e88fa08be8931c725f55be73166c895d29e31435
[gcc.git] / gcc / config / sh / sh.h
1 /* Definitions of target machine for GNU compiler for Hitachi Super-H.
2 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
3 Contributed by Steve Chamberlain (sac@cygnus.com).
4 Improved by Jim Wilson (wilson@cygnus.com).
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 #define TARGET_VERSION \
25 fputs (" (Hitachi SH)", stderr);
26
27 /* Generate SDB debugging information. */
28
29 #define SDB_DEBUGGING_INFO
30
31 /* Output DBX (stabs) debugging information if doing -gstabs. */
32
33 #include "dbxcoff.h"
34
35 #define SDB_DELIM ";"
36
37 #define CPP_SPEC "%{ml:-D__LITTLE_ENDIAN__} \
38 %{m1:-D__sh1__} \
39 %{m2:-D__sh2__} \
40 %{m3:-D__sh3__} \
41 %{m3e:-D__SH3E__}"
42
43 #define CPP_PREDEFINES "-D__sh__ -Acpu(sh) -Amachine(sh)"
44
45 #define ASM_SPEC "%{ml:-little} %{mrelax:-relax}"
46
47 #define LINK_SPEC "%{ml:-m shl} %{mrelax:-relax}"
48
49 /* We can not debug without a frame pointer. */
50 /* #define CAN_DEBUG_WITHOUT_FP */
51
52 #define CONDITIONAL_REGISTER_USAGE \
53 if (! TARGET_SH3E) \
54 { \
55 int regno; \
56 for (regno = FIRST_FP_REG; regno <= LAST_FP_REG; regno++) \
57 fixed_regs[regno] = call_used_regs[regno] = 1; \
58 } \
59 /* Hitachi saves and restores mac registers on call. */ \
60 if (TARGET_HITACHI) \
61 { \
62 call_used_regs[MACH_REG] = 0; \
63 call_used_regs[MACL_REG] = 0; \
64 }
65 \f
66 /* ??? Need to write documentation for all SH options and add it to the
67 invoke.texi file. */
68
69 /* Run-time compilation parameters selecting different hardware subsets. */
70
71 extern int target_flags;
72 #define ISIZE_BIT (1<<1)
73 #define DALIGN_BIT (1<<6)
74 #define SH0_BIT (1<<7)
75 #define SH1_BIT (1<<8)
76 #define SH2_BIT (1<<9)
77 #define SH3_BIT (1<<10)
78 #define SH3E_BIT (1<<11)
79 #define SPACE_BIT (1<<13)
80 #define BIGTABLE_BIT (1<<14)
81 #define RELAX_BIT (1<<15)
82 #define HITACHI_BIT (1<<22)
83 #define PADSTRUCT_BIT (1<<28)
84 #define LITTLE_ENDIAN_BIT (1<<29)
85
86 /* Nonzero if we should dump out instruction size info. */
87 #define TARGET_DUMPISIZE (target_flags & ISIZE_BIT)
88
89 /* Nonzero to align doubles on 64 bit boundaries. */
90 #define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT)
91
92 /* Nonzero if we should generate code using type 0 insns. */
93 /* ??? Is there such a thing as SH0? If not, we should delete all
94 references to it. */
95 #define TARGET_SH0 (target_flags & SH0_BIT)
96
97 /* Nonzero if we should generate code using type 1 insns. */
98 #define TARGET_SH1 (target_flags & SH1_BIT)
99
100 /* Nonzero if we should generate code using type 2 insns. */
101 #define TARGET_SH2 (target_flags & SH2_BIT)
102
103 /* Nonzero if we should generate code using type 3 insns. */
104 #define TARGET_SH3 (target_flags & SH3_BIT)
105
106 /* Nonzero if we should generate code using type 3E insns. */
107 #define TARGET_SH3E (target_flags & SH3E_BIT)
108
109 /* Nonzero if we should generate smaller code rather than faster code. */
110 #define TARGET_SMALLCODE (target_flags & SPACE_BIT)
111
112 /* Nonzero to use long jump tables. */
113 #define TARGET_BIGTABLE (target_flags & BIGTABLE_BIT)
114
115 /* Nonzero to generate pseudo-ops needed by the assembler and linker
116 to do function call relaxing. */
117 #define TARGET_RELAX (target_flags & RELAX_BIT)
118
119 /* Nonzero if using Hitachi's calling convention. */
120 #define TARGET_HITACHI (target_flags & HITACHI_BIT)
121
122 /* Nonzero if padding structures to a multiple of 4 bytes. This is
123 incompatible with Hitachi's compiler, and gives unusual structure layouts
124 which confuse programmers.
125 ??? This option is not useful, but is retained in case there are people
126 who are still relying on it. It may be deleted in the future. */
127 #define TARGET_PADSTRUCT (target_flags & PADSTRUCT_BIT)
128
129 /* Nonzero if generating code for a little endian SH. */
130 #define TARGET_LITTLE_ENDIAN (target_flags & LITTLE_ENDIAN_BIT)
131
132 #define TARGET_SWITCHES \
133 { {"0", SH0_BIT}, \
134 {"1", SH1_BIT}, \
135 {"2", SH2_BIT}, \
136 {"3", SH3_BIT|SH2_BIT}, \
137 {"3e", SH3E_BIT|SH3_BIT|SH2_BIT}, \
138 {"b", -LITTLE_ENDIAN_BIT}, \
139 {"bigtable", BIGTABLE_BIT}, \
140 {"dalign", DALIGN_BIT}, \
141 {"hitachi", HITACHI_BIT}, \
142 {"isize", ISIZE_BIT}, \
143 {"l", LITTLE_ENDIAN_BIT}, \
144 {"padstruct", PADSTRUCT_BIT}, \
145 {"relax", RELAX_BIT}, \
146 {"space", SPACE_BIT}, \
147 {"", TARGET_DEFAULT} \
148 }
149
150 #define TARGET_DEFAULT (0)
151
152 #define PRESERVE_DEATH_INFO_REGNO_P(regno) (TARGET_RELAX || optimize)
153
154 #define OVERRIDE_OPTIONS \
155 do { \
156 sh_cpu = CPU_SH0; \
157 if (TARGET_SH1) \
158 sh_cpu = CPU_SH1; \
159 if (TARGET_SH2) \
160 sh_cpu = CPU_SH2; \
161 if (TARGET_SH3) \
162 sh_cpu = CPU_SH3; \
163 if (TARGET_SH3E) \
164 sh_cpu = CPU_SH3E; \
165 \
166 /* Never run scheduling before reload, since that can \
167 break global alloc, and generates slower code anyway due \
168 to the pressure on R0. */ \
169 flag_schedule_insns = 0; \
170 } while (0)
171 \f
172 /* Target machine storage layout. */
173
174 /* Define to use software floating point emulator for REAL_ARITHMETIC and
175 decimal <-> binary conversion. */
176 #define REAL_ARITHMETIC
177
178 /* Define this if most significant bit is lowest numbered
179 in instructions that operate on numbered bit-fields. */
180
181 #define BITS_BIG_ENDIAN 0
182
183 /* Define this if most significant byte of a word is the lowest numbered. */
184 #define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
185
186 /* Define this if most significant word of a multiword number is the lowest
187 numbered. */
188 #define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
189
190 /* Define this to set the endianness to use in libgcc2.c, which can
191 not depend on target_flags. */
192 #if defined(__LITTLE_ENDIAN__)
193 #define LIBGCC2_WORDS_BIG_ENDIAN 0
194 #else
195 #define LIBGCC2_WORDS_BIG_ENDIAN 1
196 #endif
197
198 /* Number of bits in an addressable storage unit. */
199 #define BITS_PER_UNIT 8
200
201 /* Width in bits of a "word", which is the contents of a machine register.
202 Note that this is not necessarily the width of data type `int';
203 if using 16-bit ints on a 68000, this would still be 32.
204 But on a machine with 16-bit registers, this would be 16. */
205 #define BITS_PER_WORD 32
206 #define MAX_BITS_PER_WORD 32
207
208 /* Width of a word, in units (bytes). */
209 #define UNITS_PER_WORD 4
210
211 /* Width in bits of a pointer.
212 See also the macro `Pmode' defined below. */
213 #define POINTER_SIZE 32
214
215 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
216 #define PARM_BOUNDARY 32
217
218 /* Boundary (in *bits*) on which stack pointer should be aligned. */
219 #define STACK_BOUNDARY 32
220
221 /* Allocation boundary (in *bits*) for the code of a function.
222 32 bit alignment is faster, because instructions are always fetched as a
223 pair from a longword boundary. */
224 #define FUNCTION_BOUNDARY (TARGET_SMALLCODE ? 16 : 32)
225
226 /* Alignment of field after `int : 0' in a structure. */
227 #define EMPTY_FIELD_BOUNDARY 32
228
229 /* No data type wants to be aligned rounder than this. */
230 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
231
232 /* The best alignment to use in cases where we have a choice. */
233 #define FASTEST_ALIGNMENT 32
234
235 /* Make strings word-aligned so strcpy from constants will be faster. */
236 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
237 ((TREE_CODE (EXP) == STRING_CST \
238 && (ALIGN) < FASTEST_ALIGNMENT) \
239 ? FASTEST_ALIGNMENT : (ALIGN))
240
241 /* Make arrays of chars word-aligned for the same reasons. */
242 #define DATA_ALIGNMENT(TYPE, ALIGN) \
243 (TREE_CODE (TYPE) == ARRAY_TYPE \
244 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
245 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
246
247 /* Number of bits which any structure or union's size must be a
248 multiple of. Each structure or union's size is rounded up to a
249 multiple of this. */
250 #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
251
252 /* Set this nonzero if move instructions will actually fail to work
253 when given unaligned data. */
254 #define STRICT_ALIGNMENT 1
255 \f
256 /* Standard register usage. */
257
258 /* Register allocation for the Hitachi calling convention:
259
260 r0 arg return
261 r1..r3 scratch
262 r4..r7 args in
263 r8..r13 call saved
264 r14 frame pointer/call saved
265 r15 stack pointer
266 ap arg pointer (doesn't really exist, always eliminated)
267 pr subroutine return address
268 t t bit
269 mach multiply/accumulate result, high part
270 macl multiply/accumulate result, low part.
271 fpul fp/int communication register
272 rap return address pointer register
273 fr0 fp arg return
274 fr1..fr3 scratch floating point registers
275 fr4..fr11 fp args in
276 fr12..fr15 call saved floating point registers */
277
278 /* Number of actual hardware registers.
279 The hardware registers are assigned numbers for the compiler
280 from 0 to just below FIRST_PSEUDO_REGISTER.
281 All registers that the compiler knows about must be given numbers,
282 even those that are not normally considered general registers. */
283
284 #define AP_REG 16
285 #define PR_REG 17
286 #define T_REG 18
287 #define GBR_REG 19
288 #define MACH_REG 20
289 #define MACL_REG 21
290 #define SPECIAL_REG(REGNO) ((REGNO) >= 18 && (REGNO) <= 21)
291 #define FPUL_REG 22
292 #define RAP_REG 23
293 #define FIRST_FP_REG 24
294 #define LAST_FP_REG 39
295
296 #define FIRST_PSEUDO_REGISTER 40
297
298 /* 1 for registers that have pervasive standard uses
299 and are not available for the register allocator.
300
301 Mach register is fixed 'cause it's only 10 bits wide for SH1.
302 It is 32 bits wide for SH2. */
303
304 #define FIXED_REGISTERS \
305 { 0, 0, 0, 0, \
306 0, 0, 0, 0, \
307 0, 0, 0, 0, \
308 0, 0, 0, 1, \
309 1, 1, 1, 1, \
310 1, 1, 1, 1, \
311 0, 0, 0, 0, \
312 0, 0, 0, 0, \
313 0, 0, 0, 0, \
314 0, 0, 0, 0 \
315 }
316
317 /* 1 for registers not available across function calls.
318 These must include the FIXED_REGISTERS and also any
319 registers that can be used without being saved.
320 The latter must include the registers where values are returned
321 and the register where structure-value addresses are passed.
322 Aside from that, you can include as many other registers as you like. */
323
324 #define CALL_USED_REGISTERS \
325 { 1, 1, 1, 1, \
326 1, 1, 1, 1, \
327 0, 0, 0, 0, \
328 0, 0, 0, 1, \
329 1, 0, 1, 1, \
330 1, 1, 1, 1, \
331 1, 1, 1, 1, \
332 1, 1, 1, 1, \
333 1, 1, 1, 1, \
334 0, 0, 0, 0 \
335 }
336
337 /* Return number of consecutive hard regs needed starting at reg REGNO
338 to hold something of mode MODE.
339 This is ordinarily the length in words of a value of mode MODE
340 but can be less for certain modes in special long registers.
341
342 On the SH regs are UNITS_PER_WORD bits wide. */
343
344 #define HARD_REGNO_NREGS(REGNO, MODE) \
345 (((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
346
347 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
348 We can allow any mode in any general register. The special registers
349 only allow SImode. Don't allow any mode in the PR. */
350
351 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
352 (SPECIAL_REG (REGNO) ? (MODE) == SImode \
353 : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \
354 : (REGNO) >= FIRST_FP_REG && (REGNO) <= LAST_FP_REG ? (MODE) == SFmode \
355 : (REGNO) == PR_REG ? 0 \
356 : 1)
357
358 /* Value is 1 if it is a good idea to tie two pseudo registers
359 when one has mode MODE1 and one has mode MODE2.
360 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
361 for any hard reg, then this must be 0 for correct output. */
362
363 #define MODES_TIEABLE_P(MODE1, MODE2) \
364 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
365
366 /* Specify the registers used for certain standard purposes.
367 The values of these macros are register numbers. */
368
369 /* Define this if the program counter is overloaded on a register. */
370 /* #define PC_REGNUM 15*/
371
372 /* Register to use for pushing function arguments. */
373 #define STACK_POINTER_REGNUM 15
374
375 /* Base register for access to local variables of the function. */
376 #define FRAME_POINTER_REGNUM 14
377
378 /* Fake register that holds the address on the stack of the
379 current function's return address. */
380 #define RETURN_ADDRESS_POINTER_REGNUM 23
381
382 /* Value should be nonzero if functions must have frame pointers.
383 Zero means the frame pointer need not be set up (and parms may be accessed
384 via the stack pointer) in functions that seem suitable. */
385
386 #define FRAME_POINTER_REQUIRED 0
387
388 /* Definitions for register eliminations.
389
390 We have three registers that can be eliminated on the SH. First, the
391 frame pointer register can often be eliminated in favor of the stack
392 pointer register. Secondly, the argument pointer register can always be
393 eliminated; it is replaced with either the stack or frame pointer.
394 Third, there is the retuen address pointer, which can also be replaced
395 with either the stack or the frame pointer. */
396
397 /* This is an array of structures. Each structure initializes one pair
398 of eliminable registers. The "from" register number is given first,
399 followed by "to". Eliminations of the same "from" register are listed
400 in order of preference. */
401
402 /* If you add any registers here that are not actually hard registers,
403 and that have any alternative of elimination that doesn't always
404 apply, you need to amend calc_live_regs to exclude it, because
405 reload spills all eliminable registers where it sees an
406 can_eliminate == 0 entry, thus making them 'live' .
407 If you add any hard registers that can be eliminated in different
408 ways, you have to patch reload to spill them only when all alternatives
409 of elimination fail. */
410
411 #define ELIMINABLE_REGS \
412 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
413 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
414 { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
415 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
416 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
417
418 /* Given FROM and TO register numbers, say whether this elimination
419 is allowed. */
420 #define CAN_ELIMINATE(FROM, TO) \
421 (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
422
423 /* Define the offset between two registers, one to be eliminated, and the other
424 its replacement, at the start of a routine. */
425
426 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
427 OFFSET = initial_elimination_offset (FROM, TO)
428
429 /* Base register for access to arguments of the function. */
430 #define ARG_POINTER_REGNUM 16
431
432 /* Register in which the static-chain is passed to a function. */
433 #define STATIC_CHAIN_REGNUM 13
434
435 /* The register in which a struct value address is passed. */
436
437 #define STRUCT_VALUE_REGNUM 2
438
439 /* If the structure value address is not passed in a register, define
440 `STRUCT_VALUE' as an expression returning an RTX for the place
441 where the address is passed. If it returns 0, the address is
442 passed as an "invisible" first argument. */
443
444 /*#define STRUCT_VALUE ((rtx)0)*/
445
446 /* Don't default to pcc-struct-return, because we have already specified
447 exactly how to return structures in the RETURN_IN_MEMORY macro. */
448
449 #define DEFAULT_PCC_STRUCT_RETURN 0
450 \f
451 /* Define the classes of registers for register constraints in the
452 machine description. Also define ranges of constants.
453
454 One of the classes must always be named ALL_REGS and include all hard regs.
455 If there is more than one class, another class must be named NO_REGS
456 and contain no registers.
457
458 The name GENERAL_REGS must be the name of a class (or an alias for
459 another name such as ALL_REGS). This is the class of registers
460 that is allowed by "g" or "r" in a register constraint.
461 Also, registers outside this class are allocated only when
462 instructions express preferences for them.
463
464 The classes must be numbered in nondecreasing order; that is,
465 a larger-numbered class must never be contained completely
466 in a smaller-numbered class.
467
468 For any two classes, it is very desirable that there be another
469 class that represents their union. */
470
471 /* The SH has two sorts of general registers, R0 and the rest. R0 can
472 be used as the destination of some of the arithmetic ops. There are
473 also some special purpose registers; the T bit register, the
474 Procedure Return Register and the Multiply Accumulate Registers. */
475
476 enum reg_class
477 {
478 NO_REGS,
479 R0_REGS,
480 PR_REGS,
481 T_REGS,
482 MAC_REGS,
483 GENERAL_REGS,
484 FPUL_REGS,
485 FP0_REGS,
486 FP_REGS,
487 GENERAL_FP_REGS,
488 ALL_REGS,
489 LIM_REG_CLASSES
490 };
491
492 #define N_REG_CLASSES (int) LIM_REG_CLASSES
493
494 /* Give names of register classes as strings for dump file. */
495 #define REG_CLASS_NAMES \
496 { \
497 "NO_REGS", \
498 "R0_REGS", \
499 "PR_REGS", \
500 "T_REGS", \
501 "MAC_REGS", \
502 "GENERAL_REGS", \
503 "FPUL_REGS", \
504 "FP0_REGS", \
505 "FP_REGS", \
506 "GENERAL_FP_REGS", \
507 "ALL_REGS", \
508 }
509
510 /* Define which registers fit in which classes.
511 This is an initializer for a vector of HARD_REG_SET
512 of length N_REG_CLASSES. */
513
514 #define REG_CLASS_CONTENTS \
515 { \
516 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
517 { 0x00000001, 0x00000000 }, /* R0_REGS */ \
518 { 0x00020000, 0x00000000 }, /* PR_REGS */ \
519 { 0x00040000, 0x00000000 }, /* T_REGS */ \
520 { 0x00300000, 0x00000000 }, /* MAC_REGS */ \
521 { 0x0081FFFF, 0x00000000 }, /* GENERAL_REGS */ \
522 { 0x00400000, 0x00000000 }, /* FPUL_REGS */ \
523 { 0x01000000, 0x00000000 }, /* FP0_REGS */ \
524 { 0xFF000000, 0x000000FF }, /* FP_REGS */ \
525 { 0xFF81FFFF, 0x000000FF }, /* GENERAL_FP_REGS */ \
526 { 0xFFFFFFFF, 0x000000FF }, /* ALL_REGS */ \
527 }
528
529 /* The same information, inverted:
530 Return the class number of the smallest class containing
531 reg number REGNO. This could be a conditional expression
532 or could index an array. */
533
534 extern int regno_reg_class[];
535 #define REGNO_REG_CLASS(REGNO) regno_reg_class[REGNO]
536
537 /* When defined, the compiler allows registers explicitly used in the
538 rtl to be used as spill registers but prevents the compiler from
539 extending the lifetime of these registers. */
540
541 #define SMALL_REGISTER_CLASSES 1
542
543 /* The order in which register should be allocated. */
544 #define REG_ALLOC_ORDER \
545 { 1,2,3,7,6,5,4,0,8,9,10,11,12,13,14, \
546 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39, \
547 22,15,16,17,18,19,20,21,23 }
548
549 /* The class value for index registers, and the one for base regs. */
550 #define INDEX_REG_CLASS R0_REGS
551 #define BASE_REG_CLASS GENERAL_REGS
552
553 /* Get reg_class from a letter such as appears in the machine
554 description. */
555 extern enum reg_class reg_class_from_letter[];
556
557 #define REG_CLASS_FROM_LETTER(C) \
558 ( (C) >= 'a' && (C) <= 'z' ? reg_class_from_letter[(C)-'a'] : NO_REGS )
559 \f
560 /* The letters I, J, K, L and M in a register constraint string
561 can be used to stand for particular ranges of immediate operands.
562 This macro defines what the ranges are.
563 C is the letter, and VALUE is a constant value.
564 Return 1 if VALUE is in the range specified by C.
565 I: arithmetic operand -127..128, as used in add, sub, etc
566 K: shift operand 1,2,8 or 16
567 L: logical operand 0..255, as used in and, or, etc.
568 M: constant 1
569 N: constant 0 */
570
571 #define CONST_OK_FOR_I(VALUE) (((int)(VALUE))>= -128 && ((int)(VALUE)) <= 127)
572 #define CONST_OK_FOR_K(VALUE) ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
573 #define CONST_OK_FOR_L(VALUE) (((int)(VALUE))>= 0 && ((int)(VALUE)) <= 255)
574 #define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
575 #define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
576 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
577 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
578 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
579 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
580 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
581 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
582 : 0)
583
584 /* Similar, but for floating constants, and defining letters G and H.
585 Here VALUE is the CONST_DOUBLE rtx itself. */
586
587 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
588 ((C) == 'G' ? fp_zero_operand (VALUE) \
589 : (C) == 'H' ? fp_one_operand (VALUE) \
590 : (C) == 'F')
591
592 /* Given an rtx X being reloaded into a reg required to be
593 in class CLASS, return the class of reg to actually use.
594 In general this is just CLASS; but on some machines
595 in some cases it is preferable to use a more restrictive class. */
596
597 #define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
598
599 /* ??? Should make FPUL register a nn-fixed register and make it's
600 use explicit in the rtl; then change this definition here to
601 ... ? FPUL_REGS : NO_REGS) . */
602 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
603 ((((CLASS == FP_REGS || CLASS == FP0_REGS) \
604 && GET_CODE (X) == REG && REGNO (X) <= AP_REG) \
605 || (CLASS == GENERAL_REGS && GET_CODE (X) == REG \
606 && REGNO (X) <= FIRST_FP_REG && REGNO (X) >= LAST_FP_REG)) \
607 ? /* FPUL_REGS */ NO_REGS : NO_REGS)
608
609 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
610 (((CLASS == FP_REGS || CLASS == FP0_REGS) && immediate_operand (X, MODE)\
611 && ! (fp_one_operand (X) || fp_one_operand (X))) \
612 ? R0_REGS : SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X))
613
614 /* Return the maximum number of consecutive registers
615 needed to represent mode MODE in a register of class CLASS.
616
617 On SH this is the size of MODE in words. */
618 #define CLASS_MAX_NREGS(CLASS, MODE) \
619 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
620 \f
621 /* Stack layout; function entry, exit and calling. */
622
623 /* Define the number of registers that can hold parameters.
624 These macros are used only in other macro definitions below. */
625
626 #define NPARM_REGS(MODE) \
627 ((TARGET_SH3E && ((MODE) == SFmode)) ? 8 : 4)
628
629 #define FIRST_PARM_REG 4
630 #define FIRST_RET_REG 0
631
632 #define FIRST_FP_PARM_REG (FIRST_FP_REG + 4)
633 #define FIRST_FP_RET_REG FIRST_FP_REG
634
635 /* Define this if pushing a word on the stack
636 makes the stack pointer a smaller address. */
637 #define STACK_GROWS_DOWNWARD
638
639 /* Define this macro if the addresses of local variable slots are at
640 negative offsets from the frame pointer.
641
642 The SH only has positive indexes, so grow the frame up. */
643 /* #define FRAME_GROWS_DOWNWARD */
644
645 /* Offset from the frame pointer to the first local variable slot to
646 be allocated. */
647 #define STARTING_FRAME_OFFSET 0
648
649 /* If we generate an insn to push BYTES bytes,
650 this says how many the stack pointer really advances by. */
651 #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
652
653 /* Offset of first parameter from the argument pointer register value. */
654 #define FIRST_PARM_OFFSET(FNDECL) 0
655
656 /* Value is the number of byte of arguments automatically
657 popped when returning from a subroutine call.
658 FUNDECL is the declaration node of the function (as a tree),
659 FUNTYPE is the data type of the function (as a tree),
660 or for a library call it is an identifier node for the subroutine name.
661 SIZE is the number of bytes of arguments passed on the stack.
662
663 On the SH, the caller does not pop any of its arguments that were passed
664 on the stack. */
665 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
666
667 /* Some subroutine macros specific to this machine. */
668
669 #define BASE_RETURN_VALUE_REG(MODE) \
670 ((TARGET_SH3E && ((MODE) == SFmode)) \
671 ? FIRST_FP_RET_REG \
672 : FIRST_RET_REG)
673
674 #define BASE_ARG_REG(MODE) \
675 ((TARGET_SH3E && ((MODE) == SFmode)) \
676 ? FIRST_FP_PARM_REG \
677 : FIRST_PARM_REG)
678
679 /* Define how to find the value returned by a function.
680 VALTYPE is the data type of the value (as a tree).
681 If the precise function being called is known, FUNC is its FUNCTION_DECL;
682 otherwise, FUNC is 0. */
683
684 #define FUNCTION_VALUE(VALTYPE, FUNC) \
685 LIBCALL_VALUE (TYPE_MODE (VALTYPE))
686
687 /* Define how to find the value returned by a library function
688 assuming the value has mode MODE. */
689 #define LIBCALL_VALUE(MODE) \
690 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE));
691
692 /* 1 if N is a possible register number for a function value. */
693 #define FUNCTION_VALUE_REGNO_P(REGNO) \
694 ((REGNO) == FIRST_RET_REG || (TARGET_SH3E && (REGNO) == FIRST_FP_RET_REG))
695
696 /* 1 if N is a possible register number for function argument passing. */
697 #define FUNCTION_ARG_REGNO_P(REGNO) \
698 (((REGNO) >= FIRST_PARM_REG && (REGNO) < (FIRST_PARM_REG + 4)) \
699 || (TARGET_SH3E \
700 && (REGNO) >= FIRST_FP_PARM_REG && (REGNO) < (FIRST_FP_PARM_REG + 8)))
701 \f
702 /* Define a data type for recording info about an argument list
703 during the scan of that argument list. This data type should
704 hold all necessary information about the function itself
705 and about the args processed so far, enough to enable macros
706 such as FUNCTION_ARG to determine where the next arg should go.
707
708 On SH, this is a single integer, which is a number of words
709 of arguments scanned so far (including the invisible argument,
710 if any, which holds the structure-value-address).
711 Thus NARGREGS or more means all following args should go on the stack. */
712
713 enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
714 struct sh_args {
715 int arg_count[2];
716 };
717
718 #define CUMULATIVE_ARGS struct sh_args
719
720 #define GET_SH_ARG_CLASS(MODE) \
721 ((TARGET_SH3E && ((MODE) == SFmode)) ? SH_ARG_FLOAT : SH_ARG_INT)
722
723 #define ROUND_ADVANCE(SIZE) \
724 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
725
726 /* Round a register number up to a proper boundary for an arg of mode
727 MODE.
728
729 The SH doesn't care about double alignment, so we only
730 round doubles to even regs when asked to explicitly. */
731
732 #define ROUND_REG(CUM, MODE) \
733 ((TARGET_ALIGN_DOUBLE \
734 && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
735 ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
736 + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1)) \
737 : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
738
739 /* Initialize a variable CUM of type CUMULATIVE_ARGS
740 for a call to a function whose data type is FNTYPE.
741 For a library call, FNTYPE is 0.
742
743 On SH, the offset always starts at 0: the first parm reg is always
744 the same reg. */
745
746 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
747 do { \
748 (CUM).arg_count[(int) SH_ARG_INT] = 0; \
749 (CUM).arg_count[(int) SH_ARG_FLOAT] = 0; \
750 } while (0)
751
752 /* Update the data in CUM to advance over an argument
753 of mode MODE and data type TYPE.
754 (TYPE is null for libcalls where that information may not be
755 available.) */
756
757 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
758 ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] = \
759 (ROUND_REG ((CUM), (MODE)) \
760 + ((MODE) != BLKmode \
761 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
762 : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
763
764 /* Return boolean indicating arg of mode MODE will be passed in a reg.
765 This macro is only used in this file. */
766
767 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
768 (ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE) \
769 && ((TYPE) == 0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
770 && (! TARGET_SH3E || (ROUND_REG((CUM), (MODE)) + (GET_MODE_SIZE(MODE)/4) <= NPARM_REGS (MODE))))
771
772 /* Define where to put the arguments to a function.
773 Value is zero to push the argument on the stack,
774 or a hard register in which to store the argument.
775
776 MODE is the argument's machine mode.
777 TYPE is the data type of the argument (as a tree).
778 This is null for libcalls where that information may
779 not be available.
780 CUM is a variable of type CUMULATIVE_ARGS which gives info about
781 the preceding args and about the function being called.
782 NAMED is nonzero if this argument is a named parameter
783 (otherwise it is an extra parameter matching an ellipsis).
784
785 On SH the first args are normally in registers
786 and the rest are pushed. Any arg that starts within the first
787 NPARM_REGS words is at least partially passed in a register unless
788 its data type forbids. */
789
790 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
791 ((PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
792 && (NAMED || TARGET_SH3E)) \
793 ? gen_rtx (REG, (MODE), \
794 (BASE_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
795 : 0)
796
797 /* For an arg passed partly in registers and partly in memory,
798 this is the number of registers used.
799 For args passed entirely in registers or entirely in memory, zero.
800
801 We sometimes split args. */
802
803 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
804 ((PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
805 && (NAMED || TARGET_SH3E) \
806 && (ROUND_REG ((CUM), (MODE)) \
807 + (MODE != BLKmode \
808 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
809 : ROUND_ADVANCE (int_size_in_bytes (TYPE))) \
810 - NPARM_REGS (MODE) > 0)) \
811 ? NPARM_REGS (MODE) - ROUND_REG ((CUM), (MODE)) \
812 : 0)
813
814 extern int current_function_anonymous_args;
815
816 /* Perform any needed actions needed for a function that is receiving a
817 variable number of arguments. */
818
819 #define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \
820 current_function_anonymous_args = 1;
821
822 /* Call the function profiler with a given profile label.
823 We use two .aligns, so as to make sure that both the .long is aligned
824 on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
825 from the trapa instruction. */
826
827 #define FUNCTION_PROFILER(STREAM,LABELNO) \
828 { \
829 fprintf(STREAM, " .align 2\n"); \
830 fprintf(STREAM, " trapa #33\n"); \
831 fprintf(STREAM, " .align 2\n"); \
832 fprintf(STREAM, " .long LP%d\n", (LABELNO)); \
833 }
834
835 /* Define this macro if the code for function profiling should come
836 before the function prologue. Normally, the profiling code comes
837 after. */
838
839 #define PROFILE_BEFORE_PROLOGUE
840
841 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
842 the stack pointer does not matter. The value is tested only in
843 functions that have frame pointers.
844 No definition is equivalent to always zero. */
845
846 #define EXIT_IGNORE_STACK 1
847
848 /* Generate the assembly code for function exit
849 Just dump out any accumulated constant table. */
850
851 #define FUNCTION_EPILOGUE(STREAM, SIZE) function_epilogue (STREAM, SIZE)
852
853 /* Output assembler code for a block containing the constant parts
854 of a trampoline, leaving space for the variable parts.
855
856 On the SH, the trampoline looks like
857 1 0000 D301 mov.l l1,r3
858 2 0002 DD02 mov.l l2,r13
859 3 0004 4D2B jmp @r13
860 4 0006 200B or r0,r0
861 5 0008 00000000 l1: .long function
862 6 000c 00000000 l2: .long area */
863 #define TRAMPOLINE_TEMPLATE(FILE) \
864 { \
865 fprintf ((FILE), " .word 0xd301\n"); \
866 fprintf ((FILE), " .word 0xdd02\n"); \
867 fprintf ((FILE), " .word 0x4d2b\n"); \
868 fprintf ((FILE), " .word 0x200b\n"); \
869 fprintf ((FILE), " .long 0\n"); \
870 fprintf ((FILE), " .long 0\n"); \
871 }
872
873 /* Length in units of the trampoline for entering a nested function. */
874 #define TRAMPOLINE_SIZE 16
875
876 /* Alignment required for a trampoline in units. */
877 #define TRAMPOLINE_ALIGN 4
878
879 /* Emit RTL insns to initialize the variable parts of a trampoline.
880 FNADDR is an RTX for the address of the function's pure code.
881 CXT is an RTX for the static chain value for the function. */
882
883 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
884 { \
885 emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \
886 (CXT)); \
887 emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \
888 (FNADDR)); \
889 }
890
891 /* A C expression whose value is RTL representing the value of the return
892 address for the frame COUNT steps up from the current frame.
893 FRAMEADDR is already the frame pointer of the COUNT frame, so we
894 can ignore COUNT. */
895
896 #define RETURN_ADDR_RTX(COUNT, FRAME) \
897 ((COUNT == 0) \
898 ? gen_rtx (MEM, Pmode, gen_rtx (REG, Pmode, RETURN_ADDRESS_POINTER_REGNUM)) \
899 : (rtx) 0)
900 \f
901 /* Generate necessary RTL for __builtin_saveregs().
902 ARGLIST is the argument list; see expr.c. */
903 extern struct rtx_def *sh_builtin_saveregs ();
904 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sh_builtin_saveregs (ARGLIST)
905 \f
906 /* Addressing modes, and classification of registers for them. */
907 #define HAVE_POST_INCREMENT 1
908 /*#define HAVE_PRE_INCREMENT 1*/
909 /*#define HAVE_POST_DECREMENT 1*/
910 #define HAVE_PRE_DECREMENT 1
911
912 /* Macros to check register numbers against specific register classes. */
913
914 /* These assume that REGNO is a hard or pseudo reg number.
915 They give nonzero only if REGNO is a hard reg of the suitable class
916 or a pseudo reg currently allocated to a suitable hard reg.
917 Since they use reg_renumber, they are safe only once reg_renumber
918 has been allocated, which happens in local-alloc.c. */
919
920 #define REGNO_OK_FOR_BASE_P(REGNO) \
921 ((REGNO) < PR_REG || (unsigned) reg_renumber[(REGNO)] < PR_REG)
922 #define REGNO_OK_FOR_INDEX_P(REGNO) \
923 ((REGNO) == 0 || (unsigned) reg_renumber[(REGNO)] == 0)
924
925 /* Maximum number of registers that can appear in a valid memory
926 address. */
927
928 #define MAX_REGS_PER_ADDRESS 2
929
930 /* Recognize any constant value that is a valid address. */
931
932 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
933
934 /* Nonzero if the constant value X is a legitimate general operand. */
935
936 #define LEGITIMATE_CONSTANT_P(X) \
937 (GET_CODE (X) != CONST_DOUBLE \
938 || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode \
939 || (TARGET_SH3E && (fp_zero_operand (X) || fp_one_operand (X))))
940
941 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
942 and check its validity for a certain class.
943 We have two alternate definitions for each of them.
944 The usual definition accepts all pseudo regs; the other rejects
945 them unless they have been allocated suitable hard regs.
946 The symbol REG_OK_STRICT causes the latter definition to be used. */
947
948 #ifndef REG_OK_STRICT
949
950 /* Nonzero if X is a hard reg that can be used as a base reg
951 or if it is a pseudo reg. */
952 #define REG_OK_FOR_BASE_P(X) \
953 (REGNO (X) <= 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
954
955 /* Nonzero if X is a hard reg that can be used as an index
956 or if it is a pseudo reg. */
957 #define REG_OK_FOR_INDEX_P(X) \
958 (REGNO (X) == 0 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
959
960 /* Nonzero if X/OFFSET is a hard reg that can be used as an index
961 or if X is a pseudo reg. */
962 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
963 ((REGNO (X) == 0 && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
964
965 #else
966
967 /* Nonzero if X is a hard reg that can be used as a base reg. */
968 #define REG_OK_FOR_BASE_P(X) \
969 REGNO_OK_FOR_BASE_P (REGNO (X))
970
971 /* Nonzero if X is a hard reg that can be used as an index. */
972 #define REG_OK_FOR_INDEX_P(X) \
973 REGNO_OK_FOR_INDEX_P (REGNO (X))
974
975 /* Nonzero if X/OFFSET is a hard reg that can be used as an index. */
976 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
977 (REGNO_OK_FOR_INDEX_P (REGNO (X)) && OFFSET == 0)
978
979 #endif
980
981 /* The 'Q' constraint is a pc relative load operand. */
982 #define EXTRA_CONSTRAINT_Q(OP) \
983 (GET_CODE (OP) == MEM && \
984 ((GET_CODE (XEXP (OP, 0)) == LABEL_REF) \
985 || (GET_CODE (XEXP (OP, 0)) == CONST \
986 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == PLUS \
987 && GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 0)) == LABEL_REF \
988 && GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 1)) == CONST_INT)))
989
990 #define EXTRA_CONSTRAINT(OP, C) \
991 ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \
992 : 0)
993 \f
994 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
995 that is a valid memory address for an instruction.
996 The MODE argument is the machine mode for the MEM expression
997 that wants to use this address.
998
999 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
1000
1001 #define MODE_DISP_OK_4(X,MODE) \
1002 (GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
1003 && ! (INTVAL (X) & 3) && ! (TARGET_SH3E && MODE == SFmode))
1004 #define MODE_DISP_OK_8(X,MODE) ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) && (!(INTVAL(X) &3)))
1005
1006 #define BASE_REGISTER_RTX_P(X) \
1007 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1008 || (GET_CODE (X) == SUBREG \
1009 && GET_CODE (SUBREG_REG (X)) == REG \
1010 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1011
1012 /* Since this must be r0, which is a single register class, we must check
1013 SUBREGs more carefully, to be sure that we don't accept one that extends
1014 outside the class. */
1015 #define INDEX_REGISTER_RTX_P(X) \
1016 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1017 || (GET_CODE (X) == SUBREG \
1018 && GET_CODE (SUBREG_REG (X)) == REG \
1019 && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_WORD (X))))
1020
1021 /* Jump to LABEL if X is a valid address RTX. This must also take
1022 REG_OK_STRICT into account when deciding about valid registers, but it uses
1023 the above macros so we are in luck.
1024
1025 Allow REG
1026 REG+disp
1027 REG+r0
1028 REG++
1029 --REG */
1030
1031 /* ??? The SH3e does not have the REG+disp addressing mode when loading values
1032 into the FRx registers. We implement this by setting the maximum offset
1033 to zero when the value is SFmode. This also restricts loading of SFmode
1034 values into the integer registers, but that can't be helped. */
1035
1036 /* The SH allows a displacement in a QI or HI amode, but only when the
1037 other operand is R0. GCC doesn't handle this very well, so we forgo
1038 all of that.
1039
1040 A legitimate index for a QI or HI is 0, SI can be any number 0..63,
1041 DI can be any number 0..60. */
1042
1043 #define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL) \
1044 do { \
1045 if (GET_CODE (OP) == CONST_INT) \
1046 { \
1047 if (MODE_DISP_OK_4 (OP, MODE)) goto LABEL; \
1048 if (MODE_DISP_OK_8 (OP, MODE)) goto LABEL; \
1049 } \
1050 } while(0)
1051
1052 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1053 { \
1054 if (BASE_REGISTER_RTX_P (X)) \
1055 goto LABEL; \
1056 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
1057 && BASE_REGISTER_RTX_P (XEXP (X, 0))) \
1058 goto LABEL; \
1059 else if (GET_CODE (X) == PLUS) \
1060 { \
1061 rtx xop0 = XEXP (X, 0); \
1062 rtx xop1 = XEXP (X, 1); \
1063 if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \
1064 GO_IF_LEGITIMATE_INDEX (MODE, xop1, LABEL); \
1065 if (GET_MODE_SIZE (MODE) <= 4) \
1066 { \
1067 if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
1068 goto LABEL; \
1069 if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
1070 goto LABEL; \
1071 } \
1072 } \
1073 }
1074 \f
1075 /* Try machine-dependent ways of modifying an illegitimate address
1076 to be legitimate. If we find one, return the new, valid address.
1077 This macro is used in only one place: `memory_address' in explow.c.
1078
1079 OLDX is the address as it was before break_out_memory_refs was called.
1080 In some cases it is useful to look at this to decide what needs to be done.
1081
1082 MODE and WIN are passed so that this macro can use
1083 GO_IF_LEGITIMATE_ADDRESS.
1084
1085 It is always safe for this macro to do nothing. It exists to recognize
1086 opportunities to optimize the output.
1087
1088 For the SH, if X is almost suitable for indexing, but the offset is
1089 out of range, convert it into a normal form so that cse has a chance
1090 of reducing the number of address registers used. */
1091
1092 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1093 { \
1094 if (GET_CODE (X) == PLUS \
1095 && (GET_MODE_SIZE (MODE) == 4 \
1096 || GET_MODE_SIZE (MODE) == 8) \
1097 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1098 && BASE_REGISTER_RTX_P (XEXP (X, 0)) \
1099 && ! (TARGET_SH3E && MODE == SFmode)) \
1100 { \
1101 rtx index_rtx = XEXP (X, 1); \
1102 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
1103 rtx sum; \
1104 \
1105 GO_IF_LEGITIMATE_INDEX (MODE, index_rtx, WIN); \
1106 /* On rare occasions, we might get an unaligned pointer \
1107 that is indexed in a way to give an aligned address. \
1108 Therefore, keep the lower two bits in offset_base. */ \
1109 /* Instead of offset_base 128..131 use 124..127, so that \
1110 simple add suffices. */ \
1111 if (offset > 127) \
1112 { \
1113 offset_base = ((offset + 4) & ~60) - 4; \
1114 } \
1115 else \
1116 offset_base = offset & ~60; \
1117 /* Sometimes the normal form does not suit DImode. We \
1118 could avoid that by using smaller ranges, but that \
1119 would give less optimized code when SImode is \
1120 prevalent. */ \
1121 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
1122 { \
1123 sum = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1124 GEN_INT (offset_base), NULL_RTX, 0, \
1125 OPTAB_LIB_WIDEN); \
1126 \
1127 (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base)); \
1128 goto WIN; \
1129 } \
1130 } \
1131 }
1132
1133 /* Go to LABEL if ADDR (a legitimate address expression)
1134 has an effect that depends on the machine mode it is used for. */
1135 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1136 { \
1137 if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC) \
1138 goto LABEL; \
1139 }
1140 \f
1141 /* Specify the machine mode that this machine uses
1142 for the index in the tablejump instruction. */
1143 #define CASE_VECTOR_MODE (TARGET_BIGTABLE ? SImode : HImode)
1144
1145 /* Define this if the tablejump instruction expects the table
1146 to contain offsets from the address of the table.
1147 Do not define this if the table should contain absolute addresses. */
1148 #define CASE_VECTOR_PC_RELATIVE
1149
1150 /* Specify the tree operation to be used to convert reals to integers. */
1151 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1152
1153 /* This is the kind of divide that is easiest to do in the general case. */
1154 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1155
1156 /* Since the SH3e has only `float' support, it is desirable to make all
1157 floating point types equivalent to `float'. */
1158 #define DOUBLE_TYPE_SIZE (TARGET_SH3E ? 32 : 64)
1159
1160 /* 'char' is signed by default. */
1161 #define DEFAULT_SIGNED_CHAR 1
1162
1163 /* The type of size_t unsigned int. */
1164 #define SIZE_TYPE "unsigned int"
1165
1166 #define WCHAR_TYPE "short unsigned int"
1167 #define WCHAR_TYPE_SIZE 16
1168
1169 /* Don't cse the address of the function being compiled. */
1170 /*#define NO_RECURSIVE_FUNCTION_CSE 1*/
1171
1172 /* Max number of bytes we can move from memory to memory
1173 in one reasonably fast instruction. */
1174 #define MOVE_MAX 4
1175
1176 /* Define if operations between registers always perform the operation
1177 on the full register even if a narrower mode is specified. */
1178 #define WORD_REGISTER_OPERATIONS
1179
1180 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1181 will either zero-extend or sign-extend. The value of this macro should
1182 be the code that says which one of the two operations is implicitly
1183 done, NIL if none. */
1184 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1185
1186 /* Define if loading short immediate values into registers sign extends. */
1187 #define SHORT_IMMEDIATES_SIGN_EXTEND
1188
1189 /* Define this if zero-extension is slow (more than one real instruction).
1190 On the SH, it's only one instruction. */
1191 /* #define SLOW_ZERO_EXTEND */
1192
1193 /* Nonzero if access to memory by bytes is slow and undesirable. */
1194 #define SLOW_BYTE_ACCESS 0
1195
1196 /* We assume that the store-condition-codes instructions store 0 for false
1197 and some other value for true. This is the value stored for true. */
1198
1199 #define STORE_FLAG_VALUE 1
1200
1201 /* Immediate shift counts are truncated by the output routines (or was it
1202 the assembler?). Shift counts in a register are truncated by SH. Note
1203 that the native compiler puts too large (> 32) immediate shift counts
1204 into a register and shifts by the register, letting the SH decide what
1205 to do instead of doing that itself. */
1206 /* ??? This is defined, but the library routines in lib1funcs.asm do not
1207 truncate the shift count. This may result in incorrect results for
1208 unusual cases. Truncating the shift counts in the library routines would
1209 make them faster. However, the SH3 has hardware shifts that do not
1210 truncate, so it appears that we need to leave this undefined for correct
1211 SH3 code. We can still using truncation in the library routines though to
1212 make them faster. */
1213 #define SHIFT_COUNT_TRUNCATED 1
1214
1215 /* All integers have the same format so truncation is easy. */
1216 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
1217
1218 /* Define this if addresses of constant functions
1219 shouldn't be put through pseudo regs where they can be cse'd.
1220 Desirable on machines where ordinary constants are expensive
1221 but a CALL with constant address is cheap. */
1222 /*#define NO_FUNCTION_CSE 1*/
1223
1224 /* Chars and shorts should be passed as ints. */
1225 #define PROMOTE_PROTOTYPES 1
1226
1227 /* The machine modes of pointers and functions. */
1228 #define Pmode SImode
1229 #define FUNCTION_MODE Pmode
1230
1231 /* The relative costs of various types of constants. Note that cse.c defines
1232 REG = 1, SUBREG = 2, any node = (2 + sum of subnodes). */
1233
1234 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1235 case CONST_INT: \
1236 if (INTVAL (RTX) == 0) \
1237 return 0; \
1238 else if (CONST_OK_FOR_I (INTVAL (RTX))) \
1239 return 1; \
1240 else if ((OUTER_CODE == AND || OUTER_CODE == IOR || OUTER_CODE == XOR) \
1241 && CONST_OK_FOR_L (INTVAL (RTX))) \
1242 return 1; \
1243 else \
1244 return 8; \
1245 case CONST: \
1246 case LABEL_REF: \
1247 case SYMBOL_REF: \
1248 return 5; \
1249 case CONST_DOUBLE: \
1250 return 10;
1251
1252 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1253 case AND: \
1254 return COSTS_N_INSNS (andcosts (X)); \
1255 case MULT: \
1256 return COSTS_N_INSNS (multcosts (X)); \
1257 case ASHIFT: \
1258 case ASHIFTRT: \
1259 case LSHIFTRT: \
1260 return COSTS_N_INSNS (shiftcosts (X)) ; \
1261 case DIV: \
1262 case UDIV: \
1263 case MOD: \
1264 case UMOD: \
1265 return COSTS_N_INSNS (20); \
1266 case FLOAT: \
1267 case FIX: \
1268 return 100;
1269
1270 /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
1271 are actually function calls with some special constraints on arguments
1272 and register usage.
1273
1274 These macros tell reorg that the references to arguments and
1275 register clobbers for insns of type sfunc do not appear to happen
1276 until after the millicode call. This allows reorg to put insns
1277 which set the argument registers into the delay slot of the millicode
1278 call -- thus they act more like traditional CALL_INSNs.
1279
1280 get_attr_type will try to recognize the given insn, so make sure to
1281 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1282 in particular. */
1283
1284 #define INSN_SETS_ARE_DELAYED(X) \
1285 ((GET_CODE (X) == INSN \
1286 && GET_CODE (PATTERN (X)) != SEQUENCE \
1287 && GET_CODE (PATTERN (X)) != USE \
1288 && GET_CODE (PATTERN (X)) != CLOBBER \
1289 && get_attr_type (X) == TYPE_SFUNC))
1290
1291 #define INSN_REFERENCES_ARE_DELAYED(X) \
1292 ((GET_CODE (X) == INSN \
1293 && GET_CODE (PATTERN (X)) != SEQUENCE \
1294 && GET_CODE (PATTERN (X)) != USE \
1295 && GET_CODE (PATTERN (X)) != CLOBBER \
1296 && get_attr_type (X) == TYPE_SFUNC))
1297
1298 /* Compute the cost of an address. For the SH, all valid addresses are
1299 the same cost. */
1300 /* ??? Perhaps we should make reg+reg addresses have higher cost because
1301 they add to register pressure on r0. */
1302
1303 #define ADDRESS_COST(RTX) 1
1304
1305 /* Compute extra cost of moving data between one register class
1306 and another.
1307
1308 On the SH it is hard to move into the T reg, but simple to load
1309 from it. */
1310
1311 #define REGISTER_MOVE_COST(SRCCLASS, DSTCLASS) \
1312 (((DSTCLASS == T_REGS) || (DSTCLASS == PR_REG)) ? 10 \
1313 : ((DSTCLASS == FP_REGS && SRCCLASS == GENERAL_REGS) \
1314 || (DSTCLASS == GENERAL_REGS && SRCCLASS == FP_REGS)) ? 4 \
1315 : 1)
1316
1317 /* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
1318 would be so that people would slow memory systems could generate
1319 different code that does fewer memory accesses. */
1320 \f
1321 /* Assembler output control. */
1322
1323 /* A C string constant describing how to begin a comment in the target
1324 assembler language. The compiler assumes that the comment will end at
1325 the end of the line. */
1326 #define ASM_COMMENT_START "!"
1327
1328 /* The text to go at the start of the assembler file. */
1329 #define ASM_FILE_START(STREAM) \
1330 output_file_start (STREAM)
1331
1332 #define ASM_FILE_END(STREAM)
1333
1334 #define ASM_APP_ON ""
1335 #define ASM_APP_OFF ""
1336 #define FILE_ASM_OP "\t.file\n"
1337 #define IDENT_ASM_OP "\t.ident\n"
1338 #define SET_ASM_OP ".set"
1339
1340 /* How to change between sections. */
1341
1342 #define TEXT_SECTION_ASM_OP "\t.text"
1343 #define DATA_SECTION_ASM_OP "\t.data"
1344 #define CTORS_SECTION_ASM_OP "\t.section\t.ctors\n"
1345 #define DTORS_SECTION_ASM_OP "\t.section\t.dtors\n"
1346 #define EXTRA_SECTIONS in_ctors, in_dtors
1347 #define EXTRA_SECTION_FUNCTIONS \
1348 void \
1349 ctors_section() \
1350 { \
1351 if (in_section != in_ctors) \
1352 { \
1353 fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
1354 in_section = in_ctors; \
1355 } \
1356 } \
1357 void \
1358 dtors_section() \
1359 { \
1360 if (in_section != in_dtors) \
1361 { \
1362 fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
1363 in_section = in_dtors; \
1364 } \
1365 }
1366
1367 /* Define this so that jump tables go in same section as the current function,
1368 which could be text or it could be a user defined section. */
1369 #define JUMP_TABLES_IN_TEXT_SECTION
1370
1371 /* A C statement to output something to the assembler file to switch to section
1372 NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or
1373 NULL_TREE. Some target formats do not support arbitrary sections. Do not
1374 define this macro in such cases. */
1375
1376 #define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME) \
1377 do { fprintf (FILE, ".section\t%s\n", NAME); } while (0)
1378
1379 #define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
1380 do { ctors_section(); fprintf(FILE,"\t.long\t_%s\n", NAME); } while (0)
1381
1382 #define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
1383 do { dtors_section(); fprintf(FILE,"\t.long\t_%s\n", NAME); } while (0)
1384
1385 #undef DO_GLOBAL_CTORS_BODY
1386
1387 #define DO_GLOBAL_CTORS_BODY \
1388 { \
1389 typedef (*pfunc)(); \
1390 extern pfunc __ctors[]; \
1391 extern pfunc __ctors_end[]; \
1392 pfunc *p; \
1393 for (p = __ctors_end; p > __ctors; ) \
1394 { \
1395 (*--p)(); \
1396 } \
1397 }
1398
1399 #undef DO_GLOBAL_DTORS_BODY
1400 #define DO_GLOBAL_DTORS_BODY \
1401 { \
1402 typedef (*pfunc)(); \
1403 extern pfunc __dtors[]; \
1404 extern pfunc __dtors_end[]; \
1405 pfunc *p; \
1406 for (p = __dtors; p < __dtors_end; p++) \
1407 { \
1408 (*p)(); \
1409 } \
1410 }
1411
1412 #define ASM_OUTPUT_REG_PUSH(file, v) \
1413 fprintf (file, "\tmov.l r%s,-@r15\n", v);
1414
1415 #define ASM_OUTPUT_REG_POP(file, v) \
1416 fprintf (file, "\tmov.l @r15+,r%s\n", v);
1417
1418 /* The assembler's names for the registers. RFP need not always be used as
1419 the Real framepointer; it can also be used as a normal general register.
1420 Note that the name `fp' is horribly misleading since `fp' is in fact only
1421 the argument-and-return-context pointer. */
1422 #define REGISTER_NAMES \
1423 { \
1424 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1425 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1426 "ap", "pr", "t", "gbr", "mach","macl", "fpul","rap", \
1427 "fr0","fr1","fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
1428 "fr8","fr9","fr10","fr11","fr12","fr13","fr14","fr15",\
1429 }
1430
1431 /* DBX register number for a given compiler register number. */
1432 /* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
1433 to match gdb. */
1434 #define DBX_REGISTER_NUMBER(REGNO) \
1435 (((REGNO) >= 22 && (REGNO) <= 39) ? ((REGNO) + 1) : (REGNO))
1436
1437 /* Output a label definition. */
1438 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1439 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1440
1441 /* This is how to output an assembler line
1442 that says to advance the location counter
1443 to a multiple of 2**LOG bytes. */
1444
1445 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1446 if ((LOG) != 0) \
1447 fprintf (FILE, "\t.align %d\n", LOG)
1448
1449 /* Output a function label definition. */
1450 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
1451 ASM_OUTPUT_LABEL(STREAM, NAME)
1452
1453 /* Output a globalising directive for a label. */
1454 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
1455 (fprintf (STREAM, "\t.global\t"), \
1456 assemble_name (STREAM, NAME), \
1457 fputc ('\n',STREAM))
1458
1459 /* The prefix to add to user-visible assembler symbols. */
1460
1461 #define USER_LABEL_PREFIX "_"
1462
1463 /* Make an internal label into a string. */
1464 #define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
1465 sprintf (STRING, "*%s%d", PREFIX, NUM)
1466
1467 /* Output an internal label definition. */
1468 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1469 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1470
1471 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
1472
1473 /* Construct a private name. */
1474 #define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
1475 ((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
1476 sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
1477
1478 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
1479 #define ASM_OUTPUT_CASE_LABEL(STREAM,PREFIX,NUM,TABLE) \
1480 fprintf (STREAM, "\t.align 2\n%s%d:\n", PREFIX, NUM);
1481
1482 /* Output a relative address table. */
1483
1484 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,VALUE,REL) \
1485 if (TARGET_BIGTABLE) \
1486 fprintf (STREAM, "\t.long L%d-L%d\n", VALUE,REL); \
1487 else \
1488 fprintf (STREAM, "\t.word L%d-L%d\n", VALUE,REL); \
1489
1490 /* Output an absolute table element. */
1491
1492 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
1493 if (TARGET_BIGTABLE) \
1494 fprintf (STREAM, "\t.long L%d\n", VALUE); \
1495 else \
1496 fprintf (STREAM, "\t.word L%d\n", VALUE); \
1497
1498 /* Output various types of constants. */
1499
1500 /* This is how to output an assembler line defining a `double'. */
1501
1502 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1503 do { char dstr[30]; \
1504 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1505 fprintf (FILE, "\t.double %s\n", dstr); \
1506 } while (0)
1507
1508 /* This is how to output an assembler line defining a `float' constant. */
1509 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1510 do { char dstr[30]; \
1511 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1512 fprintf (FILE, "\t.float %s\n", dstr); \
1513 } while (0)
1514
1515 #define ASM_OUTPUT_INT(STREAM, EXP) \
1516 (fprintf (STREAM, "\t.long\t"), \
1517 output_addr_const (STREAM, (EXP)), \
1518 fputc ('\n', STREAM))
1519
1520 #define ASM_OUTPUT_SHORT(STREAM, EXP) \
1521 (fprintf (STREAM, "\t.short\t"), \
1522 output_addr_const (STREAM, (EXP)), \
1523 fputc ('\n', STREAM))
1524
1525 #define ASM_OUTPUT_CHAR(STREAM, EXP) \
1526 (fprintf (STREAM, "\t.byte\t"), \
1527 output_addr_const (STREAM, (EXP)), \
1528 fputc ('\n', STREAM))
1529
1530 #define ASM_OUTPUT_BYTE(STREAM, VALUE) \
1531 fprintf (STREAM, "\t.byte\t%d\n", VALUE) \
1532
1533 /* Align loops and labels after unconditional branches to get faster
1534 code. */
1535
1536 #define ASM_OUTPUT_LOOP_ALIGN(FILE) \
1537 if (! TARGET_SMALLCODE) \
1538 ASM_OUTPUT_ALIGN ((FILE), 2)
1539
1540 #define ASM_OUTPUT_ALIGN_CODE(FILE) \
1541 if (! TARGET_SMALLCODE) \
1542 ASM_OUTPUT_ALIGN ((FILE), (TARGET_SH3 || TARGET_SH3E) ? 4 : 2)
1543
1544 /* This is how to output an assembler line
1545 that says to advance the location counter by SIZE bytes. */
1546
1547 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1548 fprintf (FILE, "\t.space %d\n", (SIZE))
1549
1550 /* This says how to output an assembler line
1551 to define a global common symbol. */
1552
1553 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1554 ( fputs ("\t.comm ", (FILE)), \
1555 assemble_name ((FILE), (NAME)), \
1556 fprintf ((FILE), ",%d\n", (SIZE)))
1557
1558 /* This says how to output an assembler line
1559 to define a local common symbol. */
1560
1561 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1562 ( fputs ("\t.lcomm ", (FILE)), \
1563 assemble_name ((FILE), (NAME)), \
1564 fprintf ((FILE), ",%d\n", (SIZE)))
1565
1566 /* The assembler's parentheses characters. */
1567 #define ASM_OPEN_PAREN "("
1568 #define ASM_CLOSE_PAREN ")"
1569
1570 /* Target characters. */
1571 #define TARGET_BELL 007
1572 #define TARGET_BS 010
1573 #define TARGET_TAB 011
1574 #define TARGET_NEWLINE 012
1575 #define TARGET_VT 013
1576 #define TARGET_FF 014
1577 #define TARGET_CR 015
1578 \f
1579 /* Only perform branch elimination (by making instructions conditional) if
1580 we're optimizing. Otherwise it's of no use anyway. */
1581 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1582 final_prescan_insn (INSN, OPVEC, NOPERANDS)
1583
1584 /* Print operand X (an rtx) in assembler syntax to file FILE.
1585 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1586 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1587
1588 #define PRINT_OPERAND(STREAM, X, CODE) print_operand (STREAM, X, CODE)
1589
1590 /* Print a memory address as an operand to reference that memory location. */
1591
1592 #define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address (STREAM, X)
1593
1594 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1595 ((CHAR)=='.' || (CHAR) == '#' || (CHAR)=='@')
1596 \f
1597 extern struct rtx_def *sh_compare_op0;
1598 extern struct rtx_def *sh_compare_op1;
1599 extern struct rtx_def *prepare_scc_operands();
1600
1601 /* Which processor to schedule for. The elements of the enumeration must
1602 match exactly the cpu attribute in the sh.md file. */
1603
1604 enum processor_type {
1605 PROCESSOR_SH0,
1606 PROCESSOR_SH1,
1607 PROCESSOR_SH2,
1608 PROCESSOR_SH3,
1609 PROCESSOR_SH3E
1610 };
1611
1612 #define sh_cpu_attr ((enum attr_cpu)sh_cpu)
1613 extern enum processor_type sh_cpu;
1614
1615 /* Declare functions defined in sh.c and used in templates. */
1616
1617 extern char *output_branch();
1618 extern char *output_shift();
1619 extern char *output_movedouble();
1620 extern char *output_movepcrel();
1621 extern char *output_jump_label_table();
1622 extern char *output_far_jump();
1623
1624 #define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg(X)
1625
1626 /* Generate calls to memcpy, memcmp and memset. */
1627
1628 #define TARGET_MEM_FUNCTIONS
1629
1630 /* Define this macro if you want to implement any pragmas. If defined, it
1631 is a C expression to be executed when #pragma is seen. The
1632 argument FILE is the stdio input stream from which the source
1633 text can be read. CH is the first character after the #pragma. The
1634 result of the expression is the terminating character found
1635 (newline or EOF). */
1636 #define HANDLE_PRAGMA(FILE, NODE) handle_pragma (FILE, NODE)
1637
1638 /* Set when processing a function with pragma interrupt turned on. */
1639
1640 extern int pragma_interrupt;
1641
1642 #define MOVE_RATIO (TARGET_SMALLCODE ? 2 : 16)
1643 \f
1644 /* Instructions with unfilled delay slots take up an extra two bytes for
1645 the nop in the delay slot. Instructions at the start of loops, or
1646 after unconditional branches, may take up extra room when they are
1647 aligned. ??? We would get more accurate results if we did instruction
1648 alignment based on the value of INSN_CURRENT_ADDRESS; the approach used
1649 here is too conservative. */
1650
1651 #define ADJUST_INSN_LENGTH(X, LENGTH) \
1652 if (((GET_CODE (X) == INSN \
1653 && GET_CODE (PATTERN (X)) != SEQUENCE \
1654 && GET_CODE (PATTERN (X)) != USE \
1655 && GET_CODE (PATTERN (X)) != CLOBBER) \
1656 || GET_CODE (X) == CALL_INSN \
1657 || (GET_CODE (X) == JUMP_INSN \
1658 && GET_CODE (PATTERN (X)) != ADDR_DIFF_VEC \
1659 && GET_CODE (PATTERN (X)) != ADDR_VEC)) \
1660 && get_attr_needs_delay_slot (X) == NEEDS_DELAY_SLOT_YES) \
1661 LENGTH += 2; \
1662 if (! TARGET_SMALLCODE) \
1663 { \
1664 /* After the folowing loop, PAD will be an upper bound \
1665 for the number of padding bytes the alignment will \
1666 require. */ \
1667 rtx aip; \
1668 int pad = 0; \
1669 for (aip = PREV_INSN (X); aip; aip = PREV_INSN (aip)) \
1670 { \
1671 if (GET_CODE (aip) == BARRIER) \
1672 { \
1673 if (TARGET_SH3 || TARGET_SH3E) \
1674 pad = 14; \
1675 else \
1676 pad = 2; \
1677 break; \
1678 } \
1679 else if ((GET_CODE (aip) == NOTE \
1680 && NOTE_LINE_NUMBER (aip) == NOTE_INSN_LOOP_BEG)) \
1681 { \
1682 pad = 2; \
1683 /* Don't break here, because there might be a \
1684 preceding BARRIER, which requires mores \
1685 alignment for SH3[E] . */ \
1686 } \
1687 else if (GET_CODE (aip) != NOTE \
1688 && GET_CODE (aip) != CODE_LABEL) \
1689 break; \
1690 } \
1691 LENGTH += pad; \
1692 }
1693
1694 /* Enable a bug fix for the shorten_branches pass. */
1695 #define SHORTEN_WITH_ADJUST_INSN_LENGTH
1696 \f
1697 /* Define the codes that are matched by predicates in sh.c. */
1698 #define PREDICATE_CODES \
1699 {"arith_reg_operand", {SUBREG, REG}}, \
1700 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1701 {"arith_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
1702 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
1703 {"general_movsrc_operand", {SUBREG, REG, CONST_INT, MEM}}, \
1704 {"general_movdst_operand", {SUBREG, REG, CONST_INT, MEM}},
1705
1706 /* Define this macro if it is advisable to hold scalars in registers
1707 in a wider mode than that declared by the program. In such cases,
1708 the value is constrained to be within the bounds of the declared
1709 type, but kept valid in the wider mode. The signedness of the
1710 extension may differ from that of the type.
1711
1712 Leaving the unsignedp unchanged gives better code than always setting it
1713 to 0. This is despite the fact that we have only signed char and short
1714 load instructions. */
1715 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1716 if (GET_MODE_CLASS (MODE) == MODE_INT \
1717 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1718 MODE = SImode;
1719
1720 /* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
1721 extensions applied to char/short functions arguments. Defining
1722 PROMOTE_FUNCTION_RETURN does the same for function returns. */
1723
1724 #define PROMOTE_FUNCTION_ARGS
1725 #define PROMOTE_FUNCTION_RETURN
1726
1727 /* ??? Define ACCUMULATE_OUTGOING_ARGS? This is more efficient than pushing
1728 and poping arguments. However, we do have push/pop instructions, and
1729 rather limited offsets (4 bits) in load/store instructions, so it isn't
1730 clear if this would give better code. If implemented, should check for
1731 compatibility problems. */
1732
1733 /* A C statement (sans semicolon) to update the integer variable COST
1734 based on the relationship between INSN that is dependent on
1735 DEP_INSN through the dependence LINK. The default is to make no
1736 adjustment to COST. This can be used for example to specify to
1737 the scheduler that an output- or anti-dependence does not incur
1738 the same cost as a data-dependence. */
1739
1740 /* ??? Should anticipate the effect of delayed branch scheduling
1741 and arrange for a second instruction to be put between the
1742 load of the function's address and the call. */
1743
1744 #define ADJUST_COST(insn,link,dep_insn,cost) \
1745 if (GET_CODE(insn) == CALL_INSN) \
1746 { \
1747 /* The only input for a call that is timing-critical is the \
1748 function's address. */ \
1749 rtx call = PATTERN (insn); \
1750 \
1751 if (GET_CODE (call) == PARALLEL) \
1752 call = XVECEXP (call, 0 ,0); \
1753 if (GET_CODE (call) == SET) \
1754 call = SET_SRC (call); \
1755 if (GET_CODE (call) == CALL && GET_CODE (XEXP (call, 0)) == MEM) \
1756 { \
1757 rtx set = single_set (dep_insn); \
1758 \
1759 if (set && ! rtx_equal_p (SET_DEST (set), XEXP (XEXP (call, 0), 0)))\
1760 (cost) = 0; \
1761 } \
1762 }
1763
1764 /* Since the SH architecture lacks negative address offsets,
1765 the givs should be sorted smallest to largest so combine_givs
1766 has maximum opportunity to combine givs. */
1767 #define GIV_SORT_CRITERION(X, Y) \
1768 if (GET_CODE ((X)->add_val) == CONST_INT \
1769 && GET_CODE ((Y)->add_val) == CONST_INT) \
1770 return INTVAL ((X)->add_val) - INTVAL ((Y)->add_val);
1771
1772 /* For the sake of libgcc2.c, indicate target supports atexit. */
1773 #define HAVE_ATEXIT