tm.texi.in (OVERRIDE_OPTIONS): Remove documentation.
[gcc.git] / gcc / config / xtensa / xtensa.h
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Get Xtensa configuration settings */
23 #include "xtensa-config.h"
24
25 /* Standard GCC variables that we reference. */
26 extern int optimize;
27
28 /* External variables defined in xtensa.c. */
29
30 extern unsigned xtensa_current_frame_size;
31
32 /* Macros used in the machine description to select various Xtensa
33 configuration options. */
34 #ifndef XCHAL_HAVE_MUL32_HIGH
35 #define XCHAL_HAVE_MUL32_HIGH 0
36 #endif
37 #ifndef XCHAL_HAVE_RELEASE_SYNC
38 #define XCHAL_HAVE_RELEASE_SYNC 0
39 #endif
40 #ifndef XCHAL_HAVE_S32C1I
41 #define XCHAL_HAVE_S32C1I 0
42 #endif
43 #ifndef XCHAL_HAVE_THREADPTR
44 #define XCHAL_HAVE_THREADPTR 0
45 #endif
46 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
47 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
48 #define TARGET_MAC16 XCHAL_HAVE_MAC16
49 #define TARGET_MUL16 XCHAL_HAVE_MUL16
50 #define TARGET_MUL32 XCHAL_HAVE_MUL32
51 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
52 #define TARGET_DIV32 XCHAL_HAVE_DIV32
53 #define TARGET_NSA XCHAL_HAVE_NSA
54 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
55 #define TARGET_SEXT XCHAL_HAVE_SEXT
56 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
57 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
58 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
59 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
60 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
61 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
62 #define TARGET_ABS XCHAL_HAVE_ABS
63 #define TARGET_ADDX XCHAL_HAVE_ADDX
64 #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
65 #define TARGET_S32C1I XCHAL_HAVE_S32C1I
66 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
67 #define TARGET_THREADPTR XCHAL_HAVE_THREADPTR
68
69 #define TARGET_DEFAULT \
70 ((XCHAL_HAVE_L32R ? 0 : MASK_CONST16) | \
71 MASK_SERIALIZE_VOLATILE)
72
73 #ifndef HAVE_AS_TLS
74 #define HAVE_AS_TLS 0
75 #endif
76
77 /* Reordering blocks for Xtensa is not a good idea unless the compiler
78 understands the range of conditional branches. Currently all branch
79 relaxation for Xtensa is handled in the assembler, so GCC cannot do a
80 good job of reordering blocks. Do not enable reordering unless it is
81 explicitly requested. */
82 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
83 do \
84 { \
85 flag_reorder_blocks = 0; \
86 } \
87 while (0)
88
89 \f
90 /* Target CPU builtins. */
91 #define TARGET_CPU_CPP_BUILTINS() \
92 do { \
93 builtin_assert ("cpu=xtensa"); \
94 builtin_assert ("machine=xtensa"); \
95 builtin_define ("__xtensa__"); \
96 builtin_define ("__XTENSA__"); \
97 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
98 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
99 if (!TARGET_HARD_FLOAT) \
100 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
101 } while (0)
102
103 #define CPP_SPEC " %(subtarget_cpp_spec) "
104
105 #ifndef SUBTARGET_CPP_SPEC
106 #define SUBTARGET_CPP_SPEC ""
107 #endif
108
109 #define EXTRA_SPECS \
110 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
111
112 #ifdef __XTENSA_EB__
113 #define LIBGCC2_WORDS_BIG_ENDIAN 1
114 #else
115 #define LIBGCC2_WORDS_BIG_ENDIAN 0
116 #endif
117
118 /* Show we can debug even without a frame pointer. */
119 #define CAN_DEBUG_WITHOUT_FP
120
121
122 /* Target machine storage layout */
123
124 /* Define this if most significant bit is lowest numbered
125 in instructions that operate on numbered bit-fields. */
126 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
127
128 /* Define this if most significant byte of a word is the lowest numbered. */
129 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
130
131 /* Define this if most significant word of a multiword number is the lowest. */
132 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
133
134 #define MAX_BITS_PER_WORD 32
135
136 /* Width of a word, in units (bytes). */
137 #define UNITS_PER_WORD 4
138 #define MIN_UNITS_PER_WORD 4
139
140 /* Width of a floating point register. */
141 #define UNITS_PER_FPREG 4
142
143 /* Size in bits of various types on the target machine. */
144 #define INT_TYPE_SIZE 32
145 #define SHORT_TYPE_SIZE 16
146 #define LONG_TYPE_SIZE 32
147 #define LONG_LONG_TYPE_SIZE 64
148 #define FLOAT_TYPE_SIZE 32
149 #define DOUBLE_TYPE_SIZE 64
150 #define LONG_DOUBLE_TYPE_SIZE 64
151
152 /* Allocation boundary (in *bits*) for storing pointers in memory. */
153 #define POINTER_BOUNDARY 32
154
155 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
156 #define PARM_BOUNDARY 32
157
158 /* Allocation boundary (in *bits*) for the code of a function. */
159 #define FUNCTION_BOUNDARY 32
160
161 /* Alignment of field after 'int : 0' in a structure. */
162 #define EMPTY_FIELD_BOUNDARY 32
163
164 /* Every structure's size must be a multiple of this. */
165 #define STRUCTURE_SIZE_BOUNDARY 8
166
167 /* There is no point aligning anything to a rounder boundary than this. */
168 #define BIGGEST_ALIGNMENT 128
169
170 /* Set this nonzero if move instructions will actually fail to work
171 when given unaligned data. */
172 #define STRICT_ALIGNMENT 1
173
174 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
175 for QImode, because there is no 8-bit load from memory with sign
176 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
177 loads both with and without sign extension. */
178 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
179 do { \
180 if (GET_MODE_CLASS (MODE) == MODE_INT \
181 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
182 { \
183 if ((MODE) == QImode) \
184 (UNSIGNEDP) = 1; \
185 (MODE) = SImode; \
186 } \
187 } while (0)
188
189 /* Imitate the way many other C compilers handle alignment of
190 bitfields and the structures that contain them. */
191 #define PCC_BITFIELD_TYPE_MATTERS 1
192
193 /* Disable the use of word-sized or smaller complex modes for structures,
194 and for function arguments in particular, where they cause problems with
195 register a7. The xtensa_copy_incoming_a7 function assumes that there is
196 a single reference to an argument in a7, but with small complex modes the
197 real and imaginary components may be extracted separately, leading to two
198 uses of the register, only one of which would be replaced. */
199 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
200 ((MODE) == CQImode || (MODE) == CHImode)
201
202 /* Align string constants and constructors to at least a word boundary.
203 The typical use of this macro is to increase alignment for string
204 constants to be word aligned so that 'strcpy' calls that copy
205 constants can be done inline. */
206 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
207 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
208 && (ALIGN) < BITS_PER_WORD \
209 ? BITS_PER_WORD \
210 : (ALIGN))
211
212 /* Align arrays, unions and records to at least a word boundary.
213 One use of this macro is to increase alignment of medium-size
214 data to make it all fit in fewer cache lines. Another is to
215 cause character arrays to be word-aligned so that 'strcpy' calls
216 that copy constants to character arrays can be done inline. */
217 #undef DATA_ALIGNMENT
218 #define DATA_ALIGNMENT(TYPE, ALIGN) \
219 ((((ALIGN) < BITS_PER_WORD) \
220 && (TREE_CODE (TYPE) == ARRAY_TYPE \
221 || TREE_CODE (TYPE) == UNION_TYPE \
222 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
223
224 /* Operations between registers always perform the operation
225 on the full register even if a narrower mode is specified. */
226 #define WORD_REGISTER_OPERATIONS
227
228 /* Xtensa loads are zero-extended by default. */
229 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
230
231 /* Standard register usage. */
232
233 /* Number of actual hardware registers.
234 The hardware registers are assigned numbers for the compiler
235 from 0 to just below FIRST_PSEUDO_REGISTER.
236 All registers that the compiler knows about must be given numbers,
237 even those that are not normally considered general registers.
238
239 The fake frame pointer and argument pointer will never appear in
240 the generated code, since they will always be eliminated and replaced
241 by either the stack pointer or the hard frame pointer.
242
243 0 - 15 AR[0] - AR[15]
244 16 FRAME_POINTER (fake = initial sp)
245 17 ARG_POINTER (fake = initial sp + framesize)
246 18 BR[0] for floating-point CC
247 19 - 34 FR[0] - FR[15]
248 35 MAC16 accumulator */
249
250 #define FIRST_PSEUDO_REGISTER 36
251
252 /* Return the stabs register number to use for REGNO. */
253 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
254
255 /* 1 for registers that have pervasive standard uses
256 and are not available for the register allocator. */
257 #define FIXED_REGISTERS \
258 { \
259 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
260 1, 1, 0, \
261 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
262 0, \
263 }
264
265 /* 1 for registers not available across function calls.
266 These must include the FIXED_REGISTERS and also any
267 registers that can be used without being saved.
268 The latter must include the registers where values are returned
269 and the register where structure-value addresses are passed.
270 Aside from that, you can include as many other registers as you like. */
271 #define CALL_USED_REGISTERS \
272 { \
273 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
274 1, 1, 1, \
275 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
276 1, \
277 }
278
279 /* For non-leaf procedures on Xtensa processors, the allocation order
280 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
281 want to use the lowest numbered registers first to minimize
282 register window overflows. However, local-alloc is not smart
283 enough to consider conflicts with incoming arguments. If an
284 incoming argument in a2 is live throughout the function and
285 local-alloc decides to use a2, then the incoming argument must
286 either be spilled or copied to another register. To get around
287 this, we define ADJUST_REG_ALLOC_ORDER to redefine
288 reg_alloc_order for leaf functions such that lowest numbered
289 registers are used first with the exception that the incoming
290 argument registers are not used until after other register choices
291 have been exhausted. */
292
293 #define REG_ALLOC_ORDER \
294 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
295 18, \
296 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
297 0, 1, 16, 17, \
298 35, \
299 }
300
301 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
302
303 /* For Xtensa, the only point of this is to prevent GCC from otherwise
304 giving preference to call-used registers. To minimize window
305 overflows for the AR registers, we want to give preference to the
306 lower-numbered AR registers. For other register files, which are
307 not windowed, we still prefer call-used registers, if there are any. */
308 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
309 #define LEAF_REGISTERS xtensa_leaf_regs
310
311 /* For Xtensa, no remapping is necessary, but this macro must be
312 defined if LEAF_REGISTERS is defined. */
313 #define LEAF_REG_REMAP(REGNO) (REGNO)
314
315 /* This must be declared if LEAF_REGISTERS is set. */
316 extern int leaf_function;
317
318 /* Internal macros to classify a register number. */
319
320 /* 16 address registers + fake registers */
321 #define GP_REG_FIRST 0
322 #define GP_REG_LAST 17
323 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
324
325 /* Coprocessor registers */
326 #define BR_REG_FIRST 18
327 #define BR_REG_LAST 18
328 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
329
330 /* 16 floating-point registers */
331 #define FP_REG_FIRST 19
332 #define FP_REG_LAST 34
333 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
334
335 /* MAC16 accumulator */
336 #define ACC_REG_FIRST 35
337 #define ACC_REG_LAST 35
338 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
339
340 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
341 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
342 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
343 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
344
345 /* Return number of consecutive hard regs needed starting at reg REGNO
346 to hold something of mode MODE. */
347 #define HARD_REGNO_NREGS(REGNO, MODE) \
348 (FP_REG_P (REGNO) ? \
349 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
350 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
351
352 /* Value is 1 if hard register REGNO can hold a value of machine-mode
353 MODE. */
354 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
355
356 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
357 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
358
359 /* Value is 1 if it is a good idea to tie two pseudo registers
360 when one has mode MODE1 and one has mode MODE2.
361 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
362 for any hard reg, then this must be 0 for correct output. */
363 #define MODES_TIEABLE_P(MODE1, MODE2) \
364 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
365 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
366 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
367 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
368
369 /* Register to use for pushing function arguments. */
370 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
371
372 /* Base register for access to local variables of the function. */
373 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
374
375 /* The register number of the frame pointer register, which is used to
376 access automatic variables in the stack frame. For Xtensa, this
377 register never appears in the output. It is always eliminated to
378 either the stack pointer or the hard frame pointer. */
379 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
380
381 /* Base register for access to arguments of the function. */
382 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
383
384 /* For now we don't try to use the full set of boolean registers. Without
385 software pipelining of FP operations, there's not much to gain and it's
386 a real pain to get them reloaded. */
387 #define FPCC_REGNUM (BR_REG_FIRST + 0)
388
389 /* It is as good or better to call a constant function address than to
390 call an address kept in a register. */
391 #define NO_FUNCTION_CSE 1
392
393 /* Xtensa processors have "register windows". GCC does not currently
394 take advantage of the possibility for variable-sized windows; instead,
395 we use a fixed window size of 8. */
396
397 #define INCOMING_REGNO(OUT) \
398 ((GP_REG_P (OUT) && \
399 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
400 (OUT) - WINDOW_SIZE : (OUT))
401
402 #define OUTGOING_REGNO(IN) \
403 ((GP_REG_P (IN) && \
404 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
405 (IN) + WINDOW_SIZE : (IN))
406
407
408 /* Define the classes of registers for register constraints in the
409 machine description. */
410 enum reg_class
411 {
412 NO_REGS, /* no registers in set */
413 BR_REGS, /* coprocessor boolean registers */
414 FP_REGS, /* floating point registers */
415 ACC_REG, /* MAC16 accumulator */
416 SP_REG, /* sp register (aka a1) */
417 RL_REGS, /* preferred reload regs (not sp or fp) */
418 GR_REGS, /* integer registers except sp */
419 AR_REGS, /* all integer registers */
420 ALL_REGS, /* all registers */
421 LIM_REG_CLASSES /* max value + 1 */
422 };
423
424 #define N_REG_CLASSES (int) LIM_REG_CLASSES
425
426 #define GENERAL_REGS AR_REGS
427
428 /* An initializer containing the names of the register classes as C
429 string constants. These names are used in writing some of the
430 debugging dumps. */
431 #define REG_CLASS_NAMES \
432 { \
433 "NO_REGS", \
434 "BR_REGS", \
435 "FP_REGS", \
436 "ACC_REG", \
437 "SP_REG", \
438 "RL_REGS", \
439 "GR_REGS", \
440 "AR_REGS", \
441 "ALL_REGS" \
442 }
443
444 /* Contents of the register classes. The Nth integer specifies the
445 contents of class N. The way the integer MASK is interpreted is
446 that register R is in the class if 'MASK & (1 << R)' is 1. */
447 #define REG_CLASS_CONTENTS \
448 { \
449 { 0x00000000, 0x00000000 }, /* no registers */ \
450 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
451 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
452 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
453 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
454 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
455 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
456 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
457 { 0xffffffff, 0x0000000f } /* all registers */ \
458 }
459
460 #define IRA_COVER_CLASSES \
461 { \
462 BR_REGS, FP_REGS, ACC_REG, AR_REGS, LIM_REG_CLASSES \
463 }
464
465 /* A C expression whose value is a register class containing hard
466 register REGNO. In general there is more that one such class;
467 choose a class which is "minimal", meaning that no smaller class
468 also contains the register. */
469 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
470
471 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
472
473 /* Use the Xtensa AR register file for base registers.
474 No index registers. */
475 #define BASE_REG_CLASS AR_REGS
476 #define INDEX_REG_CLASS NO_REGS
477
478 /* The small_register_classes_for_mode_p hook must always return true for
479 Xtrnase, because all of the 16 AR registers may be explicitly used in
480 the RTL, as either incoming or outgoing arguments. */
481 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
482
483 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
484 xtensa_preferred_reload_class (X, CLASS, 0)
485
486 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
487 xtensa_preferred_reload_class (X, CLASS, 1)
488
489 /* Return the maximum number of consecutive registers
490 needed to represent mode MODE in a register of class CLASS. */
491 #define CLASS_UNITS(mode, size) \
492 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
493
494 #define CLASS_MAX_NREGS(CLASS, MODE) \
495 (CLASS_UNITS (MODE, UNITS_PER_WORD))
496
497
498 /* Stack layout; function entry, exit and calling. */
499
500 #define STACK_GROWS_DOWNWARD
501
502 /* Offset within stack frame to start allocating local variables at. */
503 #define STARTING_FRAME_OFFSET \
504 crtl->outgoing_args_size
505
506 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
507 they are eliminated to either the stack pointer or hard frame pointer. */
508 #define ELIMINABLE_REGS \
509 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
510 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
511 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
512 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
513
514 /* Specify the initial difference between the specified pair of registers. */
515 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
516 do { \
517 compute_frame_size (get_frame_size ()); \
518 switch (FROM) \
519 { \
520 case FRAME_POINTER_REGNUM: \
521 (OFFSET) = 0; \
522 break; \
523 case ARG_POINTER_REGNUM: \
524 (OFFSET) = xtensa_current_frame_size; \
525 break; \
526 default: \
527 gcc_unreachable (); \
528 } \
529 } while (0)
530
531 /* If defined, the maximum amount of space required for outgoing
532 arguments will be computed and placed into the variable
533 'crtl->outgoing_args_size'. No space will be pushed
534 onto the stack for each call; instead, the function prologue
535 should increase the stack frame size by this amount. */
536 #define ACCUMULATE_OUTGOING_ARGS 1
537
538 /* Offset from the argument pointer register to the first argument's
539 address. On some machines it may depend on the data type of the
540 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
541 location above the first argument's address. */
542 #define FIRST_PARM_OFFSET(FNDECL) 0
543
544 /* Align stack frames on 128 bits for Xtensa. This is necessary for
545 128-bit datatypes defined in TIE (e.g., for Vectra). */
546 #define STACK_BOUNDARY 128
547
548 /* Use a fixed register window size of 8. */
549 #define WINDOW_SIZE 8
550
551 /* Symbolic macros for the registers used to return integer, floating
552 point, and values of coprocessor and user-defined modes. */
553 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
554 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
555
556 /* Symbolic macros for the first/last argument registers. */
557 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
558 #define GP_ARG_LAST (GP_REG_FIRST + 7)
559 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
560 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
561
562 #define MAX_ARGS_IN_REGISTERS 6
563
564 /* Don't worry about compatibility with PCC. */
565 #define DEFAULT_PCC_STRUCT_RETURN 0
566
567 /* Define how to find the value returned by a library function
568 assuming the value has mode MODE. Because we have defined
569 TARGET_PROMOTE_FUNCTION_MODE to promote everything, we have to
570 perform the same promotions as PROMOTE_MODE. */
571 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
572 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
573 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
574 ? SImode : (MODE), \
575 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
576
577 #define LIBCALL_VALUE(MODE) \
578 XTENSA_LIBCALL_VALUE ((MODE), 0)
579
580 #define LIBCALL_OUTGOING_VALUE(MODE) \
581 XTENSA_LIBCALL_VALUE ((MODE), 1)
582
583 /* A C expression that is nonzero if REGNO is the number of a hard
584 register in which the values of called function may come back. A
585 register whose use for returning values is limited to serving as
586 the second of a pair (for a value of type 'double', say) need not
587 be recognized by this macro. If the machine has register windows,
588 so that the caller and the called function use different registers
589 for the return value, this macro should recognize only the caller's
590 register numbers. */
591 #define FUNCTION_VALUE_REGNO_P(N) \
592 ((N) == GP_RETURN)
593
594 /* A C expression that is nonzero if REGNO is the number of a hard
595 register in which function arguments are sometimes passed. This
596 does *not* include implicit arguments such as the static chain and
597 the structure-value address. On many machines, no registers can be
598 used for this purpose since all function arguments are pushed on
599 the stack. */
600 #define FUNCTION_ARG_REGNO_P(N) \
601 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
602
603 /* Record the number of argument words seen so far, along with a flag to
604 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
605 is used for both incoming and outgoing args, so a separate flag is
606 needed. */
607 typedef struct xtensa_args
608 {
609 int arg_words;
610 int incoming;
611 } CUMULATIVE_ARGS;
612
613 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
614 init_cumulative_args (&CUM, 0)
615
616 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
617 init_cumulative_args (&CUM, 1)
618
619 #define FUNCTION_ARG_BOUNDARY function_arg_boundary
620
621 /* Profiling Xtensa code is typically done with the built-in profiling
622 feature of Tensilica's instruction set simulator, which does not
623 require any compiler support. Profiling code on a real (i.e.,
624 non-simulated) Xtensa processor is currently only supported by
625 GNU/Linux with glibc. The glibc version of _mcount doesn't require
626 counter variables. The _mcount function needs the current PC and
627 the current return address to identify an arc in the call graph.
628 Pass the current return address as the first argument; the current
629 PC is available as a0 in _mcount's register window. Both of these
630 values contain window size information in the two most significant
631 bits; we assume that _mcount will mask off those bits. The call to
632 _mcount uses a window size of 8 to make sure that it doesn't clobber
633 any incoming argument values. */
634
635 #define NO_PROFILE_COUNTERS 1
636
637 #define FUNCTION_PROFILER(FILE, LABELNO) \
638 do { \
639 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
640 if (flag_pic) \
641 { \
642 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
643 fprintf (FILE, "\tcallx8\ta8\n"); \
644 } \
645 else \
646 fprintf (FILE, "\tcall8\t_mcount\n"); \
647 } while (0)
648
649 /* Stack pointer value doesn't matter at exit. */
650 #define EXIT_IGNORE_STACK 1
651
652 /* Size in bytes of the trampoline, as an integer. Make sure this is
653 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
654 #define TRAMPOLINE_SIZE (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? 60 : 52)
655
656 /* Alignment required for trampolines, in bits. */
657 #define TRAMPOLINE_ALIGNMENT 32
658
659 /* If defined, a C expression that produces the machine-specific code
660 to setup the stack so that arbitrary frames can be accessed.
661
662 On Xtensa, a stack back-trace must always begin from the stack pointer,
663 so that the register overflow save area can be located. However, the
664 stack-walking code in GCC always begins from the hard_frame_pointer
665 register, not the stack pointer. The frame pointer is usually equal
666 to the stack pointer, but the __builtin_return_address and
667 __builtin_frame_address functions will not work if count > 0 and
668 they are called from a routine that uses alloca. These functions
669 are not guaranteed to work at all if count > 0 so maybe that is OK.
670
671 A nicer solution would be to allow the architecture-specific files to
672 specify whether to start from the stack pointer or frame pointer. That
673 would also allow us to skip the machine->accesses_prev_frame stuff that
674 we currently need to ensure that there is a frame pointer when these
675 builtin functions are used. */
676
677 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
678
679 /* A C expression whose value is RTL representing the address in a
680 stack frame where the pointer to the caller's frame is stored.
681 Assume that FRAMEADDR is an RTL expression for the address of the
682 stack frame itself.
683
684 For Xtensa, there is no easy way to get the frame pointer if it is
685 not equivalent to the stack pointer. Moreover, the result of this
686 macro is used for continuing to walk back up the stack, so it must
687 return the stack pointer address. Thus, there is some inconsistency
688 here in that __builtin_frame_address will return the frame pointer
689 when count == 0 and the stack pointer when count > 0. */
690
691 #define DYNAMIC_CHAIN_ADDRESS(frame) \
692 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
693
694 /* Define this if the return address of a particular stack frame is
695 accessed from the frame pointer of the previous stack frame. */
696 #define RETURN_ADDR_IN_PREVIOUS_FRAME
697
698 /* A C expression whose value is RTL representing the value of the
699 return address for the frame COUNT steps up from the current
700 frame, after the prologue. */
701 #define RETURN_ADDR_RTX xtensa_return_addr
702
703 /* Addressing modes, and classification of registers for them. */
704
705 /* C expressions which are nonzero if register number NUM is suitable
706 for use as a base or index register in operand addresses. */
707
708 #define REGNO_OK_FOR_INDEX_P(NUM) 0
709 #define REGNO_OK_FOR_BASE_P(NUM) \
710 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
711
712 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
713 valid for use as a base or index register. */
714
715 #ifdef REG_OK_STRICT
716 #define REG_OK_STRICT_FLAG 1
717 #else
718 #define REG_OK_STRICT_FLAG 0
719 #endif
720
721 #define BASE_REG_P(X, STRICT) \
722 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
723 || REGNO_OK_FOR_BASE_P (REGNO (X)))
724
725 #define REG_OK_FOR_INDEX_P(X) 0
726 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
727
728 /* Maximum number of registers that can appear in a valid memory address. */
729 #define MAX_REGS_PER_ADDRESS 1
730
731 /* A C expression that is 1 if the RTX X is a constant which is a
732 valid address. This is defined to be the same as 'CONSTANT_P (X)',
733 but rejecting CONST_DOUBLE. */
734 #define CONSTANT_ADDRESS_P(X) \
735 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
736 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
737 || (GET_CODE (X) == CONST)))
738
739 /* Nonzero if the constant value X is a legitimate general operand.
740 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
741 #define LEGITIMATE_CONSTANT_P(X) (! xtensa_tls_referenced_p (X))
742
743 /* A C expression that is nonzero if X is a legitimate immediate
744 operand on the target machine when generating position independent
745 code. */
746 #define LEGITIMATE_PIC_OPERAND_P(X) \
747 ((GET_CODE (X) != SYMBOL_REF \
748 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
749 && GET_CODE (X) != LABEL_REF \
750 && GET_CODE (X) != CONST)
751
752 /* Treat constant-pool references as "mode dependent" since they can
753 only be accessed with SImode loads. This works around a bug in the
754 combiner where a constant pool reference is temporarily converted
755 to an HImode load, which is then assumed to zero-extend based on
756 our definition of LOAD_EXTEND_OP. This is wrong because the high
757 bits of a 16-bit value in the constant pool are now sign-extended
758 by default. */
759
760 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
761 do { \
762 if (constantpool_address_p (ADDR)) \
763 goto LABEL; \
764 } while (0)
765
766 /* Specify the machine mode that this machine uses
767 for the index in the tablejump instruction. */
768 #define CASE_VECTOR_MODE (SImode)
769
770 /* Define this as 1 if 'char' should by default be signed; else as 0. */
771 #define DEFAULT_SIGNED_CHAR 0
772
773 /* Max number of bytes we can move from memory to memory
774 in one reasonably fast instruction. */
775 #define MOVE_MAX 4
776 #define MAX_MOVE_MAX 4
777
778 /* Prefer word-sized loads. */
779 #define SLOW_BYTE_ACCESS 1
780
781 /* Shift instructions ignore all but the low-order few bits. */
782 #define SHIFT_COUNT_TRUNCATED 1
783
784 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
785 is done just by pretending it is already truncated. */
786 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
787
788 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
789 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
790
791 /* Specify the machine mode that pointers have.
792 After generation of rtl, the compiler makes no further distinction
793 between pointers and any other objects of this machine mode. */
794 #define Pmode SImode
795
796 /* A function address in a call instruction is a word address (for
797 indexing purposes) so give the MEM rtx a words's mode. */
798 #define FUNCTION_MODE SImode
799
800 /* A C expression for the cost of moving data from a register in
801 class FROM to one in class TO. The classes are expressed using
802 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
803 the default; other values are interpreted relative to that. */
804 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
805 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
806 ? 2 \
807 : (reg_class_subset_p ((FROM), AR_REGS) \
808 && reg_class_subset_p ((TO), AR_REGS) \
809 ? 2 \
810 : (reg_class_subset_p ((FROM), AR_REGS) \
811 && (TO) == ACC_REG \
812 ? 3 \
813 : ((FROM) == ACC_REG \
814 && reg_class_subset_p ((TO), AR_REGS) \
815 ? 3 \
816 : 10))))
817
818 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
819
820 #define BRANCH_COST(speed_p, predictable_p) 3
821
822 /* How to refer to registers in assembler output.
823 This sequence is indexed by compiler's hard-register-number (see above). */
824 #define REGISTER_NAMES \
825 { \
826 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
827 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
828 "fp", "argp", "b0", \
829 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
830 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
831 "acc" \
832 }
833
834 /* If defined, a C initializer for an array of structures containing a
835 name and a register number. This macro defines additional names
836 for hard registers, thus allowing the 'asm' option in declarations
837 to refer to registers using alternate names. */
838 #define ADDITIONAL_REGISTER_NAMES \
839 { \
840 { "a1", 1 + GP_REG_FIRST } \
841 }
842
843 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
844 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
845
846 /* Recognize machine-specific patterns that may appear within
847 constants. Used for PIC-specific UNSPECs. */
848 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
849 do { \
850 if (xtensa_output_addr_const_extra (STREAM, X) == FALSE) \
851 goto FAIL; \
852 } while (0)
853
854 /* Globalizing directive for a label. */
855 #define GLOBAL_ASM_OP "\t.global\t"
856
857 /* Declare an uninitialized external linkage data object. */
858 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
859 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
860
861 /* This is how to output an element of a case-vector that is absolute. */
862 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
863 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
864 LOCAL_LABEL_PREFIX, VALUE)
865
866 /* This is how to output an element of a case-vector that is relative.
867 This is used for pc-relative code. */
868 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
869 do { \
870 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
871 LOCAL_LABEL_PREFIX, (VALUE), \
872 LOCAL_LABEL_PREFIX, (REL)); \
873 } while (0)
874
875 /* This is how to output an assembler line that says to advance the
876 location counter to a multiple of 2**LOG bytes. */
877 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
878 do { \
879 if ((LOG) != 0) \
880 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
881 } while (0)
882
883 /* Indicate that jump tables go in the text section. This is
884 necessary when compiling PIC code. */
885 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
886
887
888 /* Define the strings to put out for each section in the object file. */
889 #define TEXT_SECTION_ASM_OP "\t.text"
890 #define DATA_SECTION_ASM_OP "\t.data"
891 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
892
893
894 /* Define output to appear before the constant pool. */
895 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
896 do { \
897 if ((SIZE) > 0) \
898 { \
899 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
900 switch_to_section (function_section (FUNDECL)); \
901 fprintf (FILE, "\t.literal_position\n"); \
902 } \
903 } while (0)
904
905
906 /* A C statement (with or without semicolon) to output a constant in
907 the constant pool, if it needs special treatment. */
908 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
909 do { \
910 xtensa_output_literal (FILE, X, MODE, LABELNO); \
911 goto JUMPTO; \
912 } while (0)
913
914 /* How to start an assembler comment. */
915 #define ASM_COMMENT_START "#"
916
917 /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
918 machinery, but the variable size register window save areas are too
919 complicated to efficiently describe with CFI entries. The CFA must
920 still be specified in DWARF so that DW_AT_frame_base is set correctly
921 for debugging. */
922 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
923 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
924 #define DWARF_FRAME_REGISTERS 16
925 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
926 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
927 (flag_pic \
928 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
929 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
930 : DW_EH_PE_absptr)
931
932 /* Emit a PC-relative relocation. */
933 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
934 do { \
935 fputs (integer_asm_op (SIZE, FALSE), FILE); \
936 assemble_name (FILE, LABEL); \
937 fputs ("@pcrel", FILE); \
938 } while (0)
939
940 /* Xtensa constant pool breaks the devices in crtstuff.c to control
941 section in where code resides. We have to write it as asm code. Use
942 a MOVI and let the assembler relax it -- for the .init and .fini
943 sections, the assembler knows to put the literal in the right
944 place. */
945 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
946 asm (SECTION_OP "\n\
947 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
948 callx8\ta8\n" \
949 TEXT_SECTION_ASM_OP);