((CLASS) == TARGET_REGS \
1308 || (TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS)) \
1309 ? ((target_operand ((X), (MODE)) \
1310 && ! target_reg_operand ((X), (MODE))) \
1311 ? NO_REGS : GENERAL_REGS) \
1312 : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS) \
1313 && GET_CODE (X) == REG && ! GENERAL_REGISTER_P (REGNO (X)) \
1314 && (CLASS) != REGNO_REG_CLASS (REGNO (X))) \
1315 ? GENERAL_REGS : NO_REGS)
1316
1317 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
1318 ((((CLASS) == FP_REGS || (CLASS) == FP0_REGS || (CLASS) == DF_REGS) \
1319 && ! TARGET_SHMEDIA \
1320 && immediate_operand ((X), (MODE)) \
1321 && ! ((fp_zero_operand (X) || fp_one_operand (X)) \
1322 && (MODE) == SFmode && fldi_ok ())) \
1323 ? R0_REGS \
1324 : (CLASS == FPUL_REGS \
1325 && ((GET_CODE (X) == REG \
1326 && (REGNO (X) == MACL_REG || REGNO (X) == MACH_REG \
1327 || REGNO (X) == T_REG)))) \
1328 ? GENERAL_REGS \
1329 : CLASS == FPUL_REGS && immediate_operand ((X), (MODE)) \
1330 ? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I (INTVAL (X)) \
1331 ? GENERAL_REGS \
1332 : R0_REGS) \
1333 : (CLASS == FPSCR_REGS \
1334 && ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1335 || (GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)))\
1336 ? GENERAL_REGS \
1337 : SECONDARY_OUTPUT_RELOAD_CLASS((CLASS),(MODE),(X)))
1338
1339 /* Return the maximum number of consecutive registers
1340 needed to represent mode MODE in a register of class CLASS.
1341
1342 On SH this is the size of MODE in words. */
1343 #define CLASS_MAX_NREGS(CLASS, MODE) \
1344 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1345
1346 /* If defined, gives a class of registers that cannot be used as the
1347 operand of a SUBREG that changes the mode of the object illegally. */
1348
1349 #define CLASS_CANNOT_CHANGE_MODE DF_REGS
1350
1351 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
1352
1353 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1354 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
1355 \f
1356 /* Stack layout; function entry, exit and calling. */
1357
1358 /* Define the number of registers that can hold parameters.
1359 These macros are used only in other macro definitions below. */
1360
1361 #define NPARM_REGS(MODE) \
1362 (TARGET_FPU_ANY && (MODE) == SFmode \
1363 ? (TARGET_SH5 ? 12 : 8) \
1364 : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1365 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1366 ? (TARGET_SH5 ? 12 : 8) \
1367 : (TARGET_SH5 ? 8 : 4))
1368
1369 #define FIRST_PARM_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 4))
1370 #define FIRST_RET_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 0))
1371
1372 #define FIRST_FP_PARM_REG (FIRST_FP_REG + (TARGET_SH5 ? 0 : 4))
1373 #define FIRST_FP_RET_REG FIRST_FP_REG
1374
1375 /* Define this if pushing a word on the stack
1376 makes the stack pointer a smaller address. */
1377 #define STACK_GROWS_DOWNWARD
1378
1379 /* Define this macro if the addresses of local variable slots are at
1380 negative offsets from the frame pointer.
1381
1382 The SH only has positive indexes, so grow the frame up. */
1383 /* #define FRAME_GROWS_DOWNWARD */
1384
1385 /* Offset from the frame pointer to the first local variable slot to
1386 be allocated. */
1387 #define STARTING_FRAME_OFFSET 0
1388
1389 /* If we generate an insn to push BYTES bytes,
1390 this says how many the stack pointer really advances by. */
1391 /* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
1392 When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
1393 do correct alignment. */
1394 #if 0
1395 #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
1396 #endif
1397
1398 /* Offset of first parameter from the argument pointer register value. */
1399 #define FIRST_PARM_OFFSET(FNDECL) 0
1400
1401 /* Value is the number of byte of arguments automatically
1402 popped when returning from a subroutine call.
1403 FUNDECL is the declaration node of the function (as a tree),
1404 FUNTYPE is the data type of the function (as a tree),
1405 or for a library call it is an identifier node for the subroutine name.
1406 SIZE is the number of bytes of arguments passed on the stack.
1407
1408 On the SH, the caller does not pop any of its arguments that were passed
1409 on the stack. */
1410 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1411
1412 /* Value is the number of bytes of arguments automatically popped when
1413 calling a subroutine.
1414 CUM is the accumulated argument list.
1415
1416 On SHcompact, the call trampoline pops arguments off the stack. */
1417 #define CALL_POPS_ARGS(CUM) (TARGET_SHCOMPACT ? (CUM).stack_regs * 8 : 0)
1418
1419 /* Nonzero if we do not know how to pass TYPE solely in registers.
1420 Values that come in registers with inconvenient padding are stored
1421 to memory at the function start. */
1422
1423 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1424 ((TYPE) != 0 \
1425 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1426 || TREE_ADDRESSABLE (TYPE)))
1427 /* Some subroutine macros specific to this machine. */
1428
1429 #define BASE_RETURN_VALUE_REG(MODE) \
1430 ((TARGET_FPU_ANY && ((MODE) == SFmode)) \
1431 ? FIRST_FP_RET_REG \
1432 : TARGET_FPU_ANY && (MODE) == SCmode \
1433 ? FIRST_FP_RET_REG \
1434 : (TARGET_FPU_DOUBLE \
1435 && ((MODE) == DFmode || (MODE) == SFmode \
1436 || (MODE) == DCmode || (MODE) == SCmode )) \
1437 ? FIRST_FP_RET_REG \
1438 : FIRST_RET_REG)
1439
1440 #define BASE_ARG_REG(MODE) \
1441 ((TARGET_SH3E && ((MODE) == SFmode)) \
1442 ? FIRST_FP_PARM_REG \
1443 : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1444 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1445 ? FIRST_FP_PARM_REG \
1446 : FIRST_PARM_REG)
1447
1448 /* Define how to find the value returned by a function.
1449 VALTYPE is the data type of the value (as a tree).
1450 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1451 otherwise, FUNC is 0.
1452 For the SH, this is like LIBCALL_VALUE, except that we must change the
1453 mode like PROMOTE_MODE does.
1454 ??? PROMOTE_MODE is ignored for non-scalar types. The set of types
1455 tested here has to be kept in sync with the one in explow.c:promote_mode. */
1456
1457 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1458 gen_rtx (REG, \
1459 ((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT \
1460 && GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < UNITS_PER_WORD \
1461 && (TREE_CODE (VALTYPE) == INTEGER_TYPE \
1462 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
1463 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
1464 || TREE_CODE (VALTYPE) == CHAR_TYPE \
1465 || TREE_CODE (VALTYPE) == REAL_TYPE \
1466 || TREE_CODE (VALTYPE) == OFFSET_TYPE)) \
1467 ? (TARGET_SHMEDIA ? DImode : SImode) : TYPE_MODE (VALTYPE)), \
1468 BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
1469
1470 /* Define how to find the value returned by a library function
1471 assuming the value has mode MODE. */
1472 #define LIBCALL_VALUE(MODE) \
1473 gen_rtx_REG ((MODE), BASE_RETURN_VALUE_REG (MODE));
1474
1475 /* 1 if N is a possible register number for a function value. */
1476 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1477 ((REGNO) == FIRST_RET_REG || (TARGET_SH3E && (REGNO) == FIRST_FP_RET_REG) \
1478 || (TARGET_SHMEDIA_FPU && (REGNO) == FIRST_FP_RET_REG))
1479
1480 /* 1 if N is a possible register number for function argument passing. */
1481 #define FUNCTION_ARG_REGNO_P(REGNO) \
1482 (((REGNO) >= FIRST_PARM_REG && (REGNO) < (FIRST_PARM_REG \
1483 + NPARM_REGS (SImode))) \
1484 || (TARGET_FPU_ANY \
1485 && (REGNO) >= FIRST_FP_PARM_REG && (REGNO) < (FIRST_FP_PARM_REG \
1486 + NPARM_REGS (SFmode))))
1487 \f
1488 /* Define a data type for recording info about an argument list
1489 during the scan of that argument list. This data type should
1490 hold all necessary information about the function itself
1491 and about the args processed so far, enough to enable macros
1492 such as FUNCTION_ARG to determine where the next arg should go.
1493
1494 On SH, this is a single integer, which is a number of words
1495 of arguments scanned so far (including the invisible argument,
1496 if any, which holds the structure-value-address).
1497 Thus NARGREGS or more means all following args should go on the stack. */
1498
1499 enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1500 struct sh_args {
1501 int arg_count[2];
1502 int force_mem;
1503 /* Non-zero if a prototype is available for the function. */
1504 int prototype_p;
1505 /* The number of an odd floating-point register, that should be used
1506 for the next argument of type float. */
1507 int free_single_fp_reg;
1508 /* Whether we're processing an outgoing function call. */
1509 int outgoing;
1510 /* The number of general-purpose registers that should have been
1511 used to pass partial arguments, that are passed totally on the
1512 stack. On SHcompact, a call trampoline will pop them off the
1513 stack before calling the actual function, and, if the called
1514 function is implemented in SHcompact mode, the incoming arguments
1515 decoder will push such arguments back onto the stack. For
1516 incoming arguments, STACK_REGS also takes into account other
1517 arguments passed by reference, that the decoder will also push
1518 onto the stack. */
1519 int stack_regs;
1520 /* The number of general-purpose registers that should have been
1521 used to pass arguments, if the arguments didn't have to be passed
1522 by reference. */
1523 int byref_regs;
1524 /* Set by SHCOMPACT_BYREF if the current argument is to be passed by
1525 reference. */
1526 int byref;
1527
1528 /* call_cookie is a bitmask used by call expanders, as well as
1529 function prologue and epilogues, to allow SHcompact to comply
1530 with the SH5 32-bit ABI, that requires 64-bit registers to be
1531 used even though only the lower 32-bit half is visible in
1532 SHcompact mode. The strategy is to call SHmedia trampolines.
1533
1534 The alternatives for each of the argument-passing registers are
1535 (a) leave it unchanged; (b) pop it off the stack; (c) load its
1536 contents from the address in it; (d) add 8 to it, storing the
1537 result in the next register, then (c); (e) copy it from some
1538 floating-point register,
1539
1540 Regarding copies from floating-point registers, r2 may only be
1541 copied from dr0. r3 may be copied from dr0 or dr2. r4 maybe
1542 copied from dr0, dr2 or dr4. r5 maybe copied from dr0, dr2,
1543 dr4 or dr6. r6 may be copied from dr0, dr2, dr4, dr6 or dr8.
1544 r7 through to r9 may be copied from dr0, dr2, dr4, dr8, dr8 or
1545 dr10.
1546
1547 The bit mask is structured as follows:
1548
1549 - 1 bit to tell whether to set up a return trampoline.
1550
1551 - 3 bits to count the number consecutive registers to pop off the
1552 stack.
1553
1554 - 4 bits for each of r9, r8, r7 and r6.
1555
1556 - 3 bits for each of r5, r4, r3 and r2.
1557
1558 - 3 bits set to 0 (the most significant ones)
1559
1560 3 2 1 0
1561 1098 7654 3210 9876 5432 1098 7654 3210
1562 FLPF LPFL PFLP FFLP FFLP FFLP FFLP SSST
1563 2223 3344 4555 6666 7777 8888 9999 SSS-
1564
1565 - If F is set, the register must be copied from an FP register,
1566 whose number is encoded in the remaining bits.
1567
1568 - Else, if L is set, the register must be loaded from the address
1569 contained in it. If the P bit is *not* set, the address of the
1570 following dword should be computed first, and stored in the
1571 following register.
1572
1573 - Else, if P is set, the register alone should be popped off the
1574 stack.
1575
1576 - After all this processing, the number of registers represented
1577 in SSS will be popped off the stack. This is an optimization
1578 for pushing/popping consecutive registers, typically used for
1579 varargs and large arguments partially passed in registers.
1580
1581 - If T is set, a return trampoline will be set up for 64-bit
1582 return values to be split into 2 32-bit registers. */
1583 #define CALL_COOKIE_RET_TRAMP_SHIFT 0
1584 #define CALL_COOKIE_RET_TRAMP(VAL) ((VAL) << CALL_COOKIE_RET_TRAMP_SHIFT)
1585 #define CALL_COOKIE_STACKSEQ_SHIFT 1
1586 #define CALL_COOKIE_STACKSEQ(VAL) ((VAL) << CALL_COOKIE_STACKSEQ_SHIFT)
1587 #define CALL_COOKIE_STACKSEQ_GET(COOKIE) \
1588 (((COOKIE) >> CALL_COOKIE_STACKSEQ_SHIFT) & 7)
1589 #define CALL_COOKIE_INT_REG_SHIFT(REG) \
1590 (4 * (7 - (REG)) + (((REG) <= 2) ? ((REG) - 2) : 1) + 3)
1591 #define CALL_COOKIE_INT_REG(REG, VAL) \
1592 ((VAL) << CALL_COOKIE_INT_REG_SHIFT (REG))
1593 #define CALL_COOKIE_INT_REG_GET(COOKIE, REG) \
1594 (((COOKIE) >> CALL_COOKIE_INT_REG_SHIFT (REG)) & ((REG) < 4 ? 7 : 15))
1595 long call_cookie;
1596 };
1597
1598 #define CUMULATIVE_ARGS struct sh_args
1599
1600 #define GET_SH_ARG_CLASS(MODE) \
1601 ((TARGET_FPU_ANY && (MODE) == SFmode) \
1602 ? SH_ARG_FLOAT \
1603 /* There's no mention of complex float types in the SH5 ABI, so we
1604 should presumably handle them as aggregate types. */ \
1605 : TARGET_SH5 && GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1606 ? SH_ARG_INT \
1607 : TARGET_FPU_DOUBLE && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1608 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1609 ? SH_ARG_FLOAT : SH_ARG_INT)
1610
1611 #define ROUND_ADVANCE(SIZE) \
1612 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1613
1614 /* Round a register number up to a proper boundary for an arg of mode
1615 MODE.
1616
1617 The SH doesn't care about double alignment, so we only
1618 round doubles to even regs when asked to explicitly. */
1619
1620 #define ROUND_REG(CUM, MODE) \
1621 (((TARGET_ALIGN_DOUBLE \
1622 || (TARGET_SH4 && ((MODE) == DFmode || (MODE) == DCmode) \
1623 && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
1624 && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
1625 ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
1626 + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1)) \
1627 : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
1628
1629 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1630 for a call to a function whose data type is FNTYPE.
1631 For a library call, FNTYPE is 0.
1632
1633 On SH, the offset always starts at 0: the first parm reg is always
1634 the same reg for a given argument class.
1635
1636 For TARGET_HITACHI, the structure value pointer is passed in memory. */
1637
1638 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1639 do { \
1640 (CUM).arg_count[(int) SH_ARG_INT] = 0; \
1641 (CUM).arg_count[(int) SH_ARG_FLOAT] = 0; \
1642 (CUM).force_mem \
1643 = (TARGET_HITACHI && FNTYPE \
1644 && aggregate_value_p (TREE_TYPE (FNTYPE))); \
1645 (CUM).prototype_p = (FNTYPE) && TYPE_ARG_TYPES (FNTYPE); \
1646 (CUM).arg_count[(int) SH_ARG_INT] \
1647 = (TARGET_SH5 && (FNTYPE) \
1648 && aggregate_value_p (TREE_TYPE (FNTYPE))); \
1649 (CUM).free_single_fp_reg = 0; \
1650 (CUM).outgoing = 1; \
1651 (CUM).stack_regs = 0; \
1652 (CUM).byref_regs = 0; \
1653 (CUM).byref = 0; \
1654 (CUM).call_cookie \
1655 = (CALL_COOKIE_RET_TRAMP \
1656 (TARGET_SHCOMPACT && (FNTYPE) \
1657 && (CUM).arg_count[(int) SH_ARG_INT] == 0 \
1658 && (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
1659 ? int_size_in_bytes (TREE_TYPE (FNTYPE)) \
1660 : GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (FNTYPE)))) > 4 \
1661 && (BASE_RETURN_VALUE_REG (TYPE_MODE (TREE_TYPE \
1662 (FNTYPE))) \
1663 == FIRST_RET_REG))); \
1664 } while (0)
1665
1666 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1667 do { \
1668 INIT_CUMULATIVE_ARGS ((CUM), NULL_TREE, (LIBNAME), 0); \
1669 (CUM).call_cookie \
1670 = (CALL_COOKIE_RET_TRAMP \
1671 (TARGET_SHCOMPACT && GET_MODE_SIZE (MODE) > 4 \
1672 && BASE_RETURN_VALUE_REG (MODE) == FIRST_RET_REG)); \
1673 } while (0)
1674
1675 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1676 do { \
1677 INIT_CUMULATIVE_ARGS ((CUM), (FNTYPE), (LIBNAME), 0); \
1678 (CUM).outgoing = 0; \
1679 } while (0)
1680
1681 /* FIXME: This is overly conservative. A SHcompact function that
1682 receives arguments ``by reference'' will have them stored in its
1683 own stack frame, so it must not pass pointers or references to
1684 these arguments to other functions by means of sibling calls. */
1685 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1686 (! TARGET_SHCOMPACT || current_function_args_info.stack_regs == 0)
1687
1688 /* Update the data in CUM to advance over an argument
1689 of mode MODE and data type TYPE.
1690 (TYPE is null for libcalls where that information may not be
1691 available.) */
1692
1693 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1694 if ((CUM).force_mem) \
1695 (CUM).force_mem = 0; \
1696 else if (TARGET_SH5) \
1697 { \
1698 tree TYPE_ = ((CUM).byref && (TYPE) \
1699 ? TREE_TYPE (TYPE) \
1700 : (TYPE)); \
1701 enum machine_mode MODE_ = ((CUM).byref && (TYPE) \
1702 ? TYPE_MODE (TYPE_) \
1703 : (MODE)); \
1704 int dwords = (((CUM).byref \
1705 ? (CUM).byref \
1706 : (MODE_) == BLKmode \
1707 ? int_size_in_bytes (TYPE_) \
1708 : GET_MODE_SIZE (MODE_)) + 7) / 8; \
1709 int numregs = MIN (dwords, NPARM_REGS (SImode) \
1710 - (CUM).arg_count[(int) SH_ARG_INT]); \
1711 \
1712 if (numregs) \
1713 { \
1714 (CUM).arg_count[(int) SH_ARG_INT] += numregs; \
1715 if (TARGET_SHCOMPACT \
1716 && SHCOMPACT_FORCE_ON_STACK (MODE_, TYPE_)) \
1717 { \
1718 (CUM).call_cookie \
1719 |= CALL_COOKIE_INT_REG (((CUM).arg_count[(int) SH_ARG_INT] \
1720 - numregs), 1); \
1721 /* N.B. We want this also for outgoing. */\
1722 (CUM).stack_regs += numregs; \
1723 } \
1724 else if ((CUM).byref) \
1725 { \
1726 if (! (CUM).outgoing) \
1727 (CUM).stack_regs += numregs; \
1728 (CUM).byref_regs += numregs; \
1729 (CUM).byref = 0; \
1730 do \
1731 (CUM).call_cookie \
1732 |= CALL_COOKIE_INT_REG (((CUM).arg_count[(int) SH_ARG_INT] \
1733 - numregs), 2); \
1734 while (--numregs); \
1735 (CUM).call_cookie \
1736 |= CALL_COOKIE_INT_REG (((CUM).arg_count[(int) SH_ARG_INT] \
1737 - 1), 1); \
1738 } \
1739 else if (dwords > numregs) \
1740 { \
1741 int pushregs = numregs; \
1742 \
1743 if (TARGET_SHCOMPACT) \
1744 (CUM).stack_regs += numregs; \
1745 while (pushregs < NPARM_REGS (SImode) - 1 \
1746 && (CALL_COOKIE_INT_REG_GET \
1747 ((CUM).call_cookie, \
1748 NPARM_REGS (SImode) - pushregs) \
1749 == 1)) \
1750 { \
1751 (CUM).call_cookie \
1752 &= ~ CALL_COOKIE_INT_REG (NPARM_REGS (SImode) \
1753 - pushregs, 1); \
1754 pushregs++; \
1755 } \
1756 if (numregs == NPARM_REGS (SImode)) \
1757 (CUM).call_cookie \
1758 |= CALL_COOKIE_INT_REG (0, 1) \
1759 | CALL_COOKIE_STACKSEQ (numregs - 1); \
1760 else \
1761 (CUM).call_cookie \
1762 |= CALL_COOKIE_STACKSEQ (numregs); \
1763 } \
1764 } \
1765 if (GET_SH_ARG_CLASS (MODE_) == SH_ARG_FLOAT \
1766 && ((NAMED) || ! (CUM).prototype_p)) \
1767 { \
1768 if ((MODE_) == SFmode && (CUM).free_single_fp_reg) \
1769 (CUM).free_single_fp_reg = 0; \
1770 else if ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1771 < NPARM_REGS (SFmode)) \
1772 { \
1773 int numfpregs \
1774 = MIN ((GET_MODE_SIZE (MODE_) + 7) / 8 * 2, \
1775 NPARM_REGS (SFmode) \
1776 - (CUM).arg_count[(int) SH_ARG_FLOAT]); \
1777 \
1778 (CUM).arg_count[(int) SH_ARG_FLOAT] += numfpregs; \
1779 \
1780 if (TARGET_SHCOMPACT && ! (CUM).prototype_p) \
1781 { \
1782 if ((CUM).outgoing && numregs > 0) \
1783 do \
1784 { \
1785 (CUM).call_cookie \
1786 |= (CALL_COOKIE_INT_REG \
1787 ((CUM).arg_count[(int) SH_ARG_INT] \
1788 - numregs + ((numfpregs - 2) / 2), \
1789 4 + ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1790 - numfpregs) / 2)); \
1791 } \
1792 while (numfpregs -= 2); \
1793 } \
1794 else if ((MODE_) == SFmode && (NAMED) \
1795 && ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1796 < NPARM_REGS (SFmode))) \
1797 (CUM).free_single_fp_reg \
1798 = FIRST_FP_PARM_REG - numfpregs \
1799 + (CUM).arg_count[(int) SH_ARG_FLOAT] + 1; \
1800 } \
1801 } \
1802 } \
1803 else if (! TARGET_SH4 || PASS_IN_REG_P ((CUM), (MODE), (TYPE))) \
1804 ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
1805 = (ROUND_REG ((CUM), (MODE)) \
1806 + ((MODE) == BLKmode \
1807 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
1808 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))))
1809
1810 /* Return boolean indicating arg of mode MODE will be passed in a reg.
1811 This macro is only used in this file. */
1812
1813 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1814 (((TYPE) == 0 \
1815 || (! TREE_ADDRESSABLE ((tree)(TYPE)) \
1816 && (! TARGET_HITACHI || ! AGGREGATE_TYPE_P (TYPE)))) \
1817 && ! (CUM).force_mem \
1818 && (TARGET_SH3E \
1819 ? ((MODE) == BLKmode \
1820 ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
1821 + int_size_in_bytes (TYPE)) \
1822 <= NPARM_REGS (SImode) * UNITS_PER_WORD) \
1823 : ((ROUND_REG((CUM), (MODE)) \
1824 + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
1825 <= NPARM_REGS (MODE))) \
1826 : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
1827
1828 /* Define where to put the arguments to a function.
1829 Value is zero to push the argument on the stack,
1830 or a hard register in which to store the argument.
1831
1832 MODE is the argument's machine mode.
1833 TYPE is the data type of the argument (as a tree).
1834 This is null for libcalls where that information may
1835 not be available.
1836 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1837 the preceding args and about the function being called.
1838 NAMED is nonzero if this argument is a named parameter
1839 (otherwise it is an extra parameter matching an ellipsis).
1840
1841 On SH the first args are normally in registers
1842 and the rest are pushed. Any arg that starts within the first
1843 NPARM_REGS words is at least partially passed in a register unless
1844 its data type forbids. */
1845
1846 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1847 ((! TARGET_SH5 \
1848 && PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1849 && ((NAMED) || !TARGET_HITACHI)) \
1850 ? gen_rtx_REG ((MODE), \
1851 ((BASE_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))) \
1852 ^ ((MODE) == SFmode && TARGET_SH4 \
1853 && TARGET_LITTLE_ENDIAN != 0))) \
1854 : TARGET_SH5 \
1855 ? ((MODE) == VOIDmode && TARGET_SHCOMPACT \
1856 ? GEN_INT ((CUM).call_cookie) \
1857 /* The following test assumes unnamed arguments are promoted to \
1858 DFmode. */ \
1859 : (MODE) == SFmode && (CUM).free_single_fp_reg \
1860 ? SH5_PROTOTYPED_FLOAT_ARG ((CUM), (MODE), (CUM).free_single_fp_reg) \
1861 : (GET_SH_ARG_CLASS (MODE) == SH_ARG_FLOAT \
1862 && ((NAMED) || ! (CUM).prototype_p) \
1863 && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (SFmode)) \
1864 ? ((! (CUM).prototype_p && TARGET_SHMEDIA) \
1865 ? SH5_PROTOTYPELESS_FLOAT_ARG ((CUM), (MODE)) \
1866 : SH5_PROTOTYPED_FLOAT_ARG ((CUM), (MODE), \
1867 FIRST_FP_PARM_REG \
1868 + (CUM).arg_count[(int) SH_ARG_FLOAT])) \
1869 : ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1870 && (! TARGET_SHCOMPACT \
1871 || (! SHCOMPACT_FORCE_ON_STACK ((MODE), (TYPE)) \
1872 && ! SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE), \
1873 (TYPE), (NAMED))))) \
1874 ? gen_rtx_REG ((MODE), (FIRST_PARM_REG \
1875 + (CUM).arg_count[(int) SH_ARG_INT])) \
1876 : 0) \
1877 : 0)
1878
1879 /* Whether an argument must be passed by reference. On SHcompact, we
1880 pretend arguments wider than 32-bits that would have been passed in
1881 registers are passed by reference, so that an SHmedia trampoline
1882 loads them into the full 64-bits registers. */
1883 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM,MODE,TYPE,NAMED) \
1884 (MUST_PASS_IN_STACK ((MODE), (TYPE)) \
1885 || SHCOMPACT_BYREF ((CUM), (MODE), (TYPE), (NAMED)))
1886
1887 #define SHCOMPACT_BYREF(CUM, MODE, TYPE, NAMED) \
1888 ((CUM).byref \
1889 = (TARGET_SHCOMPACT \
1890 && (CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1891 && (! (NAMED) || GET_SH_ARG_CLASS (MODE) == SH_ARG_INT \
1892 || (GET_SH_ARG_CLASS (MODE) == SH_ARG_FLOAT \
1893 && ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1894 >= NPARM_REGS (SFmode)))) \
1895 && ((MODE) == BLKmode ? int_size_in_bytes (TYPE) \
1896 : GET_MODE_SIZE (MODE)) > 4 \
1897 && ! SHCOMPACT_FORCE_ON_STACK ((MODE), (TYPE)) \
1898 && ! SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE), \
1899 (TYPE), (NAMED))) \
1900 ? ((MODE) == BLKmode ? int_size_in_bytes (TYPE) \
1901 : GET_MODE_SIZE (MODE)) \
1902 : 0)
1903
1904 /* If an argument of size 5, 6 or 7 bytes is to be passed in a 64-bit
1905 register in SHcompact mode, it must be padded in the most
1906 significant end. This means that passing it by reference wouldn't
1907 pad properly on a big-endian machine. In this particular case, we
1908 pass this argument on the stack, in a way that the call trampoline
1909 will load its value into the appropriate register. */
1910 #define SHCOMPACT_FORCE_ON_STACK(MODE,TYPE) \
1911 ((MODE) == BLKmode \
1912 && TARGET_SHCOMPACT \
1913 && ! TARGET_LITTLE_ENDIAN \
1914 && int_size_in_bytes (TYPE) > 4 \
1915 && int_size_in_bytes (TYPE) < 8)
1916
1917 /* Minimum alignment for an argument to be passed by callee-copy
1918 reference. We need such arguments to be aligned to 8 byte
1919 boundaries, because they'll be loaded using quad loads. */
1920 #define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
1921
1922 #define FUNCTION_ARG_CALLEE_COPIES(CUM,MODE,TYPE,NAMED) \
1923 ((CUM).outgoing \
1924 && (((MODE) == BLKmode ? TYPE_ALIGN (TYPE) \
1925 : GET_MODE_ALIGNMENT (MODE)) \
1926 % SH_MIN_ALIGN_FOR_CALLEE_COPY == 0))
1927
1928 /* The SH5 ABI requires floating-point arguments to be passed to
1929 functions without a prototype in both an FP register and a regular
1930 register or the stack. When passing the argument in both FP and
1931 general-purpose registers, list the FP register first. */
1932 #define SH5_PROTOTYPELESS_FLOAT_ARG(CUM,MODE) \
1933 (gen_rtx_PARALLEL \
1934 ((MODE), \
1935 gen_rtvec (2, \
1936 gen_rtx_EXPR_LIST \
1937 (VOIDmode, \
1938 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1939 ? gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
1940 + (CUM).arg_count[(int) SH_ARG_FLOAT]) \
1941 : NULL_RTX), \
1942 const0_rtx), \
1943 gen_rtx_EXPR_LIST \
1944 (VOIDmode, \
1945 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1946 ? gen_rtx_REG ((MODE), FIRST_PARM_REG \
1947 + (CUM).arg_count[(int) SH_ARG_INT]) \
1948 : gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
1949 + (CUM).arg_count[(int) SH_ARG_FLOAT])), \
1950 const0_rtx))))
1951
1952 /* The SH5 ABI requires regular registers or stack slots to be
1953 reserved for floating-point arguments. Registers are taken care of
1954 in FUNCTION_ARG_ADVANCE, but stack slots must be reserved here.
1955 Unfortunately, there's no way to just reserve a stack slot, so
1956 we'll end up needlessly storing a copy of the argument in the
1957 stack. For incoming arguments, however, the PARALLEL will be
1958 optimized to the register-only form, and the value in the stack
1959 slot won't be used at all. */
1960 #define SH5_PROTOTYPED_FLOAT_ARG(CUM,MODE,REG) \
1961 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1962 ? gen_rtx_REG ((MODE), (REG)) \
1963 : gen_rtx_PARALLEL ((MODE), \
1964 gen_rtvec (2, \
1965 gen_rtx_EXPR_LIST \
1966 (VOIDmode, NULL_RTX, \
1967 const0_rtx), \
1968 gen_rtx_EXPR_LIST \
1969 (VOIDmode, gen_rtx_REG ((MODE), \
1970 (REG)), \
1971 const0_rtx))))
1972
1973 #define STRICT_ARGUMENT_NAMING TARGET_SH5
1974
1975 #define PRETEND_OUTGOING_VARARGS_NAMED (! TARGET_HITACHI && ! TARGET_SH5)
1976
1977 /* For an arg passed partly in registers and partly in memory,
1978 this is the number of registers used.
1979 For args passed entirely in registers or entirely in memory, zero.
1980
1981 We sometimes split args. */
1982
1983 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1984 ((! TARGET_SH5 \
1985 && PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1986 && ! TARGET_SH4 \
1987 && (ROUND_REG ((CUM), (MODE)) \
1988 + ((MODE) != BLKmode \
1989 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
1990 : ROUND_ADVANCE (int_size_in_bytes (TYPE))) \
1991 > NPARM_REGS (MODE))) \
1992 ? NPARM_REGS (MODE) - ROUND_REG ((CUM), (MODE)) \
1993 : (SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE), (TYPE), (NAMED)) \
1994 && ! TARGET_SHCOMPACT) \
1995 ? NPARM_REGS (SImode) - (CUM).arg_count[(int) SH_ARG_INT] \
1996 : 0)
1997
1998 #define SH5_WOULD_BE_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1999 (TARGET_SH5 && (MODE) == BLKmode \
2000 && ((CUM).arg_count[(int) SH_ARG_INT] \
2001 + (int_size_in_bytes (TYPE) + 7) / 8) > NPARM_REGS (SImode))
2002
2003 /* Perform any needed actions needed for a function that is receiving a
2004 variable number of arguments. */
2005
2006 /* We actually emit the code in sh_expand_prologue. We used to use
2007 a static variable to flag that we need to emit this code, but that
2008 doesn't when inlining, when functions are deferred and then emitted
2009 later. Fortunately, we already have two flags that are part of struct
2010 function that tell if a function uses varargs or stdarg. */
2011 #define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) do \
2012 if (! current_function_stdarg) \
2013 abort (); \
2014 while (0)
2015
2016 /* Define the `__builtin_va_list' type for the ABI. */
2017 #define BUILD_VA_LIST_TYPE(VALIST) \
2018 (VALIST) = sh_build_va_list ()
2019
2020 /* Implement `va_start' for varargs and stdarg. */
2021 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2022 sh_va_start (stdarg, valist, nextarg)
2023
2024 /* Implement `va_arg'. */
2025 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
2026 sh_va_arg (valist, type)
2027
2028 /* Call the function profiler with a given profile label.
2029 We use two .aligns, so as to make sure that both the .long is aligned
2030 on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
2031 from the trapa instruction. */
2032
2033 #define FUNCTION_PROFILER(STREAM,LABELNO) \
2034 { \
2035 fprintf((STREAM), "\t.align\t2\n"); \
2036 fprintf((STREAM), "\ttrapa\t#33\n"); \
2037 fprintf((STREAM), "\t.align\t2\n"); \
2038 asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
2039 }
2040
2041 /* Define this macro if the code for function profiling should come
2042 before the function prologue. Normally, the profiling code comes
2043 after. */
2044
2045 #define PROFILE_BEFORE_PROLOGUE
2046
2047 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2048 the stack pointer does not matter. The value is tested only in
2049 functions that have frame pointers.
2050 No definition is equivalent to always zero. */
2051
2052 #define EXIT_IGNORE_STACK 1
2053
2054 /*
2055 On the SH, the trampoline looks like
2056 2 0002 D202 mov.l l2,r2
2057 1 0000 D301 mov.l l1,r3
2058 3 0004 422B jmp @r2
2059 4 0006 0009 nop
2060 5 0008 00000000 l1: .long area
2061 6 000c 00000000 l2: .long function */
2062
2063 /* Length in units of the trampoline for entering a nested function. */
2064 #define TRAMPOLINE_SIZE (TARGET_SHMEDIA64 ? 40 : TARGET_SH5 ? 32 : 16)
2065
2066 /* Alignment required for a trampoline in bits . */
2067 #define TRAMPOLINE_ALIGNMENT \
2068 ((CACHE_LOG < 3 || (TARGET_SMALLCODE && ! TARGET_HARVARD)) ? 32 : 64)
2069
2070 /* Emit RTL insns to initialize the variable parts of a trampoline.
2071 FNADDR is an RTX for the address of the function's pure code.
2072 CXT is an RTX for the static chain value for the function. */
2073
2074 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) do \
2075 { \
2076 if (TARGET_SH5) \
2077 { \
2078 rtx tramp_templ = gen_rtx_SYMBOL_REF (Pmode, \
2079 "__GCC_nested_trampoline"); \
2080 int fixed_len = TRAMPOLINE_SIZE - 2 * GET_MODE_SIZE (Pmode); \
2081 \
2082 tramp_templ = gen_datalabel_ref (tramp_templ); \
2083 emit_block_move (gen_rtx_MEM (BLKmode, (TRAMP)), \
2084 gen_rtx_MEM (BLKmode, tramp_templ), \
2085 GEN_INT (fixed_len)); \
2086 emit_move_insn (gen_rtx_MEM (Pmode, plus_constant ((TRAMP), \
2087 fixed_len)), \
2088 (FNADDR)); \
2089 emit_move_insn (gen_rtx_MEM (Pmode, \
2090 plus_constant ((TRAMP), \
2091 fixed_len \
2092 + GET_MODE_SIZE (Pmode))), \
2093 (CXT)); \
2094 emit_insn (gen_ic_invalidate_line (TRAMP)); \
2095 break; \
2096 } \
2097 emit_move_insn (gen_rtx_MEM (SImode, (TRAMP)), \
2098 GEN_INT (trunc_int_for_mode \
2099 (TARGET_LITTLE_ENDIAN ? 0xd301d202 : 0xd202d301,\
2100 SImode))); \
2101 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 4)), \
2102 GEN_INT (TARGET_LITTLE_ENDIAN ? 0x0009422b : 0x422b0009));\
2103 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 8)), \
2104 (CXT)); \
2105 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 12)), \
2106 (FNADDR)); \
2107 if (TARGET_HARVARD) \
2108 { \
2109 if (TARGET_USERMODE) \
2110 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__ic_invalidate"),\
2111 0, VOIDmode, 1, (TRAMP), SImode); \
2112 else \
2113 emit_insn (gen_ic_invalidate_line (TRAMP)); \
2114 } \
2115 } while (0)
2116
2117 /* On SH5, trampolines are SHmedia code, so add 1 to the address. */
2118
2119 #define TRAMPOLINE_ADJUST_ADDRESS(TRAMP) do \
2120 { \
2121 if (TARGET_SH5) \
2122 (TRAMP) = expand_simple_binop (Pmode, PLUS, (TRAMP), GEN_INT (1), \
2123 gen_reg_rtx (Pmode), 0, \
2124 OPTAB_LIB_WIDEN); \
2125 } while (0)
2126
2127 /* A C expression whose value is RTL representing the value of the return
2128 address for the frame COUNT steps up from the current frame.
2129 FRAMEADDR is already the frame pointer of the COUNT frame, so we
2130 can ignore COUNT. */
2131
2132 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2133 (((COUNT) == 0) \
2134 ? get_hard_reg_initial_val (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG) \
2135 : (rtx) 0)
2136
2137 /* A C expression whose value is RTL representing the location of the
2138 incoming return address at the beginning of any function, before the
2139 prologue. This RTL is either a REG, indicating that the return
2140 value is saved in REG, or a MEM representing a location in
2141 the stack. */
2142 #define INCOMING_RETURN_ADDR_RTX \
2143 gen_rtx_REG (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG)
2144 \f
2145 /* Generate necessary RTL for __builtin_saveregs(). */
2146 #define EXPAND_BUILTIN_SAVEREGS() sh_builtin_saveregs ()
2147 \f
2148 /* Addressing modes, and classification of registers for them. */
2149 #define HAVE_POST_INCREMENT TARGET_SH1
2150 /*#define HAVE_PRE_INCREMENT 1*/
2151 /*#define HAVE_POST_DECREMENT 1*/
2152 #define HAVE_PRE_DECREMENT TARGET_SH1
2153
2154 #define USE_LOAD_POST_INCREMENT(mode) ((mode == SImode || mode == DImode) \
2155 ? 0 : TARGET_SH1)
2156 #define USE_LOAD_PRE_DECREMENT(mode) 0
2157 #define USE_STORE_POST_INCREMENT(mode) 0
2158 #define USE_STORE_PRE_DECREMENT(mode) ((mode == SImode || mode == DImode) \
2159 ? 0 : TARGET_SH1)
2160
2161 #define MOVE_BY_PIECES_P(SIZE, ALIGN) (move_by_pieces_ninsns (SIZE, ALIGN) \
2162 < (TARGET_SMALLCODE ? 2 : \
2163 ((ALIGN >= 32) ? 16 : 2)))
2164
2165 /* Macros to check register numbers against specific register classes. */
2166
2167 /* These assume that REGNO is a hard or pseudo reg number.
2168 They give nonzero only if REGNO is a hard reg of the suitable class
2169 or a pseudo reg currently allocated to a suitable hard reg.
2170 Since they use reg_renumber, they are safe only once reg_renumber
2171 has been allocated, which happens in local-alloc.c. */
2172
2173 #define REGNO_OK_FOR_BASE_P(REGNO) \
2174 (GENERAL_OR_AP_REGISTER_P (REGNO) \
2175 || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
2176 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2177 (TARGET_SHMEDIA \
2178 ? (GENERAL_REGISTER_P (REGNO) \
2179 || GENERAL_REGISTER_P ((unsigned) reg_renumber[(REGNO)])) \
2180 : (REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
2181
2182 /* Maximum number of registers that can appear in a valid memory
2183 address. */
2184
2185 #define MAX_REGS_PER_ADDRESS 2
2186
2187 /* Recognize any constant value that is a valid address. */
2188
2189 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
2190
2191 /* Nonzero if the constant value X is a legitimate general operand. */
2192
2193 #define LEGITIMATE_CONSTANT_P(X) \
2194 (TARGET_SHMEDIA \
2195 ? (GET_MODE (X) != DFmode \
2196 || (X) == CONST0_RTX (GET_MODE (X)) \
2197 || ! TARGET_SHMEDIA_FPU \
2198 || TARGET_SHMEDIA64) \
2199 : (GET_CODE (X) != CONST_DOUBLE \
2200 || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode \
2201 || (TARGET_SH3E && (fp_zero_operand (X) || fp_one_operand (X)))))
2202
2203 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2204 and check its validity for a certain class.
2205 We have two alternate definitions for each of them.
2206 The usual definition accepts all pseudo regs; the other rejects
2207 them unless they have been allocated suitable hard regs.
2208 The symbol REG_OK_STRICT causes the latter definition to be used. */
2209
2210 #ifndef REG_OK_STRICT
2211
2212 /* Nonzero if X is a hard reg that can be used as a base reg
2213 or if it is a pseudo reg. */
2214 #define REG_OK_FOR_BASE_P(X) \
2215 (GENERAL_OR_AP_REGISTER_P (REGNO (X)) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2216
2217 /* Nonzero if X is a hard reg that can be used as an index
2218 or if it is a pseudo reg. */
2219 #define REG_OK_FOR_INDEX_P(X) \
2220 ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2221 : REGNO (X) == R0_REG) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2222
2223 /* Nonzero if X/OFFSET is a hard reg that can be used as an index
2224 or if X is a pseudo reg. */
2225 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2226 ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2227 : REGNO (X) == R0_REG && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2228
2229 #else
2230
2231 /* Nonzero if X is a hard reg that can be used as a base reg. */
2232 #define REG_OK_FOR_BASE_P(X) \
2233 REGNO_OK_FOR_BASE_P (REGNO (X))
2234
2235 /* Nonzero if X is a hard reg that can be used as an index. */
2236 #define REG_OK_FOR_INDEX_P(X) \
2237 REGNO_OK_FOR_INDEX_P (REGNO (X))
2238
2239 /* Nonzero if X/OFFSET is a hard reg that can be used as an index. */
2240 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2241 (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
2242
2243 #endif
2244
2245 /* The 'Q' constraint is a pc relative load operand. */
2246 #define EXTRA_CONSTRAINT_Q(OP) \
2247 (GET_CODE (OP) == MEM \
2248 && ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF) \
2249 || (GET_CODE (XEXP ((OP), 0)) == CONST \
2250 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS \
2251 && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \
2252 && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
2253
2254 /* The `S' constraint is a 16-bit constant, literal or symbolic. */
2255 #define EXTRA_CONSTRAINT_S(OP) \
2256 (GET_CODE (OP) == CONST \
2257 && GET_CODE (XEXP ((OP), 0)) == SIGN_EXTEND \
2258 && GET_MODE (XEXP ((OP), 0)) == DImode \
2259 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == TRUNCATE \
2260 && GET_MODE (XEXP (XEXP ((OP), 0), 0)) == HImode \
2261 && (MOVI_SHORI_BASE_OPERAND_P (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) \
2262 || (GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == ASHIFTRT \
2263 && (MOVI_SHORI_BASE_OPERAND_P \
2264 (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), 0))) \
2265 && GET_CODE (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), \
2266 1)) == CONST_INT)))
2267
2268 /* Check whether OP is a datalabel unspec. */
2269 #define DATALABEL_REF_NO_CONST_P(OP) \
2270 (GET_CODE (OP) == UNSPEC \
2271 && XINT ((OP), 1) == UNSPEC_DATALABEL \
2272 && XVECLEN ((OP), 0) == 1 \
2273 && (GET_CODE (XVECEXP ((OP), 0, 0)) == SYMBOL_REF \
2274 || GET_CODE (XVECEXP ((OP), 0, 0)) == LABEL_REF))
2275
2276 /* Check whether OP is a datalabel unspec, possibly enclosed within a
2277 CONST. */
2278 #define DATALABEL_REF_P(OP) \
2279 ((GET_CODE (OP) == CONST && DATALABEL_REF_NO_CONST_P (XEXP ((OP), 0))) \
2280 || DATALABEL_REF_NO_CONST_P (OP))
2281
2282 #define GOT_ENTRY_P(OP) \
2283 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2284 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
2285
2286 #define GOTPLT_ENTRY_P(OP) \
2287 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2288 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
2289
2290 #define GOTOFF_P(OP) \
2291 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2292 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTOFF)
2293
2294 #define PIC_ADDR_P(OP) \
2295 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2296 && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
2297
2298 #define NON_PIC_REFERENCE_P(OP) \
2299 (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
2300 || DATALABEL_REF_P (OP) \
2301 || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
2302 && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
2303 || DATALABEL_REF_P (XEXP (XEXP ((OP), 0), 0))) \
2304 && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT))
2305
2306 #define PIC_REFERENCE_P(OP) \
2307 (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
2308 || GOTOFF_P (OP) || PIC_ADDR_P (OP))
2309
2310 #define MOVI_SHORI_BASE_OPERAND_P(OP) \
2311 (flag_pic ? PIC_REFERENCE_P (OP) : NON_PIC_REFERENCE_P (OP))
2312
2313 /* The `T' constraint is a label or a symbol. */
2314 #define EXTRA_CONSTRAINT_T(OP) \
2315 (NON_PIC_REFERENCE_P (OP))
2316
2317 /* A zero in any shape or form. */
2318 #define EXTRA_CONSTRAINT_U(OP) \
2319 ((OP) == const0_rtx \
2320 || (GET_CODE (OP) == SUBREG && VECTOR_MODE_SUPPORTED_P(GET_MODE (OP)) \
2321 && SUBREG_REG (OP) == const0_rtx && SUBREG_BYTE (OP) == 0) \
2322 || GET_CODE (OP) == CONST_VECTOR && zero_vec_operand ((OP), VOIDmode))
2323
2324 /* Any vector constant we can handle. */
2325 #define EXTRA_CONSTRAINT_W(OP) \
2326 (GET_CODE (OP) == CONST_VECTOR \
2327 && (sh_rep_vec ((OP), VOIDmode) \
2328 || (HOST_BITS_PER_WIDE_INT >= 64 \
2329 ? sh_const_vec ((OP), VOIDmode) \
2330 : sh_1el_vec ((OP), VOIDmode))))
2331
2332 #define EXTRA_CONSTRAINT(OP, C) \
2333 ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \
2334 : (C) == 'S' ? EXTRA_CONSTRAINT_S (OP) \
2335 : (C) == 'T' ? EXTRA_CONSTRAINT_T (OP) \
2336 : (C) == 'U' ? EXTRA_CONSTRAINT_U (OP) \
2337 : (C) == 'W' ? EXTRA_CONSTRAINT_W (OP) \
2338 : 0)
2339 \f
2340 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2341 that is a valid memory address for an instruction.
2342 The MODE argument is the machine mode for the MEM expression
2343 that wants to use this address. */
2344
2345 #define MODE_DISP_OK_4(X,MODE) \
2346 (GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
2347 && ! (INTVAL (X) & 3) && ! (TARGET_SH3E && (MODE) == SFmode))
2348
2349 #define MODE_DISP_OK_8(X,MODE) \
2350 ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
2351 && ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode))
2352
2353 #define BASE_REGISTER_RTX_P(X) \
2354 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2355 || (GET_CODE (X) == SUBREG \
2356 && GET_CODE (SUBREG_REG (X)) == REG \
2357 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2358
2359 /* Since this must be r0, which is a single register class, we must check
2360 SUBREGs more carefully, to be sure that we don't accept one that extends
2361 outside the class. */
2362 #define INDEX_REGISTER_RTX_P(X) \
2363 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2364 || (GET_CODE (X) == SUBREG \
2365 && GET_CODE (SUBREG_REG (X)) == REG \
2366 && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X))))
2367
2368 /* Jump to LABEL if X is a valid address RTX. This must also take
2369 REG_OK_STRICT into account when deciding about valid registers, but it uses
2370 the above macros so we are in luck.
2371
2372 Allow REG
2373 REG+disp
2374 REG+r0
2375 REG++
2376 --REG */
2377
2378 /* ??? The SH3e does not have the REG+disp addressing mode when loading values
2379 into the FRx registers. We implement this by setting the maximum offset
2380 to zero when the value is SFmode. This also restricts loading of SFmode
2381 values into the integer registers, but that can't be helped. */
2382
2383 /* The SH allows a displacement in a QI or HI amode, but only when the
2384 other operand is R0. GCC doesn't handle this very well, so we forgo
2385 all of that.
2386
2387 A legitimate index for a QI or HI is 0, SI can be any number 0..63,
2388 DI can be any number 0..60. */
2389
2390 #define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL) \
2391 do { \
2392 if (GET_CODE (OP) == CONST_INT) \
2393 { \
2394 if (TARGET_SHMEDIA) \
2395 { \
2396 int MODE_SIZE = GET_MODE_SIZE (MODE); \
2397 if (! (INTVAL (OP) & (MODE_SIZE - 1)) \
2398 && INTVAL (OP) >= -512 * MODE_SIZE \
2399 && INTVAL (OP) < 512 * MODE_SIZE) \
2400 goto LABEL; \
2401 else \
2402 break; \
2403 } \
2404 if (MODE_DISP_OK_4 ((OP), (MODE))) goto LABEL; \
2405 if (MODE_DISP_OK_8 ((OP), (MODE))) goto LABEL; \
2406 } \
2407 } while(0)
2408
2409 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
2410 { \
2411 if (BASE_REGISTER_RTX_P (X)) \
2412 goto LABEL; \
2413 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
2414 && ! TARGET_SHMEDIA \
2415 && BASE_REGISTER_RTX_P (XEXP ((X), 0))) \
2416 goto LABEL; \
2417 else if (GET_CODE (X) == PLUS \
2418 && ((MODE) != PSImode || reload_completed)) \
2419 { \
2420 rtx xop0 = XEXP ((X), 0); \
2421 rtx xop1 = XEXP ((X), 1); \
2422 if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \
2423 GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL); \
2424 if (GET_MODE_SIZE (MODE) <= 4 \
2425 || (TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 8) \
2426 || (TARGET_SH4 && TARGET_FMOVD && MODE == DFmode)) \
2427 { \
2428 if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
2429 goto LABEL; \
2430 if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
2431 goto LABEL; \
2432 } \
2433 } \
2434 }
2435 \f
2436 /* Try machine-dependent ways of modifying an illegitimate address
2437 to be legitimate. If we find one, return the new, valid address.
2438 This macro is used in only one place: `memory_address' in explow.c.
2439
2440 OLDX is the address as it was before break_out_memory_refs was called.
2441 In some cases it is useful to look at this to decide what needs to be done.
2442
2443 MODE and WIN are passed so that this macro can use
2444 GO_IF_LEGITIMATE_ADDRESS.
2445
2446 It is always safe for this macro to do nothing. It exists to recognize
2447 opportunities to optimize the output.
2448
2449 For the SH, if X is almost suitable for indexing, but the offset is
2450 out of range, convert it into a normal form so that cse has a chance
2451 of reducing the number of address registers used. */
2452
2453 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2454 { \
2455 if (flag_pic) \
2456 (X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \
2457 if (GET_CODE (X) == PLUS \
2458 && (GET_MODE_SIZE (MODE) == 4 \
2459 || GET_MODE_SIZE (MODE) == 8) \
2460 && GET_CODE (XEXP ((X), 1)) == CONST_INT \
2461 && BASE_REGISTER_RTX_P (XEXP ((X), 0)) \
2462 && ! TARGET_SHMEDIA \
2463 && ! (TARGET_SH4 && (MODE) == DFmode) \
2464 && ! (TARGET_SH3E && (MODE) == SFmode)) \
2465 { \
2466 rtx index_rtx = XEXP ((X), 1); \
2467 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
2468 rtx sum; \
2469 \
2470 GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN); \
2471 /* On rare occasions, we might get an unaligned pointer \
2472 that is indexed in a way to give an aligned address. \
2473 Therefore, keep the lower two bits in offset_base. */ \
2474 /* Instead of offset_base 128..131 use 124..127, so that \
2475 simple add suffices. */ \
2476 if (offset > 127) \
2477 { \
2478 offset_base = ((offset + 4) & ~60) - 4; \
2479 } \
2480 else \
2481 offset_base = offset & ~60; \
2482 /* Sometimes the normal form does not suit DImode. We \
2483 could avoid that by using smaller ranges, but that \
2484 would give less optimized code when SImode is \
2485 prevalent. */ \
2486 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
2487 { \
2488 sum = expand_binop (Pmode, add_optab, XEXP ((X), 0), \
2489 GEN_INT (offset_base), NULL_RTX, 0, \
2490 OPTAB_LIB_WIDEN); \
2491 \
2492 (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); \
2493 goto WIN; \
2494 } \
2495 } \
2496 }
2497
2498 /* A C compound statement that attempts to replace X, which is an address
2499 that needs reloading, with a valid memory address for an operand of
2500 mode MODE. WIN is a C statement label elsewhere in the code.
2501
2502 Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
2503 of the address. That will allow inheritance of the address reloads. */
2504
2505 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2506 { \
2507 if (GET_CODE (X) == PLUS \
2508 && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
2509 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2510 && BASE_REGISTER_RTX_P (XEXP (X, 0)) \
2511 && ! TARGET_SHMEDIA \
2512 && ! (TARGET_SH4 && (MODE) == DFmode) \
2513 && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS)) \
2514 { \
2515 rtx index_rtx = XEXP (X, 1); \
2516 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
2517 rtx sum; \
2518 \
2519 if (TARGET_SH3E && MODE == SFmode) \
2520 { \
2521 X = copy_rtx (X); \
2522 push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL, \
2523 INDEX_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
2524 (TYPE)); \
2525 goto WIN; \
2526 } \
2527 /* Instead of offset_base 128..131 use 124..127, so that \
2528 simple add suffices. */ \
2529 if (offset > 127) \
2530 { \
2531 offset_base = ((offset + 4) & ~60) - 4; \
2532 } \
2533 else \
2534 offset_base = offset & ~60; \
2535 /* Sometimes the normal form does not suit DImode. We \
2536 could avoid that by using smaller ranges, but that \
2537 would give less optimized code when SImode is \
2538 prevalent. */ \
2539 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
2540 { \
2541 sum = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
2542 GEN_INT (offset_base)); \
2543 X = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base));\
2544 push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL, \
2545 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
2546 (TYPE)); \
2547 goto WIN; \
2548 } \
2549 } \
2550 /* We must re-recognize what we created before. */ \
2551 else if (GET_CODE (X) == PLUS \
2552 && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
2553 && GET_CODE (XEXP (X, 0)) == PLUS \
2554 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
2555 && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0)) \
2556 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2557 && ! TARGET_SHMEDIA \
2558 && ! (TARGET_SH3E && MODE == SFmode)) \
2559 { \
2560 /* Because this address is so complex, we know it must have \
2561 been created by LEGITIMIZE_RELOAD_ADDRESS before; thus, \
2562 it is already unshared, and needs no further unsharing. */ \
2563 push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL, \
2564 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
2565 goto WIN; \
2566 } \
2567 }
2568
2569 /* Go to LABEL if ADDR (a legitimate address expression)
2570 has an effect that depends on the machine mode it is used for.
2571
2572 ??? Strictly speaking, we should also include all indexed addressing,
2573 because the index scale factor is the length of the operand.
2574 However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
2575 high if we did that. So we rely on reload to fix things up. */
2576
2577 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2578 { \
2579 if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC) \
2580 goto LABEL; \
2581 }
2582 \f
2583 /* Specify the machine mode that this machine uses
2584 for the index in the tablejump instruction. */
2585 #define CASE_VECTOR_MODE (TARGET_BIGTABLE ? SImode : HImode)
2586
2587 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
2588 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
2589 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
2590 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
2591 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
2592 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
2593 : SImode)
2594
2595 /* Define as C expression which evaluates to nonzero if the tablejump
2596 instruction expects the table to contain offsets from the address of the
2597 table.
2598 Do not define this if the table should contain absolute addresses. */
2599 #define CASE_VECTOR_PC_RELATIVE 1
2600
2601 /* Define it here, so that it doesn't get bumped to 64-bits on SHmedia. */
2602 #define FLOAT_TYPE_SIZE 32
2603
2604 /* Since the SH3e has only `float' support, it is desirable to make all
2605 floating point types equivalent to `float'. */
2606 #define DOUBLE_TYPE_SIZE ((TARGET_SH3E && ! TARGET_SH4) ? 32 : 64)
2607
2608 /* 'char' is signed by default. */
2609 #define DEFAULT_SIGNED_CHAR 1
2610
2611 /* The type of size_t unsigned int. */
2612 #define SIZE_TYPE (TARGET_SH5 ? "long unsigned int" : "unsigned int")
2613
2614 #undef PTRDIFF_TYPE
2615 #define PTRDIFF_TYPE (TARGET_SH5 ? "long int" : "int")
2616
2617 #define WCHAR_TYPE "short unsigned int"
2618 #define WCHAR_TYPE_SIZE 16
2619
2620 #define SH_ELF_WCHAR_TYPE "long int"
2621
2622 /* Don't cse the address of the function being compiled. */
2623 /*#define NO_RECURSIVE_FUNCTION_CSE 1*/
2624
2625 /* Max number of bytes we can move from memory to memory
2626 in one reasonably fast instruction. */
2627 #define MOVE_MAX (TARGET_SHMEDIA ? 8 : 4)
2628
2629 /* Maximum value possibly taken by MOVE_MAX. Must be defined whenever
2630 MOVE_MAX is not a compile-time constant. */
2631 #define MAX_MOVE_MAX 8
2632
2633 /* Max number of bytes we want move_by_pieces to be able to copy
2634 efficiently. */
2635 #define MOVE_MAX_PIECES (TARGET_SH4 || TARGET_SHMEDIA ? 8 : 4)
2636
2637 /* Define if operations between registers always perform the operation
2638 on the full register even if a narrower mode is specified. */
2639 #define WORD_REGISTER_OPERATIONS
2640
2641 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2642 will either zero-extend or sign-extend. The value of this macro should
2643 be the code that says which one of the two operations is implicitly
2644 done, NIL if none. */
2645 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
2646
2647 /* Define if loading short immediate values into registers sign extends. */
2648 #define SHORT_IMMEDIATES_SIGN_EXTEND
2649
2650 /* Nonzero if access to memory by bytes is no faster than for words. */
2651 #define SLOW_BYTE_ACCESS 1
2652
2653 /* We assume that the store-condition-codes instructions store 0 for false
2654 and some other value for true. This is the value stored for true. */
2655
2656 #define STORE_FLAG_VALUE 1
2657
2658 /* Immediate shift counts are truncated by the output routines (or was it
2659 the assembler?). Shift counts in a register are truncated by SH. Note
2660 that the native compiler puts too large (> 32) immediate shift counts
2661 into a register and shifts by the register, letting the SH decide what
2662 to do instead of doing that itself. */
2663 /* ??? The library routines in lib1funcs.asm truncate the shift count.
2664 However, the SH3 has hardware shifts that do not truncate exactly as gcc
2665 expects - the sign bit is significant - so it appears that we need to
2666 leave this zero for correct SH3 code. */
2667 #define SHIFT_COUNT_TRUNCATED (! TARGET_SH3)
2668
2669 /* All integers have the same format so truncation is easy. */
2670 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
2671
2672 /* Define this if addresses of constant functions
2673 shouldn't be put through pseudo regs where they can be cse'd.
2674 Desirable on machines where ordinary constants are expensive
2675 but a CALL with constant address is cheap. */
2676 /*#define NO_FUNCTION_CSE 1*/
2677
2678 /* Chars and shorts should be passed as ints. */
2679 #define PROMOTE_PROTOTYPES 1
2680
2681 /* The machine modes of pointers and functions. */
2682 #define Pmode (TARGET_SHMEDIA64 ? DImode : SImode)
2683 #define FUNCTION_MODE Pmode
2684
2685 /* The relative costs of various types of constants. */
2686
2687 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
2688 case CONST_INT: \
2689 if (TARGET_SHMEDIA) \
2690 { \
2691 if (INTVAL (RTX) == 0) \
2692 return 0; \
2693 if ((OUTER_CODE) == AND && and_operand ((RTX), DImode)) \
2694 return 0; \
2695 if (((OUTER_CODE) == IOR || (OUTER_CODE) == XOR \
2696 || (OUTER_CODE) == PLUS) \
2697 && CONST_OK_FOR_P (INTVAL (RTX))) \
2698 return 0; \
2699 if (CONST_OK_FOR_J (INTVAL (RTX))) \
2700 return COSTS_N_INSNS ((OUTER_CODE) != SET); \
2701 else if (CONST_OK_FOR_J (INTVAL (RTX) >> 16)) \
2702 return COSTS_N_INSNS (2); \
2703 else if (CONST_OK_FOR_J ((INTVAL (RTX) >> 16) >> 16)) \
2704 return COSTS_N_INSNS (3); \
2705 else \
2706 return COSTS_N_INSNS (4); \
2707 } \
2708 if (CONST_OK_FOR_I (INTVAL (RTX))) \
2709 return 0; \
2710 else if (((OUTER_CODE) == AND || (OUTER_CODE) == IOR || (OUTER_CODE) == XOR) \
2711 && CONST_OK_FOR_L (INTVAL (RTX))) \
2712 return 1; \
2713 else \
2714 return 8; \
2715 case CONST: \
2716 case LABEL_REF: \
2717 case SYMBOL_REF: \
2718 if (TARGET_SHMEDIA64) \
2719 return COSTS_N_INSNS (4); \
2720 if (TARGET_SHMEDIA32) \
2721 return COSTS_N_INSNS (2); \
2722 return 5; \
2723 case CONST_DOUBLE: \
2724 if (TARGET_SHMEDIA) \
2725 return COSTS_N_INSNS (4); \
2726 else \
2727 return 10;
2728
2729 #define RTX_COSTS(X, CODE, OUTER_CODE) \
2730 case PLUS: \
2731 return COSTS_N_INSNS (addsubcosts (X)); \
2732 case AND: \
2733 return COSTS_N_INSNS (andcosts (X)); \
2734 case MULT: \
2735 return COSTS_N_INSNS (multcosts (X)); \
2736 case ASHIFT: \
2737 case ASHIFTRT: \
2738 case LSHIFTRT: \
2739 return COSTS_N_INSNS (shiftcosts (X)); \
2740 case DIV: \
2741 case UDIV: \
2742 case MOD: \
2743 case UMOD: \
2744 return COSTS_N_INSNS (20); \
2745 case FLOAT: \
2746 case FIX: \
2747 return 100;
2748
2749 /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
2750 are actually function calls with some special constraints on arguments
2751 and register usage.
2752
2753 These macros tell reorg that the references to arguments and
2754 register clobbers for insns of type sfunc do not appear to happen
2755 until after the millicode call. This allows reorg to put insns
2756 which set the argument registers into the delay slot of the millicode
2757 call -- thus they act more like traditional CALL_INSNs.
2758
2759 get_attr_is_sfunc will try to recognize the given insn, so make sure to
2760 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
2761 in particular. */
2762
2763 #define INSN_SETS_ARE_DELAYED(X) \
2764 ((GET_CODE (X) == INSN \
2765 && GET_CODE (PATTERN (X)) != SEQUENCE \
2766 && GET_CODE (PATTERN (X)) != USE \
2767 && GET_CODE (PATTERN (X)) != CLOBBER \
2768 && get_attr_is_sfunc (X)))
2769
2770 #define INSN_REFERENCES_ARE_DELAYED(X) \
2771 ((GET_CODE (X) == INSN \
2772 && GET_CODE (PATTERN (X)) != SEQUENCE \
2773 && GET_CODE (PATTERN (X)) != USE \
2774 && GET_CODE (PATTERN (X)) != CLOBBER \
2775 && get_attr_is_sfunc (X)))
2776
2777 \f
2778 /* Position Independent Code. */
2779
2780 /* The prefix used to mark SYMBOL_REFs that refer to data symbols. */
2781 #define SH_DATALABEL_ENCODING "#"
2782
2783 /* Return true if SYM_NAME starts with SH_DATALABEL_ENCODING. */
2784 #define DATALABEL_SYMNAME_P(SYM_NAME) \
2785 (SH_DATALABEL_ENCODING[1] ? (abort (), 0) : \
2786 (SYM_NAME)[0] == SH_DATALABEL_ENCODING[0])
2787
2788 /* Skip an optional SH_DATALABEL_ENCODING in the beginning of
2789 SYM_NAME. Then, remove a leading *, like the default definition in
2790 output.h. */
2791 #define STRIP_DATALABEL_ENCODING(VAR, SYM_NAME) \
2792 (VAR) = (SYM_NAME) + (DATALABEL_SYMNAME_P (SYM_NAME) \
2793 ? strlen (SH_DATALABEL_ENCODING) : 0)
2794
2795 /* We can't directly access anything that contains a symbol,
2796 nor can we indirect via the constant pool. */
2797 #define LEGITIMATE_PIC_OPERAND_P(X) \
2798 (! nonpic_symbol_mentioned_p (X) \
2799 && (GET_CODE (X) != SYMBOL_REF \
2800 || ! CONSTANT_POOL_ADDRESS_P (X) \
2801 || ! nonpic_symbol_mentioned_p (get_pool_constant (X))))
2802
2803 #define SYMBOLIC_CONST_P(X) \
2804 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
2805 && nonpic_symbol_mentioned_p (X))
2806 \f
2807 /* Compute the cost of an address. For the SH, all valid addresses are
2808 the same cost. Use a slightly higher cost for reg + reg addressing,
2809 since it increases pressure on r0. */
2810
2811 #define ADDRESS_COST(X) (GET_CODE (X) == PLUS && ! CONSTANT_P (XEXP (X, 1)) \
2812 && ! TARGET_SHMEDIA \
2813 ? 1 : 0)
2814
2815 /* Compute extra cost of moving data between one register class
2816 and another. */
2817
2818 /* Regclass always uses 2 for moves in the same register class;
2819 If SECONDARY*_RELOAD_CLASS says something about the src/dst pair,
2820 it uses this information. Hence, the general register <-> floating point
2821 register information here is not used for SFmode. */
2822 #define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) \
2823 (((((DSTCLASS) == T_REGS) || ((DSTCLASS) == PR_REGS)) ? 10 \
2824 : ((((DSTCLASS) == FP0_REGS || (DSTCLASS) == FP_REGS || (DSTCLASS) == DF_REGS) \
2825 && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS)) \
2826 || (((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS) \
2827 && ((SRCCLASS) == FP0_REGS || (SRCCLASS) == FP_REGS \
2828 || (SRCCLASS) == DF_REGS))) \
2829 ? (TARGET_SHMEDIA ? 2 \
2830 : TARGET_FMOVD ? 8 : 12) \
2831 : (((DSTCLASS) == FPUL_REGS \
2832 && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS)) \
2833 || (SRCCLASS == FPUL_REGS \
2834 && ((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS))) \
2835 ? 5 \
2836 : (((DSTCLASS) == FPUL_REGS \
2837 && ((SRCCLASS) == PR_REGS || (SRCCLASS) == MAC_REGS \
2838 || (SRCCLASS) == T_REGS)) \
2839 || ((SRCCLASS) == FPUL_REGS \
2840 && ((DSTCLASS) == PR_REGS || (DSTCLASS) == MAC_REGS))) \
2841 ? 7 \
2842 : (((SRCCLASS) == TARGET_REGS && (DSTCLASS) != GENERAL_REGS) \
2843 || ((DSTCLASS) == TARGET_REGS && (SRCCLASS) != GENERAL_REGS)) \
2844 ? 20 \
2845 : (((SRCCLASS) == FPSCR_REGS && (DSTCLASS) != GENERAL_REGS) \
2846 || ((DSTCLASS) == FPSCR_REGS && (SRCCLASS) != GENERAL_REGS)) \
2847 ? 4 \
2848 : 2) * ((MODE) == V16SFmode ? 8 : (MODE) == V4SFmode ? 2 : 1))
2849
2850 /* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
2851 would be so that people with slow memory systems could generate
2852 different code that does fewer memory accesses. */
2853
2854 /* A C expression for the cost of a branch instruction. A value of 1
2855 is the default; other values are interpreted relative to that.
2856 The SH1 does not have delay slots, hence we get a pipeline stall
2857 at every branch. The SH4 is superscalar, so the single delay slot
2858 is not sufficient to keep both pipelines filled. */
2859 #define BRANCH_COST (TARGET_SH5 ? 1 : ! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1)
2860 \f
2861 /* Assembler output control. */
2862
2863 /* A C string constant describing how to begin a comment in the target
2864 assembler language. The compiler assumes that the comment will end at
2865 the end of the line. */
2866 #define ASM_COMMENT_START "!"
2867
2868 /* The text to go at the start of the assembler file. */
2869 #define ASM_FILE_START(STREAM) \
2870 output_file_start (STREAM)
2871
2872 #define ASM_APP_ON ""
2873 #define ASM_APP_OFF ""
2874 #define FILE_ASM_OP "\t.file\n"
2875 #define SET_ASM_OP "\t.set\t"
2876
2877 /* How to change between sections. */
2878
2879 #define TEXT_SECTION_ASM_OP (TARGET_SHMEDIA32 ? "\t.section\t.text..SHmedia32,\"ax\"" : "\t.text")
2880 #define DATA_SECTION_ASM_OP "\t.data"
2881
2882 #if defined CRT_BEGIN || defined CRT_END
2883 /* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant. */
2884 # undef TEXT_SECTION_ASM_OP
2885 # if __SHMEDIA__ == 1 && __SH5__ == 32
2886 # define TEXT_SECTION_ASM_OP "\t.section\t.text..SHmedia32,\"ax\""
2887 # else
2888 # define TEXT_SECTION_ASM_OP "\t.text"
2889 # endif
2890 #endif
2891
2892
2893 /* If defined, a C expression whose value is a string containing the
2894 assembler operation to identify the following data as
2895 uninitialized global data. If not defined, and neither
2896 `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2897 uninitialized global data will be output in the data section if
2898 `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2899 used. */
2900 #ifndef BSS_SECTION_ASM_OP
2901 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
2902 #endif
2903
2904 /* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
2905 separate, explicit argument. If you define this macro, it is used
2906 in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
2907 handling the required alignment of the variable. The alignment is
2908 specified as the number of bits.
2909
2910 Try to use function `asm_output_aligned_bss' defined in file
2911 `varasm.c' when defining this macro. */
2912 #ifndef ASM_OUTPUT_ALIGNED_BSS
2913 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2914 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
2915 #endif
2916
2917 /* Define this so that jump tables go in same section as the current function,
2918 which could be text or it could be a user defined section. */
2919 #define JUMP_TABLES_IN_TEXT_SECTION 1
2920
2921 #undef DO_GLOBAL_CTORS_BODY
2922 #define DO_GLOBAL_CTORS_BODY \
2923 { \
2924 typedef (*pfunc)(); \
2925 extern pfunc __ctors[]; \
2926 extern pfunc __ctors_end[]; \
2927 pfunc *p; \
2928 for (p = __ctors_end; p > __ctors; ) \
2929 { \
2930 (*--p)(); \
2931 } \
2932 }
2933
2934 #undef DO_GLOBAL_DTORS_BODY
2935 #define DO_GLOBAL_DTORS_BODY \
2936 { \
2937 typedef (*pfunc)(); \
2938 extern pfunc __dtors[]; \
2939 extern pfunc __dtors_end[]; \
2940 pfunc *p; \
2941 for (p = __dtors; p < __dtors_end; p++) \
2942 { \
2943 (*p)(); \
2944 } \
2945 }
2946
2947 #define ASM_OUTPUT_REG_PUSH(file, v) \
2948 fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v));
2949
2950 #define ASM_OUTPUT_REG_POP(file, v) \
2951 fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v));
2952
2953 /* DBX register number for a given compiler register number. */
2954 /* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
2955 to match gdb. */
2956 /* svr4.h undefines this macro, yet we really want to use the same numbers
2957 for coff as for elf, so we go via another macro: SH_DBX_REGISTER_NUMBER. */
2958 #define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
2959
2960 #define SH_DBX_REGISTER_NUMBER(REGNO) \
2961 (GENERAL_REGISTER_P (REGNO) \
2962 ? ((REGNO) - FIRST_GENERAL_REG) \
2963 : FP_REGISTER_P (REGNO) \
2964 ? ((REGNO) - FIRST_FP_REG + (TARGET_SH5 ? (TARGET_SHCOMPACT ? 245 \
2965 : 77) : 25)) \
2966 : XD_REGISTER_P (REGNO) \
2967 ? ((REGNO) - FIRST_XD_REG + (TARGET_SH5 ? 289 : 87)) \
2968 : TARGET_REGISTER_P (REGNO) \
2969 ? ((REGNO) - FIRST_TARGET_REG + 68) \
2970 : (REGNO) == PR_REG \
2971 ? (TARGET_SH5 ? 241 : 17) \
2972 : (REGNO) == T_REG \
2973 ? (TARGET_SH5 ? 242 : 18) \
2974 : (REGNO) == GBR_REG \
2975 ? (TARGET_SH5 ? 238 : 19) \
2976 : (REGNO) == MACH_REG \
2977 ? (TARGET_SH5 ? 239 : 20) \
2978 : (REGNO) == MACL_REG \
2979 ? (TARGET_SH5 ? 240 : 21) \
2980 : (REGNO) == FPUL_REG \
2981 ? (TARGET_SH5 ? 244 : 23) \
2982 : (abort(), -1))
2983
2984 /* This is how to output a reference to a user-level label named NAME. */
2985 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
2986 do \
2987 { \
2988 char * lname; \
2989 \
2990 STRIP_DATALABEL_ENCODING (lname, (NAME)); \
2991 if (lname[0] == '*') \
2992 fputs (lname + 1, (FILE)); \
2993 else \
2994 asm_fprintf ((FILE), "%U%s", lname); \
2995 } \
2996 while (0)
2997
2998 /* This is how to output a reference to a symbol_ref. On SH5,
2999 references to non-code symbols must be preceded by `datalabel'. */
3000 #define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
3001 do \
3002 { \
3003 if (TARGET_SH5 \
3004 && (DATALABEL_SYMNAME_P (XSTR ((SYM), 0)) \
3005 || CONSTANT_POOL_ADDRESS_P (SYM))) \
3006 fputs ("datalabel ", (FILE)); \
3007 assemble_name ((FILE), XSTR ((SYM), 0)); \
3008 } \
3009 while (0)
3010
3011 /* Output a label definition. */
3012 #define ASM_OUTPUT_LABEL(FILE,NAME) \
3013 do { assemble_name ((FILE), (NAME)); fputs (":\n", (FILE)); } while (0)
3014
3015 /* This is how to output an assembler line
3016 that says to advance the location counter
3017 to a multiple of 2**LOG bytes. */
3018
3019 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
3020 if ((LOG) != 0) \
3021 fprintf ((FILE), "\t.align %d\n", (LOG))
3022
3023 /* Output a globalising directive for a label. */
3024 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
3025 (fprintf ((STREAM), "\t.global\t"), \
3026 assemble_name ((STREAM), (NAME)), \
3027 fputc ('\n', (STREAM)))
3028
3029 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
3030
3031 /* Construct a private name. */
3032 #define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
3033 ((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
3034 sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
3035
3036 /* Output a relative address table. */
3037
3038 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
3039 switch (GET_MODE (BODY)) \
3040 { \
3041 case SImode: \
3042 if (TARGET_SH5) \
3043 { \
3044 asm_fprintf ((STREAM), "\t.long\t%LL%d-datalabel %LL%d\n", \
3045 (VALUE), (REL)); \
3046 break; \
3047 } \
3048 asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3049 break; \
3050 case HImode: \
3051 if (TARGET_SH5) \
3052 { \
3053 asm_fprintf ((STREAM), "\t.word\t%LL%d-datalabel %LL%d\n", \
3054 (VALUE), (REL)); \
3055 break; \
3056 } \
3057 asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3058 break; \
3059 case QImode: \
3060 if (TARGET_SH5) \
3061 { \
3062 asm_fprintf ((STREAM), "\t.byte\t%LL%d-datalabel %LL%d\n", \
3063 (VALUE), (REL)); \
3064 break; \
3065 } \
3066 asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3067 break; \
3068 default: \
3069 break; \
3070 }
3071
3072 /* Output an absolute table element. */
3073
3074 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
3075 if (TARGET_BIGTABLE) \
3076 asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
3077 else \
3078 asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));
3079
3080 \f
3081 /* A C statement to be executed just prior to the output of
3082 assembler code for INSN, to modify the extracted operands so
3083 they will be output differently.
3084
3085 Here the argument OPVEC is the vector containing the operands
3086 extracted from INSN, and NOPERANDS is the number of elements of
3087 the vector which contain meaningful data for this insn.
3088 The contents of this vector are what will be used to convert the insn
3089 template into assembler code, so you can change the assembler output
3090 by changing the contents of the vector. */
3091
3092 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3093 final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
3094
3095 /* Print operand X (an rtx) in assembler syntax to file FILE.
3096 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3097 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3098
3099 #define PRINT_OPERAND(STREAM, X, CODE) print_operand ((STREAM), (X), (CODE))
3100
3101 /* Print a memory address as an operand to reference that memory location. */
3102
3103 #define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address ((STREAM), (X))
3104
3105 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
3106 ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ',' \
3107 || (CHAR) == '$'|| (CHAR) == '\'')
3108
3109 /* Recognize machine-specific patterns that may appear within
3110 constants. Used for PIC-specific UNSPECs. */
3111 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
3112 do \
3113 if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
3114 { \
3115 switch (XINT ((X), 1)) \
3116 { \
3117 case UNSPEC_DATALABEL: \
3118 fputs ("datalabel ", (STREAM)); \
3119 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3120 break; \
3121 case UNSPEC_PIC: \
3122 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
3123 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3124 break; \
3125 case UNSPEC_GOT: \
3126 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3127 fputs ("@GOT", (STREAM)); \
3128 break; \
3129 case UNSPEC_GOTOFF: \
3130 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3131 fputs ("@GOTOFF", (STREAM)); \
3132 break; \
3133 case UNSPEC_PLT: \
3134 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3135 fputs ("@PLT", (STREAM)); \
3136 break; \
3137 case UNSPEC_GOTPLT: \
3138 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3139 fputs ("@GOTPLT", (STREAM)); \
3140 break; \
3141 case UNSPEC_CALLER: \
3142 { \
3143 char name[32]; \
3144 /* LPCS stands for Label for PIC Call Site. */ \
3145 ASM_GENERATE_INTERNAL_LABEL \
3146 (name, "LPCS", INTVAL (XVECEXP ((X), 0, 0))); \
3147 assemble_name ((STREAM), name); \
3148 } \
3149 break; \
3150 default: \
3151 goto FAIL; \
3152 } \
3153 break; \
3154 } \
3155 else \
3156 goto FAIL; \
3157 while (0)
3158
3159 \f
3160 extern struct rtx_def *sh_compare_op0;
3161 extern struct rtx_def *sh_compare_op1;
3162
3163 /* Which processor to schedule for. The elements of the enumeration must
3164 match exactly the cpu attribute in the sh.md file. */
3165
3166 enum processor_type {
3167 PROCESSOR_SH1,
3168 PROCESSOR_SH2,
3169 PROCESSOR_SH3,
3170 PROCESSOR_SH3E,
3171 PROCESSOR_SH4,
3172 PROCESSOR_SH5
3173 };
3174
3175 #define sh_cpu_attr ((enum attr_cpu)sh_cpu)
3176 extern enum processor_type sh_cpu;
3177
3178 extern int optimize; /* needed for gen_casesi. */
3179
3180 enum mdep_reorg_phase_e
3181 {
3182 SH_BEFORE_MDEP_REORG,
3183 SH_INSERT_USES_LABELS,
3184 SH_SHORTEN_BRANCHES0,
3185 SH_FIXUP_PCLOAD,
3186 SH_SHORTEN_BRANCHES1,
3187 SH_AFTER_MDEP_REORG
3188 };
3189
3190 extern enum mdep_reorg_phase_e mdep_reorg_phase;
3191
3192 #define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg(X)
3193
3194 /* Generate calls to memcpy, memcmp and memset. */
3195
3196 #define TARGET_MEM_FUNCTIONS
3197
3198 /* Handle Hitachi compiler's pragmas. */
3199 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
3200 cpp_register_pragma (PFILE, 0, "interrupt", sh_pr_interrupt); \
3201 cpp_register_pragma (PFILE, 0, "trapa", sh_pr_trapa); \
3202 cpp_register_pragma (PFILE, 0, "nosave_low_regs", sh_pr_nosave_low_regs); \
3203 } while (0)
3204
3205 /* Set when processing a function with pragma interrupt turned on. */
3206
3207 extern int pragma_interrupt;
3208
3209 /* Set when processing a function with interrupt attribute. */
3210
3211 extern int current_function_interrupt;
3212
3213 /* Set to an RTX containing the address of the stack to switch to
3214 for interrupt functions. */
3215 extern struct rtx_def *sp_switch;
3216
3217 extern int rtx_equal_function_value_matters;
3218
3219 \f
3220 /* Instructions with unfilled delay slots take up an
3221 extra two bytes for the nop in the delay slot.
3222 sh-dsp parallel processing insns are four bytes long. */
3223
3224 #define ADJUST_INSN_LENGTH(X, LENGTH) \
3225 (LENGTH) += sh_insn_length_adjustment (X);
3226 \f
3227 /* Define the codes that are matched by predicates in sh.c. */
3228 #define PREDICATE_CODES \
3229 {"and_operand", {SUBREG, REG, CONST_INT}}, \
3230 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
3231 {"arith_reg_dest", {SUBREG, REG}}, \
3232 {"arith_reg_operand", {SUBREG, REG}}, \
3233 {"arith_reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_VECTOR}}, \
3234 {"binary_float_operator", {PLUS, MULT}}, \
3235 {"commutative_float_operator", {PLUS, MULT}}, \
3236 {"equality_comparison_operator", {EQ,NE}}, \
3237 {"extend_reg_operand", {SUBREG, REG, TRUNCATE}}, \
3238 {"extend_reg_or_0_operand", {SUBREG, REG, TRUNCATE, CONST_INT}}, \
3239 {"fp_arith_reg_operand", {SUBREG, REG}}, \
3240 {"fpscr_operand", {REG}}, \
3241 {"fpul_operand", {REG}}, \
3242 {"general_extend_operand", {SUBREG, REG, MEM, TRUNCATE}}, \
3243 {"general_movsrc_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, MEM}}, \
3244 {"general_movdst_operand", {SUBREG, REG, MEM}}, \
3245 {"greater_comparison_operator", {GT,GE,GTU,GEU}}, \
3246 {"inqhi_operand", {TRUNCATE}}, \
3247 {"less_comparison_operator", {LT,LE,LTU,LEU}}, \
3248 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
3249 {"mextr_bit_offset", {CONST_INT}}, \
3250 {"noncommutative_float_operator", {MINUS, DIV}}, \
3251 {"shmedia_6bit_operand", {SUBREG, REG, CONST_INT}}, \
3252 {"target_reg_operand", {SUBREG, REG}}, \
3253 {"target_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST, UNSPEC}},\
3254 {"register_operand", {SUBREG, REG}}, \
3255 {"sh_const_vec", {CONST_VECTOR}}, \
3256 {"sh_1el_vec", {CONST_VECTOR, PARALLEL}}, \
3257 {"sh_rep_vec", {CONST_VECTOR, PARALLEL}}, \
3258 {"symbol_ref_operand", {SYMBOL_REF}}, \
3259 {"zero_vec_operand", {CONST_VECTOR}},
3260
3261 /* Define this macro if it is advisable to hold scalars in registers
3262 in a wider mode than that declared by the program. In such cases,
3263 the value is constrained to be within the bounds of the declared
3264 type, but kept valid in the wider mode. The signedness of the
3265 extension may differ from that of the type.
3266
3267 Leaving the unsignedp unchanged gives better code than always setting it
3268 to 0. This is despite the fact that we have only signed char and short
3269 load instructions. */
3270 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
3271 if (GET_MODE_CLASS (MODE) == MODE_INT \
3272 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3273 (UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)), \
3274 (MODE) = (TARGET_SH1 ? SImode : DImode);
3275
3276 /* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
3277 extensions applied to char/short functions arguments. Defining
3278 PROMOTE_FUNCTION_RETURN does the same for function returns. */
3279
3280 #define PROMOTE_FUNCTION_ARGS
3281 #define PROMOTE_FUNCTION_RETURN
3282
3283 /* ??? Define ACCUMULATE_OUTGOING_ARGS? This is more efficient than pushing
3284 and poping arguments. However, we do have push/pop instructions, and
3285 rather limited offsets (4 bits) in load/store instructions, so it isn't
3286 clear if this would give better code. If implemented, should check for
3287 compatibility problems. */
3288
3289 #define SH_DYNAMIC_SHIFT_COST \
3290 (TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
3291
3292
3293 #define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
3294
3295 #define OPTIMIZE_MODE_SWITCHING(ENTITY) TARGET_SH4
3296
3297 #define NORMAL_MODE(ENTITY) \
3298 (sh_cfun_interrupt_handler_p () ? FP_MODE_NONE \
3299 : TARGET_FPU_SINGLE ? FP_MODE_SINGLE \
3300 : FP_MODE_DOUBLE)
3301
3302 #define EPILOGUE_USES(REGNO) ((TARGET_SH3E || TARGET_SH4) \
3303 && (REGNO) == FPSCR_REG)
3304
3305 #define MODE_NEEDED(ENTITY, INSN) \
3306 (recog_memoized (INSN) >= 0 \
3307 ? get_attr_fp_mode (INSN) \
3308 : FP_MODE_NONE)
3309
3310 #define MODE_PRIORITY_TO_MODE(ENTITY, N) \
3311 ((TARGET_FPU_SINGLE != 0) ^ (N) ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
3312
3313 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3314 fpscr_set_from_mem ((MODE), (HARD_REGS_LIVE))
3315
3316 #define MD_CAN_REDIRECT_BRANCH(INSN, SEQ) \
3317 sh_can_redirect_branch ((INSN), (SEQ))
3318
3319 #define DWARF_FRAME_RETURN_COLUMN (TARGET_SH5 ? PR_MEDIA_REG : PR_REG)
3320
3321 #if (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__
3322 /* SH constant pool breaks the devices in crtstuff.c to control section
3323 in where code resides. We have to write it as asm code. */
3324 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3325 asm (SECTION_OP "\n\
3326 mov.l 1f,r1\n\
3327 mova 2f,r0\n\
3328 braf r1\n\
3329 lds r0,pr\n\
3330 0: .p2align 2\n\
3331 1: .long " USER_LABEL_PREFIX #FUNC " - 0b\n\
3332 2:\n" TEXT_SECTION_ASM_OP);
3333 #endif /* (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__ */
3334
3335 #define ALLOCATE_INITIAL_VALUE(hard_reg) \
3336 (REGNO (hard_reg) == (TARGET_SH5 ? PR_MEDIA_REG : PR_REG) \
3337 ? (current_function_is_leaf && ! sh_pr_n_sets () \
3338 ? (hard_reg) \
3339 : gen_rtx_MEM (Pmode, TARGET_SH5 \
3340 ? (plus_constant (arg_pointer_rtx, \
3341 TARGET_SHMEDIA64 ? -8 : -4)) \
3342 : frame_pointer_rtx)) \
3343 : NULL_RTX)
3344
3345 #endif /* ! GCC_SH_H */