expr.h: Remove prototypes of functions defined in builtins.c.
[gcc.git] / gcc / config / xtensa / xtensa.c
1 /* Subroutines for insn-output.c for Tensilica's Xtensa architecture.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "basic-block.h"
29 #include "insn-config.h"
30 #include "conditions.h"
31 #include "insn-flags.h"
32 #include "insn-attr.h"
33 #include "insn-codes.h"
34 #include "recog.h"
35 #include "output.h"
36 #include "tree.h"
37 #include "stringpool.h"
38 #include "stor-layout.h"
39 #include "calls.h"
40 #include "varasm.h"
41 #include "expr.h"
42 #include "flags.h"
43 #include "reload.h"
44 #include "tm_p.h"
45 #include "function.h"
46 #include "diagnostic-core.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "ggc.h"
50 #include "target.h"
51 #include "target-def.h"
52 #include "langhooks.h"
53 #include "pointer-set.h"
54 #include "hash-table.h"
55 #include "tree-ssa-alias.h"
56 #include "internal-fn.h"
57 #include "gimple-fold.h"
58 #include "tree-eh.h"
59 #include "gimple-expr.h"
60 #include "is-a.h"
61 #include "gimple.h"
62 #include "gimplify.h"
63 #include "df.h"
64 #include "builtins.h"
65
66
67 /* Enumeration for all of the relational tests, so that we can build
68 arrays indexed by the test type, and not worry about the order
69 of EQ, NE, etc. */
70
71 enum internal_test
72 {
73 ITEST_EQ,
74 ITEST_NE,
75 ITEST_GT,
76 ITEST_GE,
77 ITEST_LT,
78 ITEST_LE,
79 ITEST_GTU,
80 ITEST_GEU,
81 ITEST_LTU,
82 ITEST_LEU,
83 ITEST_MAX
84 };
85
86 /* Array giving truth value on whether or not a given hard register
87 can support a given mode. */
88 char xtensa_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
89
90 /* Current frame size calculated by compute_frame_size. */
91 unsigned xtensa_current_frame_size;
92
93 /* Largest block move to handle in-line. */
94 #define LARGEST_MOVE_RATIO 15
95
96 /* Define the structure for the machine field in struct function. */
97 struct GTY(()) machine_function
98 {
99 int accesses_prev_frame;
100 bool need_a7_copy;
101 bool vararg_a7;
102 rtx vararg_a7_copy;
103 rtx set_frame_ptr_insn;
104 };
105
106 /* Vector, indexed by hard register number, which contains 1 for a
107 register that is allowable in a candidate for leaf function
108 treatment. */
109
110 const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER] =
111 {
112 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
113 1, 1, 1,
114 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
115 1
116 };
117
118 /* Map hard register number to register class */
119 const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER] =
120 {
121 RL_REGS, SP_REG, RL_REGS, RL_REGS,
122 RL_REGS, RL_REGS, RL_REGS, GR_REGS,
123 RL_REGS, RL_REGS, RL_REGS, RL_REGS,
124 RL_REGS, RL_REGS, RL_REGS, RL_REGS,
125 AR_REGS, AR_REGS, BR_REGS,
126 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
127 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
128 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
129 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
130 ACC_REG,
131 };
132
133 static void xtensa_option_override (void);
134 static enum internal_test map_test_to_internal_test (enum rtx_code);
135 static rtx gen_int_relational (enum rtx_code, rtx, rtx, int *);
136 static rtx gen_float_relational (enum rtx_code, rtx, rtx);
137 static rtx gen_conditional_move (enum rtx_code, enum machine_mode, rtx, rtx);
138 static rtx fixup_subreg_mem (rtx);
139 static struct machine_function * xtensa_init_machine_status (void);
140 static rtx xtensa_legitimize_tls_address (rtx);
141 static rtx xtensa_legitimize_address (rtx, rtx, enum machine_mode);
142 static bool xtensa_mode_dependent_address_p (const_rtx, addr_space_t);
143 static bool xtensa_return_in_msb (const_tree);
144 static void printx (FILE *, signed int);
145 static void xtensa_function_epilogue (FILE *, HOST_WIDE_INT);
146 static rtx xtensa_builtin_saveregs (void);
147 static bool xtensa_legitimate_address_p (enum machine_mode, rtx, bool);
148 static unsigned int xtensa_multibss_section_type_flags (tree, const char *,
149 int) ATTRIBUTE_UNUSED;
150 static section *xtensa_select_rtx_section (enum machine_mode, rtx,
151 unsigned HOST_WIDE_INT);
152 static bool xtensa_rtx_costs (rtx, int, int, int, int *, bool);
153 static int xtensa_register_move_cost (enum machine_mode, reg_class_t,
154 reg_class_t);
155 static int xtensa_memory_move_cost (enum machine_mode, reg_class_t, bool);
156 static tree xtensa_build_builtin_va_list (void);
157 static bool xtensa_return_in_memory (const_tree, const_tree);
158 static tree xtensa_gimplify_va_arg_expr (tree, tree, gimple_seq *,
159 gimple_seq *);
160 static void xtensa_function_arg_advance (cumulative_args_t, enum machine_mode,
161 const_tree, bool);
162 static rtx xtensa_function_arg (cumulative_args_t, enum machine_mode,
163 const_tree, bool);
164 static rtx xtensa_function_incoming_arg (cumulative_args_t,
165 enum machine_mode, const_tree, bool);
166 static rtx xtensa_function_value (const_tree, const_tree, bool);
167 static rtx xtensa_libcall_value (enum machine_mode, const_rtx);
168 static bool xtensa_function_value_regno_p (const unsigned int);
169 static unsigned int xtensa_function_arg_boundary (enum machine_mode,
170 const_tree);
171 static void xtensa_init_builtins (void);
172 static tree xtensa_fold_builtin (tree, int, tree *, bool);
173 static rtx xtensa_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
174 static void xtensa_va_start (tree, rtx);
175 static bool xtensa_frame_pointer_required (void);
176 static rtx xtensa_static_chain (const_tree, bool);
177 static void xtensa_asm_trampoline_template (FILE *);
178 static void xtensa_trampoline_init (rtx, tree, rtx);
179 static bool xtensa_output_addr_const_extra (FILE *, rtx);
180 static bool xtensa_cannot_force_const_mem (enum machine_mode, rtx);
181
182 static reg_class_t xtensa_preferred_reload_class (rtx, reg_class_t);
183 static reg_class_t xtensa_preferred_output_reload_class (rtx, reg_class_t);
184 static reg_class_t xtensa_secondary_reload (bool, rtx, reg_class_t,
185 enum machine_mode,
186 struct secondary_reload_info *);
187
188 static bool constantpool_address_p (const_rtx addr);
189 static bool xtensa_legitimate_constant_p (enum machine_mode, rtx);
190
191 static bool xtensa_member_type_forces_blk (const_tree,
192 enum machine_mode mode);
193
194 static const int reg_nonleaf_alloc_order[FIRST_PSEUDO_REGISTER] =
195 REG_ALLOC_ORDER;
196 \f
197
198 /* This macro generates the assembly code for function exit,
199 on machines that need it. If FUNCTION_EPILOGUE is not defined
200 then individual return instructions are generated for each
201 return statement. Args are same as for FUNCTION_PROLOGUE. */
202
203 #undef TARGET_ASM_FUNCTION_EPILOGUE
204 #define TARGET_ASM_FUNCTION_EPILOGUE xtensa_function_epilogue
205
206 /* These hooks specify assembly directives for creating certain kinds
207 of integer object. */
208
209 #undef TARGET_ASM_ALIGNED_SI_OP
210 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
211
212 #undef TARGET_ASM_SELECT_RTX_SECTION
213 #define TARGET_ASM_SELECT_RTX_SECTION xtensa_select_rtx_section
214
215 #undef TARGET_LEGITIMIZE_ADDRESS
216 #define TARGET_LEGITIMIZE_ADDRESS xtensa_legitimize_address
217 #undef TARGET_MODE_DEPENDENT_ADDRESS_P
218 #define TARGET_MODE_DEPENDENT_ADDRESS_P xtensa_mode_dependent_address_p
219
220 #undef TARGET_REGISTER_MOVE_COST
221 #define TARGET_REGISTER_MOVE_COST xtensa_register_move_cost
222 #undef TARGET_MEMORY_MOVE_COST
223 #define TARGET_MEMORY_MOVE_COST xtensa_memory_move_cost
224 #undef TARGET_RTX_COSTS
225 #define TARGET_RTX_COSTS xtensa_rtx_costs
226 #undef TARGET_ADDRESS_COST
227 #define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
228
229 #undef TARGET_MEMBER_TYPE_FORCES_BLK
230 #define TARGET_MEMBER_TYPE_FORCES_BLK xtensa_member_type_forces_blk
231
232 #undef TARGET_BUILD_BUILTIN_VA_LIST
233 #define TARGET_BUILD_BUILTIN_VA_LIST xtensa_build_builtin_va_list
234
235 #undef TARGET_EXPAND_BUILTIN_VA_START
236 #define TARGET_EXPAND_BUILTIN_VA_START xtensa_va_start
237
238 #undef TARGET_PROMOTE_FUNCTION_MODE
239 #define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
240 #undef TARGET_PROMOTE_PROTOTYPES
241 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
242
243 #undef TARGET_RETURN_IN_MEMORY
244 #define TARGET_RETURN_IN_MEMORY xtensa_return_in_memory
245 #undef TARGET_FUNCTION_VALUE
246 #define TARGET_FUNCTION_VALUE xtensa_function_value
247 #undef TARGET_LIBCALL_VALUE
248 #define TARGET_LIBCALL_VALUE xtensa_libcall_value
249 #undef TARGET_FUNCTION_VALUE_REGNO_P
250 #define TARGET_FUNCTION_VALUE_REGNO_P xtensa_function_value_regno_p
251
252 #undef TARGET_SPLIT_COMPLEX_ARG
253 #define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
254 #undef TARGET_MUST_PASS_IN_STACK
255 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
256 #undef TARGET_FUNCTION_ARG_ADVANCE
257 #define TARGET_FUNCTION_ARG_ADVANCE xtensa_function_arg_advance
258 #undef TARGET_FUNCTION_ARG
259 #define TARGET_FUNCTION_ARG xtensa_function_arg
260 #undef TARGET_FUNCTION_INCOMING_ARG
261 #define TARGET_FUNCTION_INCOMING_ARG xtensa_function_incoming_arg
262 #undef TARGET_FUNCTION_ARG_BOUNDARY
263 #define TARGET_FUNCTION_ARG_BOUNDARY xtensa_function_arg_boundary
264
265 #undef TARGET_EXPAND_BUILTIN_SAVEREGS
266 #define TARGET_EXPAND_BUILTIN_SAVEREGS xtensa_builtin_saveregs
267 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
268 #define TARGET_GIMPLIFY_VA_ARG_EXPR xtensa_gimplify_va_arg_expr
269
270 #undef TARGET_RETURN_IN_MSB
271 #define TARGET_RETURN_IN_MSB xtensa_return_in_msb
272
273 #undef TARGET_INIT_BUILTINS
274 #define TARGET_INIT_BUILTINS xtensa_init_builtins
275 #undef TARGET_FOLD_BUILTIN
276 #define TARGET_FOLD_BUILTIN xtensa_fold_builtin
277 #undef TARGET_EXPAND_BUILTIN
278 #define TARGET_EXPAND_BUILTIN xtensa_expand_builtin
279
280 #undef TARGET_PREFERRED_RELOAD_CLASS
281 #define TARGET_PREFERRED_RELOAD_CLASS xtensa_preferred_reload_class
282 #undef TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
283 #define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS xtensa_preferred_output_reload_class
284
285 #undef TARGET_SECONDARY_RELOAD
286 #define TARGET_SECONDARY_RELOAD xtensa_secondary_reload
287
288 #undef TARGET_HAVE_TLS
289 #define TARGET_HAVE_TLS (TARGET_THREADPTR && HAVE_AS_TLS)
290
291 #undef TARGET_CANNOT_FORCE_CONST_MEM
292 #define TARGET_CANNOT_FORCE_CONST_MEM xtensa_cannot_force_const_mem
293
294 #undef TARGET_LEGITIMATE_ADDRESS_P
295 #define TARGET_LEGITIMATE_ADDRESS_P xtensa_legitimate_address_p
296
297 #undef TARGET_FRAME_POINTER_REQUIRED
298 #define TARGET_FRAME_POINTER_REQUIRED xtensa_frame_pointer_required
299
300 #undef TARGET_STATIC_CHAIN
301 #define TARGET_STATIC_CHAIN xtensa_static_chain
302 #undef TARGET_ASM_TRAMPOLINE_TEMPLATE
303 #define TARGET_ASM_TRAMPOLINE_TEMPLATE xtensa_asm_trampoline_template
304 #undef TARGET_TRAMPOLINE_INIT
305 #define TARGET_TRAMPOLINE_INIT xtensa_trampoline_init
306
307 #undef TARGET_OPTION_OVERRIDE
308 #define TARGET_OPTION_OVERRIDE xtensa_option_override
309
310 #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
311 #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA xtensa_output_addr_const_extra
312
313 #undef TARGET_LEGITIMATE_CONSTANT_P
314 #define TARGET_LEGITIMATE_CONSTANT_P xtensa_legitimate_constant_p
315
316 struct gcc_target targetm = TARGET_INITIALIZER;
317
318 \f
319 /* Functions to test Xtensa immediate operand validity. */
320
321 bool
322 xtensa_simm8 (HOST_WIDE_INT v)
323 {
324 return v >= -128 && v <= 127;
325 }
326
327
328 bool
329 xtensa_simm8x256 (HOST_WIDE_INT v)
330 {
331 return (v & 255) == 0 && (v >= -32768 && v <= 32512);
332 }
333
334
335 bool
336 xtensa_simm12b (HOST_WIDE_INT v)
337 {
338 return v >= -2048 && v <= 2047;
339 }
340
341
342 static bool
343 xtensa_uimm8 (HOST_WIDE_INT v)
344 {
345 return v >= 0 && v <= 255;
346 }
347
348
349 static bool
350 xtensa_uimm8x2 (HOST_WIDE_INT v)
351 {
352 return (v & 1) == 0 && (v >= 0 && v <= 510);
353 }
354
355
356 static bool
357 xtensa_uimm8x4 (HOST_WIDE_INT v)
358 {
359 return (v & 3) == 0 && (v >= 0 && v <= 1020);
360 }
361
362
363 static bool
364 xtensa_b4const (HOST_WIDE_INT v)
365 {
366 switch (v)
367 {
368 case -1:
369 case 1:
370 case 2:
371 case 3:
372 case 4:
373 case 5:
374 case 6:
375 case 7:
376 case 8:
377 case 10:
378 case 12:
379 case 16:
380 case 32:
381 case 64:
382 case 128:
383 case 256:
384 return true;
385 }
386 return false;
387 }
388
389
390 bool
391 xtensa_b4const_or_zero (HOST_WIDE_INT v)
392 {
393 if (v == 0)
394 return true;
395 return xtensa_b4const (v);
396 }
397
398
399 bool
400 xtensa_b4constu (HOST_WIDE_INT v)
401 {
402 switch (v)
403 {
404 case 32768:
405 case 65536:
406 case 2:
407 case 3:
408 case 4:
409 case 5:
410 case 6:
411 case 7:
412 case 8:
413 case 10:
414 case 12:
415 case 16:
416 case 32:
417 case 64:
418 case 128:
419 case 256:
420 return true;
421 }
422 return false;
423 }
424
425
426 bool
427 xtensa_mask_immediate (HOST_WIDE_INT v)
428 {
429 #define MAX_MASK_SIZE 16
430 int mask_size;
431
432 for (mask_size = 1; mask_size <= MAX_MASK_SIZE; mask_size++)
433 {
434 if ((v & 1) == 0)
435 return false;
436 v = v >> 1;
437 if (v == 0)
438 return true;
439 }
440
441 return false;
442 }
443
444
445 /* This is just like the standard true_regnum() function except that it
446 works even when reg_renumber is not initialized. */
447
448 int
449 xt_true_regnum (rtx x)
450 {
451 if (GET_CODE (x) == REG)
452 {
453 if (reg_renumber
454 && REGNO (x) >= FIRST_PSEUDO_REGISTER
455 && reg_renumber[REGNO (x)] >= 0)
456 return reg_renumber[REGNO (x)];
457 return REGNO (x);
458 }
459 if (GET_CODE (x) == SUBREG)
460 {
461 int base = xt_true_regnum (SUBREG_REG (x));
462 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
463 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
464 GET_MODE (SUBREG_REG (x)),
465 SUBREG_BYTE (x), GET_MODE (x));
466 }
467 return -1;
468 }
469
470
471 int
472 xtensa_valid_move (enum machine_mode mode, rtx *operands)
473 {
474 /* Either the destination or source must be a register, and the
475 MAC16 accumulator doesn't count. */
476
477 if (register_operand (operands[0], mode))
478 {
479 int dst_regnum = xt_true_regnum (operands[0]);
480
481 /* The stack pointer can only be assigned with a MOVSP opcode. */
482 if (dst_regnum == STACK_POINTER_REGNUM)
483 return (mode == SImode
484 && register_operand (operands[1], mode)
485 && !ACC_REG_P (xt_true_regnum (operands[1])));
486
487 if (!ACC_REG_P (dst_regnum))
488 return true;
489 }
490 if (register_operand (operands[1], mode))
491 {
492 int src_regnum = xt_true_regnum (operands[1]);
493 if (!ACC_REG_P (src_regnum))
494 return true;
495 }
496 return FALSE;
497 }
498
499
500 int
501 smalloffset_mem_p (rtx op)
502 {
503 if (GET_CODE (op) == MEM)
504 {
505 rtx addr = XEXP (op, 0);
506 if (GET_CODE (addr) == REG)
507 return BASE_REG_P (addr, 0);
508 if (GET_CODE (addr) == PLUS)
509 {
510 rtx offset = XEXP (addr, 0);
511 HOST_WIDE_INT val;
512 if (GET_CODE (offset) != CONST_INT)
513 offset = XEXP (addr, 1);
514 if (GET_CODE (offset) != CONST_INT)
515 return FALSE;
516
517 val = INTVAL (offset);
518 return (val & 3) == 0 && (val >= 0 && val <= 60);
519 }
520 }
521 return FALSE;
522 }
523
524
525 static bool
526 constantpool_address_p (const_rtx addr)
527 {
528 const_rtx sym = addr;
529
530 if (GET_CODE (addr) == CONST)
531 {
532 rtx offset;
533
534 /* Only handle (PLUS (SYM, OFFSET)) form. */
535 addr = XEXP (addr, 0);
536 if (GET_CODE (addr) != PLUS)
537 return false;
538
539 /* Make sure the address is word aligned. */
540 offset = XEXP (addr, 1);
541 if ((!CONST_INT_P (offset))
542 || ((INTVAL (offset) & 3) != 0))
543 return false;
544
545 sym = XEXP (addr, 0);
546 }
547
548 if ((GET_CODE (sym) == SYMBOL_REF)
549 && CONSTANT_POOL_ADDRESS_P (sym))
550 return true;
551 return false;
552 }
553
554
555 int
556 constantpool_mem_p (rtx op)
557 {
558 if (GET_CODE (op) == SUBREG)
559 op = SUBREG_REG (op);
560 if (GET_CODE (op) == MEM)
561 return constantpool_address_p (XEXP (op, 0));
562 return FALSE;
563 }
564
565
566 /* Return TRUE if X is a thread-local symbol. */
567
568 static bool
569 xtensa_tls_symbol_p (rtx x)
570 {
571 if (! TARGET_HAVE_TLS)
572 return false;
573
574 return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
575 }
576
577
578 void
579 xtensa_extend_reg (rtx dst, rtx src)
580 {
581 rtx temp = gen_reg_rtx (SImode);
582 rtx shift = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (GET_MODE (src)));
583
584 /* Generate paradoxical subregs as needed so that the modes match. */
585 src = simplify_gen_subreg (SImode, src, GET_MODE (src), 0);
586 dst = simplify_gen_subreg (SImode, dst, GET_MODE (dst), 0);
587
588 emit_insn (gen_ashlsi3 (temp, src, shift));
589 emit_insn (gen_ashrsi3 (dst, temp, shift));
590 }
591
592
593 bool
594 xtensa_mem_offset (unsigned v, enum machine_mode mode)
595 {
596 switch (mode)
597 {
598 case BLKmode:
599 /* Handle the worst case for block moves. See xtensa_expand_block_move
600 where we emit an optimized block move operation if the block can be
601 moved in < "move_ratio" pieces. The worst case is when the block is
602 aligned but has a size of (3 mod 4) (does this happen?) so that the
603 last piece requires a byte load/store. */
604 return (xtensa_uimm8 (v)
605 && xtensa_uimm8 (v + MOVE_MAX * LARGEST_MOVE_RATIO));
606
607 case QImode:
608 return xtensa_uimm8 (v);
609
610 case HImode:
611 return xtensa_uimm8x2 (v);
612
613 case DFmode:
614 return (xtensa_uimm8x4 (v) && xtensa_uimm8x4 (v + 4));
615
616 default:
617 break;
618 }
619
620 return xtensa_uimm8x4 (v);
621 }
622
623
624 /* Make normal rtx_code into something we can index from an array. */
625
626 static enum internal_test
627 map_test_to_internal_test (enum rtx_code test_code)
628 {
629 enum internal_test test = ITEST_MAX;
630
631 switch (test_code)
632 {
633 default: break;
634 case EQ: test = ITEST_EQ; break;
635 case NE: test = ITEST_NE; break;
636 case GT: test = ITEST_GT; break;
637 case GE: test = ITEST_GE; break;
638 case LT: test = ITEST_LT; break;
639 case LE: test = ITEST_LE; break;
640 case GTU: test = ITEST_GTU; break;
641 case GEU: test = ITEST_GEU; break;
642 case LTU: test = ITEST_LTU; break;
643 case LEU: test = ITEST_LEU; break;
644 }
645
646 return test;
647 }
648
649
650 /* Generate the code to compare two integer values. The return value is
651 the comparison expression. */
652
653 static rtx
654 gen_int_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
655 rtx cmp0, /* first operand to compare */
656 rtx cmp1, /* second operand to compare */
657 int *p_invert /* whether branch needs to reverse test */)
658 {
659 struct cmp_info
660 {
661 enum rtx_code test_code; /* test code to use in insn */
662 bool (*const_range_p) (HOST_WIDE_INT); /* range check function */
663 int const_add; /* constant to add (convert LE -> LT) */
664 int reverse_regs; /* reverse registers in test */
665 int invert_const; /* != 0 if invert value if cmp1 is constant */
666 int invert_reg; /* != 0 if invert value if cmp1 is register */
667 int unsignedp; /* != 0 for unsigned comparisons. */
668 };
669
670 static struct cmp_info info[ (int)ITEST_MAX ] = {
671
672 { EQ, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* EQ */
673 { NE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* NE */
674
675 { LT, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* GT */
676 { GE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* GE */
677 { LT, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* LT */
678 { GE, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* LE */
679
680 { LTU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* GTU */
681 { GEU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* GEU */
682 { LTU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* LTU */
683 { GEU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* LEU */
684 };
685
686 enum internal_test test;
687 enum machine_mode mode;
688 struct cmp_info *p_info;
689
690 test = map_test_to_internal_test (test_code);
691 gcc_assert (test != ITEST_MAX);
692
693 p_info = &info[ (int)test ];
694
695 mode = GET_MODE (cmp0);
696 if (mode == VOIDmode)
697 mode = GET_MODE (cmp1);
698
699 /* Make sure we can handle any constants given to us. */
700 if (GET_CODE (cmp1) == CONST_INT)
701 {
702 HOST_WIDE_INT value = INTVAL (cmp1);
703 unsigned HOST_WIDE_INT uvalue = (unsigned HOST_WIDE_INT)value;
704
705 /* if the immediate overflows or does not fit in the immediate field,
706 spill it to a register */
707
708 if ((p_info->unsignedp ?
709 (uvalue + p_info->const_add > uvalue) :
710 (value + p_info->const_add > value)) != (p_info->const_add > 0))
711 {
712 cmp1 = force_reg (mode, cmp1);
713 }
714 else if (!(p_info->const_range_p) (value + p_info->const_add))
715 {
716 cmp1 = force_reg (mode, cmp1);
717 }
718 }
719 else if ((GET_CODE (cmp1) != REG) && (GET_CODE (cmp1) != SUBREG))
720 {
721 cmp1 = force_reg (mode, cmp1);
722 }
723
724 /* See if we need to invert the result. */
725 *p_invert = ((GET_CODE (cmp1) == CONST_INT)
726 ? p_info->invert_const
727 : p_info->invert_reg);
728
729 /* Comparison to constants, may involve adding 1 to change a LT into LE.
730 Comparison between two registers, may involve switching operands. */
731 if (GET_CODE (cmp1) == CONST_INT)
732 {
733 if (p_info->const_add != 0)
734 cmp1 = GEN_INT (INTVAL (cmp1) + p_info->const_add);
735
736 }
737 else if (p_info->reverse_regs)
738 {
739 rtx temp = cmp0;
740 cmp0 = cmp1;
741 cmp1 = temp;
742 }
743
744 return gen_rtx_fmt_ee (p_info->test_code, VOIDmode, cmp0, cmp1);
745 }
746
747
748 /* Generate the code to compare two float values. The return value is
749 the comparison expression. */
750
751 static rtx
752 gen_float_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
753 rtx cmp0, /* first operand to compare */
754 rtx cmp1 /* second operand to compare */)
755 {
756 rtx (*gen_fn) (rtx, rtx, rtx);
757 rtx brtmp;
758 int reverse_regs, invert;
759
760 switch (test_code)
761 {
762 case EQ: reverse_regs = 0; invert = 0; gen_fn = gen_seq_sf; break;
763 case NE: reverse_regs = 0; invert = 1; gen_fn = gen_seq_sf; break;
764 case LE: reverse_regs = 0; invert = 0; gen_fn = gen_sle_sf; break;
765 case GT: reverse_regs = 1; invert = 0; gen_fn = gen_slt_sf; break;
766 case LT: reverse_regs = 0; invert = 0; gen_fn = gen_slt_sf; break;
767 case GE: reverse_regs = 1; invert = 0; gen_fn = gen_sle_sf; break;
768 case UNEQ: reverse_regs = 0; invert = 0; gen_fn = gen_suneq_sf; break;
769 case LTGT: reverse_regs = 0; invert = 1; gen_fn = gen_suneq_sf; break;
770 case UNLE: reverse_regs = 0; invert = 0; gen_fn = gen_sunle_sf; break;
771 case UNGT: reverse_regs = 1; invert = 0; gen_fn = gen_sunlt_sf; break;
772 case UNLT: reverse_regs = 0; invert = 0; gen_fn = gen_sunlt_sf; break;
773 case UNGE: reverse_regs = 1; invert = 0; gen_fn = gen_sunle_sf; break;
774 case UNORDERED:
775 reverse_regs = 0; invert = 0; gen_fn = gen_sunordered_sf; break;
776 case ORDERED:
777 reverse_regs = 0; invert = 1; gen_fn = gen_sunordered_sf; break;
778 default:
779 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
780 reverse_regs = 0; invert = 0; gen_fn = 0; /* avoid compiler warnings */
781 }
782
783 if (reverse_regs)
784 {
785 rtx temp = cmp0;
786 cmp0 = cmp1;
787 cmp1 = temp;
788 }
789
790 brtmp = gen_rtx_REG (CCmode, FPCC_REGNUM);
791 emit_insn (gen_fn (brtmp, cmp0, cmp1));
792
793 return gen_rtx_fmt_ee (invert ? EQ : NE, VOIDmode, brtmp, const0_rtx);
794 }
795
796
797 void
798 xtensa_expand_conditional_branch (rtx *operands, enum machine_mode mode)
799 {
800 enum rtx_code test_code = GET_CODE (operands[0]);
801 rtx cmp0 = operands[1];
802 rtx cmp1 = operands[2];
803 rtx cmp;
804 int invert;
805 rtx label1, label2;
806
807 switch (mode)
808 {
809 case DFmode:
810 default:
811 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
812
813 case SImode:
814 invert = FALSE;
815 cmp = gen_int_relational (test_code, cmp0, cmp1, &invert);
816 break;
817
818 case SFmode:
819 if (!TARGET_HARD_FLOAT)
820 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode,
821 cmp0, cmp1));
822 invert = FALSE;
823 cmp = gen_float_relational (test_code, cmp0, cmp1);
824 break;
825 }
826
827 /* Generate the branch. */
828
829 label1 = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
830 label2 = pc_rtx;
831
832 if (invert)
833 {
834 label2 = label1;
835 label1 = pc_rtx;
836 }
837
838 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
839 gen_rtx_IF_THEN_ELSE (VOIDmode, cmp,
840 label1,
841 label2)));
842 }
843
844
845 static rtx
846 gen_conditional_move (enum rtx_code code, enum machine_mode mode,
847 rtx op0, rtx op1)
848 {
849 if (mode == SImode)
850 {
851 rtx cmp;
852
853 /* Jump optimization calls get_condition() which canonicalizes
854 comparisons like (GE x <const>) to (GT x <const-1>).
855 Transform those comparisons back to GE, since that is the
856 comparison supported in Xtensa. We shouldn't have to
857 transform <LE x const> comparisons, because neither
858 xtensa_expand_conditional_branch() nor get_condition() will
859 produce them. */
860
861 if ((code == GT) && (op1 == constm1_rtx))
862 {
863 code = GE;
864 op1 = const0_rtx;
865 }
866 cmp = gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
867
868 if (boolean_operator (cmp, VOIDmode))
869 {
870 /* Swap the operands to make const0 second. */
871 if (op0 == const0_rtx)
872 {
873 op0 = op1;
874 op1 = const0_rtx;
875 }
876
877 /* If not comparing against zero, emit a comparison (subtract). */
878 if (op1 != const0_rtx)
879 {
880 op0 = expand_binop (SImode, sub_optab, op0, op1,
881 0, 0, OPTAB_LIB_WIDEN);
882 op1 = const0_rtx;
883 }
884 }
885 else if (branch_operator (cmp, VOIDmode))
886 {
887 /* Swap the operands to make const0 second. */
888 if (op0 == const0_rtx)
889 {
890 op0 = op1;
891 op1 = const0_rtx;
892
893 switch (code)
894 {
895 case LT: code = GE; break;
896 case GE: code = LT; break;
897 default: gcc_unreachable ();
898 }
899 }
900
901 if (op1 != const0_rtx)
902 return 0;
903 }
904 else
905 return 0;
906
907 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
908 }
909
910 if (TARGET_HARD_FLOAT && mode == SFmode)
911 return gen_float_relational (code, op0, op1);
912
913 return 0;
914 }
915
916
917 int
918 xtensa_expand_conditional_move (rtx *operands, int isflt)
919 {
920 rtx dest = operands[0];
921 rtx cmp = operands[1];
922 enum machine_mode cmp_mode = GET_MODE (XEXP (cmp, 0));
923 rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
924
925 if (!(cmp = gen_conditional_move (GET_CODE (cmp), cmp_mode,
926 XEXP (cmp, 0), XEXP (cmp, 1))))
927 return 0;
928
929 if (isflt)
930 gen_fn = (cmp_mode == SImode
931 ? gen_movsfcc_internal0
932 : gen_movsfcc_internal1);
933 else
934 gen_fn = (cmp_mode == SImode
935 ? gen_movsicc_internal0
936 : gen_movsicc_internal1);
937
938 emit_insn (gen_fn (dest, XEXP (cmp, 0), operands[2], operands[3], cmp));
939 return 1;
940 }
941
942
943 int
944 xtensa_expand_scc (rtx operands[4], enum machine_mode cmp_mode)
945 {
946 rtx dest = operands[0];
947 rtx cmp;
948 rtx one_tmp, zero_tmp;
949 rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
950
951 if (!(cmp = gen_conditional_move (GET_CODE (operands[1]), cmp_mode,
952 operands[2], operands[3])))
953 return 0;
954
955 one_tmp = gen_reg_rtx (SImode);
956 zero_tmp = gen_reg_rtx (SImode);
957 emit_insn (gen_movsi (one_tmp, const_true_rtx));
958 emit_insn (gen_movsi (zero_tmp, const0_rtx));
959
960 gen_fn = (cmp_mode == SImode
961 ? gen_movsicc_internal0
962 : gen_movsicc_internal1);
963 emit_insn (gen_fn (dest, XEXP (cmp, 0), one_tmp, zero_tmp, cmp));
964 return 1;
965 }
966
967
968 /* Split OP[1] into OP[2,3] and likewise for OP[0] into OP[0,1]. MODE is
969 for the output, i.e., the input operands are twice as big as MODE. */
970
971 void
972 xtensa_split_operand_pair (rtx operands[4], enum machine_mode mode)
973 {
974 switch (GET_CODE (operands[1]))
975 {
976 case REG:
977 operands[3] = gen_rtx_REG (mode, REGNO (operands[1]) + 1);
978 operands[2] = gen_rtx_REG (mode, REGNO (operands[1]));
979 break;
980
981 case MEM:
982 operands[3] = adjust_address (operands[1], mode, GET_MODE_SIZE (mode));
983 operands[2] = adjust_address (operands[1], mode, 0);
984 break;
985
986 case CONST_INT:
987 case CONST_DOUBLE:
988 split_double (operands[1], &operands[2], &operands[3]);
989 break;
990
991 default:
992 gcc_unreachable ();
993 }
994
995 switch (GET_CODE (operands[0]))
996 {
997 case REG:
998 operands[1] = gen_rtx_REG (mode, REGNO (operands[0]) + 1);
999 operands[0] = gen_rtx_REG (mode, REGNO (operands[0]));
1000 break;
1001
1002 case MEM:
1003 operands[1] = adjust_address (operands[0], mode, GET_MODE_SIZE (mode));
1004 operands[0] = adjust_address (operands[0], mode, 0);
1005 break;
1006
1007 default:
1008 gcc_unreachable ();
1009 }
1010 }
1011
1012
1013 /* Emit insns to move operands[1] into operands[0].
1014 Return 1 if we have written out everything that needs to be done to
1015 do the move. Otherwise, return 0 and the caller will emit the move
1016 normally. */
1017
1018 int
1019 xtensa_emit_move_sequence (rtx *operands, enum machine_mode mode)
1020 {
1021 rtx src = operands[1];
1022
1023 if (CONSTANT_P (src)
1024 && (GET_CODE (src) != CONST_INT || ! xtensa_simm12b (INTVAL (src))))
1025 {
1026 rtx dst = operands[0];
1027
1028 if (xtensa_tls_referenced_p (src))
1029 {
1030 rtx addend = NULL;
1031
1032 if (GET_CODE (src) == CONST && GET_CODE (XEXP (src, 0)) == PLUS)
1033 {
1034 addend = XEXP (XEXP (src, 0), 1);
1035 src = XEXP (XEXP (src, 0), 0);
1036 }
1037
1038 src = xtensa_legitimize_tls_address (src);
1039 if (addend)
1040 {
1041 src = gen_rtx_PLUS (mode, src, addend);
1042 src = force_operand (src, dst);
1043 }
1044 emit_move_insn (dst, src);
1045 return 1;
1046 }
1047
1048 if (! TARGET_CONST16)
1049 {
1050 src = force_const_mem (SImode, src);
1051 operands[1] = src;
1052 }
1053
1054 /* PC-relative loads are always SImode, and CONST16 is only
1055 supported in the movsi pattern, so add a SUBREG for any other
1056 (smaller) mode. */
1057
1058 if (mode != SImode)
1059 {
1060 if (register_operand (dst, mode))
1061 {
1062 emit_move_insn (simplify_gen_subreg (SImode, dst, mode, 0), src);
1063 return 1;
1064 }
1065 else
1066 {
1067 src = force_reg (SImode, src);
1068 src = gen_lowpart_SUBREG (mode, src);
1069 operands[1] = src;
1070 }
1071 }
1072 }
1073
1074 if (!(reload_in_progress | reload_completed)
1075 && !xtensa_valid_move (mode, operands))
1076 operands[1] = force_reg (mode, operands[1]);
1077
1078 operands[1] = xtensa_copy_incoming_a7 (operands[1]);
1079
1080 /* During reload we don't want to emit (subreg:X (mem:Y)) since that
1081 instruction won't be recognized after reload, so we remove the
1082 subreg and adjust mem accordingly. */
1083 if (reload_in_progress)
1084 {
1085 operands[0] = fixup_subreg_mem (operands[0]);
1086 operands[1] = fixup_subreg_mem (operands[1]);
1087 }
1088 return 0;
1089 }
1090
1091
1092 static rtx
1093 fixup_subreg_mem (rtx x)
1094 {
1095 if (GET_CODE (x) == SUBREG
1096 && GET_CODE (SUBREG_REG (x)) == REG
1097 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1098 {
1099 rtx temp =
1100 gen_rtx_SUBREG (GET_MODE (x),
1101 reg_equiv_mem (REGNO (SUBREG_REG (x))),
1102 SUBREG_BYTE (x));
1103 x = alter_subreg (&temp, true);
1104 }
1105 return x;
1106 }
1107
1108
1109 /* Check if an incoming argument in a7 is expected to be used soon and
1110 if OPND is a register or register pair that includes a7. If so,
1111 create a new pseudo and copy a7 into that pseudo at the very
1112 beginning of the function, followed by the special "set_frame_ptr"
1113 unspec_volatile insn. The return value is either the original
1114 operand, if it is not a7, or the new pseudo containing a copy of
1115 the incoming argument. This is necessary because the register
1116 allocator will ignore conflicts with a7 and may either assign some
1117 other pseudo to a7 or use a7 as the hard_frame_pointer, clobbering
1118 the incoming argument in a7. By copying the argument out of a7 as
1119 the very first thing, and then immediately following that with an
1120 unspec_volatile to keep the scheduler away, we should avoid any
1121 problems. Putting the set_frame_ptr insn at the beginning, with
1122 only the a7 copy before it, also makes it easier for the prologue
1123 expander to initialize the frame pointer after the a7 copy and to
1124 fix up the a7 copy to use the stack pointer instead of the frame
1125 pointer. */
1126
1127 rtx
1128 xtensa_copy_incoming_a7 (rtx opnd)
1129 {
1130 rtx entry_insns = 0;
1131 rtx reg, tmp;
1132 enum machine_mode mode;
1133
1134 if (!cfun->machine->need_a7_copy)
1135 return opnd;
1136
1137 /* This function should never be called again once a7 has been copied. */
1138 gcc_assert (!cfun->machine->set_frame_ptr_insn);
1139
1140 mode = GET_MODE (opnd);
1141
1142 /* The operand using a7 may come in a later instruction, so just return
1143 the original operand if it doesn't use a7. */
1144 reg = opnd;
1145 if (GET_CODE (reg) == SUBREG)
1146 {
1147 gcc_assert (SUBREG_BYTE (reg) == 0);
1148 reg = SUBREG_REG (reg);
1149 }
1150 if (GET_CODE (reg) != REG
1151 || REGNO (reg) > A7_REG
1152 || REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) <= A7_REG)
1153 return opnd;
1154
1155 /* 1-word args will always be in a7; 2-word args in a6/a7. */
1156 gcc_assert (REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) - 1 == A7_REG);
1157
1158 cfun->machine->need_a7_copy = false;
1159
1160 /* Copy a7 to a new pseudo at the function entry. Use gen_raw_REG to
1161 create the REG for a7 so that hard_frame_pointer_rtx is not used. */
1162
1163 start_sequence ();
1164 tmp = gen_reg_rtx (mode);
1165
1166 switch (mode)
1167 {
1168 case DFmode:
1169 case DImode:
1170 /* Copy the value out of A7 here but keep the first word in A6 until
1171 after the set_frame_ptr insn. Otherwise, the register allocator
1172 may decide to put "subreg (tmp, 0)" in A7 and clobber the incoming
1173 value. */
1174 emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 4),
1175 gen_raw_REG (SImode, A7_REG)));
1176 break;
1177 case SFmode:
1178 emit_insn (gen_movsf_internal (tmp, gen_raw_REG (mode, A7_REG)));
1179 break;
1180 case SImode:
1181 emit_insn (gen_movsi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1182 break;
1183 case HImode:
1184 emit_insn (gen_movhi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1185 break;
1186 case QImode:
1187 emit_insn (gen_movqi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1188 break;
1189 default:
1190 gcc_unreachable ();
1191 }
1192
1193 cfun->machine->set_frame_ptr_insn = emit_insn (gen_set_frame_ptr ());
1194
1195 /* For DF and DI mode arguments, copy the incoming value in A6 now. */
1196 if (mode == DFmode || mode == DImode)
1197 emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 0),
1198 gen_rtx_REG (SImode, A7_REG - 1)));
1199 entry_insns = get_insns ();
1200 end_sequence ();
1201
1202 if (cfun->machine->vararg_a7)
1203 {
1204 /* This is called from within builtin_saveregs, which will insert the
1205 saveregs code at the function entry, ahead of anything placed at
1206 the function entry now. Instead, save the sequence to be inserted
1207 at the beginning of the saveregs code. */
1208 cfun->machine->vararg_a7_copy = entry_insns;
1209 }
1210 else
1211 {
1212 /* Put entry_insns after the NOTE that starts the function. If
1213 this is inside a start_sequence, make the outer-level insn
1214 chain current, so the code is placed at the start of the
1215 function. */
1216 push_topmost_sequence ();
1217 /* Do not use entry_of_function() here. This is called from within
1218 expand_function_start, when the CFG still holds GIMPLE. */
1219 emit_insn_after (entry_insns, get_insns ());
1220 pop_topmost_sequence ();
1221 }
1222
1223 return tmp;
1224 }
1225
1226
1227 /* Try to expand a block move operation to a sequence of RTL move
1228 instructions. If not optimizing, or if the block size is not a
1229 constant, or if the block is too large, the expansion fails and GCC
1230 falls back to calling memcpy().
1231
1232 operands[0] is the destination
1233 operands[1] is the source
1234 operands[2] is the length
1235 operands[3] is the alignment */
1236
1237 int
1238 xtensa_expand_block_move (rtx *operands)
1239 {
1240 static const enum machine_mode mode_from_align[] =
1241 {
1242 VOIDmode, QImode, HImode, VOIDmode, SImode,
1243 };
1244
1245 rtx dst_mem = operands[0];
1246 rtx src_mem = operands[1];
1247 HOST_WIDE_INT bytes, align;
1248 int num_pieces, move_ratio;
1249 rtx temp[2];
1250 enum machine_mode mode[2];
1251 int amount[2];
1252 bool active[2];
1253 int phase = 0;
1254 int next;
1255 int offset_ld = 0;
1256 int offset_st = 0;
1257 rtx x;
1258
1259 /* If this is not a fixed size move, just call memcpy. */
1260 if (!optimize || (GET_CODE (operands[2]) != CONST_INT))
1261 return 0;
1262
1263 bytes = INTVAL (operands[2]);
1264 align = INTVAL (operands[3]);
1265
1266 /* Anything to move? */
1267 if (bytes <= 0)
1268 return 0;
1269
1270 if (align > MOVE_MAX)
1271 align = MOVE_MAX;
1272
1273 /* Decide whether to expand inline based on the optimization level. */
1274 move_ratio = 4;
1275 if (optimize > 2)
1276 move_ratio = LARGEST_MOVE_RATIO;
1277 num_pieces = (bytes / align) + (bytes % align); /* Close enough anyway. */
1278 if (num_pieces > move_ratio)
1279 return 0;
1280
1281 x = XEXP (dst_mem, 0);
1282 if (!REG_P (x))
1283 {
1284 x = force_reg (Pmode, x);
1285 dst_mem = replace_equiv_address (dst_mem, x);
1286 }
1287
1288 x = XEXP (src_mem, 0);
1289 if (!REG_P (x))
1290 {
1291 x = force_reg (Pmode, x);
1292 src_mem = replace_equiv_address (src_mem, x);
1293 }
1294
1295 active[0] = active[1] = false;
1296
1297 do
1298 {
1299 next = phase;
1300 phase ^= 1;
1301
1302 if (bytes > 0)
1303 {
1304 int next_amount;
1305
1306 next_amount = (bytes >= 4 ? 4 : (bytes >= 2 ? 2 : 1));
1307 next_amount = MIN (next_amount, align);
1308
1309 amount[next] = next_amount;
1310 mode[next] = mode_from_align[next_amount];
1311 temp[next] = gen_reg_rtx (mode[next]);
1312
1313 x = adjust_address (src_mem, mode[next], offset_ld);
1314 emit_insn (gen_rtx_SET (VOIDmode, temp[next], x));
1315
1316 offset_ld += next_amount;
1317 bytes -= next_amount;
1318 active[next] = true;
1319 }
1320
1321 if (active[phase])
1322 {
1323 active[phase] = false;
1324
1325 x = adjust_address (dst_mem, mode[phase], offset_st);
1326 emit_insn (gen_rtx_SET (VOIDmode, x, temp[phase]));
1327
1328 offset_st += amount[phase];
1329 }
1330 }
1331 while (active[next]);
1332
1333 return 1;
1334 }
1335
1336
1337 void
1338 xtensa_expand_nonlocal_goto (rtx *operands)
1339 {
1340 rtx goto_handler = operands[1];
1341 rtx containing_fp = operands[3];
1342
1343 /* Generate a call to "__xtensa_nonlocal_goto" (in libgcc); the code
1344 is too big to generate in-line. */
1345
1346 if (GET_CODE (containing_fp) != REG)
1347 containing_fp = force_reg (Pmode, containing_fp);
1348
1349 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_nonlocal_goto"),
1350 LCT_NORMAL, VOIDmode, 2,
1351 containing_fp, Pmode,
1352 goto_handler, Pmode);
1353 }
1354
1355
1356 static struct machine_function *
1357 xtensa_init_machine_status (void)
1358 {
1359 return ggc_cleared_alloc<machine_function> ();
1360 }
1361
1362
1363 /* Shift VAL of mode MODE left by COUNT bits. */
1364
1365 static inline rtx
1366 xtensa_expand_mask_and_shift (rtx val, enum machine_mode mode, rtx count)
1367 {
1368 val = expand_simple_binop (SImode, AND, val, GEN_INT (GET_MODE_MASK (mode)),
1369 NULL_RTX, 1, OPTAB_DIRECT);
1370 return expand_simple_binop (SImode, ASHIFT, val, count,
1371 NULL_RTX, 1, OPTAB_DIRECT);
1372 }
1373
1374
1375 /* Structure to hold the initial parameters for a compare_and_swap operation
1376 in HImode and QImode. */
1377
1378 struct alignment_context
1379 {
1380 rtx memsi; /* SI aligned memory location. */
1381 rtx shift; /* Bit offset with regard to lsb. */
1382 rtx modemask; /* Mask of the HQImode shifted by SHIFT bits. */
1383 rtx modemaski; /* ~modemask */
1384 };
1385
1386
1387 /* Initialize structure AC for word access to HI and QI mode memory. */
1388
1389 static void
1390 init_alignment_context (struct alignment_context *ac, rtx mem)
1391 {
1392 enum machine_mode mode = GET_MODE (mem);
1393 rtx byteoffset = NULL_RTX;
1394 bool aligned = (MEM_ALIGN (mem) >= GET_MODE_BITSIZE (SImode));
1395
1396 if (aligned)
1397 ac->memsi = adjust_address (mem, SImode, 0); /* Memory is aligned. */
1398 else
1399 {
1400 /* Alignment is unknown. */
1401 rtx addr, align;
1402
1403 /* Force the address into a register. */
1404 addr = force_reg (Pmode, XEXP (mem, 0));
1405
1406 /* Align it to SImode. */
1407 align = expand_simple_binop (Pmode, AND, addr,
1408 GEN_INT (-GET_MODE_SIZE (SImode)),
1409 NULL_RTX, 1, OPTAB_DIRECT);
1410 /* Generate MEM. */
1411 ac->memsi = gen_rtx_MEM (SImode, align);
1412 MEM_VOLATILE_P (ac->memsi) = MEM_VOLATILE_P (mem);
1413 set_mem_alias_set (ac->memsi, ALIAS_SET_MEMORY_BARRIER);
1414 set_mem_align (ac->memsi, GET_MODE_BITSIZE (SImode));
1415
1416 byteoffset = expand_simple_binop (Pmode, AND, addr,
1417 GEN_INT (GET_MODE_SIZE (SImode) - 1),
1418 NULL_RTX, 1, OPTAB_DIRECT);
1419 }
1420
1421 /* Calculate shiftcount. */
1422 if (TARGET_BIG_ENDIAN)
1423 {
1424 ac->shift = GEN_INT (GET_MODE_SIZE (SImode) - GET_MODE_SIZE (mode));
1425 if (!aligned)
1426 ac->shift = expand_simple_binop (SImode, MINUS, ac->shift, byteoffset,
1427 NULL_RTX, 1, OPTAB_DIRECT);
1428 }
1429 else
1430 {
1431 if (aligned)
1432 ac->shift = NULL_RTX;
1433 else
1434 ac->shift = byteoffset;
1435 }
1436
1437 if (ac->shift != NULL_RTX)
1438 {
1439 /* Shift is the byte count, but we need the bitcount. */
1440 ac->shift = expand_simple_binop (SImode, MULT, ac->shift,
1441 GEN_INT (BITS_PER_UNIT),
1442 NULL_RTX, 1, OPTAB_DIRECT);
1443 ac->modemask = expand_simple_binop (SImode, ASHIFT,
1444 GEN_INT (GET_MODE_MASK (mode)),
1445 ac->shift,
1446 NULL_RTX, 1, OPTAB_DIRECT);
1447 }
1448 else
1449 ac->modemask = GEN_INT (GET_MODE_MASK (mode));
1450
1451 ac->modemaski = expand_simple_unop (SImode, NOT, ac->modemask, NULL_RTX, 1);
1452 }
1453
1454
1455 /* Expand an atomic compare and swap operation for HImode and QImode.
1456 MEM is the memory location, CMP the old value to compare MEM with
1457 and NEW_RTX the value to set if CMP == MEM. */
1458
1459 void
1460 xtensa_expand_compare_and_swap (rtx target, rtx mem, rtx cmp, rtx new_rtx)
1461 {
1462 enum machine_mode mode = GET_MODE (mem);
1463 struct alignment_context ac;
1464 rtx tmp, cmpv, newv, val;
1465 rtx oldval = gen_reg_rtx (SImode);
1466 rtx res = gen_reg_rtx (SImode);
1467 rtx csloop = gen_label_rtx ();
1468 rtx csend = gen_label_rtx ();
1469
1470 init_alignment_context (&ac, mem);
1471
1472 if (ac.shift != NULL_RTX)
1473 {
1474 cmp = xtensa_expand_mask_and_shift (cmp, mode, ac.shift);
1475 new_rtx = xtensa_expand_mask_and_shift (new_rtx, mode, ac.shift);
1476 }
1477
1478 /* Load the surrounding word into VAL with the MEM value masked out. */
1479 val = force_reg (SImode, expand_simple_binop (SImode, AND, ac.memsi,
1480 ac.modemaski, NULL_RTX, 1,
1481 OPTAB_DIRECT));
1482 emit_label (csloop);
1483
1484 /* Patch CMP and NEW_RTX into VAL at correct position. */
1485 cmpv = force_reg (SImode, expand_simple_binop (SImode, IOR, cmp, val,
1486 NULL_RTX, 1, OPTAB_DIRECT));
1487 newv = force_reg (SImode, expand_simple_binop (SImode, IOR, new_rtx, val,
1488 NULL_RTX, 1, OPTAB_DIRECT));
1489
1490 /* Jump to end if we're done. */
1491 emit_insn (gen_sync_compare_and_swapsi (res, ac.memsi, cmpv, newv));
1492 emit_cmp_and_jump_insns (res, cmpv, EQ, const0_rtx, SImode, true, csend);
1493
1494 /* Check for changes outside mode. */
1495 emit_move_insn (oldval, val);
1496 tmp = expand_simple_binop (SImode, AND, res, ac.modemaski,
1497 val, 1, OPTAB_DIRECT);
1498 if (tmp != val)
1499 emit_move_insn (val, tmp);
1500
1501 /* Loop internal if so. */
1502 emit_cmp_and_jump_insns (oldval, val, NE, const0_rtx, SImode, true, csloop);
1503
1504 emit_label (csend);
1505
1506 /* Return the correct part of the bitfield. */
1507 convert_move (target,
1508 (ac.shift == NULL_RTX ? res
1509 : expand_simple_binop (SImode, LSHIFTRT, res, ac.shift,
1510 NULL_RTX, 1, OPTAB_DIRECT)),
1511 1);
1512 }
1513
1514
1515 /* Expand an atomic operation CODE of mode MODE (either HImode or QImode --
1516 the default expansion works fine for SImode). MEM is the memory location
1517 and VAL the value to play with. If AFTER is true then store the value
1518 MEM holds after the operation, if AFTER is false then store the value MEM
1519 holds before the operation. If TARGET is zero then discard that value, else
1520 store it to TARGET. */
1521
1522 void
1523 xtensa_expand_atomic (enum rtx_code code, rtx target, rtx mem, rtx val,
1524 bool after)
1525 {
1526 enum machine_mode mode = GET_MODE (mem);
1527 struct alignment_context ac;
1528 rtx csloop = gen_label_rtx ();
1529 rtx cmp, tmp;
1530 rtx old = gen_reg_rtx (SImode);
1531 rtx new_rtx = gen_reg_rtx (SImode);
1532 rtx orig = NULL_RTX;
1533
1534 init_alignment_context (&ac, mem);
1535
1536 /* Prepare values before the compare-and-swap loop. */
1537 if (ac.shift != NULL_RTX)
1538 val = xtensa_expand_mask_and_shift (val, mode, ac.shift);
1539 switch (code)
1540 {
1541 case PLUS:
1542 case MINUS:
1543 orig = gen_reg_rtx (SImode);
1544 convert_move (orig, val, 1);
1545 break;
1546
1547 case SET:
1548 case IOR:
1549 case XOR:
1550 break;
1551
1552 case MULT: /* NAND */
1553 case AND:
1554 /* val = "11..1<val>11..1" */
1555 val = expand_simple_binop (SImode, XOR, val, ac.modemaski,
1556 NULL_RTX, 1, OPTAB_DIRECT);
1557 break;
1558
1559 default:
1560 gcc_unreachable ();
1561 }
1562
1563 /* Load full word. Subsequent loads are performed by S32C1I. */
1564 cmp = force_reg (SImode, ac.memsi);
1565
1566 emit_label (csloop);
1567 emit_move_insn (old, cmp);
1568
1569 switch (code)
1570 {
1571 case PLUS:
1572 case MINUS:
1573 val = expand_simple_binop (SImode, code, old, orig,
1574 NULL_RTX, 1, OPTAB_DIRECT);
1575 val = expand_simple_binop (SImode, AND, val, ac.modemask,
1576 NULL_RTX, 1, OPTAB_DIRECT);
1577 /* FALLTHRU */
1578 case SET:
1579 tmp = expand_simple_binop (SImode, AND, old, ac.modemaski,
1580 NULL_RTX, 1, OPTAB_DIRECT);
1581 tmp = expand_simple_binop (SImode, IOR, tmp, val,
1582 new_rtx, 1, OPTAB_DIRECT);
1583 break;
1584
1585 case AND:
1586 case IOR:
1587 case XOR:
1588 tmp = expand_simple_binop (SImode, code, old, val,
1589 new_rtx, 1, OPTAB_DIRECT);
1590 break;
1591
1592 case MULT: /* NAND */
1593 tmp = expand_simple_binop (SImode, XOR, old, ac.modemask,
1594 NULL_RTX, 1, OPTAB_DIRECT);
1595 tmp = expand_simple_binop (SImode, AND, tmp, val,
1596 new_rtx, 1, OPTAB_DIRECT);
1597 break;
1598
1599 default:
1600 gcc_unreachable ();
1601 }
1602
1603 if (tmp != new_rtx)
1604 emit_move_insn (new_rtx, tmp);
1605 emit_insn (gen_sync_compare_and_swapsi (cmp, ac.memsi, old, new_rtx));
1606 emit_cmp_and_jump_insns (cmp, old, NE, const0_rtx, SImode, true, csloop);
1607
1608 if (target)
1609 {
1610 tmp = (after ? new_rtx : cmp);
1611 convert_move (target,
1612 (ac.shift == NULL_RTX ? tmp
1613 : expand_simple_binop (SImode, LSHIFTRT, tmp, ac.shift,
1614 NULL_RTX, 1, OPTAB_DIRECT)),
1615 1);
1616 }
1617 }
1618
1619
1620 void
1621 xtensa_setup_frame_addresses (void)
1622 {
1623 /* Set flag to cause TARGET_FRAME_POINTER_REQUIRED to return true. */
1624 cfun->machine->accesses_prev_frame = 1;
1625
1626 emit_library_call
1627 (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_libgcc_window_spill"),
1628 LCT_NORMAL, VOIDmode, 0);
1629 }
1630
1631
1632 /* Emit the assembly for the end of a zero-cost loop. Normally we just emit
1633 a comment showing where the end of the loop is. However, if there is a
1634 label or a branch at the end of the loop then we need to place a nop
1635 there. If the loop ends with a label we need the nop so that branches
1636 targeting that label will target the nop (and thus remain in the loop),
1637 instead of targeting the instruction after the loop (and thus exiting
1638 the loop). If the loop ends with a branch, we need the nop in case the
1639 branch is targeting a location inside the loop. When the branch
1640 executes it will cause the loop count to be decremented even if it is
1641 taken (because it is the last instruction in the loop), so we need to
1642 nop after the branch to prevent the loop count from being decremented
1643 when the branch is taken. */
1644
1645 void
1646 xtensa_emit_loop_end (rtx insn, rtx *operands)
1647 {
1648 char done = 0;
1649
1650 for (insn = PREV_INSN (insn); insn && !done; insn = PREV_INSN (insn))
1651 {
1652 switch (GET_CODE (insn))
1653 {
1654 case NOTE:
1655 case BARRIER:
1656 break;
1657
1658 case CODE_LABEL:
1659 output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
1660 done = 1;
1661 break;
1662
1663 default:
1664 {
1665 rtx body = PATTERN (insn);
1666
1667 if (JUMP_P (body))
1668 {
1669 output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
1670 done = 1;
1671 }
1672 else if ((GET_CODE (body) != USE)
1673 && (GET_CODE (body) != CLOBBER))
1674 done = 1;
1675 }
1676 break;
1677 }
1678 }
1679
1680 output_asm_insn ("# loop end for %0", operands);
1681 }
1682
1683
1684 char *
1685 xtensa_emit_branch (bool inverted, bool immed, rtx *operands)
1686 {
1687 static char result[64];
1688 enum rtx_code code;
1689 const char *op;
1690
1691 code = GET_CODE (operands[3]);
1692 switch (code)
1693 {
1694 case EQ: op = inverted ? "ne" : "eq"; break;
1695 case NE: op = inverted ? "eq" : "ne"; break;
1696 case LT: op = inverted ? "ge" : "lt"; break;
1697 case GE: op = inverted ? "lt" : "ge"; break;
1698 case LTU: op = inverted ? "geu" : "ltu"; break;
1699 case GEU: op = inverted ? "ltu" : "geu"; break;
1700 default: gcc_unreachable ();
1701 }
1702
1703 if (immed)
1704 {
1705 if (INTVAL (operands[1]) == 0)
1706 sprintf (result, "b%sz%s\t%%0, %%2", op,
1707 (TARGET_DENSITY && (code == EQ || code == NE)) ? ".n" : "");
1708 else
1709 sprintf (result, "b%si\t%%0, %%d1, %%2", op);
1710 }
1711 else
1712 sprintf (result, "b%s\t%%0, %%1, %%2", op);
1713
1714 return result;
1715 }
1716
1717
1718 char *
1719 xtensa_emit_bit_branch (bool inverted, bool immed, rtx *operands)
1720 {
1721 static char result[64];
1722 const char *op;
1723
1724 switch (GET_CODE (operands[3]))
1725 {
1726 case EQ: op = inverted ? "bs" : "bc"; break;
1727 case NE: op = inverted ? "bc" : "bs"; break;
1728 default: gcc_unreachable ();
1729 }
1730
1731 if (immed)
1732 {
1733 unsigned bitnum = INTVAL (operands[1]) & 0x1f;
1734 operands[1] = GEN_INT (bitnum);
1735 sprintf (result, "b%si\t%%0, %%d1, %%2", op);
1736 }
1737 else
1738 sprintf (result, "b%s\t%%0, %%1, %%2", op);
1739
1740 return result;
1741 }
1742
1743
1744 char *
1745 xtensa_emit_movcc (bool inverted, bool isfp, bool isbool, rtx *operands)
1746 {
1747 static char result[64];
1748 enum rtx_code code;
1749 const char *op;
1750
1751 code = GET_CODE (operands[4]);
1752 if (isbool)
1753 {
1754 switch (code)
1755 {
1756 case EQ: op = inverted ? "t" : "f"; break;
1757 case NE: op = inverted ? "f" : "t"; break;
1758 default: gcc_unreachable ();
1759 }
1760 }
1761 else
1762 {
1763 switch (code)
1764 {
1765 case EQ: op = inverted ? "nez" : "eqz"; break;
1766 case NE: op = inverted ? "eqz" : "nez"; break;
1767 case LT: op = inverted ? "gez" : "ltz"; break;
1768 case GE: op = inverted ? "ltz" : "gez"; break;
1769 default: gcc_unreachable ();
1770 }
1771 }
1772
1773 sprintf (result, "mov%s%s\t%%0, %%%d, %%1",
1774 op, isfp ? ".s" : "", inverted ? 3 : 2);
1775 return result;
1776 }
1777
1778
1779 char *
1780 xtensa_emit_call (int callop, rtx *operands)
1781 {
1782 static char result[64];
1783 rtx tgt = operands[callop];
1784
1785 if (GET_CODE (tgt) == CONST_INT)
1786 sprintf (result, "call8\t0x%lx", INTVAL (tgt));
1787 else if (register_operand (tgt, VOIDmode))
1788 sprintf (result, "callx8\t%%%d", callop);
1789 else
1790 sprintf (result, "call8\t%%%d", callop);
1791
1792 return result;
1793 }
1794
1795
1796 bool
1797 xtensa_legitimate_address_p (enum machine_mode mode, rtx addr, bool strict)
1798 {
1799 /* Allow constant pool addresses. */
1800 if (mode != BLKmode && GET_MODE_SIZE (mode) >= UNITS_PER_WORD
1801 && ! TARGET_CONST16 && constantpool_address_p (addr)
1802 && ! xtensa_tls_referenced_p (addr))
1803 return true;
1804
1805 while (GET_CODE (addr) == SUBREG)
1806 addr = SUBREG_REG (addr);
1807
1808 /* Allow base registers. */
1809 if (GET_CODE (addr) == REG && BASE_REG_P (addr, strict))
1810 return true;
1811
1812 /* Check for "register + offset" addressing. */
1813 if (GET_CODE (addr) == PLUS)
1814 {
1815 rtx xplus0 = XEXP (addr, 0);
1816 rtx xplus1 = XEXP (addr, 1);
1817 enum rtx_code code0;
1818 enum rtx_code code1;
1819
1820 while (GET_CODE (xplus0) == SUBREG)
1821 xplus0 = SUBREG_REG (xplus0);
1822 code0 = GET_CODE (xplus0);
1823
1824 while (GET_CODE (xplus1) == SUBREG)
1825 xplus1 = SUBREG_REG (xplus1);
1826 code1 = GET_CODE (xplus1);
1827
1828 /* Swap operands if necessary so the register is first. */
1829 if (code0 != REG && code1 == REG)
1830 {
1831 xplus0 = XEXP (addr, 1);
1832 xplus1 = XEXP (addr, 0);
1833 code0 = GET_CODE (xplus0);
1834 code1 = GET_CODE (xplus1);
1835 }
1836
1837 if (code0 == REG && BASE_REG_P (xplus0, strict)
1838 && code1 == CONST_INT
1839 && xtensa_mem_offset (INTVAL (xplus1), mode))
1840 return true;
1841 }
1842
1843 return false;
1844 }
1845
1846
1847 /* Construct the SYMBOL_REF for the _TLS_MODULE_BASE_ symbol. */
1848
1849 static GTY(()) rtx xtensa_tls_module_base_symbol;
1850
1851 static rtx
1852 xtensa_tls_module_base (void)
1853 {
1854 if (! xtensa_tls_module_base_symbol)
1855 {
1856 xtensa_tls_module_base_symbol =
1857 gen_rtx_SYMBOL_REF (Pmode, "_TLS_MODULE_BASE_");
1858 SYMBOL_REF_FLAGS (xtensa_tls_module_base_symbol)
1859 |= TLS_MODEL_GLOBAL_DYNAMIC << SYMBOL_FLAG_TLS_SHIFT;
1860 }
1861
1862 return xtensa_tls_module_base_symbol;
1863 }
1864
1865
1866 static rtx
1867 xtensa_call_tls_desc (rtx sym, rtx *retp)
1868 {
1869 rtx fn, arg, a10, call_insn, insns;
1870
1871 start_sequence ();
1872 fn = gen_reg_rtx (Pmode);
1873 arg = gen_reg_rtx (Pmode);
1874 a10 = gen_rtx_REG (Pmode, 10);
1875
1876 emit_insn (gen_tls_func (fn, sym));
1877 emit_insn (gen_tls_arg (arg, sym));
1878 emit_move_insn (a10, arg);
1879 call_insn = emit_call_insn (gen_tls_call (a10, fn, sym, const1_rtx));
1880 use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), a10);
1881 insns = get_insns ();
1882 end_sequence ();
1883
1884 *retp = a10;
1885 return insns;
1886 }
1887
1888
1889 static rtx
1890 xtensa_legitimize_tls_address (rtx x)
1891 {
1892 unsigned int model = SYMBOL_REF_TLS_MODEL (x);
1893 rtx dest, tp, ret, modbase, base, addend, insns;
1894
1895 dest = gen_reg_rtx (Pmode);
1896 switch (model)
1897 {
1898 case TLS_MODEL_GLOBAL_DYNAMIC:
1899 insns = xtensa_call_tls_desc (x, &ret);
1900 emit_libcall_block (insns, dest, ret, x);
1901 break;
1902
1903 case TLS_MODEL_LOCAL_DYNAMIC:
1904 base = gen_reg_rtx (Pmode);
1905 modbase = xtensa_tls_module_base ();
1906 insns = xtensa_call_tls_desc (modbase, &ret);
1907 emit_libcall_block (insns, base, ret, modbase);
1908 addend = force_reg (SImode, gen_sym_DTPOFF (x));
1909 emit_insn (gen_addsi3 (dest, base, addend));
1910 break;
1911
1912 case TLS_MODEL_INITIAL_EXEC:
1913 case TLS_MODEL_LOCAL_EXEC:
1914 tp = gen_reg_rtx (SImode);
1915 emit_insn (gen_get_thread_pointersi (tp));
1916 addend = force_reg (SImode, gen_sym_TPOFF (x));
1917 emit_insn (gen_addsi3 (dest, tp, addend));
1918 break;
1919
1920 default:
1921 gcc_unreachable ();
1922 }
1923
1924 return dest;
1925 }
1926
1927
1928 rtx
1929 xtensa_legitimize_address (rtx x,
1930 rtx oldx ATTRIBUTE_UNUSED,
1931 enum machine_mode mode)
1932 {
1933 if (xtensa_tls_symbol_p (x))
1934 return xtensa_legitimize_tls_address (x);
1935
1936 if (GET_CODE (x) == PLUS)
1937 {
1938 rtx plus0 = XEXP (x, 0);
1939 rtx plus1 = XEXP (x, 1);
1940
1941 if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)
1942 {
1943 plus0 = XEXP (x, 1);
1944 plus1 = XEXP (x, 0);
1945 }
1946
1947 /* Try to split up the offset to use an ADDMI instruction. */
1948 if (GET_CODE (plus0) == REG
1949 && GET_CODE (plus1) == CONST_INT
1950 && !xtensa_mem_offset (INTVAL (plus1), mode)
1951 && !xtensa_simm8 (INTVAL (plus1))
1952 && xtensa_mem_offset (INTVAL (plus1) & 0xff, mode)
1953 && xtensa_simm8x256 (INTVAL (plus1) & ~0xff))
1954 {
1955 rtx temp = gen_reg_rtx (Pmode);
1956 rtx addmi_offset = GEN_INT (INTVAL (plus1) & ~0xff);
1957 emit_insn (gen_rtx_SET (Pmode, temp,
1958 gen_rtx_PLUS (Pmode, plus0, addmi_offset)));
1959 return gen_rtx_PLUS (Pmode, temp, GEN_INT (INTVAL (plus1) & 0xff));
1960 }
1961 }
1962
1963 return x;
1964 }
1965
1966 /* Worker function for TARGET_MODE_DEPENDENT_ADDRESS_P.
1967
1968 Treat constant-pool references as "mode dependent" since they can
1969 only be accessed with SImode loads. This works around a bug in the
1970 combiner where a constant pool reference is temporarily converted
1971 to an HImode load, which is then assumed to zero-extend based on
1972 our definition of LOAD_EXTEND_OP. This is wrong because the high
1973 bits of a 16-bit value in the constant pool are now sign-extended
1974 by default. */
1975
1976 static bool
1977 xtensa_mode_dependent_address_p (const_rtx addr,
1978 addr_space_t as ATTRIBUTE_UNUSED)
1979 {
1980 return constantpool_address_p (addr);
1981 }
1982
1983 /* Helper for xtensa_tls_referenced_p. */
1984
1985 static int
1986 xtensa_tls_referenced_p_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
1987 {
1988 if (GET_CODE (*x) == SYMBOL_REF)
1989 return SYMBOL_REF_TLS_MODEL (*x) != 0;
1990
1991 /* Ignore TLS references that have already been legitimized. */
1992 if (GET_CODE (*x) == UNSPEC)
1993 {
1994 switch (XINT (*x, 1))
1995 {
1996 case UNSPEC_TPOFF:
1997 case UNSPEC_DTPOFF:
1998 case UNSPEC_TLS_FUNC:
1999 case UNSPEC_TLS_ARG:
2000 case UNSPEC_TLS_CALL:
2001 return -1;
2002 default:
2003 break;
2004 }
2005 }
2006
2007 return 0;
2008 }
2009
2010
2011 /* Return TRUE if X contains any TLS symbol references. */
2012
2013 bool
2014 xtensa_tls_referenced_p (rtx x)
2015 {
2016 if (! TARGET_HAVE_TLS)
2017 return false;
2018
2019 return for_each_rtx (&x, xtensa_tls_referenced_p_1, NULL);
2020 }
2021
2022
2023 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
2024
2025 static bool
2026 xtensa_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
2027 {
2028 return xtensa_tls_referenced_p (x);
2029 }
2030
2031
2032 /* Return the debugger register number to use for 'regno'. */
2033
2034 int
2035 xtensa_dbx_register_number (int regno)
2036 {
2037 int first = -1;
2038
2039 if (GP_REG_P (regno))
2040 {
2041 regno -= GP_REG_FIRST;
2042 first = 0;
2043 }
2044 else if (BR_REG_P (regno))
2045 {
2046 regno -= BR_REG_FIRST;
2047 first = 16;
2048 }
2049 else if (FP_REG_P (regno))
2050 {
2051 regno -= FP_REG_FIRST;
2052 first = 48;
2053 }
2054 else if (ACC_REG_P (regno))
2055 {
2056 first = 0x200; /* Start of Xtensa special registers. */
2057 regno = 16; /* ACCLO is special register 16. */
2058 }
2059
2060 /* When optimizing, we sometimes get asked about pseudo-registers
2061 that don't represent hard registers. Return 0 for these. */
2062 if (first == -1)
2063 return 0;
2064
2065 return first + regno;
2066 }
2067
2068
2069 /* Argument support functions. */
2070
2071 /* Initialize CUMULATIVE_ARGS for a function. */
2072
2073 void
2074 init_cumulative_args (CUMULATIVE_ARGS *cum, int incoming)
2075 {
2076 cum->arg_words = 0;
2077 cum->incoming = incoming;
2078 }
2079
2080
2081 /* Advance the argument to the next argument position. */
2082
2083 static void
2084 xtensa_function_arg_advance (cumulative_args_t cum, enum machine_mode mode,
2085 const_tree type, bool named ATTRIBUTE_UNUSED)
2086 {
2087 int words, max;
2088 int *arg_words;
2089
2090 arg_words = &get_cumulative_args (cum)->arg_words;
2091 max = MAX_ARGS_IN_REGISTERS;
2092
2093 words = (((mode != BLKmode)
2094 ? (int) GET_MODE_SIZE (mode)
2095 : int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2096
2097 if (*arg_words < max
2098 && (targetm.calls.must_pass_in_stack (mode, type)
2099 || *arg_words + words > max))
2100 *arg_words = max;
2101
2102 *arg_words += words;
2103 }
2104
2105
2106 /* Return an RTL expression containing the register for the given mode,
2107 or 0 if the argument is to be passed on the stack. INCOMING_P is nonzero
2108 if this is an incoming argument to the current function. */
2109
2110 static rtx
2111 xtensa_function_arg_1 (cumulative_args_t cum_v, enum machine_mode mode,
2112 const_tree type, bool incoming_p)
2113 {
2114 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
2115 int regbase, words, max;
2116 int *arg_words;
2117 int regno;
2118
2119 arg_words = &cum->arg_words;
2120 regbase = (incoming_p ? GP_ARG_FIRST : GP_OUTGOING_ARG_FIRST);
2121 max = MAX_ARGS_IN_REGISTERS;
2122
2123 words = (((mode != BLKmode)
2124 ? (int) GET_MODE_SIZE (mode)
2125 : int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2126
2127 if (type && (TYPE_ALIGN (type) > BITS_PER_WORD))
2128 {
2129 int align = MIN (TYPE_ALIGN (type), STACK_BOUNDARY) / BITS_PER_WORD;
2130 *arg_words = (*arg_words + align - 1) & -align;
2131 }
2132
2133 if (*arg_words + words > max)
2134 return (rtx)0;
2135
2136 regno = regbase + *arg_words;
2137
2138 if (cum->incoming && regno <= A7_REG && regno + words > A7_REG)
2139 cfun->machine->need_a7_copy = true;
2140
2141 return gen_rtx_REG (mode, regno);
2142 }
2143
2144 /* Implement TARGET_FUNCTION_ARG. */
2145
2146 static rtx
2147 xtensa_function_arg (cumulative_args_t cum, enum machine_mode mode,
2148 const_tree type, bool named ATTRIBUTE_UNUSED)
2149 {
2150 return xtensa_function_arg_1 (cum, mode, type, false);
2151 }
2152
2153 /* Implement TARGET_FUNCTION_INCOMING_ARG. */
2154
2155 static rtx
2156 xtensa_function_incoming_arg (cumulative_args_t cum, enum machine_mode mode,
2157 const_tree type, bool named ATTRIBUTE_UNUSED)
2158 {
2159 return xtensa_function_arg_1 (cum, mode, type, true);
2160 }
2161
2162 static unsigned int
2163 xtensa_function_arg_boundary (enum machine_mode mode, const_tree type)
2164 {
2165 unsigned int alignment;
2166
2167 alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
2168 if (alignment < PARM_BOUNDARY)
2169 alignment = PARM_BOUNDARY;
2170 if (alignment > STACK_BOUNDARY)
2171 alignment = STACK_BOUNDARY;
2172 return alignment;
2173 }
2174
2175
2176 static bool
2177 xtensa_return_in_msb (const_tree valtype)
2178 {
2179 return (TARGET_BIG_ENDIAN
2180 && AGGREGATE_TYPE_P (valtype)
2181 && int_size_in_bytes (valtype) >= UNITS_PER_WORD);
2182 }
2183
2184
2185 static void
2186 xtensa_option_override (void)
2187 {
2188 int regno;
2189 enum machine_mode mode;
2190
2191 if (!TARGET_BOOLEANS && TARGET_HARD_FLOAT)
2192 error ("boolean registers required for the floating-point option");
2193
2194 /* Set up array giving whether a given register can hold a given mode. */
2195 for (mode = VOIDmode;
2196 mode != MAX_MACHINE_MODE;
2197 mode = (enum machine_mode) ((int) mode + 1))
2198 {
2199 int size = GET_MODE_SIZE (mode);
2200 enum mode_class mclass = GET_MODE_CLASS (mode);
2201
2202 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2203 {
2204 int temp;
2205
2206 if (ACC_REG_P (regno))
2207 temp = (TARGET_MAC16
2208 && (mclass == MODE_INT) && (size <= UNITS_PER_WORD));
2209 else if (GP_REG_P (regno))
2210 temp = ((regno & 1) == 0 || (size <= UNITS_PER_WORD));
2211 else if (FP_REG_P (regno))
2212 temp = (TARGET_HARD_FLOAT && (mode == SFmode));
2213 else if (BR_REG_P (regno))
2214 temp = (TARGET_BOOLEANS && (mode == CCmode));
2215 else
2216 temp = FALSE;
2217
2218 xtensa_hard_regno_mode_ok[(int) mode][regno] = temp;
2219 }
2220 }
2221
2222 init_machine_status = xtensa_init_machine_status;
2223
2224 /* Check PIC settings. PIC is only supported when using L32R
2225 instructions, and some targets need to always use PIC. */
2226 if (flag_pic && TARGET_CONST16)
2227 error ("-f%s is not supported with CONST16 instructions",
2228 (flag_pic > 1 ? "PIC" : "pic"));
2229 else if (TARGET_FORCE_NO_PIC)
2230 flag_pic = 0;
2231 else if (XTENSA_ALWAYS_PIC)
2232 {
2233 if (TARGET_CONST16)
2234 error ("PIC is required but not supported with CONST16 instructions");
2235 flag_pic = 1;
2236 }
2237 /* There's no need for -fPIC (as opposed to -fpic) on Xtensa. */
2238 if (flag_pic > 1)
2239 flag_pic = 1;
2240 if (flag_pic && !flag_pie)
2241 flag_shlib = 1;
2242
2243 /* Hot/cold partitioning does not work on this architecture, because of
2244 constant pools (the load instruction cannot necessarily reach that far).
2245 Therefore disable it on this architecture. */
2246 if (flag_reorder_blocks_and_partition)
2247 {
2248 flag_reorder_blocks_and_partition = 0;
2249 flag_reorder_blocks = 1;
2250 }
2251 }
2252
2253 /* A C compound statement to output to stdio stream STREAM the
2254 assembler syntax for an instruction operand X. X is an RTL
2255 expression.
2256
2257 CODE is a value that can be used to specify one of several ways
2258 of printing the operand. It is used when identical operands
2259 must be printed differently depending on the context. CODE
2260 comes from the '%' specification that was used to request
2261 printing of the operand. If the specification was just '%DIGIT'
2262 then CODE is 0; if the specification was '%LTR DIGIT' then CODE
2263 is the ASCII code for LTR.
2264
2265 If X is a register, this macro should print the register's name.
2266 The names can be found in an array 'reg_names' whose type is
2267 'char *[]'. 'reg_names' is initialized from 'REGISTER_NAMES'.
2268
2269 When the machine description has a specification '%PUNCT' (a '%'
2270 followed by a punctuation character), this macro is called with
2271 a null pointer for X and the punctuation character for CODE.
2272
2273 'a', 'c', 'l', and 'n' are reserved.
2274
2275 The Xtensa specific codes are:
2276
2277 'd' CONST_INT, print as signed decimal
2278 'x' CONST_INT, print as signed hexadecimal
2279 'K' CONST_INT, print number of bits in mask for EXTUI
2280 'R' CONST_INT, print (X & 0x1f)
2281 'L' CONST_INT, print ((32 - X) & 0x1f)
2282 'D' REG, print second register of double-word register operand
2283 'N' MEM, print address of next word following a memory operand
2284 'v' MEM, if memory reference is volatile, output a MEMW before it
2285 't' any constant, add "@h" suffix for top 16 bits
2286 'b' any constant, add "@l" suffix for bottom 16 bits
2287 */
2288
2289 static void
2290 printx (FILE *file, signed int val)
2291 {
2292 /* Print a hexadecimal value in a nice way. */
2293 if ((val > -0xa) && (val < 0xa))
2294 fprintf (file, "%d", val);
2295 else if (val < 0)
2296 fprintf (file, "-0x%x", -val);
2297 else
2298 fprintf (file, "0x%x", val);
2299 }
2300
2301
2302 void
2303 print_operand (FILE *file, rtx x, int letter)
2304 {
2305 if (!x)
2306 error ("PRINT_OPERAND null pointer");
2307
2308 switch (letter)
2309 {
2310 case 'D':
2311 if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
2312 fprintf (file, "%s", reg_names[xt_true_regnum (x) + 1]);
2313 else
2314 output_operand_lossage ("invalid %%D value");
2315 break;
2316
2317 case 'v':
2318 if (GET_CODE (x) == MEM)
2319 {
2320 /* For a volatile memory reference, emit a MEMW before the
2321 load or store. */
2322 if (MEM_VOLATILE_P (x) && TARGET_SERIALIZE_VOLATILE)
2323 fprintf (file, "memw\n\t");
2324 }
2325 else
2326 output_operand_lossage ("invalid %%v value");
2327 break;
2328
2329 case 'N':
2330 if (GET_CODE (x) == MEM
2331 && (GET_MODE (x) == DFmode || GET_MODE (x) == DImode))
2332 {
2333 x = adjust_address (x, GET_MODE (x) == DFmode ? SFmode : SImode, 4);
2334 output_address (XEXP (x, 0));
2335 }
2336 else
2337 output_operand_lossage ("invalid %%N value");
2338 break;
2339
2340 case 'K':
2341 if (GET_CODE (x) == CONST_INT)
2342 {
2343 int num_bits = 0;
2344 unsigned val = INTVAL (x);
2345 while (val & 1)
2346 {
2347 num_bits += 1;
2348 val = val >> 1;
2349 }
2350 if ((val != 0) || (num_bits == 0) || (num_bits > 16))
2351 fatal_insn ("invalid mask", x);
2352
2353 fprintf (file, "%d", num_bits);
2354 }
2355 else
2356 output_operand_lossage ("invalid %%K value");
2357 break;
2358
2359 case 'L':
2360 if (GET_CODE (x) == CONST_INT)
2361 fprintf (file, "%ld", (32 - INTVAL (x)) & 0x1f);
2362 else
2363 output_operand_lossage ("invalid %%L value");
2364 break;
2365
2366 case 'R':
2367 if (GET_CODE (x) == CONST_INT)
2368 fprintf (file, "%ld", INTVAL (x) & 0x1f);
2369 else
2370 output_operand_lossage ("invalid %%R value");
2371 break;
2372
2373 case 'x':
2374 if (GET_CODE (x) == CONST_INT)
2375 printx (file, INTVAL (x));
2376 else
2377 output_operand_lossage ("invalid %%x value");
2378 break;
2379
2380 case 'd':
2381 if (GET_CODE (x) == CONST_INT)
2382 fprintf (file, "%ld", INTVAL (x));
2383 else
2384 output_operand_lossage ("invalid %%d value");
2385 break;
2386
2387 case 't':
2388 case 'b':
2389 if (GET_CODE (x) == CONST_INT)
2390 {
2391 printx (file, INTVAL (x));
2392 fputs (letter == 't' ? "@h" : "@l", file);
2393 }
2394 else if (GET_CODE (x) == CONST_DOUBLE)
2395 {
2396 REAL_VALUE_TYPE r;
2397 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2398 if (GET_MODE (x) == SFmode)
2399 {
2400 long l;
2401 REAL_VALUE_TO_TARGET_SINGLE (r, l);
2402 fprintf (file, "0x%08lx@%c", l, letter == 't' ? 'h' : 'l');
2403 }
2404 else
2405 output_operand_lossage ("invalid %%t/%%b value");
2406 }
2407 else if (GET_CODE (x) == CONST)
2408 {
2409 /* X must be a symbolic constant on ELF. Write an expression
2410 suitable for 'const16' that sets the high or low 16 bits. */
2411 if (GET_CODE (XEXP (x, 0)) != PLUS
2412 || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
2413 && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
2414 || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
2415 output_operand_lossage ("invalid %%t/%%b value");
2416 print_operand (file, XEXP (XEXP (x, 0), 0), 0);
2417 fputs (letter == 't' ? "@h" : "@l", file);
2418 /* There must be a non-alphanumeric character between 'h' or 'l'
2419 and the number. The '-' is added by print_operand() already. */
2420 if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0)
2421 fputs ("+", file);
2422 print_operand (file, XEXP (XEXP (x, 0), 1), 0);
2423 }
2424 else
2425 {
2426 output_addr_const (file, x);
2427 fputs (letter == 't' ? "@h" : "@l", file);
2428 }
2429 break;
2430
2431 default:
2432 if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
2433 fprintf (file, "%s", reg_names[xt_true_regnum (x)]);
2434 else if (GET_CODE (x) == MEM)
2435 output_address (XEXP (x, 0));
2436 else if (GET_CODE (x) == CONST_INT)
2437 fprintf (file, "%ld", INTVAL (x));
2438 else
2439 output_addr_const (file, x);
2440 }
2441 }
2442
2443
2444 /* A C compound statement to output to stdio stream STREAM the
2445 assembler syntax for an instruction operand that is a memory
2446 reference whose address is ADDR. ADDR is an RTL expression. */
2447
2448 void
2449 print_operand_address (FILE *file, rtx addr)
2450 {
2451 if (!addr)
2452 error ("PRINT_OPERAND_ADDRESS, null pointer");
2453
2454 switch (GET_CODE (addr))
2455 {
2456 default:
2457 fatal_insn ("invalid address", addr);
2458 break;
2459
2460 case REG:
2461 fprintf (file, "%s, 0", reg_names [REGNO (addr)]);
2462 break;
2463
2464 case PLUS:
2465 {
2466 rtx reg = (rtx)0;
2467 rtx offset = (rtx)0;
2468 rtx arg0 = XEXP (addr, 0);
2469 rtx arg1 = XEXP (addr, 1);
2470
2471 if (GET_CODE (arg0) == REG)
2472 {
2473 reg = arg0;
2474 offset = arg1;
2475 }
2476 else if (GET_CODE (arg1) == REG)
2477 {
2478 reg = arg1;
2479 offset = arg0;
2480 }
2481 else
2482 fatal_insn ("no register in address", addr);
2483
2484 if (CONSTANT_P (offset))
2485 {
2486 fprintf (file, "%s, ", reg_names [REGNO (reg)]);
2487 output_addr_const (file, offset);
2488 }
2489 else
2490 fatal_insn ("address offset not a constant", addr);
2491 }
2492 break;
2493
2494 case LABEL_REF:
2495 case SYMBOL_REF:
2496 case CONST_INT:
2497 case CONST:
2498 output_addr_const (file, addr);
2499 break;
2500 }
2501 }
2502
2503 /* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */
2504
2505 static bool
2506 xtensa_output_addr_const_extra (FILE *fp, rtx x)
2507 {
2508 if (GET_CODE (x) == UNSPEC && XVECLEN (x, 0) == 1)
2509 {
2510 switch (XINT (x, 1))
2511 {
2512 case UNSPEC_TPOFF:
2513 output_addr_const (fp, XVECEXP (x, 0, 0));
2514 fputs ("@TPOFF", fp);
2515 return true;
2516 case UNSPEC_DTPOFF:
2517 output_addr_const (fp, XVECEXP (x, 0, 0));
2518 fputs ("@DTPOFF", fp);
2519 return true;
2520 case UNSPEC_PLT:
2521 if (flag_pic)
2522 {
2523 output_addr_const (fp, XVECEXP (x, 0, 0));
2524 fputs ("@PLT", fp);
2525 return true;
2526 }
2527 break;
2528 default:
2529 break;
2530 }
2531 }
2532 return false;
2533 }
2534
2535
2536 void
2537 xtensa_output_literal (FILE *file, rtx x, enum machine_mode mode, int labelno)
2538 {
2539 long value_long[2];
2540 REAL_VALUE_TYPE r;
2541 int size;
2542 rtx first, second;
2543
2544 fprintf (file, "\t.literal .LC%u, ", (unsigned) labelno);
2545
2546 switch (GET_MODE_CLASS (mode))
2547 {
2548 case MODE_FLOAT:
2549 gcc_assert (GET_CODE (x) == CONST_DOUBLE);
2550
2551 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2552 switch (mode)
2553 {
2554 case SFmode:
2555 REAL_VALUE_TO_TARGET_SINGLE (r, value_long[0]);
2556 if (HOST_BITS_PER_LONG > 32)
2557 value_long[0] &= 0xffffffff;
2558 fprintf (file, "0x%08lx\n", value_long[0]);
2559 break;
2560
2561 case DFmode:
2562 REAL_VALUE_TO_TARGET_DOUBLE (r, value_long);
2563 if (HOST_BITS_PER_LONG > 32)
2564 {
2565 value_long[0] &= 0xffffffff;
2566 value_long[1] &= 0xffffffff;
2567 }
2568 fprintf (file, "0x%08lx, 0x%08lx\n",
2569 value_long[0], value_long[1]);
2570 break;
2571
2572 default:
2573 gcc_unreachable ();
2574 }
2575
2576 break;
2577
2578 case MODE_INT:
2579 case MODE_PARTIAL_INT:
2580 size = GET_MODE_SIZE (mode);
2581 switch (size)
2582 {
2583 case 4:
2584 output_addr_const (file, x);
2585 fputs ("\n", file);
2586 break;
2587
2588 case 8:
2589 split_double (x, &first, &second);
2590 output_addr_const (file, first);
2591 fputs (", ", file);
2592 output_addr_const (file, second);
2593 fputs ("\n", file);
2594 break;
2595
2596 default:
2597 gcc_unreachable ();
2598 }
2599 break;
2600
2601 default:
2602 gcc_unreachable ();
2603 }
2604 }
2605
2606
2607 /* Return the bytes needed to compute the frame pointer from the current
2608 stack pointer. */
2609
2610 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
2611 #define XTENSA_STACK_ALIGN(LOC) (((LOC) + STACK_BYTES-1) & ~(STACK_BYTES-1))
2612
2613 long
2614 compute_frame_size (int size)
2615 {
2616 /* Add space for the incoming static chain value. */
2617 if (cfun->static_chain_decl != NULL)
2618 size += (1 * UNITS_PER_WORD);
2619
2620 xtensa_current_frame_size =
2621 XTENSA_STACK_ALIGN (size
2622 + crtl->outgoing_args_size
2623 + (WINDOW_SIZE * UNITS_PER_WORD));
2624 return xtensa_current_frame_size;
2625 }
2626
2627
2628 bool
2629 xtensa_frame_pointer_required (void)
2630 {
2631 /* The code to expand builtin_frame_addr and builtin_return_addr
2632 currently uses the hard_frame_pointer instead of frame_pointer.
2633 This seems wrong but maybe it's necessary for other architectures.
2634 This function is derived from the i386 code. */
2635
2636 if (cfun->machine->accesses_prev_frame)
2637 return true;
2638
2639 return false;
2640 }
2641
2642
2643 /* minimum frame = reg save area (4 words) plus static chain (1 word)
2644 and the total number of words must be a multiple of 128 bits. */
2645 #define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
2646
2647 void
2648 xtensa_expand_prologue (void)
2649 {
2650 HOST_WIDE_INT total_size;
2651 rtx size_rtx;
2652 rtx insn, note_rtx;
2653
2654 total_size = compute_frame_size (get_frame_size ());
2655 size_rtx = GEN_INT (total_size);
2656
2657 if (total_size < (1 << (12+3)))
2658 insn = emit_insn (gen_entry (size_rtx));
2659 else
2660 {
2661 /* Use a8 as a temporary since a0-a7 may be live. */
2662 rtx tmp_reg = gen_rtx_REG (Pmode, A8_REG);
2663 emit_insn (gen_entry (GEN_INT (MIN_FRAME_SIZE)));
2664 emit_move_insn (tmp_reg, GEN_INT (total_size - MIN_FRAME_SIZE));
2665 emit_insn (gen_subsi3 (tmp_reg, stack_pointer_rtx, tmp_reg));
2666 insn = emit_insn (gen_movsi (stack_pointer_rtx, tmp_reg));
2667 }
2668
2669 if (frame_pointer_needed)
2670 {
2671 if (cfun->machine->set_frame_ptr_insn)
2672 {
2673 rtx first;
2674
2675 push_topmost_sequence ();
2676 first = get_insns ();
2677 pop_topmost_sequence ();
2678
2679 /* For all instructions prior to set_frame_ptr_insn, replace
2680 hard_frame_pointer references with stack_pointer. */
2681 for (insn = first;
2682 insn != cfun->machine->set_frame_ptr_insn;
2683 insn = NEXT_INSN (insn))
2684 {
2685 if (INSN_P (insn))
2686 {
2687 PATTERN (insn) = replace_rtx (copy_rtx (PATTERN (insn)),
2688 hard_frame_pointer_rtx,
2689 stack_pointer_rtx);
2690 df_insn_rescan (insn);
2691 }
2692 }
2693 }
2694 else
2695 insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
2696 stack_pointer_rtx));
2697 }
2698
2699 /* Create a note to describe the CFA. Because this is only used to set
2700 DW_AT_frame_base for debug info, don't bother tracking changes through
2701 each instruction in the prologue. It just takes up space. */
2702 note_rtx = gen_rtx_SET (VOIDmode, (frame_pointer_needed
2703 ? hard_frame_pointer_rtx
2704 : stack_pointer_rtx),
2705 plus_constant (Pmode, stack_pointer_rtx,
2706 -total_size));
2707 RTX_FRAME_RELATED_P (insn) = 1;
2708 add_reg_note (insn, REG_FRAME_RELATED_EXPR, note_rtx);
2709 }
2710
2711
2712 /* Clear variables at function end. */
2713
2714 void
2715 xtensa_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
2716 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
2717 {
2718 xtensa_current_frame_size = 0;
2719 }
2720
2721
2722 rtx
2723 xtensa_return_addr (int count, rtx frame)
2724 {
2725 rtx result, retaddr, curaddr, label;
2726
2727 if (count == -1)
2728 retaddr = gen_rtx_REG (Pmode, A0_REG);
2729 else
2730 {
2731 rtx addr = plus_constant (Pmode, frame, -4 * UNITS_PER_WORD);
2732 addr = memory_address (Pmode, addr);
2733 retaddr = gen_reg_rtx (Pmode);
2734 emit_move_insn (retaddr, gen_rtx_MEM (Pmode, addr));
2735 }
2736
2737 /* The 2 most-significant bits of the return address on Xtensa hold
2738 the register window size. To get the real return address, these
2739 bits must be replaced with the high bits from some address in the
2740 code. */
2741
2742 /* Get the 2 high bits of a local label in the code. */
2743 curaddr = gen_reg_rtx (Pmode);
2744 label = gen_label_rtx ();
2745 emit_label (label);
2746 LABEL_PRESERVE_P (label) = 1;
2747 emit_move_insn (curaddr, gen_rtx_LABEL_REF (Pmode, label));
2748 emit_insn (gen_lshrsi3 (curaddr, curaddr, GEN_INT (30)));
2749 emit_insn (gen_ashlsi3 (curaddr, curaddr, GEN_INT (30)));
2750
2751 /* Clear the 2 high bits of the return address. */
2752 result = gen_reg_rtx (Pmode);
2753 emit_insn (gen_ashlsi3 (result, retaddr, GEN_INT (2)));
2754 emit_insn (gen_lshrsi3 (result, result, GEN_INT (2)));
2755
2756 /* Combine them to get the result. */
2757 emit_insn (gen_iorsi3 (result, result, curaddr));
2758 return result;
2759 }
2760
2761 /* Disable the use of word-sized or smaller complex modes for structures,
2762 and for function arguments in particular, where they cause problems with
2763 register a7. The xtensa_copy_incoming_a7 function assumes that there is
2764 a single reference to an argument in a7, but with small complex modes the
2765 real and imaginary components may be extracted separately, leading to two
2766 uses of the register, only one of which would be replaced. */
2767
2768 static bool
2769 xtensa_member_type_forces_blk (const_tree, enum machine_mode mode)
2770 {
2771 return mode == CQImode || mode == CHImode;
2772 }
2773
2774 /* Create the va_list data type.
2775
2776 This structure is set up by __builtin_saveregs. The __va_reg field
2777 points to a stack-allocated region holding the contents of the
2778 incoming argument registers. The __va_ndx field is an index
2779 initialized to the position of the first unnamed (variable)
2780 argument. This same index is also used to address the arguments
2781 passed in memory. Thus, the __va_stk field is initialized to point
2782 to the position of the first argument in memory offset to account
2783 for the arguments passed in registers and to account for the size
2784 of the argument registers not being 16-byte aligned. E.G., there
2785 are 6 argument registers of 4 bytes each, but we want the __va_ndx
2786 for the first stack argument to have the maximal alignment of 16
2787 bytes, so we offset the __va_stk address by 32 bytes so that
2788 __va_stk[32] references the first argument on the stack. */
2789
2790 static tree
2791 xtensa_build_builtin_va_list (void)
2792 {
2793 tree f_stk, f_reg, f_ndx, record, type_decl;
2794
2795 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
2796 type_decl = build_decl (BUILTINS_LOCATION,
2797 TYPE_DECL, get_identifier ("__va_list_tag"), record);
2798
2799 f_stk = build_decl (BUILTINS_LOCATION,
2800 FIELD_DECL, get_identifier ("__va_stk"),
2801 ptr_type_node);
2802 f_reg = build_decl (BUILTINS_LOCATION,
2803 FIELD_DECL, get_identifier ("__va_reg"),
2804 ptr_type_node);
2805 f_ndx = build_decl (BUILTINS_LOCATION,
2806 FIELD_DECL, get_identifier ("__va_ndx"),
2807 integer_type_node);
2808
2809 DECL_FIELD_CONTEXT (f_stk) = record;
2810 DECL_FIELD_CONTEXT (f_reg) = record;
2811 DECL_FIELD_CONTEXT (f_ndx) = record;
2812
2813 TYPE_STUB_DECL (record) = type_decl;
2814 TYPE_NAME (record) = type_decl;
2815 TYPE_FIELDS (record) = f_stk;
2816 DECL_CHAIN (f_stk) = f_reg;
2817 DECL_CHAIN (f_reg) = f_ndx;
2818
2819 layout_type (record);
2820 return record;
2821 }
2822
2823
2824 /* Save the incoming argument registers on the stack. Returns the
2825 address of the saved registers. */
2826
2827 static rtx
2828 xtensa_builtin_saveregs (void)
2829 {
2830 rtx gp_regs;
2831 int arg_words = crtl->args.info.arg_words;
2832 int gp_left = MAX_ARGS_IN_REGISTERS - arg_words;
2833
2834 if (gp_left <= 0)
2835 return const0_rtx;
2836
2837 /* Allocate the general-purpose register space. */
2838 gp_regs = assign_stack_local
2839 (BLKmode, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD, -1);
2840 set_mem_alias_set (gp_regs, get_varargs_alias_set ());
2841
2842 /* Now store the incoming registers. */
2843 cfun->machine->need_a7_copy = true;
2844 cfun->machine->vararg_a7 = true;
2845 move_block_from_reg (GP_ARG_FIRST + arg_words,
2846 adjust_address (gp_regs, BLKmode,
2847 arg_words * UNITS_PER_WORD),
2848 gp_left);
2849 gcc_assert (cfun->machine->vararg_a7_copy != 0);
2850 emit_insn_before (cfun->machine->vararg_a7_copy, get_insns ());
2851
2852 return XEXP (gp_regs, 0);
2853 }
2854
2855
2856 /* Implement `va_start' for varargs and stdarg. We look at the
2857 current function to fill in an initial va_list. */
2858
2859 static void
2860 xtensa_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
2861 {
2862 tree f_stk, stk;
2863 tree f_reg, reg;
2864 tree f_ndx, ndx;
2865 tree t, u;
2866 int arg_words;
2867
2868 arg_words = crtl->args.info.arg_words;
2869
2870 f_stk = TYPE_FIELDS (va_list_type_node);
2871 f_reg = DECL_CHAIN (f_stk);
2872 f_ndx = DECL_CHAIN (f_reg);
2873
2874 stk = build3 (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk, NULL_TREE);
2875 reg = build3 (COMPONENT_REF, TREE_TYPE (f_reg), unshare_expr (valist),
2876 f_reg, NULL_TREE);
2877 ndx = build3 (COMPONENT_REF, TREE_TYPE (f_ndx), unshare_expr (valist),
2878 f_ndx, NULL_TREE);
2879
2880 /* Call __builtin_saveregs; save the result in __va_reg */
2881 u = make_tree (sizetype, expand_builtin_saveregs ());
2882 u = fold_convert (ptr_type_node, u);
2883 t = build2 (MODIFY_EXPR, ptr_type_node, reg, u);
2884 TREE_SIDE_EFFECTS (t) = 1;
2885 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2886
2887 /* Set the __va_stk member to ($arg_ptr - 32). */
2888 u = make_tree (ptr_type_node, virtual_incoming_args_rtx);
2889 u = fold_build_pointer_plus_hwi (u, -32);
2890 t = build2 (MODIFY_EXPR, ptr_type_node, stk, u);
2891 TREE_SIDE_EFFECTS (t) = 1;
2892 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2893
2894 /* Set the __va_ndx member. If the first variable argument is on
2895 the stack, adjust __va_ndx by 2 words to account for the extra
2896 alignment offset for __va_stk. */
2897 if (arg_words >= MAX_ARGS_IN_REGISTERS)
2898 arg_words += 2;
2899 t = build2 (MODIFY_EXPR, integer_type_node, ndx,
2900 build_int_cst (integer_type_node, arg_words * UNITS_PER_WORD));
2901 TREE_SIDE_EFFECTS (t) = 1;
2902 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2903 }
2904
2905
2906 /* Implement `va_arg'. */
2907
2908 static tree
2909 xtensa_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
2910 gimple_seq *post_p ATTRIBUTE_UNUSED)
2911 {
2912 tree f_stk, stk;
2913 tree f_reg, reg;
2914 tree f_ndx, ndx;
2915 tree type_size, array, orig_ndx, addr, size, va_size, t;
2916 tree lab_false, lab_over, lab_false2;
2917 bool indirect;
2918
2919 indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
2920 if (indirect)
2921 type = build_pointer_type (type);
2922
2923 /* Handle complex values as separate real and imaginary parts. */
2924 if (TREE_CODE (type) == COMPLEX_TYPE)
2925 {
2926 tree real_part, imag_part;
2927
2928 real_part = xtensa_gimplify_va_arg_expr (valist, TREE_TYPE (type),
2929 pre_p, NULL);
2930 real_part = get_initialized_tmp_var (real_part, pre_p, NULL);
2931
2932 imag_part = xtensa_gimplify_va_arg_expr (unshare_expr (valist),
2933 TREE_TYPE (type),
2934 pre_p, NULL);
2935 imag_part = get_initialized_tmp_var (imag_part, pre_p, NULL);
2936
2937 return build2 (COMPLEX_EXPR, type, real_part, imag_part);
2938 }
2939
2940 f_stk = TYPE_FIELDS (va_list_type_node);
2941 f_reg = DECL_CHAIN (f_stk);
2942 f_ndx = DECL_CHAIN (f_reg);
2943
2944 stk = build3 (COMPONENT_REF, TREE_TYPE (f_stk), valist,
2945 f_stk, NULL_TREE);
2946 reg = build3 (COMPONENT_REF, TREE_TYPE (f_reg), unshare_expr (valist),
2947 f_reg, NULL_TREE);
2948 ndx = build3 (COMPONENT_REF, TREE_TYPE (f_ndx), unshare_expr (valist),
2949 f_ndx, NULL_TREE);
2950
2951 type_size = size_in_bytes (type);
2952 va_size = round_up (type_size, UNITS_PER_WORD);
2953 gimplify_expr (&va_size, pre_p, NULL, is_gimple_val, fb_rvalue);
2954
2955
2956 /* First align __va_ndx if necessary for this arg:
2957
2958 orig_ndx = (AP).__va_ndx;
2959 if (__alignof__ (TYPE) > 4 )
2960 orig_ndx = ((orig_ndx + __alignof__ (TYPE) - 1)
2961 & -__alignof__ (TYPE)); */
2962
2963 orig_ndx = get_initialized_tmp_var (ndx, pre_p, NULL);
2964
2965 if (TYPE_ALIGN (type) > BITS_PER_WORD)
2966 {
2967 int align = MIN (TYPE_ALIGN (type), STACK_BOUNDARY) / BITS_PER_UNIT;
2968
2969 t = build2 (PLUS_EXPR, integer_type_node, unshare_expr (orig_ndx),
2970 build_int_cst (integer_type_node, align - 1));
2971 t = build2 (BIT_AND_EXPR, integer_type_node, t,
2972 build_int_cst (integer_type_node, -align));
2973 gimplify_assign (unshare_expr (orig_ndx), t, pre_p);
2974 }
2975
2976
2977 /* Increment __va_ndx to point past the argument:
2978
2979 (AP).__va_ndx = orig_ndx + __va_size (TYPE); */
2980
2981 t = fold_convert (integer_type_node, va_size);
2982 t = build2 (PLUS_EXPR, integer_type_node, orig_ndx, t);
2983 gimplify_assign (unshare_expr (ndx), t, pre_p);
2984
2985
2986 /* Check if the argument is in registers:
2987
2988 if ((AP).__va_ndx <= __MAX_ARGS_IN_REGISTERS * 4
2989 && !must_pass_in_stack (type))
2990 __array = (AP).__va_reg; */
2991
2992 array = create_tmp_var (ptr_type_node, NULL);
2993
2994 lab_over = NULL;
2995 if (!targetm.calls.must_pass_in_stack (TYPE_MODE (type), type))
2996 {
2997 lab_false = create_artificial_label (UNKNOWN_LOCATION);
2998 lab_over = create_artificial_label (UNKNOWN_LOCATION);
2999
3000 t = build2 (GT_EXPR, boolean_type_node, unshare_expr (ndx),
3001 build_int_cst (integer_type_node,
3002 MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD));
3003 t = build3 (COND_EXPR, void_type_node, t,
3004 build1 (GOTO_EXPR, void_type_node, lab_false),
3005 NULL_TREE);
3006 gimplify_and_add (t, pre_p);
3007
3008 gimplify_assign (unshare_expr (array), reg, pre_p);
3009
3010 t = build1 (GOTO_EXPR, void_type_node, lab_over);
3011 gimplify_and_add (t, pre_p);
3012
3013 t = build1 (LABEL_EXPR, void_type_node, lab_false);
3014 gimplify_and_add (t, pre_p);
3015 }
3016
3017
3018 /* ...otherwise, the argument is on the stack (never split between
3019 registers and the stack -- change __va_ndx if necessary):
3020
3021 else
3022 {
3023 if (orig_ndx <= __MAX_ARGS_IN_REGISTERS * 4)
3024 (AP).__va_ndx = 32 + __va_size (TYPE);
3025 __array = (AP).__va_stk;
3026 } */
3027
3028 lab_false2 = create_artificial_label (UNKNOWN_LOCATION);
3029
3030 t = build2 (GT_EXPR, boolean_type_node, unshare_expr (orig_ndx),
3031 build_int_cst (integer_type_node,
3032 MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD));
3033 t = build3 (COND_EXPR, void_type_node, t,
3034 build1 (GOTO_EXPR, void_type_node, lab_false2),
3035 NULL_TREE);
3036 gimplify_and_add (t, pre_p);
3037
3038 t = size_binop (PLUS_EXPR, unshare_expr (va_size), size_int (32));
3039 t = fold_convert (integer_type_node, t);
3040 gimplify_assign (unshare_expr (ndx), t, pre_p);
3041
3042 t = build1 (LABEL_EXPR, void_type_node, lab_false2);
3043 gimplify_and_add (t, pre_p);
3044
3045 gimplify_assign (array, stk, pre_p);
3046
3047 if (lab_over)
3048 {
3049 t = build1 (LABEL_EXPR, void_type_node, lab_over);
3050 gimplify_and_add (t, pre_p);
3051 }
3052
3053
3054 /* Given the base array pointer (__array) and index to the subsequent
3055 argument (__va_ndx), find the address:
3056
3057 __array + (AP).__va_ndx - (BYTES_BIG_ENDIAN && sizeof (TYPE) < 4
3058 ? sizeof (TYPE)
3059 : __va_size (TYPE))
3060
3061 The results are endian-dependent because values smaller than one word
3062 are aligned differently. */
3063
3064
3065 if (BYTES_BIG_ENDIAN && TREE_CODE (type_size) == INTEGER_CST)
3066 {
3067 t = fold_build2 (GE_EXPR, boolean_type_node, unshare_expr (type_size),
3068 size_int (PARM_BOUNDARY / BITS_PER_UNIT));
3069 t = fold_build3 (COND_EXPR, sizetype, t, unshare_expr (va_size),
3070 unshare_expr (type_size));
3071 size = t;
3072 }
3073 else
3074 size = unshare_expr (va_size);
3075
3076 t = fold_convert (sizetype, unshare_expr (ndx));
3077 t = build2 (MINUS_EXPR, sizetype, t, size);
3078 addr = fold_build_pointer_plus (unshare_expr (array), t);
3079
3080 addr = fold_convert (build_pointer_type (type), addr);
3081 if (indirect)
3082 addr = build_va_arg_indirect_ref (addr);
3083 return build_va_arg_indirect_ref (addr);
3084 }
3085
3086
3087 /* Builtins. */
3088
3089 enum xtensa_builtin
3090 {
3091 XTENSA_BUILTIN_UMULSIDI3,
3092 XTENSA_BUILTIN_max
3093 };
3094
3095
3096 static void
3097 xtensa_init_builtins (void)
3098 {
3099 tree ftype, decl;
3100
3101 ftype = build_function_type_list (unsigned_intDI_type_node,
3102 unsigned_intSI_type_node,
3103 unsigned_intSI_type_node, NULL_TREE);
3104
3105 decl = add_builtin_function ("__builtin_umulsidi3", ftype,
3106 XTENSA_BUILTIN_UMULSIDI3, BUILT_IN_MD,
3107 "__umulsidi3", NULL_TREE);
3108 TREE_NOTHROW (decl) = 1;
3109 TREE_READONLY (decl) = 1;
3110 }
3111
3112
3113 static tree
3114 xtensa_fold_builtin (tree fndecl, int n_args ATTRIBUTE_UNUSED, tree *args,
3115 bool ignore ATTRIBUTE_UNUSED)
3116 {
3117 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
3118 tree arg0, arg1;
3119
3120 switch (fcode)
3121 {
3122 case XTENSA_BUILTIN_UMULSIDI3:
3123 arg0 = args[0];
3124 arg1 = args[1];
3125 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
3126 || TARGET_MUL32_HIGH)
3127 return fold_build2 (MULT_EXPR, unsigned_intDI_type_node,
3128 fold_convert (unsigned_intDI_type_node, arg0),
3129 fold_convert (unsigned_intDI_type_node, arg1));
3130 break;
3131
3132 default:
3133 internal_error ("bad builtin code");
3134 break;
3135 }
3136
3137 return NULL;
3138 }
3139
3140
3141 static rtx
3142 xtensa_expand_builtin (tree exp, rtx target,
3143 rtx subtarget ATTRIBUTE_UNUSED,
3144 enum machine_mode mode ATTRIBUTE_UNUSED,
3145 int ignore)
3146 {
3147 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
3148 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
3149
3150 switch (fcode)
3151 {
3152 case XTENSA_BUILTIN_UMULSIDI3:
3153 /* The umulsidi3 builtin is just a mechanism to avoid calling the real
3154 __umulsidi3 function when the Xtensa configuration can directly
3155 implement it. If not, just call the function. */
3156 return expand_call (exp, target, ignore);
3157
3158 default:
3159 internal_error ("bad builtin code");
3160 }
3161 return NULL_RTX;
3162 }
3163
3164 /* Worker function for TARGET_PREFERRED_RELOAD_CLASS. */
3165
3166 static reg_class_t
3167 xtensa_preferred_reload_class (rtx x, reg_class_t rclass)
3168 {
3169 if (CONSTANT_P (x) && CONST_DOUBLE_P (x))
3170 return NO_REGS;
3171
3172 /* Don't use the stack pointer or hard frame pointer for reloads!
3173 The hard frame pointer would normally be OK except that it may
3174 briefly hold an incoming argument in the prologue, and reload
3175 won't know that it is live because the hard frame pointer is
3176 treated specially. */
3177
3178 if (rclass == AR_REGS || rclass == GR_REGS)
3179 return RL_REGS;
3180
3181 return rclass;
3182 }
3183
3184 /* Worker function for TARGET_PREFERRED_OUTPUT_RELOAD_CLASS. */
3185
3186 static reg_class_t
3187 xtensa_preferred_output_reload_class (rtx x ATTRIBUTE_UNUSED,
3188 reg_class_t rclass)
3189 {
3190 /* Don't use the stack pointer or hard frame pointer for reloads!
3191 The hard frame pointer would normally be OK except that it may
3192 briefly hold an incoming argument in the prologue, and reload
3193 won't know that it is live because the hard frame pointer is
3194 treated specially. */
3195
3196 if (rclass == AR_REGS || rclass == GR_REGS)
3197 return RL_REGS;
3198
3199 return rclass;
3200 }
3201
3202 /* Worker function for TARGET_SECONDARY_RELOAD. */
3203
3204 static reg_class_t
3205 xtensa_secondary_reload (bool in_p, rtx x, reg_class_t rclass,
3206 enum machine_mode mode, secondary_reload_info *sri)
3207 {
3208 int regno;
3209
3210 if (in_p && constantpool_mem_p (x))
3211 {
3212 if (rclass == FP_REGS)
3213 return RL_REGS;
3214
3215 if (mode == QImode)
3216 sri->icode = CODE_FOR_reloadqi_literal;
3217 else if (mode == HImode)
3218 sri->icode = CODE_FOR_reloadhi_literal;
3219 }
3220
3221 regno = xt_true_regnum (x);
3222 if (ACC_REG_P (regno))
3223 return ((rclass == GR_REGS || rclass == RL_REGS) ? NO_REGS : RL_REGS);
3224 if (rclass == ACC_REG)
3225 return (GP_REG_P (regno) ? NO_REGS : RL_REGS);
3226
3227 return NO_REGS;
3228 }
3229
3230
3231 void
3232 order_regs_for_local_alloc (void)
3233 {
3234 if (!leaf_function_p ())
3235 {
3236 memcpy (reg_alloc_order, reg_nonleaf_alloc_order,
3237 FIRST_PSEUDO_REGISTER * sizeof (int));
3238 }
3239 else
3240 {
3241 int i, num_arg_regs;
3242 int nxt = 0;
3243
3244 /* Use the AR registers in increasing order (skipping a0 and a1)
3245 but save the incoming argument registers for a last resort. */
3246 num_arg_regs = crtl->args.info.arg_words;
3247 if (num_arg_regs > MAX_ARGS_IN_REGISTERS)
3248 num_arg_regs = MAX_ARGS_IN_REGISTERS;
3249 for (i = GP_ARG_FIRST; i < 16 - num_arg_regs; i++)
3250 reg_alloc_order[nxt++] = i + num_arg_regs;
3251 for (i = 0; i < num_arg_regs; i++)
3252 reg_alloc_order[nxt++] = GP_ARG_FIRST + i;
3253
3254 /* List the coprocessor registers in order. */
3255 for (i = 0; i < BR_REG_NUM; i++)
3256 reg_alloc_order[nxt++] = BR_REG_FIRST + i;
3257
3258 /* List the FP registers in order for now. */
3259 for (i = 0; i < 16; i++)
3260 reg_alloc_order[nxt++] = FP_REG_FIRST + i;
3261
3262 /* GCC requires that we list *all* the registers.... */
3263 reg_alloc_order[nxt++] = 0; /* a0 = return address */
3264 reg_alloc_order[nxt++] = 1; /* a1 = stack pointer */
3265 reg_alloc_order[nxt++] = 16; /* pseudo frame pointer */
3266 reg_alloc_order[nxt++] = 17; /* pseudo arg pointer */
3267
3268 reg_alloc_order[nxt++] = ACC_REG_FIRST; /* MAC16 accumulator */
3269 }
3270 }
3271
3272
3273 /* Some Xtensa targets support multiple bss sections. If the section
3274 name ends with ".bss", add SECTION_BSS to the flags. */
3275
3276 static unsigned int
3277 xtensa_multibss_section_type_flags (tree decl, const char *name, int reloc)
3278 {
3279 unsigned int flags = default_section_type_flags (decl, name, reloc);
3280 const char *suffix;
3281
3282 suffix = strrchr (name, '.');
3283 if (suffix && strcmp (suffix, ".bss") == 0)
3284 {
3285 if (!decl || (TREE_CODE (decl) == VAR_DECL
3286 && DECL_INITIAL (decl) == NULL_TREE))
3287 flags |= SECTION_BSS; /* @nobits */
3288 else
3289 warning (0, "only uninitialized variables can be placed in a "
3290 ".bss section");
3291 }
3292
3293 return flags;
3294 }
3295
3296
3297 /* The literal pool stays with the function. */
3298
3299 static section *
3300 xtensa_select_rtx_section (enum machine_mode mode ATTRIBUTE_UNUSED,
3301 rtx x ATTRIBUTE_UNUSED,
3302 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
3303 {
3304 return function_section (current_function_decl);
3305 }
3306
3307 /* Worker function for TARGET_REGISTER_MOVE_COST. */
3308
3309 static int
3310 xtensa_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
3311 reg_class_t from, reg_class_t to)
3312 {
3313 if (from == to && from != BR_REGS && to != BR_REGS)
3314 return 2;
3315 else if (reg_class_subset_p (from, AR_REGS)
3316 && reg_class_subset_p (to, AR_REGS))
3317 return 2;
3318 else if (reg_class_subset_p (from, AR_REGS) && to == ACC_REG)
3319 return 3;
3320 else if (from == ACC_REG && reg_class_subset_p (to, AR_REGS))
3321 return 3;
3322 else
3323 return 10;
3324 }
3325
3326 /* Worker function for TARGET_MEMORY_MOVE_COST. */
3327
3328 static int
3329 xtensa_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
3330 reg_class_t rclass ATTRIBUTE_UNUSED,
3331 bool in ATTRIBUTE_UNUSED)
3332 {
3333 return 4;
3334 }
3335
3336 /* Compute a (partial) cost for rtx X. Return true if the complete
3337 cost has been computed, and false if subexpressions should be
3338 scanned. In either case, *TOTAL contains the cost result. */
3339
3340 static bool
3341 xtensa_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
3342 int *total, bool speed ATTRIBUTE_UNUSED)
3343 {
3344 switch (code)
3345 {
3346 case CONST_INT:
3347 switch (outer_code)
3348 {
3349 case SET:
3350 if (xtensa_simm12b (INTVAL (x)))
3351 {
3352 *total = 4;
3353 return true;
3354 }
3355 break;
3356 case PLUS:
3357 if (xtensa_simm8 (INTVAL (x))
3358 || xtensa_simm8x256 (INTVAL (x)))
3359 {
3360 *total = 0;
3361 return true;
3362 }
3363 break;
3364 case AND:
3365 if (xtensa_mask_immediate (INTVAL (x)))
3366 {
3367 *total = 0;
3368 return true;
3369 }
3370 break;
3371 case COMPARE:
3372 if ((INTVAL (x) == 0) || xtensa_b4const (INTVAL (x)))
3373 {
3374 *total = 0;
3375 return true;
3376 }
3377 break;
3378 case ASHIFT:
3379 case ASHIFTRT:
3380 case LSHIFTRT:
3381 case ROTATE:
3382 case ROTATERT:
3383 /* No way to tell if X is the 2nd operand so be conservative. */
3384 default: break;
3385 }
3386 if (xtensa_simm12b (INTVAL (x)))
3387 *total = 5;
3388 else if (TARGET_CONST16)
3389 *total = COSTS_N_INSNS (2);
3390 else
3391 *total = 6;
3392 return true;
3393
3394 case CONST:
3395 case LABEL_REF:
3396 case SYMBOL_REF:
3397 if (TARGET_CONST16)
3398 *total = COSTS_N_INSNS (2);
3399 else
3400 *total = 5;
3401 return true;
3402
3403 case CONST_DOUBLE:
3404 if (TARGET_CONST16)
3405 *total = COSTS_N_INSNS (4);
3406 else
3407 *total = 7;
3408 return true;
3409
3410 case MEM:
3411 {
3412 int num_words =
3413 (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) ? 2 : 1;
3414
3415 if (memory_address_p (GET_MODE (x), XEXP ((x), 0)))
3416 *total = COSTS_N_INSNS (num_words);
3417 else
3418 *total = COSTS_N_INSNS (2*num_words);
3419 return true;
3420 }
3421
3422 case FFS:
3423 case CTZ:
3424 *total = COSTS_N_INSNS (TARGET_NSA ? 5 : 50);
3425 return true;
3426
3427 case CLZ:
3428 *total = COSTS_N_INSNS (TARGET_NSA ? 1 : 50);
3429 return true;
3430
3431 case NOT:
3432 *total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 3 : 2);
3433 return true;
3434
3435 case AND:
3436 case IOR:
3437 case XOR:
3438 if (GET_MODE (x) == DImode)
3439 *total = COSTS_N_INSNS (2);
3440 else
3441 *total = COSTS_N_INSNS (1);
3442 return true;
3443
3444 case ASHIFT:
3445 case ASHIFTRT:
3446 case LSHIFTRT:
3447 if (GET_MODE (x) == DImode)
3448 *total = COSTS_N_INSNS (50);
3449 else
3450 *total = COSTS_N_INSNS (1);
3451 return true;
3452
3453 case ABS:
3454 {
3455 enum machine_mode xmode = GET_MODE (x);
3456 if (xmode == SFmode)
3457 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
3458 else if (xmode == DFmode)
3459 *total = COSTS_N_INSNS (50);
3460 else
3461 *total = COSTS_N_INSNS (4);
3462 return true;
3463 }
3464
3465 case PLUS:
3466 case MINUS:
3467 {
3468 enum machine_mode xmode = GET_MODE (x);
3469 if (xmode == SFmode)
3470 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
3471 else if (xmode == DFmode || xmode == DImode)
3472 *total = COSTS_N_INSNS (50);
3473 else
3474 *total = COSTS_N_INSNS (1);
3475 return true;
3476 }
3477
3478 case NEG:
3479 *total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 4 : 2);
3480 return true;
3481
3482 case MULT:
3483 {
3484 enum machine_mode xmode = GET_MODE (x);
3485 if (xmode == SFmode)
3486 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 4 : 50);
3487 else if (xmode == DFmode)
3488 *total = COSTS_N_INSNS (50);
3489 else if (xmode == DImode)
3490 *total = COSTS_N_INSNS (TARGET_MUL32_HIGH ? 10 : 50);
3491 else if (TARGET_MUL32)
3492 *total = COSTS_N_INSNS (4);
3493 else if (TARGET_MAC16)
3494 *total = COSTS_N_INSNS (16);
3495 else if (TARGET_MUL16)
3496 *total = COSTS_N_INSNS (12);
3497 else
3498 *total = COSTS_N_INSNS (50);
3499 return true;
3500 }
3501
3502 case DIV:
3503 case MOD:
3504 {
3505 enum machine_mode xmode = GET_MODE (x);
3506 if (xmode == SFmode)
3507 {
3508 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT_DIV ? 8 : 50);
3509 return true;
3510 }
3511 else if (xmode == DFmode)
3512 {
3513 *total = COSTS_N_INSNS (50);
3514 return true;
3515 }
3516 }
3517 /* Fall through. */
3518
3519 case UDIV:
3520 case UMOD:
3521 {
3522 enum machine_mode xmode = GET_MODE (x);
3523 if (xmode == DImode)
3524 *total = COSTS_N_INSNS (50);
3525 else if (TARGET_DIV32)
3526 *total = COSTS_N_INSNS (32);
3527 else
3528 *total = COSTS_N_INSNS (50);
3529 return true;
3530 }
3531
3532 case SQRT:
3533 if (GET_MODE (x) == SFmode)
3534 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT_SQRT ? 8 : 50);
3535 else
3536 *total = COSTS_N_INSNS (50);
3537 return true;
3538
3539 case SMIN:
3540 case UMIN:
3541 case SMAX:
3542 case UMAX:
3543 *total = COSTS_N_INSNS (TARGET_MINMAX ? 1 : 50);
3544 return true;
3545
3546 case SIGN_EXTRACT:
3547 case SIGN_EXTEND:
3548 *total = COSTS_N_INSNS (TARGET_SEXT ? 1 : 2);
3549 return true;
3550
3551 case ZERO_EXTRACT:
3552 case ZERO_EXTEND:
3553 *total = COSTS_N_INSNS (1);
3554 return true;
3555
3556 default:
3557 return false;
3558 }
3559 }
3560
3561 /* Worker function for TARGET_RETURN_IN_MEMORY. */
3562
3563 static bool
3564 xtensa_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
3565 {
3566 return ((unsigned HOST_WIDE_INT) int_size_in_bytes (type)
3567 > 4 * UNITS_PER_WORD);
3568 }
3569
3570 /* Worker function for TARGET_FUNCTION_VALUE. */
3571
3572 rtx
3573 xtensa_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED,
3574 bool outgoing)
3575 {
3576 return gen_rtx_REG ((INTEGRAL_TYPE_P (valtype)
3577 && TYPE_PRECISION (valtype) < BITS_PER_WORD)
3578 ? SImode : TYPE_MODE (valtype),
3579 outgoing ? GP_OUTGOING_RETURN : GP_RETURN);
3580 }
3581
3582 /* Worker function for TARGET_LIBCALL_VALUE. */
3583
3584 static rtx
3585 xtensa_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
3586 {
3587 return gen_rtx_REG ((GET_MODE_CLASS (mode) == MODE_INT
3588 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3589 ? SImode : mode, GP_RETURN);
3590 }
3591
3592 /* Worker function TARGET_FUNCTION_VALUE_REGNO_P. */
3593
3594 static bool
3595 xtensa_function_value_regno_p (const unsigned int regno)
3596 {
3597 return (regno == GP_RETURN);
3598 }
3599
3600 /* The static chain is passed in memory. Provide rtx giving 'mem'
3601 expressions that denote where they are stored. */
3602
3603 static rtx
3604 xtensa_static_chain (const_tree ARG_UNUSED (fndecl), bool incoming_p)
3605 {
3606 rtx base = incoming_p ? arg_pointer_rtx : stack_pointer_rtx;
3607 return gen_frame_mem (Pmode, plus_constant (Pmode, base,
3608 -5 * UNITS_PER_WORD));
3609 }
3610
3611
3612 /* TRAMPOLINE_TEMPLATE: For Xtensa, the trampoline must perform an ENTRY
3613 instruction with a minimal stack frame in order to get some free
3614 registers. Once the actual call target is known, the proper stack frame
3615 size is extracted from the ENTRY instruction at the target and the
3616 current frame is adjusted to match. The trampoline then transfers
3617 control to the instruction following the ENTRY at the target. Note:
3618 this assumes that the target begins with an ENTRY instruction. */
3619
3620 static void
3621 xtensa_asm_trampoline_template (FILE *stream)
3622 {
3623 bool use_call0 = (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS);
3624
3625 fprintf (stream, "\t.begin no-transform\n");
3626 fprintf (stream, "\tentry\tsp, %d\n", MIN_FRAME_SIZE);
3627
3628 if (use_call0)
3629 {
3630 /* Save the return address. */
3631 fprintf (stream, "\tmov\ta10, a0\n");
3632
3633 /* Use a CALL0 instruction to skip past the constants and in the
3634 process get the PC into A0. This allows PC-relative access to
3635 the constants without relying on L32R. */
3636 fprintf (stream, "\tcall0\t.Lskipconsts\n");
3637 }
3638 else
3639 fprintf (stream, "\tj\t.Lskipconsts\n");
3640
3641 fprintf (stream, "\t.align\t4\n");
3642 fprintf (stream, ".Lchainval:%s0\n", integer_asm_op (4, TRUE));
3643 fprintf (stream, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE));
3644 fprintf (stream, ".Lskipconsts:\n");
3645
3646 /* Load the static chain and function address from the trampoline. */
3647 if (use_call0)
3648 {
3649 fprintf (stream, "\taddi\ta0, a0, 3\n");
3650 fprintf (stream, "\tl32i\ta9, a0, 0\n");
3651 fprintf (stream, "\tl32i\ta8, a0, 4\n");
3652 }
3653 else
3654 {
3655 fprintf (stream, "\tl32r\ta9, .Lchainval\n");
3656 fprintf (stream, "\tl32r\ta8, .Lfnaddr\n");
3657 }
3658
3659 /* Store the static chain. */
3660 fprintf (stream, "\ts32i\ta9, sp, %d\n", MIN_FRAME_SIZE - 20);
3661
3662 /* Set the proper stack pointer value. */
3663 fprintf (stream, "\tl32i\ta9, a8, 0\n");
3664 fprintf (stream, "\textui\ta9, a9, %d, 12\n",
3665 TARGET_BIG_ENDIAN ? 8 : 12);
3666 fprintf (stream, "\tslli\ta9, a9, 3\n");
3667 fprintf (stream, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE);
3668 fprintf (stream, "\tsub\ta9, sp, a9\n");
3669 fprintf (stream, "\tmovsp\tsp, a9\n");
3670
3671 if (use_call0)
3672 /* Restore the return address. */
3673 fprintf (stream, "\tmov\ta0, a10\n");
3674
3675 /* Jump to the instruction following the ENTRY. */
3676 fprintf (stream, "\taddi\ta8, a8, 3\n");
3677 fprintf (stream, "\tjx\ta8\n");
3678
3679 /* Pad size to a multiple of TRAMPOLINE_ALIGNMENT. */
3680 if (use_call0)
3681 fprintf (stream, "\t.byte\t0\n");
3682 else
3683 fprintf (stream, "\tnop\n");
3684
3685 fprintf (stream, "\t.end no-transform\n");
3686 }
3687
3688 static void
3689 xtensa_trampoline_init (rtx m_tramp, tree fndecl, rtx chain)
3690 {
3691 rtx func = XEXP (DECL_RTL (fndecl), 0);
3692 bool use_call0 = (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS);
3693 int chain_off = use_call0 ? 12 : 8;
3694 int func_off = use_call0 ? 16 : 12;
3695
3696 emit_block_move (m_tramp, assemble_trampoline_template (),
3697 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
3698
3699 emit_move_insn (adjust_address (m_tramp, SImode, chain_off), chain);
3700 emit_move_insn (adjust_address (m_tramp, SImode, func_off), func);
3701 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"),
3702 LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode);
3703 }
3704
3705 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
3706
3707 static bool
3708 xtensa_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
3709 {
3710 return !xtensa_tls_referenced_p (x);
3711 }
3712
3713 #include "gt-xtensa.h"