Support for LEON processor
[gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com).
6 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
7 at Cygnus Support.
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 #include "config/vxworks-dummy.h"
26
27 /* Note that some other tm.h files include this one and then override
28 whatever definitions are necessary. */
29
30 /* Define the specific costs for a given cpu */
31
32 struct processor_costs {
33 /* Integer load */
34 const int int_load;
35
36 /* Integer signed load */
37 const int int_sload;
38
39 /* Integer zeroed load */
40 const int int_zload;
41
42 /* Float load */
43 const int float_load;
44
45 /* fmov, fneg, fabs */
46 const int float_move;
47
48 /* fadd, fsub */
49 const int float_plusminus;
50
51 /* fcmp */
52 const int float_cmp;
53
54 /* fmov, fmovr */
55 const int float_cmove;
56
57 /* fmul */
58 const int float_mul;
59
60 /* fdivs */
61 const int float_div_sf;
62
63 /* fdivd */
64 const int float_div_df;
65
66 /* fsqrts */
67 const int float_sqrt_sf;
68
69 /* fsqrtd */
70 const int float_sqrt_df;
71
72 /* umul/smul */
73 const int int_mul;
74
75 /* mulX */
76 const int int_mulX;
77
78 /* integer multiply cost for each bit set past the most
79 significant 3, so the formula for multiply cost becomes:
80
81 if (rs1 < 0)
82 highest_bit = highest_clear_bit(rs1);
83 else
84 highest_bit = highest_set_bit(rs1);
85 if (highest_bit < 3)
86 highest_bit = 3;
87 cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
88
89 A value of zero indicates that the multiply costs is fixed,
90 and not variable. */
91 const int int_mul_bit_factor;
92
93 /* udiv/sdiv */
94 const int int_div;
95
96 /* divX */
97 const int int_divX;
98
99 /* movcc, movr */
100 const int int_cmove;
101
102 /* penalty for shifts, due to scheduling rules etc. */
103 const int shift_penalty;
104 };
105
106 extern const struct processor_costs *sparc_costs;
107
108 /* Target CPU builtins. FIXME: Defining sparc is for the benefit of
109 Solaris only; otherwise just define __sparc__. Sadly the headers
110 are such a mess there is no Solaris-specific header. */
111 #define TARGET_CPU_CPP_BUILTINS() \
112 do \
113 { \
114 builtin_define_std ("sparc"); \
115 if (TARGET_64BIT) \
116 { \
117 builtin_assert ("cpu=sparc64"); \
118 builtin_assert ("machine=sparc64"); \
119 } \
120 else \
121 { \
122 builtin_assert ("cpu=sparc"); \
123 builtin_assert ("machine=sparc"); \
124 } \
125 } \
126 while (0)
127
128 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
129 /* #define SPARC_BI_ARCH */
130
131 /* Macro used later in this file to determine default architecture. */
132 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
133
134 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
135 architectures to compile for. We allow targets to choose compile time or
136 runtime selection. */
137 #ifdef IN_LIBGCC2
138 #if defined(__sparcv9) || defined(__arch64__)
139 #define TARGET_ARCH32 0
140 #else
141 #define TARGET_ARCH32 1
142 #endif /* sparc64 */
143 #else
144 #ifdef SPARC_BI_ARCH
145 #define TARGET_ARCH32 (! TARGET_64BIT)
146 #else
147 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
148 #endif /* SPARC_BI_ARCH */
149 #endif /* IN_LIBGCC2 */
150 #define TARGET_ARCH64 (! TARGET_ARCH32)
151
152 /* Code model selection in 64-bit environment.
153
154 The machine mode used for addresses is 32-bit wide:
155
156 TARGET_CM_32: 32-bit address space.
157 It is the code model used when generating 32-bit code.
158
159 The machine mode used for addresses is 64-bit wide:
160
161 TARGET_CM_MEDLOW: 32-bit address space.
162 The executable must be in the low 32 bits of memory.
163 This avoids generating %uhi and %ulo terms. Programs
164 can be statically or dynamically linked.
165
166 TARGET_CM_MEDMID: 44-bit address space.
167 The executable must be in the low 44 bits of memory,
168 and the %[hml]44 terms are used. The text and data
169 segments have a maximum size of 2GB (31-bit span).
170 The maximum offset from any instruction to the label
171 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
172
173 TARGET_CM_MEDANY: 64-bit address space.
174 The text and data segments have a maximum size of 2GB
175 (31-bit span) and may be located anywhere in memory.
176 The maximum offset from any instruction to the label
177 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
178
179 TARGET_CM_EMBMEDANY: 64-bit address space.
180 The text and data segments have a maximum size of 2GB
181 (31-bit span) and may be located anywhere in memory.
182 The global register %g4 contains the start address of
183 the data segment. Programs are statically linked and
184 PIC is not supported.
185
186 Different code models are not supported in 32-bit environment. */
187
188 enum cmodel {
189 CM_32,
190 CM_MEDLOW,
191 CM_MEDMID,
192 CM_MEDANY,
193 CM_EMBMEDANY
194 };
195
196 /* One of CM_FOO. */
197 extern enum cmodel sparc_cmodel;
198
199 /* V9 code model selection. */
200 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
201 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
202 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
203 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
204
205 #define SPARC_DEFAULT_CMODEL CM_32
206
207 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
208 which requires the following macro to be true if enabled. Prior to V9,
209 there are no instructions to even talk about memory synchronization.
210 Note that the UltraSPARC III processors don't implement RMO, unlike the
211 UltraSPARC II processors. Niagara and Niagara-2 do not implement RMO
212 either.
213
214 Default to false; for example, Solaris never enables RMO, only ever uses
215 total memory ordering (TMO). */
216 #define SPARC_RELAXED_ORDERING false
217
218 /* Do not use the .note.GNU-stack convention by default. */
219 #define NEED_INDICATE_EXEC_STACK 0
220
221 /* This is call-clobbered in the normal ABI, but is reserved in the
222 home grown (aka upward compatible) embedded ABI. */
223 #define EMBMEDANY_BASE_REG "%g4"
224 \f
225 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
226 and specified by the user via --with-cpu=foo.
227 This specifies the cpu implementation, not the architecture size. */
228 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
229 capable cpu's. */
230 #define TARGET_CPU_sparc 0
231 #define TARGET_CPU_v7 0 /* alias */
232 #define TARGET_CPU_cypress 0 /* alias */
233 #define TARGET_CPU_v8 1 /* generic v8 implementation */
234 #define TARGET_CPU_supersparc 2
235 #define TARGET_CPU_hypersparc 3
236 #define TARGET_CPU_leon 4
237 #define TARGET_CPU_sparclite 5
238 #define TARGET_CPU_f930 5 /* alias */
239 #define TARGET_CPU_f934 5 /* alias */
240 #define TARGET_CPU_sparclite86x 6
241 #define TARGET_CPU_sparclet 7
242 #define TARGET_CPU_tsc701 7 /* alias */
243 #define TARGET_CPU_v9 8 /* generic v9 implementation */
244 #define TARGET_CPU_sparcv9 8 /* alias */
245 #define TARGET_CPU_sparc64 8 /* alias */
246 #define TARGET_CPU_ultrasparc 9
247 #define TARGET_CPU_ultrasparc3 10
248 #define TARGET_CPU_niagara 11
249 #define TARGET_CPU_niagara2 12
250
251 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
252 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
253 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
254 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
255 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
256
257 #define CPP_CPU32_DEFAULT_SPEC ""
258 #define ASM_CPU32_DEFAULT_SPEC ""
259
260 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
261 /* ??? What does Sun's CC pass? */
262 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
263 /* ??? It's not clear how other assemblers will handle this, so by default
264 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
265 is handled in sol2.h. */
266 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
267 #endif
268 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
269 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
270 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
271 #endif
272 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
273 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
274 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
275 #endif
276 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
277 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
278 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
279 #endif
280 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
281 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
282 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
283 #endif
284
285 #else
286
287 #define CPP_CPU64_DEFAULT_SPEC ""
288 #define ASM_CPU64_DEFAULT_SPEC ""
289
290 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
291 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
292 #define CPP_CPU32_DEFAULT_SPEC ""
293 #define ASM_CPU32_DEFAULT_SPEC ""
294 #endif
295
296 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
297 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
298 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
299 #endif
300
301 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
302 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
303 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
304 #endif
305
306 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
307 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
308 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
309 #endif
310
311 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
312 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
313 #define ASM_CPU32_DEFAULT_SPEC ""
314 #endif
315
316 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
317 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
318 #define ASM_CPU32_DEFAULT_SPEC ""
319 #endif
320
321 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon
322 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
323 #define ASM_CPU32_DEFAULT_SPEC ""
324 #endif
325
326 #endif
327
328 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
329 #error Unrecognized value in TARGET_CPU_DEFAULT.
330 #endif
331
332 #ifdef SPARC_BI_ARCH
333
334 #define CPP_CPU_DEFAULT_SPEC \
335 (DEFAULT_ARCH32_P ? "\
336 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
337 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
338 " : "\
339 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
340 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
341 ")
342 #define ASM_CPU_DEFAULT_SPEC \
343 (DEFAULT_ARCH32_P ? "\
344 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
345 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
346 " : "\
347 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
348 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
349 ")
350
351 #else /* !SPARC_BI_ARCH */
352
353 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
354 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
355
356 #endif /* !SPARC_BI_ARCH */
357
358 /* Define macros to distinguish architectures. */
359
360 /* Common CPP definitions used by CPP_SPEC amongst the various targets
361 for handling -mcpu=xxx switches. */
362 #define CPP_CPU_SPEC "\
363 %{msoft-float:-D_SOFT_FLOAT} \
364 %{mcypress:} \
365 %{msparclite:-D__sparclite__} \
366 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
367 %{mv8:-D__sparc_v8__} \
368 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
369 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
370 %{mcpu=sparclite:-D__sparclite__} \
371 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
372 %{mcpu=sparclite86x:-D__sparclite86x__} \
373 %{mcpu=v8:-D__sparc_v8__} \
374 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
375 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
376 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
377 %{mcpu=v9:-D__sparc_v9__} \
378 %{mcpu=ultrasparc:-D__sparc_v9__} \
379 %{mcpu=ultrasparc3:-D__sparc_v9__} \
380 %{mcpu=niagara:-D__sparc_v9__} \
381 %{mcpu=niagara2:-D__sparc_v9__} \
382 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
383 "
384 #define CPP_ARCH32_SPEC ""
385 #define CPP_ARCH64_SPEC "-D__arch64__"
386
387 #define CPP_ARCH_DEFAULT_SPEC \
388 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
389
390 #define CPP_ARCH_SPEC "\
391 %{m32:%(cpp_arch32)} \
392 %{m64:%(cpp_arch64)} \
393 %{!m32:%{!m64:%(cpp_arch_default)}} \
394 "
395
396 /* Macros to distinguish endianness. */
397 #define CPP_ENDIAN_SPEC "\
398 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
399 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
400
401 /* Macros to distinguish the particular subtarget. */
402 #define CPP_SUBTARGET_SPEC ""
403
404 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
405
406 /* Prevent error on `-sun4' and `-target sun4' options. */
407 /* This used to translate -dalign to -malign, but that is no good
408 because it can't turn off the usual meaning of making debugging dumps. */
409 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
410 ??? Delete support for -m<cpu> for 2.9. */
411
412 #define CC1_SPEC "\
413 %{sun4:} %{target:} \
414 %{mcypress:-mcpu=cypress} \
415 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
416 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
417 "
418
419 /* Override in target specific files. */
420 #define ASM_CPU_SPEC "\
421 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
422 %{msparclite:-Asparclite} \
423 %{mf930:-Asparclite} %{mf934:-Asparclite} \
424 %{mcpu=sparclite:-Asparclite} \
425 %{mcpu=sparclite86x:-Asparclite} \
426 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
427 %{mv8plus:-Av8plus} \
428 %{mcpu=v9:-Av9} \
429 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
430 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
431 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
432 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
433 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
434 "
435
436 /* Word size selection, among other things.
437 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
438
439 #define ASM_ARCH32_SPEC "-32"
440 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
441 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
442 #else
443 #define ASM_ARCH64_SPEC "-64"
444 #endif
445 #define ASM_ARCH_DEFAULT_SPEC \
446 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
447
448 #define ASM_ARCH_SPEC "\
449 %{m32:%(asm_arch32)} \
450 %{m64:%(asm_arch64)} \
451 %{!m32:%{!m64:%(asm_arch_default)}} \
452 "
453
454 #ifdef HAVE_AS_RELAX_OPTION
455 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
456 #else
457 #define ASM_RELAX_SPEC ""
458 #endif
459
460 /* Special flags to the Sun-4 assembler when using pipe for input. */
461
462 #define ASM_SPEC "\
463 %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
464 %(asm_cpu) %(asm_relax)"
465
466 /* This macro defines names of additional specifications to put in the specs
467 that can be used in various specifications like CC1_SPEC. Its definition
468 is an initializer with a subgrouping for each command option.
469
470 Each subgrouping contains a string constant, that defines the
471 specification name, and a string constant that used by the GCC driver
472 program.
473
474 Do not define this macro if it does not need to do anything. */
475
476 #define EXTRA_SPECS \
477 { "cpp_cpu", CPP_CPU_SPEC }, \
478 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
479 { "cpp_arch32", CPP_ARCH32_SPEC }, \
480 { "cpp_arch64", CPP_ARCH64_SPEC }, \
481 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
482 { "cpp_arch", CPP_ARCH_SPEC }, \
483 { "cpp_endian", CPP_ENDIAN_SPEC }, \
484 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
485 { "asm_cpu", ASM_CPU_SPEC }, \
486 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
487 { "asm_arch32", ASM_ARCH32_SPEC }, \
488 { "asm_arch64", ASM_ARCH64_SPEC }, \
489 { "asm_relax", ASM_RELAX_SPEC }, \
490 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
491 { "asm_arch", ASM_ARCH_SPEC }, \
492 SUBTARGET_EXTRA_SPECS
493
494 #define SUBTARGET_EXTRA_SPECS
495
496 /* Because libgcc can generate references back to libc (via .umul etc.) we have
497 to list libc again after the second libgcc. */
498 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
499
500 \f
501 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
502 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
503
504 /* ??? This should be 32 bits for v9 but what can we do? */
505 #define WCHAR_TYPE "short unsigned int"
506 #define WCHAR_TYPE_SIZE 16
507 \f
508 /* Mask of all CPU selection flags. */
509 #define MASK_ISA \
510 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
511
512 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
513 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
514 to get high 32 bits. False in V8+ or V9 because multiply stores
515 a 64-bit result in a register. */
516
517 #define TARGET_HARD_MUL32 \
518 ((TARGET_V8 || TARGET_SPARCLITE \
519 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
520 && ! TARGET_V8PLUS && TARGET_ARCH32)
521
522 #define TARGET_HARD_MUL \
523 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
524 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
525
526 /* MASK_APP_REGS must always be the default because that's what
527 FIXED_REGISTERS is set to and -ffixed- is processed before
528 TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
529 -mno-app-regs). */
530 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
531
532 /* Processor type.
533 These must match the values for the cpu attribute in sparc.md. */
534 enum processor_type {
535 PROCESSOR_V7,
536 PROCESSOR_CYPRESS,
537 PROCESSOR_V8,
538 PROCESSOR_SUPERSPARC,
539 PROCESSOR_HYPERSPARC,
540 PROCESSOR_LEON,
541 PROCESSOR_SPARCLITE,
542 PROCESSOR_F930,
543 PROCESSOR_F934,
544 PROCESSOR_SPARCLITE86X,
545 PROCESSOR_SPARCLET,
546 PROCESSOR_TSC701,
547 PROCESSOR_V9,
548 PROCESSOR_ULTRASPARC,
549 PROCESSOR_ULTRASPARC3,
550 PROCESSOR_NIAGARA,
551 PROCESSOR_NIAGARA2
552 };
553
554 /* This is set from -m{cpu,tune}=xxx. */
555 extern enum processor_type sparc_cpu;
556
557 /* Recast the cpu class to be the cpu attribute.
558 Every file includes us, but not every file includes insn-attr.h. */
559 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
560
561 /* Support for a compile-time default CPU, et cetera. The rules are:
562 --with-cpu is ignored if -mcpu is specified.
563 --with-tune is ignored if -mtune is specified.
564 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
565 are specified. */
566 #define OPTION_DEFAULT_SPECS \
567 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
568 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
569 {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
570
571 /* sparc_select[0] is reserved for the default cpu. */
572 struct sparc_cpu_select
573 {
574 const char *string;
575 const char *const name;
576 const int set_tune_p;
577 const int set_arch_p;
578 };
579
580 extern struct sparc_cpu_select sparc_select[];
581 \f
582 /* target machine storage layout */
583
584 /* Define this if most significant bit is lowest numbered
585 in instructions that operate on numbered bit-fields. */
586 #define BITS_BIG_ENDIAN 1
587
588 /* Define this if most significant byte of a word is the lowest numbered. */
589 #define BYTES_BIG_ENDIAN 1
590
591 /* Define this if most significant word of a multiword number is the lowest
592 numbered. */
593 #define WORDS_BIG_ENDIAN 1
594
595 #define MAX_BITS_PER_WORD 64
596
597 /* Width of a word, in units (bytes). */
598 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
599 #ifdef IN_LIBGCC2
600 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
601 #else
602 #define MIN_UNITS_PER_WORD 4
603 #endif
604
605 /* Now define the sizes of the C data types. */
606
607 #define SHORT_TYPE_SIZE 16
608 #define INT_TYPE_SIZE 32
609 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
610 #define LONG_LONG_TYPE_SIZE 64
611 #define FLOAT_TYPE_SIZE 32
612 #define DOUBLE_TYPE_SIZE 64
613
614 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
615 SPARC ABI says that it is 128-bit wide. */
616 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
617
618 /* The widest floating-point format really supported by the hardware. */
619 #define WIDEST_HARDWARE_FP_SIZE 64
620
621 /* Width in bits of a pointer. This is the size of ptr_mode. */
622 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
623
624 /* This is the machine mode used for addresses. */
625 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
626
627 /* If we have to extend pointers (only when TARGET_ARCH64 and not
628 TARGET_PTR64), we want to do it unsigned. This macro does nothing
629 if ptr_mode and Pmode are the same. */
630 #define POINTERS_EXTEND_UNSIGNED 1
631
632 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
633 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
634
635 /* Boundary (in *bits*) on which stack pointer should be aligned. */
636 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
637 then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */
638 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
639 /* Temporary hack until the FIXME above is fixed. */
640 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
641
642 /* ALIGN FRAMES on double word boundaries */
643
644 #define SPARC_STACK_ALIGN(LOC) \
645 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
646
647 /* Allocation boundary (in *bits*) for the code of a function. */
648 #define FUNCTION_BOUNDARY 32
649
650 /* Alignment of field after `int : 0' in a structure. */
651 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
652
653 /* Every structure's size must be a multiple of this. */
654 #define STRUCTURE_SIZE_BOUNDARY 8
655
656 /* A bit-field declared as `int' forces `int' alignment for the struct. */
657 #define PCC_BITFIELD_TYPE_MATTERS 1
658
659 /* No data type wants to be aligned rounder than this. */
660 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
661
662 /* The best alignment to use in cases where we have a choice. */
663 #define FASTEST_ALIGNMENT 64
664
665 /* Define this macro as an expression for the alignment of a structure
666 (given by STRUCT as a tree node) if the alignment computed in the
667 usual way is COMPUTED and the alignment explicitly specified was
668 SPECIFIED.
669
670 The default is to use SPECIFIED if it is larger; otherwise, use
671 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
672 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
673 (TARGET_FASTER_STRUCTS ? \
674 ((TREE_CODE (STRUCT) == RECORD_TYPE \
675 || TREE_CODE (STRUCT) == UNION_TYPE \
676 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
677 && TYPE_FIELDS (STRUCT) != 0 \
678 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
679 : MAX ((COMPUTED), (SPECIFIED))) \
680 : MAX ((COMPUTED), (SPECIFIED)))
681
682 /* Make strings word-aligned so strcpy from constants will be faster. */
683 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
684 ((TREE_CODE (EXP) == STRING_CST \
685 && (ALIGN) < FASTEST_ALIGNMENT) \
686 ? FASTEST_ALIGNMENT : (ALIGN))
687
688 /* Make arrays of chars word-aligned for the same reasons. */
689 #define DATA_ALIGNMENT(TYPE, ALIGN) \
690 (TREE_CODE (TYPE) == ARRAY_TYPE \
691 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
692 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
693
694 /* Make local arrays of chars word-aligned for the same reasons. */
695 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
696
697 /* Set this nonzero if move instructions will actually fail to work
698 when given unaligned data. */
699 #define STRICT_ALIGNMENT 1
700
701 /* Things that must be doubleword aligned cannot go in the text section,
702 because the linker fails to align the text section enough!
703 Put them in the data section. This macro is only used in this file. */
704 #define MAX_TEXT_ALIGN 32
705 \f
706 /* Standard register usage. */
707
708 /* Number of actual hardware registers.
709 The hardware registers are assigned numbers for the compiler
710 from 0 to just below FIRST_PSEUDO_REGISTER.
711 All registers that the compiler knows about must be given numbers,
712 even those that are not normally considered general registers.
713
714 SPARC has 32 integer registers and 32 floating point registers.
715 64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
716 accessible. We still account for them to simplify register computations
717 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
718 32+32+32+4 == 100.
719 Register 100 is used as the integer condition code register.
720 Register 101 is used as the soft frame pointer register. */
721
722 #define FIRST_PSEUDO_REGISTER 102
723
724 #define SPARC_FIRST_FP_REG 32
725 /* Additional V9 fp regs. */
726 #define SPARC_FIRST_V9_FP_REG 64
727 #define SPARC_LAST_V9_FP_REG 95
728 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
729 #define SPARC_FIRST_V9_FCC_REG 96
730 #define SPARC_LAST_V9_FCC_REG 99
731 /* V8 fcc reg. */
732 #define SPARC_FCC_REG 96
733 /* Integer CC reg. We don't distinguish %icc from %xcc. */
734 #define SPARC_ICC_REG 100
735
736 /* Nonzero if REGNO is an fp reg. */
737 #define SPARC_FP_REG_P(REGNO) \
738 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
739
740 /* Argument passing regs. */
741 #define SPARC_OUTGOING_INT_ARG_FIRST 8
742 #define SPARC_INCOMING_INT_ARG_FIRST 24
743 #define SPARC_FP_ARG_FIRST 32
744
745 /* 1 for registers that have pervasive standard uses
746 and are not available for the register allocator.
747
748 On non-v9 systems:
749 g1 is free to use as temporary.
750 g2-g4 are reserved for applications. Gcc normally uses them as
751 temporaries, but this can be disabled via the -mno-app-regs option.
752 g5 through g7 are reserved for the operating system.
753
754 On v9 systems:
755 g1,g5 are free to use as temporaries, and are free to use between calls
756 if the call is to an external function via the PLT.
757 g4 is free to use as a temporary in the non-embedded case.
758 g4 is reserved in the embedded case.
759 g2-g3 are reserved for applications. Gcc normally uses them as
760 temporaries, but this can be disabled via the -mno-app-regs option.
761 g6-g7 are reserved for the operating system (or application in
762 embedded case).
763 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
764 currently be a fixed register until this pattern is rewritten.
765 Register 1 is also used when restoring call-preserved registers in large
766 stack frames.
767
768 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
769 TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
770 */
771
772 #define FIXED_REGISTERS \
773 {1, 0, 2, 2, 2, 2, 1, 1, \
774 0, 0, 0, 0, 0, 0, 1, 0, \
775 0, 0, 0, 0, 0, 0, 0, 0, \
776 0, 0, 0, 0, 0, 0, 1, 1, \
777 \
778 0, 0, 0, 0, 0, 0, 0, 0, \
779 0, 0, 0, 0, 0, 0, 0, 0, \
780 0, 0, 0, 0, 0, 0, 0, 0, \
781 0, 0, 0, 0, 0, 0, 0, 0, \
782 \
783 0, 0, 0, 0, 0, 0, 0, 0, \
784 0, 0, 0, 0, 0, 0, 0, 0, \
785 0, 0, 0, 0, 0, 0, 0, 0, \
786 0, 0, 0, 0, 0, 0, 0, 0, \
787 \
788 0, 0, 0, 0, 0, 1}
789
790 /* 1 for registers not available across function calls.
791 These must include the FIXED_REGISTERS and also any
792 registers that can be used without being saved.
793 The latter must include the registers where values are returned
794 and the register where structure-value addresses are passed.
795 Aside from that, you can include as many other registers as you like. */
796
797 #define CALL_USED_REGISTERS \
798 {1, 1, 1, 1, 1, 1, 1, 1, \
799 1, 1, 1, 1, 1, 1, 1, 1, \
800 0, 0, 0, 0, 0, 0, 0, 0, \
801 0, 0, 0, 0, 0, 0, 1, 1, \
802 \
803 1, 1, 1, 1, 1, 1, 1, 1, \
804 1, 1, 1, 1, 1, 1, 1, 1, \
805 1, 1, 1, 1, 1, 1, 1, 1, \
806 1, 1, 1, 1, 1, 1, 1, 1, \
807 \
808 1, 1, 1, 1, 1, 1, 1, 1, \
809 1, 1, 1, 1, 1, 1, 1, 1, \
810 1, 1, 1, 1, 1, 1, 1, 1, \
811 1, 1, 1, 1, 1, 1, 1, 1, \
812 \
813 1, 1, 1, 1, 1, 1}
814
815 /* Return number of consecutive hard regs needed starting at reg REGNO
816 to hold something of mode MODE.
817 This is ordinarily the length in words of a value of mode MODE
818 but can be less for certain modes in special long registers.
819
820 On SPARC, ordinary registers hold 32 bits worth;
821 this means both integer and floating point registers.
822 On v9, integer regs hold 64 bits worth; floating point regs hold
823 32 bits worth (this includes the new fp regs as even the odd ones are
824 included in the hard register count). */
825
826 #define HARD_REGNO_NREGS(REGNO, MODE) \
827 (TARGET_ARCH64 \
828 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
829 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
830 : (GET_MODE_SIZE (MODE) + 3) / 4) \
831 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
832
833 /* Due to the ARCH64 discrepancy above we must override this next
834 macro too. */
835 #define REGMODE_NATURAL_SIZE(MODE) \
836 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
837
838 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
839 See sparc.c for how we initialize this. */
840 extern const int *hard_regno_mode_classes;
841 extern int sparc_mode_class[];
842
843 /* ??? Because of the funny way we pass parameters we should allow certain
844 ??? types of float/complex values to be in integer registers during
845 ??? RTL generation. This only matters on arch32. */
846 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
847 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
848
849 /* Value is 1 if it is OK to rename a hard register FROM to another hard
850 register TO. We cannot rename %g1 as it may be used before the save
851 register window instruction in the prologue. */
852 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
853
854 /* Value is 1 if it is a good idea to tie two pseudo registers
855 when one has mode MODE1 and one has mode MODE2.
856 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
857 for any hard reg, then this must be 0 for correct output.
858
859 For V9: SFmode can't be combined with other float modes, because they can't
860 be allocated to the %d registers. Also, DFmode won't fit in odd %f
861 registers, but SFmode will. */
862 #define MODES_TIEABLE_P(MODE1, MODE2) \
863 ((MODE1) == (MODE2) \
864 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
865 && (! TARGET_V9 \
866 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
867 || (MODE1 != SFmode && MODE2 != SFmode)))))
868
869 /* Specify the registers used for certain standard purposes.
870 The values of these macros are register numbers. */
871
872 /* Register to use for pushing function arguments. */
873 #define STACK_POINTER_REGNUM 14
874
875 /* The stack bias (amount by which the hardware register is offset by). */
876 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
877
878 /* Actual top-of-stack address is 92/176 greater than the contents of the
879 stack pointer register for !v9/v9. That is:
880 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
881 address, and 6*4 bytes for the 6 register parameters.
882 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
883 parameter regs. */
884 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
885
886 /* Base register for access to local variables of the function. */
887 #define HARD_FRAME_POINTER_REGNUM 30
888
889 /* The soft frame pointer does not have the stack bias applied. */
890 #define FRAME_POINTER_REGNUM 101
891
892 /* Given the stack bias, the stack pointer isn't actually aligned. */
893 #define INIT_EXPANDERS \
894 do { \
895 if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS) \
896 { \
897 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
898 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
899 } \
900 } while (0)
901
902 /* Base register for access to arguments of the function. */
903 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
904
905 /* Register in which static-chain is passed to a function. This must
906 not be a register used by the prologue. */
907 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
908
909 /* Register which holds offset table for position-independent
910 data references. */
911
912 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
913
914 /* Pick a default value we can notice from override_options:
915 !v9: Default is on.
916 v9: Default is off.
917 Originally it was -1, but later on the container of options changed to
918 unsigned byte, so we decided to pick 127 as default value, which does
919 reflect an undefined default value in case of 0/1. */
920
921 #define DEFAULT_PCC_STRUCT_RETURN 127
922
923 /* Functions which return large structures get the address
924 to place the wanted value at offset 64 from the frame.
925 Must reserve 64 bytes for the in and local registers.
926 v9: Functions which return large structures get the address to place the
927 wanted value from an invisible first argument. */
928 #define STRUCT_VALUE_OFFSET 64
929 \f
930 /* Define the classes of registers for register constraints in the
931 machine description. Also define ranges of constants.
932
933 One of the classes must always be named ALL_REGS and include all hard regs.
934 If there is more than one class, another class must be named NO_REGS
935 and contain no registers.
936
937 The name GENERAL_REGS must be the name of a class (or an alias for
938 another name such as ALL_REGS). This is the class of registers
939 that is allowed by "g" or "r" in a register constraint.
940 Also, registers outside this class are allocated only when
941 instructions express preferences for them.
942
943 The classes must be numbered in nondecreasing order; that is,
944 a larger-numbered class must never be contained completely
945 in a smaller-numbered class.
946
947 For any two classes, it is very desirable that there be another
948 class that represents their union. */
949
950 /* The SPARC has various kinds of registers: general, floating point,
951 and condition codes [well, it has others as well, but none that we
952 care directly about].
953
954 For v9 we must distinguish between the upper and lower floating point
955 registers because the upper ones can't hold SFmode values.
956 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
957 satisfying a group need for a class will also satisfy a single need for
958 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
959 regs.
960
961 It is important that one class contains all the general and all the standard
962 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
963 because reg_class_record() will bias the selection in favor of fp regs,
964 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
965 because FP_REGS > GENERAL_REGS.
966
967 It is also important that one class contain all the general and all
968 the fp regs. Otherwise when spilling a DFmode reg, it may be from
969 EXTRA_FP_REGS but find_reloads() may use class
970 GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
971 because the compiler thinks it doesn't have a spill reg when in
972 fact it does.
973
974 v9 also has 4 floating point condition code registers. Since we don't
975 have a class that is the union of FPCC_REGS with either of the others,
976 it is important that it appear first. Otherwise the compiler will die
977 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
978 constraints.
979
980 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
981 may try to use it to hold an SImode value. See register_operand.
982 ??? Should %fcc[0123] be handled similarly?
983 */
984
985 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
986 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
987 ALL_REGS, LIM_REG_CLASSES };
988
989 #define N_REG_CLASSES (int) LIM_REG_CLASSES
990
991 /* Give names of register classes as strings for dump file. */
992
993 #define REG_CLASS_NAMES \
994 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
995 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
996 "ALL_REGS" }
997
998 /* Define which registers fit in which classes.
999 This is an initializer for a vector of HARD_REG_SET
1000 of length N_REG_CLASSES. */
1001
1002 #define REG_CLASS_CONTENTS \
1003 {{0, 0, 0, 0}, /* NO_REGS */ \
1004 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
1005 {0xffff, 0, 0, 0}, /* I64_REGS */ \
1006 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
1007 {0, -1, 0, 0}, /* FP_REGS */ \
1008 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
1009 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
1010 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
1011 {-1, -1, -1, 0x3f}} /* ALL_REGS */
1012
1013 /* The same information, inverted:
1014 Return the class number of the smallest class containing
1015 reg number REGNO. This could be a conditional expression
1016 or could index an array. */
1017
1018 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1019
1020 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1021
1022 /* The following macro defines cover classes for Integrated Register
1023 Allocator. Cover classes is a set of non-intersected register
1024 classes covering all hard registers used for register allocation
1025 purpose. Any move between two registers of a cover class should be
1026 cheaper than load or store of the registers. The macro value is
1027 array of register classes with LIM_REG_CLASSES used as the end
1028 marker. */
1029
1030 #define IRA_COVER_CLASSES \
1031 { \
1032 GENERAL_REGS, EXTRA_FP_REGS, FPCC_REGS, LIM_REG_CLASSES \
1033 }
1034
1035 /* Defines invalid mode changes. Borrowed from pa64-regs.h.
1036
1037 SImode loads to floating-point registers are not zero-extended.
1038 The definition for LOAD_EXTEND_OP specifies that integer loads
1039 narrower than BITS_PER_WORD will be zero-extended. As a result,
1040 we inhibit changes from SImode unless they are to a mode that is
1041 identical in size. */
1042
1043 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1044 (TARGET_ARCH64 \
1045 && (FROM) == SImode \
1046 && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1047 ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1048
1049 /* This is the order in which to allocate registers normally.
1050
1051 We put %f0-%f7 last among the float registers, so as to make it more
1052 likely that a pseudo-register which dies in the float return register
1053 area will get allocated to the float return register, thus saving a move
1054 instruction at the end of the function.
1055
1056 Similarly for integer return value registers.
1057
1058 We know in this case that we will not end up with a leaf function.
1059
1060 The register allocator is given the global and out registers first
1061 because these registers are call clobbered and thus less useful to
1062 global register allocation.
1063
1064 Next we list the local and in registers. They are not call clobbered
1065 and thus very useful for global register allocation. We list the input
1066 registers before the locals so that it is more likely the incoming
1067 arguments received in those registers can just stay there and not be
1068 reloaded. */
1069
1070 #define REG_ALLOC_ORDER \
1071 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1072 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1073 15, /* %o7 */ \
1074 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1075 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
1076 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1077 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1078 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1079 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1080 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1081 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1082 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1083 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1084 96, 97, 98, 99, /* %fcc0-3 */ \
1085 100, 0, 14, 30, 101} /* %icc, %g0, %o6, %i6, %sfp */
1086
1087 /* This is the order in which to allocate registers for
1088 leaf functions. If all registers can fit in the global and
1089 output registers, then we have the possibility of having a leaf
1090 function.
1091
1092 The macro actually mentioned the input registers first,
1093 because they get renumbered into the output registers once
1094 we know really do have a leaf function.
1095
1096 To be more precise, this register allocation order is used
1097 when %o7 is found to not be clobbered right before register
1098 allocation. Normally, the reason %o7 would be clobbered is
1099 due to a call which could not be transformed into a sibling
1100 call.
1101
1102 As a consequence, it is possible to use the leaf register
1103 allocation order and not end up with a leaf function. We will
1104 not get suboptimal register allocation in that case because by
1105 definition of being potentially leaf, there were no function
1106 calls. Therefore, allocation order within the local register
1107 window is not critical like it is when we do have function calls. */
1108
1109 #define REG_LEAF_ALLOC_ORDER \
1110 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1111 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
1112 15, /* %o7 */ \
1113 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1114 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1115 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1116 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1117 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1118 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1119 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1120 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1121 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1122 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1123 96, 97, 98, 99, /* %fcc0-3 */ \
1124 100, 0, 14, 30, 31, 101} /* %icc, %g0, %o6, %i6, %i7, %sfp */
1125
1126 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
1127
1128 extern char sparc_leaf_regs[];
1129 #define LEAF_REGISTERS sparc_leaf_regs
1130
1131 extern char leaf_reg_remap[];
1132 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1133
1134 /* The class value for index registers, and the one for base regs. */
1135 #define INDEX_REG_CLASS GENERAL_REGS
1136 #define BASE_REG_CLASS GENERAL_REGS
1137
1138 /* Local macro to handle the two v9 classes of FP regs. */
1139 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1140
1141 /* Predicates for 10-bit, 11-bit and 13-bit signed constants. */
1142 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1143 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1144 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1145
1146 /* 10- and 11-bit immediates are only used for a few specific insns.
1147 SMALL_INT is used throughout the port so we continue to use it. */
1148 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1149
1150 /* Predicate for constants that can be loaded with a sethi instruction.
1151 This is the general, 64-bit aware, bitwise version that ensures that
1152 only constants whose representation fits in the mask
1153
1154 0x00000000fffffc00
1155
1156 are accepted. It will reject, for example, negative SImode constants
1157 on 64-bit hosts, so correct handling is to mask the value beforehand
1158 according to the mode of the instruction. */
1159 #define SPARC_SETHI_P(X) \
1160 (((unsigned HOST_WIDE_INT) (X) \
1161 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1162
1163 /* Version of the above predicate for SImode constants and below. */
1164 #define SPARC_SETHI32_P(X) \
1165 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1166
1167 /* Given an rtx X being reloaded into a reg required to be
1168 in class CLASS, return the class of reg to actually use.
1169 In general this is just CLASS; but on some machines
1170 in some cases it is preferable to use a more restrictive class. */
1171 /* - We can't load constants into FP registers.
1172 - We can't load FP constants into integer registers when soft-float,
1173 because there is no soft-float pattern with a r/F constraint.
1174 - We can't load FP constants into integer registers for TFmode unless
1175 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1176 - Try and reload integer constants (symbolic or otherwise) back into
1177 registers directly, rather than having them dumped to memory. */
1178
1179 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1180 (CONSTANT_P (X) \
1181 ? ((FP_REG_CLASS_P (CLASS) \
1182 || (CLASS) == GENERAL_OR_FP_REGS \
1183 || (CLASS) == GENERAL_OR_EXTRA_FP_REGS \
1184 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1185 && ! TARGET_FPU) \
1186 || (GET_MODE (X) == TFmode \
1187 && ! const_zero_operand (X, TFmode))) \
1188 ? NO_REGS \
1189 : (!FP_REG_CLASS_P (CLASS) \
1190 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1191 ? GENERAL_REGS \
1192 : (CLASS)) \
1193 : (CLASS))
1194
1195 /* Return the register class of a scratch register needed to load IN into
1196 a register of class CLASS in MODE.
1197
1198 We need a temporary when loading/storing a HImode/QImode value
1199 between memory and the FPU registers. This can happen when combine puts
1200 a paradoxical subreg in a float/fix conversion insn.
1201
1202 We need a temporary when loading/storing a DFmode value between
1203 unaligned memory and the upper FPU registers. */
1204
1205 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1206 ((FP_REG_CLASS_P (CLASS) \
1207 && ((MODE) == HImode || (MODE) == QImode) \
1208 && (GET_CODE (IN) == MEM \
1209 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1210 && true_regnum (IN) == -1))) \
1211 ? GENERAL_REGS \
1212 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1213 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1214 && ! mem_min_alignment ((IN), 8)) \
1215 ? FP_REGS \
1216 : (((TARGET_CM_MEDANY \
1217 && symbolic_operand ((IN), (MODE))) \
1218 || (TARGET_CM_EMBMEDANY \
1219 && text_segment_operand ((IN), (MODE)))) \
1220 && !flag_pic) \
1221 ? GENERAL_REGS \
1222 : NO_REGS)
1223
1224 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1225 ((FP_REG_CLASS_P (CLASS) \
1226 && ((MODE) == HImode || (MODE) == QImode) \
1227 && (GET_CODE (IN) == MEM \
1228 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1229 && true_regnum (IN) == -1))) \
1230 ? GENERAL_REGS \
1231 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1232 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1233 && ! mem_min_alignment ((IN), 8)) \
1234 ? FP_REGS \
1235 : (((TARGET_CM_MEDANY \
1236 && symbolic_operand ((IN), (MODE))) \
1237 || (TARGET_CM_EMBMEDANY \
1238 && text_segment_operand ((IN), (MODE)))) \
1239 && !flag_pic) \
1240 ? GENERAL_REGS \
1241 : NO_REGS)
1242
1243 /* On SPARC it is not possible to directly move data between
1244 GENERAL_REGS and FP_REGS. */
1245 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1246 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1247
1248 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1249 because the movsi and movsf patterns don't handle r/f moves.
1250 For v8 we copy the default definition. */
1251 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1252 (TARGET_ARCH64 \
1253 ? (GET_MODE_BITSIZE (MODE) < 32 \
1254 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1255 : MODE) \
1256 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1257 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1258 : MODE))
1259
1260 /* Return the maximum number of consecutive registers
1261 needed to represent mode MODE in a register of class CLASS. */
1262 /* On SPARC, this is the size of MODE in words. */
1263 #define CLASS_MAX_NREGS(CLASS, MODE) \
1264 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1265 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1266 \f
1267 /* Stack layout; function entry, exit and calling. */
1268
1269 /* Define this if pushing a word on the stack
1270 makes the stack pointer a smaller address. */
1271 #define STACK_GROWS_DOWNWARD
1272
1273 /* Define this to nonzero if the nominal address of the stack frame
1274 is at the high-address end of the local variables;
1275 that is, each additional local variable allocated
1276 goes at a more negative offset in the frame. */
1277 #define FRAME_GROWS_DOWNWARD 1
1278
1279 /* Offset within stack frame to start allocating local variables at.
1280 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1281 first local allocated. Otherwise, it is the offset to the BEGINNING
1282 of the first local allocated. */
1283 #define STARTING_FRAME_OFFSET 0
1284
1285 /* Offset of first parameter from the argument pointer register value.
1286 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1287 even if this function isn't going to use it.
1288 v9: This is 128 for the ins and locals. */
1289 #define FIRST_PARM_OFFSET(FNDECL) \
1290 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1291
1292 /* Offset from the argument pointer register value to the CFA.
1293 This is different from FIRST_PARM_OFFSET because the register window
1294 comes between the CFA and the arguments. */
1295 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1296
1297 /* When a parameter is passed in a register, stack space is still
1298 allocated for it.
1299 !v9: All 6 possible integer registers have backing store allocated.
1300 v9: Only space for the arguments passed is allocated. */
1301 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1302 meaning to the backend. Further, we need to be able to detect if a
1303 varargs/unprototyped function is called, as they may want to spill more
1304 registers than we've provided space. Ugly, ugly. So for now we retain
1305 all 6 slots even for v9. */
1306 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1307
1308 /* Definitions for register elimination. */
1309
1310 #define ELIMINABLE_REGS \
1311 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1312 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1313
1314 /* We always pretend that this is a leaf function because if it's not,
1315 there's no point in trying to eliminate the frame pointer. If it
1316 is a leaf function, we guessed right! */
1317 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1318 do { \
1319 if ((TO) == STACK_POINTER_REGNUM) \
1320 (OFFSET) = sparc_compute_frame_size (get_frame_size (), 1); \
1321 else \
1322 (OFFSET) = 0; \
1323 (OFFSET) += SPARC_STACK_BIAS; \
1324 } while (0)
1325
1326 /* Keep the stack pointer constant throughout the function.
1327 This is both an optimization and a necessity: longjmp
1328 doesn't behave itself when the stack pointer moves within
1329 the function! */
1330 #define ACCUMULATE_OUTGOING_ARGS 1
1331
1332 /* Define this macro if the target machine has "register windows". This
1333 C expression returns the register number as seen by the called function
1334 corresponding to register number OUT as seen by the calling function.
1335 Return OUT if register number OUT is not an outbound register. */
1336
1337 #define INCOMING_REGNO(OUT) \
1338 (((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1339
1340 /* Define this macro if the target machine has "register windows". This
1341 C expression returns the register number as seen by the calling function
1342 corresponding to register number IN as seen by the called function.
1343 Return IN if register number IN is not an inbound register. */
1344
1345 #define OUTGOING_REGNO(IN) \
1346 (((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1347
1348 /* Define this macro if the target machine has register windows. This
1349 C expression returns true if the register is call-saved but is in the
1350 register window. */
1351
1352 #define LOCAL_REGNO(REGNO) \
1353 ((REGNO) >= 16 && (REGNO) <= 31)
1354
1355 /* Define the size of space to allocate for the return value of an
1356 untyped_call. */
1357
1358 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1359
1360 /* 1 if N is a possible register number for function argument passing.
1361 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1362
1363 #define FUNCTION_ARG_REGNO_P(N) \
1364 (TARGET_ARCH64 \
1365 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1366 : ((N) >= 8 && (N) <= 13))
1367 \f
1368 /* Define a data type for recording info about an argument list
1369 during the scan of that argument list. This data type should
1370 hold all necessary information about the function itself
1371 and about the args processed so far, enough to enable macros
1372 such as FUNCTION_ARG to determine where the next arg should go.
1373
1374 On SPARC (!v9), this is a single integer, which is a number of words
1375 of arguments scanned so far (including the invisible argument,
1376 if any, which holds the structure-value-address).
1377 Thus 7 or more means all following args should go on the stack.
1378
1379 For v9, we also need to know whether a prototype is present. */
1380
1381 struct sparc_args {
1382 int words; /* number of words passed so far */
1383 int prototype_p; /* nonzero if a prototype is present */
1384 int libcall_p; /* nonzero if a library call */
1385 };
1386 #define CUMULATIVE_ARGS struct sparc_args
1387
1388 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1389 for a call to a function whose data type is FNTYPE.
1390 For a library call, FNTYPE is 0. */
1391
1392 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1393 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1394
1395 /* If defined, a C expression which determines whether, and in which direction,
1396 to pad out an argument with extra space. The value should be of type
1397 `enum direction': either `upward' to pad above the argument,
1398 `downward' to pad below, or `none' to inhibit padding. */
1399
1400 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1401 function_arg_padding ((MODE), (TYPE))
1402
1403 \f
1404 /* Generate the special assembly code needed to tell the assembler whatever
1405 it might need to know about the return value of a function.
1406
1407 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1408 information to the assembler relating to peephole optimization (done in
1409 the assembler). */
1410
1411 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1412 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1413
1414 /* Output the special assembly code needed to tell the assembler some
1415 register is used as global register variable.
1416
1417 SPARC 64bit psABI declares registers %g2 and %g3 as application
1418 registers and %g6 and %g7 as OS registers. Any object using them
1419 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1420 and how they are used (scratch or some global variable).
1421 Linker will then refuse to link together objects which use those
1422 registers incompatibly.
1423
1424 Unless the registers are used for scratch, two different global
1425 registers cannot be declared to the same name, so in the unlikely
1426 case of a global register variable occupying more than one register
1427 we prefix the second and following registers with .gnu.part1. etc. */
1428
1429 extern GTY(()) char sparc_hard_reg_printed[8];
1430
1431 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1432 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1433 do { \
1434 if (TARGET_ARCH64) \
1435 { \
1436 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1437 int reg; \
1438 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1439 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1440 { \
1441 if (reg == (REGNO)) \
1442 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1443 else \
1444 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1445 reg, reg - (REGNO), (NAME)); \
1446 sparc_hard_reg_printed[reg] = 1; \
1447 } \
1448 } \
1449 } while (0)
1450 #endif
1451
1452 \f
1453 /* Emit rtl for profiling. */
1454 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1455
1456 /* All the work done in PROFILE_HOOK, but still required. */
1457 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1458
1459 /* Set the name of the mcount function for the system. */
1460 #define MCOUNT_FUNCTION "*mcount"
1461 \f
1462 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1463 the stack pointer does not matter. The value is tested only in
1464 functions that have frame pointers.
1465 No definition is equivalent to always zero. */
1466
1467 #define EXIT_IGNORE_STACK \
1468 (get_frame_size () != 0 \
1469 || cfun->calls_alloca || crtl->outgoing_args_size)
1470
1471 /* Define registers used by the epilogue and return instruction. */
1472 #define EPILOGUE_USES(REGNO) ((REGNO) == 31 \
1473 || (crtl->calls_eh_return && (REGNO) == 1))
1474 \f
1475 /* Length in units of the trampoline for entering a nested function. */
1476
1477 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1478
1479 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1480 \f
1481 /* Generate RTL to flush the register windows so as to make arbitrary frames
1482 available. */
1483 #define SETUP_FRAME_ADDRESSES() \
1484 emit_insn (gen_flush_register_windows ())
1485
1486 /* Given an rtx for the address of a frame,
1487 return an rtx for the address of the word in the frame
1488 that holds the dynamic chain--the previous frame's address. */
1489 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1490 plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1491
1492 /* Given an rtx for the frame pointer,
1493 return an rtx for the address of the frame. */
1494 #define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS)
1495
1496 /* The return address isn't on the stack, it is in a register, so we can't
1497 access it from the current frame pointer. We can access it from the
1498 previous frame pointer though by reading a value from the register window
1499 save area. */
1500 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1501
1502 /* This is the offset of the return address to the true next instruction to be
1503 executed for the current function. */
1504 #define RETURN_ADDR_OFFSET \
1505 (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1506
1507 /* The current return address is in %i7. The return address of anything
1508 farther back is in the register window save area at [%fp+60]. */
1509 /* ??? This ignores the fact that the actual return address is +8 for normal
1510 returns, and +12 for structure returns. */
1511 #define RETURN_ADDR_RTX(count, frame) \
1512 ((count == -1) \
1513 ? gen_rtx_REG (Pmode, 31) \
1514 : gen_rtx_MEM (Pmode, \
1515 memory_address (Pmode, plus_constant (frame, \
1516 15 * UNITS_PER_WORD \
1517 + SPARC_STACK_BIAS))))
1518
1519 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1520 +12, but always using +8 is close enough for frame unwind purposes.
1521 Actually, just using %o7 is close enough for unwinding, but %o7+8
1522 is something you can return to. */
1523 #define INCOMING_RETURN_ADDR_RTX \
1524 plus_constant (gen_rtx_REG (word_mode, 15), 8)
1525 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
1526
1527 /* The offset from the incoming value of %sp to the top of the stack frame
1528 for the current function. On sparc64, we have to account for the stack
1529 bias if present. */
1530 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1531
1532 /* Describe how we implement __builtin_eh_return. */
1533 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1534 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
1535 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
1536
1537 /* Select a format to encode pointers in exception handling data. CODE
1538 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1539 true if the symbol may be affected by dynamic relocations.
1540
1541 If assembler and linker properly support .uaword %r_disp32(foo),
1542 then use PC relative 32-bit relocations instead of absolute relocs
1543 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1544 for binaries, to save memory.
1545
1546 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1547 symbol %r_disp32() is against was not local, but .hidden. In that
1548 case, we have to use DW_EH_PE_absptr for pic personality. */
1549 #ifdef HAVE_AS_SPARC_UA_PCREL
1550 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1551 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1552 (flag_pic \
1553 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1554 : ((TARGET_ARCH64 && ! GLOBAL) \
1555 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1556 : DW_EH_PE_absptr))
1557 #else
1558 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1559 (flag_pic \
1560 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1561 : ((TARGET_ARCH64 && ! GLOBAL) \
1562 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1563 : DW_EH_PE_absptr))
1564 #endif
1565
1566 /* Emit a PC-relative relocation. */
1567 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1568 do { \
1569 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1570 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1571 assemble_name (FILE, LABEL); \
1572 fputc (')', FILE); \
1573 } while (0)
1574 #endif
1575 \f
1576 /* Addressing modes, and classification of registers for them. */
1577
1578 /* Macros to check register numbers against specific register classes. */
1579
1580 /* These assume that REGNO is a hard or pseudo reg number.
1581 They give nonzero only if REGNO is a hard reg of the suitable class
1582 or a pseudo reg currently allocated to a suitable hard reg.
1583 Since they use reg_renumber, they are safe only once reg_renumber
1584 has been allocated, which happens in local-alloc.c. */
1585
1586 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1587 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
1588 || (REGNO) == FRAME_POINTER_REGNUM \
1589 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1590
1591 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1592
1593 #define REGNO_OK_FOR_FP_P(REGNO) \
1594 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1595 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1596 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1597 (TARGET_V9 \
1598 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1599 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1600
1601 /* Now macros that check whether X is a register and also,
1602 strictly, whether it is in a specified class.
1603
1604 These macros are specific to the SPARC, and may be used only
1605 in code for printing assembler insns and in conditions for
1606 define_optimization. */
1607
1608 /* 1 if X is an fp register. */
1609
1610 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1611
1612 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
1613 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
1614 \f
1615 /* Maximum number of registers that can appear in a valid memory address. */
1616
1617 #define MAX_REGS_PER_ADDRESS 2
1618
1619 /* Recognize any constant value that is a valid address.
1620 When PIC, we do not accept an address that would require a scratch reg
1621 to load into a register. */
1622
1623 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1624
1625 /* Define this, so that when PIC, reload won't try to reload invalid
1626 addresses which require two reload registers. */
1627
1628 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1629
1630 /* Nonzero if the constant value X is a legitimate general operand.
1631 Anything can be made to work except floating point constants.
1632 If TARGET_VIS, 0.0 can be made to work as well. */
1633
1634 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1635
1636 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1637 and check its validity for a certain class.
1638 We have two alternate definitions for each of them.
1639 The usual definition accepts all pseudo regs; the other rejects
1640 them unless they have been allocated suitable hard regs.
1641 The symbol REG_OK_STRICT causes the latter definition to be used.
1642
1643 Most source files want to accept pseudo regs in the hope that
1644 they will get allocated to the class that the insn wants them to be in.
1645 Source files for reload pass need to be strict.
1646 After reload, it makes no difference, since pseudo regs have
1647 been eliminated by then. */
1648
1649 #ifndef REG_OK_STRICT
1650
1651 /* Nonzero if X is a hard reg that can be used as an index
1652 or if it is a pseudo reg. */
1653 #define REG_OK_FOR_INDEX_P(X) \
1654 (REGNO (X) < 32 \
1655 || REGNO (X) == FRAME_POINTER_REGNUM \
1656 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1657
1658 /* Nonzero if X is a hard reg that can be used as a base reg
1659 or if it is a pseudo reg. */
1660 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
1661
1662 #else
1663
1664 /* Nonzero if X is a hard reg that can be used as an index. */
1665 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1666 /* Nonzero if X is a hard reg that can be used as a base reg. */
1667 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1668
1669 #endif
1670 \f
1671 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
1672
1673 #ifdef HAVE_AS_OFFSETABLE_LO10
1674 #define USE_AS_OFFSETABLE_LO10 1
1675 #else
1676 #define USE_AS_OFFSETABLE_LO10 0
1677 #endif
1678 \f
1679 /* On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1680 ordinarily. This changes a bit when generating PIC. The details are
1681 in sparc.c's implementation of TARGET_LEGITIMATE_ADDRESS_P. */
1682
1683 #define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
1684
1685 #define RTX_OK_FOR_BASE_P(X) \
1686 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1687 || (GET_CODE (X) == SUBREG \
1688 && GET_CODE (SUBREG_REG (X)) == REG \
1689 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1690
1691 #define RTX_OK_FOR_INDEX_P(X) \
1692 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1693 || (GET_CODE (X) == SUBREG \
1694 && GET_CODE (SUBREG_REG (X)) == REG \
1695 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1696
1697 #define RTX_OK_FOR_OFFSET_P(X) \
1698 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
1699
1700 #define RTX_OK_FOR_OLO10_P(X) \
1701 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
1702
1703 \f
1704 /* Try a machine-dependent way of reloading an illegitimate address
1705 operand. If we find one, push the reload and jump to WIN. This
1706 macro is used in only one place: `find_reloads_address' in reload.c. */
1707 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1708 do { \
1709 int win; \
1710 (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM), \
1711 (int)(TYPE), (IND_LEVELS), &win); \
1712 if (win) \
1713 goto WIN; \
1714 } while (0)
1715 \f
1716 /* Specify the machine mode that this machine uses
1717 for the index in the tablejump instruction. */
1718 /* If we ever implement any of the full models (such as CM_FULLANY),
1719 this has to be DImode in that case */
1720 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1721 #define CASE_VECTOR_MODE \
1722 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1723 #else
1724 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1725 we have to sign extend which slows things down. */
1726 #define CASE_VECTOR_MODE \
1727 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1728 #endif
1729
1730 /* Define this as 1 if `char' should by default be signed; else as 0. */
1731 #define DEFAULT_SIGNED_CHAR 1
1732
1733 /* Max number of bytes we can move from memory to memory
1734 in one reasonably fast instruction. */
1735 #define MOVE_MAX 8
1736
1737 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1738 move-instruction pairs, we will do a movmem or libcall instead. */
1739
1740 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1741
1742 /* Define if operations between registers always perform the operation
1743 on the full register even if a narrower mode is specified. */
1744 #define WORD_REGISTER_OPERATIONS
1745
1746 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1747 will either zero-extend or sign-extend. The value of this macro should
1748 be the code that says which one of the two operations is implicitly
1749 done, UNKNOWN if none. */
1750 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1751
1752 /* Nonzero if access to memory by bytes is slow and undesirable.
1753 For RISC chips, it means that access to memory by bytes is no
1754 better than access by words when possible, so grab a whole word
1755 and maybe make use of that. */
1756 #define SLOW_BYTE_ACCESS 1
1757
1758 /* Define this to be nonzero if shift instructions ignore all but the low-order
1759 few bits. */
1760 #define SHIFT_COUNT_TRUNCATED 1
1761
1762 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1763 is done just by pretending it is already truncated. */
1764 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1765
1766 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1767 return the mode to be used for the comparison. For floating-point,
1768 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
1769 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
1770 processing is needed. */
1771 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
1772
1773 /* Return nonzero if MODE implies a floating point inequality can be
1774 reversed. For SPARC this is always true because we have a full
1775 compliment of ordered and unordered comparisons, but until generic
1776 code knows how to reverse it correctly we keep the old definition. */
1777 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1778
1779 /* A function address in a call instruction for indexing purposes. */
1780 #define FUNCTION_MODE Pmode
1781
1782 /* Define this if addresses of constant functions
1783 shouldn't be put through pseudo regs where they can be cse'd.
1784 Desirable on machines where ordinary constants are expensive
1785 but a CALL with constant address is cheap. */
1786 #define NO_FUNCTION_CSE
1787
1788 /* alloca should avoid clobbering the old register save area. */
1789 #define SETJMP_VIA_SAVE_AREA
1790
1791 /* The _Q_* comparison libcalls return booleans. */
1792 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1793
1794 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1795 that the inputs are fully consumed before the output memory is clobbered. */
1796
1797 #define TARGET_BUGGY_QP_LIB 0
1798
1799 /* Assume by default that we do not have the Solaris-specific conversion
1800 routines nor 64-bit integer multiply and divide routines. */
1801
1802 #define SUN_CONVERSION_LIBFUNCS 0
1803 #define DITF_CONVERSION_LIBFUNCS 0
1804 #define SUN_INTEGER_MULTIPLY_64 0
1805
1806 /* Compute extra cost of moving data between one register class
1807 and another. */
1808 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
1809 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1810 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
1811 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
1812 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
1813 ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
1814 || sparc_cpu == PROCESSOR_ULTRASPARC3 \
1815 || sparc_cpu == PROCESSOR_NIAGARA \
1816 || sparc_cpu == PROCESSOR_NIAGARA2) ? 12 : 6) : 2)
1817
1818 /* Provide the cost of a branch. For pre-v9 processors we use
1819 a value of 3 to take into account the potential annulling of
1820 the delay slot (which ends up being a bubble in the pipeline slot)
1821 plus a cycle to take into consideration the instruction cache
1822 effects.
1823
1824 On v9 and later, which have branch prediction facilities, we set
1825 it to the depth of the pipeline as that is the cost of a
1826 mispredicted branch.
1827
1828 On Niagara, normal branches insert 3 bubbles into the pipe
1829 and annulled branches insert 4 bubbles.
1830
1831 On Niagara-2, a not-taken branch costs 1 cycle whereas a taken
1832 branch costs 6 cycles. */
1833
1834 #define BRANCH_COST(speed_p, predictable_p) \
1835 ((sparc_cpu == PROCESSOR_V9 \
1836 || sparc_cpu == PROCESSOR_ULTRASPARC) \
1837 ? 7 \
1838 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1839 ? 9 \
1840 : (sparc_cpu == PROCESSOR_NIAGARA \
1841 ? 4 \
1842 : (sparc_cpu == PROCESSOR_NIAGARA2 \
1843 ? 5 \
1844 : 3))))
1845 \f
1846 /* Control the assembler format that we output. */
1847
1848 /* A C string constant describing how to begin a comment in the target
1849 assembler language. The compiler assumes that the comment will end at
1850 the end of the line. */
1851
1852 #define ASM_COMMENT_START "!"
1853
1854 /* Output to assembler file text saying following lines
1855 may contain character constants, extra white space, comments, etc. */
1856
1857 #define ASM_APP_ON ""
1858
1859 /* Output to assembler file text saying following lines
1860 no longer contain unusual constructs. */
1861
1862 #define ASM_APP_OFF ""
1863
1864 /* How to refer to registers in assembler output.
1865 This sequence is indexed by compiler's hard-register-number (see above). */
1866
1867 #define REGISTER_NAMES \
1868 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1869 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1870 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1871 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1872 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1873 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1874 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1875 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
1876 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
1877 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
1878 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
1879 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
1880 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
1881
1882 /* Define additional names for use in asm clobbers and asm declarations. */
1883
1884 #define ADDITIONAL_REGISTER_NAMES \
1885 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1886
1887 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
1888 can run past this up to a continuation point. Once we used 1500, but
1889 a single entry in C++ can run more than 500 bytes, due to the length of
1890 mangled symbol names. dbxout.c should really be fixed to do
1891 continuations when they are actually needed instead of trying to
1892 guess... */
1893 #define DBX_CONTIN_LENGTH 1000
1894
1895 /* This is how to output a command to make the user-level label named NAME
1896 defined for reference from other files. */
1897
1898 /* Globalizing directive for a label. */
1899 #define GLOBAL_ASM_OP "\t.global "
1900
1901 /* The prefix to add to user-visible assembler symbols. */
1902
1903 #define USER_LABEL_PREFIX "_"
1904
1905 /* This is how to store into the string LABEL
1906 the symbol_ref name of an internal numbered label where
1907 PREFIX is the class of label and NUM is the number within the class.
1908 This is suitable for output with `assemble_name'. */
1909
1910 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1911 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1912
1913 /* This is how we hook in and defer the case-vector until the end of
1914 the function. */
1915 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1916 sparc_defer_case_vector ((LAB),(VEC), 0)
1917
1918 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1919 sparc_defer_case_vector ((LAB),(VEC), 1)
1920
1921 /* This is how to output an element of a case-vector that is absolute. */
1922
1923 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1924 do { \
1925 char label[30]; \
1926 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1927 if (CASE_VECTOR_MODE == SImode) \
1928 fprintf (FILE, "\t.word\t"); \
1929 else \
1930 fprintf (FILE, "\t.xword\t"); \
1931 assemble_name (FILE, label); \
1932 fputc ('\n', FILE); \
1933 } while (0)
1934
1935 /* This is how to output an element of a case-vector that is relative.
1936 (SPARC uses such vectors only when generating PIC.) */
1937
1938 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1939 do { \
1940 char label[30]; \
1941 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
1942 if (CASE_VECTOR_MODE == SImode) \
1943 fprintf (FILE, "\t.word\t"); \
1944 else \
1945 fprintf (FILE, "\t.xword\t"); \
1946 assemble_name (FILE, label); \
1947 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
1948 fputc ('-', FILE); \
1949 assemble_name (FILE, label); \
1950 fputc ('\n', FILE); \
1951 } while (0)
1952
1953 /* This is what to output before and after case-vector (both
1954 relative and absolute). If .subsection -1 works, we put case-vectors
1955 at the beginning of the current section. */
1956
1957 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1958
1959 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
1960 fprintf(FILE, "\t.subsection\t-1\n")
1961
1962 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
1963 fprintf(FILE, "\t.previous\n")
1964
1965 #endif
1966
1967 /* This is how to output an assembler line
1968 that says to advance the location counter
1969 to a multiple of 2**LOG bytes. */
1970
1971 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1972 if ((LOG) != 0) \
1973 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1974
1975 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1976 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1977
1978 /* This says how to output an assembler line
1979 to define a global common symbol. */
1980
1981 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1982 ( fputs ("\t.common ", (FILE)), \
1983 assemble_name ((FILE), (NAME)), \
1984 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1985
1986 /* This says how to output an assembler line to define a local common
1987 symbol. */
1988
1989 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1990 ( fputs ("\t.reserve ", (FILE)), \
1991 assemble_name ((FILE), (NAME)), \
1992 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
1993 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1994
1995 /* A C statement (sans semicolon) to output to the stdio stream
1996 FILE the assembler definition of uninitialized global DECL named
1997 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1998 Try to use asm_output_aligned_bss to implement this macro. */
1999
2000 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2001 do { \
2002 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2003 } while (0)
2004
2005 #define IDENT_ASM_OP "\t.ident\t"
2006
2007 /* Output #ident as a .ident. */
2008
2009 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2010 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2011
2012 /* Prettify the assembly. */
2013
2014 extern int sparc_indent_opcode;
2015
2016 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
2017 do { \
2018 if (sparc_indent_opcode) \
2019 { \
2020 putc (' ', FILE); \
2021 sparc_indent_opcode = 0; \
2022 } \
2023 } while (0)
2024
2025 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2026 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '(' \
2027 || (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&')
2028
2029 /* Print operand X (an rtx) in assembler syntax to file FILE.
2030 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2031 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2032
2033 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2034
2035 /* Print a memory address as an operand to reference that memory location. */
2036
2037 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2038 { register rtx base, index = 0; \
2039 int offset = 0; \
2040 register rtx addr = ADDR; \
2041 if (GET_CODE (addr) == REG) \
2042 fputs (reg_names[REGNO (addr)], FILE); \
2043 else if (GET_CODE (addr) == PLUS) \
2044 { \
2045 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2046 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2047 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2048 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2049 else \
2050 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2051 if (GET_CODE (base) == LO_SUM) \
2052 { \
2053 gcc_assert (USE_AS_OFFSETABLE_LO10 \
2054 && TARGET_ARCH64 \
2055 && ! TARGET_CM_MEDMID); \
2056 output_operand (XEXP (base, 0), 0); \
2057 fputs ("+%lo(", FILE); \
2058 output_address (XEXP (base, 1)); \
2059 fprintf (FILE, ")+%d", offset); \
2060 } \
2061 else \
2062 { \
2063 fputs (reg_names[REGNO (base)], FILE); \
2064 if (index == 0) \
2065 fprintf (FILE, "%+d", offset); \
2066 else if (GET_CODE (index) == REG) \
2067 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2068 else if (GET_CODE (index) == SYMBOL_REF \
2069 || GET_CODE (index) == LABEL_REF \
2070 || GET_CODE (index) == CONST) \
2071 fputc ('+', FILE), output_addr_const (FILE, index); \
2072 else gcc_unreachable (); \
2073 } \
2074 } \
2075 else if (GET_CODE (addr) == MINUS \
2076 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2077 { \
2078 output_addr_const (FILE, XEXP (addr, 0)); \
2079 fputs ("-(", FILE); \
2080 output_addr_const (FILE, XEXP (addr, 1)); \
2081 fputs ("-.)", FILE); \
2082 } \
2083 else if (GET_CODE (addr) == LO_SUM) \
2084 { \
2085 output_operand (XEXP (addr, 0), 0); \
2086 if (TARGET_CM_MEDMID) \
2087 fputs ("+%l44(", FILE); \
2088 else \
2089 fputs ("+%lo(", FILE); \
2090 output_address (XEXP (addr, 1)); \
2091 fputc (')', FILE); \
2092 } \
2093 else if (flag_pic && GET_CODE (addr) == CONST \
2094 && GET_CODE (XEXP (addr, 0)) == MINUS \
2095 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2096 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2097 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2098 { \
2099 addr = XEXP (addr, 0); \
2100 output_addr_const (FILE, XEXP (addr, 0)); \
2101 /* Group the args of the second CONST in parenthesis. */ \
2102 fputs ("-(", FILE); \
2103 /* Skip past the second CONST--it does nothing for us. */\
2104 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2105 /* Close the parenthesis. */ \
2106 fputc (')', FILE); \
2107 } \
2108 else \
2109 { \
2110 output_addr_const (FILE, addr); \
2111 } \
2112 }
2113
2114 /* TLS support defaulting to original Sun flavor. GNU extensions
2115 must be activated in separate configuration files. */
2116 #ifdef HAVE_AS_TLS
2117 #define TARGET_TLS 1
2118 #else
2119 #define TARGET_TLS 0
2120 #endif
2121
2122 #define TARGET_SUN_TLS TARGET_TLS
2123 #define TARGET_GNU_TLS 0
2124
2125 /* The number of Pmode words for the setjmp buffer. */
2126 #define JMP_BUF_SIZE 12
2127
2128 /* We use gcc _mcount for profiling. */
2129 #define NO_PROFILE_COUNTERS 0