d1b93ec1ab730f35ef074a1e1dd861594bc5ab61
[gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
27
28 /* Define the specific costs for a given cpu */
29
30 struct processor_costs {
31 /* Integer load */
32 const int int_load;
33
34 /* Integer signed load */
35 const int int_sload;
36
37 /* Integer zeroed load */
38 const int int_zload;
39
40 /* Float load */
41 const int float_load;
42
43 /* fmov, fneg, fabs */
44 const int float_move;
45
46 /* fadd, fsub */
47 const int float_plusminus;
48
49 /* fcmp */
50 const int float_cmp;
51
52 /* fmov, fmovr */
53 const int float_cmove;
54
55 /* fmul */
56 const int float_mul;
57
58 /* fdivs */
59 const int float_div_sf;
60
61 /* fdivd */
62 const int float_div_df;
63
64 /* fsqrts */
65 const int float_sqrt_sf;
66
67 /* fsqrtd */
68 const int float_sqrt_df;
69
70 /* umul/smul */
71 const int int_mul;
72
73 /* mulX */
74 const int int_mulX;
75
76 /* integer multiply cost for each bit set past the most
77 significant 3, so the formula for multiply cost becomes:
78
79 if (rs1 < 0)
80 highest_bit = highest_clear_bit(rs1);
81 else
82 highest_bit = highest_set_bit(rs1);
83 if (highest_bit < 3)
84 highest_bit = 3;
85 cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
86
87 A value of zero indicates that the multiply costs is fixed,
88 and not variable. */
89 const int int_mul_bit_factor;
90
91 /* udiv/sdiv */
92 const int int_div;
93
94 /* divX */
95 const int int_divX;
96
97 /* movcc, movr */
98 const int int_cmove;
99
100 /* penalty for shifts, due to scheduling rules etc. */
101 const int shift_penalty;
102 };
103
104 extern const struct processor_costs *sparc_costs;
105
106 /* Target CPU builtins. FIXME: Defining sparc is for the benefit of
107 Solaris only; otherwise just define __sparc__. Sadly the headers
108 are such a mess there is no Solaris-specific header. */
109 #define TARGET_CPU_CPP_BUILTINS() \
110 do \
111 { \
112 builtin_define_std ("sparc"); \
113 if (TARGET_64BIT) \
114 { \
115 builtin_assert ("cpu=sparc64"); \
116 builtin_assert ("machine=sparc64"); \
117 } \
118 else \
119 { \
120 builtin_assert ("cpu=sparc"); \
121 builtin_assert ("machine=sparc"); \
122 } \
123 } \
124 while (0)
125
126 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
127 /* #define SPARC_BI_ARCH */
128
129 /* Macro used later in this file to determine default architecture. */
130 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
131
132 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
133 architectures to compile for. We allow targets to choose compile time or
134 runtime selection. */
135 #ifdef IN_LIBGCC2
136 #if defined(__sparcv9) || defined(__arch64__)
137 #define TARGET_ARCH32 0
138 #else
139 #define TARGET_ARCH32 1
140 #endif /* sparc64 */
141 #else
142 #ifdef SPARC_BI_ARCH
143 #define TARGET_ARCH32 (! TARGET_64BIT)
144 #else
145 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
146 #endif /* SPARC_BI_ARCH */
147 #endif /* IN_LIBGCC2 */
148 #define TARGET_ARCH64 (! TARGET_ARCH32)
149
150 /* Code model selection in 64-bit environment.
151
152 The machine mode used for addresses is 32-bit wide:
153
154 TARGET_CM_32: 32-bit address space.
155 It is the code model used when generating 32-bit code.
156
157 The machine mode used for addresses is 64-bit wide:
158
159 TARGET_CM_MEDLOW: 32-bit address space.
160 The executable must be in the low 32 bits of memory.
161 This avoids generating %uhi and %ulo terms. Programs
162 can be statically or dynamically linked.
163
164 TARGET_CM_MEDMID: 44-bit address space.
165 The executable must be in the low 44 bits of memory,
166 and the %[hml]44 terms are used. The text and data
167 segments have a maximum size of 2GB (31-bit span).
168 The maximum offset from any instruction to the label
169 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
170
171 TARGET_CM_MEDANY: 64-bit address space.
172 The text and data segments have a maximum size of 2GB
173 (31-bit span) and may be located anywhere in memory.
174 The maximum offset from any instruction to the label
175 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
176
177 TARGET_CM_EMBMEDANY: 64-bit address space.
178 The text and data segments have a maximum size of 2GB
179 (31-bit span) and may be located anywhere in memory.
180 The global register %g4 contains the start address of
181 the data segment. Programs are statically linked and
182 PIC is not supported.
183
184 Different code models are not supported in 32-bit environment. */
185
186 enum cmodel {
187 CM_32,
188 CM_MEDLOW,
189 CM_MEDMID,
190 CM_MEDANY,
191 CM_EMBMEDANY
192 };
193
194 /* Value of -mcmodel specified by user. */
195 extern const char *sparc_cmodel_string;
196 /* One of CM_FOO. */
197 extern enum cmodel sparc_cmodel;
198
199 /* V9 code model selection. */
200 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
201 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
202 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
203 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
204
205 #define SPARC_DEFAULT_CMODEL CM_32
206
207 /* This is call-clobbered in the normal ABI, but is reserved in the
208 home grown (aka upward compatible) embedded ABI. */
209 #define EMBMEDANY_BASE_REG "%g4"
210 \f
211 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
212 and specified by the user via --with-cpu=foo.
213 This specifies the cpu implementation, not the architecture size. */
214 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
215 capable cpu's. */
216 #define TARGET_CPU_sparc 0
217 #define TARGET_CPU_v7 0 /* alias for previous */
218 #define TARGET_CPU_sparclet 1
219 #define TARGET_CPU_sparclite 2
220 #define TARGET_CPU_v8 3 /* generic v8 implementation */
221 #define TARGET_CPU_supersparc 4
222 #define TARGET_CPU_hypersparc 5
223 #define TARGET_CPU_sparc86x 6
224 #define TARGET_CPU_sparclite86x 6
225 #define TARGET_CPU_v9 7 /* generic v9 implementation */
226 #define TARGET_CPU_sparcv9 7 /* alias */
227 #define TARGET_CPU_sparc64 7 /* alias */
228 #define TARGET_CPU_ultrasparc 8
229 #define TARGET_CPU_ultrasparc3 9
230
231 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
232 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
233 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
234
235 #define CPP_CPU32_DEFAULT_SPEC ""
236 #define ASM_CPU32_DEFAULT_SPEC ""
237
238 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
239 /* ??? What does Sun's CC pass? */
240 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
241 /* ??? It's not clear how other assemblers will handle this, so by default
242 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
243 is handled in sol2.h. */
244 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
245 #endif
246 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
247 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
248 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
249 #endif
250 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
251 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
252 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
253 #endif
254
255 #else
256
257 #define CPP_CPU64_DEFAULT_SPEC ""
258 #define ASM_CPU64_DEFAULT_SPEC ""
259
260 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
261 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
262 #define CPP_CPU32_DEFAULT_SPEC ""
263 #define ASM_CPU32_DEFAULT_SPEC ""
264 #endif
265
266 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
267 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
268 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
269 #endif
270
271 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
272 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
273 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
274 #endif
275
276 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
277 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
278 #define ASM_CPU32_DEFAULT_SPEC ""
279 #endif
280
281 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
282 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
283 #define ASM_CPU32_DEFAULT_SPEC ""
284 #endif
285
286 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
287 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
288 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
289 #endif
290
291 #endif
292
293 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
294 #error Unrecognized value in TARGET_CPU_DEFAULT.
295 #endif
296
297 #ifdef SPARC_BI_ARCH
298
299 #define CPP_CPU_DEFAULT_SPEC \
300 (DEFAULT_ARCH32_P ? "\
301 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
302 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
303 " : "\
304 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
305 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
306 ")
307 #define ASM_CPU_DEFAULT_SPEC \
308 (DEFAULT_ARCH32_P ? "\
309 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
310 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
311 " : "\
312 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
313 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
314 ")
315
316 #else /* !SPARC_BI_ARCH */
317
318 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
319 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
320
321 #endif /* !SPARC_BI_ARCH */
322
323 /* Define macros to distinguish architectures. */
324
325 /* Common CPP definitions used by CPP_SPEC amongst the various targets
326 for handling -mcpu=xxx switches. */
327 #define CPP_CPU_SPEC "\
328 %{msoft-float:-D_SOFT_FLOAT} \
329 %{mcypress:} \
330 %{msparclite:-D__sparclite__} \
331 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
332 %{mv8:-D__sparc_v8__} \
333 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
334 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
335 %{mcpu=sparclite:-D__sparclite__} \
336 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
337 %{mcpu=v8:-D__sparc_v8__} \
338 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
339 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
340 %{mcpu=sparclite86x:-D__sparclite86x__} \
341 %{mcpu=v9:-D__sparc_v9__} \
342 %{mcpu=ultrasparc:-D__sparc_v9__} \
343 %{mcpu=ultrasparc3:-D__sparc_v9__} \
344 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
345 "
346 #define CPP_ARCH32_SPEC ""
347 #define CPP_ARCH64_SPEC "-D__arch64__"
348
349 #define CPP_ARCH_DEFAULT_SPEC \
350 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
351
352 #define CPP_ARCH_SPEC "\
353 %{m32:%(cpp_arch32)} \
354 %{m64:%(cpp_arch64)} \
355 %{!m32:%{!m64:%(cpp_arch_default)}} \
356 "
357
358 /* Macros to distinguish endianness. */
359 #define CPP_ENDIAN_SPEC "\
360 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
361 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
362
363 /* Macros to distinguish the particular subtarget. */
364 #define CPP_SUBTARGET_SPEC ""
365
366 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
367
368 /* Prevent error on `-sun4' and `-target sun4' options. */
369 /* This used to translate -dalign to -malign, but that is no good
370 because it can't turn off the usual meaning of making debugging dumps. */
371 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
372 ??? Delete support for -m<cpu> for 2.9. */
373
374 #define CC1_SPEC "\
375 %{sun4:} %{target:} \
376 %{mcypress:-mcpu=cypress} \
377 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
378 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
379 "
380
381 /* Override in target specific files. */
382 #define ASM_CPU_SPEC "\
383 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
384 %{msparclite:-Asparclite} \
385 %{mf930:-Asparclite} %{mf934:-Asparclite} \
386 %{mcpu=sparclite:-Asparclite} \
387 %{mcpu=sparclite86x:-Asparclite} \
388 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
389 %{mv8plus:-Av8plus} \
390 %{mcpu=v9:-Av9} \
391 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
392 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
393 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
394 "
395
396 /* Word size selection, among other things.
397 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
398
399 #define ASM_ARCH32_SPEC "-32"
400 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
401 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
402 #else
403 #define ASM_ARCH64_SPEC "-64"
404 #endif
405 #define ASM_ARCH_DEFAULT_SPEC \
406 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
407
408 #define ASM_ARCH_SPEC "\
409 %{m32:%(asm_arch32)} \
410 %{m64:%(asm_arch64)} \
411 %{!m32:%{!m64:%(asm_arch_default)}} \
412 "
413
414 #ifdef HAVE_AS_RELAX_OPTION
415 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
416 #else
417 #define ASM_RELAX_SPEC ""
418 #endif
419
420 /* Special flags to the Sun-4 assembler when using pipe for input. */
421
422 #define ASM_SPEC "\
423 %{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
424 %(asm_cpu) %(asm_relax)"
425
426 #define AS_NEEDS_DASH_FOR_PIPED_INPUT
427
428 /* This macro defines names of additional specifications to put in the specs
429 that can be used in various specifications like CC1_SPEC. Its definition
430 is an initializer with a subgrouping for each command option.
431
432 Each subgrouping contains a string constant, that defines the
433 specification name, and a string constant that used by the GCC driver
434 program.
435
436 Do not define this macro if it does not need to do anything. */
437
438 #define EXTRA_SPECS \
439 { "cpp_cpu", CPP_CPU_SPEC }, \
440 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
441 { "cpp_arch32", CPP_ARCH32_SPEC }, \
442 { "cpp_arch64", CPP_ARCH64_SPEC }, \
443 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
444 { "cpp_arch", CPP_ARCH_SPEC }, \
445 { "cpp_endian", CPP_ENDIAN_SPEC }, \
446 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
447 { "asm_cpu", ASM_CPU_SPEC }, \
448 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
449 { "asm_arch32", ASM_ARCH32_SPEC }, \
450 { "asm_arch64", ASM_ARCH64_SPEC }, \
451 { "asm_relax", ASM_RELAX_SPEC }, \
452 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
453 { "asm_arch", ASM_ARCH_SPEC }, \
454 SUBTARGET_EXTRA_SPECS
455
456 #define SUBTARGET_EXTRA_SPECS
457
458 /* Because libgcc can generate references back to libc (via .umul etc.) we have
459 to list libc again after the second libgcc. */
460 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
461
462 \f
463 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
464 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
465
466 /* ??? This should be 32 bits for v9 but what can we do? */
467 #define WCHAR_TYPE "short unsigned int"
468 #define WCHAR_TYPE_SIZE 16
469
470 /* Show we can debug even without a frame pointer. */
471 #define CAN_DEBUG_WITHOUT_FP
472
473 #define OVERRIDE_OPTIONS sparc_override_options ()
474
475 /* Generate DBX debugging information. */
476
477 #define DBX_DEBUGGING_INFO 1
478 \f
479 /* Run-time compilation parameters selecting different hardware subsets. */
480
481 extern int target_flags;
482
483 /* Nonzero if we should generate code to use the fpu. */
484 #define MASK_FPU 1
485 #define TARGET_FPU (target_flags & MASK_FPU)
486
487 /* Nonzero if we should assume that double pointers might be unaligned.
488 This can happen when linking gcc compiled code with other compilers,
489 because the ABI only guarantees 4 byte alignment. */
490 #define MASK_UNALIGNED_DOUBLES 4
491 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
492
493 /* Nonzero means that we should generate code for a v8 sparc. */
494 #define MASK_V8 0x8
495 #define TARGET_V8 (target_flags & MASK_V8)
496
497 /* Nonzero means that we should generate code for a sparclite.
498 This enables the sparclite specific instructions, but does not affect
499 whether FPU instructions are emitted. */
500 #define MASK_SPARCLITE 0x10
501 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
502
503 /* Nonzero if we're compiling for the sparclet. */
504 #define MASK_SPARCLET 0x20
505 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
506
507 /* Nonzero if we're compiling for v9 sparc.
508 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
509 the word size is 64. */
510 #define MASK_V9 0x40
511 #define TARGET_V9 (target_flags & MASK_V9)
512
513 /* Nonzero to generate code that uses the instructions deprecated in
514 the v9 architecture. This option only applies to v9 systems. */
515 /* ??? This isn't user selectable yet. It's used to enable such insns
516 on 32 bit v9 systems and for the moment they're permanently disabled
517 on 64 bit v9 systems. */
518 #define MASK_DEPRECATED_V8_INSNS 0x80
519 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
520
521 /* Mask of all CPU selection flags. */
522 #define MASK_ISA \
523 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
524
525 /* Nonzero means don't pass `-assert pure-text' to the linker. */
526 #define MASK_IMPURE_TEXT 0x100
527 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
528
529 /* 0x200 is unused */
530
531 /* Nonzero means use the registers that the SPARC ABI reserves for
532 application software. This must be the default to coincide with the
533 setting in FIXED_REGISTERS. */
534 #define MASK_APP_REGS 0x400
535 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
536
537 /* Option to select how quad word floating point is implemented.
538 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
539 Otherwise, we use the SPARC ABI quad library functions. */
540 #define MASK_HARD_QUAD 0x800
541 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
542
543 /* Nonzero on little-endian machines. */
544 /* ??? Little endian support currently only exists for sparc86x-elf and
545 sparc64-elf configurations. May eventually want to expand the support
546 to all targets, but for now it's kept local to only those two. */
547 #define MASK_LITTLE_ENDIAN 0x1000
548 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
549
550 /* 0x2000, 0x4000 are unused */
551
552 /* Nonzero if pointers are 64 bits. */
553 #define MASK_PTR64 0x8000
554 #define TARGET_PTR64 (target_flags & MASK_PTR64)
555
556 /* Nonzero if generating code to run in a 64 bit environment.
557 This is intended to only be used by TARGET_ARCH{32,64} as they are the
558 mechanism used to control compile time or run time selection. */
559 #define MASK_64BIT 0x10000
560 #define TARGET_64BIT (target_flags & MASK_64BIT)
561
562 /* 0x20000,0x40000 unused */
563
564 /* Nonzero means use a stack bias of 2047. Stack offsets are obtained by
565 adding 2047 to %sp. This option is for v9 only and is the default. */
566 #define MASK_STACK_BIAS 0x80000
567 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
568
569 /* 0x100000,0x200000 unused */
570
571 /* Nonzero means -m{,no-}fpu was passed on the command line. */
572 #define MASK_FPU_SET 0x400000
573 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
574
575 /* Use the UltraSPARC Visual Instruction Set extensions. */
576 #define MASK_VIS 0x1000000
577 #define TARGET_VIS (target_flags & MASK_VIS)
578
579 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
580 the current out and global registers and Linux 2.2+ as well. */
581 #define MASK_V8PLUS 0x2000000
582 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
583
584 /* Force a the fastest alignment on structures to take advantage of
585 faster copies. */
586 #define MASK_FASTER_STRUCTS 0x4000000
587 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
588
589 /* Use IEEE quad long double. */
590 #define MASK_LONG_DOUBLE_128 0x8000000
591 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
592
593 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
594 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
595 to get high 32 bits. False in V8+ or V9 because multiply stores
596 a 64 bit result in a register. */
597
598 #define TARGET_HARD_MUL32 \
599 ((TARGET_V8 || TARGET_SPARCLITE \
600 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
601 && ! TARGET_V8PLUS && TARGET_ARCH32)
602
603 #define TARGET_HARD_MUL \
604 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
605 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
606
607
608 /* Macro to define tables used to set the flags.
609 This is a list in braces of pairs in braces,
610 each pair being { "NAME", VALUE }
611 where VALUE is the bits to set or minus the bits to clear.
612 An empty string NAME is used to identify the default VALUE. */
613
614 #define TARGET_SWITCHES \
615 { {"fpu", MASK_FPU | MASK_FPU_SET, \
616 N_("Use hardware fp") }, \
617 {"no-fpu", -MASK_FPU, \
618 N_("Do not use hardware fp") }, \
619 {"no-fpu", MASK_FPU_SET, NULL, }, \
620 {"hard-float", MASK_FPU | MASK_FPU_SET, \
621 N_("Use hardware fp") }, \
622 {"soft-float", -MASK_FPU, \
623 N_("Do not use hardware fp") }, \
624 {"soft-float", MASK_FPU_SET, NULL }, \
625 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
626 N_("Assume possible double misalignment") }, \
627 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
628 N_("Assume all doubles are aligned") }, \
629 {"impure-text", MASK_IMPURE_TEXT, \
630 N_("Pass -assert pure-text to linker") }, \
631 {"no-impure-text", -MASK_IMPURE_TEXT, \
632 N_("Do not pass -assert pure-text to linker") }, \
633 {"app-regs", MASK_APP_REGS, \
634 N_("Use ABI reserved registers") }, \
635 {"no-app-regs", -MASK_APP_REGS, \
636 N_("Do not use ABI reserved registers") }, \
637 {"hard-quad-float", MASK_HARD_QUAD, \
638 N_("Use hardware quad fp instructions") }, \
639 {"soft-quad-float", -MASK_HARD_QUAD, \
640 N_("Do not use hardware quad fp instructions") }, \
641 {"v8plus", MASK_V8PLUS, \
642 N_("Compile for v8plus ABI") }, \
643 {"no-v8plus", -MASK_V8PLUS, \
644 N_("Do not compile for v8plus ABI") }, \
645 {"vis", MASK_VIS, \
646 N_("Utilize Visual Instruction Set") }, \
647 {"no-vis", -MASK_VIS, \
648 N_("Do not utilize Visual Instruction Set") }, \
649 {"ptr64", MASK_PTR64, \
650 N_("Pointers are 64-bit") }, \
651 {"ptr32", -MASK_PTR64, \
652 N_("Pointers are 32-bit") }, \
653 {"32", -MASK_64BIT, \
654 N_("Use 32-bit ABI") }, \
655 {"64", MASK_64BIT, \
656 N_("Use 64-bit ABI") }, \
657 {"stack-bias", MASK_STACK_BIAS, \
658 N_("Use stack bias") }, \
659 {"no-stack-bias", -MASK_STACK_BIAS, \
660 N_("Do not use stack bias") }, \
661 {"faster-structs", MASK_FASTER_STRUCTS, \
662 N_("Use structs on stronger alignment for double-word copies") }, \
663 {"no-faster-structs", -MASK_FASTER_STRUCTS, \
664 N_("Do not use structs on stronger alignment for double-word copies") }, \
665 {"relax", 0, \
666 N_("Optimize tail call instructions in assembler and linker") }, \
667 {"no-relax", 0, \
668 N_("Do not optimize tail call instructions in assembler or linker") }, \
669 SUBTARGET_SWITCHES \
670 { "", TARGET_DEFAULT, ""}}
671
672 /* MASK_APP_REGS must always be the default because that's what
673 FIXED_REGISTERS is set to and -ffixed- is processed before
674 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
675 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
676
677 /* This is meant to be redefined in target specific files. */
678 #define SUBTARGET_SWITCHES
679
680 /* Processor type.
681 These must match the values for the cpu attribute in sparc.md. */
682 enum processor_type {
683 PROCESSOR_V7,
684 PROCESSOR_CYPRESS,
685 PROCESSOR_V8,
686 PROCESSOR_SUPERSPARC,
687 PROCESSOR_SPARCLITE,
688 PROCESSOR_F930,
689 PROCESSOR_F934,
690 PROCESSOR_HYPERSPARC,
691 PROCESSOR_SPARCLITE86X,
692 PROCESSOR_SPARCLET,
693 PROCESSOR_TSC701,
694 PROCESSOR_V9,
695 PROCESSOR_ULTRASPARC,
696 PROCESSOR_ULTRASPARC3
697 };
698
699 /* This is set from -m{cpu,tune}=xxx. */
700 extern enum processor_type sparc_cpu;
701
702 /* Recast the cpu class to be the cpu attribute.
703 Every file includes us, but not every file includes insn-attr.h. */
704 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
705
706 #define TARGET_OPTIONS \
707 { \
708 { "cpu=", &sparc_select[1].string, \
709 N_("Use features of and schedule code for given CPU"), 0}, \
710 { "tune=", &sparc_select[2].string, \
711 N_("Schedule code for given CPU"), 0}, \
712 { "cmodel=", &sparc_cmodel_string, \
713 N_("Use given SPARC code model"), 0}, \
714 SUBTARGET_OPTIONS \
715 }
716
717 /* This is meant to be redefined in target specific files. */
718 #define SUBTARGET_OPTIONS
719
720 /* Support for a compile-time default CPU, et cetera. The rules are:
721 --with-cpu is ignored if -mcpu is specified.
722 --with-tune is ignored if -mtune is specified.
723 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
724 are specified. */
725 #define OPTION_DEFAULT_SPECS \
726 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
727 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
728 {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
729
730 /* sparc_select[0] is reserved for the default cpu. */
731 struct sparc_cpu_select
732 {
733 const char *string;
734 const char *const name;
735 const int set_tune_p;
736 const int set_arch_p;
737 };
738
739 extern struct sparc_cpu_select sparc_select[];
740 \f
741 /* target machine storage layout */
742
743 /* Define this if most significant bit is lowest numbered
744 in instructions that operate on numbered bit-fields. */
745 #define BITS_BIG_ENDIAN 1
746
747 /* Define this if most significant byte of a word is the lowest numbered. */
748 #define BYTES_BIG_ENDIAN 1
749
750 /* Define this if most significant word of a multiword number is the lowest
751 numbered. */
752 #define WORDS_BIG_ENDIAN 1
753
754 /* Define this to set the endianness to use in libgcc2.c, which can
755 not depend on target_flags. */
756 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
757 #define LIBGCC2_WORDS_BIG_ENDIAN 0
758 #else
759 #define LIBGCC2_WORDS_BIG_ENDIAN 1
760 #endif
761
762 #define MAX_BITS_PER_WORD 64
763
764 /* Width of a word, in units (bytes). */
765 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
766 #ifdef IN_LIBGCC2
767 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
768 #else
769 #define MIN_UNITS_PER_WORD 4
770 #endif
771
772 /* Now define the sizes of the C data types. */
773
774 #define SHORT_TYPE_SIZE 16
775 #define INT_TYPE_SIZE 32
776 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
777 #define LONG_LONG_TYPE_SIZE 64
778 #define FLOAT_TYPE_SIZE 32
779 #define DOUBLE_TYPE_SIZE 64
780 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
781 SPARC ABI says that it is 128-bit wide. */
782 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
783
784 /* Width in bits of a pointer.
785 See also the macro `Pmode' defined below. */
786 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
787
788 /* If we have to extend pointers (only when TARGET_ARCH64 and not
789 TARGET_PTR64), we want to do it unsigned. This macro does nothing
790 if ptr_mode and Pmode are the same. */
791 #define POINTERS_EXTEND_UNSIGNED 1
792
793 /* For TARGET_ARCH64 we need this, as we don't have instructions
794 for arithmetic operations which do zero/sign extension at the same time,
795 so without this we end up with a srl/sra after every assignment to an
796 user variable, which means very very bad code. */
797 #define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \
798 if (TARGET_ARCH64 \
799 && GET_MODE_CLASS (MODE) == MODE_INT \
800 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
801 (MODE) = word_mode;
802
803 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
804 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
805
806 /* Boundary (in *bits*) on which stack pointer should be aligned. */
807 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
808 then sp+2047 is 128-bit aligned so sp is really only byte-aligned. */
809 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
810 /* Temporary hack until the FIXME above is fixed. This macro is used
811 only in pad_to_arg_alignment in function.c; see the comment there
812 for details about what it does. */
813 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
814
815 /* ALIGN FRAMES on double word boundaries */
816
817 #define SPARC_STACK_ALIGN(LOC) \
818 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
819
820 /* Allocation boundary (in *bits*) for the code of a function. */
821 #define FUNCTION_BOUNDARY 32
822
823 /* Alignment of field after `int : 0' in a structure. */
824 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
825
826 /* Every structure's size must be a multiple of this. */
827 #define STRUCTURE_SIZE_BOUNDARY 8
828
829 /* A bit-field declared as `int' forces `int' alignment for the struct. */
830 #define PCC_BITFIELD_TYPE_MATTERS 1
831
832 /* No data type wants to be aligned rounder than this. */
833 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
834
835 /* The best alignment to use in cases where we have a choice. */
836 #define FASTEST_ALIGNMENT 64
837
838 /* Define this macro as an expression for the alignment of a structure
839 (given by STRUCT as a tree node) if the alignment computed in the
840 usual way is COMPUTED and the alignment explicitly specified was
841 SPECIFIED.
842
843 The default is to use SPECIFIED if it is larger; otherwise, use
844 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
845 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
846 (TARGET_FASTER_STRUCTS ? \
847 ((TREE_CODE (STRUCT) == RECORD_TYPE \
848 || TREE_CODE (STRUCT) == UNION_TYPE \
849 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
850 && TYPE_FIELDS (STRUCT) != 0 \
851 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
852 : MAX ((COMPUTED), (SPECIFIED))) \
853 : MAX ((COMPUTED), (SPECIFIED)))
854
855 /* Make strings word-aligned so strcpy from constants will be faster. */
856 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
857 ((TREE_CODE (EXP) == STRING_CST \
858 && (ALIGN) < FASTEST_ALIGNMENT) \
859 ? FASTEST_ALIGNMENT : (ALIGN))
860
861 /* Make arrays of chars word-aligned for the same reasons. */
862 #define DATA_ALIGNMENT(TYPE, ALIGN) \
863 (TREE_CODE (TYPE) == ARRAY_TYPE \
864 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
865 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
866
867 /* Set this nonzero if move instructions will actually fail to work
868 when given unaligned data. */
869 #define STRICT_ALIGNMENT 1
870
871 /* Things that must be doubleword aligned cannot go in the text section,
872 because the linker fails to align the text section enough!
873 Put them in the data section. This macro is only used in this file. */
874 #define MAX_TEXT_ALIGN 32
875 \f
876 /* Standard register usage. */
877
878 /* Number of actual hardware registers.
879 The hardware registers are assigned numbers for the compiler
880 from 0 to just below FIRST_PSEUDO_REGISTER.
881 All registers that the compiler knows about must be given numbers,
882 even those that are not normally considered general registers.
883
884 SPARC has 32 integer registers and 32 floating point registers.
885 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
886 accessible. We still account for them to simplify register computations
887 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
888 32+32+32+4 == 100.
889 Register 100 is used as the integer condition code register.
890 Register 101 is used as the soft frame pointer register. */
891
892 #define FIRST_PSEUDO_REGISTER 102
893
894 #define SPARC_FIRST_FP_REG 32
895 /* Additional V9 fp regs. */
896 #define SPARC_FIRST_V9_FP_REG 64
897 #define SPARC_LAST_V9_FP_REG 95
898 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
899 #define SPARC_FIRST_V9_FCC_REG 96
900 #define SPARC_LAST_V9_FCC_REG 99
901 /* V8 fcc reg. */
902 #define SPARC_FCC_REG 96
903 /* Integer CC reg. We don't distinguish %icc from %xcc. */
904 #define SPARC_ICC_REG 100
905
906 /* Nonzero if REGNO is an fp reg. */
907 #define SPARC_FP_REG_P(REGNO) \
908 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
909
910 /* Argument passing regs. */
911 #define SPARC_OUTGOING_INT_ARG_FIRST 8
912 #define SPARC_INCOMING_INT_ARG_FIRST 24
913 #define SPARC_FP_ARG_FIRST 32
914
915 /* 1 for registers that have pervasive standard uses
916 and are not available for the register allocator.
917
918 On non-v9 systems:
919 g1 is free to use as temporary.
920 g2-g4 are reserved for applications. Gcc normally uses them as
921 temporaries, but this can be disabled via the -mno-app-regs option.
922 g5 through g7 are reserved for the operating system.
923
924 On v9 systems:
925 g1,g5 are free to use as temporaries, and are free to use between calls
926 if the call is to an external function via the PLT.
927 g4 is free to use as a temporary in the non-embedded case.
928 g4 is reserved in the embedded case.
929 g2-g3 are reserved for applications. Gcc normally uses them as
930 temporaries, but this can be disabled via the -mno-app-regs option.
931 g6-g7 are reserved for the operating system (or application in
932 embedded case).
933 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
934 currently be a fixed register until this pattern is rewritten.
935 Register 1 is also used when restoring call-preserved registers in large
936 stack frames.
937
938 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
939 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
940 */
941
942 #define FIXED_REGISTERS \
943 {1, 0, 2, 2, 2, 2, 1, 1, \
944 0, 0, 0, 0, 0, 0, 1, 0, \
945 0, 0, 0, 0, 0, 0, 0, 0, \
946 0, 0, 0, 0, 0, 0, 1, 1, \
947 \
948 0, 0, 0, 0, 0, 0, 0, 0, \
949 0, 0, 0, 0, 0, 0, 0, 0, \
950 0, 0, 0, 0, 0, 0, 0, 0, \
951 0, 0, 0, 0, 0, 0, 0, 0, \
952 \
953 0, 0, 0, 0, 0, 0, 0, 0, \
954 0, 0, 0, 0, 0, 0, 0, 0, \
955 0, 0, 0, 0, 0, 0, 0, 0, \
956 0, 0, 0, 0, 0, 0, 0, 0, \
957 \
958 0, 0, 0, 0, 0, 1}
959
960 /* 1 for registers not available across function calls.
961 These must include the FIXED_REGISTERS and also any
962 registers that can be used without being saved.
963 The latter must include the registers where values are returned
964 and the register where structure-value addresses are passed.
965 Aside from that, you can include as many other registers as you like. */
966
967 #define CALL_USED_REGISTERS \
968 {1, 1, 1, 1, 1, 1, 1, 1, \
969 1, 1, 1, 1, 1, 1, 1, 1, \
970 0, 0, 0, 0, 0, 0, 0, 0, \
971 0, 0, 0, 0, 0, 0, 1, 1, \
972 \
973 1, 1, 1, 1, 1, 1, 1, 1, \
974 1, 1, 1, 1, 1, 1, 1, 1, \
975 1, 1, 1, 1, 1, 1, 1, 1, \
976 1, 1, 1, 1, 1, 1, 1, 1, \
977 \
978 1, 1, 1, 1, 1, 1, 1, 1, \
979 1, 1, 1, 1, 1, 1, 1, 1, \
980 1, 1, 1, 1, 1, 1, 1, 1, \
981 1, 1, 1, 1, 1, 1, 1, 1, \
982 \
983 1, 1, 1, 1, 1, 1}
984
985 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
986 they won't be allocated. */
987
988 #define CONDITIONAL_REGISTER_USAGE \
989 do \
990 { \
991 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
992 { \
993 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
994 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
995 } \
996 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
997 /* then honor it. */ \
998 if (TARGET_ARCH32 && fixed_regs[5]) \
999 fixed_regs[5] = 1; \
1000 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
1001 fixed_regs[5] = 0; \
1002 if (! TARGET_V9) \
1003 { \
1004 int regno; \
1005 for (regno = SPARC_FIRST_V9_FP_REG; \
1006 regno <= SPARC_LAST_V9_FP_REG; \
1007 regno++) \
1008 fixed_regs[regno] = 1; \
1009 /* %fcc0 is used by v8 and v9. */ \
1010 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
1011 regno <= SPARC_LAST_V9_FCC_REG; \
1012 regno++) \
1013 fixed_regs[regno] = 1; \
1014 } \
1015 if (! TARGET_FPU) \
1016 { \
1017 int regno; \
1018 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
1019 fixed_regs[regno] = 1; \
1020 } \
1021 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
1022 /* then honor it. Likewise with g3 and g4. */ \
1023 if (fixed_regs[2] == 2) \
1024 fixed_regs[2] = ! TARGET_APP_REGS; \
1025 if (fixed_regs[3] == 2) \
1026 fixed_regs[3] = ! TARGET_APP_REGS; \
1027 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
1028 fixed_regs[4] = ! TARGET_APP_REGS; \
1029 else if (TARGET_CM_EMBMEDANY) \
1030 fixed_regs[4] = 1; \
1031 else if (fixed_regs[4] == 2) \
1032 fixed_regs[4] = 0; \
1033 } \
1034 while (0)
1035
1036 /* Return number of consecutive hard regs needed starting at reg REGNO
1037 to hold something of mode MODE.
1038 This is ordinarily the length in words of a value of mode MODE
1039 but can be less for certain modes in special long registers.
1040
1041 On SPARC, ordinary registers hold 32 bits worth;
1042 this means both integer and floating point registers.
1043 On v9, integer regs hold 64 bits worth; floating point regs hold
1044 32 bits worth (this includes the new fp regs as even the odd ones are
1045 included in the hard register count). */
1046
1047 #define HARD_REGNO_NREGS(REGNO, MODE) \
1048 (TARGET_ARCH64 \
1049 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
1050 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1051 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1052 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1053
1054 /* Due to the ARCH64 discrepancy above we must override this next
1055 macro too. */
1056 #define REGMODE_NATURAL_SIZE(MODE) \
1057 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1058
1059 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1060 See sparc.c for how we initialize this. */
1061 extern const int *hard_regno_mode_classes;
1062 extern int sparc_mode_class[];
1063
1064 /* ??? Because of the funny way we pass parameters we should allow certain
1065 ??? types of float/complex values to be in integer registers during
1066 ??? RTL generation. This only matters on arch32. */
1067 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1068 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1069
1070 /* Value is 1 if it is a good idea to tie two pseudo registers
1071 when one has mode MODE1 and one has mode MODE2.
1072 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1073 for any hard reg, then this must be 0 for correct output.
1074
1075 For V9: SFmode can't be combined with other float modes, because they can't
1076 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1077 registers, but SFmode will. */
1078 #define MODES_TIEABLE_P(MODE1, MODE2) \
1079 ((MODE1) == (MODE2) \
1080 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1081 && (! TARGET_V9 \
1082 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1083 || (MODE1 != SFmode && MODE2 != SFmode)))))
1084
1085 /* Specify the registers used for certain standard purposes.
1086 The values of these macros are register numbers. */
1087
1088 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1089 /* #define PC_REGNUM */
1090
1091 /* Register to use for pushing function arguments. */
1092 #define STACK_POINTER_REGNUM 14
1093
1094 /* The stack bias (amount by which the hardware register is offset by). */
1095 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1096
1097 /* Actual top-of-stack address is 92/176 greater than the contents of the
1098 stack pointer register for !v9/v9. That is:
1099 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1100 address, and 6*4 bytes for the 6 register parameters.
1101 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1102 parameter regs. */
1103 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
1104
1105 /* Base register for access to local variables of the function. */
1106 #define HARD_FRAME_POINTER_REGNUM 30
1107
1108 /* The soft frame pointer does not have the stack bias applied. */
1109 #define FRAME_POINTER_REGNUM 101
1110
1111 /* Given the stack bias, the stack pointer isn't actually aligned. */
1112 #define INIT_EXPANDERS \
1113 do { \
1114 if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS) \
1115 { \
1116 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
1117 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
1118 } \
1119 } while (0)
1120
1121 /* Value should be nonzero if functions must have frame pointers.
1122 Zero means the frame pointer need not be set up (and parms
1123 may be accessed via the stack pointer) in functions that seem suitable.
1124 Used in flow.c, global.c, ra.c and reload1.c. */
1125 #define FRAME_POINTER_REQUIRED \
1126 (! (leaf_function_p () && only_leaf_regs_used ()))
1127
1128 /* Base register for access to arguments of the function. */
1129 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1130
1131 /* Register in which static-chain is passed to a function. This must
1132 not be a register used by the prologue. */
1133 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1134
1135 /* Register which holds offset table for position-independent
1136 data references. */
1137
1138 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
1139
1140 /* Pick a default value we can notice from override_options:
1141 !v9: Default is on.
1142 v9: Default is off. */
1143
1144 #define DEFAULT_PCC_STRUCT_RETURN -1
1145
1146 /* Functions which return large structures get the address
1147 to place the wanted value at offset 64 from the frame.
1148 Must reserve 64 bytes for the in and local registers.
1149 v9: Functions which return large structures get the address to place the
1150 wanted value from an invisible first argument. */
1151 #define STRUCT_VALUE_OFFSET 64
1152 \f
1153 /* Define the classes of registers for register constraints in the
1154 machine description. Also define ranges of constants.
1155
1156 One of the classes must always be named ALL_REGS and include all hard regs.
1157 If there is more than one class, another class must be named NO_REGS
1158 and contain no registers.
1159
1160 The name GENERAL_REGS must be the name of a class (or an alias for
1161 another name such as ALL_REGS). This is the class of registers
1162 that is allowed by "g" or "r" in a register constraint.
1163 Also, registers outside this class are allocated only when
1164 instructions express preferences for them.
1165
1166 The classes must be numbered in nondecreasing order; that is,
1167 a larger-numbered class must never be contained completely
1168 in a smaller-numbered class.
1169
1170 For any two classes, it is very desirable that there be another
1171 class that represents their union. */
1172
1173 /* The SPARC has various kinds of registers: general, floating point,
1174 and condition codes [well, it has others as well, but none that we
1175 care directly about].
1176
1177 For v9 we must distinguish between the upper and lower floating point
1178 registers because the upper ones can't hold SFmode values.
1179 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1180 satisfying a group need for a class will also satisfy a single need for
1181 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1182 regs.
1183
1184 It is important that one class contains all the general and all the standard
1185 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1186 because reg_class_record() will bias the selection in favor of fp regs,
1187 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1188 because FP_REGS > GENERAL_REGS.
1189
1190 It is also important that one class contain all the general and all the
1191 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1192 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1193 allocate_reload_reg() to bypass it causing an abort because the compiler
1194 thinks it doesn't have a spill reg when in fact it does.
1195
1196 v9 also has 4 floating point condition code registers. Since we don't
1197 have a class that is the union of FPCC_REGS with either of the others,
1198 it is important that it appear first. Otherwise the compiler will die
1199 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1200 constraints.
1201
1202 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1203 may try to use it to hold an SImode value. See register_operand.
1204 ??? Should %fcc[0123] be handled similarly?
1205 */
1206
1207 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1208 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1209 ALL_REGS, LIM_REG_CLASSES };
1210
1211 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1212
1213 /* Give names of register classes as strings for dump file. */
1214
1215 #define REG_CLASS_NAMES \
1216 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1217 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1218 "ALL_REGS" }
1219
1220 /* Define which registers fit in which classes.
1221 This is an initializer for a vector of HARD_REG_SET
1222 of length N_REG_CLASSES. */
1223
1224 #define REG_CLASS_CONTENTS \
1225 {{0, 0, 0, 0}, /* NO_REGS */ \
1226 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
1227 {0xffff, 0, 0, 0}, /* I64_REGS */ \
1228 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
1229 {0, -1, 0, 0}, /* FP_REGS */ \
1230 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
1231 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
1232 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
1233 {-1, -1, -1, 0x3f}} /* ALL_REGS */
1234
1235 /* Defines invalid mode changes. Borrowed from pa64-regs.h.
1236
1237 SImode loads to floating-point registers are not zero-extended.
1238 The definition for LOAD_EXTEND_OP specifies that integer loads
1239 narrower than BITS_PER_WORD will be zero-extended. As a result,
1240 we inhibit changes from SImode unless they are to a mode that is
1241 identical in size. */
1242
1243 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1244 (TARGET_ARCH64 \
1245 && (FROM) == SImode \
1246 && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1247 ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1248
1249 /* The same information, inverted:
1250 Return the class number of the smallest class containing
1251 reg number REGNO. This could be a conditional expression
1252 or could index an array. */
1253
1254 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1255
1256 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1257
1258 /* This is the order in which to allocate registers normally.
1259
1260 We put %f0-%f7 last among the float registers, so as to make it more
1261 likely that a pseudo-register which dies in the float return register
1262 area will get allocated to the float return register, thus saving a move
1263 instruction at the end of the function.
1264
1265 Similarly for integer return value registers.
1266
1267 We know in this case that we will not end up with a leaf function.
1268
1269 The register allocator is given the global and out registers first
1270 because these registers are call clobbered and thus less useful to
1271 global register allocation.
1272
1273 Next we list the local and in registers. They are not call clobbered
1274 and thus very useful for global register allocation. We list the input
1275 registers before the locals so that it is more likely the incoming
1276 arguments received in those registers can just stay there and not be
1277 reloaded. */
1278
1279 #define REG_ALLOC_ORDER \
1280 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1281 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1282 15, /* %o7 */ \
1283 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1284 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
1285 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1286 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1287 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1288 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1289 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1290 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1291 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1292 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1293 96, 97, 98, 99, /* %fcc0-3 */ \
1294 100, 0, 14, 30, 101} /* %icc, %g0, %o6, %i6, %sfp */
1295
1296 /* This is the order in which to allocate registers for
1297 leaf functions. If all registers can fit in the global and
1298 output registers, then we have the possibility of having a leaf
1299 function.
1300
1301 The macro actually mentioned the input registers first,
1302 because they get renumbered into the output registers once
1303 we know really do have a leaf function.
1304
1305 To be more precise, this register allocation order is used
1306 when %o7 is found to not be clobbered right before register
1307 allocation. Normally, the reason %o7 would be clobbered is
1308 due to a call which could not be transformed into a sibling
1309 call.
1310
1311 As a consequence, it is possible to use the leaf register
1312 allocation order and not end up with a leaf function. We will
1313 not get suboptimal register allocation in that case because by
1314 definition of being potentially leaf, there were no function
1315 calls. Therefore, allocation order within the local register
1316 window is not critical like it is when we do have function calls. */
1317
1318 #define REG_LEAF_ALLOC_ORDER \
1319 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1320 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
1321 15, /* %o7 */ \
1322 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1323 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1324 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1325 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1326 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1327 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1328 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1329 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1330 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1331 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1332 96, 97, 98, 99, /* %fcc0-3 */ \
1333 100, 0, 14, 30, 31, 101} /* %icc, %g0, %o6, %i6, %i7, %sfp */
1334
1335 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1336
1337 extern char sparc_leaf_regs[];
1338 #define LEAF_REGISTERS sparc_leaf_regs
1339
1340 extern char leaf_reg_remap[];
1341 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1342
1343 /* The class value for index registers, and the one for base regs. */
1344 #define INDEX_REG_CLASS GENERAL_REGS
1345 #define BASE_REG_CLASS GENERAL_REGS
1346
1347 /* Local macro to handle the two v9 classes of FP regs. */
1348 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1349
1350 /* Get reg_class from a letter such as appears in the machine description.
1351 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1352 .md file for v8 and v9.
1353 'd' and 'b' are used for single and double precision VIS operations,
1354 if TARGET_VIS.
1355 'h' is used for V8+ 64 bit global and out registers. */
1356
1357 #define REG_CLASS_FROM_LETTER(C) \
1358 (TARGET_V9 \
1359 ? ((C) == 'f' ? FP_REGS \
1360 : (C) == 'e' ? EXTRA_FP_REGS \
1361 : (C) == 'c' ? FPCC_REGS \
1362 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1363 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1364 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1365 : NO_REGS) \
1366 : ((C) == 'f' ? FP_REGS \
1367 : (C) == 'e' ? FP_REGS \
1368 : (C) == 'c' ? FPCC_REGS \
1369 : NO_REGS))
1370
1371 /* The letters I, J, K, L and M in a register constraint string
1372 can be used to stand for particular ranges of immediate operands.
1373 This macro defines what the ranges are.
1374 C is the letter, and VALUE is a constant value.
1375 Return 1 if VALUE is in the range specified by C.
1376
1377 `I' is used for the range of constants an insn can actually contain.
1378 `J' is used for the range which is just zero (since that is R0).
1379 `K' is used for constants which can be loaded with a single sethi insn.
1380 `L' is used for the range of constants supported by the movcc insns.
1381 `M' is used for the range of constants supported by the movrcc insns.
1382 `N' is like K, but for constants wider than 32 bits.
1383 `O' is used for the range which is just 4096. */
1384
1385 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1386 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1387 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1388 /* 10 and 11 bit immediates are only used for a few specific insns.
1389 SMALL_INT is used throughout the port so we continue to use it. */
1390 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1391 /* 13 bit immediate, considering only the low 32 bits */
1392 #define SMALL_INT32(X) (SPARC_SIMM13_P (trunc_int_for_mode \
1393 (INTVAL (X), SImode)))
1394 #define SPARC_SETHI_P(X) \
1395 (((unsigned HOST_WIDE_INT) (X) \
1396 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1397 #define SPARC_SETHI32_P(X) \
1398 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1399
1400 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1401 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1402 : (C) == 'J' ? (VALUE) == 0 \
1403 : (C) == 'K' ? SPARC_SETHI32_P (VALUE) \
1404 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1405 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1406 : (C) == 'N' ? SPARC_SETHI_P (VALUE) \
1407 : (C) == 'O' ? (VALUE) == 4096 \
1408 : 0)
1409
1410 /* Similar, but for floating constants, and defining letters G and H.
1411 Here VALUE is the CONST_DOUBLE rtx itself. */
1412
1413 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1414 ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
1415 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1416 : (C) == 'O' ? arith_double_4096_operand (VALUE, DImode) \
1417 : 0)
1418
1419 /* Given an rtx X being reloaded into a reg required to be
1420 in class CLASS, return the class of reg to actually use.
1421 In general this is just CLASS; but on some machines
1422 in some cases it is preferable to use a more restrictive class. */
1423 /* - We can't load constants into FP registers.
1424 - We can't load FP constants into integer registers when soft-float,
1425 because there is no soft-float pattern with a r/F constraint.
1426 - We can't load FP constants into integer registers for TFmode unless
1427 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1428 - Try and reload integer constants (symbolic or otherwise) back into
1429 registers directly, rather than having them dumped to memory. */
1430
1431 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1432 (CONSTANT_P (X) \
1433 ? ((FP_REG_CLASS_P (CLASS) \
1434 || (CLASS) == GENERAL_OR_FP_REGS \
1435 || (CLASS) == GENERAL_OR_EXTRA_FP_REGS \
1436 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1437 && ! TARGET_FPU) \
1438 || (GET_MODE (X) == TFmode \
1439 && ! fp_zero_operand (X, TFmode))) \
1440 ? NO_REGS \
1441 : (!FP_REG_CLASS_P (CLASS) \
1442 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1443 ? GENERAL_REGS \
1444 : (CLASS)) \
1445 : (CLASS))
1446
1447 /* Return the register class of a scratch register needed to load IN into
1448 a register of class CLASS in MODE.
1449
1450 We need a temporary when loading/storing a HImode/QImode value
1451 between memory and the FPU registers. This can happen when combine puts
1452 a paradoxical subreg in a float/fix conversion insn.
1453
1454 We need a temporary when loading/storing a DFmode value between
1455 unaligned memory and the upper FPU registers. */
1456
1457 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1458 ((FP_REG_CLASS_P (CLASS) \
1459 && ((MODE) == HImode || (MODE) == QImode) \
1460 && (GET_CODE (IN) == MEM \
1461 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1462 && true_regnum (IN) == -1))) \
1463 ? GENERAL_REGS \
1464 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1465 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1466 && ! mem_min_alignment ((IN), 8)) \
1467 ? FP_REGS \
1468 : (((TARGET_CM_MEDANY \
1469 && symbolic_operand ((IN), (MODE))) \
1470 || (TARGET_CM_EMBMEDANY \
1471 && text_segment_operand ((IN), (MODE)))) \
1472 && !flag_pic) \
1473 ? GENERAL_REGS \
1474 : NO_REGS)
1475
1476 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1477 ((FP_REG_CLASS_P (CLASS) \
1478 && ((MODE) == HImode || (MODE) == QImode) \
1479 && (GET_CODE (IN) == MEM \
1480 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1481 && true_regnum (IN) == -1))) \
1482 ? GENERAL_REGS \
1483 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1484 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1485 && ! mem_min_alignment ((IN), 8)) \
1486 ? FP_REGS \
1487 : (((TARGET_CM_MEDANY \
1488 && symbolic_operand ((IN), (MODE))) \
1489 || (TARGET_CM_EMBMEDANY \
1490 && text_segment_operand ((IN), (MODE)))) \
1491 && !flag_pic) \
1492 ? GENERAL_REGS \
1493 : NO_REGS)
1494
1495 /* On SPARC it is not possible to directly move data between
1496 GENERAL_REGS and FP_REGS. */
1497 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1498 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1499
1500 /* Return the stack location to use for secondary memory needed reloads.
1501 We want to use the reserved location just below the frame pointer.
1502 However, we must ensure that there is a frame, so use assign_stack_local
1503 if the frame size is zero. */
1504 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1505 (get_frame_size () == 0 \
1506 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1507 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1508 STARTING_FRAME_OFFSET)))
1509
1510 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1511 because the movsi and movsf patterns don't handle r/f moves.
1512 For v8 we copy the default definition. */
1513 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1514 (TARGET_ARCH64 \
1515 ? (GET_MODE_BITSIZE (MODE) < 32 \
1516 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1517 : MODE) \
1518 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1519 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1520 : MODE))
1521
1522 /* Return the maximum number of consecutive registers
1523 needed to represent mode MODE in a register of class CLASS. */
1524 /* On SPARC, this is the size of MODE in words. */
1525 #define CLASS_MAX_NREGS(CLASS, MODE) \
1526 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1527 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1528 \f
1529 /* Stack layout; function entry, exit and calling. */
1530
1531 /* Define this if pushing a word on the stack
1532 makes the stack pointer a smaller address. */
1533 #define STACK_GROWS_DOWNWARD
1534
1535 /* Define this if the nominal address of the stack frame
1536 is at the high-address end of the local variables;
1537 that is, each additional local variable allocated
1538 goes at a more negative offset in the frame. */
1539 #define FRAME_GROWS_DOWNWARD
1540
1541 /* Offset within stack frame to start allocating local variables at.
1542 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1543 first local allocated. Otherwise, it is the offset to the BEGINNING
1544 of the first local allocated. */
1545 /* This allows space for one TFmode floating point value. */
1546 #define STARTING_FRAME_OFFSET \
1547 (TARGET_ARCH64 ? -16 \
1548 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1549
1550 /* If we generate an insn to push BYTES bytes,
1551 this says how many the stack pointer really advances by.
1552 On SPARC, don't define this because there are no push insns. */
1553 /* #define PUSH_ROUNDING(BYTES) */
1554
1555 /* Offset of first parameter from the argument pointer register value.
1556 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1557 even if this function isn't going to use it.
1558 v9: This is 128 for the ins and locals. */
1559 #define FIRST_PARM_OFFSET(FNDECL) \
1560 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1561
1562 /* Offset from the argument pointer register value to the CFA.
1563 This is different from FIRST_PARM_OFFSET because the register window
1564 comes between the CFA and the arguments. */
1565 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1566
1567 /* When a parameter is passed in a register, stack space is still
1568 allocated for it.
1569 !v9: All 6 possible integer registers have backing store allocated.
1570 v9: Only space for the arguments passed is allocated. */
1571 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1572 meaning to the backend. Further, we need to be able to detect if a
1573 varargs/unprototyped function is called, as they may want to spill more
1574 registers than we've provided space. Ugly, ugly. So for now we retain
1575 all 6 slots even for v9. */
1576 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1577
1578 /* Definitions for register elimination. */
1579
1580 #define ELIMINABLE_REGS \
1581 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1582 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1583
1584 /* The way this is structured, we can't eliminate SFP in favor of SP
1585 if the frame pointer is required: we want to use the SFP->HFP elimination
1586 in that case. But the test in update_eliminables doesn't know we are
1587 assuming below that we only do the former elimination. */
1588 #define CAN_ELIMINATE(FROM, TO) \
1589 ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1590
1591 /* We always pretend that this is a leaf function because if it's not,
1592 there's no point in trying to eliminate the frame pointer. If it
1593 is a leaf function, we guessed right! */
1594 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1595 do { \
1596 if ((TO) == STACK_POINTER_REGNUM) \
1597 (OFFSET) = sparc_compute_frame_size (get_frame_size (), 1); \
1598 else \
1599 (OFFSET) = 0; \
1600 (OFFSET) += SPARC_STACK_BIAS; \
1601 } while (0)
1602
1603 /* Keep the stack pointer constant throughout the function.
1604 This is both an optimization and a necessity: longjmp
1605 doesn't behave itself when the stack pointer moves within
1606 the function! */
1607 #define ACCUMULATE_OUTGOING_ARGS 1
1608
1609 /* Value is the number of bytes of arguments automatically
1610 popped when returning from a subroutine call.
1611 FUNDECL is the declaration node of the function (as a tree),
1612 FUNTYPE is the data type of the function (as a tree),
1613 or for a library call it is an identifier node for the subroutine name.
1614 SIZE is the number of bytes of arguments passed on the stack. */
1615
1616 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1617
1618 /* Define this macro if the target machine has "register windows". This
1619 C expression returns the register number as seen by the called function
1620 corresponding to register number OUT as seen by the calling function.
1621 Return OUT if register number OUT is not an outbound register. */
1622
1623 #define INCOMING_REGNO(OUT) \
1624 (((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1625
1626 /* Define this macro if the target machine has "register windows". This
1627 C expression returns the register number as seen by the calling function
1628 corresponding to register number IN as seen by the called function.
1629 Return IN if register number IN is not an inbound register. */
1630
1631 #define OUTGOING_REGNO(IN) \
1632 (((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1633
1634 /* Define this macro if the target machine has register windows. This
1635 C expression returns true if the register is call-saved but is in the
1636 register window. */
1637
1638 #define LOCAL_REGNO(REGNO) \
1639 ((REGNO) >= 16 && (REGNO) <= 31)
1640
1641 /* Define how to find the value returned by a function.
1642 VALTYPE is the data type of the value (as a tree).
1643 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1644 otherwise, FUNC is 0. */
1645
1646 /* On SPARC the value is found in the first "output" register. */
1647
1648 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1649 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1650
1651 /* But the called function leaves it in the first "input" register. */
1652
1653 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1654 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1655
1656 /* Define how to find the value returned by a library function
1657 assuming the value has mode MODE. */
1658
1659 #define LIBCALL_VALUE(MODE) \
1660 function_value (NULL_TREE, (MODE), 1)
1661
1662 /* 1 if N is a possible register number for a function value
1663 as seen by the caller.
1664 On SPARC, the first "output" reg is used for integer values,
1665 and the first floating point register is used for floating point values. */
1666
1667 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1668
1669 /* Define the size of space to allocate for the return value of an
1670 untyped_call. */
1671
1672 #define APPLY_RESULT_SIZE 16
1673
1674 /* 1 if N is a possible register number for function argument passing.
1675 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1676
1677 #define FUNCTION_ARG_REGNO_P(N) \
1678 (TARGET_ARCH64 \
1679 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1680 : ((N) >= 8 && (N) <= 13))
1681 \f
1682 /* Define a data type for recording info about an argument list
1683 during the scan of that argument list. This data type should
1684 hold all necessary information about the function itself
1685 and about the args processed so far, enough to enable macros
1686 such as FUNCTION_ARG to determine where the next arg should go.
1687
1688 On SPARC (!v9), this is a single integer, which is a number of words
1689 of arguments scanned so far (including the invisible argument,
1690 if any, which holds the structure-value-address).
1691 Thus 7 or more means all following args should go on the stack.
1692
1693 For v9, we also need to know whether a prototype is present. */
1694
1695 struct sparc_args {
1696 int words; /* number of words passed so far */
1697 int prototype_p; /* nonzero if a prototype is present */
1698 int libcall_p; /* nonzero if a library call */
1699 };
1700 #define CUMULATIVE_ARGS struct sparc_args
1701
1702 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1703 for a call to a function whose data type is FNTYPE.
1704 For a library call, FNTYPE is 0. */
1705
1706 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1707 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1708
1709 /* Update the data in CUM to advance over an argument
1710 of mode MODE and data type TYPE.
1711 TYPE is null for libcalls where that information may not be available. */
1712
1713 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1714 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1715
1716 /* Determine where to put an argument to a function.
1717 Value is zero to push the argument on the stack,
1718 or a hard register in which to store the argument.
1719
1720 MODE is the argument's machine mode.
1721 TYPE is the data type of the argument (as a tree).
1722 This is null for libcalls where that information may
1723 not be available.
1724 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1725 the preceding args and about the function being called.
1726 NAMED is nonzero if this argument is a named parameter
1727 (otherwise it is an extra parameter matching an ellipsis). */
1728
1729 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1730 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1731
1732 /* Define where a function finds its arguments.
1733 This is different from FUNCTION_ARG because of register windows. */
1734
1735 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1736 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1737
1738 /* For an arg passed partly in registers and partly in memory,
1739 this is the number of registers used.
1740 For args passed entirely in registers or entirely in memory, zero. */
1741
1742 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1743 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1744
1745 /* If defined, a C expression which determines whether, and in which direction,
1746 to pad out an argument with extra space. The value should be of type
1747 `enum direction': either `upward' to pad above the argument,
1748 `downward' to pad below, or `none' to inhibit padding. */
1749
1750 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1751 function_arg_padding ((MODE), (TYPE))
1752
1753 /* If defined, a C expression that gives the alignment boundary, in bits,
1754 of an argument with the specified mode and type. If it is not defined,
1755 PARM_BOUNDARY is used for all arguments.
1756 For sparc64, objects requiring 16 byte alignment are passed that way. */
1757
1758 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1759 ((TARGET_ARCH64 \
1760 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1761 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1762 ? 128 : PARM_BOUNDARY)
1763 \f
1764 /* Define the information needed to generate branch and scc insns. This is
1765 stored from the compare operation. Note that we can't use "rtx" here
1766 since it hasn't been defined! */
1767
1768 extern GTY(()) rtx sparc_compare_op0;
1769 extern GTY(()) rtx sparc_compare_op1;
1770
1771 \f
1772 /* Generate the special assembly code needed to tell the assembler whatever
1773 it might need to know about the return value of a function.
1774
1775 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1776 information to the assembler relating to peephole optimization (done in
1777 the assembler). */
1778
1779 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1780 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1781
1782 /* Output the special assembly code needed to tell the assembler some
1783 register is used as global register variable.
1784
1785 SPARC 64bit psABI declares registers %g2 and %g3 as application
1786 registers and %g6 and %g7 as OS registers. Any object using them
1787 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1788 and how they are used (scratch or some global variable).
1789 Linker will then refuse to link together objects which use those
1790 registers incompatibly.
1791
1792 Unless the registers are used for scratch, two different global
1793 registers cannot be declared to the same name, so in the unlikely
1794 case of a global register variable occupying more than one register
1795 we prefix the second and following registers with .gnu.part1. etc. */
1796
1797 extern char sparc_hard_reg_printed[8];
1798
1799 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1800 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1801 do { \
1802 if (TARGET_ARCH64) \
1803 { \
1804 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1805 int reg; \
1806 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1807 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1808 { \
1809 if (reg == (REGNO)) \
1810 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1811 else \
1812 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1813 reg, reg - (REGNO), (NAME)); \
1814 sparc_hard_reg_printed[reg] = 1; \
1815 } \
1816 } \
1817 } while (0)
1818 #endif
1819
1820 \f
1821 /* Emit rtl for profiling. */
1822 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1823
1824 /* All the work done in PROFILE_HOOK, but still required. */
1825 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1826
1827 /* Set the name of the mcount function for the system. */
1828 #define MCOUNT_FUNCTION "*mcount"
1829 \f
1830 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1831 the stack pointer does not matter. The value is tested only in
1832 functions that have frame pointers.
1833 No definition is equivalent to always zero. */
1834
1835 #define EXIT_IGNORE_STACK \
1836 (get_frame_size () != 0 \
1837 || current_function_calls_alloca || current_function_outgoing_args_size)
1838
1839 /* Define registers used by the epilogue and return instruction. */
1840 #define EPILOGUE_USES(REGNO) ((REGNO) == 31 \
1841 || (current_function_calls_eh_return && (REGNO) == 1))
1842 \f
1843 /* Length in units of the trampoline for entering a nested function. */
1844
1845 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1846
1847 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1848
1849 /* Emit RTL insns to initialize the variable parts of a trampoline.
1850 FNADDR is an RTX for the address of the function's pure code.
1851 CXT is an RTX for the static chain value for the function. */
1852
1853 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1854 if (TARGET_ARCH64) \
1855 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1856 else \
1857 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1858 \f
1859 /* Implement `va_start' for varargs and stdarg. */
1860 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1861 sparc_va_start (valist, nextarg)
1862
1863 /* Generate RTL to flush the register windows so as to make arbitrary frames
1864 available. */
1865 #define SETUP_FRAME_ADDRESSES() \
1866 emit_insn (gen_flush_register_windows ())
1867
1868 /* Given an rtx for the address of a frame,
1869 return an rtx for the address of the word in the frame
1870 that holds the dynamic chain--the previous frame's address. */
1871 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1872 plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1873
1874 /* The return address isn't on the stack, it is in a register, so we can't
1875 access it from the current frame pointer. We can access it from the
1876 previous frame pointer though by reading a value from the register window
1877 save area. */
1878 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1879
1880 /* This is the offset of the return address to the true next instruction to be
1881 executed for the current function. */
1882 #define RETURN_ADDR_OFFSET \
1883 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1884
1885 /* The current return address is in %i7. The return address of anything
1886 farther back is in the register window save area at [%fp+60]. */
1887 /* ??? This ignores the fact that the actual return address is +8 for normal
1888 returns, and +12 for structure returns. */
1889 #define RETURN_ADDR_RTX(count, frame) \
1890 ((count == -1) \
1891 ? gen_rtx_REG (Pmode, 31) \
1892 : gen_rtx_MEM (Pmode, \
1893 memory_address (Pmode, plus_constant (frame, \
1894 15 * UNITS_PER_WORD \
1895 + SPARC_STACK_BIAS))))
1896
1897 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1898 +12, but always using +8 is close enough for frame unwind purposes.
1899 Actually, just using %o7 is close enough for unwinding, but %o7+8
1900 is something you can return to. */
1901 #define INCOMING_RETURN_ADDR_RTX \
1902 plus_constant (gen_rtx_REG (word_mode, 15), 8)
1903 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
1904
1905 /* The offset from the incoming value of %sp to the top of the stack frame
1906 for the current function. On sparc64, we have to account for the stack
1907 bias if present. */
1908 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1909
1910 /* Describe how we implement __builtin_eh_return. */
1911 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1912 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
1913 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
1914
1915 /* Select a format to encode pointers in exception handling data. CODE
1916 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1917 true if the symbol may be affected by dynamic relocations.
1918
1919 If assembler and linker properly support .uaword %r_disp32(foo),
1920 then use PC relative 32-bit relocations instead of absolute relocs
1921 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1922 for binaries, to save memory.
1923
1924 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1925 symbol %r_disp32() is against was not local, but .hidden. In that
1926 case, we have to use DW_EH_PE_absptr for pic personality. */
1927 #ifdef HAVE_AS_SPARC_UA_PCREL
1928 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1929 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1930 (flag_pic \
1931 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1932 : ((TARGET_ARCH64 && ! GLOBAL) \
1933 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1934 : DW_EH_PE_absptr))
1935 #else
1936 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1937 (flag_pic \
1938 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1939 : ((TARGET_ARCH64 && ! GLOBAL) \
1940 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1941 : DW_EH_PE_absptr))
1942 #endif
1943
1944 /* Emit a PC-relative relocation. */
1945 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1946 do { \
1947 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1948 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1949 assemble_name (FILE, LABEL); \
1950 fputc (')', FILE); \
1951 } while (0)
1952 #endif
1953 \f
1954 /* Addressing modes, and classification of registers for them. */
1955
1956 /* Macros to check register numbers against specific register classes. */
1957
1958 /* These assume that REGNO is a hard or pseudo reg number.
1959 They give nonzero only if REGNO is a hard reg of the suitable class
1960 or a pseudo reg currently allocated to a suitable hard reg.
1961 Since they use reg_renumber, they are safe only once reg_renumber
1962 has been allocated, which happens in local-alloc.c. */
1963
1964 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1965 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
1966 || (REGNO) == FRAME_POINTER_REGNUM \
1967 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1968
1969 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1970
1971 #define REGNO_OK_FOR_FP_P(REGNO) \
1972 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1973 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1974 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1975 (TARGET_V9 \
1976 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1977 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1978
1979 /* Now macros that check whether X is a register and also,
1980 strictly, whether it is in a specified class.
1981
1982 These macros are specific to the SPARC, and may be used only
1983 in code for printing assembler insns and in conditions for
1984 define_optimization. */
1985
1986 /* 1 if X is an fp register. */
1987
1988 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1989
1990 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
1991 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
1992 \f
1993 /* Maximum number of registers that can appear in a valid memory address. */
1994
1995 #define MAX_REGS_PER_ADDRESS 2
1996
1997 /* Recognize any constant value that is a valid address.
1998 When PIC, we do not accept an address that would require a scratch reg
1999 to load into a register. */
2000
2001 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
2002
2003 /* Define this, so that when PIC, reload won't try to reload invalid
2004 addresses which require two reload registers. */
2005
2006 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2007
2008 /* Nonzero if the constant value X is a legitimate general operand.
2009 Anything can be made to work except floating point constants.
2010 If TARGET_VIS, 0.0 can be made to work as well. */
2011
2012 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
2013
2014 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2015 and check its validity for a certain class.
2016 We have two alternate definitions for each of them.
2017 The usual definition accepts all pseudo regs; the other rejects
2018 them unless they have been allocated suitable hard regs.
2019 The symbol REG_OK_STRICT causes the latter definition to be used.
2020
2021 Most source files want to accept pseudo regs in the hope that
2022 they will get allocated to the class that the insn wants them to be in.
2023 Source files for reload pass need to be strict.
2024 After reload, it makes no difference, since pseudo regs have
2025 been eliminated by then. */
2026
2027 /* Optional extra constraints for this machine.
2028
2029 'Q' handles floating point constants which can be moved into
2030 an integer register with a single sethi instruction.
2031
2032 'R' handles floating point constants which can be moved into
2033 an integer register with a single mov instruction.
2034
2035 'S' handles floating point constants which can be moved into
2036 an integer register using a high/lo_sum sequence.
2037
2038 'T' handles memory addresses where the alignment is known to
2039 be at least 8 bytes.
2040
2041 `U' handles all pseudo registers or a hard even numbered
2042 integer register, needed for ldd/std instructions.
2043
2044 'W' handles the memory operand when moving operands in/out
2045 of 'e' constraint floating point registers. */
2046
2047 #ifndef REG_OK_STRICT
2048
2049 /* Nonzero if X is a hard reg that can be used as an index
2050 or if it is a pseudo reg. */
2051 #define REG_OK_FOR_INDEX_P(X) \
2052 (REGNO (X) < 32 \
2053 || REGNO (X) == FRAME_POINTER_REGNUM \
2054 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2055
2056 /* Nonzero if X is a hard reg that can be used as a base reg
2057 or if it is a pseudo reg. */
2058 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
2059
2060 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
2061 'W' is like 'T' but is assumed true on arch64.
2062
2063 Remember to accept pseudo-registers for memory constraints if reload is
2064 in progress. */
2065
2066 #define EXTRA_CONSTRAINT(OP, C) \
2067 sparc_extra_constraint_check(OP, C, 0)
2068
2069 #else
2070
2071 /* Nonzero if X is a hard reg that can be used as an index. */
2072 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2073 /* Nonzero if X is a hard reg that can be used as a base reg. */
2074 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2075
2076 #define EXTRA_CONSTRAINT(OP, C) \
2077 sparc_extra_constraint_check(OP, C, 1)
2078
2079 #endif
2080 \f
2081 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2082
2083 #ifdef HAVE_AS_OFFSETABLE_LO10
2084 #define USE_AS_OFFSETABLE_LO10 1
2085 #else
2086 #define USE_AS_OFFSETABLE_LO10 0
2087 #endif
2088 \f
2089 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2090 that is a valid memory address for an instruction.
2091 The MODE argument is the machine mode for the MEM expression
2092 that wants to use this address.
2093
2094 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2095 ordinarily. This changes a bit when generating PIC.
2096
2097 If you change this, execute "rm explow.o recog.o reload.o". */
2098
2099 #define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
2100
2101 #define RTX_OK_FOR_BASE_P(X) \
2102 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2103 || (GET_CODE (X) == SUBREG \
2104 && GET_CODE (SUBREG_REG (X)) == REG \
2105 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2106
2107 #define RTX_OK_FOR_INDEX_P(X) \
2108 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2109 || (GET_CODE (X) == SUBREG \
2110 && GET_CODE (SUBREG_REG (X)) == REG \
2111 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2112
2113 #define RTX_OK_FOR_OFFSET_P(X) \
2114 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2115
2116 #define RTX_OK_FOR_OLO10_P(X) \
2117 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2118
2119 #ifdef REG_OK_STRICT
2120 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2121 { \
2122 if (legitimate_address_p (MODE, X, 1)) \
2123 goto ADDR; \
2124 }
2125 #else
2126 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2127 { \
2128 if (legitimate_address_p (MODE, X, 0)) \
2129 goto ADDR; \
2130 }
2131 #endif
2132
2133 /* Go to LABEL if ADDR (a legitimate address expression)
2134 has an effect that depends on the machine mode it is used for.
2135
2136 In PIC mode,
2137
2138 (mem:HI [%l7+a])
2139
2140 is not equivalent to
2141
2142 (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
2143
2144 because [%l7+a+1] is interpreted as the address of (a+1). */
2145
2146 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2147 { \
2148 if (flag_pic == 1) \
2149 { \
2150 if (GET_CODE (ADDR) == PLUS) \
2151 { \
2152 rtx op0 = XEXP (ADDR, 0); \
2153 rtx op1 = XEXP (ADDR, 1); \
2154 if (op0 == pic_offset_table_rtx \
2155 && SYMBOLIC_CONST (op1)) \
2156 goto LABEL; \
2157 } \
2158 } \
2159 }
2160 \f
2161 /* Try machine-dependent ways of modifying an illegitimate address
2162 to be legitimate. If we find one, return the new, valid address.
2163 This macro is used in only one place: `memory_address' in explow.c.
2164
2165 OLDX is the address as it was before break_out_memory_refs was called.
2166 In some cases it is useful to look at this to decide what needs to be done.
2167
2168 MODE and WIN are passed so that this macro can use
2169 GO_IF_LEGITIMATE_ADDRESS.
2170
2171 It is always safe for this macro to do nothing. It exists to recognize
2172 opportunities to optimize the output. */
2173
2174 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2175 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2176 { \
2177 (X) = legitimize_address (X, OLDX, MODE); \
2178 if (memory_address_p (MODE, X)) \
2179 goto WIN; \
2180 }
2181
2182 /* Try a machine-dependent way of reloading an illegitimate address
2183 operand. If we find one, push the reload and jump to WIN. This
2184 macro is used in only one place: `find_reloads_address' in reload.c.
2185
2186 For SPARC 32, we wish to handle addresses by splitting them into
2187 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2188 This cuts the number of extra insns by one.
2189
2190 Do nothing when generating PIC code and the address is a
2191 symbolic operand or requires a scratch register. */
2192
2193 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2194 do { \
2195 /* Decompose SImode constants into hi+lo_sum. We do have to \
2196 rerecognize what we produce, so be careful. */ \
2197 if (CONSTANT_P (X) \
2198 && (MODE != TFmode || TARGET_ARCH64) \
2199 && GET_MODE (X) == SImode \
2200 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2201 && ! (flag_pic \
2202 && (symbolic_operand (X, Pmode) \
2203 || pic_address_needs_scratch (X))) \
2204 && sparc_cmodel <= CM_MEDLOW) \
2205 { \
2206 X = gen_rtx_LO_SUM (GET_MODE (X), \
2207 gen_rtx_HIGH (GET_MODE (X), X), X); \
2208 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2209 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2210 OPNUM, TYPE); \
2211 goto WIN; \
2212 } \
2213 /* ??? 64-bit reloads. */ \
2214 } while (0)
2215 \f
2216 /* Specify the machine mode that this machine uses
2217 for the index in the tablejump instruction. */
2218 /* If we ever implement any of the full models (such as CM_FULLANY),
2219 this has to be DImode in that case */
2220 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2221 #define CASE_VECTOR_MODE \
2222 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2223 #else
2224 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2225 we have to sign extend which slows things down. */
2226 #define CASE_VECTOR_MODE \
2227 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2228 #endif
2229
2230 /* Define this as 1 if `char' should by default be signed; else as 0. */
2231 #define DEFAULT_SIGNED_CHAR 1
2232
2233 /* Max number of bytes we can move from memory to memory
2234 in one reasonably fast instruction. */
2235 #define MOVE_MAX 8
2236
2237 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2238 move-instruction pairs, we will do a movmem or libcall instead. */
2239
2240 #define MOVE_RATIO (optimize_size ? 3 : 8)
2241
2242 /* Define if operations between registers always perform the operation
2243 on the full register even if a narrower mode is specified. */
2244 #define WORD_REGISTER_OPERATIONS
2245
2246 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2247 will either zero-extend or sign-extend. The value of this macro should
2248 be the code that says which one of the two operations is implicitly
2249 done, UNKNOWN if none. */
2250 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2251
2252 /* Nonzero if access to memory by bytes is slow and undesirable.
2253 For RISC chips, it means that access to memory by bytes is no
2254 better than access by words when possible, so grab a whole word
2255 and maybe make use of that. */
2256 #define SLOW_BYTE_ACCESS 1
2257
2258 /* Define this to be nonzero if shift instructions ignore all but the low-order
2259 few bits. */
2260 #define SHIFT_COUNT_TRUNCATED 1
2261
2262 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2263 is done just by pretending it is already truncated. */
2264 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2265
2266 /* Specify the machine mode used for addresses. */
2267 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2268
2269 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2270 return the mode to be used for the comparison. For floating-point,
2271 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2272 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2273 processing is needed. */
2274 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2275
2276 /* Return nonzero if MODE implies a floating point inequality can be
2277 reversed. For SPARC this is always true because we have a full
2278 compliment of ordered and unordered comparisons, but until generic
2279 code knows how to reverse it correctly we keep the old definition. */
2280 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2281
2282 /* A function address in a call instruction for indexing purposes. */
2283 #define FUNCTION_MODE Pmode
2284
2285 /* Define this if addresses of constant functions
2286 shouldn't be put through pseudo regs where they can be cse'd.
2287 Desirable on machines where ordinary constants are expensive
2288 but a CALL with constant address is cheap. */
2289 #define NO_FUNCTION_CSE
2290
2291 /* alloca should avoid clobbering the old register save area. */
2292 #define SETJMP_VIA_SAVE_AREA
2293
2294 /* The _Q_* comparison libcalls return booleans. */
2295 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2296
2297 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2298 that the inputs are fully consumed before the output memory is clobbered. */
2299
2300 #define TARGET_BUGGY_QP_LIB 0
2301
2302 /* Assume by default that we do not have the Solaris-specific conversion
2303 routines nor 64-bit integer multiply and divide routines. */
2304
2305 #define SUN_CONVERSION_LIBFUNCS 0
2306 #define DITF_CONVERSION_LIBFUNCS 0
2307 #define SUN_INTEGER_MULTIPLY_64 0
2308
2309 /* Compute extra cost of moving data between one register class
2310 and another. */
2311 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2312 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2313 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2314 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2315 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2316 ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2317 || sparc_cpu == PROCESSOR_ULTRASPARC3) ? 12 : 6) : 2)
2318
2319 /* Provide the cost of a branch. For pre-v9 processors we use
2320 a value of 3 to take into account the potential annulling of
2321 the delay slot (which ends up being a bubble in the pipeline slot)
2322 plus a cycle to take into consideration the instruction cache
2323 effects.
2324
2325 On v9 and later, which have branch prediction facilities, we set
2326 it to the depth of the pipeline as that is the cost of a
2327 mispredicted branch. */
2328
2329 #define BRANCH_COST \
2330 ((sparc_cpu == PROCESSOR_V9 \
2331 || sparc_cpu == PROCESSOR_ULTRASPARC) \
2332 ? 7 \
2333 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2334 ? 9 : 3))
2335
2336 #define PREFETCH_BLOCK \
2337 ((sparc_cpu == PROCESSOR_ULTRASPARC \
2338 || sparc_cpu == PROCESSOR_ULTRASPARC3) \
2339 ? 64 : 32)
2340
2341 #define SIMULTANEOUS_PREFETCHES \
2342 ((sparc_cpu == PROCESSOR_ULTRASPARC) \
2343 ? 2 \
2344 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2345 ? 8 : 3))
2346 \f
2347 /* Control the assembler format that we output. */
2348
2349 /* A C string constant describing how to begin a comment in the target
2350 assembler language. The compiler assumes that the comment will end at
2351 the end of the line. */
2352
2353 #define ASM_COMMENT_START "!"
2354
2355 /* Output to assembler file text saying following lines
2356 may contain character constants, extra white space, comments, etc. */
2357
2358 #define ASM_APP_ON ""
2359
2360 /* Output to assembler file text saying following lines
2361 no longer contain unusual constructs. */
2362
2363 #define ASM_APP_OFF ""
2364
2365 /* How to refer to registers in assembler output.
2366 This sequence is indexed by compiler's hard-register-number (see above). */
2367
2368 #define REGISTER_NAMES \
2369 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2370 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2371 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2372 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2373 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2374 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2375 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2376 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2377 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2378 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2379 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2380 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2381 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2382
2383 /* Define additional names for use in asm clobbers and asm declarations. */
2384
2385 #define ADDITIONAL_REGISTER_NAMES \
2386 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2387
2388 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2389 can run past this up to a continuation point. Once we used 1500, but
2390 a single entry in C++ can run more than 500 bytes, due to the length of
2391 mangled symbol names. dbxout.c should really be fixed to do
2392 continuations when they are actually needed instead of trying to
2393 guess... */
2394 #define DBX_CONTIN_LENGTH 1000
2395
2396 /* This is how to output a command to make the user-level label named NAME
2397 defined for reference from other files. */
2398
2399 /* Globalizing directive for a label. */
2400 #define GLOBAL_ASM_OP "\t.global "
2401
2402 /* The prefix to add to user-visible assembler symbols. */
2403
2404 #define USER_LABEL_PREFIX "_"
2405
2406 /* This is how to store into the string LABEL
2407 the symbol_ref name of an internal numbered label where
2408 PREFIX is the class of label and NUM is the number within the class.
2409 This is suitable for output with `assemble_name'. */
2410
2411 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2412 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2413
2414 /* This is how we hook in and defer the case-vector until the end of
2415 the function. */
2416 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2417 sparc_defer_case_vector ((LAB),(VEC), 0)
2418
2419 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2420 sparc_defer_case_vector ((LAB),(VEC), 1)
2421
2422 /* This is how to output an element of a case-vector that is absolute. */
2423
2424 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2425 do { \
2426 char label[30]; \
2427 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2428 if (CASE_VECTOR_MODE == SImode) \
2429 fprintf (FILE, "\t.word\t"); \
2430 else \
2431 fprintf (FILE, "\t.xword\t"); \
2432 assemble_name (FILE, label); \
2433 fputc ('\n', FILE); \
2434 } while (0)
2435
2436 /* This is how to output an element of a case-vector that is relative.
2437 (SPARC uses such vectors only when generating PIC.) */
2438
2439 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2440 do { \
2441 char label[30]; \
2442 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
2443 if (CASE_VECTOR_MODE == SImode) \
2444 fprintf (FILE, "\t.word\t"); \
2445 else \
2446 fprintf (FILE, "\t.xword\t"); \
2447 assemble_name (FILE, label); \
2448 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
2449 fputc ('-', FILE); \
2450 assemble_name (FILE, label); \
2451 fputc ('\n', FILE); \
2452 } while (0)
2453
2454 /* This is what to output before and after case-vector (both
2455 relative and absolute). If .subsection -1 works, we put case-vectors
2456 at the beginning of the current section. */
2457
2458 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2459
2460 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
2461 fprintf(FILE, "\t.subsection\t-1\n")
2462
2463 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
2464 fprintf(FILE, "\t.previous\n")
2465
2466 #endif
2467
2468 /* This is how to output an assembler line
2469 that says to advance the location counter
2470 to a multiple of 2**LOG bytes. */
2471
2472 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2473 if ((LOG) != 0) \
2474 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2475
2476 /* This is how to output an assembler line that says to advance
2477 the location counter to a multiple of 2**LOG bytes using the
2478 "nop" instruction as padding. */
2479 #define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG) \
2480 if ((LOG) != 0) \
2481 fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2482
2483 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2484 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2485
2486 /* This says how to output an assembler line
2487 to define a global common symbol. */
2488
2489 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2490 ( fputs ("\t.common ", (FILE)), \
2491 assemble_name ((FILE), (NAME)), \
2492 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
2493
2494 /* This says how to output an assembler line to define a local common
2495 symbol. */
2496
2497 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2498 ( fputs ("\t.reserve ", (FILE)), \
2499 assemble_name ((FILE), (NAME)), \
2500 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
2501 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2502
2503 /* A C statement (sans semicolon) to output to the stdio stream
2504 FILE the assembler definition of uninitialized global DECL named
2505 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2506 Try to use asm_output_aligned_bss to implement this macro. */
2507
2508 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2509 do { \
2510 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2511 } while (0)
2512
2513 #define IDENT_ASM_OP "\t.ident\t"
2514
2515 /* Output #ident as a .ident. */
2516
2517 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2518 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2519
2520 /* Prettify the assembly. */
2521
2522 extern int sparc_indent_opcode;
2523
2524 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
2525 do { \
2526 if (sparc_indent_opcode) \
2527 { \
2528 putc (' ', FILE); \
2529 sparc_indent_opcode = 0; \
2530 } \
2531 } while (0)
2532
2533 /* Emit a dtp-relative reference to a TLS variable. */
2534
2535 #ifdef HAVE_AS_TLS
2536 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2537 sparc_output_dwarf_dtprel (FILE, SIZE, X)
2538 #endif
2539
2540 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2541 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '(' \
2542 || (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&')
2543
2544 /* Print operand X (an rtx) in assembler syntax to file FILE.
2545 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2546 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2547
2548 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2549
2550 /* Print a memory address as an operand to reference that memory location. */
2551
2552 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2553 { register rtx base, index = 0; \
2554 int offset = 0; \
2555 register rtx addr = ADDR; \
2556 if (GET_CODE (addr) == REG) \
2557 fputs (reg_names[REGNO (addr)], FILE); \
2558 else if (GET_CODE (addr) == PLUS) \
2559 { \
2560 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2561 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2562 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2563 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2564 else \
2565 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2566 if (GET_CODE (base) == LO_SUM) \
2567 { \
2568 if (! USE_AS_OFFSETABLE_LO10 \
2569 || TARGET_ARCH32 \
2570 || TARGET_CM_MEDMID) \
2571 abort (); \
2572 output_operand (XEXP (base, 0), 0); \
2573 fputs ("+%lo(", FILE); \
2574 output_address (XEXP (base, 1)); \
2575 fprintf (FILE, ")+%d", offset); \
2576 } \
2577 else \
2578 { \
2579 fputs (reg_names[REGNO (base)], FILE); \
2580 if (index == 0) \
2581 fprintf (FILE, "%+d", offset); \
2582 else if (GET_CODE (index) == REG) \
2583 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2584 else if (GET_CODE (index) == SYMBOL_REF \
2585 || GET_CODE (index) == CONST) \
2586 fputc ('+', FILE), output_addr_const (FILE, index); \
2587 else abort (); \
2588 } \
2589 } \
2590 else if (GET_CODE (addr) == MINUS \
2591 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2592 { \
2593 output_addr_const (FILE, XEXP (addr, 0)); \
2594 fputs ("-(", FILE); \
2595 output_addr_const (FILE, XEXP (addr, 1)); \
2596 fputs ("-.)", FILE); \
2597 } \
2598 else if (GET_CODE (addr) == LO_SUM) \
2599 { \
2600 output_operand (XEXP (addr, 0), 0); \
2601 if (TARGET_CM_MEDMID) \
2602 fputs ("+%l44(", FILE); \
2603 else \
2604 fputs ("+%lo(", FILE); \
2605 output_address (XEXP (addr, 1)); \
2606 fputc (')', FILE); \
2607 } \
2608 else if (flag_pic && GET_CODE (addr) == CONST \
2609 && GET_CODE (XEXP (addr, 0)) == MINUS \
2610 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2611 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2612 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2613 { \
2614 addr = XEXP (addr, 0); \
2615 output_addr_const (FILE, XEXP (addr, 0)); \
2616 /* Group the args of the second CONST in parenthesis. */ \
2617 fputs ("-(", FILE); \
2618 /* Skip past the second CONST--it does nothing for us. */\
2619 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2620 /* Close the parenthesis. */ \
2621 fputc (')', FILE); \
2622 } \
2623 else \
2624 { \
2625 output_addr_const (FILE, addr); \
2626 } \
2627 }
2628
2629 #ifdef HAVE_AS_TLS
2630 #define TARGET_TLS 1
2631 #else
2632 #define TARGET_TLS 0
2633 #endif
2634 #define TARGET_SUN_TLS TARGET_TLS
2635 #define TARGET_GNU_TLS 0
2636
2637 /* Define the codes that are matched by predicates in sparc.c. */
2638
2639 #define PREDICATE_CODES \
2640 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2641 {"const1_operand", {CONST_INT}}, \
2642 {"fp_zero_operand", {CONST_DOUBLE}}, \
2643 {"fp_register_operand", {SUBREG, REG}}, \
2644 {"intreg_operand", {SUBREG, REG}}, \
2645 {"fcc_reg_operand", {REG}}, \
2646 {"fcc0_reg_operand", {REG}}, \
2647 {"icc_or_fcc_reg_operand", {REG}}, \
2648 {"call_operand", {MEM}}, \
2649 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
2650 SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
2651 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2652 {"symbolic_memory_operand", {SUBREG, MEM}}, \
2653 {"label_ref_operand", {LABEL_REF}}, \
2654 {"sp64_medium_pic_operand", {CONST}}, \
2655 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
2656 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
2657 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
2658 {"splittable_symbolic_memory_operand", {MEM}}, \
2659 {"splittable_immediate_memory_operand", {MEM}}, \
2660 {"eq_or_neq", {EQ, NE}}, \
2661 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
2662 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
2663 {"noov_compare64_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
2664 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
2665 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
2666 {"cc_arithop", {AND, IOR, XOR}}, \
2667 {"cc_arithopn", {AND, IOR}}, \
2668 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
2669 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
2670 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
2671 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
2672 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2673 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2674 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2675 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2676 {"small_int", {CONST_INT}}, \
2677 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
2678 {"uns_small_int", {CONST_INT}}, \
2679 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
2680 {"clobbered_register", {REG}}, \
2681 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
2682 {"compare_operand", {SUBREG, REG, ZERO_EXTRACT}}, \
2683 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
2684 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}}, \
2685 {"tgd_symbolic_operand", {SYMBOL_REF}}, \
2686 {"tld_symbolic_operand", {SYMBOL_REF}}, \
2687 {"tie_symbolic_operand", {SYMBOL_REF}}, \
2688 {"tle_symbolic_operand", {SYMBOL_REF}},
2689
2690 /* The number of Pmode words for the setjmp buffer. */
2691 #define JMP_BUF_SIZE 12
2692
2693 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)