target.h (globalize_decl_name): New.
[gcc.git] / gcc / convert.c
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 /* These routines are somewhat language-independent utility function
25 intended to be called by the language-specific convert () functions. */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "tree.h"
32 #include "flags.h"
33 #include "convert.h"
34 #include "toplev.h"
35 #include "langhooks.h"
36 #include "real.h"
37
38 /* Convert EXPR to some pointer or reference type TYPE.
39 EXPR must be pointer, reference, integer, enumeral, or literal zero;
40 in other cases error is called. */
41
42 tree
43 convert_to_pointer (tree type, tree expr)
44 {
45 if (TREE_TYPE (expr) == type)
46 return expr;
47
48 /* Propagate overflow to the NULL pointer. */
49 if (integer_zerop (expr))
50 return force_fit_type_double (type, 0, 0, 0, TREE_OVERFLOW (expr));
51
52 switch (TREE_CODE (TREE_TYPE (expr)))
53 {
54 case POINTER_TYPE:
55 case REFERENCE_TYPE:
56 return fold_build1 (NOP_EXPR, type, expr);
57
58 case INTEGER_TYPE:
59 case ENUMERAL_TYPE:
60 case BOOLEAN_TYPE:
61 if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
62 expr = fold_build1 (NOP_EXPR,
63 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
64 expr);
65 return fold_build1 (CONVERT_EXPR, type, expr);
66
67
68 default:
69 error ("cannot convert to a pointer type");
70 return convert_to_pointer (type, integer_zero_node);
71 }
72 }
73
74 /* Avoid any floating point extensions from EXP. */
75 tree
76 strip_float_extensions (tree exp)
77 {
78 tree sub, expt, subt;
79
80 /* For floating point constant look up the narrowest type that can hold
81 it properly and handle it like (type)(narrowest_type)constant.
82 This way we can optimize for instance a=a*2.0 where "a" is float
83 but 2.0 is double constant. */
84 if (TREE_CODE (exp) == REAL_CST)
85 {
86 REAL_VALUE_TYPE orig;
87 tree type = NULL;
88
89 orig = TREE_REAL_CST (exp);
90 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
91 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
92 type = float_type_node;
93 else if (TYPE_PRECISION (TREE_TYPE (exp))
94 > TYPE_PRECISION (double_type_node)
95 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
96 type = double_type_node;
97 if (type)
98 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
99 }
100
101 if (TREE_CODE (exp) != NOP_EXPR
102 && TREE_CODE (exp) != CONVERT_EXPR)
103 return exp;
104
105 sub = TREE_OPERAND (exp, 0);
106 subt = TREE_TYPE (sub);
107 expt = TREE_TYPE (exp);
108
109 if (!FLOAT_TYPE_P (subt))
110 return exp;
111
112 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
113 return exp;
114
115 return strip_float_extensions (sub);
116 }
117
118
119 /* Convert EXPR to some floating-point type TYPE.
120
121 EXPR must be float, integer, or enumeral;
122 in other cases error is called. */
123
124 tree
125 convert_to_real (tree type, tree expr)
126 {
127 enum built_in_function fcode = builtin_mathfn_code (expr);
128 tree itype = TREE_TYPE (expr);
129
130 /* Disable until we figure out how to decide whether the functions are
131 present in runtime. */
132 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
133 if (optimize
134 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
135 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
136 {
137 switch (fcode)
138 {
139 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
140 CASE_MATHFN (ACOS)
141 CASE_MATHFN (ACOSH)
142 CASE_MATHFN (ASIN)
143 CASE_MATHFN (ASINH)
144 CASE_MATHFN (ATAN)
145 CASE_MATHFN (ATANH)
146 CASE_MATHFN (CBRT)
147 CASE_MATHFN (COS)
148 CASE_MATHFN (COSH)
149 CASE_MATHFN (ERF)
150 CASE_MATHFN (ERFC)
151 CASE_MATHFN (EXP)
152 CASE_MATHFN (EXP10)
153 CASE_MATHFN (EXP2)
154 CASE_MATHFN (EXPM1)
155 CASE_MATHFN (FABS)
156 CASE_MATHFN (GAMMA)
157 CASE_MATHFN (J0)
158 CASE_MATHFN (J1)
159 CASE_MATHFN (LGAMMA)
160 CASE_MATHFN (LOG)
161 CASE_MATHFN (LOG10)
162 CASE_MATHFN (LOG1P)
163 CASE_MATHFN (LOG2)
164 CASE_MATHFN (LOGB)
165 CASE_MATHFN (POW10)
166 CASE_MATHFN (SIN)
167 CASE_MATHFN (SINH)
168 CASE_MATHFN (SQRT)
169 CASE_MATHFN (TAN)
170 CASE_MATHFN (TANH)
171 CASE_MATHFN (TGAMMA)
172 CASE_MATHFN (Y0)
173 CASE_MATHFN (Y1)
174 #undef CASE_MATHFN
175 {
176 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
177 tree newtype = type;
178
179 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
180 the both as the safe type for operation. */
181 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
182 newtype = TREE_TYPE (arg0);
183
184 /* Be careful about integer to fp conversions.
185 These may overflow still. */
186 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
187 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
188 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
189 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
190 {
191 tree arglist;
192 tree fn = mathfn_built_in (newtype, fcode);
193
194 if (fn)
195 {
196 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
197 expr = build_function_call_expr (fn, arglist);
198 if (newtype == type)
199 return expr;
200 }
201 }
202 }
203 default:
204 break;
205 }
206 }
207 if (optimize
208 && (((fcode == BUILT_IN_FLOORL
209 || fcode == BUILT_IN_CEILL
210 || fcode == BUILT_IN_ROUNDL
211 || fcode == BUILT_IN_RINTL
212 || fcode == BUILT_IN_TRUNCL
213 || fcode == BUILT_IN_NEARBYINTL)
214 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
215 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
216 || ((fcode == BUILT_IN_FLOOR
217 || fcode == BUILT_IN_CEIL
218 || fcode == BUILT_IN_ROUND
219 || fcode == BUILT_IN_RINT
220 || fcode == BUILT_IN_TRUNC
221 || fcode == BUILT_IN_NEARBYINT)
222 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
223 {
224 tree fn = mathfn_built_in (type, fcode);
225
226 if (fn)
227 {
228 tree arg
229 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
230
231 /* Make sure (type)arg0 is an extension, otherwise we could end up
232 changing (float)floor(double d) into floorf((float)d), which is
233 incorrect because (float)d uses round-to-nearest and can round
234 up to the next integer. */
235 if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
236 return
237 build_function_call_expr (fn,
238 build_tree_list (NULL_TREE,
239 fold (convert_to_real (type, arg))));
240 }
241 }
242
243 /* Propagate the cast into the operation. */
244 if (itype != type && FLOAT_TYPE_P (type))
245 switch (TREE_CODE (expr))
246 {
247 /* Convert (float)-x into -(float)x. This is safe for
248 round-to-nearest rounding mode. */
249 case ABS_EXPR:
250 case NEGATE_EXPR:
251 if (!flag_rounding_math
252 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
253 return build1 (TREE_CODE (expr), type,
254 fold (convert_to_real (type,
255 TREE_OPERAND (expr, 0))));
256 break;
257 /* Convert (outertype)((innertype0)a+(innertype1)b)
258 into ((newtype)a+(newtype)b) where newtype
259 is the widest mode from all of these. */
260 case PLUS_EXPR:
261 case MINUS_EXPR:
262 case MULT_EXPR:
263 case RDIV_EXPR:
264 {
265 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
266 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
267
268 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
269 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
270 {
271 tree newtype = type;
272
273 if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
274 || TYPE_MODE (TREE_TYPE (arg1)) == SDmode)
275 newtype = dfloat32_type_node;
276 if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
277 || TYPE_MODE (TREE_TYPE (arg1)) == DDmode)
278 newtype = dfloat64_type_node;
279 if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
280 || TYPE_MODE (TREE_TYPE (arg1)) == TDmode)
281 newtype = dfloat128_type_node;
282 if (newtype == dfloat32_type_node
283 || newtype == dfloat64_type_node
284 || newtype == dfloat128_type_node)
285 {
286 expr = build2 (TREE_CODE (expr), newtype,
287 fold (convert_to_real (newtype, arg0)),
288 fold (convert_to_real (newtype, arg1)));
289 if (newtype == type)
290 return expr;
291 break;
292 }
293
294 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
295 newtype = TREE_TYPE (arg0);
296 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
297 newtype = TREE_TYPE (arg1);
298 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
299 {
300 expr = build2 (TREE_CODE (expr), newtype,
301 fold (convert_to_real (newtype, arg0)),
302 fold (convert_to_real (newtype, arg1)));
303 if (newtype == type)
304 return expr;
305 }
306 }
307 }
308 break;
309 default:
310 break;
311 }
312
313 switch (TREE_CODE (TREE_TYPE (expr)))
314 {
315 case REAL_TYPE:
316 /* Ignore the conversion if we don't need to store intermediate
317 results and neither type is a decimal float. */
318 return build1 ((flag_float_store
319 || DECIMAL_FLOAT_TYPE_P (type)
320 || DECIMAL_FLOAT_TYPE_P (itype))
321 ? CONVERT_EXPR : NOP_EXPR, type, expr);
322
323 case INTEGER_TYPE:
324 case ENUMERAL_TYPE:
325 case BOOLEAN_TYPE:
326 return build1 (FLOAT_EXPR, type, expr);
327
328 case COMPLEX_TYPE:
329 return convert (type,
330 fold_build1 (REALPART_EXPR,
331 TREE_TYPE (TREE_TYPE (expr)), expr));
332
333 case POINTER_TYPE:
334 case REFERENCE_TYPE:
335 error ("pointer value used where a floating point value was expected");
336 return convert_to_real (type, integer_zero_node);
337
338 default:
339 error ("aggregate value used where a float was expected");
340 return convert_to_real (type, integer_zero_node);
341 }
342 }
343
344 /* Convert EXPR to some integer (or enum) type TYPE.
345
346 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
347 vector; in other cases error is called.
348
349 The result of this is always supposed to be a newly created tree node
350 not in use in any existing structure. */
351
352 tree
353 convert_to_integer (tree type, tree expr)
354 {
355 enum tree_code ex_form = TREE_CODE (expr);
356 tree intype = TREE_TYPE (expr);
357 unsigned int inprec = TYPE_PRECISION (intype);
358 unsigned int outprec = TYPE_PRECISION (type);
359
360 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
361 be. Consider `enum E = { a, b = (enum E) 3 };'. */
362 if (!COMPLETE_TYPE_P (type))
363 {
364 error ("conversion to incomplete type");
365 return error_mark_node;
366 }
367
368 /* Convert e.g. (long)round(d) -> lround(d). */
369 /* If we're converting to char, we may encounter differing behavior
370 between converting from double->char vs double->long->char.
371 We're in "undefined" territory but we prefer to be conservative,
372 so only proceed in "unsafe" math mode. */
373 if (optimize
374 && (flag_unsafe_math_optimizations
375 || (long_integer_type_node
376 && outprec >= TYPE_PRECISION (long_integer_type_node))))
377 {
378 tree s_expr = strip_float_extensions (expr);
379 tree s_intype = TREE_TYPE (s_expr);
380 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
381 tree fn = 0;
382
383 switch (fcode)
384 {
385 CASE_FLT_FN (BUILT_IN_CEIL):
386 /* Only convert in ISO C99 mode. */
387 if (!TARGET_C99_FUNCTIONS)
388 break;
389 if (outprec < TYPE_PRECISION (long_integer_type_node)
390 || (outprec == TYPE_PRECISION (long_integer_type_node)
391 && !TYPE_UNSIGNED (type)))
392 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
393 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
394 && !TYPE_UNSIGNED (type))
395 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
396 break;
397
398 CASE_FLT_FN (BUILT_IN_FLOOR):
399 /* Only convert in ISO C99 mode. */
400 if (!TARGET_C99_FUNCTIONS)
401 break;
402 if (outprec < TYPE_PRECISION (long_integer_type_node)
403 || (outprec == TYPE_PRECISION (long_integer_type_node)
404 && !TYPE_UNSIGNED (type)))
405 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
406 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
407 && !TYPE_UNSIGNED (type))
408 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
409 break;
410
411 CASE_FLT_FN (BUILT_IN_ROUND):
412 if (outprec < TYPE_PRECISION (long_integer_type_node)
413 || (outprec == TYPE_PRECISION (long_integer_type_node)
414 && !TYPE_UNSIGNED (type)))
415 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
416 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
417 && !TYPE_UNSIGNED (type))
418 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
419 break;
420
421 CASE_FLT_FN (BUILT_IN_RINT):
422 /* Only convert rint* if we can ignore math exceptions. */
423 if (flag_trapping_math)
424 break;
425 /* ... Fall through ... */
426 CASE_FLT_FN (BUILT_IN_NEARBYINT):
427 if (outprec < TYPE_PRECISION (long_integer_type_node)
428 || (outprec == TYPE_PRECISION (long_integer_type_node)
429 && !TYPE_UNSIGNED (type)))
430 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
431 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
432 && !TYPE_UNSIGNED (type))
433 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
434 break;
435
436 CASE_FLT_FN (BUILT_IN_TRUNC):
437 {
438 tree arglist = TREE_OPERAND (s_expr, 1);
439 return convert_to_integer (type, TREE_VALUE (arglist));
440 }
441
442 default:
443 break;
444 }
445
446 if (fn)
447 {
448 tree arglist = TREE_OPERAND (s_expr, 1);
449 tree newexpr = build_function_call_expr (fn, arglist);
450 return convert_to_integer (type, newexpr);
451 }
452 }
453
454 switch (TREE_CODE (intype))
455 {
456 case POINTER_TYPE:
457 case REFERENCE_TYPE:
458 if (integer_zerop (expr))
459 return build_int_cst (type, 0);
460
461 /* Convert to an unsigned integer of the correct width first,
462 and from there widen/truncate to the required type. */
463 expr = fold_build1 (CONVERT_EXPR,
464 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
465 expr);
466 return fold_convert (type, expr);
467
468 case INTEGER_TYPE:
469 case ENUMERAL_TYPE:
470 case BOOLEAN_TYPE:
471 /* If this is a logical operation, which just returns 0 or 1, we can
472 change the type of the expression. */
473
474 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
475 {
476 expr = copy_node (expr);
477 TREE_TYPE (expr) = type;
478 return expr;
479 }
480
481 /* If we are widening the type, put in an explicit conversion.
482 Similarly if we are not changing the width. After this, we know
483 we are truncating EXPR. */
484
485 else if (outprec >= inprec)
486 {
487 enum tree_code code;
488 tree tem;
489
490 /* If the precision of the EXPR's type is K bits and the
491 destination mode has more bits, and the sign is changing,
492 it is not safe to use a NOP_EXPR. For example, suppose
493 that EXPR's type is a 3-bit unsigned integer type, the
494 TYPE is a 3-bit signed integer type, and the machine mode
495 for the types is 8-bit QImode. In that case, the
496 conversion necessitates an explicit sign-extension. In
497 the signed-to-unsigned case the high-order bits have to
498 be cleared. */
499 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
500 && (TYPE_PRECISION (TREE_TYPE (expr))
501 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
502 code = CONVERT_EXPR;
503 else
504 code = NOP_EXPR;
505
506 tem = fold_unary (code, type, expr);
507 if (tem)
508 return tem;
509
510 tem = build1 (code, type, expr);
511 TREE_NO_WARNING (tem) = 1;
512 return tem;
513 }
514
515 /* If TYPE is an enumeral type or a type with a precision less
516 than the number of bits in its mode, do the conversion to the
517 type corresponding to its mode, then do a nop conversion
518 to TYPE. */
519 else if (TREE_CODE (type) == ENUMERAL_TYPE
520 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
521 return build1 (NOP_EXPR, type,
522 convert (lang_hooks.types.type_for_mode
523 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
524 expr));
525
526 /* Here detect when we can distribute the truncation down past some
527 arithmetic. For example, if adding two longs and converting to an
528 int, we can equally well convert both to ints and then add.
529 For the operations handled here, such truncation distribution
530 is always safe.
531 It is desirable in these cases:
532 1) when truncating down to full-word from a larger size
533 2) when truncating takes no work.
534 3) when at least one operand of the arithmetic has been extended
535 (as by C's default conversions). In this case we need two conversions
536 if we do the arithmetic as already requested, so we might as well
537 truncate both and then combine. Perhaps that way we need only one.
538
539 Note that in general we cannot do the arithmetic in a type
540 shorter than the desired result of conversion, even if the operands
541 are both extended from a shorter type, because they might overflow
542 if combined in that type. The exceptions to this--the times when
543 two narrow values can be combined in their narrow type even to
544 make a wider result--are handled by "shorten" in build_binary_op. */
545
546 switch (ex_form)
547 {
548 case RSHIFT_EXPR:
549 /* We can pass truncation down through right shifting
550 when the shift count is a nonpositive constant. */
551 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
552 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
553 goto trunc1;
554 break;
555
556 case LSHIFT_EXPR:
557 /* We can pass truncation down through left shifting
558 when the shift count is a nonnegative constant and
559 the target type is unsigned. */
560 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
561 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
562 && TYPE_UNSIGNED (type)
563 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
564 {
565 /* If shift count is less than the width of the truncated type,
566 really shift. */
567 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
568 /* In this case, shifting is like multiplication. */
569 goto trunc1;
570 else
571 {
572 /* If it is >= that width, result is zero.
573 Handling this with trunc1 would give the wrong result:
574 (int) ((long long) a << 32) is well defined (as 0)
575 but (int) a << 32 is undefined and would get a
576 warning. */
577
578 tree t = build_int_cst (type, 0);
579
580 /* If the original expression had side-effects, we must
581 preserve it. */
582 if (TREE_SIDE_EFFECTS (expr))
583 return build2 (COMPOUND_EXPR, type, expr, t);
584 else
585 return t;
586 }
587 }
588 break;
589
590 case MAX_EXPR:
591 case MIN_EXPR:
592 case MULT_EXPR:
593 {
594 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
595 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
596
597 /* Don't distribute unless the output precision is at least as big
598 as the actual inputs. Otherwise, the comparison of the
599 truncated values will be wrong. */
600 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
601 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
602 /* If signedness of arg0 and arg1 don't match,
603 we can't necessarily find a type to compare them in. */
604 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
605 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
606 goto trunc1;
607 break;
608 }
609
610 case PLUS_EXPR:
611 case MINUS_EXPR:
612 case BIT_AND_EXPR:
613 case BIT_IOR_EXPR:
614 case BIT_XOR_EXPR:
615 trunc1:
616 {
617 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
618 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
619
620 if (outprec >= BITS_PER_WORD
621 || TRULY_NOOP_TRUNCATION (outprec, inprec)
622 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
623 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
624 {
625 /* Do the arithmetic in type TYPEX,
626 then convert result to TYPE. */
627 tree typex = type;
628
629 /* Can't do arithmetic in enumeral types
630 so use an integer type that will hold the values. */
631 if (TREE_CODE (typex) == ENUMERAL_TYPE)
632 typex = lang_hooks.types.type_for_size
633 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
634
635 /* But now perhaps TYPEX is as wide as INPREC.
636 In that case, do nothing special here.
637 (Otherwise would recurse infinitely in convert. */
638 if (TYPE_PRECISION (typex) != inprec)
639 {
640 /* Don't do unsigned arithmetic where signed was wanted,
641 or vice versa.
642 Exception: if both of the original operands were
643 unsigned then we can safely do the work as unsigned.
644 Exception: shift operations take their type solely
645 from the first argument.
646 Exception: the LSHIFT_EXPR case above requires that
647 we perform this operation unsigned lest we produce
648 signed-overflow undefinedness.
649 And we may need to do it as unsigned
650 if we truncate to the original size. */
651 if (TYPE_UNSIGNED (TREE_TYPE (expr))
652 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
653 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
654 || ex_form == LSHIFT_EXPR
655 || ex_form == RSHIFT_EXPR
656 || ex_form == LROTATE_EXPR
657 || ex_form == RROTATE_EXPR))
658 || ex_form == LSHIFT_EXPR
659 /* If we have !flag_wrapv, and either ARG0 or
660 ARG1 is of a signed type, we have to do
661 PLUS_EXPR or MINUS_EXPR in an unsigned
662 type. Otherwise, we would introduce
663 signed-overflow undefinedness. */
664 || (!flag_wrapv
665 && (ex_form == PLUS_EXPR
666 || ex_form == MINUS_EXPR)
667 && (!TYPE_UNSIGNED (TREE_TYPE (arg0))
668 || !TYPE_UNSIGNED (TREE_TYPE (arg1)))))
669 typex = lang_hooks.types.unsigned_type (typex);
670 else
671 typex = lang_hooks.types.signed_type (typex);
672 return convert (type,
673 fold_build2 (ex_form, typex,
674 convert (typex, arg0),
675 convert (typex, arg1)));
676 }
677 }
678 }
679 break;
680
681 case NEGATE_EXPR:
682 case BIT_NOT_EXPR:
683 /* This is not correct for ABS_EXPR,
684 since we must test the sign before truncation. */
685 {
686 tree typex;
687
688 /* Don't do unsigned arithmetic where signed was wanted,
689 or vice versa. */
690 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
691 typex = lang_hooks.types.unsigned_type (type);
692 else
693 typex = lang_hooks.types.signed_type (type);
694 return convert (type,
695 fold_build1 (ex_form, typex,
696 convert (typex,
697 TREE_OPERAND (expr, 0))));
698 }
699
700 case NOP_EXPR:
701 /* Don't introduce a
702 "can't convert between vector values of different size" error. */
703 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
704 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
705 != GET_MODE_SIZE (TYPE_MODE (type))))
706 break;
707 /* If truncating after truncating, might as well do all at once.
708 If truncating after extending, we may get rid of wasted work. */
709 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
710
711 case COND_EXPR:
712 /* It is sometimes worthwhile to push the narrowing down through
713 the conditional and never loses. */
714 return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
715 convert (type, TREE_OPERAND (expr, 1)),
716 convert (type, TREE_OPERAND (expr, 2)));
717
718 default:
719 break;
720 }
721
722 return build1 (CONVERT_EXPR, type, expr);
723
724 case REAL_TYPE:
725 return build1 (FIX_TRUNC_EXPR, type, expr);
726
727 case COMPLEX_TYPE:
728 return convert (type,
729 fold_build1 (REALPART_EXPR,
730 TREE_TYPE (TREE_TYPE (expr)), expr));
731
732 case VECTOR_TYPE:
733 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
734 {
735 error ("can't convert between vector values of different size");
736 return error_mark_node;
737 }
738 return build1 (VIEW_CONVERT_EXPR, type, expr);
739
740 default:
741 error ("aggregate value used where an integer was expected");
742 return convert (type, integer_zero_node);
743 }
744 }
745
746 /* Convert EXPR to the complex type TYPE in the usual ways. */
747
748 tree
749 convert_to_complex (tree type, tree expr)
750 {
751 tree subtype = TREE_TYPE (type);
752
753 switch (TREE_CODE (TREE_TYPE (expr)))
754 {
755 case REAL_TYPE:
756 case INTEGER_TYPE:
757 case ENUMERAL_TYPE:
758 case BOOLEAN_TYPE:
759 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
760 convert (subtype, integer_zero_node));
761
762 case COMPLEX_TYPE:
763 {
764 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
765
766 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
767 return expr;
768 else if (TREE_CODE (expr) == COMPLEX_EXPR)
769 return fold_build2 (COMPLEX_EXPR, type,
770 convert (subtype, TREE_OPERAND (expr, 0)),
771 convert (subtype, TREE_OPERAND (expr, 1)));
772 else
773 {
774 expr = save_expr (expr);
775 return
776 fold_build2 (COMPLEX_EXPR, type,
777 convert (subtype,
778 fold_build1 (REALPART_EXPR,
779 TREE_TYPE (TREE_TYPE (expr)),
780 expr)),
781 convert (subtype,
782 fold_build1 (IMAGPART_EXPR,
783 TREE_TYPE (TREE_TYPE (expr)),
784 expr)));
785 }
786 }
787
788 case POINTER_TYPE:
789 case REFERENCE_TYPE:
790 error ("pointer value used where a complex was expected");
791 return convert_to_complex (type, integer_zero_node);
792
793 default:
794 error ("aggregate value used where a complex was expected");
795 return convert_to_complex (type, integer_zero_node);
796 }
797 }
798
799 /* Convert EXPR to the vector type TYPE in the usual ways. */
800
801 tree
802 convert_to_vector (tree type, tree expr)
803 {
804 switch (TREE_CODE (TREE_TYPE (expr)))
805 {
806 case INTEGER_TYPE:
807 case VECTOR_TYPE:
808 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
809 {
810 error ("can't convert between vector values of different size");
811 return error_mark_node;
812 }
813 return build1 (VIEW_CONVERT_EXPR, type, expr);
814
815 default:
816 error ("can't convert value to a vector");
817 return error_mark_node;
818 }
819 }