re PR target/18230 (SPARC VIS instructions are not generated by GCC)
[gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
27
28 /* Define the specific costs for a given cpu */
29
30 struct processor_costs {
31 /* Integer load */
32 const int int_load;
33
34 /* Integer signed load */
35 const int int_sload;
36
37 /* Integer zeroed load */
38 const int int_zload;
39
40 /* Float load */
41 const int float_load;
42
43 /* fmov, fneg, fabs */
44 const int float_move;
45
46 /* fadd, fsub */
47 const int float_plusminus;
48
49 /* fcmp */
50 const int float_cmp;
51
52 /* fmov, fmovr */
53 const int float_cmove;
54
55 /* fmul */
56 const int float_mul;
57
58 /* fdivs */
59 const int float_div_sf;
60
61 /* fdivd */
62 const int float_div_df;
63
64 /* fsqrts */
65 const int float_sqrt_sf;
66
67 /* fsqrtd */
68 const int float_sqrt_df;
69
70 /* umul/smul */
71 const int int_mul;
72
73 /* mulX */
74 const int int_mulX;
75
76 /* integer multiply cost for each bit set past the most
77 significant 3, so the formula for multiply cost becomes:
78
79 if (rs1 < 0)
80 highest_bit = highest_clear_bit(rs1);
81 else
82 highest_bit = highest_set_bit(rs1);
83 if (highest_bit < 3)
84 highest_bit = 3;
85 cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
86
87 A value of zero indicates that the multiply costs is fixed,
88 and not variable. */
89 const int int_mul_bit_factor;
90
91 /* udiv/sdiv */
92 const int int_div;
93
94 /* divX */
95 const int int_divX;
96
97 /* movcc, movr */
98 const int int_cmove;
99
100 /* penalty for shifts, due to scheduling rules etc. */
101 const int shift_penalty;
102 };
103
104 extern const struct processor_costs *sparc_costs;
105
106 /* Target CPU builtins. FIXME: Defining sparc is for the benefit of
107 Solaris only; otherwise just define __sparc__. Sadly the headers
108 are such a mess there is no Solaris-specific header. */
109 #define TARGET_CPU_CPP_BUILTINS() \
110 do \
111 { \
112 builtin_define_std ("sparc"); \
113 if (TARGET_64BIT) \
114 { \
115 builtin_assert ("cpu=sparc64"); \
116 builtin_assert ("machine=sparc64"); \
117 } \
118 else \
119 { \
120 builtin_assert ("cpu=sparc"); \
121 builtin_assert ("machine=sparc"); \
122 } \
123 } \
124 while (0)
125
126 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
127 /* #define SPARC_BI_ARCH */
128
129 /* Macro used later in this file to determine default architecture. */
130 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
131
132 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
133 architectures to compile for. We allow targets to choose compile time or
134 runtime selection. */
135 #ifdef IN_LIBGCC2
136 #if defined(__sparcv9) || defined(__arch64__)
137 #define TARGET_ARCH32 0
138 #else
139 #define TARGET_ARCH32 1
140 #endif /* sparc64 */
141 #else
142 #ifdef SPARC_BI_ARCH
143 #define TARGET_ARCH32 (! TARGET_64BIT)
144 #else
145 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
146 #endif /* SPARC_BI_ARCH */
147 #endif /* IN_LIBGCC2 */
148 #define TARGET_ARCH64 (! TARGET_ARCH32)
149
150 /* Code model selection in 64-bit environment.
151
152 The machine mode used for addresses is 32-bit wide:
153
154 TARGET_CM_32: 32-bit address space.
155 It is the code model used when generating 32-bit code.
156
157 The machine mode used for addresses is 64-bit wide:
158
159 TARGET_CM_MEDLOW: 32-bit address space.
160 The executable must be in the low 32 bits of memory.
161 This avoids generating %uhi and %ulo terms. Programs
162 can be statically or dynamically linked.
163
164 TARGET_CM_MEDMID: 44-bit address space.
165 The executable must be in the low 44 bits of memory,
166 and the %[hml]44 terms are used. The text and data
167 segments have a maximum size of 2GB (31-bit span).
168 The maximum offset from any instruction to the label
169 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
170
171 TARGET_CM_MEDANY: 64-bit address space.
172 The text and data segments have a maximum size of 2GB
173 (31-bit span) and may be located anywhere in memory.
174 The maximum offset from any instruction to the label
175 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
176
177 TARGET_CM_EMBMEDANY: 64-bit address space.
178 The text and data segments have a maximum size of 2GB
179 (31-bit span) and may be located anywhere in memory.
180 The global register %g4 contains the start address of
181 the data segment. Programs are statically linked and
182 PIC is not supported.
183
184 Different code models are not supported in 32-bit environment. */
185
186 enum cmodel {
187 CM_32,
188 CM_MEDLOW,
189 CM_MEDMID,
190 CM_MEDANY,
191 CM_EMBMEDANY
192 };
193
194 /* Value of -mcmodel specified by user. */
195 extern const char *sparc_cmodel_string;
196 /* One of CM_FOO. */
197 extern enum cmodel sparc_cmodel;
198
199 /* V9 code model selection. */
200 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
201 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
202 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
203 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
204
205 #define SPARC_DEFAULT_CMODEL CM_32
206
207 /* This is call-clobbered in the normal ABI, but is reserved in the
208 home grown (aka upward compatible) embedded ABI. */
209 #define EMBMEDANY_BASE_REG "%g4"
210 \f
211 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
212 and specified by the user via --with-cpu=foo.
213 This specifies the cpu implementation, not the architecture size. */
214 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
215 capable cpu's. */
216 #define TARGET_CPU_sparc 0
217 #define TARGET_CPU_v7 0 /* alias for previous */
218 #define TARGET_CPU_sparclet 1
219 #define TARGET_CPU_sparclite 2
220 #define TARGET_CPU_v8 3 /* generic v8 implementation */
221 #define TARGET_CPU_supersparc 4
222 #define TARGET_CPU_hypersparc 5
223 #define TARGET_CPU_sparc86x 6
224 #define TARGET_CPU_sparclite86x 6
225 #define TARGET_CPU_v9 7 /* generic v9 implementation */
226 #define TARGET_CPU_sparcv9 7 /* alias */
227 #define TARGET_CPU_sparc64 7 /* alias */
228 #define TARGET_CPU_ultrasparc 8
229 #define TARGET_CPU_ultrasparc3 9
230
231 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
232 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
233 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
234
235 #define CPP_CPU32_DEFAULT_SPEC ""
236 #define ASM_CPU32_DEFAULT_SPEC ""
237
238 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
239 /* ??? What does Sun's CC pass? */
240 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
241 /* ??? It's not clear how other assemblers will handle this, so by default
242 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
243 is handled in sol2.h. */
244 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
245 #endif
246 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
247 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
248 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
249 #endif
250 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
251 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
252 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
253 #endif
254
255 #else
256
257 #define CPP_CPU64_DEFAULT_SPEC ""
258 #define ASM_CPU64_DEFAULT_SPEC ""
259
260 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
261 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
262 #define CPP_CPU32_DEFAULT_SPEC ""
263 #define ASM_CPU32_DEFAULT_SPEC ""
264 #endif
265
266 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
267 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
268 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
269 #endif
270
271 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
272 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
273 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
274 #endif
275
276 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
277 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
278 #define ASM_CPU32_DEFAULT_SPEC ""
279 #endif
280
281 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
282 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
283 #define ASM_CPU32_DEFAULT_SPEC ""
284 #endif
285
286 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
287 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
288 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
289 #endif
290
291 #endif
292
293 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
294 #error Unrecognized value in TARGET_CPU_DEFAULT.
295 #endif
296
297 #ifdef SPARC_BI_ARCH
298
299 #define CPP_CPU_DEFAULT_SPEC \
300 (DEFAULT_ARCH32_P ? "\
301 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
302 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
303 " : "\
304 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
305 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
306 ")
307 #define ASM_CPU_DEFAULT_SPEC \
308 (DEFAULT_ARCH32_P ? "\
309 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
310 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
311 " : "\
312 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
313 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
314 ")
315
316 #else /* !SPARC_BI_ARCH */
317
318 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
319 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
320
321 #endif /* !SPARC_BI_ARCH */
322
323 /* Define macros to distinguish architectures. */
324
325 /* Common CPP definitions used by CPP_SPEC amongst the various targets
326 for handling -mcpu=xxx switches. */
327 #define CPP_CPU_SPEC "\
328 %{msoft-float:-D_SOFT_FLOAT} \
329 %{mcypress:} \
330 %{msparclite:-D__sparclite__} \
331 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
332 %{mv8:-D__sparc_v8__} \
333 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
334 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
335 %{mcpu=sparclite:-D__sparclite__} \
336 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
337 %{mcpu=v8:-D__sparc_v8__} \
338 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
339 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
340 %{mcpu=sparclite86x:-D__sparclite86x__} \
341 %{mcpu=v9:-D__sparc_v9__} \
342 %{mcpu=ultrasparc:-D__sparc_v9__} \
343 %{mcpu=ultrasparc3:-D__sparc_v9__} \
344 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
345 "
346 #define CPP_ARCH32_SPEC ""
347 #define CPP_ARCH64_SPEC "-D__arch64__"
348
349 #define CPP_ARCH_DEFAULT_SPEC \
350 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
351
352 #define CPP_ARCH_SPEC "\
353 %{m32:%(cpp_arch32)} \
354 %{m64:%(cpp_arch64)} \
355 %{!m32:%{!m64:%(cpp_arch_default)}} \
356 "
357
358 /* Macros to distinguish endianness. */
359 #define CPP_ENDIAN_SPEC "\
360 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
361 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
362
363 /* Macros to distinguish the particular subtarget. */
364 #define CPP_SUBTARGET_SPEC ""
365
366 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
367
368 /* Prevent error on `-sun4' and `-target sun4' options. */
369 /* This used to translate -dalign to -malign, but that is no good
370 because it can't turn off the usual meaning of making debugging dumps. */
371 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
372 ??? Delete support for -m<cpu> for 2.9. */
373
374 #define CC1_SPEC "\
375 %{sun4:} %{target:} \
376 %{mcypress:-mcpu=cypress} \
377 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
378 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
379 "
380
381 /* Override in target specific files. */
382 #define ASM_CPU_SPEC "\
383 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
384 %{msparclite:-Asparclite} \
385 %{mf930:-Asparclite} %{mf934:-Asparclite} \
386 %{mcpu=sparclite:-Asparclite} \
387 %{mcpu=sparclite86x:-Asparclite} \
388 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
389 %{mv8plus:-Av8plus} \
390 %{mcpu=v9:-Av9} \
391 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
392 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
393 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
394 "
395
396 /* Word size selection, among other things.
397 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
398
399 #define ASM_ARCH32_SPEC "-32"
400 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
401 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
402 #else
403 #define ASM_ARCH64_SPEC "-64"
404 #endif
405 #define ASM_ARCH_DEFAULT_SPEC \
406 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
407
408 #define ASM_ARCH_SPEC "\
409 %{m32:%(asm_arch32)} \
410 %{m64:%(asm_arch64)} \
411 %{!m32:%{!m64:%(asm_arch_default)}} \
412 "
413
414 #ifdef HAVE_AS_RELAX_OPTION
415 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
416 #else
417 #define ASM_RELAX_SPEC ""
418 #endif
419
420 /* Special flags to the Sun-4 assembler when using pipe for input. */
421
422 #define ASM_SPEC "\
423 %{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
424 %(asm_cpu) %(asm_relax)"
425
426 #define AS_NEEDS_DASH_FOR_PIPED_INPUT
427
428 /* This macro defines names of additional specifications to put in the specs
429 that can be used in various specifications like CC1_SPEC. Its definition
430 is an initializer with a subgrouping for each command option.
431
432 Each subgrouping contains a string constant, that defines the
433 specification name, and a string constant that used by the GCC driver
434 program.
435
436 Do not define this macro if it does not need to do anything. */
437
438 #define EXTRA_SPECS \
439 { "cpp_cpu", CPP_CPU_SPEC }, \
440 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
441 { "cpp_arch32", CPP_ARCH32_SPEC }, \
442 { "cpp_arch64", CPP_ARCH64_SPEC }, \
443 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
444 { "cpp_arch", CPP_ARCH_SPEC }, \
445 { "cpp_endian", CPP_ENDIAN_SPEC }, \
446 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
447 { "asm_cpu", ASM_CPU_SPEC }, \
448 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
449 { "asm_arch32", ASM_ARCH32_SPEC }, \
450 { "asm_arch64", ASM_ARCH64_SPEC }, \
451 { "asm_relax", ASM_RELAX_SPEC }, \
452 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
453 { "asm_arch", ASM_ARCH_SPEC }, \
454 SUBTARGET_EXTRA_SPECS
455
456 #define SUBTARGET_EXTRA_SPECS
457
458 /* Because libgcc can generate references back to libc (via .umul etc.) we have
459 to list libc again after the second libgcc. */
460 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
461
462 \f
463 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
464 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
465
466 /* ??? This should be 32 bits for v9 but what can we do? */
467 #define WCHAR_TYPE "short unsigned int"
468 #define WCHAR_TYPE_SIZE 16
469
470 /* Show we can debug even without a frame pointer. */
471 #define CAN_DEBUG_WITHOUT_FP
472
473 #define OVERRIDE_OPTIONS sparc_override_options ()
474
475 /* Generate DBX debugging information. */
476
477 #define DBX_DEBUGGING_INFO 1
478 \f
479 /* Run-time compilation parameters selecting different hardware subsets. */
480
481 extern int target_flags;
482
483 /* Nonzero if we should generate code to use the fpu. */
484 #define MASK_FPU 1
485 #define TARGET_FPU (target_flags & MASK_FPU)
486
487 /* Nonzero if we should assume that double pointers might be unaligned.
488 This can happen when linking gcc compiled code with other compilers,
489 because the ABI only guarantees 4 byte alignment. */
490 #define MASK_UNALIGNED_DOUBLES 4
491 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
492
493 /* Nonzero means that we should generate code for a v8 sparc. */
494 #define MASK_V8 0x8
495 #define TARGET_V8 (target_flags & MASK_V8)
496
497 /* Nonzero means that we should generate code for a sparclite.
498 This enables the sparclite specific instructions, but does not affect
499 whether FPU instructions are emitted. */
500 #define MASK_SPARCLITE 0x10
501 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
502
503 /* Nonzero if we're compiling for the sparclet. */
504 #define MASK_SPARCLET 0x20
505 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
506
507 /* Nonzero if we're compiling for v9 sparc.
508 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
509 the word size is 64. */
510 #define MASK_V9 0x40
511 #define TARGET_V9 (target_flags & MASK_V9)
512
513 /* Nonzero to generate code that uses the instructions deprecated in
514 the v9 architecture. This option only applies to v9 systems. */
515 /* ??? This isn't user selectable yet. It's used to enable such insns
516 on 32 bit v9 systems and for the moment they're permanently disabled
517 on 64 bit v9 systems. */
518 #define MASK_DEPRECATED_V8_INSNS 0x80
519 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
520
521 /* Mask of all CPU selection flags. */
522 #define MASK_ISA \
523 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
524
525 /* Nonzero means don't pass `-assert pure-text' to the linker. */
526 #define MASK_IMPURE_TEXT 0x100
527 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
528
529 /* 0x200 is unused */
530
531 /* Nonzero means use the registers that the SPARC ABI reserves for
532 application software. This must be the default to coincide with the
533 setting in FIXED_REGISTERS. */
534 #define MASK_APP_REGS 0x400
535 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
536
537 /* Option to select how quad word floating point is implemented.
538 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
539 Otherwise, we use the SPARC ABI quad library functions. */
540 #define MASK_HARD_QUAD 0x800
541 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
542
543 /* Nonzero on little-endian machines. */
544 /* ??? Little endian support currently only exists for sparc86x-elf and
545 sparc64-elf configurations. May eventually want to expand the support
546 to all targets, but for now it's kept local to only those two. */
547 #define MASK_LITTLE_ENDIAN 0x1000
548 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
549
550 /* 0x2000, 0x4000 are unused */
551
552 /* Nonzero if pointers are 64 bits. */
553 #define MASK_PTR64 0x8000
554 #define TARGET_PTR64 (target_flags & MASK_PTR64)
555
556 /* Nonzero if generating code to run in a 64 bit environment.
557 This is intended to only be used by TARGET_ARCH{32,64} as they are the
558 mechanism used to control compile time or run time selection. */
559 #define MASK_64BIT 0x10000
560 #define TARGET_64BIT (target_flags & MASK_64BIT)
561
562 /* 0x20000,0x40000 unused */
563
564 /* Nonzero means use a stack bias of 2047. Stack offsets are obtained by
565 adding 2047 to %sp. This option is for v9 only and is the default. */
566 #define MASK_STACK_BIAS 0x80000
567 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
568
569 /* 0x100000,0x200000 unused */
570
571 /* Nonzero means -m{,no-}fpu was passed on the command line. */
572 #define MASK_FPU_SET 0x400000
573 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
574
575 /* Use the UltraSPARC Visual Instruction Set extensions. */
576 #define MASK_VIS 0x1000000
577 #define TARGET_VIS (target_flags & MASK_VIS)
578
579 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
580 the current out and global registers and Linux 2.2+ as well. */
581 #define MASK_V8PLUS 0x2000000
582 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
583
584 /* Force a the fastest alignment on structures to take advantage of
585 faster copies. */
586 #define MASK_FASTER_STRUCTS 0x4000000
587 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
588
589 /* Use IEEE quad long double. */
590 #define MASK_LONG_DOUBLE_128 0x8000000
591 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
592
593 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
594 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
595 to get high 32 bits. False in V8+ or V9 because multiply stores
596 a 64 bit result in a register. */
597
598 #define TARGET_HARD_MUL32 \
599 ((TARGET_V8 || TARGET_SPARCLITE \
600 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
601 && ! TARGET_V8PLUS && TARGET_ARCH32)
602
603 #define TARGET_HARD_MUL \
604 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
605 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
606
607
608 /* Macro to define tables used to set the flags.
609 This is a list in braces of pairs in braces,
610 each pair being { "NAME", VALUE }
611 where VALUE is the bits to set or minus the bits to clear.
612 An empty string NAME is used to identify the default VALUE. */
613
614 #define TARGET_SWITCHES \
615 { {"fpu", MASK_FPU | MASK_FPU_SET, \
616 N_("Use hardware fp") }, \
617 {"no-fpu", -MASK_FPU, \
618 N_("Do not use hardware fp") }, \
619 {"no-fpu", MASK_FPU_SET, NULL, }, \
620 {"hard-float", MASK_FPU | MASK_FPU_SET, \
621 N_("Use hardware fp") }, \
622 {"soft-float", -MASK_FPU, \
623 N_("Do not use hardware fp") }, \
624 {"soft-float", MASK_FPU_SET, NULL }, \
625 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
626 N_("Assume possible double misalignment") }, \
627 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
628 N_("Assume all doubles are aligned") }, \
629 {"impure-text", MASK_IMPURE_TEXT, \
630 N_("Pass -assert pure-text to linker") }, \
631 {"no-impure-text", -MASK_IMPURE_TEXT, \
632 N_("Do not pass -assert pure-text to linker") }, \
633 {"app-regs", MASK_APP_REGS, \
634 N_("Use ABI reserved registers") }, \
635 {"no-app-regs", -MASK_APP_REGS, \
636 N_("Do not use ABI reserved registers") }, \
637 {"hard-quad-float", MASK_HARD_QUAD, \
638 N_("Use hardware quad fp instructions") }, \
639 {"soft-quad-float", -MASK_HARD_QUAD, \
640 N_("Do not use hardware quad fp instructions") }, \
641 {"v8plus", MASK_V8PLUS, \
642 N_("Compile for v8plus ABI") }, \
643 {"no-v8plus", -MASK_V8PLUS, \
644 N_("Do not compile for v8plus ABI") }, \
645 {"vis", MASK_VIS, \
646 N_("Utilize Visual Instruction Set") }, \
647 {"no-vis", -MASK_VIS, \
648 N_("Do not utilize Visual Instruction Set") }, \
649 {"ptr64", MASK_PTR64, \
650 N_("Pointers are 64-bit") }, \
651 {"ptr32", -MASK_PTR64, \
652 N_("Pointers are 32-bit") }, \
653 {"32", -MASK_64BIT, \
654 N_("Use 32-bit ABI") }, \
655 {"64", MASK_64BIT, \
656 N_("Use 64-bit ABI") }, \
657 {"stack-bias", MASK_STACK_BIAS, \
658 N_("Use stack bias") }, \
659 {"no-stack-bias", -MASK_STACK_BIAS, \
660 N_("Do not use stack bias") }, \
661 {"faster-structs", MASK_FASTER_STRUCTS, \
662 N_("Use structs on stronger alignment for double-word copies") }, \
663 {"no-faster-structs", -MASK_FASTER_STRUCTS, \
664 N_("Do not use structs on stronger alignment for double-word copies") }, \
665 {"relax", 0, \
666 N_("Optimize tail call instructions in assembler and linker") }, \
667 {"no-relax", 0, \
668 N_("Do not optimize tail call instructions in assembler or linker") }, \
669 SUBTARGET_SWITCHES \
670 { "", TARGET_DEFAULT, ""}}
671
672 /* MASK_APP_REGS must always be the default because that's what
673 FIXED_REGISTERS is set to and -ffixed- is processed before
674 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
675 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
676
677 /* This is meant to be redefined in target specific files. */
678 #define SUBTARGET_SWITCHES
679
680 /* Processor type.
681 These must match the values for the cpu attribute in sparc.md. */
682 enum processor_type {
683 PROCESSOR_V7,
684 PROCESSOR_CYPRESS,
685 PROCESSOR_V8,
686 PROCESSOR_SUPERSPARC,
687 PROCESSOR_SPARCLITE,
688 PROCESSOR_F930,
689 PROCESSOR_F934,
690 PROCESSOR_HYPERSPARC,
691 PROCESSOR_SPARCLITE86X,
692 PROCESSOR_SPARCLET,
693 PROCESSOR_TSC701,
694 PROCESSOR_V9,
695 PROCESSOR_ULTRASPARC,
696 PROCESSOR_ULTRASPARC3
697 };
698
699 /* This is set from -m{cpu,tune}=xxx. */
700 extern enum processor_type sparc_cpu;
701
702 /* Recast the cpu class to be the cpu attribute.
703 Every file includes us, but not every file includes insn-attr.h. */
704 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
705
706 #define TARGET_OPTIONS \
707 { \
708 { "cpu=", &sparc_select[1].string, \
709 N_("Use features of and schedule code for given CPU"), 0}, \
710 { "tune=", &sparc_select[2].string, \
711 N_("Schedule code for given CPU"), 0}, \
712 { "cmodel=", &sparc_cmodel_string, \
713 N_("Use given SPARC code model"), 0}, \
714 SUBTARGET_OPTIONS \
715 }
716
717 /* This is meant to be redefined in target specific files. */
718 #define SUBTARGET_OPTIONS
719
720 /* Support for a compile-time default CPU, et cetera. The rules are:
721 --with-cpu is ignored if -mcpu is specified.
722 --with-tune is ignored if -mtune is specified.
723 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
724 are specified. */
725 #define OPTION_DEFAULT_SPECS \
726 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
727 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
728 {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
729
730 /* sparc_select[0] is reserved for the default cpu. */
731 struct sparc_cpu_select
732 {
733 const char *string;
734 const char *const name;
735 const int set_tune_p;
736 const int set_arch_p;
737 };
738
739 extern struct sparc_cpu_select sparc_select[];
740 \f
741 /* target machine storage layout */
742
743 /* Define this if most significant bit is lowest numbered
744 in instructions that operate on numbered bit-fields. */
745 #define BITS_BIG_ENDIAN 1
746
747 /* Define this if most significant byte of a word is the lowest numbered. */
748 #define BYTES_BIG_ENDIAN 1
749
750 /* Define this if most significant word of a multiword number is the lowest
751 numbered. */
752 #define WORDS_BIG_ENDIAN 1
753
754 /* Define this to set the endianness to use in libgcc2.c, which can
755 not depend on target_flags. */
756 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
757 #define LIBGCC2_WORDS_BIG_ENDIAN 0
758 #else
759 #define LIBGCC2_WORDS_BIG_ENDIAN 1
760 #endif
761
762 #define MAX_BITS_PER_WORD 64
763
764 /* Width of a word, in units (bytes). */
765 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
766 #ifdef IN_LIBGCC2
767 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
768 #else
769 #define MIN_UNITS_PER_WORD 4
770 #endif
771
772 #define UNITS_PER_SIMD_WORD (TARGET_VIS ? 8 : 0)
773
774 /* Now define the sizes of the C data types. */
775
776 #define SHORT_TYPE_SIZE 16
777 #define INT_TYPE_SIZE 32
778 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
779 #define LONG_LONG_TYPE_SIZE 64
780 #define FLOAT_TYPE_SIZE 32
781 #define DOUBLE_TYPE_SIZE 64
782 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
783 SPARC ABI says that it is 128-bit wide. */
784 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
785
786 /* Width in bits of a pointer.
787 See also the macro `Pmode' defined below. */
788 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
789
790 /* If we have to extend pointers (only when TARGET_ARCH64 and not
791 TARGET_PTR64), we want to do it unsigned. This macro does nothing
792 if ptr_mode and Pmode are the same. */
793 #define POINTERS_EXTEND_UNSIGNED 1
794
795 /* For TARGET_ARCH64 we need this, as we don't have instructions
796 for arithmetic operations which do zero/sign extension at the same time,
797 so without this we end up with a srl/sra after every assignment to an
798 user variable, which means very very bad code. */
799 #define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \
800 if (TARGET_ARCH64 \
801 && GET_MODE_CLASS (MODE) == MODE_INT \
802 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
803 (MODE) = word_mode;
804
805 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
806 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
807
808 /* Boundary (in *bits*) on which stack pointer should be aligned. */
809 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
810 then sp+2047 is 128-bit aligned so sp is really only byte-aligned. */
811 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
812 /* Temporary hack until the FIXME above is fixed. This macro is used
813 only in pad_to_arg_alignment in function.c; see the comment there
814 for details about what it does. */
815 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
816
817 /* ALIGN FRAMES on double word boundaries */
818
819 #define SPARC_STACK_ALIGN(LOC) \
820 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
821
822 /* Allocation boundary (in *bits*) for the code of a function. */
823 #define FUNCTION_BOUNDARY 32
824
825 /* Alignment of field after `int : 0' in a structure. */
826 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
827
828 /* Every structure's size must be a multiple of this. */
829 #define STRUCTURE_SIZE_BOUNDARY 8
830
831 /* A bit-field declared as `int' forces `int' alignment for the struct. */
832 #define PCC_BITFIELD_TYPE_MATTERS 1
833
834 /* No data type wants to be aligned rounder than this. */
835 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
836
837 /* The best alignment to use in cases where we have a choice. */
838 #define FASTEST_ALIGNMENT 64
839
840 /* Define this macro as an expression for the alignment of a structure
841 (given by STRUCT as a tree node) if the alignment computed in the
842 usual way is COMPUTED and the alignment explicitly specified was
843 SPECIFIED.
844
845 The default is to use SPECIFIED if it is larger; otherwise, use
846 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
847 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
848 (TARGET_FASTER_STRUCTS ? \
849 ((TREE_CODE (STRUCT) == RECORD_TYPE \
850 || TREE_CODE (STRUCT) == UNION_TYPE \
851 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
852 && TYPE_FIELDS (STRUCT) != 0 \
853 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
854 : MAX ((COMPUTED), (SPECIFIED))) \
855 : MAX ((COMPUTED), (SPECIFIED)))
856
857 /* Make strings word-aligned so strcpy from constants will be faster. */
858 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
859 ((TREE_CODE (EXP) == STRING_CST \
860 && (ALIGN) < FASTEST_ALIGNMENT) \
861 ? FASTEST_ALIGNMENT : (ALIGN))
862
863 /* Make arrays of chars word-aligned for the same reasons. */
864 #define DATA_ALIGNMENT(TYPE, ALIGN) \
865 (TREE_CODE (TYPE) == ARRAY_TYPE \
866 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
867 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
868
869 /* Set this nonzero if move instructions will actually fail to work
870 when given unaligned data. */
871 #define STRICT_ALIGNMENT 1
872
873 /* Things that must be doubleword aligned cannot go in the text section,
874 because the linker fails to align the text section enough!
875 Put them in the data section. This macro is only used in this file. */
876 #define MAX_TEXT_ALIGN 32
877 \f
878 /* Standard register usage. */
879
880 /* Number of actual hardware registers.
881 The hardware registers are assigned numbers for the compiler
882 from 0 to just below FIRST_PSEUDO_REGISTER.
883 All registers that the compiler knows about must be given numbers,
884 even those that are not normally considered general registers.
885
886 SPARC has 32 integer registers and 32 floating point registers.
887 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
888 accessible. We still account for them to simplify register computations
889 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
890 32+32+32+4 == 100.
891 Register 100 is used as the integer condition code register.
892 Register 101 is used as the soft frame pointer register. */
893
894 #define FIRST_PSEUDO_REGISTER 102
895
896 #define SPARC_FIRST_FP_REG 32
897 /* Additional V9 fp regs. */
898 #define SPARC_FIRST_V9_FP_REG 64
899 #define SPARC_LAST_V9_FP_REG 95
900 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
901 #define SPARC_FIRST_V9_FCC_REG 96
902 #define SPARC_LAST_V9_FCC_REG 99
903 /* V8 fcc reg. */
904 #define SPARC_FCC_REG 96
905 /* Integer CC reg. We don't distinguish %icc from %xcc. */
906 #define SPARC_ICC_REG 100
907
908 /* Nonzero if REGNO is an fp reg. */
909 #define SPARC_FP_REG_P(REGNO) \
910 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
911
912 /* Argument passing regs. */
913 #define SPARC_OUTGOING_INT_ARG_FIRST 8
914 #define SPARC_INCOMING_INT_ARG_FIRST 24
915 #define SPARC_FP_ARG_FIRST 32
916
917 /* 1 for registers that have pervasive standard uses
918 and are not available for the register allocator.
919
920 On non-v9 systems:
921 g1 is free to use as temporary.
922 g2-g4 are reserved for applications. Gcc normally uses them as
923 temporaries, but this can be disabled via the -mno-app-regs option.
924 g5 through g7 are reserved for the operating system.
925
926 On v9 systems:
927 g1,g5 are free to use as temporaries, and are free to use between calls
928 if the call is to an external function via the PLT.
929 g4 is free to use as a temporary in the non-embedded case.
930 g4 is reserved in the embedded case.
931 g2-g3 are reserved for applications. Gcc normally uses them as
932 temporaries, but this can be disabled via the -mno-app-regs option.
933 g6-g7 are reserved for the operating system (or application in
934 embedded case).
935 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
936 currently be a fixed register until this pattern is rewritten.
937 Register 1 is also used when restoring call-preserved registers in large
938 stack frames.
939
940 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
941 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
942 */
943
944 #define FIXED_REGISTERS \
945 {1, 0, 2, 2, 2, 2, 1, 1, \
946 0, 0, 0, 0, 0, 0, 1, 0, \
947 0, 0, 0, 0, 0, 0, 0, 0, \
948 0, 0, 0, 0, 0, 0, 1, 1, \
949 \
950 0, 0, 0, 0, 0, 0, 0, 0, \
951 0, 0, 0, 0, 0, 0, 0, 0, \
952 0, 0, 0, 0, 0, 0, 0, 0, \
953 0, 0, 0, 0, 0, 0, 0, 0, \
954 \
955 0, 0, 0, 0, 0, 0, 0, 0, \
956 0, 0, 0, 0, 0, 0, 0, 0, \
957 0, 0, 0, 0, 0, 0, 0, 0, \
958 0, 0, 0, 0, 0, 0, 0, 0, \
959 \
960 0, 0, 0, 0, 0, 1}
961
962 /* 1 for registers not available across function calls.
963 These must include the FIXED_REGISTERS and also any
964 registers that can be used without being saved.
965 The latter must include the registers where values are returned
966 and the register where structure-value addresses are passed.
967 Aside from that, you can include as many other registers as you like. */
968
969 #define CALL_USED_REGISTERS \
970 {1, 1, 1, 1, 1, 1, 1, 1, \
971 1, 1, 1, 1, 1, 1, 1, 1, \
972 0, 0, 0, 0, 0, 0, 0, 0, \
973 0, 0, 0, 0, 0, 0, 1, 1, \
974 \
975 1, 1, 1, 1, 1, 1, 1, 1, \
976 1, 1, 1, 1, 1, 1, 1, 1, \
977 1, 1, 1, 1, 1, 1, 1, 1, \
978 1, 1, 1, 1, 1, 1, 1, 1, \
979 \
980 1, 1, 1, 1, 1, 1, 1, 1, \
981 1, 1, 1, 1, 1, 1, 1, 1, \
982 1, 1, 1, 1, 1, 1, 1, 1, \
983 1, 1, 1, 1, 1, 1, 1, 1, \
984 \
985 1, 1, 1, 1, 1, 1}
986
987 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
988 they won't be allocated. */
989
990 #define CONDITIONAL_REGISTER_USAGE \
991 do \
992 { \
993 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
994 { \
995 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
996 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
997 } \
998 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
999 /* then honor it. */ \
1000 if (TARGET_ARCH32 && fixed_regs[5]) \
1001 fixed_regs[5] = 1; \
1002 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
1003 fixed_regs[5] = 0; \
1004 if (! TARGET_V9) \
1005 { \
1006 int regno; \
1007 for (regno = SPARC_FIRST_V9_FP_REG; \
1008 regno <= SPARC_LAST_V9_FP_REG; \
1009 regno++) \
1010 fixed_regs[regno] = 1; \
1011 /* %fcc0 is used by v8 and v9. */ \
1012 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
1013 regno <= SPARC_LAST_V9_FCC_REG; \
1014 regno++) \
1015 fixed_regs[regno] = 1; \
1016 } \
1017 if (! TARGET_FPU) \
1018 { \
1019 int regno; \
1020 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
1021 fixed_regs[regno] = 1; \
1022 } \
1023 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
1024 /* then honor it. Likewise with g3 and g4. */ \
1025 if (fixed_regs[2] == 2) \
1026 fixed_regs[2] = ! TARGET_APP_REGS; \
1027 if (fixed_regs[3] == 2) \
1028 fixed_regs[3] = ! TARGET_APP_REGS; \
1029 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
1030 fixed_regs[4] = ! TARGET_APP_REGS; \
1031 else if (TARGET_CM_EMBMEDANY) \
1032 fixed_regs[4] = 1; \
1033 else if (fixed_regs[4] == 2) \
1034 fixed_regs[4] = 0; \
1035 } \
1036 while (0)
1037
1038 /* Return number of consecutive hard regs needed starting at reg REGNO
1039 to hold something of mode MODE.
1040 This is ordinarily the length in words of a value of mode MODE
1041 but can be less for certain modes in special long registers.
1042
1043 On SPARC, ordinary registers hold 32 bits worth;
1044 this means both integer and floating point registers.
1045 On v9, integer regs hold 64 bits worth; floating point regs hold
1046 32 bits worth (this includes the new fp regs as even the odd ones are
1047 included in the hard register count). */
1048
1049 #define HARD_REGNO_NREGS(REGNO, MODE) \
1050 (TARGET_ARCH64 \
1051 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
1052 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1053 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1054 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1055
1056 /* Due to the ARCH64 discrepancy above we must override this next
1057 macro too. */
1058 #define REGMODE_NATURAL_SIZE(MODE) \
1059 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1060
1061 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1062 See sparc.c for how we initialize this. */
1063 extern const int *hard_regno_mode_classes;
1064 extern int sparc_mode_class[];
1065
1066 /* ??? Because of the funny way we pass parameters we should allow certain
1067 ??? types of float/complex values to be in integer registers during
1068 ??? RTL generation. This only matters on arch32. */
1069 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1070 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1071
1072 /* Value is 1 if it is a good idea to tie two pseudo registers
1073 when one has mode MODE1 and one has mode MODE2.
1074 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1075 for any hard reg, then this must be 0 for correct output.
1076
1077 For V9: SFmode can't be combined with other float modes, because they can't
1078 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1079 registers, but SFmode will. */
1080 #define MODES_TIEABLE_P(MODE1, MODE2) \
1081 ((MODE1) == (MODE2) \
1082 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1083 && (! TARGET_V9 \
1084 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1085 || (MODE1 != SFmode && MODE2 != SFmode)))))
1086
1087 /* Specify the registers used for certain standard purposes.
1088 The values of these macros are register numbers. */
1089
1090 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1091 /* #define PC_REGNUM */
1092
1093 /* Register to use for pushing function arguments. */
1094 #define STACK_POINTER_REGNUM 14
1095
1096 /* The stack bias (amount by which the hardware register is offset by). */
1097 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1098
1099 /* Actual top-of-stack address is 92/176 greater than the contents of the
1100 stack pointer register for !v9/v9. That is:
1101 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1102 address, and 6*4 bytes for the 6 register parameters.
1103 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1104 parameter regs. */
1105 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
1106
1107 /* Base register for access to local variables of the function. */
1108 #define HARD_FRAME_POINTER_REGNUM 30
1109
1110 /* The soft frame pointer does not have the stack bias applied. */
1111 #define FRAME_POINTER_REGNUM 101
1112
1113 /* Given the stack bias, the stack pointer isn't actually aligned. */
1114 #define INIT_EXPANDERS \
1115 do { \
1116 if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS) \
1117 { \
1118 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
1119 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
1120 } \
1121 } while (0)
1122
1123 /* Value should be nonzero if functions must have frame pointers.
1124 Zero means the frame pointer need not be set up (and parms
1125 may be accessed via the stack pointer) in functions that seem suitable.
1126 Used in flow.c, global.c, ra.c and reload1.c. */
1127 #define FRAME_POINTER_REQUIRED \
1128 (! (leaf_function_p () && only_leaf_regs_used ()))
1129
1130 /* Base register for access to arguments of the function. */
1131 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1132
1133 /* Register in which static-chain is passed to a function. This must
1134 not be a register used by the prologue. */
1135 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1136
1137 /* Register which holds offset table for position-independent
1138 data references. */
1139
1140 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
1141
1142 /* Pick a default value we can notice from override_options:
1143 !v9: Default is on.
1144 v9: Default is off. */
1145
1146 #define DEFAULT_PCC_STRUCT_RETURN -1
1147
1148 /* Functions which return large structures get the address
1149 to place the wanted value at offset 64 from the frame.
1150 Must reserve 64 bytes for the in and local registers.
1151 v9: Functions which return large structures get the address to place the
1152 wanted value from an invisible first argument. */
1153 #define STRUCT_VALUE_OFFSET 64
1154 \f
1155 /* Define the classes of registers for register constraints in the
1156 machine description. Also define ranges of constants.
1157
1158 One of the classes must always be named ALL_REGS and include all hard regs.
1159 If there is more than one class, another class must be named NO_REGS
1160 and contain no registers.
1161
1162 The name GENERAL_REGS must be the name of a class (or an alias for
1163 another name such as ALL_REGS). This is the class of registers
1164 that is allowed by "g" or "r" in a register constraint.
1165 Also, registers outside this class are allocated only when
1166 instructions express preferences for them.
1167
1168 The classes must be numbered in nondecreasing order; that is,
1169 a larger-numbered class must never be contained completely
1170 in a smaller-numbered class.
1171
1172 For any two classes, it is very desirable that there be another
1173 class that represents their union. */
1174
1175 /* The SPARC has various kinds of registers: general, floating point,
1176 and condition codes [well, it has others as well, but none that we
1177 care directly about].
1178
1179 For v9 we must distinguish between the upper and lower floating point
1180 registers because the upper ones can't hold SFmode values.
1181 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1182 satisfying a group need for a class will also satisfy a single need for
1183 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1184 regs.
1185
1186 It is important that one class contains all the general and all the standard
1187 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1188 because reg_class_record() will bias the selection in favor of fp regs,
1189 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1190 because FP_REGS > GENERAL_REGS.
1191
1192 It is also important that one class contain all the general and all the
1193 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1194 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1195 allocate_reload_reg() to bypass it causing an abort because the compiler
1196 thinks it doesn't have a spill reg when in fact it does.
1197
1198 v9 also has 4 floating point condition code registers. Since we don't
1199 have a class that is the union of FPCC_REGS with either of the others,
1200 it is important that it appear first. Otherwise the compiler will die
1201 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1202 constraints.
1203
1204 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1205 may try to use it to hold an SImode value. See register_operand.
1206 ??? Should %fcc[0123] be handled similarly?
1207 */
1208
1209 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1210 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1211 ALL_REGS, LIM_REG_CLASSES };
1212
1213 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1214
1215 /* Give names of register classes as strings for dump file. */
1216
1217 #define REG_CLASS_NAMES \
1218 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1219 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1220 "ALL_REGS" }
1221
1222 /* Define which registers fit in which classes.
1223 This is an initializer for a vector of HARD_REG_SET
1224 of length N_REG_CLASSES. */
1225
1226 #define REG_CLASS_CONTENTS \
1227 {{0, 0, 0, 0}, /* NO_REGS */ \
1228 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
1229 {0xffff, 0, 0, 0}, /* I64_REGS */ \
1230 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
1231 {0, -1, 0, 0}, /* FP_REGS */ \
1232 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
1233 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
1234 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
1235 {-1, -1, -1, 0x3f}} /* ALL_REGS */
1236
1237 /* Defines invalid mode changes. Borrowed from pa64-regs.h.
1238
1239 SImode loads to floating-point registers are not zero-extended.
1240 The definition for LOAD_EXTEND_OP specifies that integer loads
1241 narrower than BITS_PER_WORD will be zero-extended. As a result,
1242 we inhibit changes from SImode unless they are to a mode that is
1243 identical in size. */
1244
1245 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1246 (TARGET_ARCH64 \
1247 && (FROM) == SImode \
1248 && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1249 ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1250
1251 /* The same information, inverted:
1252 Return the class number of the smallest class containing
1253 reg number REGNO. This could be a conditional expression
1254 or could index an array. */
1255
1256 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1257
1258 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1259
1260 /* This is the order in which to allocate registers normally.
1261
1262 We put %f0-%f7 last among the float registers, so as to make it more
1263 likely that a pseudo-register which dies in the float return register
1264 area will get allocated to the float return register, thus saving a move
1265 instruction at the end of the function.
1266
1267 Similarly for integer return value registers.
1268
1269 We know in this case that we will not end up with a leaf function.
1270
1271 The register allocator is given the global and out registers first
1272 because these registers are call clobbered and thus less useful to
1273 global register allocation.
1274
1275 Next we list the local and in registers. They are not call clobbered
1276 and thus very useful for global register allocation. We list the input
1277 registers before the locals so that it is more likely the incoming
1278 arguments received in those registers can just stay there and not be
1279 reloaded. */
1280
1281 #define REG_ALLOC_ORDER \
1282 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1283 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1284 15, /* %o7 */ \
1285 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1286 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
1287 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1288 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1289 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1290 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1291 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1292 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1293 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1294 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1295 96, 97, 98, 99, /* %fcc0-3 */ \
1296 100, 0, 14, 30, 101} /* %icc, %g0, %o6, %i6, %sfp */
1297
1298 /* This is the order in which to allocate registers for
1299 leaf functions. If all registers can fit in the global and
1300 output registers, then we have the possibility of having a leaf
1301 function.
1302
1303 The macro actually mentioned the input registers first,
1304 because they get renumbered into the output registers once
1305 we know really do have a leaf function.
1306
1307 To be more precise, this register allocation order is used
1308 when %o7 is found to not be clobbered right before register
1309 allocation. Normally, the reason %o7 would be clobbered is
1310 due to a call which could not be transformed into a sibling
1311 call.
1312
1313 As a consequence, it is possible to use the leaf register
1314 allocation order and not end up with a leaf function. We will
1315 not get suboptimal register allocation in that case because by
1316 definition of being potentially leaf, there were no function
1317 calls. Therefore, allocation order within the local register
1318 window is not critical like it is when we do have function calls. */
1319
1320 #define REG_LEAF_ALLOC_ORDER \
1321 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1322 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
1323 15, /* %o7 */ \
1324 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1325 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1326 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1327 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1328 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1329 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1330 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1331 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1332 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1333 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1334 96, 97, 98, 99, /* %fcc0-3 */ \
1335 100, 0, 14, 30, 31, 101} /* %icc, %g0, %o6, %i6, %i7, %sfp */
1336
1337 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1338
1339 extern char sparc_leaf_regs[];
1340 #define LEAF_REGISTERS sparc_leaf_regs
1341
1342 extern char leaf_reg_remap[];
1343 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1344
1345 /* The class value for index registers, and the one for base regs. */
1346 #define INDEX_REG_CLASS GENERAL_REGS
1347 #define BASE_REG_CLASS GENERAL_REGS
1348
1349 /* Local macro to handle the two v9 classes of FP regs. */
1350 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1351
1352 /* Get reg_class from a letter such as appears in the machine description.
1353 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1354 .md file for v8 and v9.
1355 'd' and 'b' are used for single and double precision VIS operations,
1356 if TARGET_VIS.
1357 'h' is used for V8+ 64 bit global and out registers. */
1358
1359 #define REG_CLASS_FROM_LETTER(C) \
1360 (TARGET_V9 \
1361 ? ((C) == 'f' ? FP_REGS \
1362 : (C) == 'e' ? EXTRA_FP_REGS \
1363 : (C) == 'c' ? FPCC_REGS \
1364 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1365 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1366 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1367 : NO_REGS) \
1368 : ((C) == 'f' ? FP_REGS \
1369 : (C) == 'e' ? FP_REGS \
1370 : (C) == 'c' ? FPCC_REGS \
1371 : NO_REGS))
1372
1373 /* The letters I, J, K, L and M in a register constraint string
1374 can be used to stand for particular ranges of immediate operands.
1375 This macro defines what the ranges are.
1376 C is the letter, and VALUE is a constant value.
1377 Return 1 if VALUE is in the range specified by C.
1378
1379 `I' is used for the range of constants an insn can actually contain.
1380 `J' is used for the range which is just zero (since that is R0).
1381 `K' is used for constants which can be loaded with a single sethi insn.
1382 `L' is used for the range of constants supported by the movcc insns.
1383 `M' is used for the range of constants supported by the movrcc insns.
1384 `N' is like K, but for constants wider than 32 bits.
1385 `O' is used for the range which is just 4096. */
1386
1387 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1388 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1389 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1390 /* 10 and 11 bit immediates are only used for a few specific insns.
1391 SMALL_INT is used throughout the port so we continue to use it. */
1392 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1393 /* 13 bit immediate, considering only the low 32 bits */
1394 #define SMALL_INT32(X) (SPARC_SIMM13_P (trunc_int_for_mode \
1395 (INTVAL (X), SImode)))
1396 #define SPARC_SETHI_P(X) \
1397 (((unsigned HOST_WIDE_INT) (X) \
1398 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1399 #define SPARC_SETHI32_P(X) \
1400 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1401
1402 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1403 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1404 : (C) == 'J' ? (VALUE) == 0 \
1405 : (C) == 'K' ? SPARC_SETHI32_P (VALUE) \
1406 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1407 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1408 : (C) == 'N' ? SPARC_SETHI_P (VALUE) \
1409 : (C) == 'O' ? (VALUE) == 4096 \
1410 : 0)
1411
1412 /* Similar, but for floating constants, and defining letters G and H.
1413 Here VALUE is the CONST_DOUBLE rtx itself. */
1414
1415 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1416 ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
1417 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1418 : (C) == 'O' ? arith_double_4096_operand (VALUE, DImode) \
1419 : 0)
1420
1421 /* Given an rtx X being reloaded into a reg required to be
1422 in class CLASS, return the class of reg to actually use.
1423 In general this is just CLASS; but on some machines
1424 in some cases it is preferable to use a more restrictive class. */
1425 /* - We can't load constants into FP registers.
1426 - We can't load FP constants into integer registers when soft-float,
1427 because there is no soft-float pattern with a r/F constraint.
1428 - We can't load FP constants into integer registers for TFmode unless
1429 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1430 - Try and reload integer constants (symbolic or otherwise) back into
1431 registers directly, rather than having them dumped to memory. */
1432
1433 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1434 (CONSTANT_P (X) \
1435 ? ((FP_REG_CLASS_P (CLASS) \
1436 || (CLASS) == GENERAL_OR_FP_REGS \
1437 || (CLASS) == GENERAL_OR_EXTRA_FP_REGS \
1438 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1439 && ! TARGET_FPU) \
1440 || (GET_MODE (X) == TFmode \
1441 && ! fp_zero_operand (X, TFmode))) \
1442 ? NO_REGS \
1443 : (!FP_REG_CLASS_P (CLASS) \
1444 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1445 ? GENERAL_REGS \
1446 : (CLASS)) \
1447 : (CLASS))
1448
1449 /* Return the register class of a scratch register needed to load IN into
1450 a register of class CLASS in MODE.
1451
1452 We need a temporary when loading/storing a HImode/QImode value
1453 between memory and the FPU registers. This can happen when combine puts
1454 a paradoxical subreg in a float/fix conversion insn.
1455
1456 We need a temporary when loading/storing a DFmode value between
1457 unaligned memory and the upper FPU registers. */
1458
1459 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1460 ((FP_REG_CLASS_P (CLASS) \
1461 && ((MODE) == HImode || (MODE) == QImode) \
1462 && (GET_CODE (IN) == MEM \
1463 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1464 && true_regnum (IN) == -1))) \
1465 ? GENERAL_REGS \
1466 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1467 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1468 && ! mem_min_alignment ((IN), 8)) \
1469 ? FP_REGS \
1470 : (((TARGET_CM_MEDANY \
1471 && symbolic_operand ((IN), (MODE))) \
1472 || (TARGET_CM_EMBMEDANY \
1473 && text_segment_operand ((IN), (MODE)))) \
1474 && !flag_pic) \
1475 ? GENERAL_REGS \
1476 : NO_REGS)
1477
1478 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1479 ((FP_REG_CLASS_P (CLASS) \
1480 && ((MODE) == HImode || (MODE) == QImode) \
1481 && (GET_CODE (IN) == MEM \
1482 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1483 && true_regnum (IN) == -1))) \
1484 ? GENERAL_REGS \
1485 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1486 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1487 && ! mem_min_alignment ((IN), 8)) \
1488 ? FP_REGS \
1489 : (((TARGET_CM_MEDANY \
1490 && symbolic_operand ((IN), (MODE))) \
1491 || (TARGET_CM_EMBMEDANY \
1492 && text_segment_operand ((IN), (MODE)))) \
1493 && !flag_pic) \
1494 ? GENERAL_REGS \
1495 : NO_REGS)
1496
1497 /* On SPARC it is not possible to directly move data between
1498 GENERAL_REGS and FP_REGS. */
1499 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1500 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1501
1502 /* Return the stack location to use for secondary memory needed reloads.
1503 We want to use the reserved location just below the frame pointer.
1504 However, we must ensure that there is a frame, so use assign_stack_local
1505 if the frame size is zero. */
1506 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1507 (get_frame_size () == 0 \
1508 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1509 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1510 STARTING_FRAME_OFFSET)))
1511
1512 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1513 because the movsi and movsf patterns don't handle r/f moves.
1514 For v8 we copy the default definition. */
1515 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1516 (TARGET_ARCH64 \
1517 ? (GET_MODE_BITSIZE (MODE) < 32 \
1518 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1519 : MODE) \
1520 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1521 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1522 : MODE))
1523
1524 /* Return the maximum number of consecutive registers
1525 needed to represent mode MODE in a register of class CLASS. */
1526 /* On SPARC, this is the size of MODE in words. */
1527 #define CLASS_MAX_NREGS(CLASS, MODE) \
1528 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1529 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1530 \f
1531 /* Stack layout; function entry, exit and calling. */
1532
1533 /* Define this if pushing a word on the stack
1534 makes the stack pointer a smaller address. */
1535 #define STACK_GROWS_DOWNWARD
1536
1537 /* Define this if the nominal address of the stack frame
1538 is at the high-address end of the local variables;
1539 that is, each additional local variable allocated
1540 goes at a more negative offset in the frame. */
1541 #define FRAME_GROWS_DOWNWARD
1542
1543 /* Offset within stack frame to start allocating local variables at.
1544 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1545 first local allocated. Otherwise, it is the offset to the BEGINNING
1546 of the first local allocated. */
1547 /* This allows space for one TFmode floating point value. */
1548 #define STARTING_FRAME_OFFSET \
1549 (TARGET_ARCH64 ? -16 \
1550 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1551
1552 /* If we generate an insn to push BYTES bytes,
1553 this says how many the stack pointer really advances by.
1554 On SPARC, don't define this because there are no push insns. */
1555 /* #define PUSH_ROUNDING(BYTES) */
1556
1557 /* Offset of first parameter from the argument pointer register value.
1558 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1559 even if this function isn't going to use it.
1560 v9: This is 128 for the ins and locals. */
1561 #define FIRST_PARM_OFFSET(FNDECL) \
1562 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1563
1564 /* Offset from the argument pointer register value to the CFA.
1565 This is different from FIRST_PARM_OFFSET because the register window
1566 comes between the CFA and the arguments. */
1567 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1568
1569 /* When a parameter is passed in a register, stack space is still
1570 allocated for it.
1571 !v9: All 6 possible integer registers have backing store allocated.
1572 v9: Only space for the arguments passed is allocated. */
1573 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1574 meaning to the backend. Further, we need to be able to detect if a
1575 varargs/unprototyped function is called, as they may want to spill more
1576 registers than we've provided space. Ugly, ugly. So for now we retain
1577 all 6 slots even for v9. */
1578 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1579
1580 /* Definitions for register elimination. */
1581
1582 #define ELIMINABLE_REGS \
1583 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1584 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1585
1586 /* The way this is structured, we can't eliminate SFP in favor of SP
1587 if the frame pointer is required: we want to use the SFP->HFP elimination
1588 in that case. But the test in update_eliminables doesn't know we are
1589 assuming below that we only do the former elimination. */
1590 #define CAN_ELIMINATE(FROM, TO) \
1591 ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1592
1593 /* We always pretend that this is a leaf function because if it's not,
1594 there's no point in trying to eliminate the frame pointer. If it
1595 is a leaf function, we guessed right! */
1596 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1597 do { \
1598 if ((TO) == STACK_POINTER_REGNUM) \
1599 (OFFSET) = sparc_compute_frame_size (get_frame_size (), 1); \
1600 else \
1601 (OFFSET) = 0; \
1602 (OFFSET) += SPARC_STACK_BIAS; \
1603 } while (0)
1604
1605 /* Keep the stack pointer constant throughout the function.
1606 This is both an optimization and a necessity: longjmp
1607 doesn't behave itself when the stack pointer moves within
1608 the function! */
1609 #define ACCUMULATE_OUTGOING_ARGS 1
1610
1611 /* Value is the number of bytes of arguments automatically
1612 popped when returning from a subroutine call.
1613 FUNDECL is the declaration node of the function (as a tree),
1614 FUNTYPE is the data type of the function (as a tree),
1615 or for a library call it is an identifier node for the subroutine name.
1616 SIZE is the number of bytes of arguments passed on the stack. */
1617
1618 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1619
1620 /* Define this macro if the target machine has "register windows". This
1621 C expression returns the register number as seen by the called function
1622 corresponding to register number OUT as seen by the calling function.
1623 Return OUT if register number OUT is not an outbound register. */
1624
1625 #define INCOMING_REGNO(OUT) \
1626 (((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1627
1628 /* Define this macro if the target machine has "register windows". This
1629 C expression returns the register number as seen by the calling function
1630 corresponding to register number IN as seen by the called function.
1631 Return IN if register number IN is not an inbound register. */
1632
1633 #define OUTGOING_REGNO(IN) \
1634 (((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1635
1636 /* Define this macro if the target machine has register windows. This
1637 C expression returns true if the register is call-saved but is in the
1638 register window. */
1639
1640 #define LOCAL_REGNO(REGNO) \
1641 ((REGNO) >= 16 && (REGNO) <= 31)
1642
1643 /* Define how to find the value returned by a function.
1644 VALTYPE is the data type of the value (as a tree).
1645 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1646 otherwise, FUNC is 0. */
1647
1648 /* On SPARC the value is found in the first "output" register. */
1649
1650 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1651 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1652
1653 /* But the called function leaves it in the first "input" register. */
1654
1655 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1656 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1657
1658 /* Define how to find the value returned by a library function
1659 assuming the value has mode MODE. */
1660
1661 #define LIBCALL_VALUE(MODE) \
1662 function_value (NULL_TREE, (MODE), 1)
1663
1664 /* 1 if N is a possible register number for a function value
1665 as seen by the caller.
1666 On SPARC, the first "output" reg is used for integer values,
1667 and the first floating point register is used for floating point values. */
1668
1669 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1670
1671 /* Define the size of space to allocate for the return value of an
1672 untyped_call. */
1673
1674 #define APPLY_RESULT_SIZE 16
1675
1676 /* 1 if N is a possible register number for function argument passing.
1677 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1678
1679 #define FUNCTION_ARG_REGNO_P(N) \
1680 (TARGET_ARCH64 \
1681 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1682 : ((N) >= 8 && (N) <= 13))
1683 \f
1684 /* Define a data type for recording info about an argument list
1685 during the scan of that argument list. This data type should
1686 hold all necessary information about the function itself
1687 and about the args processed so far, enough to enable macros
1688 such as FUNCTION_ARG to determine where the next arg should go.
1689
1690 On SPARC (!v9), this is a single integer, which is a number of words
1691 of arguments scanned so far (including the invisible argument,
1692 if any, which holds the structure-value-address).
1693 Thus 7 or more means all following args should go on the stack.
1694
1695 For v9, we also need to know whether a prototype is present. */
1696
1697 struct sparc_args {
1698 int words; /* number of words passed so far */
1699 int prototype_p; /* nonzero if a prototype is present */
1700 int libcall_p; /* nonzero if a library call */
1701 };
1702 #define CUMULATIVE_ARGS struct sparc_args
1703
1704 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1705 for a call to a function whose data type is FNTYPE.
1706 For a library call, FNTYPE is 0. */
1707
1708 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1709 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1710
1711 /* Update the data in CUM to advance over an argument
1712 of mode MODE and data type TYPE.
1713 TYPE is null for libcalls where that information may not be available. */
1714
1715 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1716 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1717
1718 /* Determine where to put an argument to a function.
1719 Value is zero to push the argument on the stack,
1720 or a hard register in which to store the argument.
1721
1722 MODE is the argument's machine mode.
1723 TYPE is the data type of the argument (as a tree).
1724 This is null for libcalls where that information may
1725 not be available.
1726 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1727 the preceding args and about the function being called.
1728 NAMED is nonzero if this argument is a named parameter
1729 (otherwise it is an extra parameter matching an ellipsis). */
1730
1731 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1732 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1733
1734 /* Define where a function finds its arguments.
1735 This is different from FUNCTION_ARG because of register windows. */
1736
1737 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1738 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1739
1740 /* For an arg passed partly in registers and partly in memory,
1741 this is the number of registers used.
1742 For args passed entirely in registers or entirely in memory, zero. */
1743
1744 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1745 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1746
1747 /* If defined, a C expression which determines whether, and in which direction,
1748 to pad out an argument with extra space. The value should be of type
1749 `enum direction': either `upward' to pad above the argument,
1750 `downward' to pad below, or `none' to inhibit padding. */
1751
1752 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1753 function_arg_padding ((MODE), (TYPE))
1754
1755 /* If defined, a C expression that gives the alignment boundary, in bits,
1756 of an argument with the specified mode and type. If it is not defined,
1757 PARM_BOUNDARY is used for all arguments.
1758 For sparc64, objects requiring 16 byte alignment are passed that way. */
1759
1760 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1761 ((TARGET_ARCH64 \
1762 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1763 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1764 ? 128 : PARM_BOUNDARY)
1765 \f
1766 /* Define the information needed to generate branch and scc insns. This is
1767 stored from the compare operation. Note that we can't use "rtx" here
1768 since it hasn't been defined! */
1769
1770 extern GTY(()) rtx sparc_compare_op0;
1771 extern GTY(()) rtx sparc_compare_op1;
1772
1773 \f
1774 /* Generate the special assembly code needed to tell the assembler whatever
1775 it might need to know about the return value of a function.
1776
1777 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1778 information to the assembler relating to peephole optimization (done in
1779 the assembler). */
1780
1781 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1782 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1783
1784 /* Output the special assembly code needed to tell the assembler some
1785 register is used as global register variable.
1786
1787 SPARC 64bit psABI declares registers %g2 and %g3 as application
1788 registers and %g6 and %g7 as OS registers. Any object using them
1789 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1790 and how they are used (scratch or some global variable).
1791 Linker will then refuse to link together objects which use those
1792 registers incompatibly.
1793
1794 Unless the registers are used for scratch, two different global
1795 registers cannot be declared to the same name, so in the unlikely
1796 case of a global register variable occupying more than one register
1797 we prefix the second and following registers with .gnu.part1. etc. */
1798
1799 extern char sparc_hard_reg_printed[8];
1800
1801 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1802 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1803 do { \
1804 if (TARGET_ARCH64) \
1805 { \
1806 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1807 int reg; \
1808 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1809 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1810 { \
1811 if (reg == (REGNO)) \
1812 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1813 else \
1814 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1815 reg, reg - (REGNO), (NAME)); \
1816 sparc_hard_reg_printed[reg] = 1; \
1817 } \
1818 } \
1819 } while (0)
1820 #endif
1821
1822 \f
1823 /* Emit rtl for profiling. */
1824 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1825
1826 /* All the work done in PROFILE_HOOK, but still required. */
1827 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1828
1829 /* Set the name of the mcount function for the system. */
1830 #define MCOUNT_FUNCTION "*mcount"
1831 \f
1832 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1833 the stack pointer does not matter. The value is tested only in
1834 functions that have frame pointers.
1835 No definition is equivalent to always zero. */
1836
1837 #define EXIT_IGNORE_STACK \
1838 (get_frame_size () != 0 \
1839 || current_function_calls_alloca || current_function_outgoing_args_size)
1840
1841 /* Define registers used by the epilogue and return instruction. */
1842 #define EPILOGUE_USES(REGNO) ((REGNO) == 31 \
1843 || (current_function_calls_eh_return && (REGNO) == 1))
1844 \f
1845 /* Length in units of the trampoline for entering a nested function. */
1846
1847 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1848
1849 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1850
1851 /* Emit RTL insns to initialize the variable parts of a trampoline.
1852 FNADDR is an RTX for the address of the function's pure code.
1853 CXT is an RTX for the static chain value for the function. */
1854
1855 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1856 if (TARGET_ARCH64) \
1857 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1858 else \
1859 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1860 \f
1861 /* Implement `va_start' for varargs and stdarg. */
1862 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1863 sparc_va_start (valist, nextarg)
1864
1865 /* Generate RTL to flush the register windows so as to make arbitrary frames
1866 available. */
1867 #define SETUP_FRAME_ADDRESSES() \
1868 emit_insn (gen_flush_register_windows ())
1869
1870 /* Given an rtx for the address of a frame,
1871 return an rtx for the address of the word in the frame
1872 that holds the dynamic chain--the previous frame's address. */
1873 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1874 plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1875
1876 /* The return address isn't on the stack, it is in a register, so we can't
1877 access it from the current frame pointer. We can access it from the
1878 previous frame pointer though by reading a value from the register window
1879 save area. */
1880 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1881
1882 /* This is the offset of the return address to the true next instruction to be
1883 executed for the current function. */
1884 #define RETURN_ADDR_OFFSET \
1885 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1886
1887 /* The current return address is in %i7. The return address of anything
1888 farther back is in the register window save area at [%fp+60]. */
1889 /* ??? This ignores the fact that the actual return address is +8 for normal
1890 returns, and +12 for structure returns. */
1891 #define RETURN_ADDR_RTX(count, frame) \
1892 ((count == -1) \
1893 ? gen_rtx_REG (Pmode, 31) \
1894 : gen_rtx_MEM (Pmode, \
1895 memory_address (Pmode, plus_constant (frame, \
1896 15 * UNITS_PER_WORD \
1897 + SPARC_STACK_BIAS))))
1898
1899 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1900 +12, but always using +8 is close enough for frame unwind purposes.
1901 Actually, just using %o7 is close enough for unwinding, but %o7+8
1902 is something you can return to. */
1903 #define INCOMING_RETURN_ADDR_RTX \
1904 plus_constant (gen_rtx_REG (word_mode, 15), 8)
1905 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
1906
1907 /* The offset from the incoming value of %sp to the top of the stack frame
1908 for the current function. On sparc64, we have to account for the stack
1909 bias if present. */
1910 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1911
1912 /* Describe how we implement __builtin_eh_return. */
1913 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1914 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
1915 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
1916
1917 /* Select a format to encode pointers in exception handling data. CODE
1918 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1919 true if the symbol may be affected by dynamic relocations.
1920
1921 If assembler and linker properly support .uaword %r_disp32(foo),
1922 then use PC relative 32-bit relocations instead of absolute relocs
1923 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1924 for binaries, to save memory.
1925
1926 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1927 symbol %r_disp32() is against was not local, but .hidden. In that
1928 case, we have to use DW_EH_PE_absptr for pic personality. */
1929 #ifdef HAVE_AS_SPARC_UA_PCREL
1930 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1931 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1932 (flag_pic \
1933 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1934 : ((TARGET_ARCH64 && ! GLOBAL) \
1935 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1936 : DW_EH_PE_absptr))
1937 #else
1938 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1939 (flag_pic \
1940 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1941 : ((TARGET_ARCH64 && ! GLOBAL) \
1942 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1943 : DW_EH_PE_absptr))
1944 #endif
1945
1946 /* Emit a PC-relative relocation. */
1947 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1948 do { \
1949 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1950 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1951 assemble_name (FILE, LABEL); \
1952 fputc (')', FILE); \
1953 } while (0)
1954 #endif
1955 \f
1956 /* Addressing modes, and classification of registers for them. */
1957
1958 /* Macros to check register numbers against specific register classes. */
1959
1960 /* These assume that REGNO is a hard or pseudo reg number.
1961 They give nonzero only if REGNO is a hard reg of the suitable class
1962 or a pseudo reg currently allocated to a suitable hard reg.
1963 Since they use reg_renumber, they are safe only once reg_renumber
1964 has been allocated, which happens in local-alloc.c. */
1965
1966 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1967 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
1968 || (REGNO) == FRAME_POINTER_REGNUM \
1969 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1970
1971 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1972
1973 #define REGNO_OK_FOR_FP_P(REGNO) \
1974 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1975 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1976 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1977 (TARGET_V9 \
1978 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1979 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1980
1981 /* Now macros that check whether X is a register and also,
1982 strictly, whether it is in a specified class.
1983
1984 These macros are specific to the SPARC, and may be used only
1985 in code for printing assembler insns and in conditions for
1986 define_optimization. */
1987
1988 /* 1 if X is an fp register. */
1989
1990 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1991
1992 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
1993 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
1994 \f
1995 /* Maximum number of registers that can appear in a valid memory address. */
1996
1997 #define MAX_REGS_PER_ADDRESS 2
1998
1999 /* Recognize any constant value that is a valid address.
2000 When PIC, we do not accept an address that would require a scratch reg
2001 to load into a register. */
2002
2003 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
2004
2005 /* Define this, so that when PIC, reload won't try to reload invalid
2006 addresses which require two reload registers. */
2007
2008 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2009
2010 /* Nonzero if the constant value X is a legitimate general operand.
2011 Anything can be made to work except floating point constants.
2012 If TARGET_VIS, 0.0 can be made to work as well. */
2013
2014 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
2015
2016 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2017 and check its validity for a certain class.
2018 We have two alternate definitions for each of them.
2019 The usual definition accepts all pseudo regs; the other rejects
2020 them unless they have been allocated suitable hard regs.
2021 The symbol REG_OK_STRICT causes the latter definition to be used.
2022
2023 Most source files want to accept pseudo regs in the hope that
2024 they will get allocated to the class that the insn wants them to be in.
2025 Source files for reload pass need to be strict.
2026 After reload, it makes no difference, since pseudo regs have
2027 been eliminated by then. */
2028
2029 /* Optional extra constraints for this machine.
2030
2031 'Q' handles floating point constants which can be moved into
2032 an integer register with a single sethi instruction.
2033
2034 'R' handles floating point constants which can be moved into
2035 an integer register with a single mov instruction.
2036
2037 'S' handles floating point constants which can be moved into
2038 an integer register using a high/lo_sum sequence.
2039
2040 'T' handles memory addresses where the alignment is known to
2041 be at least 8 bytes.
2042
2043 `U' handles all pseudo registers or a hard even numbered
2044 integer register, needed for ldd/std instructions.
2045
2046 'W' handles the memory operand when moving operands in/out
2047 of 'e' constraint floating point registers.
2048
2049 'Y' handles the zero vector constant. */
2050
2051 #ifndef REG_OK_STRICT
2052
2053 /* Nonzero if X is a hard reg that can be used as an index
2054 or if it is a pseudo reg. */
2055 #define REG_OK_FOR_INDEX_P(X) \
2056 (REGNO (X) < 32 \
2057 || REGNO (X) == FRAME_POINTER_REGNUM \
2058 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2059
2060 /* Nonzero if X is a hard reg that can be used as a base reg
2061 or if it is a pseudo reg. */
2062 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
2063
2064 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
2065 'W' is like 'T' but is assumed true on arch64.
2066
2067 Remember to accept pseudo-registers for memory constraints if reload is
2068 in progress. */
2069
2070 #define EXTRA_CONSTRAINT(OP, C) \
2071 sparc_extra_constraint_check(OP, C, 0)
2072
2073 #else
2074
2075 /* Nonzero if X is a hard reg that can be used as an index. */
2076 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2077 /* Nonzero if X is a hard reg that can be used as a base reg. */
2078 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2079
2080 #define EXTRA_CONSTRAINT(OP, C) \
2081 sparc_extra_constraint_check(OP, C, 1)
2082
2083 #endif
2084 \f
2085 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2086
2087 #ifdef HAVE_AS_OFFSETABLE_LO10
2088 #define USE_AS_OFFSETABLE_LO10 1
2089 #else
2090 #define USE_AS_OFFSETABLE_LO10 0
2091 #endif
2092 \f
2093 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2094 that is a valid memory address for an instruction.
2095 The MODE argument is the machine mode for the MEM expression
2096 that wants to use this address.
2097
2098 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2099 ordinarily. This changes a bit when generating PIC.
2100
2101 If you change this, execute "rm explow.o recog.o reload.o". */
2102
2103 #define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
2104
2105 #define RTX_OK_FOR_BASE_P(X) \
2106 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2107 || (GET_CODE (X) == SUBREG \
2108 && GET_CODE (SUBREG_REG (X)) == REG \
2109 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2110
2111 #define RTX_OK_FOR_INDEX_P(X) \
2112 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2113 || (GET_CODE (X) == SUBREG \
2114 && GET_CODE (SUBREG_REG (X)) == REG \
2115 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2116
2117 #define RTX_OK_FOR_OFFSET_P(X) \
2118 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2119
2120 #define RTX_OK_FOR_OLO10_P(X) \
2121 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2122
2123 #ifdef REG_OK_STRICT
2124 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2125 { \
2126 if (legitimate_address_p (MODE, X, 1)) \
2127 goto ADDR; \
2128 }
2129 #else
2130 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2131 { \
2132 if (legitimate_address_p (MODE, X, 0)) \
2133 goto ADDR; \
2134 }
2135 #endif
2136
2137 /* Go to LABEL if ADDR (a legitimate address expression)
2138 has an effect that depends on the machine mode it is used for.
2139
2140 In PIC mode,
2141
2142 (mem:HI [%l7+a])
2143
2144 is not equivalent to
2145
2146 (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
2147
2148 because [%l7+a+1] is interpreted as the address of (a+1). */
2149
2150 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2151 { \
2152 if (flag_pic == 1) \
2153 { \
2154 if (GET_CODE (ADDR) == PLUS) \
2155 { \
2156 rtx op0 = XEXP (ADDR, 0); \
2157 rtx op1 = XEXP (ADDR, 1); \
2158 if (op0 == pic_offset_table_rtx \
2159 && SYMBOLIC_CONST (op1)) \
2160 goto LABEL; \
2161 } \
2162 } \
2163 }
2164 \f
2165 /* Try machine-dependent ways of modifying an illegitimate address
2166 to be legitimate. If we find one, return the new, valid address.
2167 This macro is used in only one place: `memory_address' in explow.c.
2168
2169 OLDX is the address as it was before break_out_memory_refs was called.
2170 In some cases it is useful to look at this to decide what needs to be done.
2171
2172 MODE and WIN are passed so that this macro can use
2173 GO_IF_LEGITIMATE_ADDRESS.
2174
2175 It is always safe for this macro to do nothing. It exists to recognize
2176 opportunities to optimize the output. */
2177
2178 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2179 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2180 { \
2181 (X) = legitimize_address (X, OLDX, MODE); \
2182 if (memory_address_p (MODE, X)) \
2183 goto WIN; \
2184 }
2185
2186 /* Try a machine-dependent way of reloading an illegitimate address
2187 operand. If we find one, push the reload and jump to WIN. This
2188 macro is used in only one place: `find_reloads_address' in reload.c.
2189
2190 For SPARC 32, we wish to handle addresses by splitting them into
2191 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2192 This cuts the number of extra insns by one.
2193
2194 Do nothing when generating PIC code and the address is a
2195 symbolic operand or requires a scratch register. */
2196
2197 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2198 do { \
2199 /* Decompose SImode constants into hi+lo_sum. We do have to \
2200 rerecognize what we produce, so be careful. */ \
2201 if (CONSTANT_P (X) \
2202 && (MODE != TFmode || TARGET_ARCH64) \
2203 && GET_MODE (X) == SImode \
2204 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2205 && ! (flag_pic \
2206 && (symbolic_operand (X, Pmode) \
2207 || pic_address_needs_scratch (X))) \
2208 && sparc_cmodel <= CM_MEDLOW) \
2209 { \
2210 X = gen_rtx_LO_SUM (GET_MODE (X), \
2211 gen_rtx_HIGH (GET_MODE (X), X), X); \
2212 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2213 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2214 OPNUM, TYPE); \
2215 goto WIN; \
2216 } \
2217 /* ??? 64-bit reloads. */ \
2218 } while (0)
2219 \f
2220 /* Specify the machine mode that this machine uses
2221 for the index in the tablejump instruction. */
2222 /* If we ever implement any of the full models (such as CM_FULLANY),
2223 this has to be DImode in that case */
2224 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2225 #define CASE_VECTOR_MODE \
2226 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2227 #else
2228 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2229 we have to sign extend which slows things down. */
2230 #define CASE_VECTOR_MODE \
2231 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2232 #endif
2233
2234 /* Define this as 1 if `char' should by default be signed; else as 0. */
2235 #define DEFAULT_SIGNED_CHAR 1
2236
2237 /* Max number of bytes we can move from memory to memory
2238 in one reasonably fast instruction. */
2239 #define MOVE_MAX 8
2240
2241 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2242 move-instruction pairs, we will do a movmem or libcall instead. */
2243
2244 #define MOVE_RATIO (optimize_size ? 3 : 8)
2245
2246 /* Define if operations between registers always perform the operation
2247 on the full register even if a narrower mode is specified. */
2248 #define WORD_REGISTER_OPERATIONS
2249
2250 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2251 will either zero-extend or sign-extend. The value of this macro should
2252 be the code that says which one of the two operations is implicitly
2253 done, UNKNOWN if none. */
2254 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2255
2256 /* Nonzero if access to memory by bytes is slow and undesirable.
2257 For RISC chips, it means that access to memory by bytes is no
2258 better than access by words when possible, so grab a whole word
2259 and maybe make use of that. */
2260 #define SLOW_BYTE_ACCESS 1
2261
2262 /* Define this to be nonzero if shift instructions ignore all but the low-order
2263 few bits. */
2264 #define SHIFT_COUNT_TRUNCATED 1
2265
2266 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2267 is done just by pretending it is already truncated. */
2268 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2269
2270 /* Specify the machine mode used for addresses. */
2271 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2272
2273 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2274 return the mode to be used for the comparison. For floating-point,
2275 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2276 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2277 processing is needed. */
2278 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2279
2280 /* Return nonzero if MODE implies a floating point inequality can be
2281 reversed. For SPARC this is always true because we have a full
2282 compliment of ordered and unordered comparisons, but until generic
2283 code knows how to reverse it correctly we keep the old definition. */
2284 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2285
2286 /* A function address in a call instruction for indexing purposes. */
2287 #define FUNCTION_MODE Pmode
2288
2289 /* Define this if addresses of constant functions
2290 shouldn't be put through pseudo regs where they can be cse'd.
2291 Desirable on machines where ordinary constants are expensive
2292 but a CALL with constant address is cheap. */
2293 #define NO_FUNCTION_CSE
2294
2295 /* alloca should avoid clobbering the old register save area. */
2296 #define SETJMP_VIA_SAVE_AREA
2297
2298 /* The _Q_* comparison libcalls return booleans. */
2299 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2300
2301 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2302 that the inputs are fully consumed before the output memory is clobbered. */
2303
2304 #define TARGET_BUGGY_QP_LIB 0
2305
2306 /* Assume by default that we do not have the Solaris-specific conversion
2307 routines nor 64-bit integer multiply and divide routines. */
2308
2309 #define SUN_CONVERSION_LIBFUNCS 0
2310 #define DITF_CONVERSION_LIBFUNCS 0
2311 #define SUN_INTEGER_MULTIPLY_64 0
2312
2313 /* Compute extra cost of moving data between one register class
2314 and another. */
2315 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2316 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2317 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2318 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2319 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2320 ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2321 || sparc_cpu == PROCESSOR_ULTRASPARC3) ? 12 : 6) : 2)
2322
2323 /* Provide the cost of a branch. For pre-v9 processors we use
2324 a value of 3 to take into account the potential annulling of
2325 the delay slot (which ends up being a bubble in the pipeline slot)
2326 plus a cycle to take into consideration the instruction cache
2327 effects.
2328
2329 On v9 and later, which have branch prediction facilities, we set
2330 it to the depth of the pipeline as that is the cost of a
2331 mispredicted branch. */
2332
2333 #define BRANCH_COST \
2334 ((sparc_cpu == PROCESSOR_V9 \
2335 || sparc_cpu == PROCESSOR_ULTRASPARC) \
2336 ? 7 \
2337 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2338 ? 9 : 3))
2339
2340 #define PREFETCH_BLOCK \
2341 ((sparc_cpu == PROCESSOR_ULTRASPARC \
2342 || sparc_cpu == PROCESSOR_ULTRASPARC3) \
2343 ? 64 : 32)
2344
2345 #define SIMULTANEOUS_PREFETCHES \
2346 ((sparc_cpu == PROCESSOR_ULTRASPARC) \
2347 ? 2 \
2348 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2349 ? 8 : 3))
2350 \f
2351 /* Control the assembler format that we output. */
2352
2353 /* A C string constant describing how to begin a comment in the target
2354 assembler language. The compiler assumes that the comment will end at
2355 the end of the line. */
2356
2357 #define ASM_COMMENT_START "!"
2358
2359 /* Output to assembler file text saying following lines
2360 may contain character constants, extra white space, comments, etc. */
2361
2362 #define ASM_APP_ON ""
2363
2364 /* Output to assembler file text saying following lines
2365 no longer contain unusual constructs. */
2366
2367 #define ASM_APP_OFF ""
2368
2369 /* How to refer to registers in assembler output.
2370 This sequence is indexed by compiler's hard-register-number (see above). */
2371
2372 #define REGISTER_NAMES \
2373 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2374 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2375 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2376 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2377 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2378 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2379 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2380 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2381 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2382 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2383 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2384 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2385 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2386
2387 /* Define additional names for use in asm clobbers and asm declarations. */
2388
2389 #define ADDITIONAL_REGISTER_NAMES \
2390 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2391
2392 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2393 can run past this up to a continuation point. Once we used 1500, but
2394 a single entry in C++ can run more than 500 bytes, due to the length of
2395 mangled symbol names. dbxout.c should really be fixed to do
2396 continuations when they are actually needed instead of trying to
2397 guess... */
2398 #define DBX_CONTIN_LENGTH 1000
2399
2400 /* This is how to output a command to make the user-level label named NAME
2401 defined for reference from other files. */
2402
2403 /* Globalizing directive for a label. */
2404 #define GLOBAL_ASM_OP "\t.global "
2405
2406 /* The prefix to add to user-visible assembler symbols. */
2407
2408 #define USER_LABEL_PREFIX "_"
2409
2410 /* This is how to store into the string LABEL
2411 the symbol_ref name of an internal numbered label where
2412 PREFIX is the class of label and NUM is the number within the class.
2413 This is suitable for output with `assemble_name'. */
2414
2415 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2416 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2417
2418 /* This is how we hook in and defer the case-vector until the end of
2419 the function. */
2420 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2421 sparc_defer_case_vector ((LAB),(VEC), 0)
2422
2423 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2424 sparc_defer_case_vector ((LAB),(VEC), 1)
2425
2426 /* This is how to output an element of a case-vector that is absolute. */
2427
2428 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2429 do { \
2430 char label[30]; \
2431 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2432 if (CASE_VECTOR_MODE == SImode) \
2433 fprintf (FILE, "\t.word\t"); \
2434 else \
2435 fprintf (FILE, "\t.xword\t"); \
2436 assemble_name (FILE, label); \
2437 fputc ('\n', FILE); \
2438 } while (0)
2439
2440 /* This is how to output an element of a case-vector that is relative.
2441 (SPARC uses such vectors only when generating PIC.) */
2442
2443 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2444 do { \
2445 char label[30]; \
2446 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
2447 if (CASE_VECTOR_MODE == SImode) \
2448 fprintf (FILE, "\t.word\t"); \
2449 else \
2450 fprintf (FILE, "\t.xword\t"); \
2451 assemble_name (FILE, label); \
2452 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
2453 fputc ('-', FILE); \
2454 assemble_name (FILE, label); \
2455 fputc ('\n', FILE); \
2456 } while (0)
2457
2458 /* This is what to output before and after case-vector (both
2459 relative and absolute). If .subsection -1 works, we put case-vectors
2460 at the beginning of the current section. */
2461
2462 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2463
2464 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
2465 fprintf(FILE, "\t.subsection\t-1\n")
2466
2467 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
2468 fprintf(FILE, "\t.previous\n")
2469
2470 #endif
2471
2472 /* This is how to output an assembler line
2473 that says to advance the location counter
2474 to a multiple of 2**LOG bytes. */
2475
2476 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2477 if ((LOG) != 0) \
2478 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2479
2480 /* This is how to output an assembler line that says to advance
2481 the location counter to a multiple of 2**LOG bytes using the
2482 "nop" instruction as padding. */
2483 #define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG) \
2484 if ((LOG) != 0) \
2485 fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2486
2487 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2488 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2489
2490 /* This says how to output an assembler line
2491 to define a global common symbol. */
2492
2493 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2494 ( fputs ("\t.common ", (FILE)), \
2495 assemble_name ((FILE), (NAME)), \
2496 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
2497
2498 /* This says how to output an assembler line to define a local common
2499 symbol. */
2500
2501 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2502 ( fputs ("\t.reserve ", (FILE)), \
2503 assemble_name ((FILE), (NAME)), \
2504 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
2505 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2506
2507 /* A C statement (sans semicolon) to output to the stdio stream
2508 FILE the assembler definition of uninitialized global DECL named
2509 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2510 Try to use asm_output_aligned_bss to implement this macro. */
2511
2512 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2513 do { \
2514 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2515 } while (0)
2516
2517 #define IDENT_ASM_OP "\t.ident\t"
2518
2519 /* Output #ident as a .ident. */
2520
2521 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2522 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2523
2524 /* Prettify the assembly. */
2525
2526 extern int sparc_indent_opcode;
2527
2528 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
2529 do { \
2530 if (sparc_indent_opcode) \
2531 { \
2532 putc (' ', FILE); \
2533 sparc_indent_opcode = 0; \
2534 } \
2535 } while (0)
2536
2537 /* Emit a dtp-relative reference to a TLS variable. */
2538
2539 #ifdef HAVE_AS_TLS
2540 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2541 sparc_output_dwarf_dtprel (FILE, SIZE, X)
2542 #endif
2543
2544 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2545 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '(' \
2546 || (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&')
2547
2548 /* Print operand X (an rtx) in assembler syntax to file FILE.
2549 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2550 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2551
2552 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2553
2554 /* Print a memory address as an operand to reference that memory location. */
2555
2556 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2557 { register rtx base, index = 0; \
2558 int offset = 0; \
2559 register rtx addr = ADDR; \
2560 if (GET_CODE (addr) == REG) \
2561 fputs (reg_names[REGNO (addr)], FILE); \
2562 else if (GET_CODE (addr) == PLUS) \
2563 { \
2564 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2565 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2566 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2567 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2568 else \
2569 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2570 if (GET_CODE (base) == LO_SUM) \
2571 { \
2572 if (! USE_AS_OFFSETABLE_LO10 \
2573 || TARGET_ARCH32 \
2574 || TARGET_CM_MEDMID) \
2575 abort (); \
2576 output_operand (XEXP (base, 0), 0); \
2577 fputs ("+%lo(", FILE); \
2578 output_address (XEXP (base, 1)); \
2579 fprintf (FILE, ")+%d", offset); \
2580 } \
2581 else \
2582 { \
2583 fputs (reg_names[REGNO (base)], FILE); \
2584 if (index == 0) \
2585 fprintf (FILE, "%+d", offset); \
2586 else if (GET_CODE (index) == REG) \
2587 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2588 else if (GET_CODE (index) == SYMBOL_REF \
2589 || GET_CODE (index) == CONST) \
2590 fputc ('+', FILE), output_addr_const (FILE, index); \
2591 else abort (); \
2592 } \
2593 } \
2594 else if (GET_CODE (addr) == MINUS \
2595 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2596 { \
2597 output_addr_const (FILE, XEXP (addr, 0)); \
2598 fputs ("-(", FILE); \
2599 output_addr_const (FILE, XEXP (addr, 1)); \
2600 fputs ("-.)", FILE); \
2601 } \
2602 else if (GET_CODE (addr) == LO_SUM) \
2603 { \
2604 output_operand (XEXP (addr, 0), 0); \
2605 if (TARGET_CM_MEDMID) \
2606 fputs ("+%l44(", FILE); \
2607 else \
2608 fputs ("+%lo(", FILE); \
2609 output_address (XEXP (addr, 1)); \
2610 fputc (')', FILE); \
2611 } \
2612 else if (flag_pic && GET_CODE (addr) == CONST \
2613 && GET_CODE (XEXP (addr, 0)) == MINUS \
2614 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2615 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2616 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2617 { \
2618 addr = XEXP (addr, 0); \
2619 output_addr_const (FILE, XEXP (addr, 0)); \
2620 /* Group the args of the second CONST in parenthesis. */ \
2621 fputs ("-(", FILE); \
2622 /* Skip past the second CONST--it does nothing for us. */\
2623 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2624 /* Close the parenthesis. */ \
2625 fputc (')', FILE); \
2626 } \
2627 else \
2628 { \
2629 output_addr_const (FILE, addr); \
2630 } \
2631 }
2632
2633 #ifdef HAVE_AS_TLS
2634 #define TARGET_TLS 1
2635 #else
2636 #define TARGET_TLS 0
2637 #endif
2638 #define TARGET_SUN_TLS TARGET_TLS
2639 #define TARGET_GNU_TLS 0
2640
2641 /* Define the codes that are matched by predicates in sparc.c. */
2642
2643 #define PREDICATE_CODES \
2644 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2645 {"const1_operand", {CONST_INT}}, \
2646 {"fp_zero_operand", {CONST_DOUBLE}}, \
2647 {"fp_register_operand", {SUBREG, REG}}, \
2648 {"intreg_operand", {SUBREG, REG}}, \
2649 {"fcc_reg_operand", {REG}}, \
2650 {"fcc0_reg_operand", {REG}}, \
2651 {"icc_or_fcc_reg_operand", {REG}}, \
2652 {"call_operand", {MEM}}, \
2653 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
2654 SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
2655 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2656 {"symbolic_memory_operand", {SUBREG, MEM}}, \
2657 {"label_ref_operand", {LABEL_REF}}, \
2658 {"sp64_medium_pic_operand", {CONST}}, \
2659 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
2660 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
2661 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
2662 {"splittable_symbolic_memory_operand", {MEM}}, \
2663 {"splittable_immediate_memory_operand", {MEM}}, \
2664 {"eq_or_neq", {EQ, NE}}, \
2665 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
2666 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
2667 {"noov_compare64_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
2668 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
2669 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
2670 {"cc_arithop", {AND, IOR, XOR}}, \
2671 {"cc_arithopn", {AND, IOR}}, \
2672 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
2673 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
2674 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
2675 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
2676 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2677 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2678 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2679 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2680 {"small_int", {CONST_INT}}, \
2681 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
2682 {"uns_small_int", {CONST_INT}}, \
2683 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
2684 {"clobbered_register", {REG}}, \
2685 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
2686 {"compare_operand", {SUBREG, REG, ZERO_EXTRACT}}, \
2687 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
2688 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}}, \
2689 {"tgd_symbolic_operand", {SYMBOL_REF}}, \
2690 {"tld_symbolic_operand", {SYMBOL_REF}}, \
2691 {"tie_symbolic_operand", {SYMBOL_REF}}, \
2692 {"tle_symbolic_operand", {SYMBOL_REF}},
2693
2694 /* The number of Pmode words for the setjmp buffer. */
2695 #define JMP_BUF_SIZE 12
2696
2697 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)