xtensa-protos.h: (xtensa_simm7...
[gcc.git] / gcc / config / xtensa / xtensa.h
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Get Xtensa configuration settings */
23 #include "xtensa-config.h"
24
25 /* Standard GCC variables that we reference. */
26 extern int current_function_calls_alloca;
27 extern int target_flags;
28 extern int optimize;
29
30 /* External variables defined in xtensa.c. */
31
32 /* comparison type */
33 enum cmp_type {
34 CMP_SI, /* four byte integers */
35 CMP_DI, /* eight byte integers */
36 CMP_SF, /* single precision floats */
37 CMP_DF, /* double precision floats */
38 CMP_MAX /* max comparison type */
39 };
40
41 extern struct rtx_def * branch_cmp[2]; /* operands for compare */
42 extern enum cmp_type branch_type; /* what type of branch to use */
43 extern unsigned xtensa_current_frame_size;
44
45 /* Masks for the -m switches */
46 #define MASK_NO_FUSED_MADD 0x00000001 /* avoid f-p mul/add */
47 #define MASK_CONST16 0x00000002 /* use CONST16 instruction */
48
49 /* Macros used in the machine description to select various Xtensa
50 configuration options. */
51 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
52 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
53 #define TARGET_MAC16 XCHAL_HAVE_MAC16
54 #define TARGET_MUL16 XCHAL_HAVE_MUL16
55 #define TARGET_MUL32 XCHAL_HAVE_MUL32
56 #define TARGET_DIV32 XCHAL_HAVE_DIV32
57 #define TARGET_NSA XCHAL_HAVE_NSA
58 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
59 #define TARGET_SEXT XCHAL_HAVE_SEXT
60 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
61 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
62 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
63 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
64 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
65 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
66 #define TARGET_ABS XCHAL_HAVE_ABS
67 #define TARGET_ADDX XCHAL_HAVE_ADDX
68
69 /* Macros controlled by command-line options. */
70 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
71 #define TARGET_CONST16 (target_flags & MASK_CONST16)
72
73 #define TARGET_DEFAULT ( \
74 (XCHAL_HAVE_L32R ? 0 : MASK_CONST16))
75
76 #define TARGET_SWITCHES \
77 { \
78 {"const16", MASK_CONST16, \
79 N_("Use CONST16 instruction to load constants")}, \
80 {"no-const16", -MASK_CONST16, \
81 N_("Use PC-relative L32R instruction to load constants")}, \
82 {"no-fused-madd", MASK_NO_FUSED_MADD, \
83 N_("Disable fused multiply/add and multiply/subtract FP instructions")}, \
84 {"fused-madd", -MASK_NO_FUSED_MADD, \
85 N_("Enable fused multiply/add and multiply/subtract FP instructions")}, \
86 {"text-section-literals", 0, \
87 N_("Intersperse literal pools with code in the text section")}, \
88 {"no-text-section-literals", 0, \
89 N_("Put literal pools in a separate literal section")}, \
90 {"target-align", 0, \
91 N_("Automatically align branch targets to reduce branch penalties")}, \
92 {"no-target-align", 0, \
93 N_("Do not automatically align branch targets")}, \
94 {"longcalls", 0, \
95 N_("Use indirect CALLXn instructions for large programs")}, \
96 {"no-longcalls", 0, \
97 N_("Use direct CALLn instructions for fast calls")}, \
98 {"", TARGET_DEFAULT, 0} \
99 }
100
101
102 #define OVERRIDE_OPTIONS override_options ()
103 \f
104 /* Target CPU builtins. */
105 #define TARGET_CPU_CPP_BUILTINS() \
106 do { \
107 builtin_assert ("cpu=xtensa"); \
108 builtin_assert ("machine=xtensa"); \
109 builtin_define ("__xtensa__"); \
110 builtin_define ("__XTENSA__"); \
111 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
112 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
113 if (!TARGET_HARD_FLOAT) \
114 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
115 if (flag_pic) \
116 { \
117 builtin_define ("__PIC__"); \
118 builtin_define ("__pic__"); \
119 } \
120 } while (0)
121
122 #define CPP_SPEC " %(subtarget_cpp_spec) "
123
124 #ifndef SUBTARGET_CPP_SPEC
125 #define SUBTARGET_CPP_SPEC ""
126 #endif
127
128 #define EXTRA_SPECS \
129 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
130
131 #ifdef __XTENSA_EB__
132 #define LIBGCC2_WORDS_BIG_ENDIAN 1
133 #else
134 #define LIBGCC2_WORDS_BIG_ENDIAN 0
135 #endif
136
137 /* Show we can debug even without a frame pointer. */
138 #define CAN_DEBUG_WITHOUT_FP
139
140
141 /* Target machine storage layout */
142
143 /* Define this if most significant bit is lowest numbered
144 in instructions that operate on numbered bit-fields. */
145 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
146
147 /* Define this if most significant byte of a word is the lowest numbered. */
148 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
149
150 /* Define this if most significant word of a multiword number is the lowest. */
151 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
152
153 #define MAX_BITS_PER_WORD 32
154
155 /* Width of a word, in units (bytes). */
156 #define UNITS_PER_WORD 4
157 #define MIN_UNITS_PER_WORD 4
158
159 /* Width of a floating point register. */
160 #define UNITS_PER_FPREG 4
161
162 /* Size in bits of various types on the target machine. */
163 #define INT_TYPE_SIZE 32
164 #define SHORT_TYPE_SIZE 16
165 #define LONG_TYPE_SIZE 32
166 #define LONG_LONG_TYPE_SIZE 64
167 #define FLOAT_TYPE_SIZE 32
168 #define DOUBLE_TYPE_SIZE 64
169 #define LONG_DOUBLE_TYPE_SIZE 64
170
171 /* Allocation boundary (in *bits*) for storing pointers in memory. */
172 #define POINTER_BOUNDARY 32
173
174 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
175 #define PARM_BOUNDARY 32
176
177 /* Allocation boundary (in *bits*) for the code of a function. */
178 #define FUNCTION_BOUNDARY 32
179
180 /* Alignment of field after 'int : 0' in a structure. */
181 #define EMPTY_FIELD_BOUNDARY 32
182
183 /* Every structure's size must be a multiple of this. */
184 #define STRUCTURE_SIZE_BOUNDARY 8
185
186 /* There is no point aligning anything to a rounder boundary than this. */
187 #define BIGGEST_ALIGNMENT 128
188
189 /* Set this nonzero if move instructions will actually fail to work
190 when given unaligned data. */
191 #define STRICT_ALIGNMENT 1
192
193 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
194 for QImode, because there is no 8-bit load from memory with sign
195 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
196 loads both with and without sign extension. */
197 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
198 do { \
199 if (GET_MODE_CLASS (MODE) == MODE_INT \
200 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
201 { \
202 if ((MODE) == QImode) \
203 (UNSIGNEDP) = 1; \
204 (MODE) = SImode; \
205 } \
206 } while (0)
207
208 /* Imitate the way many other C compilers handle alignment of
209 bitfields and the structures that contain them. */
210 #define PCC_BITFIELD_TYPE_MATTERS 1
211
212 /* Disable the use of word-sized or smaller complex modes for structures,
213 and for function arguments in particular, where they cause problems with
214 register a7. The xtensa_copy_incoming_a7 function assumes that there is
215 a single reference to an argument in a7, but with small complex modes the
216 real and imaginary components may be extracted separately, leading to two
217 uses of the register, only one of which would be replaced. */
218 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
219 ((MODE) == CQImode || (MODE) == CHImode)
220
221 /* Align string constants and constructors to at least a word boundary.
222 The typical use of this macro is to increase alignment for string
223 constants to be word aligned so that 'strcpy' calls that copy
224 constants can be done inline. */
225 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
226 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
227 && (ALIGN) < BITS_PER_WORD \
228 ? BITS_PER_WORD \
229 : (ALIGN))
230
231 /* Align arrays, unions and records to at least a word boundary.
232 One use of this macro is to increase alignment of medium-size
233 data to make it all fit in fewer cache lines. Another is to
234 cause character arrays to be word-aligned so that 'strcpy' calls
235 that copy constants to character arrays can be done inline. */
236 #undef DATA_ALIGNMENT
237 #define DATA_ALIGNMENT(TYPE, ALIGN) \
238 ((((ALIGN) < BITS_PER_WORD) \
239 && (TREE_CODE (TYPE) == ARRAY_TYPE \
240 || TREE_CODE (TYPE) == UNION_TYPE \
241 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
242
243 /* Operations between registers always perform the operation
244 on the full register even if a narrower mode is specified. */
245 #define WORD_REGISTER_OPERATIONS
246
247 /* Xtensa loads are zero-extended by default. */
248 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
249
250 /* Standard register usage. */
251
252 /* Number of actual hardware registers.
253 The hardware registers are assigned numbers for the compiler
254 from 0 to just below FIRST_PSEUDO_REGISTER.
255 All registers that the compiler knows about must be given numbers,
256 even those that are not normally considered general registers.
257
258 The fake frame pointer and argument pointer will never appear in
259 the generated code, since they will always be eliminated and replaced
260 by either the stack pointer or the hard frame pointer.
261
262 0 - 15 AR[0] - AR[15]
263 16 FRAME_POINTER (fake = initial sp)
264 17 ARG_POINTER (fake = initial sp + framesize)
265 18 BR[0] for floating-point CC
266 19 - 34 FR[0] - FR[15]
267 35 MAC16 accumulator */
268
269 #define FIRST_PSEUDO_REGISTER 36
270
271 /* Return the stabs register number to use for REGNO. */
272 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
273
274 /* 1 for registers that have pervasive standard uses
275 and are not available for the register allocator. */
276 #define FIXED_REGISTERS \
277 { \
278 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
279 1, 1, 0, \
280 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
281 0, \
282 }
283
284 /* 1 for registers not available across function calls.
285 These must include the FIXED_REGISTERS and also any
286 registers that can be used without being saved.
287 The latter must include the registers where values are returned
288 and the register where structure-value addresses are passed.
289 Aside from that, you can include as many other registers as you like. */
290 #define CALL_USED_REGISTERS \
291 { \
292 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
293 1, 1, 1, \
294 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
295 1, \
296 }
297
298 /* For non-leaf procedures on Xtensa processors, the allocation order
299 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
300 want to use the lowest numbered registers first to minimize
301 register window overflows. However, local-alloc is not smart
302 enough to consider conflicts with incoming arguments. If an
303 incoming argument in a2 is live throughout the function and
304 local-alloc decides to use a2, then the incoming argument must
305 either be spilled or copied to another register. To get around
306 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
307 reg_alloc_order for leaf functions such that lowest numbered
308 registers are used first with the exception that the incoming
309 argument registers are not used until after other register choices
310 have been exhausted. */
311
312 #define REG_ALLOC_ORDER \
313 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
314 18, \
315 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
316 0, 1, 16, 17, \
317 35, \
318 }
319
320 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
321
322 /* For Xtensa, the only point of this is to prevent GCC from otherwise
323 giving preference to call-used registers. To minimize window
324 overflows for the AR registers, we want to give preference to the
325 lower-numbered AR registers. For other register files, which are
326 not windowed, we still prefer call-used registers, if there are any. */
327 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
328 #define LEAF_REGISTERS xtensa_leaf_regs
329
330 /* For Xtensa, no remapping is necessary, but this macro must be
331 defined if LEAF_REGISTERS is defined. */
332 #define LEAF_REG_REMAP(REGNO) (REGNO)
333
334 /* This must be declared if LEAF_REGISTERS is set. */
335 extern int leaf_function;
336
337 /* Internal macros to classify a register number. */
338
339 /* 16 address registers + fake registers */
340 #define GP_REG_FIRST 0
341 #define GP_REG_LAST 17
342 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
343
344 /* Coprocessor registers */
345 #define BR_REG_FIRST 18
346 #define BR_REG_LAST 18
347 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
348
349 /* 16 floating-point registers */
350 #define FP_REG_FIRST 19
351 #define FP_REG_LAST 34
352 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
353
354 /* MAC16 accumulator */
355 #define ACC_REG_FIRST 35
356 #define ACC_REG_LAST 35
357 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
358
359 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
360 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
361 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
362 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
363
364 /* Return number of consecutive hard regs needed starting at reg REGNO
365 to hold something of mode MODE. */
366 #define HARD_REGNO_NREGS(REGNO, MODE) \
367 (FP_REG_P (REGNO) ? \
368 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
369 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
370
371 /* Value is 1 if hard register REGNO can hold a value of machine-mode
372 MODE. */
373 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
374
375 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
376 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
377
378 /* Value is 1 if it is a good idea to tie two pseudo registers
379 when one has mode MODE1 and one has mode MODE2.
380 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
381 for any hard reg, then this must be 0 for correct output. */
382 #define MODES_TIEABLE_P(MODE1, MODE2) \
383 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
384 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
385 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
386 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
387
388 /* Register to use for pushing function arguments. */
389 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
390
391 /* Base register for access to local variables of the function. */
392 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
393
394 /* The register number of the frame pointer register, which is used to
395 access automatic variables in the stack frame. For Xtensa, this
396 register never appears in the output. It is always eliminated to
397 either the stack pointer or the hard frame pointer. */
398 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
399
400 /* Value should be nonzero if functions must have frame pointers.
401 Zero means the frame pointer need not be set up (and parms
402 may be accessed via the stack pointer) in functions that seem suitable.
403 This is computed in 'reload', in reload1.c. */
404 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
405
406 /* Base register for access to arguments of the function. */
407 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
408
409 /* If the static chain is passed in memory, these macros provide rtx
410 giving 'mem' expressions that denote where they are stored.
411 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
412 seen by the calling and called functions, respectively. */
413
414 #define STATIC_CHAIN \
415 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
416
417 #define STATIC_CHAIN_INCOMING \
418 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
419
420 /* For now we don't try to use the full set of boolean registers. Without
421 software pipelining of FP operations, there's not much to gain and it's
422 a real pain to get them reloaded. */
423 #define FPCC_REGNUM (BR_REG_FIRST + 0)
424
425 /* It is as good or better to call a constant function address than to
426 call an address kept in a register. */
427 #define NO_FUNCTION_CSE 1
428
429 /* Xtensa processors have "register windows". GCC does not currently
430 take advantage of the possibility for variable-sized windows; instead,
431 we use a fixed window size of 8. */
432
433 #define INCOMING_REGNO(OUT) \
434 ((GP_REG_P (OUT) && \
435 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
436 (OUT) - WINDOW_SIZE : (OUT))
437
438 #define OUTGOING_REGNO(IN) \
439 ((GP_REG_P (IN) && \
440 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
441 (IN) + WINDOW_SIZE : (IN))
442
443
444 /* Define the classes of registers for register constraints in the
445 machine description. */
446 enum reg_class
447 {
448 NO_REGS, /* no registers in set */
449 BR_REGS, /* coprocessor boolean registers */
450 FP_REGS, /* floating point registers */
451 ACC_REG, /* MAC16 accumulator */
452 SP_REG, /* sp register (aka a1) */
453 RL_REGS, /* preferred reload regs (not sp or fp) */
454 GR_REGS, /* integer registers except sp */
455 AR_REGS, /* all integer registers */
456 ALL_REGS, /* all registers */
457 LIM_REG_CLASSES /* max value + 1 */
458 };
459
460 #define N_REG_CLASSES (int) LIM_REG_CLASSES
461
462 #define GENERAL_REGS AR_REGS
463
464 /* An initializer containing the names of the register classes as C
465 string constants. These names are used in writing some of the
466 debugging dumps. */
467 #define REG_CLASS_NAMES \
468 { \
469 "NO_REGS", \
470 "BR_REGS", \
471 "FP_REGS", \
472 "ACC_REG", \
473 "SP_REG", \
474 "RL_REGS", \
475 "GR_REGS", \
476 "AR_REGS", \
477 "ALL_REGS" \
478 }
479
480 /* Contents of the register classes. The Nth integer specifies the
481 contents of class N. The way the integer MASK is interpreted is
482 that register R is in the class if 'MASK & (1 << R)' is 1. */
483 #define REG_CLASS_CONTENTS \
484 { \
485 { 0x00000000, 0x00000000 }, /* no registers */ \
486 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
487 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
488 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
489 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
490 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
491 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
492 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
493 { 0xffffffff, 0x0000000f } /* all registers */ \
494 }
495
496 /* A C expression whose value is a register class containing hard
497 register REGNO. In general there is more that one such class;
498 choose a class which is "minimal", meaning that no smaller class
499 also contains the register. */
500 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
501
502 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
503
504 /* Use the Xtensa AR register file for base registers.
505 No index registers. */
506 #define BASE_REG_CLASS AR_REGS
507 #define INDEX_REG_CLASS NO_REGS
508
509 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
510 16 AR registers may be explicitly used in the RTL, as either
511 incoming or outgoing arguments. */
512 #define SMALL_REGISTER_CLASSES 1
513
514
515 /* REGISTER AND CONSTANT CLASSES */
516
517 /* Get reg_class from a letter such as appears in the machine
518 description.
519
520 Available letters: a-f,h,j-l,q,t-z,A-D,W,Y-Z
521
522 DEFINED REGISTER CLASSES:
523
524 'a' general-purpose registers except sp
525 'q' sp (aka a1)
526 'D' general-purpose registers (only if density option enabled)
527 'd' general-purpose registers, including sp (only if density enabled)
528 'A' MAC16 accumulator (only if MAC16 option enabled)
529 'B' general-purpose registers (only if sext instruction enabled)
530 'C' general-purpose registers (only if mul16 option enabled)
531 'W' general-purpose registers (only if const16 option enabled)
532 'b' coprocessor boolean registers
533 'f' floating-point registers
534 */
535
536 extern enum reg_class xtensa_char_to_class[256];
537
538 #define REG_CLASS_FROM_LETTER(C) xtensa_char_to_class[ (int) (C) ]
539
540 /* The letters I, J, K, L, M, N, O, and P in a register constraint
541 string can be used to stand for particular ranges of immediate
542 operands. This macro defines what the ranges are. C is the
543 letter, and VALUE is a constant value. Return 1 if VALUE is
544 in the range specified by C.
545
546 For Xtensa:
547
548 I = 12-bit signed immediate for MOVI
549 J = 8-bit signed immediate for ADDI
550 K = 4-bit value in (b4const U {0})
551 L = 4-bit value in b4constu
552 M = 7-bit immediate value for MOVI.N
553 N = 8-bit unsigned immediate shifted left by 8 bits for ADDMI
554 O = 4-bit immediate for ADDI.N
555 P = valid immediate mask value for EXTUI */
556
557 #define CONST_OK_FOR_LETTER_P xtensa_const_ok_for_letter_p
558 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) (0)
559
560
561 /* Other letters can be defined in a machine-dependent fashion to
562 stand for particular classes of registers or other arbitrary
563 operand types.
564
565 R = memory that can be accessed with a 4-bit unsigned offset
566 T = memory in a constant pool (addressable with a pc-relative load)
567 U = memory *NOT* in a constant pool
568
569 The offset range should not be checked here (except to distinguish
570 denser versions of the instructions for which more general versions
571 are available). Doing so leads to problems in reloading: an
572 argptr-relative address may become invalid when the phony argptr is
573 eliminated in favor of the stack pointer (the offset becomes too
574 large to fit in the instruction's immediate field); a reload is
575 generated to fix this but the RTL is not immediately updated; in
576 the meantime, the constraints are checked and none match. The
577 solution seems to be to simply skip the offset check here. The
578 address will be checked anyway because of the code in
579 GO_IF_LEGITIMATE_ADDRESS. */
580
581 #define EXTRA_CONSTRAINT xtensa_extra_constraint
582
583 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
584 xtensa_preferred_reload_class (X, CLASS, 0)
585
586 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
587 xtensa_preferred_reload_class (X, CLASS, 1)
588
589 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
590 xtensa_secondary_reload_class (CLASS, MODE, X, 0)
591
592 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
593 xtensa_secondary_reload_class (CLASS, MODE, X, 1)
594
595 /* Return the maximum number of consecutive registers
596 needed to represent mode MODE in a register of class CLASS. */
597 #define CLASS_UNITS(mode, size) \
598 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
599
600 #define CLASS_MAX_NREGS(CLASS, MODE) \
601 (CLASS_UNITS (MODE, UNITS_PER_WORD))
602
603
604 /* Stack layout; function entry, exit and calling. */
605
606 #define STACK_GROWS_DOWNWARD
607
608 /* Offset within stack frame to start allocating local variables at. */
609 #define STARTING_FRAME_OFFSET \
610 current_function_outgoing_args_size
611
612 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
613 they are eliminated to either the stack pointer or hard frame pointer. */
614 #define ELIMINABLE_REGS \
615 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
616 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
617 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
618 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
619
620 #define CAN_ELIMINATE(FROM, TO) 1
621
622 /* Specify the initial difference between the specified pair of registers. */
623 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
624 do { \
625 compute_frame_size (get_frame_size ()); \
626 if ((FROM) == FRAME_POINTER_REGNUM) \
627 (OFFSET) = 0; \
628 else if ((FROM) == ARG_POINTER_REGNUM) \
629 (OFFSET) = xtensa_current_frame_size; \
630 else \
631 abort (); \
632 } while (0)
633
634 /* If defined, the maximum amount of space required for outgoing
635 arguments will be computed and placed into the variable
636 'current_function_outgoing_args_size'. No space will be pushed
637 onto the stack for each call; instead, the function prologue
638 should increase the stack frame size by this amount. */
639 #define ACCUMULATE_OUTGOING_ARGS 1
640
641 /* Offset from the argument pointer register to the first argument's
642 address. On some machines it may depend on the data type of the
643 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
644 location above the first argument's address. */
645 #define FIRST_PARM_OFFSET(FNDECL) 0
646
647 /* Align stack frames on 128 bits for Xtensa. This is necessary for
648 128-bit datatypes defined in TIE (e.g., for Vectra). */
649 #define STACK_BOUNDARY 128
650
651 /* Functions do not pop arguments off the stack. */
652 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
653
654 /* Use a fixed register window size of 8. */
655 #define WINDOW_SIZE 8
656
657 /* Symbolic macros for the registers used to return integer, floating
658 point, and values of coprocessor and user-defined modes. */
659 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
660 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
661
662 /* Symbolic macros for the first/last argument registers. */
663 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
664 #define GP_ARG_LAST (GP_REG_FIRST + 7)
665 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
666 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
667
668 #define MAX_ARGS_IN_REGISTERS 6
669
670 /* Don't worry about compatibility with PCC. */
671 #define DEFAULT_PCC_STRUCT_RETURN 0
672
673 /* Define how to find the value returned by a library function
674 assuming the value has mode MODE. Because we have defined
675 TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
676 perform the same promotions as PROMOTE_MODE. */
677 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
678 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
679 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
680 ? SImode : (MODE), \
681 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
682
683 #define LIBCALL_VALUE(MODE) \
684 XTENSA_LIBCALL_VALUE ((MODE), 0)
685
686 #define LIBCALL_OUTGOING_VALUE(MODE) \
687 XTENSA_LIBCALL_VALUE ((MODE), 1)
688
689 /* Define how to find the value returned by a function.
690 VALTYPE is the data type of the value (as a tree).
691 If the precise function being called is known, FUNC is its FUNCTION_DECL;
692 otherwise, FUNC is 0. */
693 #define XTENSA_FUNCTION_VALUE(VALTYPE, FUNC, OUTGOINGP) \
694 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
695 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
696 ? SImode: TYPE_MODE (VALTYPE), \
697 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
698
699 #define FUNCTION_VALUE(VALTYPE, FUNC) \
700 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 0)
701
702 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
703 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 1)
704
705 /* A C expression that is nonzero if REGNO is the number of a hard
706 register in which the values of called function may come back. A
707 register whose use for returning values is limited to serving as
708 the second of a pair (for a value of type 'double', say) need not
709 be recognized by this macro. If the machine has register windows,
710 so that the caller and the called function use different registers
711 for the return value, this macro should recognize only the caller's
712 register numbers. */
713 #define FUNCTION_VALUE_REGNO_P(N) \
714 ((N) == GP_RETURN)
715
716 /* A C expression that is nonzero if REGNO is the number of a hard
717 register in which function arguments are sometimes passed. This
718 does *not* include implicit arguments such as the static chain and
719 the structure-value address. On many machines, no registers can be
720 used for this purpose since all function arguments are pushed on
721 the stack. */
722 #define FUNCTION_ARG_REGNO_P(N) \
723 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
724
725 /* Record the number of argument words seen so far, along with a flag to
726 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
727 is used for both incoming and outgoing args, so a separate flag is
728 needed. */
729 typedef struct xtensa_args
730 {
731 int arg_words;
732 int incoming;
733 } CUMULATIVE_ARGS;
734
735 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
736 init_cumulative_args (&CUM, 0)
737
738 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
739 init_cumulative_args (&CUM, 1)
740
741 /* Update the data in CUM to advance over an argument
742 of mode MODE and data type TYPE.
743 (TYPE is null for libcalls where that information may not be available.) */
744 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
745 function_arg_advance (&CUM, MODE, TYPE)
746
747 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
748 function_arg (&CUM, MODE, TYPE, FALSE)
749
750 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
751 function_arg (&CUM, MODE, TYPE, TRUE)
752
753 /* Specify function argument alignment. */
754 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
755 ((TYPE) != 0 \
756 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
757 ? PARM_BOUNDARY \
758 : TYPE_ALIGN (TYPE)) \
759 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
760 ? PARM_BOUNDARY \
761 : GET_MODE_ALIGNMENT (MODE)))
762
763 /* Profiling Xtensa code is typically done with the built-in profiling
764 feature of Tensilica's instruction set simulator, which does not
765 require any compiler support. Profiling code on a real (i.e.,
766 non-simulated) Xtensa processor is currently only supported by
767 GNU/Linux with glibc. The glibc version of _mcount doesn't require
768 counter variables. The _mcount function needs the current PC and
769 the current return address to identify an arc in the call graph.
770 Pass the current return address as the first argument; the current
771 PC is available as a0 in _mcount's register window. Both of these
772 values contain window size information in the two most significant
773 bits; we assume that _mcount will mask off those bits. The call to
774 _mcount uses a window size of 8 to make sure that it doesn't clobber
775 any incoming argument values. */
776
777 #define NO_PROFILE_COUNTERS 1
778
779 #define FUNCTION_PROFILER(FILE, LABELNO) \
780 do { \
781 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
782 if (flag_pic) \
783 { \
784 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
785 fprintf (FILE, "\tcallx8\ta8\n"); \
786 } \
787 else \
788 fprintf (FILE, "\tcall8\t_mcount\n"); \
789 } while (0)
790
791 /* Stack pointer value doesn't matter at exit. */
792 #define EXIT_IGNORE_STACK 1
793
794 /* A C statement to output, on the stream FILE, assembler code for a
795 block of data that contains the constant parts of a trampoline.
796 This code should not include a label--the label is taken care of
797 automatically.
798
799 For Xtensa, the trampoline must perform an entry instruction with a
800 minimal stack frame in order to get some free registers. Once the
801 actual call target is known, the proper stack frame size is extracted
802 from the entry instruction at the target and the current frame is
803 adjusted to match. The trampoline then transfers control to the
804 instruction following the entry at the target. Note: this assumes
805 that the target begins with an entry instruction. */
806
807 /* minimum frame = reg save area (4 words) plus static chain (1 word)
808 and the total number of words must be a multiple of 128 bits */
809 #define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
810
811 #define TRAMPOLINE_TEMPLATE(STREAM) \
812 do { \
813 fprintf (STREAM, "\t.begin no-transform\n"); \
814 fprintf (STREAM, "\tentry\tsp, %d\n", MIN_FRAME_SIZE); \
815 \
816 /* save the return address */ \
817 fprintf (STREAM, "\tmov\ta10, a0\n"); \
818 \
819 /* Use a CALL0 instruction to skip past the constants and in the \
820 process get the PC into A0. This allows PC-relative access to \
821 the constants without relying on L32R, which may not always be \
822 available. */ \
823 \
824 fprintf (STREAM, "\tcall0\t.Lskipconsts\n"); \
825 fprintf (STREAM, "\t.align\t4\n"); \
826 fprintf (STREAM, ".Lchainval:%s0\n", integer_asm_op (4, TRUE)); \
827 fprintf (STREAM, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE)); \
828 fprintf (STREAM, ".Lskipconsts:\n"); \
829 \
830 /* store the static chain */ \
831 fprintf (STREAM, "\taddi\ta0, a0, 3\n"); \
832 fprintf (STREAM, "\tl32i\ta8, a0, 0\n"); \
833 fprintf (STREAM, "\ts32i\ta8, sp, %d\n", MIN_FRAME_SIZE - 20); \
834 \
835 /* set the proper stack pointer value */ \
836 fprintf (STREAM, "\tl32i\ta8, a0, 4\n"); \
837 fprintf (STREAM, "\tl32i\ta9, a8, 0\n"); \
838 fprintf (STREAM, "\textui\ta9, a9, %d, 12\n", \
839 TARGET_BIG_ENDIAN ? 8 : 12); \
840 fprintf (STREAM, "\tslli\ta9, a9, 3\n"); \
841 fprintf (STREAM, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE); \
842 fprintf (STREAM, "\tsub\ta9, sp, a9\n"); \
843 fprintf (STREAM, "\tmovsp\tsp, a9\n"); \
844 \
845 /* restore the return address */ \
846 fprintf (STREAM, "\tmov\ta0, a10\n"); \
847 \
848 /* jump to the instruction following the entry */ \
849 fprintf (STREAM, "\taddi\ta8, a8, 3\n"); \
850 fprintf (STREAM, "\tjx\ta8\n"); \
851 fprintf (STREAM, "\t.end no-transform\n"); \
852 } while (0)
853
854 /* Size in bytes of the trampoline, as an integer. */
855 #define TRAMPOLINE_SIZE 59
856
857 /* Alignment required for trampolines, in bits. */
858 #define TRAMPOLINE_ALIGNMENT (32)
859
860 /* A C statement to initialize the variable parts of a trampoline. */
861 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
862 do { \
863 rtx addr = ADDR; \
864 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 12)), CHAIN); \
865 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 16)), FUNC); \
866 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"), \
867 0, VOIDmode, 1, addr, Pmode); \
868 } while (0)
869
870 /* Implement `va_start' for varargs and stdarg. */
871 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
872 xtensa_va_start (valist, nextarg)
873
874 /* If defined, a C expression that produces the machine-specific code
875 to setup the stack so that arbitrary frames can be accessed.
876
877 On Xtensa, a stack back-trace must always begin from the stack pointer,
878 so that the register overflow save area can be located. However, the
879 stack-walking code in GCC always begins from the hard_frame_pointer
880 register, not the stack pointer. The frame pointer is usually equal
881 to the stack pointer, but the __builtin_return_address and
882 __builtin_frame_address functions will not work if count > 0 and
883 they are called from a routine that uses alloca. These functions
884 are not guaranteed to work at all if count > 0 so maybe that is OK.
885
886 A nicer solution would be to allow the architecture-specific files to
887 specify whether to start from the stack pointer or frame pointer. That
888 would also allow us to skip the machine->accesses_prev_frame stuff that
889 we currently need to ensure that there is a frame pointer when these
890 builtin functions are used. */
891
892 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
893
894 /* A C expression whose value is RTL representing the address in a
895 stack frame where the pointer to the caller's frame is stored.
896 Assume that FRAMEADDR is an RTL expression for the address of the
897 stack frame itself.
898
899 For Xtensa, there is no easy way to get the frame pointer if it is
900 not equivalent to the stack pointer. Moreover, the result of this
901 macro is used for continuing to walk back up the stack, so it must
902 return the stack pointer address. Thus, there is some inconsistency
903 here in that __builtin_frame_address will return the frame pointer
904 when count == 0 and the stack pointer when count > 0. */
905
906 #define DYNAMIC_CHAIN_ADDRESS(frame) \
907 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
908
909 /* Define this if the return address of a particular stack frame is
910 accessed from the frame pointer of the previous stack frame. */
911 #define RETURN_ADDR_IN_PREVIOUS_FRAME
912
913 /* A C expression whose value is RTL representing the value of the
914 return address for the frame COUNT steps up from the current
915 frame, after the prologue. */
916 #define RETURN_ADDR_RTX xtensa_return_addr
917
918 /* Addressing modes, and classification of registers for them. */
919
920 /* C expressions which are nonzero if register number NUM is suitable
921 for use as a base or index register in operand addresses. It may
922 be either a suitable hard register or a pseudo register that has
923 been allocated such a hard register. The difference between an
924 index register and a base register is that the index register may
925 be scaled. */
926
927 #define REGNO_OK_FOR_BASE_P(NUM) \
928 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
929
930 #define REGNO_OK_FOR_INDEX_P(NUM) 0
931
932 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
933 valid for use as a base or index register. For hard registers, it
934 should always accept those which the hardware permits and reject
935 the others. Whether the macro accepts or rejects pseudo registers
936 must be controlled by `REG_OK_STRICT'. This usually requires two
937 variant definitions, of which `REG_OK_STRICT' controls the one
938 actually used. The difference between an index register and a base
939 register is that the index register may be scaled. */
940
941 #ifdef REG_OK_STRICT
942
943 #define REG_OK_FOR_INDEX_P(X) 0
944 #define REG_OK_FOR_BASE_P(X) \
945 REGNO_OK_FOR_BASE_P (REGNO (X))
946
947 #else /* !REG_OK_STRICT */
948
949 #define REG_OK_FOR_INDEX_P(X) 0
950 #define REG_OK_FOR_BASE_P(X) \
951 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (REGNO (X))))
952
953 #endif /* !REG_OK_STRICT */
954
955 /* Maximum number of registers that can appear in a valid memory address. */
956 #define MAX_REGS_PER_ADDRESS 1
957
958 /* Identify valid Xtensa addresses. */
959 #define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
960 do { \
961 rtx xinsn = (ADDR); \
962 \
963 /* allow constant pool addresses */ \
964 if ((MODE) != BLKmode && GET_MODE_SIZE (MODE) >= UNITS_PER_WORD \
965 && !TARGET_CONST16 && constantpool_address_p (xinsn)) \
966 goto LABEL; \
967 \
968 while (GET_CODE (xinsn) == SUBREG) \
969 xinsn = SUBREG_REG (xinsn); \
970 \
971 /* allow base registers */ \
972 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
973 goto LABEL; \
974 \
975 /* check for "register + offset" addressing */ \
976 if (GET_CODE (xinsn) == PLUS) \
977 { \
978 rtx xplus0 = XEXP (xinsn, 0); \
979 rtx xplus1 = XEXP (xinsn, 1); \
980 enum rtx_code code0; \
981 enum rtx_code code1; \
982 \
983 while (GET_CODE (xplus0) == SUBREG) \
984 xplus0 = SUBREG_REG (xplus0); \
985 code0 = GET_CODE (xplus0); \
986 \
987 while (GET_CODE (xplus1) == SUBREG) \
988 xplus1 = SUBREG_REG (xplus1); \
989 code1 = GET_CODE (xplus1); \
990 \
991 /* swap operands if necessary so the register is first */ \
992 if (code0 != REG && code1 == REG) \
993 { \
994 xplus0 = XEXP (xinsn, 1); \
995 xplus1 = XEXP (xinsn, 0); \
996 code0 = GET_CODE (xplus0); \
997 code1 = GET_CODE (xplus1); \
998 } \
999 \
1000 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
1001 && code1 == CONST_INT \
1002 && xtensa_mem_offset (INTVAL (xplus1), (MODE))) \
1003 { \
1004 goto LABEL; \
1005 } \
1006 } \
1007 } while (0)
1008
1009 /* A C expression that is 1 if the RTX X is a constant which is a
1010 valid address. This is defined to be the same as 'CONSTANT_P (X)',
1011 but rejecting CONST_DOUBLE. */
1012 #define CONSTANT_ADDRESS_P(X) \
1013 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1014 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
1015 || (GET_CODE (X) == CONST)))
1016
1017 /* Nonzero if the constant value X is a legitimate general operand.
1018 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1019 #define LEGITIMATE_CONSTANT_P(X) 1
1020
1021 /* A C expression that is nonzero if X is a legitimate immediate
1022 operand on the target machine when generating position independent
1023 code. */
1024 #define LEGITIMATE_PIC_OPERAND_P(X) \
1025 ((GET_CODE (X) != SYMBOL_REF \
1026 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
1027 && GET_CODE (X) != LABEL_REF \
1028 && GET_CODE (X) != CONST)
1029
1030 /* Tell GCC how to use ADDMI to generate addresses. */
1031 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1032 do { \
1033 rtx xinsn = (X); \
1034 if (GET_CODE (xinsn) == PLUS) \
1035 { \
1036 rtx plus0 = XEXP (xinsn, 0); \
1037 rtx plus1 = XEXP (xinsn, 1); \
1038 \
1039 if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG) \
1040 { \
1041 plus0 = XEXP (xinsn, 1); \
1042 plus1 = XEXP (xinsn, 0); \
1043 } \
1044 \
1045 if (GET_CODE (plus0) == REG \
1046 && GET_CODE (plus1) == CONST_INT \
1047 && !xtensa_mem_offset (INTVAL (plus1), MODE) \
1048 && !xtensa_simm8 (INTVAL (plus1)) \
1049 && xtensa_mem_offset (INTVAL (plus1) & 0xff, MODE) \
1050 && xtensa_simm8x256 (INTVAL (plus1) & ~0xff)) \
1051 { \
1052 rtx temp = gen_reg_rtx (Pmode); \
1053 emit_insn (gen_rtx_SET (Pmode, temp, \
1054 gen_rtx_PLUS (Pmode, plus0, \
1055 GEN_INT (INTVAL (plus1) & ~0xff)))); \
1056 (X) = gen_rtx_PLUS (Pmode, temp, \
1057 GEN_INT (INTVAL (plus1) & 0xff)); \
1058 goto WIN; \
1059 } \
1060 } \
1061 } while (0)
1062
1063
1064 /* Treat constant-pool references as "mode dependent" since they can
1065 only be accessed with SImode loads. This works around a bug in the
1066 combiner where a constant pool reference is temporarily converted
1067 to an HImode load, which is then assumed to zero-extend based on
1068 our definition of LOAD_EXTEND_OP. This is wrong because the high
1069 bits of a 16-bit value in the constant pool are now sign-extended
1070 by default. */
1071
1072 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1073 do { \
1074 if (constantpool_address_p (ADDR)) \
1075 goto LABEL; \
1076 } while (0)
1077
1078 /* Specify the machine mode that this machine uses
1079 for the index in the tablejump instruction. */
1080 #define CASE_VECTOR_MODE (SImode)
1081
1082 /* Define this as 1 if 'char' should by default be signed; else as 0. */
1083 #define DEFAULT_SIGNED_CHAR 0
1084
1085 /* Max number of bytes we can move from memory to memory
1086 in one reasonably fast instruction. */
1087 #define MOVE_MAX 4
1088 #define MAX_MOVE_MAX 4
1089
1090 /* Prefer word-sized loads. */
1091 #define SLOW_BYTE_ACCESS 1
1092
1093 /* Shift instructions ignore all but the low-order few bits. */
1094 #define SHIFT_COUNT_TRUNCATED 1
1095
1096 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1097 is done just by pretending it is already truncated. */
1098 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1099
1100 /* Specify the machine mode that pointers have.
1101 After generation of rtl, the compiler makes no further distinction
1102 between pointers and any other objects of this machine mode. */
1103 #define Pmode SImode
1104
1105 /* A function address in a call instruction is a word address (for
1106 indexing purposes) so give the MEM rtx a words's mode. */
1107 #define FUNCTION_MODE SImode
1108
1109 /* A C expression for the cost of moving data from a register in
1110 class FROM to one in class TO. The classes are expressed using
1111 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
1112 the default; other values are interpreted relative to that. */
1113 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1114 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
1115 ? 2 \
1116 : (reg_class_subset_p ((FROM), AR_REGS) \
1117 && reg_class_subset_p ((TO), AR_REGS) \
1118 ? 2 \
1119 : (reg_class_subset_p ((FROM), AR_REGS) \
1120 && (TO) == ACC_REG \
1121 ? 3 \
1122 : ((FROM) == ACC_REG \
1123 && reg_class_subset_p ((TO), AR_REGS) \
1124 ? 3 \
1125 : 10))))
1126
1127 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
1128
1129 #define BRANCH_COST 3
1130
1131 /* How to refer to registers in assembler output.
1132 This sequence is indexed by compiler's hard-register-number (see above). */
1133 #define REGISTER_NAMES \
1134 { \
1135 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
1136 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
1137 "fp", "argp", "b0", \
1138 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1139 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
1140 "acc" \
1141 }
1142
1143 /* If defined, a C initializer for an array of structures containing a
1144 name and a register number. This macro defines additional names
1145 for hard registers, thus allowing the 'asm' option in declarations
1146 to refer to registers using alternate names. */
1147 #define ADDITIONAL_REGISTER_NAMES \
1148 { \
1149 { "a1", 1 + GP_REG_FIRST } \
1150 }
1151
1152 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1153 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1154
1155 /* Recognize machine-specific patterns that may appear within
1156 constants. Used for PIC-specific UNSPECs. */
1157 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
1158 do { \
1159 if (flag_pic && GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
1160 { \
1161 switch (XINT ((X), 1)) \
1162 { \
1163 case UNSPEC_PLT: \
1164 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
1165 fputs ("@PLT", (STREAM)); \
1166 break; \
1167 default: \
1168 goto FAIL; \
1169 } \
1170 break; \
1171 } \
1172 else \
1173 goto FAIL; \
1174 } while (0)
1175
1176 /* Globalizing directive for a label. */
1177 #define GLOBAL_ASM_OP "\t.global\t"
1178
1179 /* Declare an uninitialized external linkage data object. */
1180 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1181 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1182
1183 /* This is how to output an element of a case-vector that is absolute. */
1184 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1185 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
1186 LOCAL_LABEL_PREFIX, VALUE)
1187
1188 /* This is how to output an element of a case-vector that is relative.
1189 This is used for pc-relative code. */
1190 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1191 do { \
1192 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
1193 LOCAL_LABEL_PREFIX, (VALUE), \
1194 LOCAL_LABEL_PREFIX, (REL)); \
1195 } while (0)
1196
1197 /* This is how to output an assembler line that says to advance the
1198 location counter to a multiple of 2**LOG bytes. */
1199 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
1200 do { \
1201 if ((LOG) != 0) \
1202 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
1203 } while (0)
1204
1205 /* Indicate that jump tables go in the text section. This is
1206 necessary when compiling PIC code. */
1207 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1208
1209
1210 /* Define the strings to put out for each section in the object file. */
1211 #define TEXT_SECTION_ASM_OP "\t.text"
1212 #define DATA_SECTION_ASM_OP "\t.data"
1213 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1214
1215
1216 /* Define output to appear before the constant pool. If the function
1217 has been assigned to a specific ELF section, or if it goes into a
1218 unique section, set the name of that section to be the literal
1219 prefix. */
1220 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
1221 do { \
1222 tree fnsection; \
1223 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
1224 fnsection = DECL_SECTION_NAME (FUNDECL); \
1225 if (fnsection != NULL_TREE) \
1226 { \
1227 const char *fnsectname = TREE_STRING_POINTER (fnsection); \
1228 fprintf (FILE, "\t.begin\tliteral_prefix %s\n", \
1229 strcmp (fnsectname, ".text") ? fnsectname : ""); \
1230 } \
1231 if ((SIZE) > 0) \
1232 { \
1233 function_section (FUNDECL); \
1234 fprintf (FILE, "\t.literal_position\n"); \
1235 } \
1236 } while (0)
1237
1238
1239 /* Define code to write out the ".end literal_prefix" directive for a
1240 function in a special section. This is appended to the standard ELF
1241 code for ASM_DECLARE_FUNCTION_SIZE. */
1242 #define XTENSA_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
1243 if (DECL_SECTION_NAME (DECL) != NULL_TREE) \
1244 fprintf (FILE, "\t.end\tliteral_prefix\n")
1245
1246 /* A C statement (with or without semicolon) to output a constant in
1247 the constant pool, if it needs special treatment. */
1248 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
1249 do { \
1250 xtensa_output_literal (FILE, X, MODE, LABELNO); \
1251 goto JUMPTO; \
1252 } while (0)
1253
1254 /* How to start an assembler comment. */
1255 #define ASM_COMMENT_START "#"
1256
1257 /* Exception handling TODO!! */
1258 #define DWARF_UNWIND_INFO 0
1259
1260 /* Xtensa constant pool breaks the devices in crtstuff.c to control
1261 section in where code resides. We have to write it as asm code. Use
1262 a MOVI and let the assembler relax it -- for the .init and .fini
1263 sections, the assembler knows to put the literal in the right
1264 place. */
1265 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1266 asm (SECTION_OP "\n\
1267 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
1268 callx8\ta8\n" \
1269 TEXT_SECTION_ASM_OP);