1750a.md, [...]: Use GEN_INT consistently.
[gcc.git] / gcc / config / we32k / we32k.h
1 /* Definitions of target machine for GNU compiler. AT&T we32000 version.
2 Copyright (C) 1991, 92, 93, 94, 95, 1996 Free Software Foundation, Inc.
3 Contributed by John Wehle (john@feith1.uucp)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 1, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* Names to predefine in the preprocessor for this target machine. */
24
25 #define CPP_PREDEFINES "-Dwe32000 -Du3b2 -Dunix -Asystem(unix) -Acpu(we32000) -Amachine(we32000)"
26
27 /* Print subsidiary information on the compiler version in use. */
28
29 #define TARGET_VERSION fprintf (stderr, " (we32000)");
30
31 /* Run-time compilation parameters selecting different hardware subsets. */
32
33 extern int target_flags;
34
35 /* Macros used in the machine description to test the flags. */
36
37 /* Macro to define tables used to set the flags.
38 This is a list in braces of pairs in braces,
39 each pair being { "NAME", VALUE }
40 where VALUE is the bits to set or minus the bits to clear.
41 An empty string NAME is used to identify the default VALUE. */
42
43 #define TARGET_SWITCHES \
44 { { "", TARGET_DEFAULT}}
45
46 #define TARGET_DEFAULT 0
47
48 \f
49 /* target machine storage layout */
50
51 /* Define this if most significant bit is lowest numbered
52 in instructions that operate on numbered bit-fields. */
53 #define BITS_BIG_ENDIAN 0
54
55 /* Define this if most significant byte of a word is the lowest numbered. */
56 /* That is true on the we32000. */
57 #define BYTES_BIG_ENDIAN 1
58
59 /* Define this if most significant word of a multiword is lowest numbered. */
60 /* For we32000 we can decide arbitrarily
61 since there are no machine instructions for them. */
62 #define WORDS_BIG_ENDIAN 1
63
64 /* number of bits in an addressable storage unit */
65 #define BITS_PER_UNIT 8
66
67 /* Width in bits of a "word", which is the contents of a machine register.
68 Note that this is not necessarily the width of data type `int';
69 if using 16-bit ints on a we32000, this would still be 32.
70 But on a machine with 16-bit registers, this would be 16. */
71 #define BITS_PER_WORD 32
72
73 /* Width of a word, in units (bytes). */
74 #define UNITS_PER_WORD 4
75
76 /* Width in bits of a pointer.
77 See also the macro `Pmode' defined below. */
78 #define POINTER_SIZE 32
79
80 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
81 #define PARM_BOUNDARY 32
82
83 /* Boundary (in *bits*) on which stack pointer should be aligned. */
84 #define STACK_BOUNDARY 32
85
86 /* Allocation boundary (in *bits*) for the code of a function. */
87 #define FUNCTION_BOUNDARY 32
88
89 /* Alignment of field after `int : 0' in a structure. */
90 #define EMPTY_FIELD_BOUNDARY 32
91
92 /* No data type wants to be aligned rounder than this. */
93 #define BIGGEST_ALIGNMENT 32
94
95 /* Every structure's size must be a multiple of this. */
96 #define STRUCTURE_SIZE_BOUNDARY 32
97
98 /* Define this if move instructions will actually fail to work
99 when given unaligned data. */
100 #define STRICT_ALIGNMENT 1
101
102 /* Define number of bits in most basic integer type.
103 (If undefined, default is BITS_PER_WORD). */
104 #define INT_TYPE_SIZE 32
105
106 /* Integer bit fields should have the same size and alignment
107 as actual integers */
108 #define PCC_BITFIELD_TYPE_MATTERS 1
109
110 /* Specify the size_t type. */
111 #define SIZE_TYPE "unsigned int"
112 \f
113 /* Standard register usage. */
114
115 /* Number of actual hardware registers.
116 The hardware registers are assigned numbers for the compiler
117 from 0 to just below FIRST_PSEUDO_REGISTER.
118 All registers that the compiler knows about must be given numbers,
119 even those that are not normally considered general registers. */
120 #define FIRST_PSEUDO_REGISTER 16
121
122 /* 1 for registers that have pervasive standard uses
123 and are not available for the register allocator. */
124 #define FIXED_REGISTERS \
125 {0, 0, 0, 0, 0, 0, 0, 0, \
126 0, 1, 1, 1, 1, 1, 1, 1, }
127
128 /* 1 for registers not available across function calls.
129 These must include the FIXED_REGISTERS and also any
130 registers that can be used without being saved.
131 The latter must include the registers where values are returned
132 and the register where structure-value addresses are passed.
133 Aside from that, you can include as many other registers as you like. */
134 #define CALL_USED_REGISTERS \
135 {1, 1, 1, 0, 0, 0, 0, 0, \
136 0, 1, 1, 1, 1, 1, 1, 1, }
137
138 /* Make sure everything's fine if we *don't* have a given processor.
139 This assumes that putting a register in fixed_regs will keep the
140 compilers mitt's completely off it. We don't bother to zero it out
141 of register classes. */
142 /* #define CONDITIONAL_REGISTER_USAGE */
143
144 /* Return number of consecutive hard regs needed starting at reg REGNO
145 to hold something of mode MODE.
146 This is ordinarily the length in words of a value of mode MODE
147 but can be less for certain modes in special long registers. */
148 #define HARD_REGNO_NREGS(REGNO, MODE) \
149 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
150
151 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
152 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
153
154 /* Value is 1 if it is a good idea to tie two pseudo registers
155 when one has mode MODE1 and one has mode MODE2.
156 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
157 for any hard reg, then this must be 0 for correct output. */
158 #define MODES_TIEABLE_P(MODE1, MODE2) 0
159
160 /* Specify the registers used for certain standard purposes.
161 The values of these macros are register numbers. */
162
163 /* Register used for the program counter */
164 #define PC_REGNUM 15
165
166 /* Register to use for pushing function arguments. */
167 #define STACK_POINTER_REGNUM 12
168
169 /* Base register for access to local variables of the function. */
170 #define FRAME_POINTER_REGNUM 9
171
172 /* Value should be nonzero if functions must have frame pointers.
173 Zero means the frame pointer need not be set up (and parms
174 may be accessed via the stack pointer) in functions that seem suitable.
175 This is computed in `reload', in reload1.c. */
176 #define FRAME_POINTER_REQUIRED 1
177
178 /* Base register for access to arguments of the function. */
179 #define ARG_POINTER_REGNUM 10
180
181 /* Register in which static-chain is passed to a function. */
182 #define STATIC_CHAIN_REGNUM 8
183
184 /* Register in which address to store a structure value
185 is passed to a function. */
186 #define STRUCT_VALUE_REGNUM 2
187
188 /* Order in which to allocate registers. */
189 #define REG_ALLOC_ORDER \
190 {0, 1, 8, 7, 6, 5, 4, 3}
191 \f
192 /* Define the classes of registers for register constraints in the
193 machine description. Also define ranges of constants.
194
195 One of the classes must always be named ALL_REGS and include all hard regs.
196 If there is more than one class, another class must be named NO_REGS
197 and contain no registers.
198
199 The name GENERAL_REGS must be the name of a class (or an alias for
200 another name such as ALL_REGS). This is the class of registers
201 that is allowed by "g" or "r" in a register constraint.
202 Also, registers outside this class are allocated only when
203 instructions express preferences for them.
204
205 The classes must be numbered in nondecreasing order; that is,
206 a larger-numbered class must never be contained completely
207 in a smaller-numbered class.
208
209 For any two classes, it is very desirable that there be another
210 class that represents their union. */
211
212 enum reg_class { NO_REGS, GENERAL_REGS,
213 ALL_REGS, LIM_REG_CLASSES };
214
215 #define N_REG_CLASSES (int) LIM_REG_CLASSES
216
217 /* Give names of register classes as strings for dump file. */
218
219 #define REG_CLASS_NAMES \
220 { "NO_REGS", "GENERAL_REGS", "ALL_REGS" }
221
222 /* Define which registers fit in which classes.
223 This is an initializer for a vector of HARD_REG_SET
224 of length N_REG_CLASSES. */
225
226 #define REG_CLASS_CONTENTS \
227 { \
228 0, /* NO_REGS */ \
229 0x000017ff, /* GENERAL_REGS */ \
230 0x0000ffff, /* ALL_REGS */ \
231 }
232
233 /* The same information, inverted:
234 Return the class number of the smallest class containing
235 reg number REGNO. This could be a conditional expression
236 or could index an array. */
237
238 #define REGNO_REG_CLASS(REGNO) \
239 (((REGNO) < 11 || (REGNO) == 12) ? GENERAL_REGS : ALL_REGS)
240
241 /* The class value for index registers, and the one for base regs. */
242
243 #define INDEX_REG_CLASS NO_REGS
244 #define BASE_REG_CLASS GENERAL_REGS
245
246 /* Get reg_class from a letter such as appears in the machine description.
247 We do a trick here to modify the effective constraints on the
248 machine description; we zorch the constraint letters that aren't
249 appropriate for a specific target. This allows us to guarantee
250 that a specific kind of register will not be used for a given target
251 without fiddling with the register classes above. */
252
253 #define REG_CLASS_FROM_LETTER(C) \
254 ((C) == 'r' ? GENERAL_REGS : NO_REGS)
255
256 /* The letters I, J, K, L and M in a register constraint string
257 can be used to stand for particular ranges of immediate operands.
258 This macro defines what the ranges are.
259 C is the letter, and VALUE is a constant value.
260 Return 1 if VALUE is in the range specified by C. */
261
262 #define CONST_OK_FOR_LETTER_P(VALUE, C) 0
263
264 /*
265 */
266
267 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
268
269 /* Given an rtx X being reloaded into a reg required to be
270 in class CLASS, return the class of reg to actually use.
271 In general this is just CLASS; but on some machines
272 in some cases it is preferable to use a more restrictive class. */
273
274 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
275
276 /* Return the maximum number of consecutive registers
277 needed to represent mode MODE in a register of class CLASS. */
278 #define CLASS_MAX_NREGS(CLASS, MODE) \
279 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
280 \f
281 /* Stack layout; function entry, exit and calling. */
282
283 /* Define this if pushing a word on the stack
284 makes the stack pointer a smaller address. */
285 /* #define STACK_GROWS_DOWNWARD */
286
287 /* Define this if the nominal address of the stack frame
288 is at the high-address end of the local variables;
289 that is, each additional local variable allocated
290 goes at a more negative offset in the frame. */
291 /* #define FRAME_GROWS_DOWNWARD */
292
293 /* Offset within stack frame to start allocating local variables at.
294 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
295 first local allocated. Otherwise, it is the offset to the BEGINNING
296 of the first local allocated. */
297 #define STARTING_FRAME_OFFSET 0
298
299 /* If we generate an insn to push BYTES bytes,
300 this says how many the stack pointer really advances by. */
301 #define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3)
302
303 /* Offset of first parameter from the argument pointer register value. */
304 #define FIRST_PARM_OFFSET(FNDECL) 0
305
306 /* Value is 1 if returning from a function call automatically
307 pops the arguments described by the number-of-args field in the call.
308 FUNDECL is the declaration node of the function (as a tree),
309 FUNTYPE is the data type of the function (as a tree),
310 or for a library call it is an identifier node for the subroutine name. */
311
312 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
313
314 /* Define how to find the value returned by a function.
315 VALTYPE is the data type of the value (as a tree).
316 If the precise function being called is known, FUNC is its FUNCTION_DECL;
317 otherwise, FUNC is 0. */
318
319 /* On the we32000 the return value is in r0 regardless. */
320
321 #define FUNCTION_VALUE(VALTYPE, FUNC) \
322 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
323
324 /* Define how to find the value returned by a library function
325 assuming the value has mode MODE. */
326
327 /* On the we32000 the return value is in r0 regardless. */
328
329 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
330
331 /* 1 if N is a possible register number for a function value.
332 On the we32000, r0 is the only register thus used. */
333
334 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
335
336 /* Define this if PCC uses the nonreentrant convention for returning
337 structure and union values. */
338
339 /* #define PCC_STATIC_STRUCT_RETURN */
340
341 /* 1 if N is a possible register number for function argument passing.
342 On the we32000, no registers are used in this way. */
343
344 #define FUNCTION_ARG_REGNO_P(N) 0
345 \f
346 /* Define a data type for recording info about an argument list
347 during the scan of that argument list. This data type should
348 hold all necessary information about the function itself
349 and about the args processed so far, enough to enable macros
350 such as FUNCTION_ARG to determine where the next arg should go.
351
352 On the we32k, this is a single integer, which is a number of bytes
353 of arguments scanned so far. */
354
355 #define CUMULATIVE_ARGS int
356
357 /* Initialize a variable CUM of type CUMULATIVE_ARGS
358 for a call to a function whose data type is FNTYPE.
359 For a library call, FNTYPE is 0.
360
361 On the we32k, the offset starts at 0. */
362
363 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
364 ((CUM) = 0)
365
366 /* Update the data in CUM to advance over an argument
367 of mode MODE and data type TYPE.
368 (TYPE is null for libcalls where that information may not be available.) */
369
370 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
371 ((CUM) += ((MODE) != BLKmode \
372 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
373 : (int_size_in_bytes (TYPE) + 3) & ~3))
374
375 /* Define where to put the arguments to a function.
376 Value is zero to push the argument on the stack,
377 or a hard register in which to store the argument.
378
379 MODE is the argument's machine mode.
380 TYPE is the data type of the argument (as a tree).
381 This is null for libcalls where that information may
382 not be available.
383 CUM is a variable of type CUMULATIVE_ARGS which gives info about
384 the preceding args and about the function being called.
385 NAMED is nonzero if this argument is a named parameter
386 (otherwise it is an extra parameter matching an ellipsis). */
387
388 /* On the we32000 all args are pushed */
389
390 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
391
392 /* For an arg passed partly in registers and partly in memory,
393 this is the number of registers used.
394 For args passed entirely in registers or entirely in memory, zero. */
395
396 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
397
398 /* This macro generates the assembly code for function entry.
399 FILE is a stdio stream to output the code to.
400 SIZE is an int: how many units of temporary storage to allocate.
401 Refer to the array `regs_ever_live' to determine which registers
402 to save; `regs_ever_live[I]' is nonzero if register number I
403 is ever used in the function. This macro is responsible for
404 knowing which registers should not be saved even if used. */
405
406 #define FUNCTION_PROLOGUE(FILE, SIZE) \
407 { register int nregs_to_save; \
408 register int regno; \
409 extern char call_used_regs[]; \
410 nregs_to_save = 0; \
411 for (regno = 8; regno > 2; regno--) \
412 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
413 nregs_to_save = (9 - regno); \
414 fprintf (FILE, "\tsave &%d\n", nregs_to_save); \
415 if (SIZE) \
416 fprintf (FILE, "\taddw2 &%d,%%sp\n", ((SIZE) + 3) & ~3); }
417
418 /* Output assembler code to FILE to increment profiler label # LABELNO
419 for profiling a function entry. */
420
421 #define FUNCTION_PROFILER(FILE, LABELNO) \
422 fprintf (FILE, "\tmovw &.LP%d,%%r0\n\tjsb _mcount\n", (LABELNO))
423
424 /* Output assembler code to FILE to initialize this source file's
425 basic block profiling info, if that has not already been done. */
426
427 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
428 fprintf (FILE, "\tcmpw .LPBX0,&0\n\tjne .LPI%d\n\tpushw &.LPBX0\n\tcall &1,__bb_init_func\n.LPI%d:\n", \
429 LABELNO, LABELNO);
430
431 /* Output assembler code to FILE to increment the entry-count for
432 the BLOCKNO'th basic block in this source file. */
433
434 #define BLOCK_PROFILER(FILE, BLOCKNO) \
435 fprintf (FILE, "\taddw2 &1,.LPBX2+%d\n", 4 * BLOCKNO)
436
437 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
438 the stack pointer does not matter. The value is tested only in
439 functions that have frame pointers.
440 No definition is equivalent to always zero. */
441
442 #define EXIT_IGNORE_STACK 0
443
444 /* This macro generates the assembly code for function exit,
445 on machines that need it. If FUNCTION_EPILOGUE is not defined
446 then individual return instructions are generated for each
447 return statement. Args are same as for FUNCTION_PROLOGUE.
448
449 The function epilogue should not depend on the current stack pointer!
450 It should use the frame pointer only. This is mandatory because
451 of alloca; we also take advantage of it to omit stack adjustments
452 before returning. */
453
454 #define FUNCTION_EPILOGUE(FILE, SIZE) \
455 { register int nregs_to_restore; \
456 register int regno; \
457 extern char call_used_regs[]; \
458 nregs_to_restore = 0; \
459 for (regno = 8; regno > 2; regno--) \
460 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
461 nregs_to_restore = (9 - regno); \
462 fprintf (FILE, "\tret &%d\n", nregs_to_restore); }
463
464 /* Store in the variable DEPTH the initial difference between the
465 frame pointer reg contents and the stack pointer reg contents,
466 as of the start of the function body. This depends on the layout
467 of the fixed parts of the stack frame and on how registers are saved.
468
469 On the we32k, FRAME_POINTER_REQUIRED is always 1, so the definition of this
470 macro doesn't matter. But it must be defined. */
471
472 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
473
474 /* Output assembler code for a block containing the constant parts
475 of a trampoline, leaving space for the variable parts. */
476
477 /* On the we32k, the trampoline contains two instructions:
478 mov #STATIC,%r8
479 jmp #FUNCTION */
480
481 #define TRAMPOLINE_TEMPLATE(FILE) \
482 { \
483 ASM_OUTPUT_SHORT (FILE, GEN_INT (0x844f)); \
484 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
485 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
486 ASM_OUTPUT_CHAR (FILE, GEN_INT (0x48)); \
487 ASM_OUTPUT_SHORT (FILE, GEN_INT (0x247f)); \
488 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
489 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
490 }
491
492 /* Length in units of the trampoline for entering a nested function. */
493
494 #define TRAMPOLINE_SIZE 13
495
496 /* Emit RTL insns to initialize the variable parts of a trampoline.
497 FNADDR is an RTX for the address of the function's pure code.
498 CXT is an RTX for the static chain value for the function. */
499
500 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
501 { \
502 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 2)), CXT); \
503 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 9)), FNADDR); \
504 }
505 \f
506 /* Generate calls to memcpy() and memset() rather
507 than bcopy() and bzero() */
508 #define TARGET_MEM_FUNCTIONS
509 \f
510 /* Addressing modes, and classification of registers for them. */
511
512 /* #define HAVE_POST_INCREMENT */
513 /* #define HAVE_POST_DECREMENT */
514
515 /* #define HAVE_PRE_DECREMENT */
516 /* #define HAVE_PRE_INCREMENT */
517
518 /* Macros to check register numbers against specific register classes. */
519
520 /* These assume that REGNO is a hard or pseudo reg number.
521 They give nonzero only if REGNO is a hard reg of the suitable class
522 or a pseudo reg currently allocated to a suitable hard reg.
523 Since they use reg_renumber, they are safe only once reg_renumber
524 has been allocated, which happens in local-alloc.c. */
525
526 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
527
528 #define REGNO_OK_FOR_BASE_P(REGNO) \
529 ((REGNO) < 11 || (REGNO) == 12 || \
530 (unsigned)reg_renumber[REGNO] < 11 || (unsigned)reg_renumber[REGNO] == 12)
531 \f
532 /* Maximum number of registers that can appear in a valid memory address. */
533
534 #define MAX_REGS_PER_ADDRESS 1
535
536 /* Recognize any constant value that is a valid address. */
537
538 #define CONSTANT_ADDRESS_P(X) \
539 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
540 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
541 || GET_CODE (X) == HIGH)
542
543 /* Nonzero if the constant value X is a legitimate general operand.
544 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
545
546 #define LEGITIMATE_CONSTANT_P(X) 1
547
548 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
549 and check its validity for a certain class.
550 We have two alternate definitions for each of them.
551 The usual definition accepts all pseudo regs; the other rejects
552 them unless they have been allocated suitable hard regs.
553 The symbol REG_OK_STRICT causes the latter definition to be used.
554
555 Most source files want to accept pseudo regs in the hope that
556 they will get allocated to the class that the insn wants them to be in.
557 Source files for reload pass need to be strict.
558 After reload, it makes no difference, since pseudo regs have
559 been eliminated by then. */
560
561 #ifndef REG_OK_STRICT
562
563 /* Nonzero if X is a hard reg that can be used as an index
564 or if it is a pseudo reg. */
565 #define REG_OK_FOR_INDEX_P(X) 0
566
567 /* Nonzero if X is a hard reg that can be used as a base reg
568 or if it is a pseudo reg. */
569 #define REG_OK_FOR_BASE_P(X) \
570 (REGNO(X) < 11 || REGNO(X) == 12 || REGNO(X) >= FIRST_PSEUDO_REGISTER)
571
572 #else
573
574 /* Nonzero if X is a hard reg that can be used as an index. */
575 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
576 /* Nonzero if X is a hard reg that can be used as a base reg. */
577 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
578
579 #endif
580 \f
581 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
582 that is a valid memory address for an instruction.
583 The MODE argument is the machine mode for the MEM expression
584 that wants to use this address. */
585
586 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
587 { register rtx Addr = X; \
588 if ((MODE) == QImode || (MODE) == HImode || \
589 (MODE) == PSImode || (MODE) == SImode || (MODE) == SFmode) \
590 if (GET_CODE(Addr) == MEM) \
591 Addr = XEXP(Addr, 0); \
592 if (CONSTANT_ADDRESS_P(Addr)) \
593 goto LABEL; \
594 if (REG_P(Addr) && REG_OK_FOR_BASE_P(Addr)) \
595 goto LABEL; \
596 if (GET_CODE(Addr) == PLUS && \
597 ((REG_P(XEXP(Addr, 0)) && REG_OK_FOR_BASE_P(XEXP(Addr, 0)) && \
598 CONSTANT_ADDRESS_P(XEXP(Addr, 1))) || \
599 (REG_P(XEXP(Addr, 1)) && REG_OK_FOR_BASE_P(XEXP(Addr, 1)) && \
600 CONSTANT_ADDRESS_P(XEXP(Addr, 0))))) \
601 goto LABEL; \
602 }
603 \f
604 /* Try machine-dependent ways of modifying an illegitimate address
605 to be legitimate. If we find one, return the new, valid address.
606 This macro is used in only one place: `memory_address' in explow.c.
607
608 OLDX is the address as it was before break_out_memory_refs was called.
609 In some cases it is useful to look at this to decide what needs to be done.
610
611 MODE and WIN are passed so that this macro can use
612 GO_IF_LEGITIMATE_ADDRESS.
613
614 It is always safe for this macro to do nothing. It exists to recognize
615 opportunities to optimize the output. */
616
617 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) { }
618
619 /* Go to LABEL if ADDR (a legitimate address expression)
620 has an effect that depends on the machine mode it is used for. */
621
622 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) { }
623 \f
624 /* Specify the machine mode that this machine uses
625 for the index in the tablejump instruction. */
626 #define CASE_VECTOR_MODE SImode
627
628 /* Define as C expression which evaluates to nonzero if the tablejump
629 instruction expects the table to contain offsets from the address of the
630 table.
631 Do not define this if the table should contain absolute addresses. */
632 /* #define CASE_VECTOR_PC_RELATIVE 1 */
633
634 /* Specify the tree operation to be used to convert reals to integers. */
635 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
636
637 /* This is the kind of divide that is easiest to do in the general case. */
638 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
639
640 /* Define this as 1 if `char' should by default be signed; else as 0. */
641 #define DEFAULT_SIGNED_CHAR 0
642
643 /* Max number of bytes we can move from memory to memory
644 in one reasonably fast instruction. */
645 #define MOVE_MAX 4
646
647 /* Define this if zero-extension is slow (more than one real instruction). */
648 /* #define SLOW_ZERO_EXTEND */
649
650 /* Nonzero if access to memory by bytes is slow and undesirable. */
651 #define SLOW_BYTE_ACCESS 0
652
653 /* Define this to be nonzero if shift instructions ignore all but the low-order
654 few bits. */
655 #define SHIFT_COUNT_TRUNCATED 1
656
657 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
658 is done just by pretending it is already truncated. */
659 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
660
661 /* We assume that the store-condition-codes instructions store 0 for false
662 and some other value for true. This is the value stored for true. */
663
664 #define STORE_FLAG_VALUE -1
665
666 /* When a prototype says `char' or `short', really pass an `int'. */
667 #define PROMOTE_PROTOTYPES
668
669 /* Specify the machine mode that pointers have.
670 After generation of rtl, the compiler makes no further distinction
671 between pointers and any other objects of this machine mode. */
672 #define Pmode SImode
673
674 /* A function address in a call instruction
675 is a byte address (for indexing purposes)
676 so give the MEM rtx a byte's mode. */
677 #define FUNCTION_MODE QImode
678
679 /* Compute the cost of computing a constant rtl expression RTX
680 whose rtx-code is CODE. The body of this macro is a portion
681 of a switch statement. If the code is computed here,
682 return it with a return statement. Otherwise, break from the switch. */
683
684 #define CONST_COSTS(RTX,CODE, OUTER_CODE) \
685 case CONST_INT: \
686 if (INTVAL (RTX) >= -16 && INTVAL (RTX) <= 63) return 0; \
687 if (INTVAL (RTX) >= -128 && INTVAL (RTX) <= 127) return 1; \
688 if (INTVAL (RTX) >= -32768 && INTVAL (RTX) <= 32767) return 2; \
689 case CONST: \
690 case LABEL_REF: \
691 case SYMBOL_REF: \
692 return 3; \
693 case CONST_DOUBLE: \
694 return 5;
695 \f
696 /* Tell final.c how to eliminate redundant test instructions. */
697
698 /* Here we define machine-dependent flags and fields in cc_status
699 (see `conditions.h'). */
700
701 #define NOTICE_UPDATE_CC(EXP, INSN) \
702 { \
703 { CC_STATUS_INIT; } \
704 }
705 \f
706 /* Control the assembler format that we output. */
707
708 /* Use crt1.o as a startup file and crtn.o as a closing file. */
709
710 #define STARTFILE_SPEC "%{pg:gcrt1.o%s}%{!pg:%{p:mcrt1.o%s}%{!p:crt1.o%s}}"
711
712 #define ENDFILE_SPEC "crtn.o%s"
713
714 /* The .file command should always begin the output. */
715
716 #define ASM_FILE_START(FILE) output_file_directive ((FILE), main_input_filename)
717
718 /* Output to assembler file text saying following lines
719 may contain character constants, extra white space, comments, etc. */
720
721 #define ASM_APP_ON "#APP\n"
722
723 /* Output to assembler file text saying following lines
724 no longer contain unusual constructs. */
725
726 #define ASM_APP_OFF "#NO_APP\n"
727
728 /* Output before code. */
729
730 #define TEXT_SECTION_ASM_OP ".text"
731
732 /* Output before writable data. */
733
734 #define DATA_SECTION_ASM_OP ".data"
735
736 /* Read-only data goes in the data section because
737 AT&T's assembler doesn't guarantee the proper alignment
738 of data in the text section even if an align statement
739 is used. */
740
741 #define READONLY_DATA_SECTION() data_section()
742
743 /* How to refer to registers in assembler output.
744 This sequence is indexed by compiler's hard-register-number (see above). */
745
746 #define REGISTER_NAMES \
747 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
748 "r8", "fp", "ap", "psw", "sp", "pcbp", "isp", "pc" }
749
750 /* How to renumber registers for dbx and gdb. */
751
752 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
753
754 /* Output SDB debugging info in response to the -g option. */
755
756 #define SDB_DEBUGGING_INFO
757
758 /* This is how to output the definition of a user-level label named NAME,
759 such as the label on a static function or variable NAME. */
760
761 #define ASM_OUTPUT_LABEL(FILE,NAME) \
762 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
763
764 /* This is how to output a command to make the user-level label named NAME
765 defined for reference from other files. */
766
767 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
768 do { \
769 fputs (".globl ", FILE); \
770 assemble_name (FILE, NAME); \
771 fputs ("\n", FILE); \
772 } while (0)
773
774 /* The prefix to add to user-visible assembler symbols. */
775
776 #define USER_LABEL_PREFIX ""
777
778 /* This is how to output an internal numbered label where
779 PREFIX is the class of label and NUM is the number within the class. */
780
781 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
782 fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
783
784 /* This is how to store into the string LABEL
785 the symbol_ref name of an internal numbered label where
786 PREFIX is the class of label and NUM is the number within the class.
787 This is suitable for output with `assemble_name'. */
788
789 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
790 sprintf (LABEL, ".%s%d", PREFIX, NUM)
791
792 /* This is how to output an internal numbered label which
793 labels a jump table. */
794
795 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
796 do { \
797 ASM_OUTPUT_ALIGN (FILE, 2); \
798 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
799 } while (0)
800
801 /* Assembler pseudo to introduce byte constants. */
802
803 #define ASM_BYTE_OP "\t.byte"
804
805 /* This is how to output an assembler line defining a `double' constant. */
806
807 /* This is how to output an assembler line defining a `float' constant. */
808
809 /* AT&T's assembler can't handle floating constants written as floating.
810 However, when cross-compiling, always use that in case format differs. */
811
812 #ifdef CROSS_COMPILER
813
814 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
815 fprintf (FILE, "\t.double 0r%.20g\n", (VALUE))
816
817 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
818 fprintf (FILE, "\t.float 0r%.10g\n", (VALUE))
819
820 #else
821
822 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
823 do { union { double d; long l[2];} tem; \
824 tem.d = (VALUE); \
825 fprintf (FILE, "\t.word 0x%x, 0x%x\n", tem.l[0], tem.l[1]);\
826 } while (0)
827
828 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
829 do { union { float f; long l;} tem; \
830 tem.f = (VALUE); \
831 fprintf (FILE, "\t.word 0x%x\n", tem.l); \
832 } while (0)
833
834 #endif /* not CROSS_COMPILER */
835
836 /* This is how to output an assembler line defining an `int' constant. */
837
838 #define ASM_OUTPUT_INT(FILE,VALUE) \
839 ( fprintf (FILE, "\t.word "), \
840 output_addr_const (FILE, (VALUE)), \
841 fprintf (FILE, "\n"))
842
843 /* Likewise for `char' and `short' constants. */
844
845 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
846 ( fprintf (FILE, "\t.half "), \
847 output_addr_const (FILE, (VALUE)), \
848 fprintf (FILE, "\n"))
849
850 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
851 ( fprintf (FILE, "\t.byte "), \
852 output_addr_const (FILE, (VALUE)), \
853 fprintf (FILE, "\n"))
854
855 /* This is how to output an assembler line for a numeric constant byte. */
856
857 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
858 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
859
860 #define ASM_OUTPUT_ASCII(FILE,PTR,LEN) \
861 do { \
862 unsigned char *s; \
863 int i; \
864 for (i = 0, s = (unsigned char *)(PTR); i < (LEN); s++, i++) \
865 { \
866 if ((i % 8) == 0) \
867 fprintf ((FILE),"%s\t.byte\t",(i?"\n":"")); \
868 fprintf ((FILE), "%s0x%x", (i%8?",":""), (unsigned)*s); \
869 } \
870 fputs ("\n", (FILE)); \
871 } while (0)
872
873 /* This is how to output an insn to push a register on the stack.
874 It need not be very fast code. */
875
876 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
877 fprintf (FILE, "\tpushw %s\n", reg_names[REGNO])
878
879 /* This is how to output an insn to pop a register from the stack.
880 It need not be very fast code. */
881
882 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
883 fprintf (FILE, "\tPOPW %s\n", reg_names[REGNO])
884
885 /* This is how to output an element of a case-vector that is absolute. */
886
887 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
888 fprintf (FILE, "\t.word .L%d\n", VALUE)
889
890 /* This is how to output an element of a case-vector that is relative. */
891
892 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
893 fprintf (FILE, "\t.word .L%d-.L%d\n", VALUE, REL)
894
895 /* This is how to output an assembler line
896 that says to advance the location counter
897 to a multiple of 2**LOG bytes. */
898
899 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
900 if ((LOG) != 0) \
901 fprintf (FILE, "\t.align %d\n", 1 << (LOG))
902
903 /* This is how to output an assembler line
904 that says to advance the location counter by SIZE bytes. */
905
906 /* The `space' pseudo in the text segment outputs nop insns rather than 0s,
907 so we must output 0s explicitly in the text segment. */
908
909 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
910 if (in_text_section ()) \
911 { \
912 int i; \
913 for (i = 0; i < (SIZE) - 20; i += 20) \
914 fprintf (FILE, "\t.byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n"); \
915 if (i < (SIZE)) \
916 { \
917 fprintf (FILE, "\t.byte 0"); \
918 i++; \
919 for (; i < (SIZE); i++) \
920 fprintf (FILE, ",0"); \
921 fprintf (FILE, "\n"); \
922 } \
923 } \
924 else \
925 fprintf ((FILE), "\t.set .,.+%u\n", (SIZE))
926
927 /* This says how to output an assembler line
928 to define a global common symbol. */
929
930 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
931 do { \
932 data_section(); \
933 fputs ("\t.comm ", (FILE)); \
934 assemble_name ((FILE), (NAME)); \
935 fprintf ((FILE), ",%u\n", (SIZE)); \
936 } while (0)
937
938 /* This says how to output an assembler line
939 to define a local common symbol. */
940
941 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
942 do { \
943 data_section(); \
944 ASM_OUTPUT_ALIGN ((FILE), 2); \
945 ASM_OUTPUT_LABEL ((FILE), (NAME)); \
946 fprintf ((FILE), "\t.zero %u\n", (SIZE)); \
947 } while (0)
948
949 /* Store in OUTPUT a string (made with alloca) containing
950 an assembler-name for a local static variable named NAME.
951 LABELNO is an integer which is different for each call. */
952
953 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
954 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
955 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
956
957 /* Output #ident as a .ident. */
958
959 #define ASM_OUTPUT_IDENT(FILE, NAME) fprintf (FILE, "\t.ident \"%s\"\n", NAME)
960
961 /* Define the parentheses used to group arithmetic operations
962 in assembler code. */
963
964 #define ASM_OPEN_PAREN "("
965 #define ASM_CLOSE_PAREN ")"
966
967 /* Define results of standard character escape sequences. */
968 #define TARGET_BELL 007
969 #define TARGET_BS 010
970 #define TARGET_TAB 011
971 #define TARGET_NEWLINE 012
972 #define TARGET_VT 013
973 #define TARGET_FF 014
974 #define TARGET_CR 015
975
976 /* Print operand X (an rtx) in assembler syntax to file FILE.
977 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
978 For `%' followed by punctuation, CODE is the punctuation and X is null. */
979
980 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
981
982 #define PRINT_OPERAND(FILE, X, CODE) \
983 { int i; \
984 if (GET_CODE (X) == REG) \
985 fprintf (FILE, "%%%s", reg_names[REGNO (X)]); \
986 else if (GET_CODE (X) == MEM) \
987 output_address (XEXP (X, 0)); \
988 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
989 { \
990 union { double d; long l[2]; } dtem; \
991 union { float f; long l; } ftem; \
992 \
993 dtem.l[0] = CONST_DOUBLE_LOW (X); \
994 dtem.l[1] = CONST_DOUBLE_HIGH (X); \
995 ftem.f = dtem.d; \
996 fprintf(FILE, "&0x%lx", ftem.l); \
997 } \
998 else { putc ('&', FILE); output_addr_const (FILE, X); }}
999 \f
1000 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1001 { register rtx Addr = ADDR; \
1002 rtx offset; \
1003 rtx reg; \
1004 if (GET_CODE (Addr) == MEM) { \
1005 putc ('*', FILE); \
1006 Addr = XEXP (Addr, 0); \
1007 if (GET_CODE (Addr) == REG) \
1008 putc ('0', FILE); \
1009 } \
1010 switch (GET_CODE (Addr)) \
1011 { \
1012 case REG: \
1013 fprintf (FILE, "(%%%s)", reg_names[REGNO (Addr)]); \
1014 break; \
1015 \
1016 case PLUS: \
1017 offset = NULL; \
1018 if (CONSTANT_ADDRESS_P (XEXP (Addr, 0))) \
1019 { \
1020 offset = XEXP (Addr, 0); \
1021 Addr = XEXP (Addr, 1); \
1022 } \
1023 else if (CONSTANT_ADDRESS_P (XEXP (Addr, 1))) \
1024 { \
1025 offset = XEXP (Addr, 1); \
1026 Addr = XEXP (Addr, 0); \
1027 } \
1028 else \
1029 abort(); \
1030 if (REG_P (Addr)) \
1031 reg = Addr; \
1032 else \
1033 abort(); \
1034 output_addr_const(FILE, offset); \
1035 fprintf(FILE, "(%%%s)", reg_names[REGNO(reg)]); \
1036 break; \
1037 \
1038 default: \
1039 if ( !CONSTANT_ADDRESS_P(Addr)) \
1040 abort(); \
1041 output_addr_const (FILE, Addr); \
1042 }}
1043 \f
1044 /*
1045 Local variables:
1046 version-control: t
1047 End:
1048 */