52644c62acd6ee678a94c801e25aa8fdf367bd2d
[gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
27
28 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
29 /* #define SPARC_BI_ARCH */
30
31 /* Macro used later in this file to determine default architecture. */
32 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
33
34 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
35 architectures to compile for. We allow targets to choose compile time or
36 runtime selection. */
37 #ifdef IN_LIBGCC2
38 #if defined(__sparcv9) || defined(__arch64__)
39 #define TARGET_ARCH32 0
40 #else
41 #define TARGET_ARCH32 1
42 #endif /* sparc64 */
43 #else
44 #ifdef SPARC_BI_ARCH
45 #define TARGET_ARCH32 (! TARGET_64BIT)
46 #else
47 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
48 #endif /* SPARC_BI_ARCH */
49 #endif /* IN_LIBGCC2 */
50 #define TARGET_ARCH64 (! TARGET_ARCH32)
51
52 /* Code model selection.
53 -mcmodel is used to select the v9 code model.
54 Different code models aren't supported for v7/8 code.
55
56 TARGET_CM_32: 32 bit address space, top 32 bits = 0,
57 pointers are 32 bits. Note that this isn't intended
58 to imply a v7/8 abi.
59
60 TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
61 avoid generating %uhi and %ulo terms,
62 pointers are 64 bits.
63
64 TARGET_CM_MEDMID: 64 bit address space.
65 The executable must be in the low 16 TB of memory.
66 This corresponds to the low 44 bits, and the %[hml]44
67 relocs are used. The text segment has a maximum size
68 of 31 bits.
69
70 TARGET_CM_MEDANY: 64 bit address space.
71 The text and data segments have a maximum size of 31
72 bits and may be located anywhere. The maximum offset
73 from any instruction to the label _GLOBAL_OFFSET_TABLE_
74 is 31 bits.
75
76 TARGET_CM_EMBMEDANY: 64 bit address space.
77 The text and data segments have a maximum size of 31 bits
78 and may be located anywhere. Register %g4 contains
79 the start address of the data segment.
80 */
81
82 enum cmodel {
83 CM_32,
84 CM_MEDLOW,
85 CM_MEDMID,
86 CM_MEDANY,
87 CM_EMBMEDANY
88 };
89
90 /* Value of -mcmodel specified by user. */
91 extern const char *sparc_cmodel_string;
92 /* One of CM_FOO. */
93 extern enum cmodel sparc_cmodel;
94
95 /* V9 code model selection. */
96 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
97 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
98 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
99 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
100
101 #define SPARC_DEFAULT_CMODEL CM_32
102
103 /* This is call-clobbered in the normal ABI, but is reserved in the
104 home grown (aka upward compatible) embedded ABI. */
105 #define EMBMEDANY_BASE_REG "%g4"
106 \f
107 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
108 and specified by the user via --with-cpu=foo.
109 This specifies the cpu implementation, not the architecture size. */
110 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
111 capable cpu's. */
112 #define TARGET_CPU_sparc 0
113 #define TARGET_CPU_v7 0 /* alias for previous */
114 #define TARGET_CPU_sparclet 1
115 #define TARGET_CPU_sparclite 2
116 #define TARGET_CPU_v8 3 /* generic v8 implementation */
117 #define TARGET_CPU_supersparc 4
118 #define TARGET_CPU_hypersparc 5
119 #define TARGET_CPU_sparc86x 6
120 #define TARGET_CPU_sparclite86x 6
121 #define TARGET_CPU_v9 7 /* generic v9 implementation */
122 #define TARGET_CPU_sparcv9 7 /* alias */
123 #define TARGET_CPU_sparc64 7 /* alias */
124 #define TARGET_CPU_ultrasparc 8
125
126 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
127 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
128
129 #define CPP_CPU32_DEFAULT_SPEC ""
130 #define ASM_CPU32_DEFAULT_SPEC ""
131
132 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
133 /* ??? What does Sun's CC pass? */
134 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
135 /* ??? It's not clear how other assemblers will handle this, so by default
136 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
137 is handled in sol2.h. */
138 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
139 #endif
140 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
141 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
142 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
143 #endif
144
145 #else
146
147 #define CPP_CPU64_DEFAULT_SPEC ""
148 #define ASM_CPU64_DEFAULT_SPEC ""
149
150 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
151 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
152 #define CPP_CPU32_DEFAULT_SPEC ""
153 #define ASM_CPU32_DEFAULT_SPEC ""
154 #endif
155
156 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
157 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
158 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
159 #endif
160
161 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
162 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
163 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
164 #endif
165
166 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
167 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
168 #define ASM_CPU32_DEFAULT_SPEC ""
169 #endif
170
171 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
172 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
173 #define ASM_CPU32_DEFAULT_SPEC ""
174 #endif
175
176 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
177 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
178 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
179 #endif
180
181 #endif
182
183 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
184 Unrecognized value in TARGET_CPU_DEFAULT.
185 #endif
186
187 #ifdef SPARC_BI_ARCH
188
189 #define CPP_CPU_DEFAULT_SPEC \
190 (DEFAULT_ARCH32_P ? "\
191 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
192 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
193 " : "\
194 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
195 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
196 ")
197 #define ASM_CPU_DEFAULT_SPEC \
198 (DEFAULT_ARCH32_P ? "\
199 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
200 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
201 " : "\
202 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
203 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
204 ")
205
206 #else /* !SPARC_BI_ARCH */
207
208 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
209 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
210
211 #endif /* !SPARC_BI_ARCH */
212
213 /* Define macros to distinguish architectures. */
214
215 /* Common CPP definitions used by CPP_SPEC amongst the various targets
216 for handling -mcpu=xxx switches. */
217 #define CPP_CPU_SPEC "\
218 %{msoft-float:-D_SOFT_FLOAT} \
219 %{mcypress:} \
220 %{msparclite:-D__sparclite__} \
221 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
222 %{mv8:-D__sparc_v8__} \
223 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
224 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
225 %{mcpu=sparclite:-D__sparclite__} \
226 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
227 %{mcpu=v8:-D__sparc_v8__} \
228 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
229 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
230 %{mcpu=sparclite86x:-D__sparclite86x__} \
231 %{mcpu=v9:-D__sparc_v9__} \
232 %{mcpu=ultrasparc:-D__sparc_v9__} \
233 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
234 "
235
236 /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
237 the right varags.h file when bootstrapping. */
238 /* ??? It's not clear what value we want to use for -Acpu/machine for
239 sparc64 in 32 bit environments, so for now we only use `sparc64' in
240 64 bit environments. */
241
242 #ifdef SPARC_BI_ARCH
243
244 #define CPP_ARCH32_SPEC "-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int \
245 -D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
246 #define CPP_ARCH64_SPEC "-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int \
247 -D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
248
249 #else
250
251 #define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
252 #define CPP_ARCH64_SPEC "-D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
253
254 #endif
255
256 #define CPP_ARCH_DEFAULT_SPEC \
257 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
258
259 #define CPP_ARCH_SPEC "\
260 %{m32:%(cpp_arch32)} \
261 %{m64:%(cpp_arch64)} \
262 %{!m32:%{!m64:%(cpp_arch_default)}} \
263 "
264
265 /* Macros to distinguish endianness. */
266 #define CPP_ENDIAN_SPEC "\
267 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
268 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
269
270 /* Macros to distinguish the particular subtarget. */
271 #define CPP_SUBTARGET_SPEC ""
272
273 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
274
275 /* Prevent error on `-sun4' and `-target sun4' options. */
276 /* This used to translate -dalign to -malign, but that is no good
277 because it can't turn off the usual meaning of making debugging dumps. */
278 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
279 ??? Delete support for -m<cpu> for 2.9. */
280
281 #define CC1_SPEC "\
282 %{sun4:} %{target:} \
283 %{mcypress:-mcpu=cypress} \
284 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
285 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
286 "
287
288 /* Override in target specific files. */
289 #define ASM_CPU_SPEC "\
290 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
291 %{msparclite:-Asparclite} \
292 %{mf930:-Asparclite} %{mf934:-Asparclite} \
293 %{mcpu=sparclite:-Asparclite} \
294 %{mcpu=sparclite86x:-Asparclite} \
295 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
296 %{mv8plus:-Av8plus} \
297 %{mcpu=v9:-Av9} \
298 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
299 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
300 "
301
302 /* Word size selection, among other things.
303 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
304
305 #define ASM_ARCH32_SPEC "-32"
306 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
307 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
308 #else
309 #define ASM_ARCH64_SPEC "-64"
310 #endif
311 #define ASM_ARCH_DEFAULT_SPEC \
312 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
313
314 #define ASM_ARCH_SPEC "\
315 %{m32:%(asm_arch32)} \
316 %{m64:%(asm_arch64)} \
317 %{!m32:%{!m64:%(asm_arch_default)}} \
318 "
319
320 #ifdef HAVE_AS_RELAX_OPTION
321 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
322 #else
323 #define ASM_RELAX_SPEC ""
324 #endif
325
326 /* Special flags to the Sun-4 assembler when using pipe for input. */
327
328 #define ASM_SPEC "\
329 %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
330 %(asm_cpu) %(asm_relax)"
331
332 /* This macro defines names of additional specifications to put in the specs
333 that can be used in various specifications like CC1_SPEC. Its definition
334 is an initializer with a subgrouping for each command option.
335
336 Each subgrouping contains a string constant, that defines the
337 specification name, and a string constant that used by the GNU CC driver
338 program.
339
340 Do not define this macro if it does not need to do anything. */
341
342 #define EXTRA_SPECS \
343 { "cpp_cpu", CPP_CPU_SPEC }, \
344 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
345 { "cpp_arch32", CPP_ARCH32_SPEC }, \
346 { "cpp_arch64", CPP_ARCH64_SPEC }, \
347 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
348 { "cpp_arch", CPP_ARCH_SPEC }, \
349 { "cpp_endian", CPP_ENDIAN_SPEC }, \
350 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
351 { "asm_cpu", ASM_CPU_SPEC }, \
352 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
353 { "asm_arch32", ASM_ARCH32_SPEC }, \
354 { "asm_arch64", ASM_ARCH64_SPEC }, \
355 { "asm_relax", ASM_RELAX_SPEC }, \
356 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
357 { "asm_arch", ASM_ARCH_SPEC }, \
358 SUBTARGET_EXTRA_SPECS
359
360 #define SUBTARGET_EXTRA_SPECS
361
362 /* Because libgcc can generate references back to libc (via .umul etc.) we have
363 to list libc again after the second libgcc. */
364 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
365
366 \f
367 #ifdef SPARC_BI_ARCH
368 #define NO_BUILTIN_PTRDIFF_TYPE
369 #define NO_BUILTIN_SIZE_TYPE
370 #endif
371 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
372 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
373
374 /* ??? This should be 32 bits for v9 but what can we do? */
375 #define WCHAR_TYPE "short unsigned int"
376 #define WCHAR_TYPE_SIZE 16
377
378 /* Show we can debug even without a frame pointer. */
379 #define CAN_DEBUG_WITHOUT_FP
380
381 #define OVERRIDE_OPTIONS sparc_override_options ()
382
383 /* Generate DBX debugging information. */
384
385 #define DBX_DEBUGGING_INFO
386 \f
387 /* Run-time compilation parameters selecting different hardware subsets. */
388
389 extern int target_flags;
390
391 /* Nonzero if we should generate code to use the fpu. */
392 #define MASK_FPU 1
393 #define TARGET_FPU (target_flags & MASK_FPU)
394
395 /* Nonzero if we should assume that double pointers might be unaligned.
396 This can happen when linking gcc compiled code with other compilers,
397 because the ABI only guarantees 4 byte alignment. */
398 #define MASK_UNALIGNED_DOUBLES 4
399 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
400
401 /* Nonzero means that we should generate code for a v8 sparc. */
402 #define MASK_V8 0x8
403 #define TARGET_V8 (target_flags & MASK_V8)
404
405 /* Nonzero means that we should generate code for a sparclite.
406 This enables the sparclite specific instructions, but does not affect
407 whether FPU instructions are emitted. */
408 #define MASK_SPARCLITE 0x10
409 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
410
411 /* Nonzero if we're compiling for the sparclet. */
412 #define MASK_SPARCLET 0x20
413 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
414
415 /* Nonzero if we're compiling for v9 sparc.
416 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
417 the word size is 64. */
418 #define MASK_V9 0x40
419 #define TARGET_V9 (target_flags & MASK_V9)
420
421 /* Non-zero to generate code that uses the instructions deprecated in
422 the v9 architecture. This option only applies to v9 systems. */
423 /* ??? This isn't user selectable yet. It's used to enable such insns
424 on 32 bit v9 systems and for the moment they're permanently disabled
425 on 64 bit v9 systems. */
426 #define MASK_DEPRECATED_V8_INSNS 0x80
427 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
428
429 /* Mask of all CPU selection flags. */
430 #define MASK_ISA \
431 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
432
433 /* Non-zero means don't pass `-assert pure-text' to the linker. */
434 #define MASK_IMPURE_TEXT 0x100
435 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
436
437 /* Nonzero means that we should generate code using a flat register window
438 model, i.e. no save/restore instructions are generated, which is
439 compatible with normal sparc code.
440 The frame pointer is %i7 instead of %fp. */
441 #define MASK_FLAT 0x200
442 #define TARGET_FLAT (target_flags & MASK_FLAT)
443
444 /* Nonzero means use the registers that the Sparc ABI reserves for
445 application software. This must be the default to coincide with the
446 setting in FIXED_REGISTERS. */
447 #define MASK_APP_REGS 0x400
448 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
449
450 /* Option to select how quad word floating point is implemented.
451 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
452 Otherwise, we use the SPARC ABI quad library functions. */
453 #define MASK_HARD_QUAD 0x800
454 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
455
456 /* Non-zero on little-endian machines. */
457 /* ??? Little endian support currently only exists for sparclet-aout and
458 sparc64-elf configurations. May eventually want to expand the support
459 to all targets, but for now it's kept local to only those two. */
460 #define MASK_LITTLE_ENDIAN 0x1000
461 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
462
463 /* 0x2000, 0x4000 are unused */
464
465 /* Nonzero if pointers are 64 bits. */
466 #define MASK_PTR64 0x8000
467 #define TARGET_PTR64 (target_flags & MASK_PTR64)
468
469 /* Nonzero if generating code to run in a 64 bit environment.
470 This is intended to only be used by TARGET_ARCH{32,64} as they are the
471 mechanism used to control compile time or run time selection. */
472 #define MASK_64BIT 0x10000
473 #define TARGET_64BIT (target_flags & MASK_64BIT)
474
475 /* 0x20000,0x40000 unused */
476
477 /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
478 adding 2047 to %sp. This option is for v9 only and is the default. */
479 #define MASK_STACK_BIAS 0x80000
480 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
481
482 /* 0x100000,0x200000 unused */
483
484 /* Non-zero means -m{,no-}fpu was passed on the command line. */
485 #define MASK_FPU_SET 0x400000
486 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
487
488 /* Use the UltraSPARC Visual Instruction Set extensions. */
489 #define MASK_VIS 0x1000000
490 #define TARGET_VIS (target_flags & MASK_VIS)
491
492 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
493 the current out and global registers and Linux 2.2+ as well. */
494 #define MASK_V8PLUS 0x2000000
495 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
496
497 /* Force a the fastest alignment on structures to take advantage of
498 faster copies. */
499 #define MASK_FASTER_STRUCTS 0x4000000
500 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
501
502 /* Use IEEE quad long double. */
503 #define MASK_LONG_DOUBLE_128 0x8000000
504 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
505
506 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
507 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
508 to get high 32 bits. False in V8+ or V9 because multiply stores
509 a 64 bit result in a register. */
510
511 #define TARGET_HARD_MUL32 \
512 ((TARGET_V8 || TARGET_SPARCLITE \
513 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
514 && ! TARGET_V8PLUS && TARGET_ARCH32)
515
516 #define TARGET_HARD_MUL \
517 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
518 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
519
520
521 /* Macro to define tables used to set the flags.
522 This is a list in braces of pairs in braces,
523 each pair being { "NAME", VALUE }
524 where VALUE is the bits to set or minus the bits to clear.
525 An empty string NAME is used to identify the default VALUE. */
526
527 #define TARGET_SWITCHES \
528 { {"fpu", MASK_FPU | MASK_FPU_SET, \
529 N_("Use hardware fp") }, \
530 {"no-fpu", -MASK_FPU, \
531 N_("Do not use hardware fp") }, \
532 {"no-fpu", MASK_FPU_SET, NULL, }, \
533 {"hard-float", MASK_FPU | MASK_FPU_SET, \
534 N_("Use hardware fp") }, \
535 {"soft-float", -MASK_FPU, \
536 N_("Do not use hardware fp") }, \
537 {"soft-float", MASK_FPU_SET, NULL }, \
538 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
539 N_("Assume possible double misalignment") }, \
540 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
541 N_("Assume all doubles are aligned") }, \
542 {"impure-text", MASK_IMPURE_TEXT, \
543 N_("Pass -assert pure-text to linker") }, \
544 {"no-impure-text", -MASK_IMPURE_TEXT, \
545 N_("Do not pass -assert pure-text to linker") }, \
546 {"flat", MASK_FLAT, \
547 N_("Use flat register window model") }, \
548 {"no-flat", -MASK_FLAT, \
549 N_("Do not use flat register window model") }, \
550 {"app-regs", MASK_APP_REGS, \
551 N_("Use ABI reserved registers") }, \
552 {"no-app-regs", -MASK_APP_REGS, \
553 N_("Do not use ABI reserved registers") }, \
554 {"hard-quad-float", MASK_HARD_QUAD, \
555 N_("Use hardware quad fp instructions") }, \
556 {"soft-quad-float", -MASK_HARD_QUAD, \
557 N_("Do not use hardware quad fp instructions") }, \
558 {"v8plus", MASK_V8PLUS, \
559 N_("Compile for v8plus ABI") }, \
560 {"no-v8plus", -MASK_V8PLUS, \
561 N_("Do not compile for v8plus ABI") }, \
562 {"vis", MASK_VIS, \
563 N_("Utilize Visual Instruction Set") }, \
564 {"no-vis", -MASK_VIS, \
565 N_("Do not utilize Visual Instruction Set") }, \
566 /* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \
567 {"cypress", 0, \
568 N_("Optimize for Cypress processors") }, \
569 {"sparclite", 0, \
570 N_("Optimize for SparcLite processors") }, \
571 {"f930", 0, \
572 N_("Optimize for F930 processors") }, \
573 {"f934", 0, \
574 N_("Optimize for F934 processors") }, \
575 {"v8", 0, \
576 N_("Use V8 Sparc ISA") }, \
577 {"supersparc", 0, \
578 N_("Optimize for SuperSparc processors") }, \
579 /* End of deprecated options. */ \
580 {"ptr64", MASK_PTR64, \
581 N_("Pointers are 64-bit") }, \
582 {"ptr32", -MASK_PTR64, \
583 N_("Pointers are 32-bit") }, \
584 {"32", -MASK_64BIT, \
585 N_("Use 32-bit ABI") }, \
586 {"64", MASK_64BIT, \
587 N_("Use 64-bit ABI") }, \
588 {"stack-bias", MASK_STACK_BIAS, \
589 N_("Use stack bias") }, \
590 {"no-stack-bias", -MASK_STACK_BIAS, \
591 N_("Do not use stack bias") }, \
592 {"faster-structs", MASK_FASTER_STRUCTS, \
593 N_("Use structs on stronger alignment for double-word copies") }, \
594 {"no-faster-structs", -MASK_FASTER_STRUCTS, \
595 N_("Do not use structs on stronger alignment for double-word copies") }, \
596 {"relax", 0, \
597 N_("Optimize tail call instructions in assembler and linker") }, \
598 {"no-relax", 0, \
599 N_("Do not optimize tail call instructions in assembler or linker") }, \
600 SUBTARGET_SWITCHES \
601 { "", TARGET_DEFAULT, ""}}
602
603 /* MASK_APP_REGS must always be the default because that's what
604 FIXED_REGISTERS is set to and -ffixed- is processed before
605 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
606 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
607
608 /* This is meant to be redefined in target specific files. */
609 #define SUBTARGET_SWITCHES
610
611 /* Processor type.
612 These must match the values for the cpu attribute in sparc.md. */
613 enum processor_type {
614 PROCESSOR_V7,
615 PROCESSOR_CYPRESS,
616 PROCESSOR_V8,
617 PROCESSOR_SUPERSPARC,
618 PROCESSOR_SPARCLITE,
619 PROCESSOR_F930,
620 PROCESSOR_F934,
621 PROCESSOR_HYPERSPARC,
622 PROCESSOR_SPARCLITE86X,
623 PROCESSOR_SPARCLET,
624 PROCESSOR_TSC701,
625 PROCESSOR_V9,
626 PROCESSOR_ULTRASPARC
627 };
628
629 /* This is set from -m{cpu,tune}=xxx. */
630 extern enum processor_type sparc_cpu;
631
632 /* Recast the cpu class to be the cpu attribute.
633 Every file includes us, but not every file includes insn-attr.h. */
634 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
635
636 #define TARGET_OPTIONS \
637 { \
638 { "cpu=", &sparc_select[1].string, \
639 N_("Use features of and schedule code for given CPU") }, \
640 { "tune=", &sparc_select[2].string, \
641 N_("Schedule code for given CPU") }, \
642 { "cmodel=", &sparc_cmodel_string, \
643 N_("Use given Sparc code model") }, \
644 SUBTARGET_OPTIONS \
645 }
646
647 /* This is meant to be redefined in target specific files. */
648 #define SUBTARGET_OPTIONS
649
650 /* sparc_select[0] is reserved for the default cpu. */
651 struct sparc_cpu_select
652 {
653 const char *string;
654 const char *const name;
655 const int set_tune_p;
656 const int set_arch_p;
657 };
658
659 extern struct sparc_cpu_select sparc_select[];
660 \f
661 /* target machine storage layout */
662
663 /* Define this if most significant bit is lowest numbered
664 in instructions that operate on numbered bit-fields. */
665 #define BITS_BIG_ENDIAN 1
666
667 /* Define this if most significant byte of a word is the lowest numbered. */
668 #define BYTES_BIG_ENDIAN 1
669
670 /* Define this if most significant word of a multiword number is the lowest
671 numbered. */
672 #define WORDS_BIG_ENDIAN 1
673
674 /* Define this to set the endianness to use in libgcc2.c, which can
675 not depend on target_flags. */
676 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
677 #define LIBGCC2_WORDS_BIG_ENDIAN 0
678 #else
679 #define LIBGCC2_WORDS_BIG_ENDIAN 1
680 #endif
681
682 #define MAX_BITS_PER_WORD 64
683
684 /* Width of a word, in units (bytes). */
685 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
686 #ifdef IN_LIBGCC2
687 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
688 #else
689 #define MIN_UNITS_PER_WORD 4
690 #endif
691
692 /* Now define the sizes of the C data types. */
693
694 #define SHORT_TYPE_SIZE 16
695 #define INT_TYPE_SIZE 32
696 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
697 #define LONG_LONG_TYPE_SIZE 64
698 #define FLOAT_TYPE_SIZE 32
699 #define DOUBLE_TYPE_SIZE 64
700
701 #ifdef SPARC_BI_ARCH
702 #define MAX_LONG_TYPE_SIZE 64
703 #endif
704
705 #if 0
706 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
707 Instead, it is enabled in sol2.h, because it does work under Solaris. */
708 /* Define for support of TFmode long double.
709 Sparc ABI says that long double is 4 words. */
710 #define LONG_DOUBLE_TYPE_SIZE 128
711 #endif
712
713 /* Width in bits of a pointer.
714 See also the macro `Pmode' defined below. */
715 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
716
717 /* If we have to extend pointers (only when TARGET_ARCH64 and not
718 TARGET_PTR64), we want to do it unsigned. This macro does nothing
719 if ptr_mode and Pmode are the same. */
720 #define POINTERS_EXTEND_UNSIGNED 1
721
722 /* A macro to update MODE and UNSIGNEDP when an object whose type
723 is TYPE and which has the specified mode and signedness is to be
724 stored in a register. This macro is only called when TYPE is a
725 scalar type. */
726 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
727 if (TARGET_ARCH64 \
728 && GET_MODE_CLASS (MODE) == MODE_INT \
729 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
730 (MODE) = DImode;
731
732 /* Define this macro if the promotion described by PROMOTE_MODE
733 should also be done for outgoing function arguments. */
734 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
735 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
736 for this value. */
737 #define PROMOTE_FUNCTION_ARGS
738
739 /* Define this macro if the promotion described by PROMOTE_MODE
740 should also be done for the return value of functions.
741 If this macro is defined, FUNCTION_VALUE must perform the same
742 promotions done by PROMOTE_MODE. */
743 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
744 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
745 for this value. */
746 #define PROMOTE_FUNCTION_RETURN
747
748 /* Define this macro if the promotion described by PROMOTE_MODE
749 should _only_ be performed for outgoing function arguments or
750 function return values, as specified by PROMOTE_FUNCTION_ARGS
751 and PROMOTE_FUNCTION_RETURN, respectively. */
752 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
753 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
754 for this value. For TARGET_ARCH64 we need it, as we don't have instructions
755 for arithmetic operations which do zero/sign extension at the same time,
756 so without this we end up with a srl/sra after every assignment to an
757 user variable, which means very very bad code. */
758 #define PROMOTE_FOR_CALL_ONLY
759
760 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
761 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
762
763 /* Boundary (in *bits*) on which stack pointer should be aligned. */
764 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
765
766 /* ALIGN FRAMES on double word boundaries */
767
768 #define SPARC_STACK_ALIGN(LOC) \
769 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
770
771 /* Allocation boundary (in *bits*) for the code of a function. */
772 #define FUNCTION_BOUNDARY 32
773
774 /* Alignment of field after `int : 0' in a structure. */
775 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
776
777 /* Every structure's size must be a multiple of this. */
778 #define STRUCTURE_SIZE_BOUNDARY 8
779
780 /* A bitfield declared as `int' forces `int' alignment for the struct. */
781 #define PCC_BITFIELD_TYPE_MATTERS 1
782
783 /* No data type wants to be aligned rounder than this. */
784 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
785
786 /* The best alignment to use in cases where we have a choice. */
787 #define FASTEST_ALIGNMENT 64
788
789 /* Define this macro as an expression for the alignment of a structure
790 (given by STRUCT as a tree node) if the alignment computed in the
791 usual way is COMPUTED and the alignment explicitly specified was
792 SPECIFIED.
793
794 The default is to use SPECIFIED if it is larger; otherwise, use
795 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
796 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
797 (TARGET_FASTER_STRUCTS ? \
798 ((TREE_CODE (STRUCT) == RECORD_TYPE \
799 || TREE_CODE (STRUCT) == UNION_TYPE \
800 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
801 && TYPE_FIELDS (STRUCT) != 0 \
802 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
803 : MAX ((COMPUTED), (SPECIFIED))) \
804 : MAX ((COMPUTED), (SPECIFIED)))
805
806 /* Make strings word-aligned so strcpy from constants will be faster. */
807 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
808 ((TREE_CODE (EXP) == STRING_CST \
809 && (ALIGN) < FASTEST_ALIGNMENT) \
810 ? FASTEST_ALIGNMENT : (ALIGN))
811
812 /* Make arrays of chars word-aligned for the same reasons. */
813 #define DATA_ALIGNMENT(TYPE, ALIGN) \
814 (TREE_CODE (TYPE) == ARRAY_TYPE \
815 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
816 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
817
818 /* Set this nonzero if move instructions will actually fail to work
819 when given unaligned data. */
820 #define STRICT_ALIGNMENT 1
821
822 /* Things that must be doubleword aligned cannot go in the text section,
823 because the linker fails to align the text section enough!
824 Put them in the data section. This macro is only used in this file. */
825 #define MAX_TEXT_ALIGN 32
826
827 /* This forces all variables and constants to the data section when PIC.
828 This is because the SunOS 4 shared library scheme thinks everything in
829 text is a function, and patches the address to point to a loader stub. */
830 /* This is defined to zero for every system which doesn't use the a.out object
831 file format. */
832 #ifndef SUNOS4_SHARED_LIBRARIES
833 #define SUNOS4_SHARED_LIBRARIES 0
834 #endif
835
836
837 /* Use text section for a constant
838 unless we need more alignment than that offers. */
839 /* This is defined differently for v9 in a cover file. */
840 #define SELECT_RTX_SECTION(MODE, X, ALIGN) \
841 { \
842 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
843 && ! (flag_pic && (symbolic_operand ((X), (MODE)) || SUNOS4_SHARED_LIBRARIES))) \
844 text_section (); \
845 else \
846 data_section (); \
847 }
848 \f
849 /* Standard register usage. */
850
851 /* Number of actual hardware registers.
852 The hardware registers are assigned numbers for the compiler
853 from 0 to just below FIRST_PSEUDO_REGISTER.
854 All registers that the compiler knows about must be given numbers,
855 even those that are not normally considered general registers.
856
857 SPARC has 32 integer registers and 32 floating point registers.
858 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
859 accessible. We still account for them to simplify register computations
860 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
861 32+32+32+4 == 100.
862 Register 100 is used as the integer condition code register.
863 Register 101 is used as the soft frame pointer register. */
864
865 #define FIRST_PSEUDO_REGISTER 102
866
867 #define SPARC_FIRST_FP_REG 32
868 /* Additional V9 fp regs. */
869 #define SPARC_FIRST_V9_FP_REG 64
870 #define SPARC_LAST_V9_FP_REG 95
871 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
872 #define SPARC_FIRST_V9_FCC_REG 96
873 #define SPARC_LAST_V9_FCC_REG 99
874 /* V8 fcc reg. */
875 #define SPARC_FCC_REG 96
876 /* Integer CC reg. We don't distinguish %icc from %xcc. */
877 #define SPARC_ICC_REG 100
878
879 /* Nonzero if REGNO is an fp reg. */
880 #define SPARC_FP_REG_P(REGNO) \
881 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
882
883 /* Argument passing regs. */
884 #define SPARC_OUTGOING_INT_ARG_FIRST 8
885 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
886 #define SPARC_FP_ARG_FIRST 32
887
888 /* 1 for registers that have pervasive standard uses
889 and are not available for the register allocator.
890
891 On non-v9 systems:
892 g1 is free to use as temporary.
893 g2-g4 are reserved for applications. Gcc normally uses them as
894 temporaries, but this can be disabled via the -mno-app-regs option.
895 g5 through g7 are reserved for the operating system.
896
897 On v9 systems:
898 g1,g5 are free to use as temporaries, and are free to use between calls
899 if the call is to an external function via the PLT.
900 g4 is free to use as a temporary in the non-embedded case.
901 g4 is reserved in the embedded case.
902 g2-g3 are reserved for applications. Gcc normally uses them as
903 temporaries, but this can be disabled via the -mno-app-regs option.
904 g6-g7 are reserved for the operating system (or application in
905 embedded case).
906 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
907 currently be a fixed register until this pattern is rewritten.
908 Register 1 is also used when restoring call-preserved registers in large
909 stack frames.
910
911 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
912 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
913 */
914
915 #define FIXED_REGISTERS \
916 {1, 0, 2, 2, 2, 2, 1, 1, \
917 0, 0, 0, 0, 0, 0, 1, 0, \
918 0, 0, 0, 0, 0, 0, 0, 0, \
919 0, 0, 0, 0, 0, 0, 1, 1, \
920 \
921 0, 0, 0, 0, 0, 0, 0, 0, \
922 0, 0, 0, 0, 0, 0, 0, 0, \
923 0, 0, 0, 0, 0, 0, 0, 0, \
924 0, 0, 0, 0, 0, 0, 0, 0, \
925 \
926 0, 0, 0, 0, 0, 0, 0, 0, \
927 0, 0, 0, 0, 0, 0, 0, 0, \
928 0, 0, 0, 0, 0, 0, 0, 0, \
929 0, 0, 0, 0, 0, 0, 0, 0, \
930 \
931 0, 0, 0, 0, 0, 1}
932
933 /* 1 for registers not available across function calls.
934 These must include the FIXED_REGISTERS and also any
935 registers that can be used without being saved.
936 The latter must include the registers where values are returned
937 and the register where structure-value addresses are passed.
938 Aside from that, you can include as many other registers as you like. */
939
940 #define CALL_USED_REGISTERS \
941 {1, 1, 1, 1, 1, 1, 1, 1, \
942 1, 1, 1, 1, 1, 1, 1, 1, \
943 0, 0, 0, 0, 0, 0, 0, 0, \
944 0, 0, 0, 0, 0, 0, 1, 1, \
945 \
946 1, 1, 1, 1, 1, 1, 1, 1, \
947 1, 1, 1, 1, 1, 1, 1, 1, \
948 1, 1, 1, 1, 1, 1, 1, 1, \
949 1, 1, 1, 1, 1, 1, 1, 1, \
950 \
951 1, 1, 1, 1, 1, 1, 1, 1, \
952 1, 1, 1, 1, 1, 1, 1, 1, \
953 1, 1, 1, 1, 1, 1, 1, 1, \
954 1, 1, 1, 1, 1, 1, 1, 1, \
955 \
956 1, 1, 1, 1, 1, 1}
957
958 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
959 they won't be allocated. */
960
961 #define CONDITIONAL_REGISTER_USAGE \
962 do \
963 { \
964 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
965 { \
966 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
967 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
968 } \
969 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
970 /* then honour it. */ \
971 if (TARGET_ARCH32 && fixed_regs[5]) \
972 fixed_regs[5] = 1; \
973 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
974 fixed_regs[5] = 0; \
975 if (! TARGET_V9) \
976 { \
977 int regno; \
978 for (regno = SPARC_FIRST_V9_FP_REG; \
979 regno <= SPARC_LAST_V9_FP_REG; \
980 regno++) \
981 fixed_regs[regno] = 1; \
982 /* %fcc0 is used by v8 and v9. */ \
983 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
984 regno <= SPARC_LAST_V9_FCC_REG; \
985 regno++) \
986 fixed_regs[regno] = 1; \
987 } \
988 if (! TARGET_FPU) \
989 { \
990 int regno; \
991 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
992 fixed_regs[regno] = 1; \
993 } \
994 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
995 /* then honour it. Likewise with g3 and g4. */ \
996 if (fixed_regs[2] == 2) \
997 fixed_regs[2] = ! TARGET_APP_REGS; \
998 if (fixed_regs[3] == 2) \
999 fixed_regs[3] = ! TARGET_APP_REGS; \
1000 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
1001 fixed_regs[4] = ! TARGET_APP_REGS; \
1002 else if (TARGET_CM_EMBMEDANY) \
1003 fixed_regs[4] = 1; \
1004 else if (fixed_regs[4] == 2) \
1005 fixed_regs[4] = 0; \
1006 if (TARGET_FLAT) \
1007 { \
1008 /* Let the compiler believe the frame pointer is still \
1009 %fp, but output it as %i7. */ \
1010 fixed_regs[31] = 1; \
1011 reg_names[HARD_FRAME_POINTER_REGNUM] = "%i7"; \
1012 /* Disable leaf functions */ \
1013 memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER); \
1014 } \
1015 } \
1016 while (0)
1017
1018 /* Return number of consecutive hard regs needed starting at reg REGNO
1019 to hold something of mode MODE.
1020 This is ordinarily the length in words of a value of mode MODE
1021 but can be less for certain modes in special long registers.
1022
1023 On SPARC, ordinary registers hold 32 bits worth;
1024 this means both integer and floating point registers.
1025 On v9, integer regs hold 64 bits worth; floating point regs hold
1026 32 bits worth (this includes the new fp regs as even the odd ones are
1027 included in the hard register count). */
1028
1029 #define HARD_REGNO_NREGS(REGNO, MODE) \
1030 (TARGET_ARCH64 \
1031 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
1032 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1033 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1034 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1035
1036 /* Due to the ARCH64 descrepancy above we must override this next
1037 macro too. */
1038 #define REGMODE_NATURAL_SIZE(MODE) \
1039 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1040
1041 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1042 See sparc.c for how we initialize this. */
1043 extern const int *hard_regno_mode_classes;
1044 extern int sparc_mode_class[];
1045
1046 /* ??? Because of the funny way we pass parameters we should allow certain
1047 ??? types of float/complex values to be in integer registers during
1048 ??? RTL generation. This only matters on arch32. */
1049 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1050 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1051
1052 /* Value is 1 if it is a good idea to tie two pseudo registers
1053 when one has mode MODE1 and one has mode MODE2.
1054 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1055 for any hard reg, then this must be 0 for correct output.
1056
1057 For V9: SFmode can't be combined with other float modes, because they can't
1058 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1059 registers, but SFmode will. */
1060 #define MODES_TIEABLE_P(MODE1, MODE2) \
1061 ((MODE1) == (MODE2) \
1062 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1063 && (! TARGET_V9 \
1064 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1065 || (MODE1 != SFmode && MODE2 != SFmode)))))
1066
1067 /* Specify the registers used for certain standard purposes.
1068 The values of these macros are register numbers. */
1069
1070 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1071 /* #define PC_REGNUM */
1072
1073 /* Register to use for pushing function arguments. */
1074 #define STACK_POINTER_REGNUM 14
1075
1076 /* The stack bias (amount by which the hardware register is offset by). */
1077 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1078
1079 /* Actual top-of-stack address is 92/176 greater than the contents of the
1080 stack pointer register for !v9/v9. That is:
1081 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1082 address, and 6*4 bytes for the 6 register parameters.
1083 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1084 parameter regs. */
1085 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
1086
1087 /* Base register for access to local variables of the function. */
1088 #define HARD_FRAME_POINTER_REGNUM 30
1089
1090 /* The soft frame pointer does not have the stack bias applied. */
1091 #define FRAME_POINTER_REGNUM 101
1092
1093 /* Given the stack bias, the stack pointer isn't actually aligned. */
1094 #define INIT_EXPANDERS \
1095 do { \
1096 if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS) \
1097 { \
1098 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
1099 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
1100 } \
1101 } while (0)
1102
1103 /* Value should be nonzero if functions must have frame pointers.
1104 Zero means the frame pointer need not be set up (and parms
1105 may be accessed via the stack pointer) in functions that seem suitable.
1106 This is computed in `reload', in reload1.c.
1107 Used in flow.c, global.c, and reload1.c.
1108
1109 Being a non-leaf function does not mean a frame pointer is needed in the
1110 flat window model. However, the debugger won't be able to backtrace through
1111 us with out it. */
1112 #define FRAME_POINTER_REQUIRED \
1113 (TARGET_FLAT \
1114 ? (current_function_calls_alloca \
1115 || current_function_varargs \
1116 || !leaf_function_p ()) \
1117 : ! (leaf_function_p () && only_leaf_regs_used ()))
1118
1119 /* Base register for access to arguments of the function. */
1120 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1121
1122 /* Register in which static-chain is passed to a function. This must
1123 not be a register used by the prologue. */
1124 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1125
1126 /* Register which holds offset table for position-independent
1127 data references. */
1128
1129 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
1130
1131 /* Pick a default value we can notice from override_options:
1132 !v9: Default is on.
1133 v9: Default is off. */
1134
1135 #define DEFAULT_PCC_STRUCT_RETURN -1
1136
1137 /* Sparc ABI says that quad-precision floats and all structures are returned
1138 in memory.
1139 For v9: unions <= 32 bytes in size are returned in int regs,
1140 structures up to 32 bytes are returned in int and fp regs. */
1141
1142 #define RETURN_IN_MEMORY(TYPE) \
1143 (TARGET_ARCH32 \
1144 ? (TYPE_MODE (TYPE) == BLKmode \
1145 || TYPE_MODE (TYPE) == TFmode \
1146 || TYPE_MODE (TYPE) == TCmode) \
1147 : (TYPE_MODE (TYPE) == BLKmode \
1148 && (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 32))
1149
1150 /* Functions which return large structures get the address
1151 to place the wanted value at offset 64 from the frame.
1152 Must reserve 64 bytes for the in and local registers.
1153 v9: Functions which return large structures get the address to place the
1154 wanted value from an invisible first argument. */
1155 /* Used only in other #defines in this file. */
1156 #define STRUCT_VALUE_OFFSET 64
1157
1158 #define STRUCT_VALUE \
1159 (TARGET_ARCH64 \
1160 ? 0 \
1161 : gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1162 STRUCT_VALUE_OFFSET)))
1163
1164 #define STRUCT_VALUE_INCOMING \
1165 (TARGET_ARCH64 \
1166 ? 0 \
1167 : gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, \
1168 STRUCT_VALUE_OFFSET)))
1169 \f
1170 /* Define the classes of registers for register constraints in the
1171 machine description. Also define ranges of constants.
1172
1173 One of the classes must always be named ALL_REGS and include all hard regs.
1174 If there is more than one class, another class must be named NO_REGS
1175 and contain no registers.
1176
1177 The name GENERAL_REGS must be the name of a class (or an alias for
1178 another name such as ALL_REGS). This is the class of registers
1179 that is allowed by "g" or "r" in a register constraint.
1180 Also, registers outside this class are allocated only when
1181 instructions express preferences for them.
1182
1183 The classes must be numbered in nondecreasing order; that is,
1184 a larger-numbered class must never be contained completely
1185 in a smaller-numbered class.
1186
1187 For any two classes, it is very desirable that there be another
1188 class that represents their union. */
1189
1190 /* The SPARC has various kinds of registers: general, floating point,
1191 and condition codes [well, it has others as well, but none that we
1192 care directly about].
1193
1194 For v9 we must distinguish between the upper and lower floating point
1195 registers because the upper ones can't hold SFmode values.
1196 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1197 satisfying a group need for a class will also satisfy a single need for
1198 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1199 regs.
1200
1201 It is important that one class contains all the general and all the standard
1202 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1203 because reg_class_record() will bias the selection in favor of fp regs,
1204 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1205 because FP_REGS > GENERAL_REGS.
1206
1207 It is also important that one class contain all the general and all the
1208 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1209 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1210 allocate_reload_reg() to bypass it causing an abort because the compiler
1211 thinks it doesn't have a spill reg when in fact it does.
1212
1213 v9 also has 4 floating point condition code registers. Since we don't
1214 have a class that is the union of FPCC_REGS with either of the others,
1215 it is important that it appear first. Otherwise the compiler will die
1216 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1217 constraints.
1218
1219 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1220 may try to use it to hold an SImode value. See register_operand.
1221 ??? Should %fcc[0123] be handled similarly?
1222 */
1223
1224 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1225 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1226 ALL_REGS, LIM_REG_CLASSES };
1227
1228 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1229
1230 /* Give names of register classes as strings for dump file. */
1231
1232 #define REG_CLASS_NAMES \
1233 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1234 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1235 "ALL_REGS" }
1236
1237 /* Define which registers fit in which classes.
1238 This is an initializer for a vector of HARD_REG_SET
1239 of length N_REG_CLASSES. */
1240
1241 #define REG_CLASS_CONTENTS \
1242 {{0, 0, 0, 0}, /* NO_REGS */ \
1243 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
1244 {0xffff, 0, 0, 0}, /* I64_REGS */ \
1245 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
1246 {0, -1, 0, 0}, /* FP_REGS */ \
1247 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
1248 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
1249 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
1250 {-1, -1, -1, 0x3f}} /* ALL_REGS */
1251
1252 /* The same information, inverted:
1253 Return the class number of the smallest class containing
1254 reg number REGNO. This could be a conditional expression
1255 or could index an array. */
1256
1257 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1258
1259 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1260
1261 /* This is the order in which to allocate registers normally.
1262
1263 We put %f0/%f1 last among the float registers, so as to make it more
1264 likely that a pseudo-register which dies in the float return register
1265 will get allocated to the float return register, thus saving a move
1266 instruction at the end of the function. */
1267
1268 #define REG_ALLOC_ORDER \
1269 { 8, 9, 10, 11, 12, 13, 2, 3, \
1270 15, 16, 17, 18, 19, 20, 21, 22, \
1271 23, 24, 25, 26, 27, 28, 29, 31, \
1272 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
1273 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1274 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1275 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1276 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1277 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1278 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1279 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1280 32, 33, /* %f0,%f1 */ \
1281 96, 97, 98, 99, 100, /* %fcc0-3, %icc */ \
1282 1, 4, 5, 6, 7, 0, 14, 30, 101}
1283
1284 /* This is the order in which to allocate registers for
1285 leaf functions. If all registers can fit in the "gi" registers,
1286 then we have the possibility of having a leaf function. */
1287
1288 #define REG_LEAF_ALLOC_ORDER \
1289 { 2, 3, 24, 25, 26, 27, 28, 29, \
1290 4, 5, 6, 7, 1, \
1291 15, 8, 9, 10, 11, 12, 13, \
1292 16, 17, 18, 19, 20, 21, 22, 23, \
1293 34, 35, 36, 37, 38, 39, \
1294 40, 41, 42, 43, 44, 45, 46, 47, \
1295 48, 49, 50, 51, 52, 53, 54, 55, \
1296 56, 57, 58, 59, 60, 61, 62, 63, \
1297 64, 65, 66, 67, 68, 69, 70, 71, \
1298 72, 73, 74, 75, 76, 77, 78, 79, \
1299 80, 81, 82, 83, 84, 85, 86, 87, \
1300 88, 89, 90, 91, 92, 93, 94, 95, \
1301 32, 33, \
1302 96, 97, 98, 99, 100, \
1303 0, 14, 30, 31, 101}
1304
1305 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1306
1307 extern char sparc_leaf_regs[];
1308 #define LEAF_REGISTERS sparc_leaf_regs
1309
1310 extern const char leaf_reg_remap[];
1311 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1312
1313 /* The class value for index registers, and the one for base regs. */
1314 #define INDEX_REG_CLASS GENERAL_REGS
1315 #define BASE_REG_CLASS GENERAL_REGS
1316
1317 /* Local macro to handle the two v9 classes of FP regs. */
1318 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1319
1320 /* Get reg_class from a letter such as appears in the machine description.
1321 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1322 .md file for v8 and v9.
1323 'd' and 'b' are used for single and double precision VIS operations,
1324 if TARGET_VIS.
1325 'h' is used for V8+ 64 bit global and out registers. */
1326
1327 #define REG_CLASS_FROM_LETTER(C) \
1328 (TARGET_V9 \
1329 ? ((C) == 'f' ? FP_REGS \
1330 : (C) == 'e' ? EXTRA_FP_REGS \
1331 : (C) == 'c' ? FPCC_REGS \
1332 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1333 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1334 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1335 : NO_REGS) \
1336 : ((C) == 'f' ? FP_REGS \
1337 : (C) == 'e' ? FP_REGS \
1338 : (C) == 'c' ? FPCC_REGS \
1339 : NO_REGS))
1340
1341 /* The letters I, J, K, L and M in a register constraint string
1342 can be used to stand for particular ranges of immediate operands.
1343 This macro defines what the ranges are.
1344 C is the letter, and VALUE is a constant value.
1345 Return 1 if VALUE is in the range specified by C.
1346
1347 `I' is used for the range of constants an insn can actually contain.
1348 `J' is used for the range which is just zero (since that is R0).
1349 `K' is used for constants which can be loaded with a single sethi insn.
1350 `L' is used for the range of constants supported by the movcc insns.
1351 `M' is used for the range of constants supported by the movrcc insns.
1352 `N' is like K, but for constants wider than 32 bits. */
1353
1354 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1355 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1356 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1357 /* 10 and 11 bit immediates are only used for a few specific insns.
1358 SMALL_INT is used throughout the port so we continue to use it. */
1359 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1360 /* 13 bit immediate, considering only the low 32 bits */
1361 #define SMALL_INT32(X) (SPARC_SIMM13_P (trunc_int_for_mode \
1362 (INTVAL (X), SImode)))
1363 #define SPARC_SETHI_P(X) \
1364 (((unsigned HOST_WIDE_INT) (X) \
1365 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1366 #define SPARC_SETHI32_P(X) \
1367 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1368
1369 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1370 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1371 : (C) == 'J' ? (VALUE) == 0 \
1372 : (C) == 'K' ? SPARC_SETHI32_P (VALUE) \
1373 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1374 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1375 : (C) == 'N' ? SPARC_SETHI_P (VALUE) \
1376 : 0)
1377
1378 /* Similar, but for floating constants, and defining letters G and H.
1379 Here VALUE is the CONST_DOUBLE rtx itself. */
1380
1381 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1382 ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
1383 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1384 : 0)
1385
1386 /* Given an rtx X being reloaded into a reg required to be
1387 in class CLASS, return the class of reg to actually use.
1388 In general this is just CLASS; but on some machines
1389 in some cases it is preferable to use a more restrictive class. */
1390 /* - We can't load constants into FP registers.
1391 - We can't load FP constants into integer registers when soft-float,
1392 because there is no soft-float pattern with a r/F constraint.
1393 - We can't load FP constants into integer registers for TFmode unless
1394 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1395 - Try and reload integer constants (symbolic or otherwise) back into
1396 registers directly, rather than having them dumped to memory. */
1397
1398 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1399 (CONSTANT_P (X) \
1400 ? ((FP_REG_CLASS_P (CLASS) \
1401 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1402 && ! TARGET_FPU) \
1403 || (GET_MODE (X) == TFmode \
1404 && ! fp_zero_operand (X, TFmode))) \
1405 ? NO_REGS \
1406 : (!FP_REG_CLASS_P (CLASS) \
1407 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1408 ? GENERAL_REGS \
1409 : (CLASS)) \
1410 : (CLASS))
1411
1412 /* Return the register class of a scratch register needed to load IN into
1413 a register of class CLASS in MODE.
1414
1415 We need a temporary when loading/storing a HImode/QImode value
1416 between memory and the FPU registers. This can happen when combine puts
1417 a paradoxical subreg in a float/fix conversion insn. */
1418
1419 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1420 ((FP_REG_CLASS_P (CLASS) \
1421 && ((MODE) == HImode || (MODE) == QImode) \
1422 && (GET_CODE (IN) == MEM \
1423 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1424 && true_regnum (IN) == -1))) \
1425 ? GENERAL_REGS \
1426 : (((TARGET_CM_MEDANY \
1427 && symbolic_operand ((IN), (MODE))) \
1428 || (TARGET_CM_EMBMEDANY \
1429 && text_segment_operand ((IN), (MODE)))) \
1430 && !flag_pic) \
1431 ? GENERAL_REGS \
1432 : NO_REGS)
1433
1434 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1435 ((FP_REG_CLASS_P (CLASS) \
1436 && ((MODE) == HImode || (MODE) == QImode) \
1437 && (GET_CODE (IN) == MEM \
1438 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1439 && true_regnum (IN) == -1))) \
1440 ? GENERAL_REGS \
1441 : (((TARGET_CM_MEDANY \
1442 && symbolic_operand ((IN), (MODE))) \
1443 || (TARGET_CM_EMBMEDANY \
1444 && text_segment_operand ((IN), (MODE)))) \
1445 && !flag_pic) \
1446 ? GENERAL_REGS \
1447 : NO_REGS)
1448
1449 /* On SPARC it is not possible to directly move data between
1450 GENERAL_REGS and FP_REGS. */
1451 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1452 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1453
1454 /* Return the stack location to use for secondary memory needed reloads.
1455 We want to use the reserved location just below the frame pointer.
1456 However, we must ensure that there is a frame, so use assign_stack_local
1457 if the frame size is zero. */
1458 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1459 (get_frame_size () == 0 \
1460 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1461 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1462 STARTING_FRAME_OFFSET)))
1463
1464 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1465 because the movsi and movsf patterns don't handle r/f moves.
1466 For v8 we copy the default definition. */
1467 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1468 (TARGET_ARCH64 \
1469 ? (GET_MODE_BITSIZE (MODE) < 32 \
1470 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1471 : MODE) \
1472 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1473 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1474 : MODE))
1475
1476 /* Return the maximum number of consecutive registers
1477 needed to represent mode MODE in a register of class CLASS. */
1478 /* On SPARC, this is the size of MODE in words. */
1479 #define CLASS_MAX_NREGS(CLASS, MODE) \
1480 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1481 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1482 \f
1483 /* Stack layout; function entry, exit and calling. */
1484
1485 /* Define the number of register that can hold parameters.
1486 This macro is only used in other macro definitions below and in sparc.c.
1487 MODE is the mode of the argument.
1488 !v9: All args are passed in %o0-%o5.
1489 v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1490 See the description in sparc.c. */
1491 #define NPARM_REGS(MODE) \
1492 (TARGET_ARCH64 \
1493 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1494 : 6)
1495
1496 /* Define this if pushing a word on the stack
1497 makes the stack pointer a smaller address. */
1498 #define STACK_GROWS_DOWNWARD
1499
1500 /* Define this if the nominal address of the stack frame
1501 is at the high-address end of the local variables;
1502 that is, each additional local variable allocated
1503 goes at a more negative offset in the frame. */
1504 #define FRAME_GROWS_DOWNWARD
1505
1506 /* Offset within stack frame to start allocating local variables at.
1507 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1508 first local allocated. Otherwise, it is the offset to the BEGINNING
1509 of the first local allocated. */
1510 /* This allows space for one TFmode floating point value. */
1511 #define STARTING_FRAME_OFFSET \
1512 (TARGET_ARCH64 ? -16 \
1513 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1514
1515 /* If we generate an insn to push BYTES bytes,
1516 this says how many the stack pointer really advances by.
1517 On SPARC, don't define this because there are no push insns. */
1518 /* #define PUSH_ROUNDING(BYTES) */
1519
1520 /* Offset of first parameter from the argument pointer register value.
1521 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1522 even if this function isn't going to use it.
1523 v9: This is 128 for the ins and locals. */
1524 #define FIRST_PARM_OFFSET(FNDECL) \
1525 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1526
1527 /* Offset from the argument pointer register value to the CFA.
1528 This is different from FIRST_PARM_OFFSET because the register window
1529 comes between the CFA and the arguments. */
1530 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1531
1532 /* When a parameter is passed in a register, stack space is still
1533 allocated for it.
1534 !v9: All 6 possible integer registers have backing store allocated.
1535 v9: Only space for the arguments passed is allocated. */
1536 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1537 meaning to the backend. Further, we need to be able to detect if a
1538 varargs/unprototyped function is called, as they may want to spill more
1539 registers than we've provided space. Ugly, ugly. So for now we retain
1540 all 6 slots even for v9. */
1541 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1542
1543 /* Definitions for register elimination. */
1544 /* ??? In TARGET_FLAT mode we needn't have a hard frame pointer. */
1545
1546 #define ELIMINABLE_REGS \
1547 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1548 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1549
1550 /* The way this is structured, we can't eliminate SFP in favor of SP
1551 if the frame pointer is required: we want to use the SFP->HFP elimination
1552 in that case. But the test in update_eliminables doesn't know we are
1553 assuming below that we only do the former elimination. */
1554 #define CAN_ELIMINATE(FROM, TO) \
1555 ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1556
1557 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1558 do { \
1559 (OFFSET) = 0; \
1560 if ((TO) == STACK_POINTER_REGNUM) \
1561 { \
1562 /* Note, we always pretend that this is a leaf function \
1563 because if it's not, there's no point in trying to \
1564 eliminate the frame pointer. If it is a leaf \
1565 function, we guessed right! */ \
1566 if (TARGET_FLAT) \
1567 (OFFSET) = \
1568 sparc_flat_compute_frame_size (get_frame_size ()); \
1569 else \
1570 (OFFSET) = compute_frame_size (get_frame_size (), 1); \
1571 } \
1572 (OFFSET) += SPARC_STACK_BIAS; \
1573 } while (0)
1574
1575 /* Keep the stack pointer constant throughout the function.
1576 This is both an optimization and a necessity: longjmp
1577 doesn't behave itself when the stack pointer moves within
1578 the function! */
1579 #define ACCUMULATE_OUTGOING_ARGS 1
1580
1581 /* Value is the number of bytes of arguments automatically
1582 popped when returning from a subroutine call.
1583 FUNDECL is the declaration node of the function (as a tree),
1584 FUNTYPE is the data type of the function (as a tree),
1585 or for a library call it is an identifier node for the subroutine name.
1586 SIZE is the number of bytes of arguments passed on the stack. */
1587
1588 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1589
1590 /* Some subroutine macros specific to this machine.
1591 When !TARGET_FPU, put float return values in the general registers,
1592 since we don't have any fp registers. */
1593 #define BASE_RETURN_VALUE_REG(MODE) \
1594 (TARGET_ARCH64 \
1595 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1596 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1597
1598 #define BASE_OUTGOING_VALUE_REG(MODE) \
1599 (TARGET_ARCH64 \
1600 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1601 : TARGET_FLAT ? 8 : 24) \
1602 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1603 : (TARGET_FLAT ? 8 : 24)))
1604
1605 #define BASE_PASSING_ARG_REG(MODE) \
1606 (TARGET_ARCH64 \
1607 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1608 : 8)
1609
1610 /* ??? FIXME -- seems wrong for v9 structure passing... */
1611 #define BASE_INCOMING_ARG_REG(MODE) \
1612 (TARGET_ARCH64 \
1613 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1614 : TARGET_FLAT ? 8 : 24) \
1615 : (TARGET_FLAT ? 8 : 24))
1616
1617 /* Define this macro if the target machine has "register windows". This
1618 C expression returns the register number as seen by the called function
1619 corresponding to register number OUT as seen by the calling function.
1620 Return OUT if register number OUT is not an outbound register. */
1621
1622 #define INCOMING_REGNO(OUT) \
1623 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1624
1625 /* Define this macro if the target machine has "register windows". This
1626 C expression returns the register number as seen by the calling function
1627 corresponding to register number IN as seen by the called function.
1628 Return IN if register number IN is not an inbound register. */
1629
1630 #define OUTGOING_REGNO(IN) \
1631 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1632
1633 /* Define this macro if the target machine has register windows. This
1634 C expression returns true if the register is call-saved but is in the
1635 register window. */
1636
1637 #define LOCAL_REGNO(REGNO) \
1638 (TARGET_FLAT ? 0 : (REGNO) >= 16 && (REGNO) <= 31)
1639
1640 /* Define how to find the value returned by a function.
1641 VALTYPE is the data type of the value (as a tree).
1642 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1643 otherwise, FUNC is 0. */
1644
1645 /* On SPARC the value is found in the first "output" register. */
1646
1647 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1648 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1649
1650 /* But the called function leaves it in the first "input" register. */
1651
1652 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1653 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1654
1655 /* Define how to find the value returned by a library function
1656 assuming the value has mode MODE. */
1657
1658 #define LIBCALL_VALUE(MODE) \
1659 function_value (NULL_TREE, (MODE), 1)
1660
1661 /* 1 if N is a possible register number for a function value
1662 as seen by the caller.
1663 On SPARC, the first "output" reg is used for integer values,
1664 and the first floating point register is used for floating point values. */
1665
1666 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1667
1668 /* Define the size of space to allocate for the return value of an
1669 untyped_call. */
1670
1671 #define APPLY_RESULT_SIZE 16
1672
1673 /* 1 if N is a possible register number for function argument passing.
1674 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1675
1676 #define FUNCTION_ARG_REGNO_P(N) \
1677 (TARGET_ARCH64 \
1678 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1679 : ((N) >= 8 && (N) <= 13))
1680 \f
1681 /* Define a data type for recording info about an argument list
1682 during the scan of that argument list. This data type should
1683 hold all necessary information about the function itself
1684 and about the args processed so far, enough to enable macros
1685 such as FUNCTION_ARG to determine where the next arg should go.
1686
1687 On SPARC (!v9), this is a single integer, which is a number of words
1688 of arguments scanned so far (including the invisible argument,
1689 if any, which holds the structure-value-address).
1690 Thus 7 or more means all following args should go on the stack.
1691
1692 For v9, we also need to know whether a prototype is present. */
1693
1694 struct sparc_args {
1695 int words; /* number of words passed so far */
1696 int prototype_p; /* non-zero if a prototype is present */
1697 int libcall_p; /* non-zero if a library call */
1698 };
1699 #define CUMULATIVE_ARGS struct sparc_args
1700
1701 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1702 for a call to a function whose data type is FNTYPE.
1703 For a library call, FNTYPE is 0. */
1704
1705 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1706 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT));
1707
1708 /* Update the data in CUM to advance over an argument
1709 of mode MODE and data type TYPE.
1710 TYPE is null for libcalls where that information may not be available. */
1711
1712 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1713 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1714
1715 /* Nonzero if we do not know how to pass TYPE solely in registers. */
1716
1717 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1718 ((TYPE) != 0 \
1719 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1720 || TREE_ADDRESSABLE (TYPE)))
1721
1722 /* Determine where to put an argument to a function.
1723 Value is zero to push the argument on the stack,
1724 or a hard register in which to store the argument.
1725
1726 MODE is the argument's machine mode.
1727 TYPE is the data type of the argument (as a tree).
1728 This is null for libcalls where that information may
1729 not be available.
1730 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1731 the preceding args and about the function being called.
1732 NAMED is nonzero if this argument is a named parameter
1733 (otherwise it is an extra parameter matching an ellipsis). */
1734
1735 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1736 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1737
1738 /* Define where a function finds its arguments.
1739 This is different from FUNCTION_ARG because of register windows. */
1740
1741 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1742 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1743
1744 /* For an arg passed partly in registers and partly in memory,
1745 this is the number of registers used.
1746 For args passed entirely in registers or entirely in memory, zero. */
1747
1748 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1749 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1750
1751 /* A C expression that indicates when an argument must be passed by reference.
1752 If nonzero for an argument, a copy of that argument is made in memory and a
1753 pointer to the argument is passed instead of the argument itself.
1754 The pointer is passed in whatever way is appropriate for passing a pointer
1755 to that type. */
1756
1757 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1758 function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1759
1760 /* If defined, a C expression which determines whether, and in which direction,
1761 to pad out an argument with extra space. The value should be of type
1762 `enum direction': either `upward' to pad above the argument,
1763 `downward' to pad below, or `none' to inhibit padding. */
1764
1765 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1766 function_arg_padding ((MODE), (TYPE))
1767
1768 /* If defined, a C expression that gives the alignment boundary, in bits,
1769 of an argument with the specified mode and type. If it is not defined,
1770 PARM_BOUNDARY is used for all arguments.
1771 For sparc64, objects requiring 16 byte alignment are passed that way. */
1772
1773 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1774 ((TARGET_ARCH64 \
1775 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1776 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1777 ? 128 : PARM_BOUNDARY)
1778 \f
1779 /* Define the information needed to generate branch and scc insns. This is
1780 stored from the compare operation. Note that we can't use "rtx" here
1781 since it hasn't been defined! */
1782
1783 extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1784
1785 \f
1786 /* Generate the special assembly code needed to tell the assembler whatever
1787 it might need to know about the return value of a function.
1788
1789 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1790 information to the assembler relating to peephole optimization (done in
1791 the assembler). */
1792
1793 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1794 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1795
1796 /* Output the special assembly code needed to tell the assembler some
1797 register is used as global register variable.
1798
1799 SPARC 64bit psABI declares registers %g2 and %g3 as application
1800 registers and %g6 and %g7 as OS registers. Any object using them
1801 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1802 and how they are used (scratch or some global variable).
1803 Linker will then refuse to link together objects which use those
1804 registers incompatibly.
1805
1806 Unless the registers are used for scratch, two different global
1807 registers cannot be declared to the same name, so in the unlikely
1808 case of a global register variable occupying more than one register
1809 we prefix the second and following registers with .gnu.part1. etc. */
1810
1811 extern char sparc_hard_reg_printed[8];
1812
1813 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1814 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1815 do { \
1816 if (TARGET_ARCH64) \
1817 { \
1818 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1819 int reg; \
1820 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1821 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1822 { \
1823 if (reg == (REGNO)) \
1824 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1825 else \
1826 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1827 reg, reg - (REGNO), (NAME)); \
1828 sparc_hard_reg_printed[reg] = 1; \
1829 } \
1830 } \
1831 } while (0)
1832 #endif
1833
1834 \f
1835 /* Emit rtl for profiling. */
1836 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1837
1838 /* All the work done in PROFILE_HOOK, but still required. */
1839 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1840
1841 /* Set the name of the mcount function for the system. */
1842 #define MCOUNT_FUNCTION "*mcount"
1843 \f
1844 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1845 the stack pointer does not matter. The value is tested only in
1846 functions that have frame pointers.
1847 No definition is equivalent to always zero. */
1848
1849 #define EXIT_IGNORE_STACK \
1850 (get_frame_size () != 0 \
1851 || current_function_calls_alloca || current_function_outgoing_args_size)
1852
1853 #define DELAY_SLOTS_FOR_EPILOGUE \
1854 (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
1855 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
1856 (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
1857 : eligible_for_epilogue_delay (trial, slots_filled))
1858
1859 /* Define registers used by the epilogue and return instruction. */
1860 #define EPILOGUE_USES(REGNO) \
1861 (!TARGET_FLAT && REGNO == 31)
1862 \f
1863 /* Length in units of the trampoline for entering a nested function. */
1864
1865 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1866
1867 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1868
1869 /* Emit RTL insns to initialize the variable parts of a trampoline.
1870 FNADDR is an RTX for the address of the function's pure code.
1871 CXT is an RTX for the static chain value for the function. */
1872
1873 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1874 if (TARGET_ARCH64) \
1875 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1876 else \
1877 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1878 \f
1879 /* Generate necessary RTL for __builtin_saveregs(). */
1880
1881 #define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
1882
1883 /* Implement `va_start' for varargs and stdarg. */
1884 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1885 sparc_va_start (stdarg, valist, nextarg)
1886
1887 /* Implement `va_arg'. */
1888 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1889 sparc_va_arg (valist, type)
1890
1891 /* Define this macro if the location where a function argument is passed
1892 depends on whether or not it is a named argument.
1893
1894 This macro controls how the NAMED argument to FUNCTION_ARG
1895 is set for varargs and stdarg functions. With this macro defined,
1896 the NAMED argument is always true for named arguments, and false for
1897 unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS
1898 is defined, then all arguments are treated as named. Otherwise, all named
1899 arguments except the last are treated as named.
1900 For the v9 we want NAMED to mean what it says it means. */
1901
1902 #define STRICT_ARGUMENT_NAMING TARGET_V9
1903
1904 /* We do not allow sibling calls if -mflat, nor
1905 we do not allow indirect calls to be optimized into sibling calls.
1906
1907 Also, on sparc 32-bit we cannot emit a sibling call when the
1908 current function returns a structure. This is because the "unimp
1909 after call" convention would cause the callee to return to the
1910 wrong place. The generic code already disallows cases where the
1911 function being called returns a structure.
1912
1913 It may seem strange how this last case could occur. Usually there
1914 is code after the call which jumps to epilogue code which dumps the
1915 return value into the struct return area. That ought to invalidate
1916 the sibling call right? Well, in the c++ case we can end up passing
1917 the pointer to the struct return area to a constructor (which returns
1918 void) and then nothing else happens. Such a sibling call would look
1919 valid without the added check here. */
1920 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1921 (DECL \
1922 && ! TARGET_FLAT \
1923 && (TARGET_ARCH64 || ! current_function_returns_struct))
1924
1925 /* Generate RTL to flush the register windows so as to make arbitrary frames
1926 available. */
1927 #define SETUP_FRAME_ADDRESSES() \
1928 emit_insn (gen_flush_register_windows ())
1929
1930 /* Given an rtx for the address of a frame,
1931 return an rtx for the address of the word in the frame
1932 that holds the dynamic chain--the previous frame's address.
1933 ??? -mflat support? */
1934 #define DYNAMIC_CHAIN_ADDRESS(frame) plus_constant (frame, 14 * UNITS_PER_WORD)
1935
1936 /* The return address isn't on the stack, it is in a register, so we can't
1937 access it from the current frame pointer. We can access it from the
1938 previous frame pointer though by reading a value from the register window
1939 save area. */
1940 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1941
1942 /* This is the offset of the return address to the true next instruction to be
1943 executed for the current function. */
1944 #define RETURN_ADDR_OFFSET \
1945 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1946
1947 /* The current return address is in %i7. The return address of anything
1948 farther back is in the register window save area at [%fp+60]. */
1949 /* ??? This ignores the fact that the actual return address is +8 for normal
1950 returns, and +12 for structure returns. */
1951 #define RETURN_ADDR_RTX(count, frame) \
1952 ((count == -1) \
1953 ? gen_rtx_REG (Pmode, 31) \
1954 : gen_rtx_MEM (Pmode, \
1955 memory_address (Pmode, plus_constant (frame, \
1956 15 * UNITS_PER_WORD \
1957 + SPARC_STACK_BIAS))))
1958
1959 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1960 +12, but always using +8 is close enough for frame unwind purposes.
1961 Actually, just using %o7 is close enough for unwinding, but %o7+8
1962 is something you can return to. */
1963 #define INCOMING_RETURN_ADDR_RTX \
1964 plus_constant (gen_rtx_REG (word_mode, 15), 8)
1965 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
1966
1967 /* The offset from the incoming value of %sp to the top of the stack frame
1968 for the current function. On sparc64, we have to account for the stack
1969 bias if present. */
1970 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1971
1972 /* Describe how we implement __builtin_eh_return. */
1973 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1974 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
1975 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
1976
1977 /* Select a format to encode pointers in exception handling data. CODE
1978 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1979 true if the symbol may be affected by dynamic relocations.
1980
1981 If assembler and linker properly support .uaword %r_disp32(foo),
1982 then use PC relative 32-bit relocations instead of absolute relocs
1983 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1984 for binaries, to save memory.
1985
1986 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1987 symbol %r_disp32() is against was not local, but .hidden. In that
1988 case, we have to use DW_EH_PE_absptr for pic personality. */
1989 #ifdef HAVE_AS_SPARC_UA_PCREL
1990 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1991 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1992 (flag_pic \
1993 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1994 : ((TARGET_ARCH64 && ! GLOBAL) \
1995 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1996 : DW_EH_PE_absptr))
1997 #else
1998 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1999 (flag_pic \
2000 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
2001 : ((TARGET_ARCH64 && ! GLOBAL) \
2002 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
2003 : DW_EH_PE_absptr))
2004 #endif
2005
2006 /* Emit a PC-relative relocation. */
2007 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2008 do { \
2009 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2010 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
2011 assemble_name (FILE, LABEL); \
2012 fputc (')', FILE); \
2013 } while (0)
2014 #endif
2015 \f
2016 /* Addressing modes, and classification of registers for them. */
2017
2018 /* #define HAVE_POST_INCREMENT 0 */
2019 /* #define HAVE_POST_DECREMENT 0 */
2020
2021 /* #define HAVE_PRE_DECREMENT 0 */
2022 /* #define HAVE_PRE_INCREMENT 0 */
2023
2024 /* Macros to check register numbers against specific register classes. */
2025
2026 /* These assume that REGNO is a hard or pseudo reg number.
2027 They give nonzero only if REGNO is a hard reg of the suitable class
2028 or a pseudo reg currently allocated to a suitable hard reg.
2029 Since they use reg_renumber, they are safe only once reg_renumber
2030 has been allocated, which happens in local-alloc.c. */
2031
2032 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2033 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
2034 || (REGNO) == FRAME_POINTER_REGNUM \
2035 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
2036
2037 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
2038
2039 #define REGNO_OK_FOR_FP_P(REGNO) \
2040 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2041 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2042 #define REGNO_OK_FOR_CCFP_P(REGNO) \
2043 (TARGET_V9 \
2044 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2045 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2046
2047 /* Now macros that check whether X is a register and also,
2048 strictly, whether it is in a specified class.
2049
2050 These macros are specific to the SPARC, and may be used only
2051 in code for printing assembler insns and in conditions for
2052 define_optimization. */
2053
2054 /* 1 if X is an fp register. */
2055
2056 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2057
2058 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
2059 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2060 \f
2061 /* Maximum number of registers that can appear in a valid memory address. */
2062
2063 #define MAX_REGS_PER_ADDRESS 2
2064
2065 /* Recognize any constant value that is a valid address.
2066 When PIC, we do not accept an address that would require a scratch reg
2067 to load into a register. */
2068
2069 #define CONSTANT_ADDRESS_P(X) \
2070 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2071 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2072 || (GET_CODE (X) == CONST \
2073 && ! (flag_pic && pic_address_needs_scratch (X))))
2074
2075 /* Define this, so that when PIC, reload won't try to reload invalid
2076 addresses which require two reload registers. */
2077
2078 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2079
2080 /* Nonzero if the constant value X is a legitimate general operand.
2081 Anything can be made to work except floating point constants.
2082 If TARGET_VIS, 0.0 can be made to work as well. */
2083
2084 #define LEGITIMATE_CONSTANT_P(X) \
2085 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \
2086 (TARGET_VIS && \
2087 (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode || \
2088 GET_MODE (X) == TFmode) && \
2089 fp_zero_operand (X, GET_MODE (X))))
2090
2091 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2092 and check its validity for a certain class.
2093 We have two alternate definitions for each of them.
2094 The usual definition accepts all pseudo regs; the other rejects
2095 them unless they have been allocated suitable hard regs.
2096 The symbol REG_OK_STRICT causes the latter definition to be used.
2097
2098 Most source files want to accept pseudo regs in the hope that
2099 they will get allocated to the class that the insn wants them to be in.
2100 Source files for reload pass need to be strict.
2101 After reload, it makes no difference, since pseudo regs have
2102 been eliminated by then. */
2103
2104 /* Optional extra constraints for this machine.
2105
2106 'Q' handles floating point constants which can be moved into
2107 an integer register with a single sethi instruction.
2108
2109 'R' handles floating point constants which can be moved into
2110 an integer register with a single mov instruction.
2111
2112 'S' handles floating point constants which can be moved into
2113 an integer register using a high/lo_sum sequence.
2114
2115 'T' handles memory addresses where the alignment is known to
2116 be at least 8 bytes.
2117
2118 `U' handles all pseudo registers or a hard even numbered
2119 integer register, needed for ldd/std instructions.
2120
2121 'W' handles the memory operand when moving operands in/out
2122 of 'e' constraint floating point registers. */
2123
2124 #ifndef REG_OK_STRICT
2125
2126 /* Nonzero if X is a hard reg that can be used as an index
2127 or if it is a pseudo reg. */
2128 #define REG_OK_FOR_INDEX_P(X) \
2129 (REGNO (X) < 32 \
2130 || REGNO (X) == FRAME_POINTER_REGNUM \
2131 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2132
2133 /* Nonzero if X is a hard reg that can be used as a base reg
2134 or if it is a pseudo reg. */
2135 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
2136
2137 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
2138 'W' is like 'T' but is assumed true on arch64.
2139
2140 Remember to accept pseudo-registers for memory constraints if reload is
2141 in progress. */
2142
2143 #define EXTRA_CONSTRAINT(OP, C) \
2144 sparc_extra_constraint_check(OP, C, 0)
2145
2146 #else
2147
2148 /* Nonzero if X is a hard reg that can be used as an index. */
2149 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2150 /* Nonzero if X is a hard reg that can be used as a base reg. */
2151 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2152
2153 #define EXTRA_CONSTRAINT(OP, C) \
2154 sparc_extra_constraint_check(OP, C, 1)
2155
2156 #endif
2157 \f
2158 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2159
2160 #ifdef HAVE_AS_OFFSETABLE_LO10
2161 #define USE_AS_OFFSETABLE_LO10 1
2162 #else
2163 #define USE_AS_OFFSETABLE_LO10 0
2164 #endif
2165 \f
2166 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2167 that is a valid memory address for an instruction.
2168 The MODE argument is the machine mode for the MEM expression
2169 that wants to use this address.
2170
2171 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2172 ordinarily. This changes a bit when generating PIC.
2173
2174 If you change this, execute "rm explow.o recog.o reload.o". */
2175
2176 #define RTX_OK_FOR_BASE_P(X) \
2177 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2178 || (GET_CODE (X) == SUBREG \
2179 && GET_CODE (SUBREG_REG (X)) == REG \
2180 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2181
2182 #define RTX_OK_FOR_INDEX_P(X) \
2183 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2184 || (GET_CODE (X) == SUBREG \
2185 && GET_CODE (SUBREG_REG (X)) == REG \
2186 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2187
2188 #define RTX_OK_FOR_OFFSET_P(X) \
2189 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2190
2191 #define RTX_OK_FOR_OLO10_P(X) \
2192 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2193
2194 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2195 { if (RTX_OK_FOR_BASE_P (X)) \
2196 goto ADDR; \
2197 else if (GET_CODE (X) == PLUS) \
2198 { \
2199 register rtx op0 = XEXP (X, 0); \
2200 register rtx op1 = XEXP (X, 1); \
2201 if (flag_pic && op0 == pic_offset_table_rtx) \
2202 { \
2203 if (RTX_OK_FOR_BASE_P (op1)) \
2204 goto ADDR; \
2205 else if (flag_pic == 1 \
2206 && GET_CODE (op1) != REG \
2207 && GET_CODE (op1) != LO_SUM \
2208 && GET_CODE (op1) != MEM \
2209 && (GET_CODE (op1) != CONST_INT \
2210 || SMALL_INT (op1))) \
2211 goto ADDR; \
2212 } \
2213 else if (RTX_OK_FOR_BASE_P (op0)) \
2214 { \
2215 if ((RTX_OK_FOR_INDEX_P (op1) \
2216 /* We prohibit REG + REG for TFmode when \
2217 there are no instructions which accept \
2218 REG+REG instructions. We do this \
2219 because REG+REG is not an offsetable \
2220 address. If we get the situation \
2221 in reload where source and destination \
2222 of a movtf pattern are both MEMs with \
2223 REG+REG address, then only one of them \
2224 gets converted to an offsetable \
2225 address. */ \
2226 && (MODE != TFmode \
2227 || (TARGET_FPU && TARGET_ARCH64 \
2228 && TARGET_V9 \
2229 && TARGET_HARD_QUAD)) \
2230 /* We prohibit REG + REG on ARCH32 if \
2231 not optimizing for DFmode/DImode \
2232 because then mem_min_alignment is \
2233 likely to be zero after reload and the \
2234 forced split would lack a matching \
2235 splitter pattern. */ \
2236 && (TARGET_ARCH64 || optimize \
2237 || (MODE != DFmode \
2238 && MODE != DImode))) \
2239 || RTX_OK_FOR_OFFSET_P (op1)) \
2240 goto ADDR; \
2241 } \
2242 else if (RTX_OK_FOR_BASE_P (op1)) \
2243 { \
2244 if ((RTX_OK_FOR_INDEX_P (op0) \
2245 /* See the previous comment. */ \
2246 && (MODE != TFmode \
2247 || (TARGET_FPU && TARGET_ARCH64 \
2248 && TARGET_V9 \
2249 && TARGET_HARD_QUAD)) \
2250 && (TARGET_ARCH64 || optimize \
2251 || (MODE != DFmode \
2252 && MODE != DImode))) \
2253 || RTX_OK_FOR_OFFSET_P (op0)) \
2254 goto ADDR; \
2255 } \
2256 else if (USE_AS_OFFSETABLE_LO10 \
2257 && GET_CODE (op0) == LO_SUM \
2258 && TARGET_ARCH64 \
2259 && ! TARGET_CM_MEDMID \
2260 && RTX_OK_FOR_OLO10_P (op1)) \
2261 { \
2262 register rtx op00 = XEXP (op0, 0); \
2263 register rtx op01 = XEXP (op0, 1); \
2264 if (RTX_OK_FOR_BASE_P (op00) \
2265 && CONSTANT_P (op01)) \
2266 goto ADDR; \
2267 } \
2268 else if (USE_AS_OFFSETABLE_LO10 \
2269 && GET_CODE (op1) == LO_SUM \
2270 && TARGET_ARCH64 \
2271 && ! TARGET_CM_MEDMID \
2272 && RTX_OK_FOR_OLO10_P (op0)) \
2273 { \
2274 register rtx op10 = XEXP (op1, 0); \
2275 register rtx op11 = XEXP (op1, 1); \
2276 if (RTX_OK_FOR_BASE_P (op10) \
2277 && CONSTANT_P (op11)) \
2278 goto ADDR; \
2279 } \
2280 } \
2281 else if (GET_CODE (X) == LO_SUM) \
2282 { \
2283 register rtx op0 = XEXP (X, 0); \
2284 register rtx op1 = XEXP (X, 1); \
2285 if (RTX_OK_FOR_BASE_P (op0) \
2286 && CONSTANT_P (op1) \
2287 /* We can't allow TFmode, because an offset \
2288 greater than or equal to the alignment (8) \
2289 may cause the LO_SUM to overflow if !v9. */\
2290 && (MODE != TFmode || TARGET_V9)) \
2291 goto ADDR; \
2292 } \
2293 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
2294 goto ADDR; \
2295 }
2296 \f
2297 /* Try machine-dependent ways of modifying an illegitimate address
2298 to be legitimate. If we find one, return the new, valid address.
2299 This macro is used in only one place: `memory_address' in explow.c.
2300
2301 OLDX is the address as it was before break_out_memory_refs was called.
2302 In some cases it is useful to look at this to decide what needs to be done.
2303
2304 MODE and WIN are passed so that this macro can use
2305 GO_IF_LEGITIMATE_ADDRESS.
2306
2307 It is always safe for this macro to do nothing. It exists to recognize
2308 opportunities to optimize the output. */
2309
2310 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2311 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2312 { rtx sparc_x = (X); \
2313 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
2314 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2315 force_operand (XEXP (X, 0), NULL_RTX)); \
2316 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
2317 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2318 force_operand (XEXP (X, 1), NULL_RTX)); \
2319 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
2320 (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
2321 XEXP (X, 1)); \
2322 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
2323 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2324 force_operand (XEXP (X, 1), NULL_RTX)); \
2325 if (sparc_x != (X) && memory_address_p (MODE, X)) \
2326 goto WIN; \
2327 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
2328 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
2329 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2330 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
2331 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
2332 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2333 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
2334 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
2335 || GET_CODE (X) == LABEL_REF) \
2336 (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \
2337 if (memory_address_p (MODE, X)) \
2338 goto WIN; }
2339
2340 /* Try a machine-dependent way of reloading an illegitimate address
2341 operand. If we find one, push the reload and jump to WIN. This
2342 macro is used in only one place: `find_reloads_address' in reload.c.
2343
2344 For Sparc 32, we wish to handle addresses by splitting them into
2345 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2346 This cuts the number of extra insns by one.
2347
2348 Do nothing when generating PIC code and the address is a
2349 symbolic operand or requires a scratch register. */
2350
2351 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2352 do { \
2353 /* Decompose SImode constants into hi+lo_sum. We do have to \
2354 rerecognize what we produce, so be careful. */ \
2355 if (CONSTANT_P (X) \
2356 && (MODE != TFmode || TARGET_ARCH64) \
2357 && GET_MODE (X) == SImode \
2358 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2359 && ! (flag_pic \
2360 && (symbolic_operand (X, Pmode) \
2361 || pic_address_needs_scratch (X))) \
2362 && sparc_cmodel <= CM_MEDLOW) \
2363 { \
2364 X = gen_rtx_LO_SUM (GET_MODE (X), \
2365 gen_rtx_HIGH (GET_MODE (X), X), X); \
2366 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2367 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2368 OPNUM, TYPE); \
2369 goto WIN; \
2370 } \
2371 /* ??? 64-bit reloads. */ \
2372 } while (0)
2373
2374 /* Go to LABEL if ADDR (a legitimate address expression)
2375 has an effect that depends on the machine mode it is used for.
2376 On the SPARC this is never true. */
2377
2378 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
2379
2380 /* If we are referencing a function make the SYMBOL_REF special.
2381 In the Embedded Medium/Anywhere code model, %g4 points to the data segment
2382 so we must not add it to function addresses. */
2383
2384 #define ENCODE_SECTION_INFO(DECL, FIRST) \
2385 do { \
2386 if (TARGET_CM_EMBMEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
2387 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2388 } while (0)
2389 \f
2390 /* Specify the machine mode that this machine uses
2391 for the index in the tablejump instruction. */
2392 /* If we ever implement any of the full models (such as CM_FULLANY),
2393 this has to be DImode in that case */
2394 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2395 #define CASE_VECTOR_MODE \
2396 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2397 #else
2398 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2399 we have to sign extend which slows things down. */
2400 #define CASE_VECTOR_MODE \
2401 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2402 #endif
2403
2404 /* Define as C expression which evaluates to nonzero if the tablejump
2405 instruction expects the table to contain offsets from the address of the
2406 table.
2407 Do not define this if the table should contain absolute addresses. */
2408 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2409
2410 /* Define this as 1 if `char' should by default be signed; else as 0. */
2411 #define DEFAULT_SIGNED_CHAR 1
2412
2413 /* Max number of bytes we can move from memory to memory
2414 in one reasonably fast instruction. */
2415 #define MOVE_MAX 8
2416
2417 #if 0 /* Sun 4 has matherr, so this is no good. */
2418 /* This is the value of the error code EDOM for this machine,
2419 used by the sqrt instruction. */
2420 #define TARGET_EDOM 33
2421
2422 /* This is how to refer to the variable errno. */
2423 #define GEN_ERRNO_RTX \
2424 gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2425 #endif /* 0 */
2426
2427 /* Define if operations between registers always perform the operation
2428 on the full register even if a narrower mode is specified. */
2429 #define WORD_REGISTER_OPERATIONS
2430
2431 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2432 will either zero-extend or sign-extend. The value of this macro should
2433 be the code that says which one of the two operations is implicitly
2434 done, NIL if none. */
2435 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2436
2437 /* Nonzero if access to memory by bytes is slow and undesirable.
2438 For RISC chips, it means that access to memory by bytes is no
2439 better than access by words when possible, so grab a whole word
2440 and maybe make use of that. */
2441 #define SLOW_BYTE_ACCESS 1
2442
2443 /* We assume that the store-condition-codes instructions store 0 for false
2444 and some other value for true. This is the value stored for true. */
2445
2446 #define STORE_FLAG_VALUE 1
2447
2448 /* When a prototype says `char' or `short', really pass an `int'. */
2449 #define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2450
2451 /* Define this to be nonzero if shift instructions ignore all but the low-order
2452 few bits. */
2453 #define SHIFT_COUNT_TRUNCATED 1
2454
2455 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2456 is done just by pretending it is already truncated. */
2457 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2458
2459 /* Specify the machine mode that pointers have.
2460 After generation of rtl, the compiler makes no further distinction
2461 between pointers and any other objects of this machine mode. */
2462 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2463
2464 /* Generate calls to memcpy, memcmp and memset. */
2465 #define TARGET_MEM_FUNCTIONS
2466
2467 /* Add any extra modes needed to represent the condition code.
2468
2469 On the Sparc, we have a "no-overflow" mode which is used when an add or
2470 subtract insn is used to set the condition code. Different branches are
2471 used in this case for some operations.
2472
2473 We also have two modes to indicate that the relevant condition code is
2474 in the floating-point condition code register. One for comparisons which
2475 will generate an exception if the result is unordered (CCFPEmode) and
2476 one for comparisons which will never trap (CCFPmode).
2477
2478 CCXmode and CCX_NOOVmode are only used by v9. */
2479
2480 #define EXTRA_CC_MODES \
2481 CC(CCXmode, "CCX") \
2482 CC(CC_NOOVmode, "CC_NOOV") \
2483 CC(CCX_NOOVmode, "CCX_NOOV") \
2484 CC(CCFPmode, "CCFP") \
2485 CC(CCFPEmode, "CCFPE")
2486
2487 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2488 return the mode to be used for the comparison. For floating-point,
2489 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2490 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2491 processing is needed. */
2492 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2493
2494 /* Return non-zero if MODE implies a floating point inequality can be
2495 reversed. For Sparc this is always true because we have a full
2496 compliment of ordered and unordered comparisons, but until generic
2497 code knows how to reverse it correctly we keep the old definition. */
2498 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2499
2500 /* A function address in a call instruction for indexing purposes. */
2501 #define FUNCTION_MODE Pmode
2502
2503 /* Define this if addresses of constant functions
2504 shouldn't be put through pseudo regs where they can be cse'd.
2505 Desirable on machines where ordinary constants are expensive
2506 but a CALL with constant address is cheap. */
2507 #define NO_FUNCTION_CSE
2508
2509 /* alloca should avoid clobbering the old register save area. */
2510 #define SETJMP_VIA_SAVE_AREA
2511
2512 /* Define subroutines to call to handle multiply and divide.
2513 Use the subroutines that Sun's library provides.
2514 The `*' prevents an underscore from being prepended by the compiler. */
2515
2516 #define DIVSI3_LIBCALL "*.div"
2517 #define UDIVSI3_LIBCALL "*.udiv"
2518 #define MODSI3_LIBCALL "*.rem"
2519 #define UMODSI3_LIBCALL "*.urem"
2520 /* .umul is a little faster than .mul. */
2521 #define MULSI3_LIBCALL "*.umul"
2522
2523 /* Define library calls for quad FP operations. These are all part of the
2524 SPARC 32bit ABI. */
2525 #define ADDTF3_LIBCALL "_Q_add"
2526 #define SUBTF3_LIBCALL "_Q_sub"
2527 #define NEGTF2_LIBCALL "_Q_neg"
2528 #define MULTF3_LIBCALL "_Q_mul"
2529 #define DIVTF3_LIBCALL "_Q_div"
2530 #define FLOATSITF2_LIBCALL "_Q_itoq"
2531 #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2532 #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2533 #define EXTENDSFTF2_LIBCALL "_Q_stoq"
2534 #define TRUNCTFSF2_LIBCALL "_Q_qtos"
2535 #define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2536 #define TRUNCTFDF2_LIBCALL "_Q_qtod"
2537 #define EQTF2_LIBCALL "_Q_feq"
2538 #define NETF2_LIBCALL "_Q_fne"
2539 #define GTTF2_LIBCALL "_Q_fgt"
2540 #define GETF2_LIBCALL "_Q_fge"
2541 #define LTTF2_LIBCALL "_Q_flt"
2542 #define LETF2_LIBCALL "_Q_fle"
2543
2544 /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2545 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2546 and the compiler will notice and try to use the TFmode sqrt instruction
2547 for calls to the builtin function sqrt, but this fails. */
2548 #define INIT_TARGET_OPTABS \
2549 do { \
2550 if (TARGET_ARCH32) \
2551 { \
2552 add_optab->handlers[(int) TFmode].libfunc \
2553 = init_one_libfunc (ADDTF3_LIBCALL); \
2554 sub_optab->handlers[(int) TFmode].libfunc \
2555 = init_one_libfunc (SUBTF3_LIBCALL); \
2556 neg_optab->handlers[(int) TFmode].libfunc \
2557 = init_one_libfunc (NEGTF2_LIBCALL); \
2558 smul_optab->handlers[(int) TFmode].libfunc \
2559 = init_one_libfunc (MULTF3_LIBCALL); \
2560 sdiv_optab->handlers[(int) TFmode].libfunc \
2561 = init_one_libfunc (DIVTF3_LIBCALL); \
2562 eqtf2_libfunc = init_one_libfunc (EQTF2_LIBCALL); \
2563 netf2_libfunc = init_one_libfunc (NETF2_LIBCALL); \
2564 gttf2_libfunc = init_one_libfunc (GTTF2_LIBCALL); \
2565 getf2_libfunc = init_one_libfunc (GETF2_LIBCALL); \
2566 lttf2_libfunc = init_one_libfunc (LTTF2_LIBCALL); \
2567 letf2_libfunc = init_one_libfunc (LETF2_LIBCALL); \
2568 trunctfsf2_libfunc = init_one_libfunc (TRUNCTFSF2_LIBCALL); \
2569 trunctfdf2_libfunc = init_one_libfunc (TRUNCTFDF2_LIBCALL); \
2570 extendsftf2_libfunc = init_one_libfunc (EXTENDSFTF2_LIBCALL); \
2571 extenddftf2_libfunc = init_one_libfunc (EXTENDDFTF2_LIBCALL); \
2572 floatsitf_libfunc = init_one_libfunc (FLOATSITF2_LIBCALL); \
2573 fixtfsi_libfunc = init_one_libfunc (FIX_TRUNCTFSI2_LIBCALL); \
2574 fixunstfsi_libfunc \
2575 = init_one_libfunc (FIXUNS_TRUNCTFSI2_LIBCALL); \
2576 if (TARGET_FPU) \
2577 sqrt_optab->handlers[(int) TFmode].libfunc \
2578 = init_one_libfunc ("_Q_sqrt"); \
2579 } \
2580 INIT_SUBTARGET_OPTABS; \
2581 } while (0)
2582
2583 /* This is meant to be redefined in the host dependent files */
2584 #define INIT_SUBTARGET_OPTABS
2585
2586 /* Nonzero if a floating point comparison library call for
2587 mode MODE that will return a boolean value. Zero if one
2588 of the libgcc2 functions is used. */
2589 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2590
2591 /* Compute the cost of computing a constant rtl expression RTX
2592 whose rtx-code is CODE. The body of this macro is a portion
2593 of a switch statement. If the code is computed here,
2594 return it with a return statement. Otherwise, break from the switch. */
2595
2596 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2597 case CONST_INT: \
2598 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
2599 return 0; \
2600 case HIGH: \
2601 return 2; \
2602 case CONST: \
2603 case LABEL_REF: \
2604 case SYMBOL_REF: \
2605 return 4; \
2606 case CONST_DOUBLE: \
2607 if (GET_MODE (RTX) == DImode) \
2608 if ((XINT (RTX, 3) == 0 \
2609 && (unsigned) XINT (RTX, 2) < 0x1000) \
2610 || (XINT (RTX, 3) == -1 \
2611 && XINT (RTX, 2) < 0 \
2612 && XINT (RTX, 2) >= -0x1000)) \
2613 return 0; \
2614 return 8;
2615
2616 #define ADDRESS_COST(RTX) 1
2617
2618 /* Compute extra cost of moving data between one register class
2619 and another. */
2620 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2621 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2622 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2623 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2624 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2625 ? (sparc_cpu == PROCESSOR_ULTRASPARC ? 12 : 6) : 2)
2626
2627 /* Provide the cost of a branch. For pre-v9 processors we use
2628 a value of 3 to take into account the potential annulling of
2629 the delay slot (which ends up being a bubble in the pipeline slot)
2630 plus a cycle to take into consideration the instruction cache
2631 effects.
2632
2633 On v9 and later, which have branch prediction facilities, we set
2634 it to the depth of the pipeline as that is the cost of a
2635 mispredicted branch.
2636
2637 ??? Set to 9 when PROCESSOR_ULTRASPARC3 is added */
2638
2639 #define BRANCH_COST \
2640 ((sparc_cpu == PROCESSOR_V9 \
2641 || sparc_cpu == PROCESSOR_ULTRASPARC) \
2642 ? 7 : 3)
2643
2644 /* Provide the costs of a rtl expression. This is in the body of a
2645 switch on CODE. The purpose for the cost of MULT is to encourage
2646 `synth_mult' to find a synthetic multiply when reasonable.
2647
2648 If we need more than 12 insns to do a multiply, then go out-of-line,
2649 since the call overhead will be < 10% of the cost of the multiply. */
2650
2651 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2652 case MULT: \
2653 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2654 return (GET_MODE (X) == DImode ? \
2655 COSTS_N_INSNS (34) : COSTS_N_INSNS (19)); \
2656 return TARGET_HARD_MUL ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
2657 case DIV: \
2658 case UDIV: \
2659 case MOD: \
2660 case UMOD: \
2661 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2662 return (GET_MODE (X) == DImode ? \
2663 COSTS_N_INSNS (68) : COSTS_N_INSNS (37)); \
2664 return COSTS_N_INSNS (25); \
2665 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
2666 so that cse will favor the latter. */ \
2667 case FLOAT: \
2668 case FIX: \
2669 return 19;
2670 \f
2671 /* Control the assembler format that we output. */
2672
2673 /* Output at beginning of assembler file. */
2674
2675 #define ASM_FILE_START(file)
2676
2677 /* A C string constant describing how to begin a comment in the target
2678 assembler language. The compiler assumes that the comment will end at
2679 the end of the line. */
2680
2681 #define ASM_COMMENT_START "!"
2682
2683 /* Output to assembler file text saying following lines
2684 may contain character constants, extra white space, comments, etc. */
2685
2686 #define ASM_APP_ON ""
2687
2688 /* Output to assembler file text saying following lines
2689 no longer contain unusual constructs. */
2690
2691 #define ASM_APP_OFF ""
2692
2693 /* ??? Try to make the style consistent here (_OP?). */
2694
2695 #define ASM_FLOAT ".single"
2696 #define ASM_DOUBLE ".double"
2697 #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
2698
2699 /* How to refer to registers in assembler output.
2700 This sequence is indexed by compiler's hard-register-number (see above). */
2701
2702 #define REGISTER_NAMES \
2703 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2704 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2705 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2706 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2707 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2708 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2709 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2710 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2711 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2712 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2713 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2714 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2715 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2716
2717 /* Define additional names for use in asm clobbers and asm declarations. */
2718
2719 #define ADDITIONAL_REGISTER_NAMES \
2720 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2721
2722 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2723 can run past this up to a continuation point. Once we used 1500, but
2724 a single entry in C++ can run more than 500 bytes, due to the length of
2725 mangled symbol names. dbxout.c should really be fixed to do
2726 continuations when they are actually needed instead of trying to
2727 guess... */
2728 #define DBX_CONTIN_LENGTH 1000
2729
2730 /* This is how to output the definition of a user-level label named NAME,
2731 such as the label on a static function or variable NAME. */
2732
2733 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2734 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2735
2736 /* This is how to output a command to make the user-level label named NAME
2737 defined for reference from other files. */
2738
2739 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2740 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2741
2742 /* The prefix to add to user-visible assembler symbols. */
2743
2744 #define USER_LABEL_PREFIX "_"
2745
2746 /* This is how to output a definition of an internal numbered label where
2747 PREFIX is the class of label and NUM is the number within the class. */
2748
2749 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2750 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2751
2752 /* This is how to store into the string LABEL
2753 the symbol_ref name of an internal numbered label where
2754 PREFIX is the class of label and NUM is the number within the class.
2755 This is suitable for output with `assemble_name'. */
2756
2757 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2758 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2759
2760 /* This is how we hook in and defer the case-vector until the end of
2761 the function. */
2762 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2763 sparc_defer_case_vector ((LAB),(VEC), 0)
2764
2765 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2766 sparc_defer_case_vector ((LAB),(VEC), 1)
2767
2768 /* This is how to output an element of a case-vector that is absolute. */
2769
2770 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2771 do { \
2772 char label[30]; \
2773 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2774 if (CASE_VECTOR_MODE == SImode) \
2775 fprintf (FILE, "\t.word\t"); \
2776 else \
2777 fprintf (FILE, "\t.xword\t"); \
2778 assemble_name (FILE, label); \
2779 fputc ('\n', FILE); \
2780 } while (0)
2781
2782 /* This is how to output an element of a case-vector that is relative.
2783 (SPARC uses such vectors only when generating PIC.) */
2784
2785 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2786 do { \
2787 char label[30]; \
2788 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
2789 if (CASE_VECTOR_MODE == SImode) \
2790 fprintf (FILE, "\t.word\t"); \
2791 else \
2792 fprintf (FILE, "\t.xword\t"); \
2793 assemble_name (FILE, label); \
2794 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
2795 fputc ('-', FILE); \
2796 assemble_name (FILE, label); \
2797 fputc ('\n', FILE); \
2798 } while (0)
2799
2800 /* This is what to output before and after case-vector (both
2801 relative and absolute). If .subsection -1 works, we put case-vectors
2802 at the beginning of the current section. */
2803
2804 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2805
2806 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
2807 fprintf(FILE, "\t.subsection\t-1\n")
2808
2809 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
2810 fprintf(FILE, "\t.previous\n")
2811
2812 #endif
2813
2814 /* This is how to output an assembler line
2815 that says to advance the location counter
2816 to a multiple of 2**LOG bytes. */
2817
2818 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2819 if ((LOG) != 0) \
2820 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2821
2822 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2823 fprintf (FILE, "\t.skip %u\n", (SIZE))
2824
2825 /* This says how to output an assembler line
2826 to define a global common symbol. */
2827
2828 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2829 ( fputs ("\t.common ", (FILE)), \
2830 assemble_name ((FILE), (NAME)), \
2831 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
2832
2833 /* This says how to output an assembler line to define a local common
2834 symbol. */
2835
2836 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2837 ( fputs ("\t.reserve ", (FILE)), \
2838 assemble_name ((FILE), (NAME)), \
2839 fprintf ((FILE), ",%u,\"bss\",%u\n", \
2840 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2841
2842 /* A C statement (sans semicolon) to output to the stdio stream
2843 FILE the assembler definition of uninitialized global DECL named
2844 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2845 Try to use asm_output_aligned_bss to implement this macro. */
2846
2847 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2848 do { \
2849 fputs (".globl ", (FILE)); \
2850 assemble_name ((FILE), (NAME)); \
2851 fputs ("\n", (FILE)); \
2852 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2853 } while (0)
2854
2855 /* Store in OUTPUT a string (made with alloca) containing
2856 an assembler-name for a local static variable named NAME.
2857 LABELNO is an integer which is different for each call. */
2858
2859 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2860 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2861 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2862
2863 #define IDENT_ASM_OP "\t.ident\t"
2864
2865 /* Output #ident as a .ident. */
2866
2867 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2868 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2869
2870 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2871 Used for C++ multiple inheritance. */
2872 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2873 do { \
2874 int reg = 0; \
2875 \
2876 if (TARGET_ARCH64 \
2877 && aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION)))) \
2878 reg = 1; \
2879 if ((DELTA) >= 4096 || (DELTA) < -4096) \
2880 fprintf (FILE, "\tset\t%d, %%g1\n\tadd\t%%o%d, %%g1, %%o%d\n", \
2881 (int)(DELTA), reg, reg); \
2882 else \
2883 fprintf (FILE, "\tadd\t%%o%d, %d, %%o%d\n", reg, (int)(DELTA), reg);\
2884 fprintf (FILE, "\tor\t%%o7, %%g0, %%g1\n"); \
2885 fprintf (FILE, "\tcall\t"); \
2886 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
2887 fprintf (FILE, ", 0\n"); \
2888 fprintf (FILE, "\t or\t%%g1, %%g0, %%o7\n"); \
2889 } while (0)
2890
2891 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2892 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
2893
2894 /* Print operand X (an rtx) in assembler syntax to file FILE.
2895 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2896 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2897
2898 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2899
2900 /* Print a memory address as an operand to reference that memory location. */
2901
2902 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2903 { register rtx base, index = 0; \
2904 int offset = 0; \
2905 register rtx addr = ADDR; \
2906 if (GET_CODE (addr) == REG) \
2907 fputs (reg_names[REGNO (addr)], FILE); \
2908 else if (GET_CODE (addr) == PLUS) \
2909 { \
2910 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2911 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2912 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2913 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2914 else \
2915 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2916 if (GET_CODE (base) == LO_SUM) \
2917 { \
2918 if (! USE_AS_OFFSETABLE_LO10 \
2919 || TARGET_ARCH32 \
2920 || TARGET_CM_MEDMID) \
2921 abort (); \
2922 output_operand (XEXP (base, 0), 0); \
2923 fputs ("+%lo(", FILE); \
2924 output_address (XEXP (base, 1)); \
2925 fprintf (FILE, ")+%d", offset); \
2926 } \
2927 else \
2928 { \
2929 fputs (reg_names[REGNO (base)], FILE); \
2930 if (index == 0) \
2931 fprintf (FILE, "%+d", offset); \
2932 else if (GET_CODE (index) == REG) \
2933 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2934 else if (GET_CODE (index) == SYMBOL_REF \
2935 || GET_CODE (index) == CONST) \
2936 fputc ('+', FILE), output_addr_const (FILE, index); \
2937 else abort (); \
2938 } \
2939 } \
2940 else if (GET_CODE (addr) == MINUS \
2941 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2942 { \
2943 output_addr_const (FILE, XEXP (addr, 0)); \
2944 fputs ("-(", FILE); \
2945 output_addr_const (FILE, XEXP (addr, 1)); \
2946 fputs ("-.)", FILE); \
2947 } \
2948 else if (GET_CODE (addr) == LO_SUM) \
2949 { \
2950 output_operand (XEXP (addr, 0), 0); \
2951 if (TARGET_CM_MEDMID) \
2952 fputs ("+%l44(", FILE); \
2953 else \
2954 fputs ("+%lo(", FILE); \
2955 output_address (XEXP (addr, 1)); \
2956 fputc (')', FILE); \
2957 } \
2958 else if (flag_pic && GET_CODE (addr) == CONST \
2959 && GET_CODE (XEXP (addr, 0)) == MINUS \
2960 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2961 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2962 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2963 { \
2964 addr = XEXP (addr, 0); \
2965 output_addr_const (FILE, XEXP (addr, 0)); \
2966 /* Group the args of the second CONST in parenthesis. */ \
2967 fputs ("-(", FILE); \
2968 /* Skip past the second CONST--it does nothing for us. */\
2969 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2970 /* Close the parenthesis. */ \
2971 fputc (')', FILE); \
2972 } \
2973 else \
2974 { \
2975 output_addr_const (FILE, addr); \
2976 } \
2977 }
2978
2979 /* Define the codes that are matched by predicates in sparc.c. */
2980
2981 #define PREDICATE_CODES \
2982 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2983 {"fp_zero_operand", {CONST_DOUBLE}}, \
2984 {"fp_register_operand", {SUBREG, REG}}, \
2985 {"intreg_operand", {SUBREG, REG}}, \
2986 {"fcc_reg_operand", {REG}}, \
2987 {"fcc0_reg_operand", {REG}}, \
2988 {"icc_or_fcc_reg_operand", {REG}}, \
2989 {"restore_operand", {REG}}, \
2990 {"call_operand", {MEM}}, \
2991 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
2992 ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
2993 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2994 {"symbolic_memory_operand", {SUBREG, MEM}}, \
2995 {"label_ref_operand", {LABEL_REF}}, \
2996 {"sp64_medium_pic_operand", {CONST}}, \
2997 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
2998 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
2999 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
3000 {"splittable_symbolic_memory_operand", {MEM}}, \
3001 {"splittable_immediate_memory_operand", {MEM}}, \
3002 {"eq_or_neq", {EQ, NE}}, \
3003 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
3004 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
3005 {"noov_compare64_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
3006 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
3007 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
3008 {"cc_arithop", {AND, IOR, XOR}}, \
3009 {"cc_arithopn", {AND, IOR}}, \
3010 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
3011 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
3012 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
3013 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
3014 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3015 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3016 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3017 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3018 {"small_int", {CONST_INT}}, \
3019 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
3020 {"uns_small_int", {CONST_INT}}, \
3021 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
3022 {"clobbered_register", {REG}}, \
3023 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
3024 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
3025 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
3026
3027 /* The number of Pmode words for the setjmp buffer. */
3028 #define JMP_BUF_SIZE 12
3029
3030 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)
3031