final.c (output_addr_const): Use target opening and closing parentheses.
[gcc.git] / gcc / config / v850 / v850.h
1 /* Definitions of target machine for GNU compiler. NEC V850 series
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Jeff Law (law@cygnus.com).
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef GCC_V850_H
23 #define GCC_V850_H
24
25 #include "svr4.h" /* Automatically does #undef CPP_PREDEFINES */
26
27 /* These are defiend in svr4.h but we want to override them. */
28 #undef ASM_FINAL_SPEC
29 #undef LIB_SPEC
30 #undef ENDFILE_SPEC
31 #undef LINK_SPEC
32 #undef STARTFILE_SPEC
33 #undef ASM_SPEC
34
35
36 #define TARGET_CPU_generic 1
37
38 #ifndef TARGET_CPU_DEFAULT
39 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
40 #endif
41
42 #define MASK_DEFAULT MASK_V850
43 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
44 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
45 #define TARGET_VERSION fprintf (stderr, " (NEC V850)");
46
47
48 #define ASM_SPEC "%{mv*:-mv%*}"
49 #define CPP_SPEC "%{mv850ea:-D__v850ea__} %{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
50
51 #define EXTRA_SPECS \
52 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
53 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
54
55 /* Names to predefine in the preprocessor for this target machine. */
56 #define CPP_PREDEFINES "-D__v851__ -D__v850"
57
58 /* Run-time compilation parameters selecting different hardware subsets. */
59
60 extern int target_flags;
61
62 /* Target flags bits, see below for an explanation of the bits. */
63 #define MASK_GHS 0x00000001
64 #define MASK_LONG_CALLS 0x00000002
65 #define MASK_EP 0x00000004
66 #define MASK_PROLOG_FUNCTION 0x00000008
67 #define MASK_DEBUG 0x40000000
68
69 #define MASK_CPU 0x00000030
70 #define MASK_V850 0x00000010
71
72 #define MASK_BIG_SWITCH 0x00000100
73
74 /* Macros used in the machine description to test the flags. */
75
76 /* The GHS calling convention support doesn't really work,
77 mostly due to a lack of documentation. Outstanding issues:
78
79 * How do varargs & stdarg really work. How to they handle
80 passing structures (if at all).
81
82 * Doubles are normally 4 byte aligned, except in argument
83 lists where they are 8 byte aligned. Is the alignment
84 in the argument list based on the first parameter,
85 first stack parameter, etc etc.
86
87 * Passing/returning of large structures probably isn't the same
88 as GHS. We don't have enough documentation on their conventions
89 to be compatible.
90
91 * Tests of SETUP_INCOMING_VARARGS need to be made runtime checks
92 since it depends on TARGET_GHS. */
93 #define TARGET_GHS (target_flags & MASK_GHS)
94
95 /* Don't do PC-relative calls, instead load the address of the target
96 function into a register and perform a register indirect call. */
97 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
98
99 /* Whether to optimize space by using ep (r30) for pointers with small offsets
100 in basic blocks. */
101 #define TARGET_EP (target_flags & MASK_EP)
102
103 /* Whether to call out-of-line functions to save registers or not. */
104 #define TARGET_PROLOG_FUNCTION (target_flags & MASK_PROLOG_FUNCTION)
105
106 #define TARGET_V850 ((target_flags & MASK_CPU) == MASK_V850)
107
108 /* Whether to emit 2 byte per entry or 4 byte per entry switch tables. */
109 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
110
111 /* General debug flag */
112 #define TARGET_DEBUG (target_flags & MASK_DEBUG)
113
114 /* Macro to define tables used to set the flags.
115 This is a list in braces of pairs in braces,
116 each pair being { "NAME", VALUE }
117 where VALUE is the bits to set or minus the bits to clear.
118 An empty string NAME is used to identify the default VALUE. */
119
120 #define TARGET_SWITCHES \
121 {{ "ghs", MASK_GHS, N_("Support Green Hills ABI") }, \
122 { "no-ghs", -MASK_GHS, "" }, \
123 { "long-calls", MASK_LONG_CALLS, \
124 N_("Prohibit PC relative function calls") },\
125 { "no-long-calls", -MASK_LONG_CALLS, "" }, \
126 { "ep", MASK_EP, \
127 N_("Reuse r30 on a per function basis") }, \
128 { "no-ep", -MASK_EP, "" }, \
129 { "prolog-function", MASK_PROLOG_FUNCTION, \
130 N_("Use stubs for function prologues") }, \
131 { "no-prolog-function", -MASK_PROLOG_FUNCTION, "" }, \
132 { "space", MASK_EP | MASK_PROLOG_FUNCTION, \
133 N_("Same as: -mep -mprolog-function") }, \
134 { "debug", MASK_DEBUG, N_("Enable backend debugging") }, \
135 { "v850", MASK_V850, \
136 N_("Compile for the v850 processor") }, \
137 { "v850", -(MASK_V850 ^ MASK_CPU), "" }, \
138 { "big-switch", MASK_BIG_SWITCH, \
139 N_("Use 4 byte entries in switch tables") },\
140 { "", MASK_DEFAULT, ""}}
141
142 /* Information about the various small memory areas. */
143 struct small_memory_info {
144 const char *name;
145 const char *value;
146 long max;
147 long physical_max;
148 };
149
150 enum small_memory_type {
151 /* tiny data area, using EP as base register */
152 SMALL_MEMORY_TDA = 0,
153 /* small data area using dp as base register */
154 SMALL_MEMORY_SDA,
155 /* zero data area using r0 as base register */
156 SMALL_MEMORY_ZDA,
157 SMALL_MEMORY_max
158 };
159
160 extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
161
162 /* This macro is similar to `TARGET_SWITCHES' but defines names of
163 command options that have values. Its definition is an
164 initializer with a subgrouping for each command option.
165
166 Each subgrouping contains a string constant, that defines the
167 fixed part of the option name, and the address of a variable. The
168 variable, type `char *', is set to the variable part of the given
169 option if the fixed part matches. The actual option name is made
170 by appending `-m' to the specified name.
171
172 Here is an example which defines `-mshort-data-NUMBER'. If the
173 given option is `-mshort-data-512', the variable `m88k_short_data'
174 will be set to the string `"512"'.
175
176 extern char *m88k_short_data;
177 #define TARGET_OPTIONS \
178 { { "short-data-", &m88k_short_data } } */
179
180 #define TARGET_OPTIONS \
181 { \
182 { "tda=", &small_memory[ (int)SMALL_MEMORY_TDA ].value, \
183 N_("Set the max size of data eligible for the TDA area") }, \
184 { "tda-", &small_memory[ (int)SMALL_MEMORY_TDA ].value, "" }, \
185 { "sda=", &small_memory[ (int)SMALL_MEMORY_SDA ].value, \
186 N_("Set the max size of data eligible for the SDA area") }, \
187 { "sda-", &small_memory[ (int)SMALL_MEMORY_SDA ].value, "" }, \
188 { "zda=", &small_memory[ (int)SMALL_MEMORY_ZDA ].value, \
189 N_("Set the max size of data eligible for the ZDA area") }, \
190 { "zda-", &small_memory[ (int)SMALL_MEMORY_ZDA ].value, "" }, \
191 }
192
193 /* Sometimes certain combinations of command options do not make
194 sense on a particular target machine. You can define a macro
195 `OVERRIDE_OPTIONS' to take account of this. This macro, if
196 defined, is executed once just after all the command options have
197 been parsed.
198
199 Don't use this macro to turn on various extra optimizations for
200 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
201 #define OVERRIDE_OPTIONS override_options ()
202
203
204 /* Show we can debug even without a frame pointer. */
205 #define CAN_DEBUG_WITHOUT_FP
206
207 /* Some machines may desire to change what optimizations are
208 performed for various optimization levels. This macro, if
209 defined, is executed once just after the optimization level is
210 determined and before the remainder of the command options have
211 been parsed. Values set in this macro are used as the default
212 values for the other command line options.
213
214 LEVEL is the optimization level specified; 2 if `-O2' is
215 specified, 1 if `-O' is specified, and 0 if neither is specified.
216
217 SIZE is non-zero if `-Os' is specified, 0 otherwise.
218
219 You should not use this macro to change options that are not
220 machine-specific. These should uniformly selected by the same
221 optimization level on all supported machines. Use this macro to
222 enable machine-specific optimizations.
223
224 *Do not examine `write_symbols' in this macro!* The debugging
225 options are not supposed to alter the generated code. */
226
227 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
228 { \
229 if (LEVEL) \
230 target_flags |= (MASK_EP | MASK_PROLOG_FUNCTION); \
231 }
232
233 \f
234 /* Target machine storage layout */
235
236 /* Define this if most significant bit is lowest numbered
237 in instructions that operate on numbered bit-fields.
238 This is not true on the NEC V850. */
239 #define BITS_BIG_ENDIAN 0
240
241 /* Define this if most significant byte of a word is the lowest numbered. */
242 /* This is not true on the NEC V850. */
243 #define BYTES_BIG_ENDIAN 0
244
245 /* Define this if most significant word of a multiword number is lowest
246 numbered.
247 This is not true on the NEC V850. */
248 #define WORDS_BIG_ENDIAN 0
249
250 /* Number of bits in an addressable storage unit */
251 #define BITS_PER_UNIT 8
252
253 /* Width in bits of a "word", which is the contents of a machine register.
254 Note that this is not necessarily the width of data type `int';
255 if using 16-bit ints on a 68000, this would still be 32.
256 But on a machine with 16-bit registers, this would be 16. */
257 #define BITS_PER_WORD 32
258
259 /* Width of a word, in units (bytes). */
260 #define UNITS_PER_WORD 4
261
262 /* Width in bits of a pointer.
263 See also the macro `Pmode' defined below. */
264 #define POINTER_SIZE 32
265
266 /* Define this macro if it is advisable to hold scalars in registers
267 in a wider mode than that declared by the program. In such cases,
268 the value is constrained to be within the bounds of the declared
269 type, but kept valid in the wider mode. The signedness of the
270 extension may differ from that of the type.
271
272 Some simple experiments have shown that leaving UNSIGNEDP alone
273 generates the best overall code. */
274
275 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
276 if (GET_MODE_CLASS (MODE) == MODE_INT \
277 && GET_MODE_SIZE (MODE) < 4) \
278 { (MODE) = SImode; }
279
280 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
281 #define PARM_BOUNDARY 32
282
283 /* The stack goes in 32 bit lumps. */
284 #define STACK_BOUNDARY 32
285
286 /* Allocation boundary (in *bits*) for the code of a function.
287 16 is the minimum boundary; 32 would give better performance. */
288 #define FUNCTION_BOUNDARY 16
289
290 /* No data type wants to be aligned rounder than this. */
291 #define BIGGEST_ALIGNMENT 32
292
293 /* Alignment of field after `int : 0' in a structure. */
294 #define EMPTY_FIELD_BOUNDARY 32
295
296 /* No structure field wants to be aligned rounder than this. */
297 #define BIGGEST_FIELD_ALIGNMENT 32
298
299 /* Define this if move instructions will actually fail to work
300 when given unaligned data. */
301 #define STRICT_ALIGNMENT 1
302
303 /* Define this as 1 if `char' should by default be signed; else as 0.
304
305 On the NEC V850, loads do sign extension, so make this default. */
306 #define DEFAULT_SIGNED_CHAR 1
307 \f
308 /* Standard register usage. */
309
310 /* Number of actual hardware registers.
311 The hardware registers are assigned numbers for the compiler
312 from 0 to just below FIRST_PSEUDO_REGISTER.
313
314 All registers that the compiler knows about must be given numbers,
315 even those that are not normally considered general registers. */
316
317 #define FIRST_PSEUDO_REGISTER 34
318
319 /* 1 for registers that have pervasive standard uses
320 and are not available for the register allocator. */
321
322 #define FIXED_REGISTERS \
323 { 1, 1, 0, 1, 1, 0, 0, 0, \
324 0, 0, 0, 0, 0, 0, 0, 0, \
325 0, 0, 0, 0, 0, 0, 0, 0, \
326 0, 0, 0, 0, 0, 0, 1, 0, \
327 1, 1}
328
329 /* 1 for registers not available across function calls.
330 These must include the FIXED_REGISTERS and also any
331 registers that can be used without being saved.
332 The latter must include the registers where values are returned
333 and the register where structure-value addresses are passed.
334 Aside from that, you can include as many other registers as you
335 like. */
336
337 #define CALL_USED_REGISTERS \
338 { 1, 1, 0, 1, 1, 1, 1, 1, \
339 1, 1, 1, 1, 1, 1, 1, 1, \
340 1, 1, 1, 1, 0, 0, 0, 0, \
341 0, 0, 0, 0, 0, 0, 1, 1, \
342 1, 1}
343
344 /* List the order in which to allocate registers. Each register must be
345 listed once, even those in FIXED_REGISTERS.
346
347 On the 850, we make the return registers first, then all of the volatile
348 registers, then the saved registers in reverse order to better save the
349 registers with an out of line function, and finally the fixed
350 registers. */
351
352 #define REG_ALLOC_ORDER \
353 { \
354 10, 11, /* return registers */ \
355 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
356 6, 7, 8, 9, 31, /* argument registers */ \
357 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
358 21, 20, 2, \
359 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
360 }
361
362 /* Return number of consecutive hard regs needed starting at reg REGNO
363 to hold something of mode MODE.
364
365 This is ordinarily the length in words of a value of mode MODE
366 but can be less for certain modes in special long registers. */
367
368 #define HARD_REGNO_NREGS(REGNO, MODE) \
369 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
370
371 /* Value is 1 if hard register REGNO can hold a value of machine-mode
372 MODE. */
373
374 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
375 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
376
377 /* Value is 1 if it is a good idea to tie two pseudo registers
378 when one has mode MODE1 and one has mode MODE2.
379 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
380 for any hard reg, then this must be 0 for correct output. */
381 #define MODES_TIEABLE_P(MODE1, MODE2) \
382 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
383
384 \f
385 /* Define the classes of registers for register constraints in the
386 machine description. Also define ranges of constants.
387
388 One of the classes must always be named ALL_REGS and include all hard regs.
389 If there is more than one class, another class must be named NO_REGS
390 and contain no registers.
391
392 The name GENERAL_REGS must be the name of a class (or an alias for
393 another name such as ALL_REGS). This is the class of registers
394 that is allowed by "g" or "r" in a register constraint.
395 Also, registers outside this class are allocated only when
396 instructions express preferences for them.
397
398 The classes must be numbered in nondecreasing order; that is,
399 a larger-numbered class must never be contained completely
400 in a smaller-numbered class.
401
402 For any two classes, it is very desirable that there be another
403 class that represents their union. */
404
405 enum reg_class
406 {
407 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
408 };
409
410 #define N_REG_CLASSES (int) LIM_REG_CLASSES
411
412 /* Give names of register classes as strings for dump file. */
413
414 #define REG_CLASS_NAMES \
415 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
416
417 /* Define which registers fit in which classes.
418 This is an initializer for a vector of HARD_REG_SET
419 of length N_REG_CLASSES. */
420
421 #define REG_CLASS_CONTENTS \
422 { \
423 { 0x00000000 }, /* NO_REGS */ \
424 { 0xffffffff }, /* GENERAL_REGS */ \
425 { 0xffffffff }, /* ALL_REGS */ \
426 }
427
428 /* The same information, inverted:
429 Return the class number of the smallest class containing
430 reg number REGNO. This could be a conditional expression
431 or could index an array. */
432
433 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS
434
435 /* The class value for index registers, and the one for base regs. */
436
437 #define INDEX_REG_CLASS NO_REGS
438 #define BASE_REG_CLASS GENERAL_REGS
439
440 /* Get reg_class from a letter such as appears in the machine description. */
441
442 #define REG_CLASS_FROM_LETTER(C) (NO_REGS)
443
444 /* Macros to check register numbers against specific register classes. */
445
446 /* These assume that REGNO is a hard or pseudo reg number.
447 They give nonzero only if REGNO is a hard reg of the suitable class
448 or a pseudo reg currently allocated to a suitable hard reg.
449 Since they use reg_renumber, they are safe only once reg_renumber
450 has been allocated, which happens in local-alloc.c. */
451
452 #define REGNO_OK_FOR_BASE_P(regno) \
453 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
454
455 #define REGNO_OK_FOR_INDEX_P(regno) 0
456
457 /* Given an rtx X being reloaded into a reg required to be
458 in class CLASS, return the class of reg to actually use.
459 In general this is just CLASS; but on some machines
460 in some cases it is preferable to use a more restrictive class. */
461
462 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
463
464 /* Return the maximum number of consecutive registers
465 needed to represent mode MODE in a register of class CLASS. */
466
467 #define CLASS_MAX_NREGS(CLASS, MODE) \
468 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
469
470 /* The letters I, J, K, L, M, N, O, P in a register constraint string
471 can be used to stand for particular ranges of immediate operands.
472 This macro defines what the ranges are.
473 C is the letter, and VALUE is a constant value.
474 Return 1 if VALUE is in the range specified by C. */
475
476 #define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
477 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
478 /* zero */
479 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
480 /* 5 bit signed immediate */
481 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
482 /* 16 bit signed immediate */
483 #define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
484 /* valid constant for movhi instruction. */
485 #define CONST_OK_FOR_L(VALUE) \
486 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
487 && CONST_OK_FOR_I ((VALUE & 0xffff)))
488 /* 16 bit unsigned immediate */
489 #define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
490 /* 5 bit unsigned immediate in shift instructions */
491 #define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
492
493 #define CONST_OK_FOR_O(VALUE) 0
494 #define CONST_OK_FOR_P(VALUE) 0
495
496
497 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
498 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
499 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
500 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
501 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
502 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
503 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
504 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
505 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
506 0)
507
508 /* Similar, but for floating constants, and defining letters G and H.
509 Here VALUE is the CONST_DOUBLE rtx itself.
510
511 `G' is a zero of some form. */
512
513 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
514 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
515 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
516 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
517 && CONST_DOUBLE_LOW (VALUE) == 0 \
518 && CONST_DOUBLE_HIGH (VALUE) == 0))
519
520 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
521
522 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
523 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
524 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
525 : 0)
526
527 \f
528 /* Stack layout; function entry, exit and calling. */
529
530 /* Define this if pushing a word on the stack
531 makes the stack pointer a smaller address. */
532
533 #define STACK_GROWS_DOWNWARD
534
535 /* Define this if the nominal address of the stack frame
536 is at the high-address end of the local variables;
537 that is, each additional local variable allocated
538 goes at a more negative offset in the frame. */
539
540 #define FRAME_GROWS_DOWNWARD
541
542 /* Offset within stack frame to start allocating local variables at.
543 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
544 first local allocated. Otherwise, it is the offset to the BEGINNING
545 of the first local allocated. */
546
547 #define STARTING_FRAME_OFFSET 0
548
549 /* Offset of first parameter from the argument pointer register value. */
550 /* Is equal to the size of the saved fp + pc, even if an fp isn't
551 saved since the value is used before we know. */
552
553 #define FIRST_PARM_OFFSET(FNDECL) 0
554
555 /* Specify the registers used for certain standard purposes.
556 The values of these macros are register numbers. */
557
558 /* Register to use for pushing function arguments. */
559 #define STACK_POINTER_REGNUM 3
560
561 /* Base register for access to local variables of the function. */
562 #define FRAME_POINTER_REGNUM 32
563
564 /* Register containing return address from latest function call. */
565 #define LINK_POINTER_REGNUM 31
566
567 /* On some machines the offset between the frame pointer and starting
568 offset of the automatic variables is not known until after register
569 allocation has been done (for example, because the saved registers
570 are between these two locations). On those machines, define
571 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
572 be used internally until the offset is known, and define
573 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
574 used for the frame pointer.
575
576 You should define this macro only in the very rare circumstances
577 when it is not possible to calculate the offset between the frame
578 pointer and the automatic variables until after register
579 allocation has been completed. When this macro is defined, you
580 must also indicate in your definition of `ELIMINABLE_REGS' how to
581 eliminate `FRAME_POINTER_REGNUM' into either
582 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
583
584 Do not define this macro if it would be the same as
585 `FRAME_POINTER_REGNUM'. */
586 #undef HARD_FRAME_POINTER_REGNUM
587 #define HARD_FRAME_POINTER_REGNUM 29
588
589 /* Base register for access to arguments of the function. */
590 #define ARG_POINTER_REGNUM 33
591
592 /* Register in which static-chain is passed to a function. */
593 #define STATIC_CHAIN_REGNUM 20
594
595 /* Value should be nonzero if functions must have frame pointers.
596 Zero means the frame pointer need not be set up (and parms
597 may be accessed via the stack pointer) in functions that seem suitable.
598 This is computed in `reload', in reload1.c. */
599 #define FRAME_POINTER_REQUIRED 0
600
601 /* If defined, this macro specifies a table of register pairs used to
602 eliminate unneeded registers that point into the stack frame. If
603 it is not defined, the only elimination attempted by the compiler
604 is to replace references to the frame pointer with references to
605 the stack pointer.
606
607 The definition of this macro is a list of structure
608 initializations, each of which specifies an original and
609 replacement register.
610
611 On some machines, the position of the argument pointer is not
612 known until the compilation is completed. In such a case, a
613 separate hard register must be used for the argument pointer.
614 This register can be eliminated by replacing it with either the
615 frame pointer or the argument pointer, depending on whether or not
616 the frame pointer has been eliminated.
617
618 In this case, you might specify:
619 #define ELIMINABLE_REGS \
620 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
621 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
622 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
623
624 Note that the elimination of the argument pointer with the stack
625 pointer is specified first since that is the preferred elimination. */
626
627 #define ELIMINABLE_REGS \
628 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
629 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
630 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
631 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
632
633 /* A C expression that returns non-zero if the compiler is allowed to
634 try to replace register number FROM-REG with register number
635 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
636 defined, and will usually be the constant 1, since most of the
637 cases preventing register elimination are things that the compiler
638 already knows about. */
639
640 #define CAN_ELIMINATE(FROM, TO) \
641 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
642
643 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
644 specifies the initial difference between the specified pair of
645 registers. This macro must be defined if `ELIMINABLE_REGS' is
646 defined. */
647
648 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
649 { \
650 if ((FROM) == FRAME_POINTER_REGNUM) \
651 (OFFSET) = get_frame_size () + current_function_outgoing_args_size; \
652 else if ((FROM) == ARG_POINTER_REGNUM) \
653 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
654 else \
655 abort (); \
656 }
657
658 /* A guess for the V850. */
659 #define PROMOTE_PROTOTYPES 1
660
661 /* Keep the stack pointer constant throughout the function. */
662 #define ACCUMULATE_OUTGOING_ARGS 1
663
664 /* Value is the number of bytes of arguments automatically
665 popped when returning from a subroutine call.
666 FUNDECL is the declaration node of the function (as a tree),
667 FUNTYPE is the data type of the function (as a tree),
668 or for a library call it is an identifier node for the subroutine name.
669 SIZE is the number of bytes of arguments passed on the stack. */
670
671 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
672
673 #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
674 \f
675 /* Define a data type for recording info about an argument list
676 during the scan of that argument list. This data type should
677 hold all necessary information about the function itself
678 and about the args processed so far, enough to enable macros
679 such as FUNCTION_ARG to determine where the next arg should go. */
680
681 #define CUMULATIVE_ARGS struct cum_arg
682 struct cum_arg { int nbytes; };
683
684 /* Define where to put the arguments to a function.
685 Value is zero to push the argument on the stack,
686 or a hard register in which to store the argument.
687
688 MODE is the argument's machine mode.
689 TYPE is the data type of the argument (as a tree).
690 This is null for libcalls where that information may
691 not be available.
692 CUM is a variable of type CUMULATIVE_ARGS which gives info about
693 the preceding args and about the function being called.
694 NAMED is nonzero if this argument is a named parameter
695 (otherwise it is an extra parameter matching an ellipsis). */
696
697 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
698 function_arg (&CUM, MODE, TYPE, NAMED)
699
700 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
701 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
702
703 /* Initialize a variable CUM of type CUMULATIVE_ARGS
704 for a call to a function whose data type is FNTYPE.
705 For a library call, FNTYPE is 0. */
706
707 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
708 ((CUM).nbytes = 0)
709
710 /* Update the data in CUM to advance over an argument
711 of mode MODE and data type TYPE.
712 (TYPE is null for libcalls where that information may not be available.) */
713
714 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
715 ((CUM).nbytes += ((MODE) != BLKmode \
716 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
717 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
718
719 /* When a parameter is passed in a register, stack space is still
720 allocated for it. */
721 #define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
722
723 /* Define this if the above stack space is to be considered part of the
724 space allocated by the caller. */
725 #define OUTGOING_REG_PARM_STACK_SPACE
726
727 extern int current_function_anonymous_args;
728 /* Do any setup necessary for varargs/stdargs functions. */
729 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PAS, SECOND) \
730 current_function_anonymous_args = (!TARGET_GHS ? 1 : 0);
731
732 /* Implement `va_arg'. */
733 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
734 v850_va_arg (valist, type)
735
736 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
737 ((TYPE) && int_size_in_bytes (TYPE) > 8)
738
739 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
740 ((TYPE) && int_size_in_bytes (TYPE) > 8)
741
742 /* 1 if N is a possible register number for function argument passing. */
743
744 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
745
746 /* Define how to find the value returned by a function.
747 VALTYPE is the data type of the value (as a tree).
748 If the precise function being called is known, FUNC is its FUNCTION_DECL;
749 otherwise, FUNC is 0. */
750
751 #define FUNCTION_VALUE(VALTYPE, FUNC) \
752 gen_rtx_REG (TYPE_MODE (VALTYPE), 10)
753
754 /* Define how to find the value returned by a library function
755 assuming the value has mode MODE. */
756
757 #define LIBCALL_VALUE(MODE) \
758 gen_rtx_REG (MODE, 10)
759
760 /* 1 if N is a possible register number for a function value. */
761
762 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
763
764 /* Return values > 8 bytes in length in memory. */
765 #define DEFAULT_PCC_STRUCT_RETURN 0
766 #define RETURN_IN_MEMORY(TYPE) \
767 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
768
769 /* Register in which address to store a structure value
770 is passed to a function. On the V850 it's passed as
771 the first parameter. */
772
773 #define STRUCT_VALUE 0
774
775 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
776 the stack pointer does not matter. The value is tested only in
777 functions that have frame pointers.
778 No definition is equivalent to always zero. */
779
780 #define EXIT_IGNORE_STACK 1
781
782 /* Output assembler code to FILE to increment profiler label # LABELNO
783 for profiling a function entry. */
784
785 #define FUNCTION_PROFILER(FILE, LABELNO) ;
786
787 #define TRAMPOLINE_TEMPLATE(FILE) \
788 do { \
789 fprintf (FILE, "\tjarl .+4,r12\n"); \
790 fprintf (FILE, "\tld.w 12[r12],r5\n"); \
791 fprintf (FILE, "\tld.w 16[r12],r12\n"); \
792 fprintf (FILE, "\tjmp [r12]\n"); \
793 fprintf (FILE, "\tnop\n"); \
794 fprintf (FILE, "\t.long 0\n"); \
795 fprintf (FILE, "\t.long 0\n"); \
796 } while (0)
797
798 /* Length in units of the trampoline for entering a nested function. */
799
800 #define TRAMPOLINE_SIZE 24
801
802 /* Emit RTL insns to initialize the variable parts of a trampoline.
803 FNADDR is an RTX for the address of the function's pure code.
804 CXT is an RTX for the static chain value for the function. */
805
806 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
807 { \
808 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \
809 (CXT)); \
810 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \
811 (FNADDR)); \
812 }
813
814 /* Addressing modes, and classification of registers for them. */
815
816 \f
817 /* 1 if X is an rtx for a constant that is a valid address. */
818
819 /* ??? This seems too exclusive. May get better code by accepting more
820 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
821
822 #define CONSTANT_ADDRESS_P(X) \
823 (GET_CODE (X) == CONST_INT \
824 && CONST_OK_FOR_K (INTVAL (X)))
825
826 /* Maximum number of registers that can appear in a valid memory address. */
827
828 #define MAX_REGS_PER_ADDRESS 1
829
830 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
831 and check its validity for a certain class.
832 We have two alternate definitions for each of them.
833 The usual definition accepts all pseudo regs; the other rejects
834 them unless they have been allocated suitable hard regs.
835 The symbol REG_OK_STRICT causes the latter definition to be used.
836
837 Most source files want to accept pseudo regs in the hope that
838 they will get allocated to the class that the insn wants them to be in.
839 Source files for reload pass need to be strict.
840 After reload, it makes no difference, since pseudo regs have
841 been eliminated by then. */
842
843 #ifndef REG_OK_STRICT
844
845 /* Nonzero if X is a hard reg that can be used as an index
846 or if it is a pseudo reg. */
847 #define REG_OK_FOR_INDEX_P(X) 0
848 /* Nonzero if X is a hard reg that can be used as a base reg
849 or if it is a pseudo reg. */
850 #define REG_OK_FOR_BASE_P(X) 1
851 #define REG_OK_FOR_INDEX_P_STRICT(X) 0
852 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
853 #define STRICT 0
854
855 #else
856
857 /* Nonzero if X is a hard reg that can be used as an index. */
858 #define REG_OK_FOR_INDEX_P(X) 0
859 /* Nonzero if X is a hard reg that can be used as a base reg. */
860 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
861 #define STRICT 1
862
863 #endif
864
865 /* A C expression that defines the optional machine-dependent
866 constraint letters that can be used to segregate specific types of
867 operands, usually memory references, for the target machine.
868 Normally this macro will not be defined. If it is required for a
869 particular target machine, it should return 1 if VALUE corresponds
870 to the operand type represented by the constraint letter C. If C
871 is not defined as an extra constraint, the value returned should
872 be 0 regardless of VALUE.
873
874 For example, on the ROMP, load instructions cannot have their
875 output in r0 if the memory reference contains a symbolic address.
876 Constraint letter `Q' is defined as representing a memory address
877 that does *not* contain a symbolic address. An alternative is
878 specified with a `Q' constraint on the input and `r' on the
879 output. The next alternative specifies `m' on the input and a
880 register class that does not include r0 on the output. */
881
882 #define EXTRA_CONSTRAINT(OP, C) \
883 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), 0) \
884 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
885 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF && ! ZDA_NAME_P (XSTR (OP, 0))) \
886 : (C) == 'T' ? 0 \
887 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF && ZDA_NAME_P (XSTR (OP, 0))) \
888 || (GET_CODE (OP) == CONST \
889 && GET_CODE (XEXP (OP, 0)) == PLUS \
890 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
891 && ZDA_NAME_P (XSTR (XEXP (XEXP (OP, 0), 0), 0)))) \
892 : 0)
893 \f
894 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
895 that is a valid memory address for an instruction.
896 The MODE argument is the machine mode for the MEM expression
897 that wants to use this address.
898
899 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
900 except for CONSTANT_ADDRESS_P which is actually
901 machine-independent. */
902
903 /* Accept either REG or SUBREG where a register is valid. */
904
905 #define RTX_OK_FOR_BASE_P(X) \
906 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
907 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
908 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
909
910 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
911 do { \
912 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
913 if (CONSTANT_ADDRESS_P (X) \
914 && (MODE == QImode || INTVAL (X) % 2 == 0) \
915 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
916 goto ADDR; \
917 if (GET_CODE (X) == LO_SUM \
918 && GET_CODE (XEXP (X, 0)) == REG \
919 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
920 && CONSTANT_P (XEXP (X, 1)) \
921 && (GET_CODE (XEXP (X, 1)) != CONST_INT \
922 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
923 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
924 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
925 goto ADDR; \
926 if (special_symbolref_operand (X, MODE) \
927 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
928 goto ADDR; \
929 if (GET_CODE (X) == PLUS \
930 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
931 && (MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
932 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR; \
933 } while (0)
934
935 \f
936 /* Try machine-dependent ways of modifying an illegitimate address
937 to be legitimate. If we find one, return the new, valid address.
938 This macro is used in only one place: `memory_address' in explow.c.
939
940 OLDX is the address as it was before break_out_memory_refs was called.
941 In some cases it is useful to look at this to decide what needs to be done.
942
943 MODE and WIN are passed so that this macro can use
944 GO_IF_LEGITIMATE_ADDRESS.
945
946 It is always safe for this macro to do nothing. It exists to recognize
947 opportunities to optimize the output. */
948
949 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
950
951 /* Go to LABEL if ADDR (a legitimate address expression)
952 has an effect that depends on the machine mode it is used for. */
953
954 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
955
956 /* Nonzero if the constant value X is a legitimate general operand.
957 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
958
959 #define LEGITIMATE_CONSTANT_P(X) \
960 (GET_CODE (X) == CONST_DOUBLE \
961 || !(GET_CODE (X) == CONST \
962 && GET_CODE (XEXP (X, 0)) == PLUS \
963 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
964 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
965 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
966
967 /* In rare cases, correct code generation requires extra machine
968 dependent processing between the second jump optimization pass and
969 delayed branch scheduling. On those machines, define this macro
970 as a C statement to act on the code starting at INSN. */
971
972 #define MACHINE_DEPENDENT_REORG(INSN) v850_reorg (INSN)
973
974 \f
975 /* Tell final.c how to eliminate redundant test instructions. */
976
977 /* Here we define machine-dependent flags and fields in cc_status
978 (see `conditions.h'). No extra ones are needed for the vax. */
979
980 /* Store in cc_status the expressions
981 that the condition codes will describe
982 after execution of an instruction whose pattern is EXP.
983 Do not alter them if the instruction would not alter the cc's. */
984
985 #define CC_OVERFLOW_UNUSABLE 0x200
986 #define CC_NO_CARRY CC_NO_OVERFLOW
987 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
988
989 /* A part of a C `switch' statement that describes the relative costs
990 of constant RTL expressions. It must contain `case' labels for
991 expression codes `const_int', `const', `symbol_ref', `label_ref'
992 and `const_double'. Each case must ultimately reach a `return'
993 statement to return the relative cost of the use of that kind of
994 constant value in an expression. The cost may depend on the
995 precise value of the constant, which is available for examination
996 in X, and the rtx code of the expression in which it is contained,
997 found in OUTER_CODE.
998
999 CODE is the expression code--redundant, since it can be obtained
1000 with `GET_CODE (X)'. */
1001
1002 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1003 case CONST_INT: \
1004 case CONST_DOUBLE: \
1005 case CONST: \
1006 case SYMBOL_REF: \
1007 case LABEL_REF: \
1008 { \
1009 int _zxy = const_costs(RTX, CODE); \
1010 return (_zxy) ? COSTS_N_INSNS (_zxy) : 0; \
1011 }
1012
1013 /* A crude cut at RTX_COSTS for the V850. */
1014
1015 /* Provide the costs of a rtl expression. This is in the body of a
1016 switch on CODE.
1017
1018 There aren't DImode MOD, DIV or MULT operations, so call them
1019 very expensive. Everything else is pretty much a constant cost. */
1020
1021 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
1022 case MOD: \
1023 case DIV: \
1024 return 60; \
1025 case MULT: \
1026 return 20;
1027
1028 /* All addressing modes have the same cost on the V850 series. */
1029 #define ADDRESS_COST(ADDR) 1
1030
1031 /* Nonzero if access to memory by bytes or half words is no faster
1032 than accessing full words. */
1033 #define SLOW_BYTE_ACCESS 1
1034
1035 /* Define this if zero-extension is slow (more than one real instruction). */
1036 #define SLOW_ZERO_EXTEND
1037
1038 /* According expr.c, a value of around 6 should minimize code size, and
1039 for the V850 series, that's our primary concern. */
1040 #define MOVE_RATIO 6
1041
1042 /* Indirect calls are expensive, never turn a direct call
1043 into an indirect call. */
1044 #define NO_FUNCTION_CSE
1045
1046 /* The four different data regions on the v850. */
1047 typedef enum
1048 {
1049 DATA_AREA_NORMAL,
1050 DATA_AREA_SDA,
1051 DATA_AREA_TDA,
1052 DATA_AREA_ZDA
1053 } v850_data_area;
1054
1055 /* A list of names for sections other than the standard two, which are
1056 `in_text' and `in_data'. You need not define this macro on a
1057 system with no other sections (that GCC needs to use). */
1058 #undef EXTRA_SECTIONS
1059 #define EXTRA_SECTIONS in_tdata, in_sdata, in_zdata, in_const, in_ctors, \
1060 in_dtors, in_rozdata, in_rosdata, in_sbss, in_zbss, in_zcommon, in_scommon
1061
1062 /* One or more functions to be defined in `varasm.c'. These
1063 functions should do jobs analogous to those of `text_section' and
1064 `data_section', for your additional sections. Do not define this
1065 macro if you do not define `EXTRA_SECTIONS'. */
1066 #undef EXTRA_SECTION_FUNCTIONS
1067
1068 /* This could be done a lot more cleanly using ANSI C ... */
1069 #define EXTRA_SECTION_FUNCTIONS \
1070 CONST_SECTION_FUNCTION \
1071 CTORS_SECTION_FUNCTION \
1072 DTORS_SECTION_FUNCTION \
1073 \
1074 void \
1075 sdata_section () \
1076 { \
1077 if (in_section != in_sdata) \
1078 { \
1079 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
1080 in_section = in_sdata; \
1081 } \
1082 } \
1083 \
1084 void \
1085 rosdata_section () \
1086 { \
1087 if (in_section != in_rosdata) \
1088 { \
1089 fprintf (asm_out_file, "%s\n", ROSDATA_SECTION_ASM_OP); \
1090 in_section = in_sdata; \
1091 } \
1092 } \
1093 \
1094 void \
1095 sbss_section () \
1096 { \
1097 if (in_section != in_sbss) \
1098 { \
1099 fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP); \
1100 in_section = in_sbss; \
1101 } \
1102 } \
1103 \
1104 void \
1105 tdata_section () \
1106 { \
1107 if (in_section != in_tdata) \
1108 { \
1109 fprintf (asm_out_file, "%s\n", TDATA_SECTION_ASM_OP); \
1110 in_section = in_tdata; \
1111 } \
1112 } \
1113 \
1114 void \
1115 zdata_section () \
1116 { \
1117 if (in_section != in_zdata) \
1118 { \
1119 fprintf (asm_out_file, "%s\n", ZDATA_SECTION_ASM_OP); \
1120 in_section = in_zdata; \
1121 } \
1122 } \
1123 \
1124 void \
1125 rozdata_section () \
1126 { \
1127 if (in_section != in_rozdata) \
1128 { \
1129 fprintf (asm_out_file, "%s\n", ROZDATA_SECTION_ASM_OP); \
1130 in_section = in_rozdata; \
1131 } \
1132 } \
1133 \
1134 void \
1135 zbss_section () \
1136 { \
1137 if (in_section != in_zbss) \
1138 { \
1139 fprintf (asm_out_file, "%s\n", ZBSS_SECTION_ASM_OP); \
1140 in_section = in_zbss; \
1141 } \
1142 }
1143
1144 #define TEXT_SECTION_ASM_OP "\t.section .text"
1145 #define DATA_SECTION_ASM_OP "\t.section .data"
1146 #define BSS_SECTION_ASM_OP "\t.section .bss"
1147 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
1148 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
1149 #define ZDATA_SECTION_ASM_OP "\t.section .zdata,\"aw\""
1150 #define ZBSS_SECTION_ASM_OP "\t.section .zbss,\"aw\""
1151 #define TDATA_SECTION_ASM_OP "\t.section .tdata,\"aw\""
1152 #define ROSDATA_SECTION_ASM_OP "\t.section .rosdata,\"a\""
1153 #define ROZDATA_SECTION_ASM_OP "\t.section .rozdata,\"a\""
1154
1155 #define SCOMMON_ASM_OP "\t.scomm\t"
1156 #define ZCOMMON_ASM_OP "\t.zcomm\t"
1157 #define TCOMMON_ASM_OP "\t.tcomm\t"
1158
1159 /* A C statement or statements to switch to the appropriate section
1160 for output of EXP. You can assume that EXP is either a `VAR_DECL'
1161 node or a constant of some sort. RELOC indicates whether the
1162 initial value of EXP requires link-time relocations. Select the
1163 section by calling `text_section' or one of the alternatives for
1164 other sections.
1165
1166 Do not define this macro if you put all read-only variables and
1167 constants in the read-only data section (usually the text section). */
1168 #undef SELECT_SECTION
1169 #define SELECT_SECTION(EXP, RELOC) \
1170 do { \
1171 if (TREE_CODE (EXP) == VAR_DECL) \
1172 { \
1173 int is_const; \
1174 if (!TREE_READONLY (EXP) \
1175 || TREE_SIDE_EFFECTS (EXP) \
1176 || !DECL_INITIAL (EXP) \
1177 || (DECL_INITIAL (EXP) != error_mark_node \
1178 && !TREE_CONSTANT (DECL_INITIAL (EXP)))) \
1179 is_const = FALSE; \
1180 else \
1181 is_const = TRUE; \
1182 \
1183 switch (v850_get_data_area (EXP)) \
1184 { \
1185 case DATA_AREA_ZDA: \
1186 if (is_const) \
1187 rozdata_section (); \
1188 else \
1189 zdata_section (); \
1190 break; \
1191 \
1192 case DATA_AREA_TDA: \
1193 tdata_section (); \
1194 break; \
1195 \
1196 case DATA_AREA_SDA: \
1197 if (is_const) \
1198 rosdata_section (); \
1199 else \
1200 sdata_section (); \
1201 break; \
1202 \
1203 default: \
1204 if (is_const) \
1205 const_section (); \
1206 else \
1207 data_section (); \
1208 break; \
1209 } \
1210 } \
1211 else if (TREE_CODE (EXP) == STRING_CST) \
1212 { \
1213 if (! flag_writable_strings) \
1214 const_section (); \
1215 else \
1216 data_section (); \
1217 } \
1218 \
1219 else \
1220 const_section (); \
1221 \
1222 } while (0)
1223
1224 /* A C statement or statements to switch to the appropriate section
1225 for output of RTX in mode MODE. You can assume that RTX is some
1226 kind of constant in RTL. The argument MODE is redundant except in
1227 the case of a `const_int' rtx. Select the section by calling
1228 `text_section' or one of the alternatives for other sections.
1229
1230 Do not define this macro if you put all constants in the read-only
1231 data section. */
1232 /* #define SELECT_RTX_SECTION(MODE, RTX) */
1233
1234 /* Output at beginning/end of assembler file. */
1235 #undef ASM_FILE_START
1236 #define ASM_FILE_START(FILE) asm_file_start(FILE)
1237
1238 #define ASM_COMMENT_START "#"
1239
1240 /* Output to assembler file text saying following lines
1241 may contain character constants, extra white space, comments, etc. */
1242
1243 #define ASM_APP_ON "#APP\n"
1244
1245 /* Output to assembler file text saying following lines
1246 no longer contain unusual constructs. */
1247
1248 #define ASM_APP_OFF "#NO_APP\n"
1249
1250 #undef USER_LABEL_PREFIX
1251 #define USER_LABEL_PREFIX "_"
1252
1253 /* This is how to output an assembler line defining a `double' constant.
1254 It is .double or .float, depending. */
1255
1256 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1257 do { char dstr[30]; \
1258 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1259 fprintf (FILE, "\t.double %s\n", dstr); \
1260 } while (0)
1261
1262
1263 /* This is how to output an assembler line defining a `float' constant. */
1264 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1265 do { char dstr[30]; \
1266 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1267 fprintf (FILE, "\t.float %s\n", dstr); \
1268 } while (0)
1269
1270 /* This is how to output an assembler line defining an `int' constant. */
1271
1272 #define ASM_OUTPUT_INT(FILE, VALUE) \
1273 ( fprintf (FILE, "\t.long "), \
1274 output_addr_const (FILE, (VALUE)), \
1275 fprintf (FILE, "\n"))
1276
1277 /* Likewise for `char' and `short' constants. */
1278
1279 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1280 ( fprintf (FILE, "\t.hword "), \
1281 output_addr_const (FILE, (VALUE)), \
1282 fprintf (FILE, "\n"))
1283
1284 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1285 ( fprintf (FILE, "\t.byte "), \
1286 output_addr_const (FILE, (VALUE)), \
1287 fprintf (FILE, "\n"))
1288
1289 /* This is how to output an assembler line for a numeric constant byte. */
1290 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
1291 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1292
1293 /* This says how to output the assembler to define a global
1294 uninitialized but not common symbol. */
1295
1296 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1297 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
1298
1299 #undef ASM_OUTPUT_ALIGNED_BSS
1300 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1301 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1302
1303 /* This says how to output the assembler to define a global
1304 uninitialized, common symbol. */
1305 #undef ASM_OUTPUT_ALIGNED_COMMON
1306 #undef ASM_OUTPUT_COMMON
1307 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
1308 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
1309
1310 /* This says how to output the assembler to define a local
1311 uninitialized symbol. */
1312 #undef ASM_OUTPUT_ALIGNED_LOCAL
1313 #undef ASM_OUTPUT_LOCAL
1314 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
1315 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
1316
1317 /* This is how to output the definition of a user-level label named NAME,
1318 such as the label on a static function or variable NAME. */
1319
1320 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1321 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1322
1323 /* This is how to output a command to make the user-level label named NAME
1324 defined for reference from other files. */
1325
1326 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1327 do \
1328 { \
1329 fputs ("\t.global ", FILE); \
1330 assemble_name (FILE, NAME); \
1331 fputs ("\n", FILE); \
1332 } \
1333 while (0)
1334
1335
1336 /* Store in OUTPUT a string (made with alloca) containing
1337 an assembler-name for a local static variable named NAME.
1338 LABELNO is an integer which is different for each call. */
1339
1340 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1341 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1342 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1343
1344 /* This is how we tell the assembler that two symbols have the same value. */
1345
1346 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
1347 do { assemble_name(FILE, NAME1); \
1348 fputs(" = ", FILE); \
1349 assemble_name(FILE, NAME2); \
1350 fputc('\n', FILE); } while (0)
1351
1352
1353 /* How to refer to registers in assembler output.
1354 This sequence is indexed by compiler's hard-register-number (see above). */
1355
1356 #define REGISTER_NAMES \
1357 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
1358 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1359 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
1360 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
1361 ".fp", ".ap"}
1362
1363 #define ADDITIONAL_REGISTER_NAMES \
1364 { { "zero", 0 }, \
1365 { "hp", 2 }, \
1366 { "r3", 3 }, \
1367 { "r4", 4 }, \
1368 { "tp", 5 }, \
1369 { "fp", 29 }, \
1370 { "r30", 30 }, \
1371 { "lp", 31} }
1372
1373 /* Print an instruction operand X on file FILE.
1374 look in v850.c for details */
1375
1376 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1377
1378 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1379 ((CODE) == '.')
1380
1381 /* Print a memory operand whose address is X, on file FILE.
1382 This uses a function in output-vax.c. */
1383
1384 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1385
1386 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
1387 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
1388
1389 /* This is how to output an element of a case-vector that is absolute. */
1390
1391 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1392 asm_fprintf (FILE, "\t%s .L%d\n", \
1393 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
1394
1395 /* This is how to output an element of a case-vector that is relative. */
1396
1397 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1398 fprintf (FILE, "\t%s .L%d-.L%d\n", \
1399 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
1400 VALUE, REL)
1401
1402 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
1403 if ((LOG) != 0) \
1404 fprintf (FILE, "\t.align %d\n", (LOG))
1405
1406 /* We don't have to worry about dbx compatibility for the v850. */
1407 #define DEFAULT_GDB_EXTENSIONS 1
1408
1409 /* Use stabs debugging info by default. */
1410 #undef PREFERRED_DEBUGGING_TYPE
1411 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1412
1413 #define DBX_REGISTER_NUMBER(REGNO) REGNO
1414
1415 /* Define to use software floating point emulator for REAL_ARITHMETIC and
1416 decimal <-> binary conversion. */
1417 #define REAL_ARITHMETIC
1418
1419 /* Specify the machine mode that this machine uses
1420 for the index in the tablejump instruction. */
1421 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
1422
1423 /* Define this if the case instruction drops through after the table
1424 when the index is out of range. Don't define it if the case insn
1425 jumps to the default label instead. */
1426 /* #define CASE_DROPS_THROUGH */
1427
1428 /* Define as C expression which evaluates to nonzero if the tablejump
1429 instruction expects the table to contain offsets from the address of the
1430 table.
1431 Do not define this if the table should contain absolute addresses. */
1432 #define CASE_VECTOR_PC_RELATIVE 1
1433
1434 /* The switch instruction requires that the jump table immediately follow
1435 it. */
1436 #define JUMP_TABLES_IN_TEXT_SECTION 1
1437
1438 /* svr4.h defines this assuming that 4 byte alignment is required. */
1439 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
1440 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1441 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
1442
1443 #define WORD_REGISTER_OPERATIONS
1444
1445 /* Byte and short loads sign extend the value to a word. */
1446 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1447
1448 /* Specify the tree operation to be used to convert reals to integers. */
1449 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1450
1451 /* This flag, if defined, says the same insns that convert to a signed fixnum
1452 also convert validly to an unsigned one. */
1453 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1454
1455 /* This is the kind of divide that is easiest to do in the general case. */
1456 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1457
1458 /* Max number of bytes we can move from memory to memory
1459 in one reasonably fast instruction. */
1460 #define MOVE_MAX 4
1461
1462 /* Define if shifts truncate the shift count
1463 which implies one can omit a sign-extension or zero-extension
1464 of a shift count. */
1465 #define SHIFT_COUNT_TRUNCATED 1
1466
1467 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1468 is done just by pretending it is already truncated. */
1469 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1470
1471 #define STORE_FLAG_VALUE 1
1472
1473 /* Specify the machine mode that pointers have.
1474 After generation of rtl, the compiler makes no further distinction
1475 between pointers and any other objects of this machine mode. */
1476 #define Pmode SImode
1477
1478 /* A function address in a call instruction
1479 is a byte address (for indexing purposes)
1480 so give the MEM rtx a byte's mode. */
1481 #define FUNCTION_MODE QImode
1482
1483 /* Tell compiler we want to support GHS pragmas */
1484 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
1485 cpp_register_pragma_space (PFILE, "ghs"); \
1486 cpp_register_pragma (PFILE, "ghs", "interrupt", ghs_pragma_interrupt); \
1487 cpp_register_pragma (PFILE, "ghs", "section", ghs_pragma_section); \
1488 cpp_register_pragma (PFILE, "ghs", "starttda", ghs_pragma_starttda); \
1489 cpp_register_pragma (PFILE, "ghs", "startsda", ghs_pragma_startsda); \
1490 cpp_register_pragma (PFILE, "ghs", "startzda", ghs_pragma_startzda); \
1491 cpp_register_pragma (PFILE, "ghs", "endtda", ghs_pragma_endtda); \
1492 cpp_register_pragma (PFILE, "ghs", "endsda", ghs_pragma_endsda); \
1493 cpp_register_pragma (PFILE, "ghs", "endzda", ghs_pragma_endzda); \
1494 } while (0)
1495
1496 /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
1497 can appear in the "ghs section" pragma. These names are used to index
1498 into the GHS_default_section_names[] and GHS_current_section_names[]
1499 that are defined in v850.c, and so the ordering of each must remain
1500 consistant.
1501
1502 These arrays give the default and current names for each kind of
1503 section defined by the GHS pragmas. The current names can be changed
1504 by the "ghs section" pragma. If the current names are null, use
1505 the default names. Note that the two arrays have different types.
1506
1507 For the *normal* section kinds (like .data, .text, etc.) we do not
1508 want to explicitly force the name of these sections, but would rather
1509 let the linker (or at least the back end) choose the name of the
1510 section, UNLESS the user has force a specific name for these section
1511 kinds. To accomplish this set the name in ghs_default_section_names
1512 to null. */
1513
1514 enum GHS_section_kind
1515 {
1516 GHS_SECTION_KIND_DEFAULT,
1517
1518 GHS_SECTION_KIND_TEXT,
1519 GHS_SECTION_KIND_DATA,
1520 GHS_SECTION_KIND_RODATA,
1521 GHS_SECTION_KIND_BSS,
1522 GHS_SECTION_KIND_SDATA,
1523 GHS_SECTION_KIND_ROSDATA,
1524 GHS_SECTION_KIND_TDATA,
1525 GHS_SECTION_KIND_ZDATA,
1526 GHS_SECTION_KIND_ROZDATA,
1527
1528 COUNT_OF_GHS_SECTION_KINDS /* must be last */
1529 };
1530
1531 /* The following code is for handling pragmas supported by the
1532 v850 compiler produced by Green Hills Software. This is at
1533 the specific request of a customer. */
1534
1535 typedef struct data_area_stack_element
1536 {
1537 struct data_area_stack_element * prev;
1538 v850_data_area data_area; /* Current default data area. */
1539 } data_area_stack_element;
1540
1541 /* Track the current data area set by the
1542 data area pragma (which can be nested). */
1543 extern data_area_stack_element * data_area_stack;
1544
1545 /* Names of the various data areas used on the v850. */
1546 extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1547 extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1548
1549 /* The assembler op to start the file. */
1550
1551 #define FILE_ASM_OP "\t.file\n"
1552
1553 /* Enable the register move pass to improve code. */
1554 #define ENABLE_REGMOVE_PASS
1555
1556
1557 /* Implement ZDA, TDA, and SDA */
1558
1559 #define EP_REGNUM 30 /* ep register number */
1560
1561 #define ENCODE_SECTION_INFO(DECL) \
1562 do \
1563 { \
1564 if ((TREE_STATIC (DECL) || DECL_EXTERNAL (DECL)) \
1565 && TREE_CODE (DECL) == VAR_DECL) \
1566 v850_encode_data_area (DECL); \
1567 } \
1568 while (0)
1569
1570 #define ZDA_NAME_FLAG_CHAR '@'
1571 #define TDA_NAME_FLAG_CHAR '%'
1572 #define SDA_NAME_FLAG_CHAR '&'
1573
1574 #define ZDA_NAME_P(NAME) (*(NAME) == ZDA_NAME_FLAG_CHAR)
1575 #define TDA_NAME_P(NAME) (*(NAME) == TDA_NAME_FLAG_CHAR)
1576 #define SDA_NAME_P(NAME) (*(NAME) == SDA_NAME_FLAG_CHAR)
1577
1578 #define ENCODED_NAME_P(SYMBOL_NAME) \
1579 ( ZDA_NAME_P (SYMBOL_NAME) \
1580 || TDA_NAME_P (SYMBOL_NAME) \
1581 || SDA_NAME_P (SYMBOL_NAME))
1582
1583 #define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
1584 (VAR) = (SYMBOL_NAME) + (ENCODED_NAME_P (SYMBOL_NAME) || *(SYMBOL_NAME) == '*')
1585
1586 /* Define this if you have defined special-purpose predicates in the
1587 file `MACHINE.c'. This macro is called within an initializer of an
1588 array of structures. The first field in the structure is the name
1589 of a predicate and the second field is an array of rtl codes. For
1590 each predicate, list all rtl codes that can be in expressions
1591 matched by the predicate. The list should have a trailing comma. */
1592
1593 #define PREDICATE_CODES \
1594 { "reg_or_0_operand", { REG, SUBREG, CONST_INT, CONST_DOUBLE }}, \
1595 { "reg_or_int5_operand", { REG, SUBREG, CONST_INT }}, \
1596 { "call_address_operand", { REG, SYMBOL_REF }}, \
1597 { "movsi_source_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
1598 CONST_DOUBLE, CONST, HIGH, MEM, \
1599 REG, SUBREG }}, \
1600 { "special_symbolref_operand", { SYMBOL_REF }}, \
1601 { "power_of_two_operand", { CONST_INT }}, \
1602 { "pattern_is_ok_for_prologue", { PARALLEL }}, \
1603 { "pattern_is_ok_for_epilogue", { PARALLEL }}, \
1604 { "register_is_ok_for_epilogue",{ REG }}, \
1605 { "not_power_of_two_operand", { CONST_INT }},
1606
1607 #endif /* ! GCC_V850_H */