Add sparc vec_perm patterns when VIS2.
[gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com).
6 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
7 at Cygnus Support.
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 #include "config/vxworks-dummy.h"
26
27 /* Note that some other tm.h files include this one and then override
28 whatever definitions are necessary. */
29
30 /* Define the specific costs for a given cpu */
31
32 struct processor_costs {
33 /* Integer load */
34 const int int_load;
35
36 /* Integer signed load */
37 const int int_sload;
38
39 /* Integer zeroed load */
40 const int int_zload;
41
42 /* Float load */
43 const int float_load;
44
45 /* fmov, fneg, fabs */
46 const int float_move;
47
48 /* fadd, fsub */
49 const int float_plusminus;
50
51 /* fcmp */
52 const int float_cmp;
53
54 /* fmov, fmovr */
55 const int float_cmove;
56
57 /* fmul */
58 const int float_mul;
59
60 /* fdivs */
61 const int float_div_sf;
62
63 /* fdivd */
64 const int float_div_df;
65
66 /* fsqrts */
67 const int float_sqrt_sf;
68
69 /* fsqrtd */
70 const int float_sqrt_df;
71
72 /* umul/smul */
73 const int int_mul;
74
75 /* mulX */
76 const int int_mulX;
77
78 /* integer multiply cost for each bit set past the most
79 significant 3, so the formula for multiply cost becomes:
80
81 if (rs1 < 0)
82 highest_bit = highest_clear_bit(rs1);
83 else
84 highest_bit = highest_set_bit(rs1);
85 if (highest_bit < 3)
86 highest_bit = 3;
87 cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
88
89 A value of zero indicates that the multiply costs is fixed,
90 and not variable. */
91 const int int_mul_bit_factor;
92
93 /* udiv/sdiv */
94 const int int_div;
95
96 /* divX */
97 const int int_divX;
98
99 /* movcc, movr */
100 const int int_cmove;
101
102 /* penalty for shifts, due to scheduling rules etc. */
103 const int shift_penalty;
104 };
105
106 extern const struct processor_costs *sparc_costs;
107
108 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
109
110 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
111 /* #define SPARC_BI_ARCH */
112
113 /* Macro used later in this file to determine default architecture. */
114 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
115
116 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
117 architectures to compile for. We allow targets to choose compile time or
118 runtime selection. */
119 #ifdef IN_LIBGCC2
120 #if defined(__sparcv9) || defined(__arch64__)
121 #define TARGET_ARCH32 0
122 #else
123 #define TARGET_ARCH32 1
124 #endif /* sparc64 */
125 #else
126 #ifdef SPARC_BI_ARCH
127 #define TARGET_ARCH32 (! TARGET_64BIT)
128 #else
129 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
130 #endif /* SPARC_BI_ARCH */
131 #endif /* IN_LIBGCC2 */
132 #define TARGET_ARCH64 (! TARGET_ARCH32)
133
134 /* Code model selection in 64-bit environment.
135
136 The machine mode used for addresses is 32-bit wide:
137
138 TARGET_CM_32: 32-bit address space.
139 It is the code model used when generating 32-bit code.
140
141 The machine mode used for addresses is 64-bit wide:
142
143 TARGET_CM_MEDLOW: 32-bit address space.
144 The executable must be in the low 32 bits of memory.
145 This avoids generating %uhi and %ulo terms. Programs
146 can be statically or dynamically linked.
147
148 TARGET_CM_MEDMID: 44-bit address space.
149 The executable must be in the low 44 bits of memory,
150 and the %[hml]44 terms are used. The text and data
151 segments have a maximum size of 2GB (31-bit span).
152 The maximum offset from any instruction to the label
153 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
154
155 TARGET_CM_MEDANY: 64-bit address space.
156 The text and data segments have a maximum size of 2GB
157 (31-bit span) and may be located anywhere in memory.
158 The maximum offset from any instruction to the label
159 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
160
161 TARGET_CM_EMBMEDANY: 64-bit address space.
162 The text and data segments have a maximum size of 2GB
163 (31-bit span) and may be located anywhere in memory.
164 The global register %g4 contains the start address of
165 the data segment. Programs are statically linked and
166 PIC is not supported.
167
168 Different code models are not supported in 32-bit environment. */
169
170 enum cmodel {
171 CM_32,
172 CM_MEDLOW,
173 CM_MEDMID,
174 CM_MEDANY,
175 CM_EMBMEDANY
176 };
177
178 /* One of CM_FOO. */
179 extern enum cmodel sparc_cmodel;
180
181 /* V9 code model selection. */
182 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
183 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
184 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
185 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
186
187 #define SPARC_DEFAULT_CMODEL CM_32
188
189 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
190 which requires the following macro to be true if enabled. Prior to V9,
191 there are no instructions to even talk about memory synchronization.
192 Note that the UltraSPARC III processors don't implement RMO, unlike the
193 UltraSPARC II processors. Niagara, Niagara-2, and Niagara-3 do not
194 implement RMO either.
195
196 Default to false; for example, Solaris never enables RMO, only ever uses
197 total memory ordering (TMO). */
198 #define SPARC_RELAXED_ORDERING false
199
200 /* Do not use the .note.GNU-stack convention by default. */
201 #define NEED_INDICATE_EXEC_STACK 0
202
203 /* This is call-clobbered in the normal ABI, but is reserved in the
204 home grown (aka upward compatible) embedded ABI. */
205 #define EMBMEDANY_BASE_REG "%g4"
206 \f
207 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
208 and specified by the user via --with-cpu=foo.
209 This specifies the cpu implementation, not the architecture size. */
210 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
211 capable cpu's. */
212 #define TARGET_CPU_sparc 0
213 #define TARGET_CPU_v7 0 /* alias */
214 #define TARGET_CPU_cypress 0 /* alias */
215 #define TARGET_CPU_v8 1 /* generic v8 implementation */
216 #define TARGET_CPU_supersparc 2
217 #define TARGET_CPU_hypersparc 3
218 #define TARGET_CPU_leon 4
219 #define TARGET_CPU_sparclite 5
220 #define TARGET_CPU_f930 5 /* alias */
221 #define TARGET_CPU_f934 5 /* alias */
222 #define TARGET_CPU_sparclite86x 6
223 #define TARGET_CPU_sparclet 7
224 #define TARGET_CPU_tsc701 7 /* alias */
225 #define TARGET_CPU_v9 8 /* generic v9 implementation */
226 #define TARGET_CPU_sparcv9 8 /* alias */
227 #define TARGET_CPU_sparc64 8 /* alias */
228 #define TARGET_CPU_ultrasparc 9
229 #define TARGET_CPU_ultrasparc3 10
230 #define TARGET_CPU_niagara 11
231 #define TARGET_CPU_niagara2 12
232 #define TARGET_CPU_niagara3 13
233 #define TARGET_CPU_niagara4 14
234
235 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
236 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
237 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
238 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
239 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
240 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
241 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
242
243 #define CPP_CPU32_DEFAULT_SPEC ""
244 #define ASM_CPU32_DEFAULT_SPEC ""
245
246 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
247 /* ??? What does Sun's CC pass? */
248 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
249 /* ??? It's not clear how other assemblers will handle this, so by default
250 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
251 is handled in sol2.h. */
252 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
253 #endif
254 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
255 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
256 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
257 #endif
258 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
259 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
260 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
261 #endif
262 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
263 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
264 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
265 #endif
266 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
267 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
268 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
269 #endif
270 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
271 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
272 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
273 #endif
274 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
275 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
276 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
277 #endif
278
279 #else
280
281 #define CPP_CPU64_DEFAULT_SPEC ""
282 #define ASM_CPU64_DEFAULT_SPEC ""
283
284 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
285 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
286 #define CPP_CPU32_DEFAULT_SPEC ""
287 #define ASM_CPU32_DEFAULT_SPEC ""
288 #endif
289
290 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
291 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
292 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
293 #endif
294
295 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
296 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
297 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
298 #endif
299
300 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
301 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
302 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
303 #endif
304
305 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
306 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
307 #define ASM_CPU32_DEFAULT_SPEC ""
308 #endif
309
310 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
311 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
312 #define ASM_CPU32_DEFAULT_SPEC ""
313 #endif
314
315 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon
316 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
317 #define ASM_CPU32_DEFAULT_SPEC ""
318 #endif
319
320 #endif
321
322 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
323 #error Unrecognized value in TARGET_CPU_DEFAULT.
324 #endif
325
326 #ifdef SPARC_BI_ARCH
327
328 #define CPP_CPU_DEFAULT_SPEC \
329 (DEFAULT_ARCH32_P ? "\
330 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
331 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
332 " : "\
333 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
334 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
335 ")
336 #define ASM_CPU_DEFAULT_SPEC \
337 (DEFAULT_ARCH32_P ? "\
338 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
339 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
340 " : "\
341 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
342 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
343 ")
344
345 #else /* !SPARC_BI_ARCH */
346
347 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
348 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
349
350 #endif /* !SPARC_BI_ARCH */
351
352 /* Define macros to distinguish architectures. */
353
354 /* Common CPP definitions used by CPP_SPEC amongst the various targets
355 for handling -mcpu=xxx switches. */
356 #define CPP_CPU_SPEC "\
357 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
358 %{mcpu=sparclite:-D__sparclite__} \
359 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
360 %{mcpu=sparclite86x:-D__sparclite86x__} \
361 %{mcpu=v8:-D__sparc_v8__} \
362 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
363 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
364 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
365 %{mcpu=v9:-D__sparc_v9__} \
366 %{mcpu=ultrasparc:-D__sparc_v9__} \
367 %{mcpu=ultrasparc3:-D__sparc_v9__} \
368 %{mcpu=niagara:-D__sparc_v9__} \
369 %{mcpu=niagara2:-D__sparc_v9__} \
370 %{mcpu=niagara3:-D__sparc_v9__} \
371 %{mcpu=niagara4:-D__sparc_v9__} \
372 %{!mcpu*:%(cpp_cpu_default)} \
373 "
374 #define CPP_ARCH32_SPEC ""
375 #define CPP_ARCH64_SPEC "-D__arch64__"
376
377 #define CPP_ARCH_DEFAULT_SPEC \
378 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
379
380 #define CPP_ARCH_SPEC "\
381 %{m32:%(cpp_arch32)} \
382 %{m64:%(cpp_arch64)} \
383 %{!m32:%{!m64:%(cpp_arch_default)}} \
384 "
385
386 /* Macros to distinguish the endianness, window model and FP support. */
387 #define CPP_OTHER_SPEC "\
388 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
389 %{mflat:-D_FLAT} \
390 %{msoft-float:-D_SOFT_FLOAT} \
391 "
392
393 /* Macros to distinguish the particular subtarget. */
394 #define CPP_SUBTARGET_SPEC ""
395
396 #define CPP_SPEC \
397 "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
398
399 /* This used to translate -dalign to -malign, but that is no good
400 because it can't turn off the usual meaning of making debugging dumps. */
401
402 #define CC1_SPEC ""
403
404 /* Override in target specific files. */
405 #define ASM_CPU_SPEC "\
406 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
407 %{mcpu=sparclite:-Asparclite} \
408 %{mcpu=sparclite86x:-Asparclite} \
409 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
410 %{mv8plus:-Av8plus} \
411 %{mcpu=v9:-Av9} \
412 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
413 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
414 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
415 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
416 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
417 %{mcpu=niagara4:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
418 %{!mcpu*:%(asm_cpu_default)} \
419 "
420
421 /* Word size selection, among other things.
422 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
423
424 #define ASM_ARCH32_SPEC "-32"
425 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
426 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
427 #else
428 #define ASM_ARCH64_SPEC "-64"
429 #endif
430 #define ASM_ARCH_DEFAULT_SPEC \
431 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
432
433 #define ASM_ARCH_SPEC "\
434 %{m32:%(asm_arch32)} \
435 %{m64:%(asm_arch64)} \
436 %{!m32:%{!m64:%(asm_arch_default)}} \
437 "
438
439 #ifdef HAVE_AS_RELAX_OPTION
440 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
441 #else
442 #define ASM_RELAX_SPEC ""
443 #endif
444
445 /* Special flags to the Sun-4 assembler when using pipe for input. */
446
447 #define ASM_SPEC "\
448 %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
449 %(asm_cpu) %(asm_relax)"
450
451 /* This macro defines names of additional specifications to put in the specs
452 that can be used in various specifications like CC1_SPEC. Its definition
453 is an initializer with a subgrouping for each command option.
454
455 Each subgrouping contains a string constant, that defines the
456 specification name, and a string constant that used by the GCC driver
457 program.
458
459 Do not define this macro if it does not need to do anything. */
460
461 #define EXTRA_SPECS \
462 { "cpp_cpu", CPP_CPU_SPEC }, \
463 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
464 { "cpp_arch32", CPP_ARCH32_SPEC }, \
465 { "cpp_arch64", CPP_ARCH64_SPEC }, \
466 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
467 { "cpp_arch", CPP_ARCH_SPEC }, \
468 { "cpp_other", CPP_OTHER_SPEC }, \
469 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
470 { "asm_cpu", ASM_CPU_SPEC }, \
471 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
472 { "asm_arch32", ASM_ARCH32_SPEC }, \
473 { "asm_arch64", ASM_ARCH64_SPEC }, \
474 { "asm_relax", ASM_RELAX_SPEC }, \
475 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
476 { "asm_arch", ASM_ARCH_SPEC }, \
477 SUBTARGET_EXTRA_SPECS
478
479 #define SUBTARGET_EXTRA_SPECS
480
481 /* Because libgcc can generate references back to libc (via .umul etc.) we have
482 to list libc again after the second libgcc. */
483 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
484
485 \f
486 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
487 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
488
489 /* ??? This should be 32 bits for v9 but what can we do? */
490 #define WCHAR_TYPE "short unsigned int"
491 #define WCHAR_TYPE_SIZE 16
492 \f
493 /* Mask of all CPU selection flags. */
494 #define MASK_ISA \
495 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
496
497 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
498 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
499 to get high 32 bits. False in V8+ or V9 because multiply stores
500 a 64-bit result in a register. */
501
502 #define TARGET_HARD_MUL32 \
503 ((TARGET_V8 || TARGET_SPARCLITE \
504 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
505 && ! TARGET_V8PLUS && TARGET_ARCH32)
506
507 #define TARGET_HARD_MUL \
508 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
509 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
510
511 /* MASK_APP_REGS must always be the default because that's what
512 FIXED_REGISTERS is set to and -ffixed- is processed before
513 TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
514 -mno-app-regs). */
515 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
516
517 /* Recast the cpu class to be the cpu attribute.
518 Every file includes us, but not every file includes insn-attr.h. */
519 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
520
521 /* Support for a compile-time default CPU, et cetera. The rules are:
522 --with-cpu is ignored if -mcpu is specified.
523 --with-tune is ignored if -mtune is specified.
524 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
525 are specified. */
526 #define OPTION_DEFAULT_SPECS \
527 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
528 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
529 {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
530 \f
531 /* target machine storage layout */
532
533 /* Define this if most significant bit is lowest numbered
534 in instructions that operate on numbered bit-fields. */
535 #define BITS_BIG_ENDIAN 1
536
537 /* Define this if most significant byte of a word is the lowest numbered. */
538 #define BYTES_BIG_ENDIAN 1
539
540 /* Define this if most significant word of a multiword number is the lowest
541 numbered. */
542 #define WORDS_BIG_ENDIAN 1
543
544 #define MAX_BITS_PER_WORD 64
545
546 /* Width of a word, in units (bytes). */
547 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
548 #ifdef IN_LIBGCC2
549 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
550 #else
551 #define MIN_UNITS_PER_WORD 4
552 #endif
553
554 /* Now define the sizes of the C data types. */
555
556 #define SHORT_TYPE_SIZE 16
557 #define INT_TYPE_SIZE 32
558 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
559 #define LONG_LONG_TYPE_SIZE 64
560 #define FLOAT_TYPE_SIZE 32
561 #define DOUBLE_TYPE_SIZE 64
562
563 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
564 SPARC ABI says that it is 128-bit wide. */
565 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
566
567 /* The widest floating-point format really supported by the hardware. */
568 #define WIDEST_HARDWARE_FP_SIZE 64
569
570 /* Width in bits of a pointer. This is the size of ptr_mode. */
571 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
572
573 /* This is the machine mode used for addresses. */
574 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
575
576 /* If we have to extend pointers (only when TARGET_ARCH64 and not
577 TARGET_PTR64), we want to do it unsigned. This macro does nothing
578 if ptr_mode and Pmode are the same. */
579 #define POINTERS_EXTEND_UNSIGNED 1
580
581 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
582 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
583
584 /* Boundary (in *bits*) on which stack pointer should be aligned. */
585 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
586 then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */
587 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
588 /* Temporary hack until the FIXME above is fixed. */
589 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
590
591 /* ALIGN FRAMES on double word boundaries */
592
593 #define SPARC_STACK_ALIGN(LOC) \
594 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
595
596 /* Allocation boundary (in *bits*) for the code of a function. */
597 #define FUNCTION_BOUNDARY 32
598
599 /* Alignment of field after `int : 0' in a structure. */
600 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
601
602 /* Every structure's size must be a multiple of this. */
603 #define STRUCTURE_SIZE_BOUNDARY 8
604
605 /* A bit-field declared as `int' forces `int' alignment for the struct. */
606 #define PCC_BITFIELD_TYPE_MATTERS 1
607
608 /* No data type wants to be aligned rounder than this. */
609 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
610
611 /* The best alignment to use in cases where we have a choice. */
612 #define FASTEST_ALIGNMENT 64
613
614 /* Define this macro as an expression for the alignment of a structure
615 (given by STRUCT as a tree node) if the alignment computed in the
616 usual way is COMPUTED and the alignment explicitly specified was
617 SPECIFIED.
618
619 The default is to use SPECIFIED if it is larger; otherwise, use
620 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
621 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
622 (TARGET_FASTER_STRUCTS ? \
623 ((TREE_CODE (STRUCT) == RECORD_TYPE \
624 || TREE_CODE (STRUCT) == UNION_TYPE \
625 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
626 && TYPE_FIELDS (STRUCT) != 0 \
627 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
628 : MAX ((COMPUTED), (SPECIFIED))) \
629 : MAX ((COMPUTED), (SPECIFIED)))
630
631 /* We need 2 words, so we can save the stack pointer and the return register
632 of the function containing a non-local goto target. */
633 #define STACK_SAVEAREA_MODE(LEVEL) \
634 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
635
636 /* Make strings word-aligned so strcpy from constants will be faster. */
637 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
638 ((TREE_CODE (EXP) == STRING_CST \
639 && (ALIGN) < FASTEST_ALIGNMENT) \
640 ? FASTEST_ALIGNMENT : (ALIGN))
641
642 /* Make arrays of chars word-aligned for the same reasons. */
643 #define DATA_ALIGNMENT(TYPE, ALIGN) \
644 (TREE_CODE (TYPE) == ARRAY_TYPE \
645 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
646 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
647
648 /* Make local arrays of chars word-aligned for the same reasons. */
649 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
650
651 /* Set this nonzero if move instructions will actually fail to work
652 when given unaligned data. */
653 #define STRICT_ALIGNMENT 1
654
655 /* Things that must be doubleword aligned cannot go in the text section,
656 because the linker fails to align the text section enough!
657 Put them in the data section. This macro is only used in this file. */
658 #define MAX_TEXT_ALIGN 32
659 \f
660 /* Standard register usage. */
661
662 /* Number of actual hardware registers.
663 The hardware registers are assigned numbers for the compiler
664 from 0 to just below FIRST_PSEUDO_REGISTER.
665 All registers that the compiler knows about must be given numbers,
666 even those that are not normally considered general registers.
667
668 SPARC has 32 integer registers and 32 floating point registers.
669 64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
670 accessible. We still account for them to simplify register computations
671 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
672 32+32+32+4 == 100.
673 Register 100 is used as the integer condition code register.
674 Register 101 is used as the soft frame pointer register. */
675
676 #define FIRST_PSEUDO_REGISTER 103
677
678 #define SPARC_FIRST_FP_REG 32
679 /* Additional V9 fp regs. */
680 #define SPARC_FIRST_V9_FP_REG 64
681 #define SPARC_LAST_V9_FP_REG 95
682 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
683 #define SPARC_FIRST_V9_FCC_REG 96
684 #define SPARC_LAST_V9_FCC_REG 99
685 /* V8 fcc reg. */
686 #define SPARC_FCC_REG 96
687 /* Integer CC reg. We don't distinguish %icc from %xcc. */
688 #define SPARC_ICC_REG 100
689 #define SPARC_GSR_REG 102
690
691 /* Nonzero if REGNO is an fp reg. */
692 #define SPARC_FP_REG_P(REGNO) \
693 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
694
695 /* Argument passing regs. */
696 #define SPARC_OUTGOING_INT_ARG_FIRST 8
697 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
698 #define SPARC_FP_ARG_FIRST 32
699
700 /* 1 for registers that have pervasive standard uses
701 and are not available for the register allocator.
702
703 On non-v9 systems:
704 g1 is free to use as temporary.
705 g2-g4 are reserved for applications. Gcc normally uses them as
706 temporaries, but this can be disabled via the -mno-app-regs option.
707 g5 through g7 are reserved for the operating system.
708
709 On v9 systems:
710 g1,g5 are free to use as temporaries, and are free to use between calls
711 if the call is to an external function via the PLT.
712 g4 is free to use as a temporary in the non-embedded case.
713 g4 is reserved in the embedded case.
714 g2-g3 are reserved for applications. Gcc normally uses them as
715 temporaries, but this can be disabled via the -mno-app-regs option.
716 g6-g7 are reserved for the operating system (or application in
717 embedded case).
718 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
719 currently be a fixed register until this pattern is rewritten.
720 Register 1 is also used when restoring call-preserved registers in large
721 stack frames.
722
723 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
724 TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
725 */
726
727 #define FIXED_REGISTERS \
728 {1, 0, 2, 2, 2, 2, 1, 1, \
729 0, 0, 0, 0, 0, 0, 1, 0, \
730 0, 0, 0, 0, 0, 0, 0, 0, \
731 0, 0, 0, 0, 0, 0, 0, 1, \
732 \
733 0, 0, 0, 0, 0, 0, 0, 0, \
734 0, 0, 0, 0, 0, 0, 0, 0, \
735 0, 0, 0, 0, 0, 0, 0, 0, \
736 0, 0, 0, 0, 0, 0, 0, 0, \
737 \
738 0, 0, 0, 0, 0, 0, 0, 0, \
739 0, 0, 0, 0, 0, 0, 0, 0, \
740 0, 0, 0, 0, 0, 0, 0, 0, \
741 0, 0, 0, 0, 0, 0, 0, 0, \
742 \
743 0, 0, 0, 0, 0, 1, 1}
744
745 /* 1 for registers not available across function calls.
746 These must include the FIXED_REGISTERS and also any
747 registers that can be used without being saved.
748 The latter must include the registers where values are returned
749 and the register where structure-value addresses are passed.
750 Aside from that, you can include as many other registers as you like. */
751
752 #define CALL_USED_REGISTERS \
753 {1, 1, 1, 1, 1, 1, 1, 1, \
754 1, 1, 1, 1, 1, 1, 1, 1, \
755 0, 0, 0, 0, 0, 0, 0, 0, \
756 0, 0, 0, 0, 0, 0, 0, 1, \
757 \
758 1, 1, 1, 1, 1, 1, 1, 1, \
759 1, 1, 1, 1, 1, 1, 1, 1, \
760 1, 1, 1, 1, 1, 1, 1, 1, \
761 1, 1, 1, 1, 1, 1, 1, 1, \
762 \
763 1, 1, 1, 1, 1, 1, 1, 1, \
764 1, 1, 1, 1, 1, 1, 1, 1, \
765 1, 1, 1, 1, 1, 1, 1, 1, \
766 1, 1, 1, 1, 1, 1, 1, 1, \
767 \
768 1, 1, 1, 1, 1, 1, 1}
769
770 /* Return number of consecutive hard regs needed starting at reg REGNO
771 to hold something of mode MODE.
772 This is ordinarily the length in words of a value of mode MODE
773 but can be less for certain modes in special long registers.
774
775 On SPARC, ordinary registers hold 32 bits worth;
776 this means both integer and floating point registers.
777 On v9, integer regs hold 64 bits worth; floating point regs hold
778 32 bits worth (this includes the new fp regs as even the odd ones are
779 included in the hard register count). */
780
781 #define HARD_REGNO_NREGS(REGNO, MODE) \
782 ((REGNO) == SPARC_GSR_REG ? 1 : \
783 (TARGET_ARCH64 \
784 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
785 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
786 : (GET_MODE_SIZE (MODE) + 3) / 4) \
787 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
788
789 /* Due to the ARCH64 discrepancy above we must override this next
790 macro too. */
791 #define REGMODE_NATURAL_SIZE(MODE) \
792 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
793
794 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
795 See sparc.c for how we initialize this. */
796 extern const int *hard_regno_mode_classes;
797 extern int sparc_mode_class[];
798
799 /* ??? Because of the funny way we pass parameters we should allow certain
800 ??? types of float/complex values to be in integer registers during
801 ??? RTL generation. This only matters on arch32. */
802 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
803 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
804
805 /* Value is 1 if it is OK to rename a hard register FROM to another hard
806 register TO. We cannot rename %g1 as it may be used before the save
807 register window instruction in the prologue. */
808 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
809
810 /* Value is 1 if it is a good idea to tie two pseudo registers
811 when one has mode MODE1 and one has mode MODE2.
812 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
813 for any hard reg, then this must be 0 for correct output.
814
815 For V9: SFmode can't be combined with other float modes, because they can't
816 be allocated to the %d registers. Also, DFmode won't fit in odd %f
817 registers, but SFmode will. */
818 #define MODES_TIEABLE_P(MODE1, MODE2) \
819 ((MODE1) == (MODE2) \
820 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
821 && (! TARGET_V9 \
822 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
823 || (MODE1 != SFmode && MODE2 != SFmode)))))
824
825 /* Specify the registers used for certain standard purposes.
826 The values of these macros are register numbers. */
827
828 /* Register to use for pushing function arguments. */
829 #define STACK_POINTER_REGNUM 14
830
831 /* The stack bias (amount by which the hardware register is offset by). */
832 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
833
834 /* Actual top-of-stack address is 92/176 greater than the contents of the
835 stack pointer register for !v9/v9. That is:
836 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
837 address, and 6*4 bytes for the 6 register parameters.
838 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
839 parameter regs. */
840 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
841
842 /* Base register for access to local variables of the function. */
843 #define HARD_FRAME_POINTER_REGNUM 30
844
845 /* The soft frame pointer does not have the stack bias applied. */
846 #define FRAME_POINTER_REGNUM 101
847
848 /* Given the stack bias, the stack pointer isn't actually aligned. */
849 #define INIT_EXPANDERS \
850 do { \
851 if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS) \
852 { \
853 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
854 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
855 } \
856 } while (0)
857
858 /* Base register for access to arguments of the function. */
859 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
860
861 /* Register in which static-chain is passed to a function. This must
862 not be a register used by the prologue. */
863 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
864
865 /* Register which holds the global offset table, if any. */
866
867 #define GLOBAL_OFFSET_TABLE_REGNUM 23
868
869 /* Register which holds offset table for position-independent
870 data references. */
871
872 #define PIC_OFFSET_TABLE_REGNUM \
873 (flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
874
875 /* Pick a default value we can notice from override_options:
876 !v9: Default is on.
877 v9: Default is off.
878 Originally it was -1, but later on the container of options changed to
879 unsigned byte, so we decided to pick 127 as default value, which does
880 reflect an undefined default value in case of 0/1. */
881
882 #define DEFAULT_PCC_STRUCT_RETURN 127
883
884 /* Functions which return large structures get the address
885 to place the wanted value at offset 64 from the frame.
886 Must reserve 64 bytes for the in and local registers.
887 v9: Functions which return large structures get the address to place the
888 wanted value from an invisible first argument. */
889 #define STRUCT_VALUE_OFFSET 64
890 \f
891 /* Define the classes of registers for register constraints in the
892 machine description. Also define ranges of constants.
893
894 One of the classes must always be named ALL_REGS and include all hard regs.
895 If there is more than one class, another class must be named NO_REGS
896 and contain no registers.
897
898 The name GENERAL_REGS must be the name of a class (or an alias for
899 another name such as ALL_REGS). This is the class of registers
900 that is allowed by "g" or "r" in a register constraint.
901 Also, registers outside this class are allocated only when
902 instructions express preferences for them.
903
904 The classes must be numbered in nondecreasing order; that is,
905 a larger-numbered class must never be contained completely
906 in a smaller-numbered class.
907
908 For any two classes, it is very desirable that there be another
909 class that represents their union. */
910
911 /* The SPARC has various kinds of registers: general, floating point,
912 and condition codes [well, it has others as well, but none that we
913 care directly about].
914
915 For v9 we must distinguish between the upper and lower floating point
916 registers because the upper ones can't hold SFmode values.
917 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
918 satisfying a group need for a class will also satisfy a single need for
919 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
920 regs.
921
922 It is important that one class contains all the general and all the standard
923 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
924 because reg_class_record() will bias the selection in favor of fp regs,
925 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
926 because FP_REGS > GENERAL_REGS.
927
928 It is also important that one class contain all the general and all
929 the fp regs. Otherwise when spilling a DFmode reg, it may be from
930 EXTRA_FP_REGS but find_reloads() may use class
931 GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
932 because the compiler thinks it doesn't have a spill reg when in
933 fact it does.
934
935 v9 also has 4 floating point condition code registers. Since we don't
936 have a class that is the union of FPCC_REGS with either of the others,
937 it is important that it appear first. Otherwise the compiler will die
938 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
939 constraints.
940
941 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
942 may try to use it to hold an SImode value. See register_operand.
943 ??? Should %fcc[0123] be handled similarly?
944 */
945
946 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
947 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
948 ALL_REGS, LIM_REG_CLASSES };
949
950 #define N_REG_CLASSES (int) LIM_REG_CLASSES
951
952 /* Give names of register classes as strings for dump file. */
953
954 #define REG_CLASS_NAMES \
955 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
956 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
957 "ALL_REGS" }
958
959 /* Define which registers fit in which classes.
960 This is an initializer for a vector of HARD_REG_SET
961 of length N_REG_CLASSES. */
962
963 #define REG_CLASS_CONTENTS \
964 {{0, 0, 0, 0}, /* NO_REGS */ \
965 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
966 {0xffff, 0, 0, 0}, /* I64_REGS */ \
967 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
968 {0, -1, 0, 0}, /* FP_REGS */ \
969 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
970 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
971 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
972 {-1, -1, -1, 0x7f}} /* ALL_REGS */
973
974 /* The same information, inverted:
975 Return the class number of the smallest class containing
976 reg number REGNO. This could be a conditional expression
977 or could index an array. */
978
979 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
980
981 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
982
983 /* Defines invalid mode changes. Borrowed from pa64-regs.h.
984
985 SImode loads to floating-point registers are not zero-extended.
986 The definition for LOAD_EXTEND_OP specifies that integer loads
987 narrower than BITS_PER_WORD will be zero-extended. As a result,
988 we inhibit changes from SImode unless they are to a mode that is
989 identical in size. */
990
991 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
992 (TARGET_ARCH64 \
993 && (FROM) == SImode \
994 && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
995 ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
996
997 /* This is the order in which to allocate registers normally.
998
999 We put %f0-%f7 last among the float registers, so as to make it more
1000 likely that a pseudo-register which dies in the float return register
1001 area will get allocated to the float return register, thus saving a move
1002 instruction at the end of the function.
1003
1004 Similarly for integer return value registers.
1005
1006 We know in this case that we will not end up with a leaf function.
1007
1008 The register allocator is given the global and out registers first
1009 because these registers are call clobbered and thus less useful to
1010 global register allocation.
1011
1012 Next we list the local and in registers. They are not call clobbered
1013 and thus very useful for global register allocation. We list the input
1014 registers before the locals so that it is more likely the incoming
1015 arguments received in those registers can just stay there and not be
1016 reloaded. */
1017
1018 #define REG_ALLOC_ORDER \
1019 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1020 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1021 15, /* %o7 */ \
1022 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1023 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
1024 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1025 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1026 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1027 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1028 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1029 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1030 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1031 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1032 96, 97, 98, 99, /* %fcc0-3 */ \
1033 100, 0, 14, 30, 101, 102 } /* %icc, %g0, %o6, %i6, %sfp, %gsr */
1034
1035 /* This is the order in which to allocate registers for
1036 leaf functions. If all registers can fit in the global and
1037 output registers, then we have the possibility of having a leaf
1038 function.
1039
1040 The macro actually mentioned the input registers first,
1041 because they get renumbered into the output registers once
1042 we know really do have a leaf function.
1043
1044 To be more precise, this register allocation order is used
1045 when %o7 is found to not be clobbered right before register
1046 allocation. Normally, the reason %o7 would be clobbered is
1047 due to a call which could not be transformed into a sibling
1048 call.
1049
1050 As a consequence, it is possible to use the leaf register
1051 allocation order and not end up with a leaf function. We will
1052 not get suboptimal register allocation in that case because by
1053 definition of being potentially leaf, there were no function
1054 calls. Therefore, allocation order within the local register
1055 window is not critical like it is when we do have function calls. */
1056
1057 #define REG_LEAF_ALLOC_ORDER \
1058 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1059 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
1060 15, /* %o7 */ \
1061 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1062 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1063 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1064 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1065 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1066 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1067 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1068 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1069 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1070 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1071 96, 97, 98, 99, /* %fcc0-3 */ \
1072 100, 0, 14, 30, 31, 101, 102 } /* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
1073
1074 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
1075
1076 extern char sparc_leaf_regs[];
1077 #define LEAF_REGISTERS sparc_leaf_regs
1078
1079 extern char leaf_reg_remap[];
1080 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1081
1082 /* The class value for index registers, and the one for base regs. */
1083 #define INDEX_REG_CLASS GENERAL_REGS
1084 #define BASE_REG_CLASS GENERAL_REGS
1085
1086 /* Local macro to handle the two v9 classes of FP regs. */
1087 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1088
1089 /* Predicates for 10-bit, 11-bit and 13-bit signed constants. */
1090 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1091 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1092 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1093
1094 /* 10- and 11-bit immediates are only used for a few specific insns.
1095 SMALL_INT is used throughout the port so we continue to use it. */
1096 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1097
1098 /* Predicate for constants that can be loaded with a sethi instruction.
1099 This is the general, 64-bit aware, bitwise version that ensures that
1100 only constants whose representation fits in the mask
1101
1102 0x00000000fffffc00
1103
1104 are accepted. It will reject, for example, negative SImode constants
1105 on 64-bit hosts, so correct handling is to mask the value beforehand
1106 according to the mode of the instruction. */
1107 #define SPARC_SETHI_P(X) \
1108 (((unsigned HOST_WIDE_INT) (X) \
1109 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1110
1111 /* Version of the above predicate for SImode constants and below. */
1112 #define SPARC_SETHI32_P(X) \
1113 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1114
1115 /* Return the register class of a scratch register needed to load IN into
1116 a register of class CLASS in MODE.
1117
1118 We need a temporary when loading/storing a HImode/QImode value
1119 between memory and the FPU registers. This can happen when combine puts
1120 a paradoxical subreg in a float/fix conversion insn.
1121
1122 We need a temporary when loading/storing a DFmode value between
1123 unaligned memory and the upper FPU registers. */
1124
1125 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1126 ((FP_REG_CLASS_P (CLASS) \
1127 && ((MODE) == HImode || (MODE) == QImode) \
1128 && (GET_CODE (IN) == MEM \
1129 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1130 && true_regnum (IN) == -1))) \
1131 ? GENERAL_REGS \
1132 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1133 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1134 && ! mem_min_alignment ((IN), 8)) \
1135 ? FP_REGS \
1136 : (((TARGET_CM_MEDANY \
1137 && symbolic_operand ((IN), (MODE))) \
1138 || (TARGET_CM_EMBMEDANY \
1139 && text_segment_operand ((IN), (MODE)))) \
1140 && !flag_pic) \
1141 ? GENERAL_REGS \
1142 : NO_REGS)
1143
1144 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1145 ((FP_REG_CLASS_P (CLASS) \
1146 && ((MODE) == HImode || (MODE) == QImode) \
1147 && (GET_CODE (IN) == MEM \
1148 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1149 && true_regnum (IN) == -1))) \
1150 ? GENERAL_REGS \
1151 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1152 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1153 && ! mem_min_alignment ((IN), 8)) \
1154 ? FP_REGS \
1155 : (((TARGET_CM_MEDANY \
1156 && symbolic_operand ((IN), (MODE))) \
1157 || (TARGET_CM_EMBMEDANY \
1158 && text_segment_operand ((IN), (MODE)))) \
1159 && !flag_pic) \
1160 ? GENERAL_REGS \
1161 : NO_REGS)
1162
1163 /* On SPARC it is not possible to directly move data between
1164 GENERAL_REGS and FP_REGS. */
1165 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1166 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1167
1168 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1169 because the movsi and movsf patterns don't handle r/f moves.
1170 For v8 we copy the default definition. */
1171 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1172 (TARGET_ARCH64 \
1173 ? (GET_MODE_BITSIZE (MODE) < 32 \
1174 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1175 : MODE) \
1176 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1177 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1178 : MODE))
1179
1180 /* Return the maximum number of consecutive registers
1181 needed to represent mode MODE in a register of class CLASS. */
1182 /* On SPARC, this is the size of MODE in words. */
1183 #define CLASS_MAX_NREGS(CLASS, MODE) \
1184 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1185 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1186 \f
1187 /* Stack layout; function entry, exit and calling. */
1188
1189 /* Define this if pushing a word on the stack
1190 makes the stack pointer a smaller address. */
1191 #define STACK_GROWS_DOWNWARD
1192
1193 /* Define this to nonzero if the nominal address of the stack frame
1194 is at the high-address end of the local variables;
1195 that is, each additional local variable allocated
1196 goes at a more negative offset in the frame. */
1197 #define FRAME_GROWS_DOWNWARD 1
1198
1199 /* Offset within stack frame to start allocating local variables at.
1200 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1201 first local allocated. Otherwise, it is the offset to the BEGINNING
1202 of the first local allocated. */
1203 #define STARTING_FRAME_OFFSET 0
1204
1205 /* Offset of first parameter from the argument pointer register value.
1206 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1207 even if this function isn't going to use it.
1208 v9: This is 128 for the ins and locals. */
1209 #define FIRST_PARM_OFFSET(FNDECL) \
1210 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1211
1212 /* Offset from the argument pointer register value to the CFA.
1213 This is different from FIRST_PARM_OFFSET because the register window
1214 comes between the CFA and the arguments. */
1215 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1216
1217 /* When a parameter is passed in a register, stack space is still
1218 allocated for it.
1219 !v9: All 6 possible integer registers have backing store allocated.
1220 v9: Only space for the arguments passed is allocated. */
1221 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1222 meaning to the backend. Further, we need to be able to detect if a
1223 varargs/unprototyped function is called, as they may want to spill more
1224 registers than we've provided space. Ugly, ugly. So for now we retain
1225 all 6 slots even for v9. */
1226 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1227
1228 /* Definitions for register elimination. */
1229
1230 #define ELIMINABLE_REGS \
1231 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1232 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1233
1234 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1235 do { \
1236 if ((TO) == STACK_POINTER_REGNUM) \
1237 (OFFSET) = sparc_compute_frame_size (get_frame_size (), \
1238 current_function_is_leaf); \
1239 else \
1240 (OFFSET) = 0; \
1241 (OFFSET) += SPARC_STACK_BIAS; \
1242 } while (0)
1243
1244 /* Keep the stack pointer constant throughout the function.
1245 This is both an optimization and a necessity: longjmp
1246 doesn't behave itself when the stack pointer moves within
1247 the function! */
1248 #define ACCUMULATE_OUTGOING_ARGS 1
1249
1250 /* Define this macro if the target machine has "register windows". This
1251 C expression returns the register number as seen by the called function
1252 corresponding to register number OUT as seen by the calling function.
1253 Return OUT if register number OUT is not an outbound register. */
1254
1255 #define INCOMING_REGNO(OUT) \
1256 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1257
1258 /* Define this macro if the target machine has "register windows". This
1259 C expression returns the register number as seen by the calling function
1260 corresponding to register number IN as seen by the called function.
1261 Return IN if register number IN is not an inbound register. */
1262
1263 #define OUTGOING_REGNO(IN) \
1264 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1265
1266 /* Define this macro if the target machine has register windows. This
1267 C expression returns true if the register is call-saved but is in the
1268 register window. */
1269
1270 #define LOCAL_REGNO(REGNO) \
1271 (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1272
1273 /* Define the size of space to allocate for the return value of an
1274 untyped_call. */
1275
1276 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1277
1278 /* 1 if N is a possible register number for function argument passing.
1279 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1280
1281 #define FUNCTION_ARG_REGNO_P(N) \
1282 (TARGET_ARCH64 \
1283 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1284 : ((N) >= 8 && (N) <= 13))
1285 \f
1286 /* Define a data type for recording info about an argument list
1287 during the scan of that argument list. This data type should
1288 hold all necessary information about the function itself
1289 and about the args processed so far, enough to enable macros
1290 such as FUNCTION_ARG to determine where the next arg should go.
1291
1292 On SPARC (!v9), this is a single integer, which is a number of words
1293 of arguments scanned so far (including the invisible argument,
1294 if any, which holds the structure-value-address).
1295 Thus 7 or more means all following args should go on the stack.
1296
1297 For v9, we also need to know whether a prototype is present. */
1298
1299 struct sparc_args {
1300 int words; /* number of words passed so far */
1301 int prototype_p; /* nonzero if a prototype is present */
1302 int libcall_p; /* nonzero if a library call */
1303 };
1304 #define CUMULATIVE_ARGS struct sparc_args
1305
1306 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1307 for a call to a function whose data type is FNTYPE.
1308 For a library call, FNTYPE is 0. */
1309
1310 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1311 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1312
1313 /* If defined, a C expression which determines whether, and in which direction,
1314 to pad out an argument with extra space. The value should be of type
1315 `enum direction': either `upward' to pad above the argument,
1316 `downward' to pad below, or `none' to inhibit padding. */
1317
1318 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1319 function_arg_padding ((MODE), (TYPE))
1320
1321 \f
1322 /* Generate the special assembly code needed to tell the assembler whatever
1323 it might need to know about the return value of a function.
1324
1325 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1326 information to the assembler relating to peephole optimization (done in
1327 the assembler). */
1328
1329 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1330 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1331
1332 /* Output the special assembly code needed to tell the assembler some
1333 register is used as global register variable.
1334
1335 SPARC 64bit psABI declares registers %g2 and %g3 as application
1336 registers and %g6 and %g7 as OS registers. Any object using them
1337 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1338 and how they are used (scratch or some global variable).
1339 Linker will then refuse to link together objects which use those
1340 registers incompatibly.
1341
1342 Unless the registers are used for scratch, two different global
1343 registers cannot be declared to the same name, so in the unlikely
1344 case of a global register variable occupying more than one register
1345 we prefix the second and following registers with .gnu.part1. etc. */
1346
1347 extern GTY(()) char sparc_hard_reg_printed[8];
1348
1349 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1350 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1351 do { \
1352 if (TARGET_ARCH64) \
1353 { \
1354 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1355 int reg; \
1356 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1357 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1358 { \
1359 if (reg == (REGNO)) \
1360 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1361 else \
1362 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1363 reg, reg - (REGNO), (NAME)); \
1364 sparc_hard_reg_printed[reg] = 1; \
1365 } \
1366 } \
1367 } while (0)
1368 #endif
1369
1370 \f
1371 /* Emit rtl for profiling. */
1372 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1373
1374 /* All the work done in PROFILE_HOOK, but still required. */
1375 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1376
1377 /* Set the name of the mcount function for the system. */
1378 #define MCOUNT_FUNCTION "*mcount"
1379 \f
1380 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1381 the stack pointer does not matter. The value is tested only in
1382 functions that have frame pointers. */
1383 #define EXIT_IGNORE_STACK 1
1384
1385 /* Length in units of the trampoline for entering a nested function. */
1386 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1387
1388 /* Alignment required for trampolines, in bits. */
1389 #define TRAMPOLINE_ALIGNMENT 128
1390 \f
1391 /* Generate RTL to flush the register windows so as to make arbitrary frames
1392 available. */
1393 #define SETUP_FRAME_ADDRESSES() \
1394 do { \
1395 if (!TARGET_FLAT) \
1396 emit_insn (gen_flush_register_windows ());\
1397 } while (0)
1398
1399 /* Given an rtx for the address of a frame,
1400 return an rtx for the address of the word in the frame
1401 that holds the dynamic chain--the previous frame's address. */
1402 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1403 plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1404
1405 /* Given an rtx for the frame pointer,
1406 return an rtx for the address of the frame. */
1407 #define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS)
1408
1409 /* The return address isn't on the stack, it is in a register, so we can't
1410 access it from the current frame pointer. We can access it from the
1411 previous frame pointer though by reading a value from the register window
1412 save area. */
1413 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1414
1415 /* This is the offset of the return address to the true next instruction to be
1416 executed for the current function. */
1417 #define RETURN_ADDR_OFFSET \
1418 (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1419
1420 /* The current return address is in %i7. The return address of anything
1421 farther back is in the register window save area at [%fp+60]. */
1422 /* ??? This ignores the fact that the actual return address is +8 for normal
1423 returns, and +12 for structure returns. */
1424 #define RETURN_ADDR_REGNUM 31
1425 #define RETURN_ADDR_RTX(count, frame) \
1426 ((count == -1) \
1427 ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM) \
1428 : gen_rtx_MEM (Pmode, \
1429 memory_address (Pmode, plus_constant (frame, \
1430 15 * UNITS_PER_WORD \
1431 + SPARC_STACK_BIAS))))
1432
1433 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1434 +12, but always using +8 is close enough for frame unwind purposes.
1435 Actually, just using %o7 is close enough for unwinding, but %o7+8
1436 is something you can return to. */
1437 #define INCOMING_RETURN_ADDR_REGNUM 15
1438 #define INCOMING_RETURN_ADDR_RTX \
1439 plus_constant (gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1440 #define DWARF_FRAME_RETURN_COLUMN \
1441 DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1442
1443 /* The offset from the incoming value of %sp to the top of the stack frame
1444 for the current function. On sparc64, we have to account for the stack
1445 bias if present. */
1446 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1447
1448 /* Describe how we implement __builtin_eh_return. */
1449 #define EH_RETURN_REGNUM 1
1450 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1451 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1452
1453 /* Define registers used by the epilogue and return instruction. */
1454 #define EPILOGUE_USES(REGNO) \
1455 ((REGNO) == RETURN_ADDR_REGNUM \
1456 || (TARGET_FLAT \
1457 && epilogue_completed \
1458 && (REGNO) == INCOMING_RETURN_ADDR_REGNUM) \
1459 || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1460
1461 /* Select a format to encode pointers in exception handling data. CODE
1462 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1463 true if the symbol may be affected by dynamic relocations.
1464
1465 If assembler and linker properly support .uaword %r_disp32(foo),
1466 then use PC relative 32-bit relocations instead of absolute relocs
1467 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1468 for binaries, to save memory.
1469
1470 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1471 symbol %r_disp32() is against was not local, but .hidden. In that
1472 case, we have to use DW_EH_PE_absptr for pic personality. */
1473 #ifdef HAVE_AS_SPARC_UA_PCREL
1474 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1475 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1476 (flag_pic \
1477 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1478 : ((TARGET_ARCH64 && ! GLOBAL) \
1479 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1480 : DW_EH_PE_absptr))
1481 #else
1482 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1483 (flag_pic \
1484 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1485 : ((TARGET_ARCH64 && ! GLOBAL) \
1486 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1487 : DW_EH_PE_absptr))
1488 #endif
1489
1490 /* Emit a PC-relative relocation. */
1491 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1492 do { \
1493 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1494 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1495 assemble_name (FILE, LABEL); \
1496 fputc (')', FILE); \
1497 } while (0)
1498 #endif
1499 \f
1500 /* Addressing modes, and classification of registers for them. */
1501
1502 /* Macros to check register numbers against specific register classes. */
1503
1504 /* These assume that REGNO is a hard or pseudo reg number.
1505 They give nonzero only if REGNO is a hard reg of the suitable class
1506 or a pseudo reg currently allocated to a suitable hard reg.
1507 Since they use reg_renumber, they are safe only once reg_renumber
1508 has been allocated, which happens in local-alloc.c. */
1509
1510 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1511 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
1512 || (REGNO) == FRAME_POINTER_REGNUM \
1513 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1514
1515 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1516
1517 #define REGNO_OK_FOR_FP_P(REGNO) \
1518 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1519 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1520
1521 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1522 (TARGET_V9 \
1523 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1524 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1525 \f
1526 /* Maximum number of registers that can appear in a valid memory address. */
1527
1528 #define MAX_REGS_PER_ADDRESS 2
1529
1530 /* Recognize any constant value that is a valid address.
1531 When PIC, we do not accept an address that would require a scratch reg
1532 to load into a register. */
1533
1534 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1535
1536 /* Define this, so that when PIC, reload won't try to reload invalid
1537 addresses which require two reload registers. */
1538
1539 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1540 \f
1541 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
1542
1543 #ifdef HAVE_AS_OFFSETABLE_LO10
1544 #define USE_AS_OFFSETABLE_LO10 1
1545 #else
1546 #define USE_AS_OFFSETABLE_LO10 0
1547 #endif
1548 \f
1549 /* Try a machine-dependent way of reloading an illegitimate address
1550 operand. If we find one, push the reload and jump to WIN. This
1551 macro is used in only one place: `find_reloads_address' in reload.c. */
1552 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1553 do { \
1554 int win; \
1555 (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM), \
1556 (int)(TYPE), (IND_LEVELS), &win); \
1557 if (win) \
1558 goto WIN; \
1559 } while (0)
1560 \f
1561 /* Specify the machine mode that this machine uses
1562 for the index in the tablejump instruction. */
1563 /* If we ever implement any of the full models (such as CM_FULLANY),
1564 this has to be DImode in that case */
1565 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1566 #define CASE_VECTOR_MODE \
1567 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1568 #else
1569 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1570 we have to sign extend which slows things down. */
1571 #define CASE_VECTOR_MODE \
1572 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1573 #endif
1574
1575 /* Define this as 1 if `char' should by default be signed; else as 0. */
1576 #define DEFAULT_SIGNED_CHAR 1
1577
1578 /* Max number of bytes we can move from memory to memory
1579 in one reasonably fast instruction. */
1580 #define MOVE_MAX 8
1581
1582 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1583 move-instruction pairs, we will do a movmem or libcall instead. */
1584
1585 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1586
1587 /* Define if operations between registers always perform the operation
1588 on the full register even if a narrower mode is specified. */
1589 #define WORD_REGISTER_OPERATIONS
1590
1591 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1592 will either zero-extend or sign-extend. The value of this macro should
1593 be the code that says which one of the two operations is implicitly
1594 done, UNKNOWN if none. */
1595 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1596
1597 /* Nonzero if access to memory by bytes is slow and undesirable.
1598 For RISC chips, it means that access to memory by bytes is no
1599 better than access by words when possible, so grab a whole word
1600 and maybe make use of that. */
1601 #define SLOW_BYTE_ACCESS 1
1602
1603 /* Define this to be nonzero if shift instructions ignore all but the low-order
1604 few bits. */
1605 #define SHIFT_COUNT_TRUNCATED 1
1606
1607 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1608 is done just by pretending it is already truncated. */
1609 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1610
1611 /* For SImode, we make sure the top 32-bits of the register are clear and
1612 then we subtract 32 from the lzd instruction result. */
1613 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1614 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1615
1616 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1617 return the mode to be used for the comparison. For floating-point,
1618 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
1619 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
1620 processing is needed. */
1621 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
1622
1623 /* Return nonzero if MODE implies a floating point inequality can be
1624 reversed. For SPARC this is always true because we have a full
1625 compliment of ordered and unordered comparisons, but until generic
1626 code knows how to reverse it correctly we keep the old definition. */
1627 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1628
1629 /* A function address in a call instruction for indexing purposes. */
1630 #define FUNCTION_MODE Pmode
1631
1632 /* Define this if addresses of constant functions
1633 shouldn't be put through pseudo regs where they can be cse'd.
1634 Desirable on machines where ordinary constants are expensive
1635 but a CALL with constant address is cheap. */
1636 #define NO_FUNCTION_CSE
1637
1638 /* The _Q_* comparison libcalls return booleans. */
1639 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1640
1641 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1642 that the inputs are fully consumed before the output memory is clobbered. */
1643
1644 #define TARGET_BUGGY_QP_LIB 0
1645
1646 /* Assume by default that we do not have the Solaris-specific conversion
1647 routines nor 64-bit integer multiply and divide routines. */
1648
1649 #define SUN_CONVERSION_LIBFUNCS 0
1650 #define DITF_CONVERSION_LIBFUNCS 0
1651 #define SUN_INTEGER_MULTIPLY_64 0
1652
1653 /* Provide the cost of a branch. For pre-v9 processors we use
1654 a value of 3 to take into account the potential annulling of
1655 the delay slot (which ends up being a bubble in the pipeline slot)
1656 plus a cycle to take into consideration the instruction cache
1657 effects.
1658
1659 On v9 and later, which have branch prediction facilities, we set
1660 it to the depth of the pipeline as that is the cost of a
1661 mispredicted branch.
1662
1663 On Niagara, normal branches insert 3 bubbles into the pipe
1664 and annulled branches insert 4 bubbles.
1665
1666 On Niagara-2 and Niagara-3, a not-taken branch costs 1 cycle whereas
1667 a taken branch costs 6 cycles. */
1668
1669 #define BRANCH_COST(speed_p, predictable_p) \
1670 ((sparc_cpu == PROCESSOR_V9 \
1671 || sparc_cpu == PROCESSOR_ULTRASPARC) \
1672 ? 7 \
1673 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1674 ? 9 \
1675 : (sparc_cpu == PROCESSOR_NIAGARA \
1676 ? 4 \
1677 : ((sparc_cpu == PROCESSOR_NIAGARA2 \
1678 || sparc_cpu == PROCESSOR_NIAGARA3) \
1679 ? 5 \
1680 : 3))))
1681 \f
1682 /* Control the assembler format that we output. */
1683
1684 /* A C string constant describing how to begin a comment in the target
1685 assembler language. The compiler assumes that the comment will end at
1686 the end of the line. */
1687
1688 #define ASM_COMMENT_START "!"
1689
1690 /* Output to assembler file text saying following lines
1691 may contain character constants, extra white space, comments, etc. */
1692
1693 #define ASM_APP_ON ""
1694
1695 /* Output to assembler file text saying following lines
1696 no longer contain unusual constructs. */
1697
1698 #define ASM_APP_OFF ""
1699
1700 /* How to refer to registers in assembler output.
1701 This sequence is indexed by compiler's hard-register-number (see above). */
1702
1703 #define REGISTER_NAMES \
1704 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1705 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1706 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1707 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1708 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1709 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1710 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1711 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
1712 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
1713 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
1714 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
1715 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
1716 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1717
1718 /* Define additional names for use in asm clobbers and asm declarations. */
1719
1720 #define ADDITIONAL_REGISTER_NAMES \
1721 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1722
1723 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
1724 can run past this up to a continuation point. Once we used 1500, but
1725 a single entry in C++ can run more than 500 bytes, due to the length of
1726 mangled symbol names. dbxout.c should really be fixed to do
1727 continuations when they are actually needed instead of trying to
1728 guess... */
1729 #define DBX_CONTIN_LENGTH 1000
1730
1731 /* This is how to output a command to make the user-level label named NAME
1732 defined for reference from other files. */
1733
1734 /* Globalizing directive for a label. */
1735 #define GLOBAL_ASM_OP "\t.global "
1736
1737 /* The prefix to add to user-visible assembler symbols. */
1738
1739 #define USER_LABEL_PREFIX "_"
1740
1741 /* This is how to store into the string LABEL
1742 the symbol_ref name of an internal numbered label where
1743 PREFIX is the class of label and NUM is the number within the class.
1744 This is suitable for output with `assemble_name'. */
1745
1746 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1747 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1748
1749 /* This is how we hook in and defer the case-vector until the end of
1750 the function. */
1751 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1752 sparc_defer_case_vector ((LAB),(VEC), 0)
1753
1754 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1755 sparc_defer_case_vector ((LAB),(VEC), 1)
1756
1757 /* This is how to output an element of a case-vector that is absolute. */
1758
1759 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1760 do { \
1761 char label[30]; \
1762 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1763 if (CASE_VECTOR_MODE == SImode) \
1764 fprintf (FILE, "\t.word\t"); \
1765 else \
1766 fprintf (FILE, "\t.xword\t"); \
1767 assemble_name (FILE, label); \
1768 fputc ('\n', FILE); \
1769 } while (0)
1770
1771 /* This is how to output an element of a case-vector that is relative.
1772 (SPARC uses such vectors only when generating PIC.) */
1773
1774 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1775 do { \
1776 char label[30]; \
1777 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
1778 if (CASE_VECTOR_MODE == SImode) \
1779 fprintf (FILE, "\t.word\t"); \
1780 else \
1781 fprintf (FILE, "\t.xword\t"); \
1782 assemble_name (FILE, label); \
1783 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
1784 fputc ('-', FILE); \
1785 assemble_name (FILE, label); \
1786 fputc ('\n', FILE); \
1787 } while (0)
1788
1789 /* This is what to output before and after case-vector (both
1790 relative and absolute). If .subsection -1 works, we put case-vectors
1791 at the beginning of the current section. */
1792
1793 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1794
1795 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
1796 fprintf(FILE, "\t.subsection\t-1\n")
1797
1798 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
1799 fprintf(FILE, "\t.previous\n")
1800
1801 #endif
1802
1803 /* This is how to output an assembler line
1804 that says to advance the location counter
1805 to a multiple of 2**LOG bytes. */
1806
1807 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1808 if ((LOG) != 0) \
1809 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1810
1811 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1812 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1813
1814 /* This says how to output an assembler line
1815 to define a global common symbol. */
1816
1817 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1818 ( fputs ("\t.common ", (FILE)), \
1819 assemble_name ((FILE), (NAME)), \
1820 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1821
1822 /* This says how to output an assembler line to define a local common
1823 symbol. */
1824
1825 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1826 ( fputs ("\t.reserve ", (FILE)), \
1827 assemble_name ((FILE), (NAME)), \
1828 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
1829 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1830
1831 /* A C statement (sans semicolon) to output to the stdio stream
1832 FILE the assembler definition of uninitialized global DECL named
1833 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1834 Try to use asm_output_aligned_bss to implement this macro. */
1835
1836 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1837 do { \
1838 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1839 } while (0)
1840
1841 #define IDENT_ASM_OP "\t.ident\t"
1842
1843 /* Output #ident as a .ident. */
1844
1845 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1846 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
1847
1848 /* Prettify the assembly. */
1849
1850 extern int sparc_indent_opcode;
1851
1852 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
1853 do { \
1854 if (sparc_indent_opcode) \
1855 { \
1856 putc (' ', FILE); \
1857 sparc_indent_opcode = 0; \
1858 } \
1859 } while (0)
1860
1861 /* TLS support defaulting to original Sun flavor. GNU extensions
1862 must be activated in separate configuration files. */
1863 #ifdef HAVE_AS_TLS
1864 #define TARGET_TLS 1
1865 #else
1866 #define TARGET_TLS 0
1867 #endif
1868
1869 #define TARGET_SUN_TLS TARGET_TLS
1870 #define TARGET_GNU_TLS 0
1871
1872 #ifndef HAVE_AS_FMAF_HPC_VIS3
1873 #define AS_NIAGARA3_FLAG "b"
1874 #else
1875 #define AS_NIAGARA3_FLAG "d"
1876 #endif
1877
1878 /* The number of Pmode words for the setjmp buffer. */
1879 #define JMP_BUF_SIZE 12
1880
1881 /* We use gcc _mcount for profiling. */
1882 #define NO_PROFILE_COUNTERS 0
1883
1884 /* Debug support */
1885 #define MASK_DEBUG_OPTIONS 0x01 /* debug option handling */
1886 #define MASK_DEBUG_ALL MASK_DEBUG_OPTIONS
1887
1888 #define TARGET_DEBUG_OPTIONS (sparc_debug & MASK_DEBUG_OPTIONS)