config.gcc (sh-*-elf*): Use sh/embed-elf.h instead of sh/elf.h.
[gcc.git] / gcc / config / sh / sh.h
1 /* Definitions of target machine for GNU compiler for Hitachi / SuperH SH.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com).
5 Improved by Jim Wilson (wilson@cygnus.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #ifndef GCC_SH_H
25 #define GCC_SH_H
26
27 #define TARGET_VERSION \
28 fputs (" (Hitachi SH)", stderr);
29
30 /* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
31 include it here, because hconfig.h is also included by gencodes.c . */
32 /* ??? No longer true. */
33 extern int code_for_indirect_jump_scratch;
34
35 /* Generate SDB debugging information. */
36
37 #define SDB_DEBUGGING_INFO
38
39 /* Output DBX (stabs) debugging information if doing -gstabs. */
40
41 #include "dbxcoff.h"
42
43 #define SDB_DELIM ";"
44
45 #define CPP_SPEC " \
46 %{m5-64media|m5-64media-nofpu|m5-32media|m5-32media-nofpu:-D__SHMEDIA__=1} \
47 %{m5-compact|m5-compact-nofpu:-D__SHMEDIA__=0} \
48 %{m5-64media|m5-64media-nofpu:-D__SH5__=64 -D__LONG_MAX__=9223372036854775807L} \
49 %{m5-32media|m5-32media-nofpu|m5-compact|m5-compact-nofpu:-D__SH5__=32} \
50 %{m5-64media-nofpu|m5-32media-nofpu|m5-compact-nofpu:-D__SH4_NOFPU__} \
51 %{m1:-D__sh1__} \
52 %{m2:-D__sh2__} \
53 %{m3:-D__sh3__} \
54 %{m3e:-D__SH3E__} \
55 %{m4-single-only:-D__SH4_SINGLE_ONLY__} \
56 %{m4-single:-D__SH4_SINGLE__} \
57 %{m4-nofpu:-D__sh3__ -D__SH4_NOFPU__} \
58 %{m4:-D__SH4__} \
59 %{m1|m2|m3*|m4*:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int} \
60 %{m5*:-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int} \
61 %{!m1:%{!m2:%{!m3*:%{!m4*:%{!m5*:%(cpp_default_cpu_spec)}}}}} \
62 %{mhitachi:-D__HITACHI__} \
63 %(subtarget_cpp_spec) \
64 %(subtarget_cpp_endian_spec) "
65
66 #ifndef SUBTARGET_CPP_ENDIAN_SPEC
67 #define SUBTARGET_CPP_ENDIAN_SPEC "%{ml:-D__LITTLE_ENDIAN__}"
68 #endif
69
70 #ifndef SUBTARGET_CPP_SPEC
71 #define SUBTARGET_CPP_SPEC ""
72 #endif
73
74 #ifndef CPP_DEFAULT_CPU_SPEC
75 #define CPP_DEFAULT_CPU_SPEC \
76 "-D__sh1__ -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int"
77 #endif
78
79
80 #define EXTRA_SPECS \
81 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
82 { "subtarget_cpp_endian_spec", SUBTARGET_CPP_ENDIAN_SPEC }, \
83 { "cpp_default_cpu_spec", CPP_DEFAULT_CPU_SPEC }, \
84 { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC },
85
86 #define CPP_PREDEFINES "-D__sh__ -Acpu=sh -Amachine=sh"
87
88 #define ASM_SPEC "%(subtarget_asm_endian_spec) %{mrelax:-relax}"
89
90 #ifndef SUBTARGET_ASM_ENDIAN_SPEC
91 #define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little}"
92 #endif
93
94 #define LINK_SPEC "%{ml:-m shl} %{mrelax:-relax}"
95
96 /* We can not debug without a frame pointer. */
97 /* #define CAN_DEBUG_WITHOUT_FP */
98
99 #define CONDITIONAL_REGISTER_USAGE do \
100 { \
101 int regno; \
102 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++) \
103 if (! VALID_REGISTER_P (regno)) \
104 fixed_regs[regno] = call_used_regs[regno] = 1; \
105 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. */ \
106 if (TARGET_SH5) \
107 call_used_regs[FIRST_GENERAL_REG + 8] \
108 = call_used_regs[FIRST_GENERAL_REG + 9] = 1; \
109 if (TARGET_SHMEDIA) \
110 { \
111 regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS; \
112 CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]); \
113 regno_reg_class[FIRST_FP_REG] = FP_REGS; \
114 } \
115 if (flag_pic) \
116 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
117 /* Hitachi saves and restores mac registers on call. */ \
118 if (TARGET_HITACHI && ! TARGET_NOMACSAVE) \
119 { \
120 call_used_regs[MACH_REG] = 0; \
121 call_used_regs[MACL_REG] = 0; \
122 } \
123 if (TARGET_SHMEDIA) \
124 { \
125 for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++)\
126 if (! fixed_regs[regno] && call_used_regs[regno]) \
127 SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
128 } \
129 else \
130 for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++) \
131 if (! fixed_regs[regno] && call_used_regs[regno]) \
132 SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
133 } while (0)
134 \f
135 /* ??? Need to write documentation for all SH options and add it to the
136 invoke.texi file. */
137
138 /* Run-time compilation parameters selecting different hardware subsets. */
139
140 extern int target_flags;
141 #define ISIZE_BIT (1<<1)
142 #define DALIGN_BIT (1<<6)
143 #define SH1_BIT (1<<8)
144 #define SH2_BIT (1<<9)
145 #define SH3_BIT (1<<10)
146 #define SH3E_BIT (1<<11)
147 #define HARD_SH4_BIT (1<<5)
148 #define FPU_SINGLE_BIT (1<<7)
149 #define SH4_BIT (1<<12)
150 #define FMOVD_BIT (1<<4)
151 #define SH5_BIT (1<<0)
152 #define SPACE_BIT (1<<13)
153 #define BIGTABLE_BIT (1<<14)
154 #define RELAX_BIT (1<<15)
155 #define USERMODE_BIT (1<<16)
156 #define HITACHI_BIT (1<<22)
157 #define NOMACSAVE_BIT (1<<23)
158 #define PREFERGOT_BIT (1<<24)
159 #define PADSTRUCT_BIT (1<<28)
160 #define LITTLE_ENDIAN_BIT (1<<29)
161 #define IEEE_BIT (1<<30)
162
163 /* Nonzero if we should dump out instruction size info. */
164 #define TARGET_DUMPISIZE (target_flags & ISIZE_BIT)
165
166 /* Nonzero to align doubles on 64 bit boundaries. */
167 #define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT)
168
169 /* Nonzero if we should generate code using type 1 insns. */
170 #define TARGET_SH1 (target_flags & SH1_BIT)
171
172 /* Nonzero if we should generate code using type 2 insns. */
173 #define TARGET_SH2 (target_flags & SH2_BIT)
174
175 /* Nonzero if we should generate code using type 3 insns. */
176 #define TARGET_SH3 (target_flags & SH3_BIT)
177
178 /* Nonzero if we should generate code using type 3E insns. */
179 #define TARGET_SH3E ((target_flags & SH3E_BIT) && (target_flags & SH1_BIT))
180
181 /* Nonzero if the cache line size is 32. */
182 #define TARGET_CACHE32 (target_flags & HARD_SH4_BIT || TARGET_SH5)
183
184 /* Nonzero if we schedule for a superscalar implementation. */
185 #define TARGET_SUPERSCALAR (target_flags & HARD_SH4_BIT)
186
187 /* Nonzero if the target has separate instruction and data caches. */
188 #define TARGET_HARVARD (target_flags & HARD_SH4_BIT)
189
190 /* Nonzero if compiling for SH4 hardware (to be used for insn costs etc.) */
191 #define TARGET_HARD_SH4 (target_flags & HARD_SH4_BIT)
192
193 /* Nonzero if the default precision of th FPU is single */
194 #define TARGET_FPU_SINGLE (target_flags & FPU_SINGLE_BIT)
195
196 /* Nonzero if a double-precision FPU is available. */
197 #define TARGET_FPU_DOUBLE (target_flags & SH4_BIT)
198
199 /* Nonzero if an FPU is available. */
200 #define TARGET_FPU_ANY (TARGET_SH3E || TARGET_FPU_DOUBLE)
201
202 /* Nonzero if we should generate code using type 4 insns. */
203 #define TARGET_SH4 ((target_flags & SH4_BIT) && (target_flags & SH1_BIT))
204
205 /* Nonzero if we should generate code for a SH5 CPU (either ISA). */
206 #define TARGET_SH5 (target_flags & SH5_BIT)
207
208 /* Nonzero if we should generate code using the SHcompact instruction
209 set and 32-bit ABI. */
210 #define TARGET_SHCOMPACT (TARGET_SH5 && TARGET_SH1)
211
212 /* Nonzero if we should generate code using the SHmedia instruction
213 set and ABI. */
214 #define TARGET_SHMEDIA (TARGET_SH5 && ! TARGET_SH1)
215
216 /* Nonzero if we should generate code using the SHmedia ISA and 32-bit
217 ABI. */
218 #define TARGET_SHMEDIA32 (TARGET_SH5 && ! TARGET_SH1 \
219 && (target_flags & SH3E_BIT))
220
221 /* Nonzero if we should generate code using the SHmedia ISA and 64-bit
222 ABI. */
223 #define TARGET_SHMEDIA64 (TARGET_SH5 && ! TARGET_SH1 \
224 && ! (target_flags & SH3E_BIT))
225
226 /* Nonzero if we should generate code using SHmedia FPU instructions. */
227 #define TARGET_SHMEDIA_FPU (TARGET_SHMEDIA && TARGET_FPU_DOUBLE)
228 /* Nonzero if we should generate fmovd. */
229 #define TARGET_FMOVD (target_flags & FMOVD_BIT)
230
231 /* Nonzero if we respect NANs. */
232 #define TARGET_IEEE (target_flags & IEEE_BIT)
233
234 /* Nonzero if we should generate smaller code rather than faster code. */
235 #define TARGET_SMALLCODE (target_flags & SPACE_BIT)
236
237 /* Nonzero to use long jump tables. */
238 #define TARGET_BIGTABLE (target_flags & BIGTABLE_BIT)
239
240 /* Nonzero to generate pseudo-ops needed by the assembler and linker
241 to do function call relaxing. */
242 #define TARGET_RELAX (target_flags & RELAX_BIT)
243
244 /* Nonzero if using Hitachi's calling convention. */
245 #define TARGET_HITACHI (target_flags & HITACHI_BIT)
246
247 /* Nonzero if not saving macl/mach when using -mhitachi */
248 #define TARGET_NOMACSAVE (target_flags & NOMACSAVE_BIT)
249
250 /* Nonzero if padding structures to a multiple of 4 bytes. This is
251 incompatible with Hitachi's compiler, and gives unusual structure layouts
252 which confuse programmers.
253 ??? This option is not useful, but is retained in case there are people
254 who are still relying on it. It may be deleted in the future. */
255 #define TARGET_PADSTRUCT (target_flags & PADSTRUCT_BIT)
256
257 /* Nonzero if generating code for a little endian SH. */
258 #define TARGET_LITTLE_ENDIAN (target_flags & LITTLE_ENDIAN_BIT)
259
260 /* Nonzero if we should do everything in userland. */
261 #define TARGET_USERMODE (target_flags & USERMODE_BIT)
262
263 /* Nonzero if we should prefer @GOT calls when generating PIC. */
264 #define TARGET_PREFERGOT (target_flags & PREFERGOT_BIT)
265
266 /* Reset all target-selection flags. */
267 #define TARGET_NONE -(SH1_BIT | SH2_BIT | SH3_BIT | SH3E_BIT | SH4_BIT \
268 | HARD_SH4_BIT | FPU_SINGLE_BIT | SH5_BIT)
269
270 #define TARGET_SWITCHES \
271 { {"1", TARGET_NONE, "" }, \
272 {"1", SH1_BIT, "" }, \
273 {"2", TARGET_NONE, "" }, \
274 {"2", SH2_BIT|SH1_BIT, "" }, \
275 {"3", TARGET_NONE, "" }, \
276 {"3", SH3_BIT|SH2_BIT|SH1_BIT, "" }, \
277 {"3e", TARGET_NONE, "" }, \
278 {"3e", SH3E_BIT|SH3_BIT|SH2_BIT|SH1_BIT|FPU_SINGLE_BIT, "" }, \
279 {"4-single-only", TARGET_NONE, "" }, \
280 {"4-single-only", SH3E_BIT|SH3_BIT|SH2_BIT|SH1_BIT|HARD_SH4_BIT|FPU_SINGLE_BIT, "" }, \
281 {"4-single", TARGET_NONE, "" }, \
282 {"4-single", SH4_BIT|SH3E_BIT|SH3_BIT|SH2_BIT|SH1_BIT|HARD_SH4_BIT|FPU_SINGLE_BIT, "" },\
283 {"4-nofpu", TARGET_NONE, "" }, \
284 {"4-nofpu", SH3_BIT|SH2_BIT|SH1_BIT|HARD_SH4_BIT, "" },\
285 {"4", TARGET_NONE, "" }, \
286 {"4", SH4_BIT|SH3E_BIT|SH3_BIT|SH2_BIT|SH1_BIT|HARD_SH4_BIT, "" }, \
287 {"5-64media", TARGET_NONE, "" }, \
288 {"5-64media", SH5_BIT|SH4_BIT, "Generate 64-bit SHmedia code" }, \
289 {"5-64media-nofpu", TARGET_NONE, "" }, \
290 {"5-64media-nofpu", SH5_BIT, "Generate 64-bit FPU-less SHmedia code" }, \
291 {"5-32media", TARGET_NONE, "" }, \
292 {"5-32media", SH5_BIT|SH4_BIT|SH3E_BIT, "Generate 32-bit SHmedia code" }, \
293 {"5-32media-nofpu", TARGET_NONE, "" }, \
294 {"5-32media-nofpu", SH5_BIT|SH3E_BIT, "Generate 32-bit FPU-less SHmedia code" }, \
295 {"5-compact", TARGET_NONE, "" }, \
296 {"5-compact", SH5_BIT|SH4_BIT|SH3E_BIT|SH3_BIT|SH2_BIT|SH1_BIT|FPU_SINGLE_BIT, "Generate SHcompact code" }, \
297 {"5-compact-nofpu", TARGET_NONE, "" }, \
298 {"5-compact-nofpu", SH5_BIT|SH3_BIT|SH2_BIT|SH1_BIT, "Generate FPU-less SHcompact code" }, \
299 {"b", -LITTLE_ENDIAN_BIT, "" }, \
300 {"bigtable", BIGTABLE_BIT, "" }, \
301 {"dalign", DALIGN_BIT, "" }, \
302 {"fmovd", FMOVD_BIT, "" }, \
303 {"hitachi", HITACHI_BIT, "" }, \
304 {"nomacsave", NOMACSAVE_BIT, "" }, \
305 {"ieee", IEEE_BIT, "" }, \
306 {"isize", ISIZE_BIT, "" }, \
307 {"l", LITTLE_ENDIAN_BIT, "" }, \
308 {"no-ieee", -IEEE_BIT, "" }, \
309 {"padstruct", PADSTRUCT_BIT, "" }, \
310 {"prefergot", PREFERGOT_BIT, "" }, \
311 {"relax", RELAX_BIT, "" }, \
312 {"space", SPACE_BIT, "" }, \
313 {"usermode", USERMODE_BIT, "" }, \
314 SUBTARGET_SWITCHES \
315 {"", TARGET_DEFAULT, "" } \
316 }
317
318 /* This are meant to be redefined in the host dependent files */
319 #define SUBTARGET_SWITCHES
320
321 #define TARGET_DEFAULT (SH1_BIT)
322
323 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
324 do { \
325 if (LEVEL) \
326 flag_omit_frame_pointer = -1; \
327 if (SIZE) \
328 target_flags |= SPACE_BIT; \
329 } while (0)
330
331 #define ASSEMBLER_DIALECT assembler_dialect
332
333 extern int assembler_dialect;
334
335 #define OVERRIDE_OPTIONS \
336 do { \
337 int regno; \
338 \
339 sh_cpu = CPU_SH1; \
340 assembler_dialect = 0; \
341 if (TARGET_SH2) \
342 sh_cpu = CPU_SH2; \
343 if (TARGET_SH3) \
344 sh_cpu = CPU_SH3; \
345 if (TARGET_SH3E) \
346 sh_cpu = CPU_SH3E; \
347 if (TARGET_SH4) \
348 { \
349 assembler_dialect = 1; \
350 sh_cpu = CPU_SH4; \
351 } \
352 if (TARGET_SH5) \
353 { \
354 sh_cpu = CPU_SH5; \
355 target_flags |= DALIGN_BIT; \
356 if (TARGET_FPU_ANY) \
357 target_flags |= FMOVD_BIT; \
358 if (TARGET_SHMEDIA) \
359 { \
360 /* There are no delay slots on SHmedia. */ \
361 flag_delayed_branch = 0; \
362 /* Relaxation isn't yet supported for SHmedia */ \
363 target_flags &= ~RELAX_BIT; \
364 } \
365 if (profile_flag || profile_arc_flag) \
366 { \
367 warning ("Profiling is not supported on this target."); \
368 profile_flag = profile_arc_flag = 0; \
369 } \
370 } \
371 else \
372 { \
373 /* Only the sh64-elf assembler fully supports .quad properly. */\
374 targetm.asm_out.aligned_op.di = NULL; \
375 targetm.asm_out.unaligned_op.di = NULL; \
376 } \
377 \
378 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
379 if (! VALID_REGISTER_P (regno)) \
380 sh_register_names[regno][0] = '\0'; \
381 \
382 for (regno = 0; regno < ADDREGNAMES_SIZE; regno++) \
383 if (! VALID_REGISTER_P (ADDREGNAMES_REGNO (regno))) \
384 sh_additional_register_names[regno][0] = '\0'; \
385 \
386 if (flag_omit_frame_pointer < 0) \
387 { \
388 /* The debugging information is sufficient, \
389 but gdb doesn't implement this yet */ \
390 if (0) \
391 flag_omit_frame_pointer \
392 = (PREFERRED_DEBUGGING_TYPE == DWARF_DEBUG \
393 || PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG); \
394 else \
395 flag_omit_frame_pointer = 0; \
396 } \
397 \
398 if (flag_pic && ! TARGET_PREFERGOT) \
399 flag_no_function_cse = 1; \
400 \
401 /* Never run scheduling before reload, since that can \
402 break global alloc, and generates slower code anyway due \
403 to the pressure on R0. */ \
404 flag_schedule_insns = 0; \
405 } while (0)
406 \f
407 /* Target machine storage layout. */
408
409 /* Define this if most significant bit is lowest numbered
410 in instructions that operate on numbered bit-fields. */
411
412 #define BITS_BIG_ENDIAN 0
413
414 /* Define this if most significant byte of a word is the lowest numbered. */
415 #define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
416
417 /* Define this if most significant word of a multiword number is the lowest
418 numbered. */
419 #define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
420
421 /* Define this to set the endianness to use in libgcc2.c, which can
422 not depend on target_flags. */
423 #if defined(__LITTLE_ENDIAN__)
424 #define LIBGCC2_WORDS_BIG_ENDIAN 0
425 #else
426 #define LIBGCC2_WORDS_BIG_ENDIAN 1
427 #endif
428
429 #define MAX_BITS_PER_WORD 64
430
431 #define MAX_LONG_TYPE_SIZE MAX_BITS_PER_WORD
432
433 /* Width in bits of an `int'. We want just 32-bits, even if words are
434 longer. */
435 #define INT_TYPE_SIZE 32
436
437 /* Width in bits of a `long'. */
438 #define LONG_TYPE_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
439
440 /* Width in bits of a `long long'. */
441 #define LONG_LONG_TYPE_SIZE 64
442
443 /* Width in bits of a `long double'. */
444 #define LONG_DOUBLE_TYPE_SIZE 64
445
446 /* Width of a word, in units (bytes). */
447 #define UNITS_PER_WORD (TARGET_SHMEDIA ? 8 : 4)
448 #define MIN_UNITS_PER_WORD 4
449
450 /* Width in bits of a pointer.
451 See also the macro `Pmode' defined below. */
452 #define POINTER_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
453
454 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
455 #define PARM_BOUNDARY (TARGET_SH5 ? 64 : 32)
456
457 /* Boundary (in *bits*) on which stack pointer should be aligned. */
458 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
459
460 /* The log (base 2) of the cache line size, in bytes. Processors prior to
461 SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
462 The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
463 #define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2)
464
465 /* Allocation boundary (in *bits*) for the code of a function.
466 32 bit alignment is faster, because instructions are always fetched as a
467 pair from a longword boundary. */
468 #define FUNCTION_BOUNDARY \
469 (TARGET_SMALLCODE ? 16 << TARGET_SHMEDIA : (1 << CACHE_LOG) * 8)
470
471 /* On SH5, the lowest bit is used to indicate SHmedia functions, so
472 the vbit must go into the delta field of
473 pointers-to-member-functions. */
474 #define TARGET_PTRMEMFUNC_VBIT_LOCATION \
475 (TARGET_SH5 ? ptrmemfunc_vbit_in_delta : ptrmemfunc_vbit_in_pfn)
476
477 /* Alignment of field after `int : 0' in a structure. */
478 #define EMPTY_FIELD_BOUNDARY 32
479
480 /* No data type wants to be aligned rounder than this. */
481 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
482
483 /* The best alignment to use in cases where we have a choice. */
484 #define FASTEST_ALIGNMENT (TARGET_SH5 ? 64 : 32)
485
486 /* Make strings word-aligned so strcpy from constants will be faster. */
487 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
488 ((TREE_CODE (EXP) == STRING_CST \
489 && (ALIGN) < FASTEST_ALIGNMENT) \
490 ? FASTEST_ALIGNMENT : (ALIGN))
491
492 #ifndef MAX_OFILE_ALIGNMENT
493 #define MAX_OFILE_ALIGNMENT 128
494 #endif
495
496 /* Make arrays of chars word-aligned for the same reasons. */
497 #define DATA_ALIGNMENT(TYPE, ALIGN) \
498 (TREE_CODE (TYPE) == ARRAY_TYPE \
499 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
500 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
501
502 /* Number of bits which any structure or union's size must be a
503 multiple of. Each structure or union's size is rounded up to a
504 multiple of this. */
505 #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
506
507 /* Set this nonzero if move instructions will actually fail to work
508 when given unaligned data. */
509 #define STRICT_ALIGNMENT 1
510
511 /* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */
512 #define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
513 barrier_align (LABEL_AFTER_BARRIER)
514
515 #define LOOP_ALIGN(A_LABEL) \
516 ((! optimize || TARGET_HARVARD || TARGET_SMALLCODE) \
517 ? 0 : sh_loop_align (A_LABEL))
518
519 #define LABEL_ALIGN(A_LABEL) \
520 ( \
521 (PREV_INSN (A_LABEL) \
522 && GET_CODE (PREV_INSN (A_LABEL)) == INSN \
523 && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \
524 && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN) \
525 /* explicit alignment insn in constant tables. */ \
526 ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \
527 : 0)
528
529 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
530 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
531
532 /* The base two logarithm of the known minimum alignment of an insn length. */
533 #define INSN_LENGTH_ALIGNMENT(A_INSN) \
534 (GET_CODE (A_INSN) == INSN \
535 ? 1 << TARGET_SHMEDIA \
536 : GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN \
537 ? 1 << TARGET_SHMEDIA \
538 : CACHE_LOG)
539 \f
540 /* Standard register usage. */
541
542 /* Register allocation for the Hitachi calling convention:
543
544 r0 arg return
545 r1..r3 scratch
546 r4..r7 args in
547 r8..r13 call saved
548 r14 frame pointer/call saved
549 r15 stack pointer
550 ap arg pointer (doesn't really exist, always eliminated)
551 pr subroutine return address
552 t t bit
553 mach multiply/accumulate result, high part
554 macl multiply/accumulate result, low part.
555 fpul fp/int communication register
556 rap return address pointer register
557 fr0 fp arg return
558 fr1..fr3 scratch floating point registers
559 fr4..fr11 fp args in
560 fr12..fr15 call saved floating point registers */
561
562 #define MAX_REGISTER_NAME_LENGTH 5
563 extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
564
565 #define SH_REGISTER_NAMES_INITIALIZER \
566 { \
567 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
568 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
569 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
570 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
571 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
572 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
573 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
574 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
575 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
576 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
577 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
578 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
579 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
580 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
581 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
582 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
583 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
584 "xd0", "xd2", "xd4", "xd6", "xd8", "xd10", "xd12", "xd14", \
585 "gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", \
586 "rap" \
587 }
588
589 #define DEBUG_REGISTER_NAMES SH_REGISTER_NAMES_INITIALIZER
590
591 #define REGNAMES_ARR_INDEX_1(index) \
592 (sh_register_names[index])
593 #define REGNAMES_ARR_INDEX_2(index) \
594 REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
595 #define REGNAMES_ARR_INDEX_4(index) \
596 REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
597 #define REGNAMES_ARR_INDEX_8(index) \
598 REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
599 #define REGNAMES_ARR_INDEX_16(index) \
600 REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
601 #define REGNAMES_ARR_INDEX_32(index) \
602 REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
603 #define REGNAMES_ARR_INDEX_64(index) \
604 REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
605
606 #define REGISTER_NAMES \
607 { \
608 REGNAMES_ARR_INDEX_64 (0), \
609 REGNAMES_ARR_INDEX_64 (64), \
610 REGNAMES_ARR_INDEX_8 (128), \
611 REGNAMES_ARR_INDEX_8 (136), \
612 REGNAMES_ARR_INDEX_8 (144), \
613 REGNAMES_ARR_INDEX_1 (152) \
614 }
615
616 #define ADDREGNAMES_SIZE 32
617 #define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
618 extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
619 [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
620
621 #define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER \
622 { \
623 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", \
624 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30", \
625 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46", \
626 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62" \
627 }
628
629 #define ADDREGNAMES_REGNO(index) \
630 ((index < 32) ? (FIRST_FP_REG + (index) * 2) \
631 : (-1))
632
633 #define ADDREGNAMES_ARR_INDEX_1(index) \
634 { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
635 #define ADDREGNAMES_ARR_INDEX_2(index) \
636 ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
637 #define ADDREGNAMES_ARR_INDEX_4(index) \
638 ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
639 #define ADDREGNAMES_ARR_INDEX_8(index) \
640 ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
641 #define ADDREGNAMES_ARR_INDEX_16(index) \
642 ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
643 #define ADDREGNAMES_ARR_INDEX_32(index) \
644 ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
645
646 #define ADDITIONAL_REGISTER_NAMES \
647 { \
648 ADDREGNAMES_ARR_INDEX_32 (0) \
649 }
650
651 /* Number of actual hardware registers.
652 The hardware registers are assigned numbers for the compiler
653 from 0 to just below FIRST_PSEUDO_REGISTER.
654 All registers that the compiler knows about must be given numbers,
655 even those that are not normally considered general registers. */
656
657 /* There are many other relevant definitions in sh.md's md_constants. */
658
659 #define FIRST_GENERAL_REG R0_REG
660 #define LAST_GENERAL_REG (FIRST_GENERAL_REG + (TARGET_SHMEDIA ? 63 : 15))
661 #define FIRST_FP_REG DR0_REG
662 #define LAST_FP_REG (FIRST_FP_REG + \
663 (TARGET_SHMEDIA_FPU ? 63 : TARGET_SH3E ? 15 : -1))
664 #define FIRST_XD_REG XD0_REG
665 #define LAST_XD_REG (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
666 #define FIRST_TARGET_REG TR0_REG
667 #define LAST_TARGET_REG (FIRST_TARGET_REG + (TARGET_SHMEDIA ? 7 : -1))
668
669 #define GENERAL_REGISTER_P(REGNO) \
670 IN_RANGE ((REGNO), FIRST_GENERAL_REG, LAST_GENERAL_REG)
671
672 #define GENERAL_OR_AP_REGISTER_P(REGNO) \
673 (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG))
674
675 #define FP_REGISTER_P(REGNO) \
676 ((REGNO) >= FIRST_FP_REG && (REGNO) <= LAST_FP_REG)
677
678 #define XD_REGISTER_P(REGNO) \
679 ((REGNO) >= FIRST_XD_REG && (REGNO) <= LAST_XD_REG)
680
681 #define FP_OR_XD_REGISTER_P(REGNO) \
682 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
683
684 #define FP_ANY_REGISTER_P(REGNO) \
685 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
686
687 #define SPECIAL_REGISTER_P(REGNO) \
688 ((REGNO) == GBR_REG || (REGNO) == T_REG \
689 || (REGNO) == MACH_REG || (REGNO) == MACL_REG)
690
691 #define TARGET_REGISTER_P(REGNO) \
692 ((REGNO) >= FIRST_TARGET_REG && (REGNO) <= LAST_TARGET_REG)
693
694 #define SHMEDIA_REGISTER_P(REGNO) \
695 (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
696 || TARGET_REGISTER_P (REGNO))
697
698 /* This is to be used in CONDITIONAL_REGISTER_USAGE, to mark registers
699 that should be fixed. */
700 #define VALID_REGISTER_P(REGNO) \
701 (SHMEDIA_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) \
702 || (REGNO) == AP_REG || (REGNO) == RAP_REG \
703 || (TARGET_SH1 && (SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
704 || (TARGET_SH3E && (REGNO) == FPUL_REG))
705
706 /* The mode that should be generally used to store a register by
707 itself in the stack, or to load it back. */
708 #define REGISTER_NATURAL_MODE(REGNO) \
709 (FP_REGISTER_P (REGNO) ? SFmode \
710 : XD_REGISTER_P (REGNO) ? DFmode \
711 : TARGET_SHMEDIA && ! HARD_REGNO_CALL_PART_CLOBBERED ((REGNO), DImode) \
712 ? DImode \
713 : SImode)
714
715 #define FIRST_PSEUDO_REGISTER 153
716
717 /* 1 for registers that have pervasive standard uses
718 and are not available for the register allocator.
719
720 Mach register is fixed 'cause it's only 10 bits wide for SH1.
721 It is 32 bits wide for SH2. */
722
723 #define FIXED_REGISTERS \
724 { \
725 /* Regular registers. */ \
726 0, 0, 0, 0, 0, 0, 0, 0, \
727 0, 0, 0, 0, 0, 0, 0, 1, \
728 /* r16 is reserved, r18 is the former pr. */ \
729 1, 0, 0, 0, 0, 0, 0, 0, \
730 /* r24 is reserved for the OS; r25, for the assembler or linker. */ \
731 /* r26 is a global variable data pointer; r27 is for constants. */ \
732 1, 1, 1, 1, 0, 0, 0, 0, \
733 0, 0, 0, 0, 0, 0, 0, 0, \
734 0, 0, 0, 0, 0, 0, 0, 0, \
735 0, 0, 0, 0, 0, 0, 0, 0, \
736 0, 0, 0, 0, 0, 0, 0, 1, \
737 /* FP registers. */ \
738 0, 0, 0, 0, 0, 0, 0, 0, \
739 0, 0, 0, 0, 0, 0, 0, 0, \
740 0, 0, 0, 0, 0, 0, 0, 0, \
741 0, 0, 0, 0, 0, 0, 0, 0, \
742 0, 0, 0, 0, 0, 0, 0, 0, \
743 0, 0, 0, 0, 0, 0, 0, 0, \
744 0, 0, 0, 0, 0, 0, 0, 0, \
745 0, 0, 0, 0, 0, 0, 0, 0, \
746 /* Branch target registers. */ \
747 0, 0, 0, 0, 0, 0, 0, 0, \
748 /* XD registers. */ \
749 0, 0, 0, 0, 0, 0, 0, 0, \
750 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
751 1, 1, 1, 1, 1, 1, 0, 1, \
752 /*"rap" */ \
753 1, \
754 }
755
756 /* 1 for registers not available across function calls.
757 These must include the FIXED_REGISTERS and also any
758 registers that can be used without being saved.
759 The latter must include the registers where values are returned
760 and the register where structure-value addresses are passed.
761 Aside from that, you can include as many other registers as you like. */
762
763 #define CALL_USED_REGISTERS \
764 { \
765 /* Regular registers. */ \
766 1, 1, 1, 1, 1, 1, 1, 1, \
767 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
768 Only the lower 32bits of R10-R14 are guaranteed to be preserved \
769 across SH5 function calls. */ \
770 0, 0, 0, 0, 0, 0, 0, 1, \
771 1, 1, 0, 1, 1, 1, 1, 1, \
772 1, 1, 1, 1, 0, 0, 0, 0, \
773 0, 0, 0, 0, 1, 1, 1, 1, \
774 1, 1, 1, 1, 0, 0, 0, 0, \
775 0, 0, 0, 0, 0, 0, 0, 0, \
776 0, 0, 0, 0, 1, 1, 1, 1, \
777 /* FP registers. */ \
778 1, 1, 1, 1, 1, 1, 1, 1, \
779 1, 1, 1, 1, 0, 0, 0, 0, \
780 1, 1, 1, 1, 1, 1, 1, 1, \
781 1, 1, 1, 1, 1, 1, 1, 1, \
782 1, 1, 1, 1, 0, 0, 0, 0, \
783 0, 0, 0, 0, 0, 0, 0, 0, \
784 0, 0, 0, 0, 0, 0, 0, 0, \
785 0, 0, 0, 0, 0, 0, 0, 0, \
786 /* Branch target registers. */ \
787 1, 1, 1, 1, 1, 0, 0, 0, \
788 /* XD registers. */ \
789 1, 1, 1, 1, 1, 1, 0, 0, \
790 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
791 1, 1, 0, 1, 1, 1, 1, 1, \
792 /*"rap" */ \
793 1, \
794 }
795
796 /* Only the lower 32-bits of R10-R14 are guaranteed to be preserved
797 across SHcompact function calls. We can't tell whether a called
798 function is SHmedia or SHcompact, so we assume it may be when
799 compiling SHmedia code with the 32-bit ABI, since that's the only
800 ABI that can be linked with SHcompact code. */
801 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO,MODE) \
802 (TARGET_SHMEDIA32 \
803 && GET_MODE_SIZE (MODE) > 4 \
804 && (((REGNO) >= FIRST_GENERAL_REG + 10 \
805 && (REGNO) <= FIRST_GENERAL_REG + 14) \
806 || (REGNO) == PR_MEDIA_REG))
807
808 /* Return number of consecutive hard regs needed starting at reg REGNO
809 to hold something of mode MODE.
810 This is ordinarily the length in words of a value of mode MODE
811 but can be less for certain modes in special long registers.
812
813 On the SH all but the XD regs are UNITS_PER_WORD bits wide. */
814
815 #define HARD_REGNO_NREGS(REGNO, MODE) \
816 (XD_REGISTER_P (REGNO) \
817 ? (GET_MODE_SIZE (MODE) / (2 * UNITS_PER_WORD)) \
818 : (TARGET_SHMEDIA && FP_REGISTER_P (REGNO)) \
819 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2)) \
820 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
821
822 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
823 We can allow any mode in any general register. The special registers
824 only allow SImode. Don't allow any mode in the PR. */
825
826 /* We cannot hold DCmode values in the XD registers because alter_reg
827 handles subregs of them incorrectly. We could work around this by
828 spacing the XD registers like the DR registers, but this would require
829 additional memory in every compilation to hold larger register vectors.
830 We could hold SFmode / SCmode values in XD registers, but that
831 would require a tertiary reload when reloading from / to memory,
832 and a secondary reload to reload from / to general regs; that
833 seems to be a loosing proposition. */
834 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
835 (SPECIAL_REGISTER_P (REGNO) ? (MODE) == SImode \
836 : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \
837 : FP_REGISTER_P (REGNO) && (MODE) == SFmode \
838 ? 1 \
839 : (MODE) == V2SFmode \
840 ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 2 == 0) \
841 : (MODE) == V4SFmode \
842 ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 4 == 0) \
843 : (MODE) == V16SFmode \
844 ? (TARGET_SHMEDIA \
845 ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 16 == 0) \
846 : (REGNO) == FIRST_XD_REG) \
847 : FP_REGISTER_P (REGNO) \
848 ? ((MODE) == SFmode \
849 || (TARGET_SHMEDIA && (MODE) == SImode) \
850 || ((TARGET_SH3E || TARGET_SHMEDIA) && (MODE) == SCmode) \
851 || (((TARGET_SH4 && (MODE) == DFmode) || (MODE) == DCmode \
852 || (TARGET_SHMEDIA && ((MODE) == DFmode || (MODE) == DImode \
853 || (MODE) == V2SFmode))) \
854 && (((REGNO) - FIRST_FP_REG) & 1) == 0)) \
855 : XD_REGISTER_P (REGNO) \
856 ? (MODE) == DFmode \
857 : TARGET_REGISTER_P (REGNO) \
858 ? ((MODE) == DImode || (MODE) == SImode) \
859 : (REGNO) == PR_REG ? 0 \
860 : (REGNO) == FPSCR_REG ? (MODE) == PSImode \
861 : 1)
862
863 /* Value is 1 if MODE is a supported vector mode. */
864 #define VECTOR_MODE_SUPPORTED_P(MODE) \
865 (TARGET_FPU_ANY \
866 && ((MODE) == V2SFmode || (MODE) == V4SFmode || (MODE) == V16SFmode))
867
868 /* Value is 1 if it is a good idea to tie two pseudo registers
869 when one has mode MODE1 and one has mode MODE2.
870 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
871 for any hard reg, then this must be 0 for correct output.
872 That's the case for xd registers: we don't hold SFmode values in
873 them, so we can't tie an SFmode pseudos with one in another
874 floating-point mode. */
875
876 #define MODES_TIEABLE_P(MODE1, MODE2) \
877 ((MODE1) == (MODE2) \
878 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
879 && (TARGET_SHMEDIA ? ((GET_MODE_SIZE (MODE1) <= 4) \
880 && (GET_MODE_SIZE (MODE2) <= 4)) \
881 : ((MODE1) != SFmode && (MODE2) != SFmode))))
882
883 /* Specify the registers used for certain standard purposes.
884 The values of these macros are register numbers. */
885
886 /* Define this if the program counter is overloaded on a register. */
887 /* #define PC_REGNUM 15*/
888
889 /* Register to use for pushing function arguments. */
890 #define STACK_POINTER_REGNUM SP_REG
891
892 /* Base register for access to local variables of the function. */
893 #define FRAME_POINTER_REGNUM FP_REG
894
895 /* Fake register that holds the address on the stack of the
896 current function's return address. */
897 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
898
899 /* Register to hold the addressing base for position independent
900 code access to data items. */
901 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
902
903 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
904
905 /* Value should be nonzero if functions must have frame pointers.
906 Zero means the frame pointer need not be set up (and parms may be accessed
907 via the stack pointer) in functions that seem suitable. */
908
909 #define FRAME_POINTER_REQUIRED 0
910
911 /* Definitions for register eliminations.
912
913 We have three registers that can be eliminated on the SH. First, the
914 frame pointer register can often be eliminated in favor of the stack
915 pointer register. Secondly, the argument pointer register can always be
916 eliminated; it is replaced with either the stack or frame pointer.
917 Third, there is the return address pointer, which can also be replaced
918 with either the stack or the frame pointer. */
919
920 /* This is an array of structures. Each structure initializes one pair
921 of eliminable registers. The "from" register number is given first,
922 followed by "to". Eliminations of the same "from" register are listed
923 in order of preference. */
924
925 /* If you add any registers here that are not actually hard registers,
926 and that have any alternative of elimination that doesn't always
927 apply, you need to amend calc_live_regs to exclude it, because
928 reload spills all eliminable registers where it sees an
929 can_eliminate == 0 entry, thus making them 'live' .
930 If you add any hard registers that can be eliminated in different
931 ways, you have to patch reload to spill them only when all alternatives
932 of elimination fail. */
933
934 #define ELIMINABLE_REGS \
935 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
936 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
937 { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
938 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
939 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
940
941 /* Given FROM and TO register numbers, say whether this elimination
942 is allowed. */
943 #define CAN_ELIMINATE(FROM, TO) \
944 (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
945
946 /* Define the offset between two registers, one to be eliminated, and the other
947 its replacement, at the start of a routine. */
948
949 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
950 OFFSET = initial_elimination_offset ((FROM), (TO))
951
952 /* Base register for access to arguments of the function. */
953 #define ARG_POINTER_REGNUM AP_REG
954
955 /* Register in which the static-chain is passed to a function. */
956 #define STATIC_CHAIN_REGNUM (TARGET_SH5 ? 1 : 3)
957
958 /* The register in which a struct value address is passed. */
959
960 #define STRUCT_VALUE_REGNUM 2
961
962 /* If the structure value address is not passed in a register, define
963 `STRUCT_VALUE' as an expression returning an RTX for the place
964 where the address is passed. If it returns 0, the address is
965 passed as an "invisible" first argument. */
966
967 /* The Hitachi calling convention doesn't quite fit into this scheme since
968 the address is passed like an invisible argument, but one that is always
969 passed in memory. */
970 #define STRUCT_VALUE \
971 (TARGET_HITACHI ? 0 : gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM))
972
973 #define RETURN_IN_MEMORY(TYPE) \
974 (TARGET_SH5 \
975 ? ((TYPE_MODE (TYPE) == BLKmode \
976 ? int_size_in_bytes (TYPE) \
977 : GET_MODE_SIZE (TYPE_MODE (TYPE))) > 8) \
978 : (TYPE_MODE (TYPE) == BLKmode \
979 || TARGET_HITACHI && TREE_CODE (TYPE) == RECORD_TYPE))
980
981 /* Don't default to pcc-struct-return, because we have already specified
982 exactly how to return structures in the RETURN_IN_MEMORY macro. */
983
984 #define DEFAULT_PCC_STRUCT_RETURN 0
985
986 #define SHMEDIA_REGS_STACK_ADJUST() \
987 (TARGET_SHCOMPACT && current_function_has_nonlocal_label \
988 ? (8 * (/* r28-r35 */ 8 + /* r44-r59 */ 16 + /* tr5-tr7 */ 3) \
989 + (TARGET_FPU_ANY ? 4 * (/* fr36 - fr63 */ 28) : 0)) \
990 : 0)
991
992 \f
993 /* Define the classes of registers for register constraints in the
994 machine description. Also define ranges of constants.
995
996 One of the classes must always be named ALL_REGS and include all hard regs.
997 If there is more than one class, another class must be named NO_REGS
998 and contain no registers.
999
1000 The name GENERAL_REGS must be the name of a class (or an alias for
1001 another name such as ALL_REGS). This is the class of registers
1002 that is allowed by "g" or "r" in a register constraint.
1003 Also, registers outside this class are allocated only when
1004 instructions express preferences for them.
1005
1006 The classes must be numbered in nondecreasing order; that is,
1007 a larger-numbered class must never be contained completely
1008 in a smaller-numbered class.
1009
1010 For any two classes, it is very desirable that there be another
1011 class that represents their union. */
1012
1013 /* The SH has two sorts of general registers, R0 and the rest. R0 can
1014 be used as the destination of some of the arithmetic ops. There are
1015 also some special purpose registers; the T bit register, the
1016 Procedure Return Register and the Multiply Accumulate Registers. */
1017 /* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
1018 reg_class_subunion. We don't want to have an actual union class
1019 of these, because it would only be used when both classes are calculated
1020 to give the same cost, but there is only one FPUL register.
1021 Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
1022 applying to the actual instruction alternative considered. E.g., the
1023 y/r alternative of movsi_ie is considered to have no more cost that
1024 the r/r alternative, which is patently untrue. */
1025
1026 enum reg_class
1027 {
1028 NO_REGS,
1029 R0_REGS,
1030 PR_REGS,
1031 T_REGS,
1032 MAC_REGS,
1033 FPUL_REGS,
1034 SIBCALL_REGS,
1035 GENERAL_REGS,
1036 FP0_REGS,
1037 FP_REGS,
1038 DF_REGS,
1039 FPSCR_REGS,
1040 GENERAL_FP_REGS,
1041 TARGET_REGS,
1042 ALL_REGS,
1043 LIM_REG_CLASSES
1044 };
1045
1046 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1047
1048 /* Give names of register classes as strings for dump file. */
1049 #define REG_CLASS_NAMES \
1050 { \
1051 "NO_REGS", \
1052 "R0_REGS", \
1053 "PR_REGS", \
1054 "T_REGS", \
1055 "MAC_REGS", \
1056 "FPUL_REGS", \
1057 "SIBCALL_REGS", \
1058 "GENERAL_REGS", \
1059 "FP0_REGS", \
1060 "FP_REGS", \
1061 "DF_REGS", \
1062 "FPSCR_REGS", \
1063 "GENERAL_FP_REGS", \
1064 "TARGET_REGS", \
1065 "ALL_REGS", \
1066 }
1067
1068 /* Define which registers fit in which classes.
1069 This is an initializer for a vector of HARD_REG_SET
1070 of length N_REG_CLASSES. */
1071
1072 #define REG_CLASS_CONTENTS \
1073 { \
1074 /* NO_REGS: */ \
1075 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1076 /* R0_REGS: */ \
1077 { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1078 /* PR_REGS: */ \
1079 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, \
1080 /* T_REGS: */ \
1081 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 }, \
1082 /* MAC_REGS: */ \
1083 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 }, \
1084 /* FPUL_REGS: */ \
1085 { 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0x00400000 }, \
1086 /* SIBCALL_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \
1087 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1088 /* GENERAL_REGS: */ \
1089 { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x01020000 }, \
1090 /* FP0_REGS: */ \
1091 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 }, \
1092 /* FP_REGS: */ \
1093 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
1094 /* DF_REGS: */ \
1095 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
1096 /* FPSCR_REGS: */ \
1097 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 }, \
1098 /* GENERAL_FP_REGS: */ \
1099 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0102ff00 }, \
1100 /* TARGET_REGS: */ \
1101 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff }, \
1102 /* ALL_REGS: */ \
1103 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x01ffffff }, \
1104 }
1105
1106 /* The same information, inverted:
1107 Return the class number of the smallest class containing
1108 reg number REGNO. This could be a conditional expression
1109 or could index an array. */
1110
1111 extern int regno_reg_class[FIRST_PSEUDO_REGISTER];
1112 #define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
1113
1114 /* When defined, the compiler allows registers explicitly used in the
1115 rtl to be used as spill registers but prevents the compiler from
1116 extending the lifetime of these registers. */
1117
1118 #define SMALL_REGISTER_CLASSES (! TARGET_SHMEDIA)
1119
1120 /* The order in which register should be allocated. */
1121 /* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
1122 and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
1123 spilled or used otherwise, we better have the FP_REGS allocated first. */
1124 #define REG_ALLOC_ORDER \
1125 { 65, 66, 67, 68, 69, 70, 71, 64, \
1126 72, 73, 74, 75, 76, 77, 78, 79, \
1127 136,137,138,139,140,141,142,143, \
1128 80, 81, 82, 83, 84, 85, 86, 87, \
1129 88, 89, 90, 91, 92, 93, 94, 95, \
1130 96, 97, 98, 99,100,101,102,103, \
1131 104,105,106,107,108,109,110,111, \
1132 112,113,114,115,116,117,118,119, \
1133 120,121,122,123,124,125,126,127, \
1134 151, 1, 2, 3, 7, 6, 5, 4, \
1135 0, 8, 9, 10, 11, 12, 13, 14, \
1136 16, 17, 18, 19, 20, 21, 22, 23, \
1137 24, 25, 26, 27, 28, 29, 30, 31, \
1138 32, 33, 34, 35, 36, 37, 38, 39, \
1139 40, 41, 42, 43, 44, 45, 46, 47, \
1140 48, 49, 50, 51, 52, 53, 54, 55, \
1141 56, 57, 58, 59, 60, 61, 62, 63, \
1142 150, 15,145,146,147,144,148,149, \
1143 128,129,130,131,132,133,134,135, \
1144 152 }
1145
1146 /* The class value for index registers, and the one for base regs. */
1147 #define INDEX_REG_CLASS (TARGET_SHMEDIA ? GENERAL_REGS : R0_REGS)
1148 #define BASE_REG_CLASS GENERAL_REGS
1149
1150 /* Get reg_class from a letter such as appears in the machine
1151 description. */
1152 extern const enum reg_class reg_class_from_letter[];
1153
1154 #define REG_CLASS_FROM_LETTER(C) \
1155 ( ISLOWER (C) ? reg_class_from_letter[(C)-'a'] : NO_REGS )
1156 \f
1157 /* The letters I, J, K, L and M in a register constraint string
1158 can be used to stand for particular ranges of immediate operands.
1159 This macro defines what the ranges are.
1160 C is the letter, and VALUE is a constant value.
1161 Return 1 if VALUE is in the range specified by C.
1162 I: arithmetic operand -127..128, as used in add, sub, etc
1163 J: arithmetic operand -32768..32767, as used in SHmedia movi and shori
1164 K: shift operand 1,2,8 or 16
1165 L: logical operand 0..255, as used in and, or, etc.
1166 M: constant 1
1167 N: constant 0
1168 O: arithmetic operand -32..31, as used in SHmedia beqi, bnei and xori
1169 P: arithmetic operand -512..511, as used in SHmedia andi, ori
1170 */
1171
1172 #define CONST_OK_FOR_I(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
1173 && ((HOST_WIDE_INT)(VALUE)) <= 127)
1174 #define CONST_OK_FOR_J(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32768 \
1175 && ((HOST_WIDE_INT)(VALUE)) <= 32767)
1176 #define CONST_OK_FOR_K(VALUE) ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
1177 #define CONST_OK_FOR_L(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
1178 && ((HOST_WIDE_INT)(VALUE)) <= 255)
1179 #define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
1180 #define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
1181 #define CONST_OK_FOR_O(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32 \
1182 && ((HOST_WIDE_INT)(VALUE)) <= 31)
1183 #define CONST_OK_FOR_P(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -512 \
1184 && ((HOST_WIDE_INT)(VALUE)) <= 511)
1185 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1186 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1187 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1188 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1189 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1190 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1191 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1192 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1193 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1194 : 0)
1195
1196 /* Similar, but for floating constants, and defining letters G and H.
1197 Here VALUE is the CONST_DOUBLE rtx itself. */
1198
1199 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1200 ((C) == 'G' ? (fp_zero_operand (VALUE) && fldi_ok ()) \
1201 : (C) == 'H' ? (fp_one_operand (VALUE) && fldi_ok ()) \
1202 : (C) == 'F')
1203
1204 /* Given an rtx X being reloaded into a reg required to be
1205 in class CLASS, return the class of reg to actually use.
1206 In general this is just CLASS; but on some machines
1207 in some cases it is preferable to use a more restrictive class. */
1208
1209 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1210 ((CLASS) == NO_REGS && TARGET_SHMEDIA \
1211 && (GET_CODE (X) == CONST_DOUBLE \
1212 || GET_CODE (X) == SYMBOL_REF) \
1213 ? GENERAL_REGS \
1214 : (CLASS)) \
1215
1216 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
1217 ((((((CLASS) == FP_REGS || (CLASS) == FP0_REGS \
1218 || (CLASS) == DF_REGS) \
1219 && (GET_CODE (X) == REG && GENERAL_OR_AP_REGISTER_P (REGNO (X)))) \
1220 || (((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS) \
1221 && GET_CODE (X) == REG \
1222 && FP_REGISTER_P (REGNO (X)))) \
1223 && ! TARGET_SHMEDIA \
1224 && MODE == SFmode) \
1225 ? FPUL_REGS \
1226 : ((CLASS) == FPUL_REGS \
1227 && (GET_CODE (X) == MEM \
1228 || (GET_CODE (X) == REG \
1229 && (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1230 || REGNO (X) == T_REG \
1231 || system_reg_operand (X, VOIDmode))))) \
1232 ? GENERAL_REGS \
1233 : (((CLASS) == FP_REGS || (CLASS) == DF_REGS) && TARGET_SHMEDIA \
1234 && immediate_operand ((X), (MODE))) \
1235 ? GENERAL_REGS \
1236 : ((CLASS) == TARGET_REGS \
1237 || (TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS)) \
1238 ? ((target_operand ((X), (MODE)) \
1239 && ! target_reg_operand ((X), (MODE))) \
1240 ? NO_REGS : GENERAL_REGS) \
1241 : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS) \
1242 && GET_CODE (X) == REG && ! GENERAL_REGISTER_P (REGNO (X)) \
1243 && (CLASS) != REGNO_REG_CLASS (REGNO (X))) \
1244 ? GENERAL_REGS : NO_REGS)
1245
1246 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
1247 ((((CLASS) == FP_REGS || (CLASS) == FP0_REGS || (CLASS) == DF_REGS) \
1248 && ! TARGET_SHMEDIA \
1249 && immediate_operand ((X), (MODE)) \
1250 && ! ((fp_zero_operand (X) || fp_one_operand (X)) \
1251 && (MODE) == SFmode && fldi_ok ())) \
1252 ? R0_REGS \
1253 : (CLASS == FPUL_REGS \
1254 && ((GET_CODE (X) == REG \
1255 && (REGNO (X) == MACL_REG || REGNO (X) == MACH_REG \
1256 || REGNO (X) == T_REG)))) \
1257 ? GENERAL_REGS \
1258 : CLASS == FPUL_REGS && immediate_operand ((X), (MODE)) \
1259 ? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I (INTVAL (X)) \
1260 ? GENERAL_REGS \
1261 : R0_REGS) \
1262 : (CLASS == FPSCR_REGS \
1263 && ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1264 || (GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)))\
1265 ? GENERAL_REGS \
1266 : SECONDARY_OUTPUT_RELOAD_CLASS((CLASS),(MODE),(X)))
1267
1268 /* Return the maximum number of consecutive registers
1269 needed to represent mode MODE in a register of class CLASS.
1270
1271 On SH this is the size of MODE in words. */
1272 #define CLASS_MAX_NREGS(CLASS, MODE) \
1273 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1274
1275 /* If defined, gives a class of registers that cannot be used as the
1276 operand of a SUBREG that changes the mode of the object illegally. */
1277
1278 #define CLASS_CANNOT_CHANGE_MODE DF_REGS
1279
1280 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
1281
1282 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1283 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
1284 \f
1285 /* Stack layout; function entry, exit and calling. */
1286
1287 /* Define the number of registers that can hold parameters.
1288 These macros are used only in other macro definitions below. */
1289
1290 #define NPARM_REGS(MODE) \
1291 (TARGET_FPU_ANY && (MODE) == SFmode \
1292 ? (TARGET_SH5 ? 12 : 8) \
1293 : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1294 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1295 ? (TARGET_SH5 ? 12 : 8) \
1296 : (TARGET_SH5 ? 8 : 4))
1297
1298 #define FIRST_PARM_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 4))
1299 #define FIRST_RET_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 0))
1300
1301 #define FIRST_FP_PARM_REG (FIRST_FP_REG + (TARGET_SH5 ? 0 : 4))
1302 #define FIRST_FP_RET_REG FIRST_FP_REG
1303
1304 /* Define this if pushing a word on the stack
1305 makes the stack pointer a smaller address. */
1306 #define STACK_GROWS_DOWNWARD
1307
1308 /* Define this macro if the addresses of local variable slots are at
1309 negative offsets from the frame pointer.
1310
1311 The SH only has positive indexes, so grow the frame up. */
1312 /* #define FRAME_GROWS_DOWNWARD */
1313
1314 /* Offset from the frame pointer to the first local variable slot to
1315 be allocated. */
1316 #define STARTING_FRAME_OFFSET 0
1317
1318 /* If we generate an insn to push BYTES bytes,
1319 this says how many the stack pointer really advances by. */
1320 /* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
1321 When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
1322 do correct alignment. */
1323 #if 0
1324 #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
1325 #endif
1326
1327 /* Offset of first parameter from the argument pointer register value. */
1328 #define FIRST_PARM_OFFSET(FNDECL) 0
1329
1330 /* Value is the number of byte of arguments automatically
1331 popped when returning from a subroutine call.
1332 FUNDECL is the declaration node of the function (as a tree),
1333 FUNTYPE is the data type of the function (as a tree),
1334 or for a library call it is an identifier node for the subroutine name.
1335 SIZE is the number of bytes of arguments passed on the stack.
1336
1337 On the SH, the caller does not pop any of its arguments that were passed
1338 on the stack. */
1339 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1340
1341 /* Value is the number of bytes of arguments automatically popped when
1342 calling a subroutine.
1343 CUM is the accumulated argument list.
1344
1345 On SHcompact, the call trampoline pops arguments off the stack. */
1346 #define CALL_POPS_ARGS(CUM) (TARGET_SHCOMPACT ? (CUM).stack_regs * 8 : 0)
1347
1348 /* Nonzero if we do not know how to pass TYPE solely in registers.
1349 Values that come in registers with inconvenient padding are stored
1350 to memory at the function start. */
1351
1352 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1353 ((TYPE) != 0 \
1354 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1355 || TREE_ADDRESSABLE (TYPE)))
1356 /* Some subroutine macros specific to this machine. */
1357
1358 #define BASE_RETURN_VALUE_REG(MODE) \
1359 ((TARGET_FPU_ANY && ((MODE) == SFmode)) \
1360 ? FIRST_FP_RET_REG \
1361 : TARGET_FPU_ANY && (MODE) == SCmode \
1362 ? FIRST_FP_RET_REG \
1363 : (TARGET_FPU_DOUBLE \
1364 && ((MODE) == DFmode || (MODE) == SFmode \
1365 || (MODE) == DCmode || (MODE) == SCmode )) \
1366 ? FIRST_FP_RET_REG \
1367 : FIRST_RET_REG)
1368
1369 #define BASE_ARG_REG(MODE) \
1370 ((TARGET_SH3E && ((MODE) == SFmode)) \
1371 ? FIRST_FP_PARM_REG \
1372 : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1373 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1374 ? FIRST_FP_PARM_REG \
1375 : FIRST_PARM_REG)
1376
1377 /* Define how to find the value returned by a function.
1378 VALTYPE is the data type of the value (as a tree).
1379 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1380 otherwise, FUNC is 0.
1381 For the SH, this is like LIBCALL_VALUE, except that we must change the
1382 mode like PROMOTE_MODE does.
1383 ??? PROMOTE_MODE is ignored for non-scalar types. The set of types
1384 tested here has to be kept in sync with the one in explow.c:promote_mode. */
1385
1386 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1387 gen_rtx (REG, \
1388 ((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT \
1389 && GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < UNITS_PER_WORD \
1390 && (TREE_CODE (VALTYPE) == INTEGER_TYPE \
1391 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
1392 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
1393 || TREE_CODE (VALTYPE) == CHAR_TYPE \
1394 || TREE_CODE (VALTYPE) == REAL_TYPE \
1395 || TREE_CODE (VALTYPE) == OFFSET_TYPE)) \
1396 ? (TARGET_SHMEDIA ? DImode : SImode) : TYPE_MODE (VALTYPE)), \
1397 BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
1398
1399 /* Define how to find the value returned by a library function
1400 assuming the value has mode MODE. */
1401 #define LIBCALL_VALUE(MODE) \
1402 gen_rtx_REG ((MODE), BASE_RETURN_VALUE_REG (MODE));
1403
1404 /* 1 if N is a possible register number for a function value. */
1405 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1406 ((REGNO) == FIRST_RET_REG || (TARGET_SH3E && (REGNO) == FIRST_FP_RET_REG) \
1407 || (TARGET_SHMEDIA_FPU && (REGNO) == FIRST_FP_RET_REG))
1408
1409 /* 1 if N is a possible register number for function argument passing. */
1410 #define FUNCTION_ARG_REGNO_P(REGNO) \
1411 (((REGNO) >= FIRST_PARM_REG && (REGNO) < (FIRST_PARM_REG \
1412 + NPARM_REGS (SImode))) \
1413 || (TARGET_FPU_ANY \
1414 && (REGNO) >= FIRST_FP_PARM_REG && (REGNO) < (FIRST_FP_PARM_REG \
1415 + NPARM_REGS (SFmode))))
1416 \f
1417 /* Define a data type for recording info about an argument list
1418 during the scan of that argument list. This data type should
1419 hold all necessary information about the function itself
1420 and about the args processed so far, enough to enable macros
1421 such as FUNCTION_ARG to determine where the next arg should go.
1422
1423 On SH, this is a single integer, which is a number of words
1424 of arguments scanned so far (including the invisible argument,
1425 if any, which holds the structure-value-address).
1426 Thus NARGREGS or more means all following args should go on the stack. */
1427
1428 enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1429 struct sh_args {
1430 int arg_count[2];
1431 int force_mem;
1432 /* Non-zero if a prototype is available for the function. */
1433 int prototype_p;
1434 /* The number of an odd floating-point register, that should be used
1435 for the next argument of type float. */
1436 int free_single_fp_reg;
1437 /* Whether we're processing an outgoing function call. */
1438 int outgoing;
1439 /* The number of general-purpose registers that should have been
1440 used to pass partial arguments, that are passed totally on the
1441 stack. On SHcompact, a call trampoline will pop them off the
1442 stack before calling the actual function, and, if the called
1443 function is implemented in SHcompact mode, the incoming arguments
1444 decoder will push such arguments back onto the stack. For
1445 incoming arguments, STACK_REGS also takes into account other
1446 arguments passed by reference, that the decoder will also push
1447 onto the stack. */
1448 int stack_regs;
1449 /* The number of general-purpose registers that should have been
1450 used to pass arguments, if the arguments didn't have to be passed
1451 by reference. */
1452 int byref_regs;
1453 /* Set by SHCOMPACT_BYREF if the current argument is to be passed by
1454 reference. */
1455 int byref;
1456
1457 /* call_cookie is a bitmask used by call expanders, as well as
1458 function prologue and epilogues, to allow SHcompact to comply
1459 with the SH5 32-bit ABI, that requires 64-bit registers to be
1460 used even though only the lower 32-bit half is visible in
1461 SHcompact mode. The strategy is to call SHmedia trampolines.
1462
1463 The alternatives for each of the argument-passing registers are
1464 (a) leave it unchanged; (b) pop it off the stack; (c) load its
1465 contents from the address in it; (d) add 8 to it, storing the
1466 result in the next register, then (c); (e) copy it from some
1467 floating-point register,
1468
1469 Regarding copies from floating-point registers, r2 may only be
1470 copied from dr0. r3 may be copied from dr0 or dr2. r4 maybe
1471 copied from dr0, dr2 or dr4. r5 maybe copied from dr0, dr2,
1472 dr4 or dr6. r6 may be copied from dr0, dr2, dr4, dr6 or dr8.
1473 r7 through to r9 may be copied from dr0, dr2, dr4, dr8, dr8 or
1474 dr10.
1475
1476 The bit mask is structured as follows:
1477
1478 - 1 bit to tell whether to set up a return trampoline.
1479
1480 - 3 bits to count the number consecutive registers to pop off the
1481 stack.
1482
1483 - 4 bits for each of r9, r8, r7 and r6.
1484
1485 - 3 bits for each of r5, r4, r3 and r2.
1486
1487 - 3 bits set to 0 (the most significant ones)
1488
1489 3 2 1 0
1490 1098 7654 3210 9876 5432 1098 7654 3210
1491 FLPF LPFL PFLP FFLP FFLP FFLP FFLP SSST
1492 2223 3344 4555 6666 7777 8888 9999 SSS-
1493
1494 - If F is set, the register must be copied from an FP register,
1495 whose number is encoded in the remaining bits.
1496
1497 - Else, if L is set, the register must be loaded from the address
1498 contained in it. If the P bit is *not* set, the address of the
1499 following dword should be computed first, and stored in the
1500 following register.
1501
1502 - Else, if P is set, the register alone should be popped off the
1503 stack.
1504
1505 - After all this processing, the number of registers represented
1506 in SSS will be popped off the stack. This is an optimization
1507 for pushing/popping consecutive registers, typically used for
1508 varargs and large arguments partially passed in registers.
1509
1510 - If T is set, a return trampoline will be set up for 64-bit
1511 return values to be split into 2 32-bit registers. */
1512 #define CALL_COOKIE_RET_TRAMP_SHIFT 0
1513 #define CALL_COOKIE_RET_TRAMP(VAL) ((VAL) << CALL_COOKIE_RET_TRAMP_SHIFT)
1514 #define CALL_COOKIE_STACKSEQ_SHIFT 1
1515 #define CALL_COOKIE_STACKSEQ(VAL) ((VAL) << CALL_COOKIE_STACKSEQ_SHIFT)
1516 #define CALL_COOKIE_STACKSEQ_GET(COOKIE) \
1517 (((COOKIE) >> CALL_COOKIE_STACKSEQ_SHIFT) & 7)
1518 #define CALL_COOKIE_INT_REG_SHIFT(REG) \
1519 (4 * (7 - (REG)) + (((REG) <= 2) ? ((REG) - 2) : 1) + 3)
1520 #define CALL_COOKIE_INT_REG(REG, VAL) \
1521 ((VAL) << CALL_COOKIE_INT_REG_SHIFT (REG))
1522 #define CALL_COOKIE_INT_REG_GET(COOKIE, REG) \
1523 (((COOKIE) >> CALL_COOKIE_INT_REG_SHIFT (REG)) & ((REG) < 4 ? 7 : 15))
1524 long call_cookie;
1525 };
1526
1527 #define CUMULATIVE_ARGS struct sh_args
1528
1529 #define GET_SH_ARG_CLASS(MODE) \
1530 ((TARGET_FPU_ANY && (MODE) == SFmode) \
1531 ? SH_ARG_FLOAT \
1532 /* There's no mention of complex float types in the SH5 ABI, so we
1533 should presumably handle them as aggregate types. */ \
1534 : TARGET_SH5 && GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1535 ? SH_ARG_INT \
1536 : TARGET_FPU_DOUBLE && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1537 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1538 ? SH_ARG_FLOAT : SH_ARG_INT)
1539
1540 #define ROUND_ADVANCE(SIZE) \
1541 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1542
1543 /* Round a register number up to a proper boundary for an arg of mode
1544 MODE.
1545
1546 The SH doesn't care about double alignment, so we only
1547 round doubles to even regs when asked to explicitly. */
1548
1549 #define ROUND_REG(CUM, MODE) \
1550 (((TARGET_ALIGN_DOUBLE \
1551 || (TARGET_SH4 && ((MODE) == DFmode || (MODE) == DCmode) \
1552 && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
1553 && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
1554 ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
1555 + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1)) \
1556 : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
1557
1558 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1559 for a call to a function whose data type is FNTYPE.
1560 For a library call, FNTYPE is 0.
1561
1562 On SH, the offset always starts at 0: the first parm reg is always
1563 the same reg for a given argument class.
1564
1565 For TARGET_HITACHI, the structure value pointer is passed in memory. */
1566
1567 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1568 do { \
1569 (CUM).arg_count[(int) SH_ARG_INT] = 0; \
1570 (CUM).arg_count[(int) SH_ARG_FLOAT] = 0; \
1571 (CUM).force_mem \
1572 = (TARGET_HITACHI && FNTYPE \
1573 && aggregate_value_p (TREE_TYPE (FNTYPE))); \
1574 (CUM).prototype_p = (FNTYPE) && TYPE_ARG_TYPES (FNTYPE); \
1575 (CUM).arg_count[(int) SH_ARG_INT] \
1576 = (TARGET_SH5 && (FNTYPE) \
1577 && aggregate_value_p (TREE_TYPE (FNTYPE))); \
1578 (CUM).free_single_fp_reg = 0; \
1579 (CUM).outgoing = 1; \
1580 (CUM).stack_regs = 0; \
1581 (CUM).byref_regs = 0; \
1582 (CUM).byref = 0; \
1583 (CUM).call_cookie \
1584 = (CALL_COOKIE_RET_TRAMP \
1585 (TARGET_SHCOMPACT && (FNTYPE) \
1586 && (CUM).arg_count[(int) SH_ARG_INT] == 0 \
1587 && (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
1588 ? int_size_in_bytes (TREE_TYPE (FNTYPE)) \
1589 : GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (FNTYPE)))) > 4 \
1590 && (BASE_RETURN_VALUE_REG (TYPE_MODE (TREE_TYPE \
1591 (FNTYPE))) \
1592 == FIRST_RET_REG))); \
1593 } while (0)
1594
1595 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1596 do { \
1597 INIT_CUMULATIVE_ARGS ((CUM), NULL_TREE, (LIBNAME), 0); \
1598 (CUM).call_cookie \
1599 = (CALL_COOKIE_RET_TRAMP \
1600 (TARGET_SHCOMPACT && GET_MODE_SIZE (MODE) > 4 \
1601 && BASE_RETURN_VALUE_REG (MODE) == FIRST_RET_REG)); \
1602 } while (0)
1603
1604 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1605 do { \
1606 INIT_CUMULATIVE_ARGS ((CUM), (FNTYPE), (LIBNAME), 0); \
1607 (CUM).outgoing = 0; \
1608 } while (0)
1609
1610 /* FIXME: This is overly conservative. A SHcompact function that
1611 receives arguments ``by reference'' will have them stored in its
1612 own stack frame, so it must not pass pointers or references to
1613 these arguments to other functions by means of sibling calls. */
1614 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1615 (! TARGET_SHCOMPACT || current_function_args_info.stack_regs == 0)
1616
1617 /* Update the data in CUM to advance over an argument
1618 of mode MODE and data type TYPE.
1619 (TYPE is null for libcalls where that information may not be
1620 available.) */
1621
1622 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1623 if ((CUM).force_mem) \
1624 (CUM).force_mem = 0; \
1625 else if (TARGET_SH5) \
1626 { \
1627 tree TYPE_ = ((CUM).byref && (TYPE) \
1628 ? TREE_TYPE (TYPE) \
1629 : (TYPE)); \
1630 enum machine_mode MODE_ = ((CUM).byref && (TYPE) \
1631 ? TYPE_MODE (TYPE_) \
1632 : (MODE)); \
1633 int dwords = (((CUM).byref \
1634 ? (CUM).byref \
1635 : (MODE_) == BLKmode \
1636 ? int_size_in_bytes (TYPE_) \
1637 : GET_MODE_SIZE (MODE_)) + 7) / 8; \
1638 int numregs = MIN (dwords, NPARM_REGS (SImode) \
1639 - (CUM).arg_count[(int) SH_ARG_INT]); \
1640 \
1641 if (numregs) \
1642 { \
1643 (CUM).arg_count[(int) SH_ARG_INT] += numregs; \
1644 if (TARGET_SHCOMPACT \
1645 && SHCOMPACT_FORCE_ON_STACK (MODE_, TYPE_)) \
1646 (CUM).call_cookie \
1647 |= CALL_COOKIE_INT_REG (((CUM).arg_count[(int) SH_ARG_INT] \
1648 - numregs), 1); \
1649 else if ((CUM).byref) \
1650 { \
1651 if (! (CUM).outgoing) \
1652 (CUM).stack_regs += numregs; \
1653 (CUM).byref_regs += numregs; \
1654 (CUM).byref = 0; \
1655 do \
1656 (CUM).call_cookie \
1657 |= CALL_COOKIE_INT_REG (((CUM).arg_count[(int) SH_ARG_INT] \
1658 - numregs), 2); \
1659 while (--numregs); \
1660 (CUM).call_cookie \
1661 |= CALL_COOKIE_INT_REG (((CUM).arg_count[(int) SH_ARG_INT] \
1662 - 1), 1); \
1663 } \
1664 else if (dwords > numregs) \
1665 { \
1666 int pushregs = numregs; \
1667 \
1668 if (TARGET_SHCOMPACT) \
1669 (CUM).stack_regs += numregs; \
1670 while (pushregs < NPARM_REGS (SImode) - 1 \
1671 && (CALL_COOKIE_INT_REG_GET \
1672 ((CUM).call_cookie, \
1673 NPARM_REGS (SImode) - pushregs) \
1674 == 1)) \
1675 { \
1676 (CUM).call_cookie \
1677 &= ~ CALL_COOKIE_INT_REG (NPARM_REGS (SImode) \
1678 - pushregs, 1); \
1679 pushregs++; \
1680 } \
1681 if (numregs == NPARM_REGS (SImode)) \
1682 (CUM).call_cookie \
1683 |= CALL_COOKIE_INT_REG (0, 1) \
1684 | CALL_COOKIE_STACKSEQ (numregs - 1); \
1685 else \
1686 (CUM).call_cookie \
1687 |= CALL_COOKIE_STACKSEQ (numregs); \
1688 } \
1689 } \
1690 if (GET_SH_ARG_CLASS (MODE_) == SH_ARG_FLOAT \
1691 && ((NAMED) || ! (CUM).prototype_p)) \
1692 { \
1693 if ((MODE_) == SFmode && (CUM).free_single_fp_reg) \
1694 (CUM).free_single_fp_reg = 0; \
1695 else if ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1696 < NPARM_REGS (SFmode)) \
1697 { \
1698 int numfpregs \
1699 = MIN ((GET_MODE_SIZE (MODE_) + 7) / 8 * 2, \
1700 NPARM_REGS (SFmode) \
1701 - (CUM).arg_count[(int) SH_ARG_FLOAT]); \
1702 \
1703 (CUM).arg_count[(int) SH_ARG_FLOAT] += numfpregs; \
1704 \
1705 if (TARGET_SHCOMPACT && ! (CUM).prototype_p) \
1706 { \
1707 if ((CUM).outgoing && numregs > 0) \
1708 do \
1709 { \
1710 (CUM).call_cookie \
1711 |= (CALL_COOKIE_INT_REG \
1712 ((CUM).arg_count[(int) SH_ARG_INT] \
1713 - numregs + ((numfpregs - 2) / 2), \
1714 4 + ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1715 - numfpregs) / 2)); \
1716 } \
1717 while (numfpregs -= 2); \
1718 } \
1719 else if ((MODE_) == SFmode && (NAMED) \
1720 && ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1721 < NPARM_REGS (SFmode))) \
1722 (CUM).free_single_fp_reg \
1723 = FIRST_FP_PARM_REG - numfpregs \
1724 + (CUM).arg_count[(int) SH_ARG_FLOAT] + 1; \
1725 } \
1726 } \
1727 } \
1728 else if (! TARGET_SH4 || PASS_IN_REG_P ((CUM), (MODE), (TYPE))) \
1729 ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
1730 = (ROUND_REG ((CUM), (MODE)) \
1731 + ((MODE) == BLKmode \
1732 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
1733 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))))
1734
1735 /* Return boolean indicating arg of mode MODE will be passed in a reg.
1736 This macro is only used in this file. */
1737
1738 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1739 (((TYPE) == 0 \
1740 || (! TREE_ADDRESSABLE ((tree)(TYPE)) \
1741 && (! TARGET_HITACHI || ! AGGREGATE_TYPE_P (TYPE)))) \
1742 && ! (CUM).force_mem \
1743 && (TARGET_SH3E \
1744 ? ((MODE) == BLKmode \
1745 ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
1746 + int_size_in_bytes (TYPE)) \
1747 <= NPARM_REGS (SImode) * UNITS_PER_WORD) \
1748 : ((ROUND_REG((CUM), (MODE)) \
1749 + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
1750 <= NPARM_REGS (MODE))) \
1751 : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
1752
1753 /* Define where to put the arguments to a function.
1754 Value is zero to push the argument on the stack,
1755 or a hard register in which to store the argument.
1756
1757 MODE is the argument's machine mode.
1758 TYPE is the data type of the argument (as a tree).
1759 This is null for libcalls where that information may
1760 not be available.
1761 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1762 the preceding args and about the function being called.
1763 NAMED is nonzero if this argument is a named parameter
1764 (otherwise it is an extra parameter matching an ellipsis).
1765
1766 On SH the first args are normally in registers
1767 and the rest are pushed. Any arg that starts within the first
1768 NPARM_REGS words is at least partially passed in a register unless
1769 its data type forbids. */
1770
1771 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1772 ((! TARGET_SH5 \
1773 && PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1774 && ((NAMED) \
1775 || (! TARGET_HITACHI && (TARGET_SH3E || ! current_function_varargs)))) \
1776 ? gen_rtx_REG ((MODE), \
1777 ((BASE_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))) \
1778 ^ ((MODE) == SFmode && TARGET_SH4 \
1779 && TARGET_LITTLE_ENDIAN != 0))) \
1780 : TARGET_SH5 \
1781 ? ((MODE) == VOIDmode && TARGET_SHCOMPACT \
1782 ? GEN_INT ((CUM).call_cookie) \
1783 /* The following test assumes unnamed arguments are promoted to \
1784 DFmode. */ \
1785 : (MODE) == SFmode && (CUM).free_single_fp_reg \
1786 ? SH5_PROTOTYPED_FLOAT_ARG ((CUM), (MODE), (CUM).free_single_fp_reg) \
1787 : (GET_SH_ARG_CLASS (MODE) == SH_ARG_FLOAT \
1788 && ((NAMED) || ! (CUM).prototype_p) \
1789 && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (SFmode)) \
1790 ? ((! (CUM).prototype_p && TARGET_SHMEDIA) \
1791 ? SH5_PROTOTYPELESS_FLOAT_ARG ((CUM), (MODE)) \
1792 : SH5_PROTOTYPED_FLOAT_ARG ((CUM), (MODE), \
1793 FIRST_FP_PARM_REG \
1794 + (CUM).arg_count[(int) SH_ARG_FLOAT])) \
1795 : ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1796 && (! TARGET_SHCOMPACT \
1797 || (! SHCOMPACT_FORCE_ON_STACK ((MODE), (TYPE)) \
1798 && ! SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE), \
1799 (TYPE), (NAMED))))) \
1800 ? gen_rtx_REG ((MODE), (FIRST_PARM_REG \
1801 + (CUM).arg_count[(int) SH_ARG_INT])) \
1802 : 0) \
1803 : 0)
1804
1805 /* Whether an argument must be passed by reference. On SHcompact, we
1806 pretend arguments wider than 32-bits that would have been passed in
1807 registers are passed by reference, so that an SHmedia trampoline
1808 loads them into the full 64-bits registers. */
1809 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM,MODE,TYPE,NAMED) \
1810 (MUST_PASS_IN_STACK ((MODE), (TYPE)) \
1811 || SHCOMPACT_BYREF ((CUM), (MODE), (TYPE), (NAMED)))
1812
1813 #define SHCOMPACT_BYREF(CUM, MODE, TYPE, NAMED) \
1814 ((CUM).byref \
1815 = (TARGET_SHCOMPACT \
1816 && (CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1817 && (! (NAMED) || GET_SH_ARG_CLASS (MODE) == SH_ARG_INT \
1818 || (GET_SH_ARG_CLASS (MODE) == SH_ARG_FLOAT \
1819 && ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1820 >= NPARM_REGS (SFmode)))) \
1821 && ((MODE) == BLKmode ? int_size_in_bytes (TYPE) \
1822 : GET_MODE_SIZE (MODE)) > 4 \
1823 && ! SHCOMPACT_FORCE_ON_STACK ((MODE), (TYPE)) \
1824 && ! SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE), \
1825 (TYPE), (NAMED))) \
1826 ? ((MODE) == BLKmode ? int_size_in_bytes (TYPE) \
1827 : GET_MODE_SIZE (MODE)) \
1828 : 0)
1829
1830 /* If an argument of size 5, 6 or 7 bytes is to be passed in a 64-bit
1831 register in SHcompact mode, it must be padded in the most
1832 significant end. This means that passing it by reference wouldn't
1833 pad properly on a big-endian machine. In this particular case, we
1834 pass this argument on the stack, in a way that the call trampoline
1835 will load its value into the appropriate register. */
1836 #define SHCOMPACT_FORCE_ON_STACK(MODE,TYPE) \
1837 ((MODE) == BLKmode \
1838 && TARGET_SHCOMPACT \
1839 && ! TARGET_LITTLE_ENDIAN \
1840 && int_size_in_bytes (TYPE) > 4 \
1841 && int_size_in_bytes (TYPE) < 8)
1842
1843 /* Minimum alignment for an argument to be passed by callee-copy
1844 reference. We need such arguments to be aligned to 8 byte
1845 boundaries, because they'll be loaded using quad loads. */
1846 #define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
1847
1848 #define FUNCTION_ARG_CALLEE_COPIES(CUM,MODE,TYPE,NAMED) \
1849 ((CUM).outgoing \
1850 && (((MODE) == BLKmode ? TYPE_ALIGN (TYPE) \
1851 : GET_MODE_ALIGNMENT (MODE)) \
1852 % SH_MIN_ALIGN_FOR_CALLEE_COPY == 0))
1853
1854 /* The SH5 ABI requires floating-point arguments to be passed to
1855 functions without a prototype in both an FP register and a regular
1856 register or the stack. When passing the argument in both FP and
1857 general-purpose registers, list the FP register first. */
1858 #define SH5_PROTOTYPELESS_FLOAT_ARG(CUM,MODE) \
1859 (gen_rtx_PARALLEL \
1860 ((MODE), \
1861 gen_rtvec (2, \
1862 gen_rtx_EXPR_LIST \
1863 (VOIDmode, \
1864 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1865 ? gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
1866 + (CUM).arg_count[(int) SH_ARG_FLOAT]) \
1867 : NULL_RTX), \
1868 const0_rtx), \
1869 gen_rtx_EXPR_LIST \
1870 (VOIDmode, \
1871 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1872 ? gen_rtx_REG ((MODE), FIRST_PARM_REG \
1873 + (CUM).arg_count[(int) SH_ARG_INT]) \
1874 : gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
1875 + (CUM).arg_count[(int) SH_ARG_FLOAT])), \
1876 const0_rtx))))
1877
1878 /* The SH5 ABI requires regular registers or stack slots to be
1879 reserved for floating-point arguments. Registers are taken care of
1880 in FUNCTION_ARG_ADVANCE, but stack slots must be reserved here.
1881 Unfortunately, there's no way to just reserve a stack slot, so
1882 we'll end up needlessly storing a copy of the argument in the
1883 stack. For incoming arguments, however, the PARALLEL will be
1884 optimized to the register-only form, and the value in the stack
1885 slot won't be used at all. */
1886 #define SH5_PROTOTYPED_FLOAT_ARG(CUM,MODE,REG) \
1887 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1888 ? gen_rtx_REG ((MODE), (REG)) \
1889 : gen_rtx_PARALLEL ((MODE), \
1890 gen_rtvec (2, \
1891 gen_rtx_EXPR_LIST \
1892 (VOIDmode, NULL_RTX, \
1893 const0_rtx), \
1894 gen_rtx_EXPR_LIST \
1895 (VOIDmode, gen_rtx_REG ((MODE), \
1896 (REG)), \
1897 const0_rtx))))
1898
1899 #define STRICT_ARGUMENT_NAMING TARGET_SH5
1900
1901 #define PRETEND_OUTGOING_VARARGS_NAMED (! TARGET_HITACHI && ! TARGET_SH5)
1902
1903 /* For an arg passed partly in registers and partly in memory,
1904 this is the number of registers used.
1905 For args passed entirely in registers or entirely in memory, zero.
1906
1907 We sometimes split args. */
1908
1909 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1910 ((! TARGET_SH5 \
1911 && PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1912 && ! TARGET_SH4 \
1913 && (ROUND_REG ((CUM), (MODE)) \
1914 + ((MODE) != BLKmode \
1915 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
1916 : ROUND_ADVANCE (int_size_in_bytes (TYPE))) \
1917 > NPARM_REGS (MODE))) \
1918 ? NPARM_REGS (MODE) - ROUND_REG ((CUM), (MODE)) \
1919 : (SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE), (TYPE), (NAMED)) \
1920 && ! TARGET_SHCOMPACT) \
1921 ? NPARM_REGS (SImode) - (CUM).arg_count[(int) SH_ARG_INT] \
1922 : 0)
1923
1924 #define SH5_WOULD_BE_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1925 (TARGET_SH5 && (MODE) == BLKmode \
1926 && ((CUM).arg_count[(int) SH_ARG_INT] \
1927 + (int_size_in_bytes (TYPE) + 7) / 8) > NPARM_REGS (SImode))
1928
1929 /* Perform any needed actions needed for a function that is receiving a
1930 variable number of arguments. */
1931
1932 /* We actually emit the code in sh_expand_prologue. We used to use
1933 a static variable to flag that we need to emit this code, but that
1934 doesn't when inlining, when functions are deferred and then emitted
1935 later. Fortunately, we already have two flags that are part of struct
1936 function that tell if a function uses varargs or stdarg. */
1937 #define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) do \
1938 if (! current_function_varargs && ! current_function_stdarg) \
1939 abort (); \
1940 while (0)
1941
1942 /* Define the `__builtin_va_list' type for the ABI. */
1943 #define BUILD_VA_LIST_TYPE(VALIST) \
1944 (VALIST) = sh_build_va_list ()
1945
1946 /* Implement `va_start' for varargs and stdarg. */
1947 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1948 sh_va_start (stdarg, valist, nextarg)
1949
1950 /* Implement `va_arg'. */
1951 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1952 sh_va_arg (valist, type)
1953
1954 /* Call the function profiler with a given profile label.
1955 We use two .aligns, so as to make sure that both the .long is aligned
1956 on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
1957 from the trapa instruction. */
1958
1959 #define FUNCTION_PROFILER(STREAM,LABELNO) \
1960 { \
1961 fprintf((STREAM), "\t.align\t2\n"); \
1962 fprintf((STREAM), "\ttrapa\t#33\n"); \
1963 fprintf((STREAM), "\t.align\t2\n"); \
1964 asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
1965 }
1966
1967 /* Define this macro if the code for function profiling should come
1968 before the function prologue. Normally, the profiling code comes
1969 after. */
1970
1971 #define PROFILE_BEFORE_PROLOGUE
1972
1973 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1974 the stack pointer does not matter. The value is tested only in
1975 functions that have frame pointers.
1976 No definition is equivalent to always zero. */
1977
1978 #define EXIT_IGNORE_STACK 1
1979
1980 /*
1981 On the SH, the trampoline looks like
1982 2 0002 D202 mov.l l2,r2
1983 1 0000 D301 mov.l l1,r3
1984 3 0004 422B jmp @r2
1985 4 0006 0009 nop
1986 5 0008 00000000 l1: .long area
1987 6 000c 00000000 l2: .long function */
1988
1989 /* Length in units of the trampoline for entering a nested function. */
1990 #define TRAMPOLINE_SIZE (TARGET_SHMEDIA64 ? 40 : TARGET_SH5 ? 32 : 16)
1991
1992 /* Alignment required for a trampoline in bits . */
1993 #define TRAMPOLINE_ALIGNMENT \
1994 ((CACHE_LOG < 3 || (TARGET_SMALLCODE && ! TARGET_HARVARD)) ? 32 : 64)
1995
1996 /* Emit RTL insns to initialize the variable parts of a trampoline.
1997 FNADDR is an RTX for the address of the function's pure code.
1998 CXT is an RTX for the static chain value for the function. */
1999
2000 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) do \
2001 { \
2002 if (TARGET_SH5) \
2003 { \
2004 rtx tramp_templ = gen_rtx_SYMBOL_REF (Pmode, \
2005 "__GCC_nested_trampoline"); \
2006 int fixed_len = TRAMPOLINE_SIZE - 2 * GET_MODE_SIZE (Pmode); \
2007 \
2008 tramp_templ = gen_datalabel_ref (tramp_templ); \
2009 emit_block_move (gen_rtx_MEM (BLKmode, (TRAMP)), \
2010 gen_rtx_MEM (BLKmode, tramp_templ), \
2011 GEN_INT (fixed_len)); \
2012 emit_move_insn (gen_rtx_MEM (Pmode, plus_constant ((TRAMP), \
2013 fixed_len)), \
2014 (FNADDR)); \
2015 emit_move_insn (gen_rtx_MEM (Pmode, \
2016 plus_constant ((TRAMP), \
2017 fixed_len \
2018 + GET_MODE_SIZE (Pmode))), \
2019 (CXT)); \
2020 emit_insn (gen_ic_invalidate_line (TRAMP)); \
2021 break; \
2022 } \
2023 emit_move_insn (gen_rtx_MEM (SImode, (TRAMP)), \
2024 GEN_INT (trunc_int_for_mode \
2025 (TARGET_LITTLE_ENDIAN ? 0xd301d202 : 0xd202d301,\
2026 SImode))); \
2027 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 4)), \
2028 GEN_INT (TARGET_LITTLE_ENDIAN ? 0x0009422b : 0x422b0009));\
2029 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 8)), \
2030 (CXT)); \
2031 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 12)), \
2032 (FNADDR)); \
2033 if (TARGET_HARVARD) \
2034 { \
2035 if (TARGET_USERMODE) \
2036 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__ic_invalidate"),\
2037 0, VOIDmode, 1, (TRAMP), SImode); \
2038 else \
2039 emit_insn (gen_ic_invalidate_line (TRAMP)); \
2040 } \
2041 } while (0)
2042
2043 /* On SH5, trampolines are SHmedia code, so add 1 to the address. */
2044
2045 #define TRAMPOLINE_ADJUST_ADDRESS(TRAMP) do \
2046 { \
2047 if (TARGET_SH5) \
2048 (TRAMP) = expand_simple_binop (Pmode, PLUS, (TRAMP), GEN_INT (1), \
2049 gen_reg_rtx (Pmode), 0, \
2050 OPTAB_LIB_WIDEN); \
2051 } while (0)
2052
2053 /* A C expression whose value is RTL representing the value of the return
2054 address for the frame COUNT steps up from the current frame.
2055 FRAMEADDR is already the frame pointer of the COUNT frame, so we
2056 can ignore COUNT. */
2057
2058 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2059 (((COUNT) == 0) \
2060 ? get_hard_reg_initial_val (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG) \
2061 : (rtx) 0)
2062 \f
2063 /* Generate necessary RTL for __builtin_saveregs(). */
2064 #define EXPAND_BUILTIN_SAVEREGS() sh_builtin_saveregs ()
2065 \f
2066 /* Addressing modes, and classification of registers for them. */
2067 #define HAVE_POST_INCREMENT TARGET_SH1
2068 /*#define HAVE_PRE_INCREMENT 1*/
2069 /*#define HAVE_POST_DECREMENT 1*/
2070 #define HAVE_PRE_DECREMENT TARGET_SH1
2071
2072 #define USE_LOAD_POST_INCREMENT(mode) ((mode == SImode || mode == DImode) \
2073 ? 0 : TARGET_SH1)
2074 #define USE_LOAD_PRE_DECREMENT(mode) 0
2075 #define USE_STORE_POST_INCREMENT(mode) 0
2076 #define USE_STORE_PRE_DECREMENT(mode) ((mode == SImode || mode == DImode) \
2077 ? 0 : TARGET_SH1)
2078
2079 #define MOVE_BY_PIECES_P(SIZE, ALIGN) (move_by_pieces_ninsns (SIZE, ALIGN) \
2080 < (TARGET_SMALLCODE ? 2 : \
2081 ((ALIGN >= 32) ? 16 : 2)))
2082
2083 /* Macros to check register numbers against specific register classes. */
2084
2085 /* These assume that REGNO is a hard or pseudo reg number.
2086 They give nonzero only if REGNO is a hard reg of the suitable class
2087 or a pseudo reg currently allocated to a suitable hard reg.
2088 Since they use reg_renumber, they are safe only once reg_renumber
2089 has been allocated, which happens in local-alloc.c. */
2090
2091 #define REGNO_OK_FOR_BASE_P(REGNO) \
2092 (GENERAL_OR_AP_REGISTER_P (REGNO) \
2093 || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
2094 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2095 (TARGET_SHMEDIA \
2096 ? (GENERAL_REGISTER_P (REGNO) \
2097 || GENERAL_REGISTER_P ((unsigned) reg_renumber[(REGNO)])) \
2098 : (REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
2099
2100 /* Maximum number of registers that can appear in a valid memory
2101 address. */
2102
2103 #define MAX_REGS_PER_ADDRESS 2
2104
2105 /* Recognize any constant value that is a valid address. */
2106
2107 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
2108
2109 /* Nonzero if the constant value X is a legitimate general operand. */
2110
2111 #define LEGITIMATE_CONSTANT_P(X) \
2112 (TARGET_SHMEDIA \
2113 ? (GET_MODE (X) != DFmode \
2114 || (X) == CONST0_RTX (GET_MODE (X)) \
2115 || ! TARGET_SHMEDIA_FPU \
2116 || TARGET_SHMEDIA64) \
2117 : (GET_CODE (X) != CONST_DOUBLE \
2118 || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode \
2119 || (TARGET_SH3E && (fp_zero_operand (X) || fp_one_operand (X)))))
2120
2121 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2122 and check its validity for a certain class.
2123 We have two alternate definitions for each of them.
2124 The usual definition accepts all pseudo regs; the other rejects
2125 them unless they have been allocated suitable hard regs.
2126 The symbol REG_OK_STRICT causes the latter definition to be used. */
2127
2128 #ifndef REG_OK_STRICT
2129
2130 /* Nonzero if X is a hard reg that can be used as a base reg
2131 or if it is a pseudo reg. */
2132 #define REG_OK_FOR_BASE_P(X) \
2133 (GENERAL_OR_AP_REGISTER_P (REGNO (X)) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2134
2135 /* Nonzero if X is a hard reg that can be used as an index
2136 or if it is a pseudo reg. */
2137 #define REG_OK_FOR_INDEX_P(X) \
2138 ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2139 : REGNO (X) == R0_REG) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2140
2141 /* Nonzero if X/OFFSET is a hard reg that can be used as an index
2142 or if X is a pseudo reg. */
2143 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2144 ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2145 : REGNO (X) == R0_REG && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2146
2147 #else
2148
2149 /* Nonzero if X is a hard reg that can be used as a base reg. */
2150 #define REG_OK_FOR_BASE_P(X) \
2151 REGNO_OK_FOR_BASE_P (REGNO (X))
2152
2153 /* Nonzero if X is a hard reg that can be used as an index. */
2154 #define REG_OK_FOR_INDEX_P(X) \
2155 REGNO_OK_FOR_INDEX_P (REGNO (X))
2156
2157 /* Nonzero if X/OFFSET is a hard reg that can be used as an index. */
2158 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2159 (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
2160
2161 #endif
2162
2163 /* The 'Q' constraint is a pc relative load operand. */
2164 #define EXTRA_CONSTRAINT_Q(OP) \
2165 (GET_CODE (OP) == MEM \
2166 && ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF) \
2167 || (GET_CODE (XEXP ((OP), 0)) == CONST \
2168 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS \
2169 && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \
2170 && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
2171
2172 /* The `S' constraint is a 16-bit constant, literal or symbolic. */
2173 #define EXTRA_CONSTRAINT_S(OP) \
2174 (GET_CODE (OP) == CONST \
2175 && GET_CODE (XEXP ((OP), 0)) == SIGN_EXTEND \
2176 && GET_MODE (XEXP ((OP), 0)) == DImode \
2177 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == TRUNCATE \
2178 && GET_MODE (XEXP (XEXP ((OP), 0), 0)) == HImode \
2179 && (MOVI_SHORI_BASE_OPERAND_P (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) \
2180 || (GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == ASHIFTRT \
2181 && (MOVI_SHORI_BASE_OPERAND_P \
2182 (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), 0))) \
2183 && GET_CODE (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), \
2184 1)) == CONST_INT)))
2185
2186 /* Check whether OP is a datalabel unspec. */
2187 #define DATALABEL_REF_NO_CONST_P(OP) \
2188 (GET_CODE (OP) == UNSPEC \
2189 && XINT ((OP), 1) == UNSPEC_DATALABEL \
2190 && XVECLEN ((OP), 0) == 1 \
2191 && (GET_CODE (XVECEXP ((OP), 0, 0)) == SYMBOL_REF \
2192 || GET_CODE (XVECEXP ((OP), 0, 0)) == LABEL_REF))
2193
2194 /* Check whether OP is a datalabel unspec, possibly enclosed within a
2195 CONST. */
2196 #define DATALABEL_REF_P(OP) \
2197 ((GET_CODE (OP) == CONST && DATALABEL_REF_NO_CONST_P (XEXP ((OP), 0))) \
2198 || DATALABEL_REF_NO_CONST_P (OP))
2199
2200 #define GOT_ENTRY_P(OP) \
2201 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2202 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
2203
2204 #define GOTPLT_ENTRY_P(OP) \
2205 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2206 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
2207
2208 #define GOTOFF_P(OP) \
2209 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2210 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTOFF)
2211
2212 #define PIC_ADDR_P(OP) \
2213 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2214 && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
2215
2216 #define NON_PIC_REFERENCE_P(OP) \
2217 (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
2218 || DATALABEL_REF_P (OP) \
2219 || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
2220 && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
2221 || DATALABEL_REF_P (XEXP (XEXP ((OP), 0), 0))) \
2222 && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT))
2223
2224 #define PIC_REFERENCE_P(OP) \
2225 (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
2226 || GOTOFF_P (OP) || PIC_ADDR_P (OP))
2227
2228 #define MOVI_SHORI_BASE_OPERAND_P(OP) \
2229 (flag_pic ? PIC_REFERENCE_P (OP) : NON_PIC_REFERENCE_P (OP))
2230
2231 /* The `T' constraint is a label or a symbol. */
2232 #define EXTRA_CONSTRAINT_T(OP) \
2233 (NON_PIC_REFERENCE_P (OP))
2234
2235 #define EXTRA_CONSTRAINT(OP, C) \
2236 ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \
2237 : (C) == 'S' ? EXTRA_CONSTRAINT_S (OP) \
2238 : (C) == 'T' ? EXTRA_CONSTRAINT_T (OP) \
2239 : 0)
2240 \f
2241 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2242 that is a valid memory address for an instruction.
2243 The MODE argument is the machine mode for the MEM expression
2244 that wants to use this address. */
2245
2246 #define MODE_DISP_OK_4(X,MODE) \
2247 (GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
2248 && ! (INTVAL (X) & 3) && ! (TARGET_SH3E && (MODE) == SFmode))
2249
2250 #define MODE_DISP_OK_8(X,MODE) \
2251 ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
2252 && ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode))
2253
2254 #define BASE_REGISTER_RTX_P(X) \
2255 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2256 || (GET_CODE (X) == SUBREG \
2257 && GET_CODE (SUBREG_REG (X)) == REG \
2258 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2259
2260 /* Since this must be r0, which is a single register class, we must check
2261 SUBREGs more carefully, to be sure that we don't accept one that extends
2262 outside the class. */
2263 #define INDEX_REGISTER_RTX_P(X) \
2264 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2265 || (GET_CODE (X) == SUBREG \
2266 && GET_CODE (SUBREG_REG (X)) == REG \
2267 && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X))))
2268
2269 /* Jump to LABEL if X is a valid address RTX. This must also take
2270 REG_OK_STRICT into account when deciding about valid registers, but it uses
2271 the above macros so we are in luck.
2272
2273 Allow REG
2274 REG+disp
2275 REG+r0
2276 REG++
2277 --REG */
2278
2279 /* ??? The SH3e does not have the REG+disp addressing mode when loading values
2280 into the FRx registers. We implement this by setting the maximum offset
2281 to zero when the value is SFmode. This also restricts loading of SFmode
2282 values into the integer registers, but that can't be helped. */
2283
2284 /* The SH allows a displacement in a QI or HI amode, but only when the
2285 other operand is R0. GCC doesn't handle this very well, so we forgo
2286 all of that.
2287
2288 A legitimate index for a QI or HI is 0, SI can be any number 0..63,
2289 DI can be any number 0..60. */
2290
2291 #define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL) \
2292 do { \
2293 if (GET_CODE (OP) == CONST_INT) \
2294 { \
2295 if (TARGET_SHMEDIA) \
2296 { \
2297 int MODE_SIZE = GET_MODE_SIZE (MODE); \
2298 if (! (INTVAL (OP) & (MODE_SIZE - 1)) \
2299 && INTVAL (OP) >= -512 * MODE_SIZE \
2300 && INTVAL (OP) < 512 * MODE_SIZE) \
2301 goto LABEL; \
2302 else \
2303 break; \
2304 } \
2305 if (MODE_DISP_OK_4 ((OP), (MODE))) goto LABEL; \
2306 if (MODE_DISP_OK_8 ((OP), (MODE))) goto LABEL; \
2307 } \
2308 } while(0)
2309
2310 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
2311 { \
2312 if (BASE_REGISTER_RTX_P (X)) \
2313 goto LABEL; \
2314 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
2315 && ! TARGET_SHMEDIA \
2316 && BASE_REGISTER_RTX_P (XEXP ((X), 0))) \
2317 goto LABEL; \
2318 else if (GET_CODE (X) == PLUS \
2319 && ((MODE) != PSImode || reload_completed)) \
2320 { \
2321 rtx xop0 = XEXP ((X), 0); \
2322 rtx xop1 = XEXP ((X), 1); \
2323 if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \
2324 GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL); \
2325 if (GET_MODE_SIZE (MODE) <= 4 \
2326 || (TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 8) \
2327 || (TARGET_SH4 && TARGET_FMOVD && MODE == DFmode)) \
2328 { \
2329 if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
2330 goto LABEL; \
2331 if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
2332 goto LABEL; \
2333 } \
2334 } \
2335 }
2336 \f
2337 /* Try machine-dependent ways of modifying an illegitimate address
2338 to be legitimate. If we find one, return the new, valid address.
2339 This macro is used in only one place: `memory_address' in explow.c.
2340
2341 OLDX is the address as it was before break_out_memory_refs was called.
2342 In some cases it is useful to look at this to decide what needs to be done.
2343
2344 MODE and WIN are passed so that this macro can use
2345 GO_IF_LEGITIMATE_ADDRESS.
2346
2347 It is always safe for this macro to do nothing. It exists to recognize
2348 opportunities to optimize the output.
2349
2350 For the SH, if X is almost suitable for indexing, but the offset is
2351 out of range, convert it into a normal form so that cse has a chance
2352 of reducing the number of address registers used. */
2353
2354 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2355 { \
2356 if (flag_pic) \
2357 (X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \
2358 if (GET_CODE (X) == PLUS \
2359 && (GET_MODE_SIZE (MODE) == 4 \
2360 || GET_MODE_SIZE (MODE) == 8) \
2361 && GET_CODE (XEXP ((X), 1)) == CONST_INT \
2362 && BASE_REGISTER_RTX_P (XEXP ((X), 0)) \
2363 && ! TARGET_SHMEDIA \
2364 && ! (TARGET_SH4 && (MODE) == DFmode) \
2365 && ! (TARGET_SH3E && (MODE) == SFmode)) \
2366 { \
2367 rtx index_rtx = XEXP ((X), 1); \
2368 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
2369 rtx sum; \
2370 \
2371 GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN); \
2372 /* On rare occasions, we might get an unaligned pointer \
2373 that is indexed in a way to give an aligned address. \
2374 Therefore, keep the lower two bits in offset_base. */ \
2375 /* Instead of offset_base 128..131 use 124..127, so that \
2376 simple add suffices. */ \
2377 if (offset > 127) \
2378 { \
2379 offset_base = ((offset + 4) & ~60) - 4; \
2380 } \
2381 else \
2382 offset_base = offset & ~60; \
2383 /* Sometimes the normal form does not suit DImode. We \
2384 could avoid that by using smaller ranges, but that \
2385 would give less optimized code when SImode is \
2386 prevalent. */ \
2387 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
2388 { \
2389 sum = expand_binop (Pmode, add_optab, XEXP ((X), 0), \
2390 GEN_INT (offset_base), NULL_RTX, 0, \
2391 OPTAB_LIB_WIDEN); \
2392 \
2393 (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); \
2394 goto WIN; \
2395 } \
2396 } \
2397 }
2398
2399 /* A C compound statement that attempts to replace X, which is an address
2400 that needs reloading, with a valid memory address for an operand of
2401 mode MODE. WIN is a C statement label elsewhere in the code.
2402
2403 Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
2404 of the address. That will allow inheritance of the address reloads. */
2405
2406 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2407 { \
2408 if (GET_CODE (X) == PLUS \
2409 && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
2410 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2411 && BASE_REGISTER_RTX_P (XEXP (X, 0)) \
2412 && ! TARGET_SHMEDIA \
2413 && ! (TARGET_SH4 && (MODE) == DFmode) \
2414 && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS)) \
2415 { \
2416 rtx index_rtx = XEXP (X, 1); \
2417 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
2418 rtx sum; \
2419 \
2420 if (TARGET_SH3E && MODE == SFmode) \
2421 { \
2422 X = copy_rtx (X); \
2423 push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL, \
2424 INDEX_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
2425 (TYPE)); \
2426 goto WIN; \
2427 } \
2428 /* Instead of offset_base 128..131 use 124..127, so that \
2429 simple add suffices. */ \
2430 if (offset > 127) \
2431 { \
2432 offset_base = ((offset + 4) & ~60) - 4; \
2433 } \
2434 else \
2435 offset_base = offset & ~60; \
2436 /* Sometimes the normal form does not suit DImode. We \
2437 could avoid that by using smaller ranges, but that \
2438 would give less optimized code when SImode is \
2439 prevalent. */ \
2440 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
2441 { \
2442 sum = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
2443 GEN_INT (offset_base)); \
2444 X = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base));\
2445 push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL, \
2446 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
2447 (TYPE)); \
2448 goto WIN; \
2449 } \
2450 } \
2451 /* We must re-recognize what we created before. */ \
2452 else if (GET_CODE (X) == PLUS \
2453 && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
2454 && GET_CODE (XEXP (X, 0)) == PLUS \
2455 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
2456 && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0)) \
2457 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2458 && ! TARGET_SHMEDIA \
2459 && ! (TARGET_SH3E && MODE == SFmode)) \
2460 { \
2461 /* Because this address is so complex, we know it must have \
2462 been created by LEGITIMIZE_RELOAD_ADDRESS before; thus, \
2463 it is already unshared, and needs no further unsharing. */ \
2464 push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL, \
2465 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
2466 goto WIN; \
2467 } \
2468 }
2469
2470 /* Go to LABEL if ADDR (a legitimate address expression)
2471 has an effect that depends on the machine mode it is used for.
2472
2473 ??? Strictly speaking, we should also include all indexed addressing,
2474 because the index scale factor is the length of the operand.
2475 However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
2476 high if we did that. So we rely on reload to fix things up. */
2477
2478 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2479 { \
2480 if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC) \
2481 goto LABEL; \
2482 }
2483 \f
2484 /* Specify the machine mode that this machine uses
2485 for the index in the tablejump instruction. */
2486 #define CASE_VECTOR_MODE (TARGET_BIGTABLE ? SImode : HImode)
2487
2488 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
2489 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
2490 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
2491 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
2492 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
2493 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
2494 : SImode)
2495
2496 /* Define as C expression which evaluates to nonzero if the tablejump
2497 instruction expects the table to contain offsets from the address of the
2498 table.
2499 Do not define this if the table should contain absolute addresses. */
2500 #define CASE_VECTOR_PC_RELATIVE 1
2501
2502 /* Define it here, so that it doesn't get bumped to 64-bits on SHmedia. */
2503 #define FLOAT_TYPE_SIZE 32
2504
2505 /* Since the SH3e has only `float' support, it is desirable to make all
2506 floating point types equivalent to `float'. */
2507 #define DOUBLE_TYPE_SIZE ((TARGET_SH3E && ! TARGET_SH4) ? 32 : 64)
2508
2509 /* 'char' is signed by default. */
2510 #define DEFAULT_SIGNED_CHAR 1
2511
2512 /* We -Define SIZE_TYPE in CPP_SPEC. */
2513 #define NO_BUILTIN_SIZE_TYPE 1
2514
2515 /* The type of size_t unsigned int. */
2516 #define SIZE_TYPE (TARGET_SH5 ? "long unsigned int" : "unsigned int")
2517
2518 #define NO_BUILTIN_PTRDIFF_TYPE 1
2519
2520 #undef PTRDIFF_TYPE
2521 #define PTRDIFF_TYPE (TARGET_SH5 ? "long int" : "int")
2522
2523 #define WCHAR_TYPE "short unsigned int"
2524 #define WCHAR_TYPE_SIZE 16
2525 #define WCHAR_UNSIGNED 1
2526
2527 #define SH_ELF_WCHAR_TYPE "long int"
2528
2529 /* Don't cse the address of the function being compiled. */
2530 /*#define NO_RECURSIVE_FUNCTION_CSE 1*/
2531
2532 /* Max number of bytes we can move from memory to memory
2533 in one reasonably fast instruction. */
2534 #define MOVE_MAX (TARGET_SHMEDIA ? 8 : 4)
2535
2536 /* Maximum value possibly taken by MOVE_MAX. Must be defined whenever
2537 MOVE_MAX is not a compile-time constant. */
2538 #define MAX_MOVE_MAX 8
2539
2540 /* Max number of bytes we want move_by_pieces to be able to copy
2541 efficiently. */
2542 #define MOVE_MAX_PIECES (TARGET_SH4 || TARGET_SHMEDIA ? 8 : 4)
2543
2544 /* Define if operations between registers always perform the operation
2545 on the full register even if a narrower mode is specified. */
2546 #define WORD_REGISTER_OPERATIONS
2547
2548 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2549 will either zero-extend or sign-extend. The value of this macro should
2550 be the code that says which one of the two operations is implicitly
2551 done, NIL if none. */
2552 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
2553
2554 /* Define if loading short immediate values into registers sign extends. */
2555 #define SHORT_IMMEDIATES_SIGN_EXTEND
2556
2557 /* Nonzero if access to memory by bytes is no faster than for words. */
2558 #define SLOW_BYTE_ACCESS 1
2559
2560 /* We assume that the store-condition-codes instructions store 0 for false
2561 and some other value for true. This is the value stored for true. */
2562
2563 #define STORE_FLAG_VALUE 1
2564
2565 /* Immediate shift counts are truncated by the output routines (or was it
2566 the assembler?). Shift counts in a register are truncated by SH. Note
2567 that the native compiler puts too large (> 32) immediate shift counts
2568 into a register and shifts by the register, letting the SH decide what
2569 to do instead of doing that itself. */
2570 /* ??? The library routines in lib1funcs.asm truncate the shift count.
2571 However, the SH3 has hardware shifts that do not truncate exactly as gcc
2572 expects - the sign bit is significant - so it appears that we need to
2573 leave this zero for correct SH3 code. */
2574 #define SHIFT_COUNT_TRUNCATED (! TARGET_SH3)
2575
2576 /* All integers have the same format so truncation is easy. */
2577 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
2578
2579 /* Define this if addresses of constant functions
2580 shouldn't be put through pseudo regs where they can be cse'd.
2581 Desirable on machines where ordinary constants are expensive
2582 but a CALL with constant address is cheap. */
2583 /*#define NO_FUNCTION_CSE 1*/
2584
2585 /* Chars and shorts should be passed as ints. */
2586 #define PROMOTE_PROTOTYPES 1
2587
2588 /* The machine modes of pointers and functions. */
2589 #define Pmode (TARGET_SHMEDIA64 ? DImode : SImode)
2590 #define FUNCTION_MODE Pmode
2591
2592 /* The relative costs of various types of constants. */
2593
2594 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
2595 case CONST_INT: \
2596 if (TARGET_SHMEDIA) \
2597 { \
2598 if (CONST_OK_FOR_J (INTVAL (RTX))) \
2599 return COSTS_N_INSNS (1); \
2600 else if (CONST_OK_FOR_J (INTVAL (RTX) >> 16)) \
2601 return COSTS_N_INSNS (2); \
2602 else if (CONST_OK_FOR_J ((INTVAL (RTX) >> 16) >> 16)) \
2603 return COSTS_N_INSNS (3); \
2604 else \
2605 return COSTS_N_INSNS (4); \
2606 } \
2607 if (CONST_OK_FOR_I (INTVAL (RTX))) \
2608 return 0; \
2609 else if (((OUTER_CODE) == AND || (OUTER_CODE) == IOR || (OUTER_CODE) == XOR) \
2610 && CONST_OK_FOR_L (INTVAL (RTX))) \
2611 return 1; \
2612 else \
2613 return 8; \
2614 case CONST: \
2615 case LABEL_REF: \
2616 case SYMBOL_REF: \
2617 if (TARGET_SHMEDIA64) \
2618 return COSTS_N_INSNS (4); \
2619 if (TARGET_SHMEDIA32) \
2620 return COSTS_N_INSNS (2); \
2621 return 5; \
2622 case CONST_DOUBLE: \
2623 if (TARGET_SHMEDIA) \
2624 return COSTS_N_INSNS (4); \
2625 else \
2626 return 10;
2627
2628 #define RTX_COSTS(X, CODE, OUTER_CODE) \
2629 case PLUS: \
2630 return COSTS_N_INSNS (addsubcosts (X)); \
2631 case AND: \
2632 return COSTS_N_INSNS (andcosts (X)); \
2633 case MULT: \
2634 return COSTS_N_INSNS (multcosts (X)); \
2635 case ASHIFT: \
2636 case ASHIFTRT: \
2637 case LSHIFTRT: \
2638 return COSTS_N_INSNS (shiftcosts (X)); \
2639 case DIV: \
2640 case UDIV: \
2641 case MOD: \
2642 case UMOD: \
2643 return COSTS_N_INSNS (20); \
2644 case FLOAT: \
2645 case FIX: \
2646 return 100;
2647
2648 /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
2649 are actually function calls with some special constraints on arguments
2650 and register usage.
2651
2652 These macros tell reorg that the references to arguments and
2653 register clobbers for insns of type sfunc do not appear to happen
2654 until after the millicode call. This allows reorg to put insns
2655 which set the argument registers into the delay slot of the millicode
2656 call -- thus they act more like traditional CALL_INSNs.
2657
2658 get_attr_is_sfunc will try to recognize the given insn, so make sure to
2659 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
2660 in particular. */
2661
2662 #define INSN_SETS_ARE_DELAYED(X) \
2663 ((GET_CODE (X) == INSN \
2664 && GET_CODE (PATTERN (X)) != SEQUENCE \
2665 && GET_CODE (PATTERN (X)) != USE \
2666 && GET_CODE (PATTERN (X)) != CLOBBER \
2667 && get_attr_is_sfunc (X)))
2668
2669 #define INSN_REFERENCES_ARE_DELAYED(X) \
2670 ((GET_CODE (X) == INSN \
2671 && GET_CODE (PATTERN (X)) != SEQUENCE \
2672 && GET_CODE (PATTERN (X)) != USE \
2673 && GET_CODE (PATTERN (X)) != CLOBBER \
2674 && get_attr_is_sfunc (X)))
2675
2676 \f
2677 /* Position Independent Code. */
2678 /* Define this macro if references to a symbol must be treated
2679 differently depending on something about the variable or function
2680 named by the symbol (such as what section it is in).
2681
2682 On SH, if using PIC, mark a SYMBOL_REF for a non-global symbol
2683 so that we may access it using GOTOFF instead of GOT. */
2684
2685 #define ENCODE_SECTION_INFO(DECL, FIRST) \
2686 do \
2687 { \
2688 if (!(FIRST)) \
2689 break; \
2690 if (flag_pic) \
2691 { \
2692 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
2693 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
2694 \
2695 SYMBOL_REF_FLAG (XEXP (rtl, 0)) = \
2696 (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
2697 || ! TREE_PUBLIC (DECL)); \
2698 } \
2699 if (TARGET_SH5) \
2700 { \
2701 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
2702 ? TREE_CST_RTL (DECL) \
2703 : TREE_CODE (DECL) != VAR_DECL \
2704 ? NULL_RTX \
2705 : DECL_RTL (DECL)); \
2706 \
2707 if (rtl && GET_CODE (rtl) == MEM \
2708 && GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF) \
2709 XEXP (rtl, 0) = gen_datalabel_ref (XEXP (rtl, 0)); \
2710 } \
2711 } \
2712 while (0)
2713
2714 /* The prefix used to mark SYMBOL_REFs that refer to data symbols. */
2715 #define SH_DATALABEL_ENCODING "#"
2716
2717 /* Return true if SYM_NAME starts with SH_DATALABEL_ENCODING. */
2718 #define DATALABEL_SYMNAME_P(SYM_NAME) \
2719 (SH_DATALABEL_ENCODING[1] ? (abort (), 0) : \
2720 (SYM_NAME)[0] == SH_DATALABEL_ENCODING[0])
2721
2722 /* Skip an optional SH_DATALABEL_ENCODING in the beginning of
2723 SYM_NAME. Then, remove a leading *, like the default definition in
2724 output.h. */
2725 #define STRIP_DATALABEL_ENCODING(VAR, SYM_NAME) \
2726 (VAR) = (SYM_NAME) + (DATALABEL_SYMNAME_P (SYM_NAME) \
2727 ? strlen (SH_DATALABEL_ENCODING) : 0)
2728 #define STRIP_NAME_ENCODING(VAR, SYM_NAME) \
2729 STRIP_DATALABEL_ENCODING((VAR), (SYM_NAME)), \
2730 (VAR) += (*(VAR) == '*')
2731
2732 /* We can't directly access anything that contains a symbol,
2733 nor can we indirect via the constant pool. */
2734 #define LEGITIMATE_PIC_OPERAND_P(X) \
2735 (! nonpic_symbol_mentioned_p (X) \
2736 && (! CONSTANT_POOL_ADDRESS_P (X) \
2737 || ! nonpic_symbol_mentioned_p (get_pool_constant (X))))
2738
2739 #define SYMBOLIC_CONST_P(X) \
2740 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
2741 && nonpic_symbol_mentioned_p (X))
2742 \f
2743 /* Compute the cost of an address. For the SH, all valid addresses are
2744 the same cost. Use a slightly higher cost for reg + reg addressing,
2745 since it increases pressure on r0. */
2746
2747 #define ADDRESS_COST(X) (GET_CODE (X) == PLUS && ! CONSTANT_P (XEXP (X, 1)) \
2748 && ! TARGET_SHMEDIA \
2749 ? 1 : 0)
2750
2751 /* Compute extra cost of moving data between one register class
2752 and another. */
2753
2754 /* Regclass always uses 2 for moves in the same register class;
2755 If SECONDARY*_RELOAD_CLASS says something about the src/dst pair,
2756 it uses this information. Hence, the general register <-> floating point
2757 register information here is not used for SFmode. */
2758 #define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) \
2759 (((((DSTCLASS) == T_REGS) || ((DSTCLASS) == PR_REGS)) ? 10 \
2760 : ((((DSTCLASS) == FP0_REGS || (DSTCLASS) == FP_REGS || (DSTCLASS) == DF_REGS) \
2761 && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS)) \
2762 || (((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS) \
2763 && ((SRCCLASS) == FP0_REGS || (SRCCLASS) == FP_REGS \
2764 || (SRCCLASS) == DF_REGS))) \
2765 ? (TARGET_SHMEDIA ? 2 \
2766 : TARGET_FMOVD ? 8 : 12) \
2767 : (((DSTCLASS) == FPUL_REGS \
2768 && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS)) \
2769 || (SRCCLASS == FPUL_REGS \
2770 && ((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS))) \
2771 ? 5 \
2772 : (((DSTCLASS) == FPUL_REGS \
2773 && ((SRCCLASS) == PR_REGS || (SRCCLASS) == MAC_REGS \
2774 || (SRCCLASS) == T_REGS)) \
2775 || ((SRCCLASS) == FPUL_REGS \
2776 && ((DSTCLASS) == PR_REGS || (DSTCLASS) == MAC_REGS))) \
2777 ? 7 \
2778 : (((SRCCLASS) == TARGET_REGS && (DSTCLASS) != GENERAL_REGS) \
2779 || ((DSTCLASS) == TARGET_REGS && (SRCCLASS) != GENERAL_REGS)) \
2780 ? 20 \
2781 : (((SRCCLASS) == FPSCR_REGS && (DSTCLASS) != GENERAL_REGS) \
2782 || ((DSTCLASS) == FPSCR_REGS && (SRCCLASS) != GENERAL_REGS)) \
2783 ? 4 \
2784 : 2) * ((MODE) == V16SFmode ? 8 : (MODE) == V4SFmode ? 2 : 1))
2785
2786 /* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
2787 would be so that people with slow memory systems could generate
2788 different code that does fewer memory accesses. */
2789
2790 /* A C expression for the cost of a branch instruction. A value of 1
2791 is the default; other values are interpreted relative to that.
2792 The SH1 does not have delay slots, hence we get a pipeline stall
2793 at every branch. The SH4 is superscalar, so the single delay slot
2794 is not sufficient to keep both pipelines filled. */
2795 #define BRANCH_COST (TARGET_SH5 ? 1 : ! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1)
2796 \f
2797 /* Assembler output control. */
2798
2799 /* A C string constant describing how to begin a comment in the target
2800 assembler language. The compiler assumes that the comment will end at
2801 the end of the line. */
2802 #define ASM_COMMENT_START "!"
2803
2804 /* The text to go at the start of the assembler file. */
2805 #define ASM_FILE_START(STREAM) \
2806 output_file_start (STREAM)
2807
2808 #define ASM_FILE_END(STREAM)
2809
2810 #define ASM_APP_ON ""
2811 #define ASM_APP_OFF ""
2812 #define FILE_ASM_OP "\t.file\n"
2813 #define IDENT_ASM_OP "\t.ident\t"
2814 #define SET_ASM_OP "\t.set\t"
2815
2816 /* How to change between sections. */
2817
2818 #define TEXT_SECTION_ASM_OP (TARGET_SHMEDIA32 ? "\t.section\t.text..SHmedia32,\"ax\"" : "\t.text")
2819 #define DATA_SECTION_ASM_OP "\t.data"
2820
2821 #if defined CRT_BEGIN || defined CRT_END
2822 /* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant. */
2823 # undef TEXT_SECTION_ASM_OP
2824 # if __SHMEDIA__ == 1 && __SH5__ == 32
2825 # define TEXT_SECTION_ASM_OP "\t.section\t.text..SHmedia32,\"ax\""
2826 # else
2827 # define TEXT_SECTION_ASM_OP "\t.text"
2828 # endif
2829 #endif
2830
2831
2832 /* If defined, a C expression whose value is a string containing the
2833 assembler operation to identify the following data as
2834 uninitialized global data. If not defined, and neither
2835 `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2836 uninitialized global data will be output in the data section if
2837 `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2838 used. */
2839 #ifndef BSS_SECTION_ASM_OP
2840 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
2841 #endif
2842
2843 /* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
2844 separate, explicit argument. If you define this macro, it is used
2845 in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
2846 handling the required alignment of the variable. The alignment is
2847 specified as the number of bits.
2848
2849 Try to use function `asm_output_aligned_bss' defined in file
2850 `varasm.c' when defining this macro. */
2851 #ifndef ASM_OUTPUT_ALIGNED_BSS
2852 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2853 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
2854 #endif
2855
2856 /* Define this so that jump tables go in same section as the current function,
2857 which could be text or it could be a user defined section. */
2858 #define JUMP_TABLES_IN_TEXT_SECTION 1
2859
2860 /* Switch into a generic section. */
2861 #define TARGET_ASM_NAMED_SECTION sh_asm_named_section
2862
2863 #undef DO_GLOBAL_CTORS_BODY
2864 #define DO_GLOBAL_CTORS_BODY \
2865 { \
2866 typedef (*pfunc)(); \
2867 extern pfunc __ctors[]; \
2868 extern pfunc __ctors_end[]; \
2869 pfunc *p; \
2870 for (p = __ctors_end; p > __ctors; ) \
2871 { \
2872 (*--p)(); \
2873 } \
2874 }
2875
2876 #undef DO_GLOBAL_DTORS_BODY
2877 #define DO_GLOBAL_DTORS_BODY \
2878 { \
2879 typedef (*pfunc)(); \
2880 extern pfunc __dtors[]; \
2881 extern pfunc __dtors_end[]; \
2882 pfunc *p; \
2883 for (p = __dtors; p < __dtors_end; p++) \
2884 { \
2885 (*p)(); \
2886 } \
2887 }
2888
2889 #define ASM_OUTPUT_REG_PUSH(file, v) \
2890 fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v));
2891
2892 #define ASM_OUTPUT_REG_POP(file, v) \
2893 fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v));
2894
2895 /* DBX register number for a given compiler register number. */
2896 /* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
2897 to match gdb. */
2898 /* svr4.h undefines this macro, yet we really want to use the same numbers
2899 for coff as for elf, so we go via another macro: SH_DBX_REGISTER_NUMBER. */
2900 #define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
2901
2902 #define SH_DBX_REGISTER_NUMBER(REGNO) \
2903 (GENERAL_REGISTER_P (REGNO) \
2904 ? ((REGNO) - FIRST_GENERAL_REG) \
2905 : FP_REGISTER_P (REGNO) \
2906 ? ((REGNO) - FIRST_FP_REG + (TARGET_SH5 ? (TARGET_SHCOMPACT ? 245 \
2907 : 77) : 25)) \
2908 : XD_REGISTER_P (REGNO) \
2909 ? ((REGNO) - FIRST_XD_REG + (TARGET_SH5 ? 289 : 87)) \
2910 : TARGET_REGISTER_P (REGNO) \
2911 ? ((REGNO) - FIRST_TARGET_REG + 68) \
2912 : (REGNO) == PR_REG \
2913 ? (TARGET_SH5 ? 241 : 17) \
2914 : (REGNO) == T_REG \
2915 ? (TARGET_SH5 ? 242 : 18) \
2916 : (REGNO) == GBR_REG \
2917 ? (TARGET_SH5 ? 238 : 19) \
2918 : (REGNO) == MACH_REG \
2919 ? (TARGET_SH5 ? 239 : 20) \
2920 : (REGNO) == MACL_REG \
2921 ? (TARGET_SH5 ? 240 : 21) \
2922 : (REGNO) == FPUL_REG \
2923 ? (TARGET_SH5 ? 244 : 23) \
2924 : (abort(), -1))
2925
2926 /* This is how to output a reference to a user-level label named NAME. */
2927 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
2928 do \
2929 { \
2930 char * lname; \
2931 \
2932 STRIP_DATALABEL_ENCODING (lname, (NAME)); \
2933 if (lname[0] == '*') \
2934 fputs (lname + 1, (FILE)); \
2935 else \
2936 asm_fprintf ((FILE), "%U%s", lname); \
2937 } \
2938 while (0)
2939
2940 /* This is how to output a reference to a symbol_ref. On SH5,
2941 references to non-code symbols must be preceded by `datalabel'. */
2942 #define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
2943 do \
2944 { \
2945 if (TARGET_SH5 \
2946 && (DATALABEL_SYMNAME_P (XSTR ((SYM), 0)) \
2947 || CONSTANT_POOL_ADDRESS_P (SYM))) \
2948 fputs ("datalabel ", (FILE)); \
2949 assemble_name ((FILE), XSTR ((SYM), 0)); \
2950 } \
2951 while (0)
2952
2953 /* Output a label definition. */
2954 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2955 do { assemble_name ((FILE), (NAME)); fputs (":\n", (FILE)); } while (0)
2956
2957 /* This is how to output an assembler line
2958 that says to advance the location counter
2959 to a multiple of 2**LOG bytes. */
2960
2961 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2962 if ((LOG) != 0) \
2963 fprintf ((FILE), "\t.align %d\n", (LOG))
2964
2965 /* Output a function label definition. */
2966 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
2967 ASM_OUTPUT_LABEL((STREAM), (NAME))
2968
2969 /* Output a globalising directive for a label. */
2970 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
2971 (fprintf ((STREAM), "\t.global\t"), \
2972 assemble_name ((STREAM), (NAME)), \
2973 fputc ('\n', (STREAM)))
2974
2975 /* The prefix to add to user-visible assembler symbols. */
2976
2977 #define USER_LABEL_PREFIX "_"
2978
2979 /* The prefix to add to an internally generated label. */
2980
2981 #define LOCAL_LABEL_PREFIX ""
2982
2983 /* Make an internal label into a string. */
2984 #define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
2985 sprintf ((STRING), "*%s%s%ld", LOCAL_LABEL_PREFIX, (PREFIX), (long)(NUM))
2986
2987 /* Output an internal label definition. */
2988 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2989 asm_fprintf ((FILE), "%L%s%d:\n", (PREFIX), (NUM))
2990
2991 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
2992
2993 /* Construct a private name. */
2994 #define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
2995 ((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
2996 sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
2997
2998 /* Output a relative address table. */
2999
3000 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
3001 switch (GET_MODE (BODY)) \
3002 { \
3003 case SImode: \
3004 if (TARGET_SH5) \
3005 { \
3006 asm_fprintf ((STREAM), "\t.long\t%LL%d-datalabel %LL%d\n", \
3007 (VALUE), (REL)); \
3008 break; \
3009 } \
3010 asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3011 break; \
3012 case HImode: \
3013 if (TARGET_SH5) \
3014 { \
3015 asm_fprintf ((STREAM), "\t.word\t%LL%d-datalabel %LL%d\n", \
3016 (VALUE), (REL)); \
3017 break; \
3018 } \
3019 asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3020 break; \
3021 case QImode: \
3022 if (TARGET_SH5) \
3023 { \
3024 asm_fprintf ((STREAM), "\t.byte\t%LL%d-datalabel %LL%d\n", \
3025 (VALUE), (REL)); \
3026 break; \
3027 } \
3028 asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3029 break; \
3030 default: \
3031 break; \
3032 }
3033
3034 /* Output an absolute table element. */
3035
3036 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
3037 if (TARGET_BIGTABLE) \
3038 asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
3039 else \
3040 asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE)); \
3041
3042 /* Output various types of constants. */
3043
3044 /* Loop alignment is now done in machine_dependent_reorg, so that
3045 branch shortening can know about it. */
3046
3047 /* This is how to output an assembler line
3048 that says to advance the location counter by SIZE bytes. */
3049
3050 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
3051 fprintf ((FILE), "\t.space %d\n", (SIZE))
3052
3053 /* This says how to output an assembler line
3054 to define a global common symbol. */
3055
3056 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
3057 ( fputs ("\t.comm ", (FILE)), \
3058 assemble_name ((FILE), (NAME)), \
3059 fprintf ((FILE), ",%d\n", (SIZE)))
3060
3061 /* This says how to output an assembler line
3062 to define a local common symbol. */
3063
3064 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
3065 ( fputs ("\t.lcomm ", (FILE)), \
3066 assemble_name ((FILE), (NAME)), \
3067 fprintf ((FILE), ",%d\n", (SIZE)))
3068 \f
3069 /* A C statement to be executed just prior to the output of
3070 assembler code for INSN, to modify the extracted operands so
3071 they will be output differently.
3072
3073 Here the argument OPVEC is the vector containing the operands
3074 extracted from INSN, and NOPERANDS is the number of elements of
3075 the vector which contain meaningful data for this insn.
3076 The contents of this vector are what will be used to convert the insn
3077 template into assembler code, so you can change the assembler output
3078 by changing the contents of the vector. */
3079
3080 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3081 final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
3082
3083 /* Print operand X (an rtx) in assembler syntax to file FILE.
3084 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3085 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3086
3087 #define PRINT_OPERAND(STREAM, X, CODE) print_operand ((STREAM), (X), (CODE))
3088
3089 /* Print a memory address as an operand to reference that memory location. */
3090
3091 #define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address ((STREAM), (X))
3092
3093 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
3094 ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ',' \
3095 || (CHAR) == '$')
3096
3097 /* Recognize machine-specific patterns that may appear within
3098 constants. Used for PIC-specific UNSPECs. */
3099 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
3100 do \
3101 if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
3102 { \
3103 switch (XINT ((X), 1)) \
3104 { \
3105 case UNSPEC_DATALABEL: \
3106 fputs ("datalabel ", (STREAM)); \
3107 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3108 break; \
3109 case UNSPEC_PIC: \
3110 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
3111 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3112 break; \
3113 case UNSPEC_GOT: \
3114 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3115 fputs ("@GOT", (STREAM)); \
3116 break; \
3117 case UNSPEC_GOTOFF: \
3118 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3119 fputs ("@GOTOFF", (STREAM)); \
3120 break; \
3121 case UNSPEC_PLT: \
3122 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3123 fputs ("@PLT", (STREAM)); \
3124 break; \
3125 case UNSPEC_GOTPLT: \
3126 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3127 fputs ("@GOTPLT", (STREAM)); \
3128 break; \
3129 case UNSPEC_CALLER: \
3130 { \
3131 char name[32]; \
3132 /* LPCS stands for Label for PIC Call Site. */ \
3133 ASM_GENERATE_INTERNAL_LABEL \
3134 (name, "LPCS", INTVAL (XVECEXP ((X), 0, 0))); \
3135 assemble_name ((STREAM), name); \
3136 } \
3137 break; \
3138 default: \
3139 goto FAIL; \
3140 } \
3141 break; \
3142 } \
3143 else \
3144 goto FAIL; \
3145 while (0)
3146
3147 \f
3148 extern struct rtx_def *sh_compare_op0;
3149 extern struct rtx_def *sh_compare_op1;
3150
3151 /* Which processor to schedule for. The elements of the enumeration must
3152 match exactly the cpu attribute in the sh.md file. */
3153
3154 enum processor_type {
3155 PROCESSOR_SH1,
3156 PROCESSOR_SH2,
3157 PROCESSOR_SH3,
3158 PROCESSOR_SH3E,
3159 PROCESSOR_SH4,
3160 PROCESSOR_SH5
3161 };
3162
3163 #define sh_cpu_attr ((enum attr_cpu)sh_cpu)
3164 extern enum processor_type sh_cpu;
3165
3166 extern int optimize; /* needed for gen_casesi. */
3167
3168 enum mdep_reorg_phase_e
3169 {
3170 SH_BEFORE_MDEP_REORG,
3171 SH_INSERT_USES_LABELS,
3172 SH_SHORTEN_BRANCHES0,
3173 SH_FIXUP_PCLOAD,
3174 SH_SHORTEN_BRANCHES1,
3175 SH_AFTER_MDEP_REORG
3176 };
3177
3178 extern enum mdep_reorg_phase_e mdep_reorg_phase;
3179
3180 #define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg(X)
3181
3182 /* Generate calls to memcpy, memcmp and memset. */
3183
3184 #define TARGET_MEM_FUNCTIONS
3185
3186 /* Handle Hitachi compiler's pragmas. */
3187 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
3188 cpp_register_pragma (PFILE, 0, "interrupt", sh_pr_interrupt); \
3189 cpp_register_pragma (PFILE, 0, "trapa", sh_pr_trapa); \
3190 cpp_register_pragma (PFILE, 0, "nosave_low_regs", sh_pr_nosave_low_regs); \
3191 } while (0)
3192
3193 /* Set when processing a function with pragma interrupt turned on. */
3194
3195 extern int pragma_interrupt;
3196
3197 /* Set when processing a function with interrupt attribute. */
3198
3199 extern int current_function_interrupt;
3200
3201 /* Set to an RTX containing the address of the stack to switch to
3202 for interrupt functions. */
3203 extern struct rtx_def *sp_switch;
3204
3205 extern int rtx_equal_function_value_matters;
3206 extern struct rtx_def *fpscr_rtx;
3207
3208 \f
3209 /* Instructions with unfilled delay slots take up an
3210 extra two bytes for the nop in the delay slot.
3211 sh-dsp parallel processing insns are four bytes long. */
3212
3213 #define ADJUST_INSN_LENGTH(X, LENGTH) \
3214 (LENGTH) += sh_insn_length_adjustment (X);
3215 \f
3216 /* Define the codes that are matched by predicates in sh.c. */
3217 #define PREDICATE_CODES \
3218 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
3219 {"arith_reg_operand", {SUBREG, REG}}, \
3220 {"arith_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
3221 {"binary_float_operator", {PLUS, MULT}}, \
3222 {"commutative_float_operator", {PLUS, MULT}}, \
3223 {"fp_arith_reg_operand", {SUBREG, REG}}, \
3224 {"fpscr_operand", {REG}}, \
3225 {"fpul_operand", {REG}}, \
3226 {"general_movsrc_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, MEM}}, \
3227 {"general_movdst_operand", {SUBREG, REG, MEM}}, \
3228 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
3229 {"noncommutative_float_operator", {MINUS, DIV}}, \
3230 {"shmedia_6bit_operand", {SUBREG, REG, CONST_INT}}, \
3231 {"target_reg_operand", {SUBREG, REG}}, \
3232 {"target_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF}}, \
3233 {"register_operand", {SUBREG, REG}}, \
3234 {"symbol_ref_operand", {SYMBOL_REF}},
3235
3236 /* Define this macro if it is advisable to hold scalars in registers
3237 in a wider mode than that declared by the program. In such cases,
3238 the value is constrained to be within the bounds of the declared
3239 type, but kept valid in the wider mode. The signedness of the
3240 extension may differ from that of the type.
3241
3242 Leaving the unsignedp unchanged gives better code than always setting it
3243 to 0. This is despite the fact that we have only signed char and short
3244 load instructions. */
3245 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
3246 if (GET_MODE_CLASS (MODE) == MODE_INT \
3247 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3248 (UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)), \
3249 (MODE) = (TARGET_SH1 ? SImode : DImode);
3250
3251 /* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
3252 extensions applied to char/short functions arguments. Defining
3253 PROMOTE_FUNCTION_RETURN does the same for function returns. */
3254
3255 #define PROMOTE_FUNCTION_ARGS
3256 #define PROMOTE_FUNCTION_RETURN
3257
3258 /* ??? Define ACCUMULATE_OUTGOING_ARGS? This is more efficient than pushing
3259 and poping arguments. However, we do have push/pop instructions, and
3260 rather limited offsets (4 bits) in load/store instructions, so it isn't
3261 clear if this would give better code. If implemented, should check for
3262 compatibility problems. */
3263
3264 #define SH_DYNAMIC_SHIFT_COST \
3265 (TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
3266
3267
3268 #define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
3269
3270 #define OPTIMIZE_MODE_SWITCHING(ENTITY) TARGET_SH4
3271
3272 #define NORMAL_MODE(ENTITY) \
3273 (TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
3274
3275 #define EPILOGUE_USES(REGNO) ((TARGET_SH3E || TARGET_SH4) \
3276 && (REGNO) == FPSCR_REG)
3277
3278 #define MODE_NEEDED(ENTITY, INSN) \
3279 (recog_memoized (INSN) >= 0 \
3280 ? get_attr_fp_mode (INSN) \
3281 : FP_MODE_NONE)
3282
3283 #define MODE_PRIORITY_TO_MODE(ENTITY, N) \
3284 ((TARGET_FPU_SINGLE != 0) ^ (N) ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
3285
3286 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3287 fpscr_set_from_mem ((MODE), (HARD_REGS_LIVE))
3288
3289 #define MD_CAN_REDIRECT_BRANCH(INSN, SEQ) \
3290 sh_can_redirect_branch ((INSN), (SEQ))
3291
3292 #if (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__
3293 /* SH constant pool breaks the devices in crtstuff.c to control section
3294 in where code resides. We have to write it as asm code. */
3295 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3296 asm (SECTION_OP "\n\
3297 mov.l 1f,r1\n\
3298 mova 2f,r0\n\
3299 braf r1\n\
3300 lds r0,pr\n\
3301 0: .p2align 2\n\
3302 1: .long " USER_LABEL_PREFIX #FUNC " - 0b\n\
3303 2:\n" TEXT_SECTION_ASM_OP);
3304 #endif /* (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__ */
3305
3306 #define ALLOCATE_INITIAL_VALUE(hard_reg) \
3307 (REGNO (hard_reg) == (TARGET_SH5 ? PR_MEDIA_REG : PR_REG) \
3308 ? (current_function_is_leaf && ! sh_pr_n_sets () \
3309 ? (hard_reg) \
3310 : gen_rtx_MEM (Pmode, TARGET_SH5 \
3311 ? (plus_constant (arg_pointer_rtx, \
3312 TARGET_SHMEDIA64 ? -8 : -4)) \
3313 : frame_pointer_rtx)) \
3314 : NULL_RTX)
3315
3316 #endif /* ! GCC_SH_H */