73a81e0338d2fff86fcaa1c7e515dadd2160ef4e
[gcc.git] / gcc / config / we32k / we32k.h
1 /* Definitions of target machine for GNU compiler. AT&T we32000 version.
2 Copyright (C) 1991, 92, 93, 94, 95, 96, 98, 99, 2000
3 Free Software Foundation, Inc.
4 Contributed by John Wehle (john@feith1.uucp)
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 1, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* Names to predefine in the preprocessor for this target machine. */
25
26 #define CPP_PREDEFINES "-Dwe32000 -Du3b2 -Dunix -Asystem(unix) -Acpu(we32000) -Amachine(we32000)"
27
28 /* Print subsidiary information on the compiler version in use. */
29
30 #define TARGET_VERSION fprintf (stderr, " (we32000)");
31
32 /* Run-time compilation parameters selecting different hardware subsets. */
33
34 extern int target_flags;
35
36 /* Macros used in the machine description to test the flags. */
37
38 /* Macro to define tables used to set the flags.
39 This is a list in braces of pairs in braces,
40 each pair being { "NAME", VALUE }
41 where VALUE is the bits to set or minus the bits to clear.
42 An empty string NAME is used to identify the default VALUE. */
43
44 #define TARGET_SWITCHES \
45 { { "", TARGET_DEFAULT, 0}}
46
47 #define TARGET_DEFAULT 0
48
49 \f
50 /* target machine storage layout */
51
52 /* Define this if most significant bit is lowest numbered
53 in instructions that operate on numbered bit-fields. */
54 #define BITS_BIG_ENDIAN 0
55
56 /* Define this if most significant byte of a word is the lowest numbered. */
57 /* That is true on the we32000. */
58 #define BYTES_BIG_ENDIAN 1
59
60 /* Define this if most significant word of a multiword is lowest numbered. */
61 /* For we32000 we can decide arbitrarily
62 since there are no machine instructions for them. */
63 #define WORDS_BIG_ENDIAN 1
64
65 /* number of bits in an addressable storage unit */
66 #define BITS_PER_UNIT 8
67
68 /* Width in bits of a "word", which is the contents of a machine register.
69 Note that this is not necessarily the width of data type `int';
70 if using 16-bit ints on a we32000, this would still be 32.
71 But on a machine with 16-bit registers, this would be 16. */
72 #define BITS_PER_WORD 32
73
74 /* Width of a word, in units (bytes). */
75 #define UNITS_PER_WORD 4
76
77 /* Width in bits of a pointer.
78 See also the macro `Pmode' defined below. */
79 #define POINTER_SIZE 32
80
81 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
82 #define PARM_BOUNDARY 32
83
84 /* Boundary (in *bits*) on which stack pointer should be aligned. */
85 #define STACK_BOUNDARY 32
86
87 /* Allocation boundary (in *bits*) for the code of a function. */
88 #define FUNCTION_BOUNDARY 32
89
90 /* Alignment of field after `int : 0' in a structure. */
91 #define EMPTY_FIELD_BOUNDARY 32
92
93 /* No data type wants to be aligned rounder than this. */
94 #define BIGGEST_ALIGNMENT 32
95
96 /* Every structure's size must be a multiple of this. */
97 #define STRUCTURE_SIZE_BOUNDARY 32
98
99 /* Define this if move instructions will actually fail to work
100 when given unaligned data. */
101 #define STRICT_ALIGNMENT 1
102
103 /* Define number of bits in most basic integer type.
104 (If undefined, default is BITS_PER_WORD). */
105 #define INT_TYPE_SIZE 32
106
107 /* Integer bit fields should have the same size and alignment
108 as actual integers */
109 #define PCC_BITFIELD_TYPE_MATTERS 1
110
111 /* Specify the size_t type. */
112 #define SIZE_TYPE "unsigned int"
113 \f
114 /* Standard register usage. */
115
116 /* Number of actual hardware registers.
117 The hardware registers are assigned numbers for the compiler
118 from 0 to just below FIRST_PSEUDO_REGISTER.
119 All registers that the compiler knows about must be given numbers,
120 even those that are not normally considered general registers. */
121 #define FIRST_PSEUDO_REGISTER 16
122
123 /* 1 for registers that have pervasive standard uses
124 and are not available for the register allocator. */
125 #define FIXED_REGISTERS \
126 {0, 0, 0, 0, 0, 0, 0, 0, \
127 0, 1, 1, 1, 1, 1, 1, 1, }
128
129 /* 1 for registers not available across function calls.
130 These must include the FIXED_REGISTERS and also any
131 registers that can be used without being saved.
132 The latter must include the registers where values are returned
133 and the register where structure-value addresses are passed.
134 Aside from that, you can include as many other registers as you like. */
135 #define CALL_USED_REGISTERS \
136 {1, 1, 1, 0, 0, 0, 0, 0, \
137 0, 1, 1, 1, 1, 1, 1, 1, }
138
139 /* Make sure everything's fine if we *don't* have a given processor.
140 This assumes that putting a register in fixed_regs will keep the
141 compilers mitt's completely off it. We don't bother to zero it out
142 of register classes. */
143 /* #define CONDITIONAL_REGISTER_USAGE */
144
145 /* Return number of consecutive hard regs needed starting at reg REGNO
146 to hold something of mode MODE.
147 This is ordinarily the length in words of a value of mode MODE
148 but can be less for certain modes in special long registers. */
149 #define HARD_REGNO_NREGS(REGNO, MODE) \
150 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
151
152 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
153 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
154
155 /* Value is 1 if it is a good idea to tie two pseudo registers
156 when one has mode MODE1 and one has mode MODE2.
157 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
158 for any hard reg, then this must be 0 for correct output. */
159 #define MODES_TIEABLE_P(MODE1, MODE2) 0
160
161 /* Specify the registers used for certain standard purposes.
162 The values of these macros are register numbers. */
163
164 /* Register used for the program counter */
165 #define PC_REGNUM 15
166
167 /* Register to use for pushing function arguments. */
168 #define STACK_POINTER_REGNUM 12
169
170 /* Base register for access to local variables of the function. */
171 #define FRAME_POINTER_REGNUM 9
172
173 /* Value should be nonzero if functions must have frame pointers.
174 Zero means the frame pointer need not be set up (and parms
175 may be accessed via the stack pointer) in functions that seem suitable.
176 This is computed in `reload', in reload1.c. */
177 #define FRAME_POINTER_REQUIRED 1
178
179 /* Base register for access to arguments of the function. */
180 #define ARG_POINTER_REGNUM 10
181
182 /* Register in which static-chain is passed to a function. */
183 #define STATIC_CHAIN_REGNUM 8
184
185 /* Register in which address to store a structure value
186 is passed to a function. */
187 #define STRUCT_VALUE_REGNUM 2
188
189 /* Order in which to allocate registers. */
190 #define REG_ALLOC_ORDER \
191 {0, 1, 8, 7, 6, 5, 4, 3}
192 \f
193 /* Define the classes of registers for register constraints in the
194 machine description. Also define ranges of constants.
195
196 One of the classes must always be named ALL_REGS and include all hard regs.
197 If there is more than one class, another class must be named NO_REGS
198 and contain no registers.
199
200 The name GENERAL_REGS must be the name of a class (or an alias for
201 another name such as ALL_REGS). This is the class of registers
202 that is allowed by "g" or "r" in a register constraint.
203 Also, registers outside this class are allocated only when
204 instructions express preferences for them.
205
206 The classes must be numbered in nondecreasing order; that is,
207 a larger-numbered class must never be contained completely
208 in a smaller-numbered class.
209
210 For any two classes, it is very desirable that there be another
211 class that represents their union. */
212
213 enum reg_class { NO_REGS, GENERAL_REGS,
214 ALL_REGS, LIM_REG_CLASSES };
215
216 #define N_REG_CLASSES (int) LIM_REG_CLASSES
217
218 /* Give names of register classes as strings for dump file. */
219
220 #define REG_CLASS_NAMES \
221 { "NO_REGS", "GENERAL_REGS", "ALL_REGS" }
222
223 /* Define which registers fit in which classes.
224 This is an initializer for a vector of HARD_REG_SET
225 of length N_REG_CLASSES. */
226
227 #define REG_CLASS_CONTENTS \
228 { \
229 {0}, /* NO_REGS */ \
230 {0x000017ff}, /* GENERAL_REGS */ \
231 {0x0000ffff}, /* ALL_REGS */ \
232 }
233
234 /* The same information, inverted:
235 Return the class number of the smallest class containing
236 reg number REGNO. This could be a conditional expression
237 or could index an array. */
238
239 #define REGNO_REG_CLASS(REGNO) \
240 (((REGNO) < 11 || (REGNO) == 12) ? GENERAL_REGS : ALL_REGS)
241
242 /* The class value for index registers, and the one for base regs. */
243
244 #define INDEX_REG_CLASS NO_REGS
245 #define BASE_REG_CLASS GENERAL_REGS
246
247 /* Get reg_class from a letter such as appears in the machine description.
248 We do a trick here to modify the effective constraints on the
249 machine description; we zorch the constraint letters that aren't
250 appropriate for a specific target. This allows us to guarantee
251 that a specific kind of register will not be used for a given target
252 without fiddling with the register classes above. */
253
254 #define REG_CLASS_FROM_LETTER(C) \
255 ((C) == 'r' ? GENERAL_REGS : NO_REGS)
256
257 /* The letters I, J, K, L and M in a register constraint string
258 can be used to stand for particular ranges of immediate operands.
259 This macro defines what the ranges are.
260 C is the letter, and VALUE is a constant value.
261 Return 1 if VALUE is in the range specified by C. */
262
263 #define CONST_OK_FOR_LETTER_P(VALUE, C) 0
264
265 /*
266 */
267
268 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
269
270 /* Given an rtx X being reloaded into a reg required to be
271 in class CLASS, return the class of reg to actually use.
272 In general this is just CLASS; but on some machines
273 in some cases it is preferable to use a more restrictive class. */
274
275 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
276
277 /* Return the maximum number of consecutive registers
278 needed to represent mode MODE in a register of class CLASS. */
279 #define CLASS_MAX_NREGS(CLASS, MODE) \
280 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
281 \f
282 /* Stack layout; function entry, exit and calling. */
283
284 /* Define this if pushing a word on the stack
285 makes the stack pointer a smaller address. */
286 /* #define STACK_GROWS_DOWNWARD */
287
288 /* Define this if the nominal address of the stack frame
289 is at the high-address end of the local variables;
290 that is, each additional local variable allocated
291 goes at a more negative offset in the frame. */
292 /* #define FRAME_GROWS_DOWNWARD */
293
294 /* Offset within stack frame to start allocating local variables at.
295 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
296 first local allocated. Otherwise, it is the offset to the BEGINNING
297 of the first local allocated. */
298 #define STARTING_FRAME_OFFSET 0
299
300 /* If we generate an insn to push BYTES bytes,
301 this says how many the stack pointer really advances by. */
302 #define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3)
303
304 /* Offset of first parameter from the argument pointer register value. */
305 #define FIRST_PARM_OFFSET(FNDECL) 0
306
307 /* Value is 1 if returning from a function call automatically
308 pops the arguments described by the number-of-args field in the call.
309 FUNDECL is the declaration node of the function (as a tree),
310 FUNTYPE is the data type of the function (as a tree),
311 or for a library call it is an identifier node for the subroutine name. */
312
313 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
314
315 /* Define how to find the value returned by a function.
316 VALTYPE is the data type of the value (as a tree).
317 If the precise function being called is known, FUNC is its FUNCTION_DECL;
318 otherwise, FUNC is 0. */
319
320 /* On the we32000 the return value is in r0 regardless. */
321
322 #define FUNCTION_VALUE(VALTYPE, FUNC) \
323 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
324
325 /* Define how to find the value returned by a library function
326 assuming the value has mode MODE. */
327
328 /* On the we32000 the return value is in r0 regardless. */
329
330 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
331
332 /* 1 if N is a possible register number for a function value.
333 On the we32000, r0 is the only register thus used. */
334
335 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
336
337 /* Define this if PCC uses the nonreentrant convention for returning
338 structure and union values. */
339
340 /* #define PCC_STATIC_STRUCT_RETURN */
341
342 /* 1 if N is a possible register number for function argument passing.
343 On the we32000, no registers are used in this way. */
344
345 #define FUNCTION_ARG_REGNO_P(N) 0
346 \f
347 /* Define a data type for recording info about an argument list
348 during the scan of that argument list. This data type should
349 hold all necessary information about the function itself
350 and about the args processed so far, enough to enable macros
351 such as FUNCTION_ARG to determine where the next arg should go.
352
353 On the we32k, this is a single integer, which is a number of bytes
354 of arguments scanned so far. */
355
356 #define CUMULATIVE_ARGS int
357
358 /* Initialize a variable CUM of type CUMULATIVE_ARGS
359 for a call to a function whose data type is FNTYPE.
360 For a library call, FNTYPE is 0.
361
362 On the we32k, the offset starts at 0. */
363
364 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
365 ((CUM) = 0)
366
367 /* Update the data in CUM to advance over an argument
368 of mode MODE and data type TYPE.
369 (TYPE is null for libcalls where that information may not be available.) */
370
371 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
372 ((CUM) += ((MODE) != BLKmode \
373 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
374 : (int_size_in_bytes (TYPE) + 3) & ~3))
375
376 /* Define where to put the arguments to a function.
377 Value is zero to push the argument on the stack,
378 or a hard register in which to store the argument.
379
380 MODE is the argument's machine mode.
381 TYPE is the data type of the argument (as a tree).
382 This is null for libcalls where that information may
383 not be available.
384 CUM is a variable of type CUMULATIVE_ARGS which gives info about
385 the preceding args and about the function being called.
386 NAMED is nonzero if this argument is a named parameter
387 (otherwise it is an extra parameter matching an ellipsis). */
388
389 /* On the we32000 all args are pushed */
390
391 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
392
393 /* For an arg passed partly in registers and partly in memory,
394 this is the number of registers used.
395 For args passed entirely in registers or entirely in memory, zero. */
396
397 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
398
399 /* This macro generates the assembly code for function entry.
400 FILE is a stdio stream to output the code to.
401 SIZE is an int: how many units of temporary storage to allocate.
402 Refer to the array `regs_ever_live' to determine which registers
403 to save; `regs_ever_live[I]' is nonzero if register number I
404 is ever used in the function. This macro is responsible for
405 knowing which registers should not be saved even if used. */
406
407 #define FUNCTION_PROLOGUE(FILE, SIZE) \
408 { register int nregs_to_save; \
409 register int regno; \
410 extern char call_used_regs[]; \
411 nregs_to_save = 0; \
412 for (regno = 8; regno > 2; regno--) \
413 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
414 nregs_to_save = (9 - regno); \
415 fprintf (FILE, "\tsave &%d\n", nregs_to_save); \
416 if (SIZE) \
417 fprintf (FILE, "\taddw2 &%d,%%sp\n", ((SIZE) + 3) & ~3); }
418
419 /* Output assembler code to FILE to increment profiler label # LABELNO
420 for profiling a function entry. */
421
422 #define FUNCTION_PROFILER(FILE, LABELNO) \
423 fprintf (FILE, "\tmovw &.LP%d,%%r0\n\tjsb _mcount\n", (LABELNO))
424
425 /* Output assembler code to FILE to initialize this source file's
426 basic block profiling info, if that has not already been done. */
427
428 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
429 fprintf (FILE, "\tcmpw .LPBX0,&0\n\tjne .LPI%d\n\tpushw &.LPBX0\n\tcall &1,__bb_init_func\n.LPI%d:\n", \
430 LABELNO, LABELNO);
431
432 /* Output assembler code to FILE to increment the entry-count for
433 the BLOCKNO'th basic block in this source file. */
434
435 #define BLOCK_PROFILER(FILE, BLOCKNO) \
436 fprintf (FILE, "\taddw2 &1,.LPBX2+%d\n", 4 * BLOCKNO)
437
438 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
439 the stack pointer does not matter. The value is tested only in
440 functions that have frame pointers.
441 No definition is equivalent to always zero. */
442
443 #define EXIT_IGNORE_STACK 0
444
445 /* This macro generates the assembly code for function exit,
446 on machines that need it. If FUNCTION_EPILOGUE is not defined
447 then individual return instructions are generated for each
448 return statement. Args are same as for FUNCTION_PROLOGUE.
449
450 The function epilogue should not depend on the current stack pointer!
451 It should use the frame pointer only. This is mandatory because
452 of alloca; we also take advantage of it to omit stack adjustments
453 before returning. */
454
455 #define FUNCTION_EPILOGUE(FILE, SIZE) \
456 { register int nregs_to_restore; \
457 register int regno; \
458 extern char call_used_regs[]; \
459 nregs_to_restore = 0; \
460 for (regno = 8; regno > 2; regno--) \
461 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
462 nregs_to_restore = (9 - regno); \
463 fprintf (FILE, "\tret &%d\n", nregs_to_restore); }
464
465 /* Store in the variable DEPTH the initial difference between the
466 frame pointer reg contents and the stack pointer reg contents,
467 as of the start of the function body. This depends on the layout
468 of the fixed parts of the stack frame and on how registers are saved.
469
470 On the we32k, FRAME_POINTER_REQUIRED is always 1, so the definition of this
471 macro doesn't matter. But it must be defined. */
472
473 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
474
475 /* Output assembler code for a block containing the constant parts
476 of a trampoline, leaving space for the variable parts. */
477
478 /* On the we32k, the trampoline contains two instructions:
479 mov #STATIC,%r8
480 jmp #FUNCTION */
481
482 #define TRAMPOLINE_TEMPLATE(FILE) \
483 { \
484 ASM_OUTPUT_SHORT (FILE, GEN_INT (0x844f)); \
485 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
486 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
487 ASM_OUTPUT_CHAR (FILE, GEN_INT (0x48)); \
488 ASM_OUTPUT_SHORT (FILE, GEN_INT (0x247f)); \
489 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
490 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
491 }
492
493 /* Length in units of the trampoline for entering a nested function. */
494
495 #define TRAMPOLINE_SIZE 13
496
497 /* Emit RTL insns to initialize the variable parts of a trampoline.
498 FNADDR is an RTX for the address of the function's pure code.
499 CXT is an RTX for the static chain value for the function. */
500
501 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
502 { \
503 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 2)), CXT); \
504 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 9)), FNADDR); \
505 }
506 \f
507 /* Generate calls to memcpy() and memset() rather
508 than bcopy() and bzero() */
509 #define TARGET_MEM_FUNCTIONS
510 \f
511 /* Addressing modes, and classification of registers for them. */
512
513 /* #define HAVE_POST_INCREMENT 0 */
514 /* #define HAVE_POST_DECREMENT 0 */
515
516 /* #define HAVE_PRE_DECREMENT 0 */
517 /* #define HAVE_PRE_INCREMENT 0 */
518
519 /* Macros to check register numbers against specific register classes. */
520
521 /* These assume that REGNO is a hard or pseudo reg number.
522 They give nonzero only if REGNO is a hard reg of the suitable class
523 or a pseudo reg currently allocated to a suitable hard reg.
524 Since they use reg_renumber, they are safe only once reg_renumber
525 has been allocated, which happens in local-alloc.c. */
526
527 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
528
529 #define REGNO_OK_FOR_BASE_P(REGNO) \
530 ((REGNO) < 11 || (REGNO) == 12 || \
531 (unsigned)reg_renumber[REGNO] < 11 || (unsigned)reg_renumber[REGNO] == 12)
532 \f
533 /* Maximum number of registers that can appear in a valid memory address. */
534
535 #define MAX_REGS_PER_ADDRESS 1
536
537 /* Recognize any constant value that is a valid address. */
538
539 #define CONSTANT_ADDRESS_P(X) \
540 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
541 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
542 || GET_CODE (X) == HIGH)
543
544 /* Nonzero if the constant value X is a legitimate general operand.
545 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
546
547 #define LEGITIMATE_CONSTANT_P(X) 1
548
549 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
550 and check its validity for a certain class.
551 We have two alternate definitions for each of them.
552 The usual definition accepts all pseudo regs; the other rejects
553 them unless they have been allocated suitable hard regs.
554 The symbol REG_OK_STRICT causes the latter definition to be used.
555
556 Most source files want to accept pseudo regs in the hope that
557 they will get allocated to the class that the insn wants them to be in.
558 Source files for reload pass need to be strict.
559 After reload, it makes no difference, since pseudo regs have
560 been eliminated by then. */
561
562 #ifndef REG_OK_STRICT
563
564 /* Nonzero if X is a hard reg that can be used as an index
565 or if it is a pseudo reg. */
566 #define REG_OK_FOR_INDEX_P(X) 0
567
568 /* Nonzero if X is a hard reg that can be used as a base reg
569 or if it is a pseudo reg. */
570 #define REG_OK_FOR_BASE_P(X) \
571 (REGNO(X) < 11 || REGNO(X) == 12 || REGNO(X) >= FIRST_PSEUDO_REGISTER)
572
573 #else
574
575 /* Nonzero if X is a hard reg that can be used as an index. */
576 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
577 /* Nonzero if X is a hard reg that can be used as a base reg. */
578 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
579
580 #endif
581 \f
582 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
583 that is a valid memory address for an instruction.
584 The MODE argument is the machine mode for the MEM expression
585 that wants to use this address. */
586
587 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
588 { register rtx Addr = X; \
589 if ((MODE) == QImode || (MODE) == HImode || \
590 (MODE) == PSImode || (MODE) == SImode || (MODE) == SFmode) \
591 if (GET_CODE(Addr) == MEM) \
592 Addr = XEXP(Addr, 0); \
593 if (CONSTANT_ADDRESS_P(Addr)) \
594 goto LABEL; \
595 if (REG_P(Addr) && REG_OK_FOR_BASE_P(Addr)) \
596 goto LABEL; \
597 if (GET_CODE(Addr) == PLUS && \
598 ((REG_P(XEXP(Addr, 0)) && REG_OK_FOR_BASE_P(XEXP(Addr, 0)) && \
599 CONSTANT_ADDRESS_P(XEXP(Addr, 1))) || \
600 (REG_P(XEXP(Addr, 1)) && REG_OK_FOR_BASE_P(XEXP(Addr, 1)) && \
601 CONSTANT_ADDRESS_P(XEXP(Addr, 0))))) \
602 goto LABEL; \
603 }
604 \f
605 /* Try machine-dependent ways of modifying an illegitimate address
606 to be legitimate. If we find one, return the new, valid address.
607 This macro is used in only one place: `memory_address' in explow.c.
608
609 OLDX is the address as it was before break_out_memory_refs was called.
610 In some cases it is useful to look at this to decide what needs to be done.
611
612 MODE and WIN are passed so that this macro can use
613 GO_IF_LEGITIMATE_ADDRESS.
614
615 It is always safe for this macro to do nothing. It exists to recognize
616 opportunities to optimize the output. */
617
618 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) { }
619
620 /* Go to LABEL if ADDR (a legitimate address expression)
621 has an effect that depends on the machine mode it is used for. */
622
623 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) { }
624 \f
625 /* Specify the machine mode that this machine uses
626 for the index in the tablejump instruction. */
627 #define CASE_VECTOR_MODE SImode
628
629 /* Define as C expression which evaluates to nonzero if the tablejump
630 instruction expects the table to contain offsets from the address of the
631 table.
632 Do not define this if the table should contain absolute addresses. */
633 /* #define CASE_VECTOR_PC_RELATIVE 1 */
634
635 /* Specify the tree operation to be used to convert reals to integers. */
636 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
637
638 /* This is the kind of divide that is easiest to do in the general case. */
639 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
640
641 /* Define this as 1 if `char' should by default be signed; else as 0. */
642 #define DEFAULT_SIGNED_CHAR 0
643
644 /* Max number of bytes we can move from memory to memory
645 in one reasonably fast instruction. */
646 #define MOVE_MAX 4
647
648 /* Define this if zero-extension is slow (more than one real instruction). */
649 /* #define SLOW_ZERO_EXTEND */
650
651 /* Nonzero if access to memory by bytes is slow and undesirable. */
652 #define SLOW_BYTE_ACCESS 0
653
654 /* Define this to be nonzero if shift instructions ignore all but the low-order
655 few bits. */
656 #define SHIFT_COUNT_TRUNCATED 1
657
658 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
659 is done just by pretending it is already truncated. */
660 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
661
662 /* We assume that the store-condition-codes instructions store 0 for false
663 and some other value for true. This is the value stored for true. */
664
665 #define STORE_FLAG_VALUE -1
666
667 /* When a prototype says `char' or `short', really pass an `int'. */
668 #define PROMOTE_PROTOTYPES 1
669
670 /* Specify the machine mode that pointers have.
671 After generation of rtl, the compiler makes no further distinction
672 between pointers and any other objects of this machine mode. */
673 #define Pmode SImode
674
675 /* A function address in a call instruction
676 is a byte address (for indexing purposes)
677 so give the MEM rtx a byte's mode. */
678 #define FUNCTION_MODE QImode
679
680 /* Compute the cost of computing a constant rtl expression RTX
681 whose rtx-code is CODE. The body of this macro is a portion
682 of a switch statement. If the code is computed here,
683 return it with a return statement. Otherwise, break from the switch. */
684
685 #define CONST_COSTS(RTX,CODE, OUTER_CODE) \
686 case CONST_INT: \
687 if (INTVAL (RTX) >= -16 && INTVAL (RTX) <= 63) return 0; \
688 if (INTVAL (RTX) >= -128 && INTVAL (RTX) <= 127) return 1; \
689 if (INTVAL (RTX) >= -32768 && INTVAL (RTX) <= 32767) return 2; \
690 case CONST: \
691 case LABEL_REF: \
692 case SYMBOL_REF: \
693 return 3; \
694 case CONST_DOUBLE: \
695 return 5;
696 \f
697 /* Tell final.c how to eliminate redundant test instructions. */
698
699 /* Here we define machine-dependent flags and fields in cc_status
700 (see `conditions.h'). */
701
702 #define NOTICE_UPDATE_CC(EXP, INSN) \
703 { \
704 { CC_STATUS_INIT; } \
705 }
706 \f
707 /* Control the assembler format that we output. */
708
709 /* Use crt1.o as a startup file and crtn.o as a closing file. */
710
711 #define STARTFILE_SPEC "%{pg:gcrt1.o%s}%{!pg:%{p:mcrt1.o%s}%{!p:crt1.o%s}}"
712
713 #define ENDFILE_SPEC "crtn.o%s"
714
715 /* The .file command should always begin the output. */
716
717 #define ASM_FILE_START(FILE) output_file_directive ((FILE), main_input_filename)
718
719 /* Output to assembler file text saying following lines
720 may contain character constants, extra white space, comments, etc. */
721
722 #define ASM_APP_ON "#APP\n"
723
724 /* Output to assembler file text saying following lines
725 no longer contain unusual constructs. */
726
727 #define ASM_APP_OFF "#NO_APP\n"
728
729 /* Output before code. */
730
731 #define TEXT_SECTION_ASM_OP ".text"
732
733 /* Output before writable data. */
734
735 #define DATA_SECTION_ASM_OP ".data"
736
737 /* Read-only data goes in the data section because
738 AT&T's assembler doesn't guarantee the proper alignment
739 of data in the text section even if an align statement
740 is used. */
741
742 #define READONLY_DATA_SECTION() data_section()
743
744 /* How to refer to registers in assembler output.
745 This sequence is indexed by compiler's hard-register-number (see above). */
746
747 #define REGISTER_NAMES \
748 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
749 "r8", "fp", "ap", "psw", "sp", "pcbp", "isp", "pc" }
750
751 /* How to renumber registers for dbx and gdb. */
752
753 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
754
755 /* Output SDB debugging info in response to the -g option. */
756
757 #define SDB_DEBUGGING_INFO
758
759 /* This is how to output the definition of a user-level label named NAME,
760 such as the label on a static function or variable NAME. */
761
762 #define ASM_OUTPUT_LABEL(FILE,NAME) \
763 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
764
765 /* This is how to output a command to make the user-level label named NAME
766 defined for reference from other files. */
767
768 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
769 do { \
770 fputs (".globl ", FILE); \
771 assemble_name (FILE, NAME); \
772 fputs ("\n", FILE); \
773 } while (0)
774
775 /* The prefix to add to user-visible assembler symbols. */
776
777 #define USER_LABEL_PREFIX ""
778
779 /* This is how to output an internal numbered label where
780 PREFIX is the class of label and NUM is the number within the class. */
781
782 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
783 fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
784
785 /* This is how to store into the string LABEL
786 the symbol_ref name of an internal numbered label where
787 PREFIX is the class of label and NUM is the number within the class.
788 This is suitable for output with `assemble_name'. */
789
790 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
791 sprintf (LABEL, ".%s%d", PREFIX, NUM)
792
793 /* This is how to output an internal numbered label which
794 labels a jump table. */
795
796 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
797 do { \
798 ASM_OUTPUT_ALIGN (FILE, 2); \
799 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
800 } while (0)
801
802 /* Assembler pseudo to introduce byte constants. */
803
804 #define ASM_BYTE_OP "\t.byte"
805
806 /* This is how to output an assembler line defining a `double' constant. */
807
808 /* This is how to output an assembler line defining a `float' constant. */
809
810 /* AT&T's assembler can't handle floating constants written as floating.
811 However, when cross-compiling, always use that in case format differs. */
812
813 #ifdef CROSS_COMPILE
814
815 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
816 fprintf (FILE, "\t.double 0r%.20g\n", (VALUE))
817
818 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
819 fprintf (FILE, "\t.float 0r%.10g\n", (VALUE))
820
821 #else
822
823 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
824 do { union { double d; long l[2];} tem; \
825 tem.d = (VALUE); \
826 fprintf (FILE, "\t.word 0x%lx, 0x%lx\n", tem.l[0], tem.l[1]);\
827 } while (0)
828
829 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
830 do { union { float f; long l;} tem; \
831 tem.f = (VALUE); \
832 fprintf (FILE, "\t.word 0x%lx\n", tem.l); \
833 } while (0)
834
835 #endif /* not CROSS_COMPILE */
836
837 /* This is how to output an assembler line defining an `int' constant. */
838
839 #define ASM_OUTPUT_INT(FILE,VALUE) \
840 ( fprintf (FILE, "\t.word "), \
841 output_addr_const (FILE, (VALUE)), \
842 fprintf (FILE, "\n"))
843
844 /* Likewise for `char' and `short' constants. */
845
846 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
847 ( fprintf (FILE, "\t.half "), \
848 output_addr_const (FILE, (VALUE)), \
849 fprintf (FILE, "\n"))
850
851 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
852 ( fprintf (FILE, "\t.byte "), \
853 output_addr_const (FILE, (VALUE)), \
854 fprintf (FILE, "\n"))
855
856 /* This is how to output an assembler line for a numeric constant byte. */
857
858 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
859 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
860
861 #define ASM_OUTPUT_ASCII(FILE,PTR,LEN) \
862 do { \
863 const unsigned char *s; \
864 int i; \
865 for (i = 0, s = (const unsigned char *)(PTR); i < (LEN); s++, i++) \
866 { \
867 if ((i % 8) == 0) \
868 fprintf ((FILE),"%s\t.byte\t",(i?"\n":"")); \
869 fprintf ((FILE), "%s0x%x", (i%8?",":""), (unsigned)*s); \
870 } \
871 fputs ("\n", (FILE)); \
872 } while (0)
873
874 /* This is how to output an insn to push a register on the stack.
875 It need not be very fast code. */
876
877 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
878 fprintf (FILE, "\tpushw %s\n", reg_names[REGNO])
879
880 /* This is how to output an insn to pop a register from the stack.
881 It need not be very fast code. */
882
883 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
884 fprintf (FILE, "\tPOPW %s\n", reg_names[REGNO])
885
886 /* This is how to output an element of a case-vector that is absolute. */
887
888 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
889 fprintf (FILE, "\t.word .L%d\n", VALUE)
890
891 /* This is how to output an element of a case-vector that is relative. */
892
893 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
894 fprintf (FILE, "\t.word .L%d-.L%d\n", VALUE, REL)
895
896 /* This is how to output an assembler line
897 that says to advance the location counter
898 to a multiple of 2**LOG bytes. */
899
900 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
901 if ((LOG) != 0) \
902 fprintf (FILE, "\t.align %d\n", 1 << (LOG))
903
904 /* This is how to output an assembler line
905 that says to advance the location counter by SIZE bytes. */
906
907 /* The `space' pseudo in the text segment outputs nop insns rather than 0s,
908 so we must output 0s explicitly in the text segment. */
909
910 #define ASM_OUTPUT_SKIP(FILE,SIZE) do { \
911 if (in_text_section ()) \
912 { \
913 int i; \
914 for (i = 0; i < (SIZE) - 20; i += 20) \
915 fprintf (FILE, "\t.byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n"); \
916 if (i < (SIZE)) \
917 { \
918 fprintf (FILE, "\t.byte 0"); \
919 i++; \
920 for (; i < (SIZE); i++) \
921 fprintf (FILE, ",0"); \
922 fprintf (FILE, "\n"); \
923 } \
924 } \
925 else \
926 fprintf ((FILE), "\t.set .,.+%u\n", (SIZE)); } while (0)
927
928 /* This says how to output an assembler line
929 to define a global common symbol. */
930
931 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
932 do { \
933 data_section(); \
934 fputs ("\t.comm ", (FILE)); \
935 assemble_name ((FILE), (NAME)); \
936 fprintf ((FILE), ",%u\n", (SIZE)); \
937 } while (0)
938
939 /* This says how to output an assembler line
940 to define a local common symbol. */
941
942 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
943 do { \
944 data_section(); \
945 ASM_OUTPUT_ALIGN ((FILE), 2); \
946 ASM_OUTPUT_LABEL ((FILE), (NAME)); \
947 fprintf ((FILE), "\t.zero %u\n", (SIZE)); \
948 } while (0)
949
950 /* Store in OUTPUT a string (made with alloca) containing
951 an assembler-name for a local static variable named NAME.
952 LABELNO is an integer which is different for each call. */
953
954 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
955 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
956 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
957
958 /* Output #ident as a .ident. */
959
960 #define ASM_OUTPUT_IDENT(FILE, NAME) fprintf (FILE, "\t.ident \"%s\"\n", NAME)
961
962 /* Define the parentheses used to group arithmetic operations
963 in assembler code. */
964
965 #define ASM_OPEN_PAREN "("
966 #define ASM_CLOSE_PAREN ")"
967
968 /* Define results of standard character escape sequences. */
969 #define TARGET_BELL 007
970 #define TARGET_BS 010
971 #define TARGET_TAB 011
972 #define TARGET_NEWLINE 012
973 #define TARGET_VT 013
974 #define TARGET_FF 014
975 #define TARGET_CR 015
976
977 /* Print operand X (an rtx) in assembler syntax to file FILE.
978 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
979 For `%' followed by punctuation, CODE is the punctuation and X is null. */
980
981 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
982
983 #define PRINT_OPERAND(FILE, X, CODE) \
984 { if (GET_CODE (X) == REG) \
985 fprintf (FILE, "%%%s", reg_names[REGNO (X)]); \
986 else if (GET_CODE (X) == MEM) \
987 output_address (XEXP (X, 0)); \
988 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
989 { \
990 union { double d; long l[2]; } dtem; \
991 union { float f; long l; } ftem; \
992 \
993 dtem.l[0] = CONST_DOUBLE_LOW (X); \
994 dtem.l[1] = CONST_DOUBLE_HIGH (X); \
995 ftem.f = dtem.d; \
996 fprintf(FILE, "&0x%lx", ftem.l); \
997 } \
998 else { putc ('&', FILE); output_addr_const (FILE, X); }}
999 \f
1000 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1001 { register rtx Addr = ADDR; \
1002 rtx offset; \
1003 rtx reg; \
1004 if (GET_CODE (Addr) == MEM) { \
1005 putc ('*', FILE); \
1006 Addr = XEXP (Addr, 0); \
1007 if (GET_CODE (Addr) == REG) \
1008 putc ('0', FILE); \
1009 } \
1010 switch (GET_CODE (Addr)) \
1011 { \
1012 case REG: \
1013 fprintf (FILE, "(%%%s)", reg_names[REGNO (Addr)]); \
1014 break; \
1015 \
1016 case PLUS: \
1017 offset = NULL; \
1018 if (CONSTANT_ADDRESS_P (XEXP (Addr, 0))) \
1019 { \
1020 offset = XEXP (Addr, 0); \
1021 Addr = XEXP (Addr, 1); \
1022 } \
1023 else if (CONSTANT_ADDRESS_P (XEXP (Addr, 1))) \
1024 { \
1025 offset = XEXP (Addr, 1); \
1026 Addr = XEXP (Addr, 0); \
1027 } \
1028 else \
1029 abort(); \
1030 if (REG_P (Addr)) \
1031 reg = Addr; \
1032 else \
1033 abort(); \
1034 output_addr_const(FILE, offset); \
1035 fprintf(FILE, "(%%%s)", reg_names[REGNO(reg)]); \
1036 break; \
1037 \
1038 default: \
1039 if ( !CONSTANT_ADDRESS_P(Addr)) \
1040 abort(); \
1041 output_addr_const (FILE, Addr); \
1042 }}
1043 \f
1044 /*
1045 Local variables:
1046 version-control: t
1047 End:
1048 */