re PR middle-end/24263 (gcc.dg/torture/builtin-convert-1.c fails)
[gcc.git] / gcc / convert.c
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
37
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
40
41 tree
42 convert_to_pointer (tree type, tree expr)
43 {
44 if (integer_zerop (expr))
45 return build_int_cst (type, 0);
46
47 switch (TREE_CODE (TREE_TYPE (expr)))
48 {
49 case POINTER_TYPE:
50 case REFERENCE_TYPE:
51 return build1 (NOP_EXPR, type, expr);
52
53 case INTEGER_TYPE:
54 case ENUMERAL_TYPE:
55 case BOOLEAN_TYPE:
56 case CHAR_TYPE:
57 if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
58 expr = fold_build1 (NOP_EXPR,
59 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
60 expr);
61 return fold_build1 (CONVERT_EXPR, type, expr);
62
63
64 default:
65 error ("cannot convert to a pointer type");
66 return convert_to_pointer (type, integer_zero_node);
67 }
68 }
69
70 /* Avoid any floating point extensions from EXP. */
71 tree
72 strip_float_extensions (tree exp)
73 {
74 tree sub, expt, subt;
75
76 /* For floating point constant look up the narrowest type that can hold
77 it properly and handle it like (type)(narrowest_type)constant.
78 This way we can optimize for instance a=a*2.0 where "a" is float
79 but 2.0 is double constant. */
80 if (TREE_CODE (exp) == REAL_CST)
81 {
82 REAL_VALUE_TYPE orig;
83 tree type = NULL;
84
85 orig = TREE_REAL_CST (exp);
86 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
87 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
88 type = float_type_node;
89 else if (TYPE_PRECISION (TREE_TYPE (exp))
90 > TYPE_PRECISION (double_type_node)
91 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
92 type = double_type_node;
93 if (type)
94 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
95 }
96
97 if (TREE_CODE (exp) != NOP_EXPR
98 && TREE_CODE (exp) != CONVERT_EXPR)
99 return exp;
100
101 sub = TREE_OPERAND (exp, 0);
102 subt = TREE_TYPE (sub);
103 expt = TREE_TYPE (exp);
104
105 if (!FLOAT_TYPE_P (subt))
106 return exp;
107
108 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
109 return exp;
110
111 return strip_float_extensions (sub);
112 }
113
114
115 /* Convert EXPR to some floating-point type TYPE.
116
117 EXPR must be float, integer, or enumeral;
118 in other cases error is called. */
119
120 tree
121 convert_to_real (tree type, tree expr)
122 {
123 enum built_in_function fcode = builtin_mathfn_code (expr);
124 tree itype = TREE_TYPE (expr);
125
126 /* Disable until we figure out how to decide whether the functions are
127 present in runtime. */
128 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
129 if (optimize
130 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
131 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
132 {
133 switch (fcode)
134 {
135 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
136 CASE_MATHFN (ACOS)
137 CASE_MATHFN (ACOSH)
138 CASE_MATHFN (ASIN)
139 CASE_MATHFN (ASINH)
140 CASE_MATHFN (ATAN)
141 CASE_MATHFN (ATANH)
142 CASE_MATHFN (CBRT)
143 CASE_MATHFN (COS)
144 CASE_MATHFN (COSH)
145 CASE_MATHFN (ERF)
146 CASE_MATHFN (ERFC)
147 CASE_MATHFN (EXP)
148 CASE_MATHFN (EXP10)
149 CASE_MATHFN (EXP2)
150 CASE_MATHFN (EXPM1)
151 CASE_MATHFN (FABS)
152 CASE_MATHFN (GAMMA)
153 CASE_MATHFN (J0)
154 CASE_MATHFN (J1)
155 CASE_MATHFN (LGAMMA)
156 CASE_MATHFN (LOG)
157 CASE_MATHFN (LOG10)
158 CASE_MATHFN (LOG1P)
159 CASE_MATHFN (LOG2)
160 CASE_MATHFN (LOGB)
161 CASE_MATHFN (POW10)
162 CASE_MATHFN (SIN)
163 CASE_MATHFN (SINH)
164 CASE_MATHFN (SQRT)
165 CASE_MATHFN (TAN)
166 CASE_MATHFN (TANH)
167 CASE_MATHFN (TGAMMA)
168 CASE_MATHFN (Y0)
169 CASE_MATHFN (Y1)
170 #undef CASE_MATHFN
171 {
172 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
173 tree newtype = type;
174
175 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
176 the both as the safe type for operation. */
177 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
178 newtype = TREE_TYPE (arg0);
179
180 /* Be careful about integer to fp conversions.
181 These may overflow still. */
182 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
183 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
184 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
185 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
186 {
187 tree arglist;
188 tree fn = mathfn_built_in (newtype, fcode);
189
190 if (fn)
191 {
192 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
193 expr = build_function_call_expr (fn, arglist);
194 if (newtype == type)
195 return expr;
196 }
197 }
198 }
199 default:
200 break;
201 }
202 }
203 if (optimize
204 && (((fcode == BUILT_IN_FLOORL
205 || fcode == BUILT_IN_CEILL
206 || fcode == BUILT_IN_ROUNDL
207 || fcode == BUILT_IN_RINTL
208 || fcode == BUILT_IN_TRUNCL
209 || fcode == BUILT_IN_NEARBYINTL)
210 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
211 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
212 || ((fcode == BUILT_IN_FLOOR
213 || fcode == BUILT_IN_CEIL
214 || fcode == BUILT_IN_ROUND
215 || fcode == BUILT_IN_RINT
216 || fcode == BUILT_IN_TRUNC
217 || fcode == BUILT_IN_NEARBYINT)
218 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
219 {
220 tree fn = mathfn_built_in (type, fcode);
221
222 if (fn)
223 {
224 tree arg
225 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
226
227 /* Make sure (type)arg0 is an extension, otherwise we could end up
228 changing (float)floor(double d) into floorf((float)d), which is
229 incorrect because (float)d uses round-to-nearest and can round
230 up to the next integer. */
231 if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
232 return
233 build_function_call_expr (fn,
234 build_tree_list (NULL_TREE,
235 fold (convert_to_real (type, arg))));
236 }
237 }
238
239 /* Propagate the cast into the operation. */
240 if (itype != type && FLOAT_TYPE_P (type))
241 switch (TREE_CODE (expr))
242 {
243 /* Convert (float)-x into -(float)x. This is always safe. */
244 case ABS_EXPR:
245 case NEGATE_EXPR:
246 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
247 return build1 (TREE_CODE (expr), type,
248 fold (convert_to_real (type,
249 TREE_OPERAND (expr, 0))));
250 break;
251 /* Convert (outertype)((innertype0)a+(innertype1)b)
252 into ((newtype)a+(newtype)b) where newtype
253 is the widest mode from all of these. */
254 case PLUS_EXPR:
255 case MINUS_EXPR:
256 case MULT_EXPR:
257 case RDIV_EXPR:
258 {
259 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
260 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
261
262 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
263 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
264 {
265 tree newtype = type;
266 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
267 newtype = TREE_TYPE (arg0);
268 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
269 newtype = TREE_TYPE (arg1);
270 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
271 {
272 expr = build2 (TREE_CODE (expr), newtype,
273 fold (convert_to_real (newtype, arg0)),
274 fold (convert_to_real (newtype, arg1)));
275 if (newtype == type)
276 return expr;
277 }
278 }
279 }
280 break;
281 default:
282 break;
283 }
284
285 switch (TREE_CODE (TREE_TYPE (expr)))
286 {
287 case REAL_TYPE:
288 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
289 type, expr);
290
291 case INTEGER_TYPE:
292 case ENUMERAL_TYPE:
293 case BOOLEAN_TYPE:
294 case CHAR_TYPE:
295 return build1 (FLOAT_EXPR, type, expr);
296
297 case COMPLEX_TYPE:
298 return convert (type,
299 fold_build1 (REALPART_EXPR,
300 TREE_TYPE (TREE_TYPE (expr)), expr));
301
302 case POINTER_TYPE:
303 case REFERENCE_TYPE:
304 error ("pointer value used where a floating point value was expected");
305 return convert_to_real (type, integer_zero_node);
306
307 default:
308 error ("aggregate value used where a float was expected");
309 return convert_to_real (type, integer_zero_node);
310 }
311 }
312
313 /* Convert EXPR to some integer (or enum) type TYPE.
314
315 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
316 vector; in other cases error is called.
317
318 The result of this is always supposed to be a newly created tree node
319 not in use in any existing structure. */
320
321 tree
322 convert_to_integer (tree type, tree expr)
323 {
324 enum tree_code ex_form = TREE_CODE (expr);
325 tree intype = TREE_TYPE (expr);
326 unsigned int inprec = TYPE_PRECISION (intype);
327 unsigned int outprec = TYPE_PRECISION (type);
328
329 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
330 be. Consider `enum E = { a, b = (enum E) 3 };'. */
331 if (!COMPLETE_TYPE_P (type))
332 {
333 error ("conversion to incomplete type");
334 return error_mark_node;
335 }
336
337 /* Convert e.g. (long)round(d) -> lround(d). */
338 /* If we're converting to char, we may encounter differing behavior
339 between converting from double->char vs double->long->char.
340 We're in "undefined" territory but we prefer to be conservative,
341 so only proceed in "unsafe" math mode. */
342 if (optimize
343 && (flag_unsafe_math_optimizations
344 || (long_integer_type_node
345 && outprec >= TYPE_PRECISION (long_integer_type_node))))
346 {
347 tree s_expr = strip_float_extensions (expr);
348 tree s_intype = TREE_TYPE (s_expr);
349 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
350 tree fn = 0;
351
352 switch (fcode)
353 {
354 case BUILT_IN_CEIL: case BUILT_IN_CEILF: case BUILT_IN_CEILL:
355 /* Only convert in ISO C99 mode. */
356 if (!TARGET_C99_FUNCTIONS)
357 break;
358 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
359 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
360 else
361 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
362 break;
363
364 case BUILT_IN_FLOOR: case BUILT_IN_FLOORF: case BUILT_IN_FLOORL:
365 /* Only convert in ISO C99 mode. */
366 if (!TARGET_C99_FUNCTIONS)
367 break;
368 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
369 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
370 else
371 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
372 break;
373
374 case BUILT_IN_ROUND: case BUILT_IN_ROUNDF: case BUILT_IN_ROUNDL:
375 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
376 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
377 else
378 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
379 break;
380
381 case BUILT_IN_RINT: case BUILT_IN_RINTF: case BUILT_IN_RINTL:
382 /* Only convert rint* if we can ignore math exceptions. */
383 if (flag_trapping_math)
384 break;
385 /* ... Fall through ... */
386 case BUILT_IN_NEARBYINT: case BUILT_IN_NEARBYINTF: case BUILT_IN_NEARBYINTL:
387 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
388 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
389 else
390 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
391 break;
392
393 case BUILT_IN_TRUNC: case BUILT_IN_TRUNCF: case BUILT_IN_TRUNCL:
394 {
395 tree arglist = TREE_OPERAND (s_expr, 1);
396 return convert_to_integer (type, TREE_VALUE (arglist));
397 }
398
399 default:
400 break;
401 }
402
403 if (fn)
404 {
405 tree arglist = TREE_OPERAND (s_expr, 1);
406 tree newexpr = build_function_call_expr (fn, arglist);
407 return convert_to_integer (type, newexpr);
408 }
409 }
410
411 switch (TREE_CODE (intype))
412 {
413 case POINTER_TYPE:
414 case REFERENCE_TYPE:
415 if (integer_zerop (expr))
416 return build_int_cst (type, 0);
417
418 /* Convert to an unsigned integer of the correct width first,
419 and from there widen/truncate to the required type. */
420 expr = fold_build1 (CONVERT_EXPR,
421 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
422 expr);
423 return fold_build1 (NOP_EXPR, type, expr);
424
425 case INTEGER_TYPE:
426 case ENUMERAL_TYPE:
427 case BOOLEAN_TYPE:
428 case CHAR_TYPE:
429 /* If this is a logical operation, which just returns 0 or 1, we can
430 change the type of the expression. */
431
432 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
433 {
434 expr = copy_node (expr);
435 TREE_TYPE (expr) = type;
436 return expr;
437 }
438
439 /* If we are widening the type, put in an explicit conversion.
440 Similarly if we are not changing the width. After this, we know
441 we are truncating EXPR. */
442
443 else if (outprec >= inprec)
444 {
445 enum tree_code code;
446
447 /* If the precision of the EXPR's type is K bits and the
448 destination mode has more bits, and the sign is changing,
449 it is not safe to use a NOP_EXPR. For example, suppose
450 that EXPR's type is a 3-bit unsigned integer type, the
451 TYPE is a 3-bit signed integer type, and the machine mode
452 for the types is 8-bit QImode. In that case, the
453 conversion necessitates an explicit sign-extension. In
454 the signed-to-unsigned case the high-order bits have to
455 be cleared. */
456 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
457 && (TYPE_PRECISION (TREE_TYPE (expr))
458 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
459 code = CONVERT_EXPR;
460 else
461 code = NOP_EXPR;
462
463 return fold_build1 (code, type, expr);
464 }
465
466 /* If TYPE is an enumeral type or a type with a precision less
467 than the number of bits in its mode, do the conversion to the
468 type corresponding to its mode, then do a nop conversion
469 to TYPE. */
470 else if (TREE_CODE (type) == ENUMERAL_TYPE
471 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
472 return build1 (NOP_EXPR, type,
473 convert (lang_hooks.types.type_for_mode
474 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
475 expr));
476
477 /* Here detect when we can distribute the truncation down past some
478 arithmetic. For example, if adding two longs and converting to an
479 int, we can equally well convert both to ints and then add.
480 For the operations handled here, such truncation distribution
481 is always safe.
482 It is desirable in these cases:
483 1) when truncating down to full-word from a larger size
484 2) when truncating takes no work.
485 3) when at least one operand of the arithmetic has been extended
486 (as by C's default conversions). In this case we need two conversions
487 if we do the arithmetic as already requested, so we might as well
488 truncate both and then combine. Perhaps that way we need only one.
489
490 Note that in general we cannot do the arithmetic in a type
491 shorter than the desired result of conversion, even if the operands
492 are both extended from a shorter type, because they might overflow
493 if combined in that type. The exceptions to this--the times when
494 two narrow values can be combined in their narrow type even to
495 make a wider result--are handled by "shorten" in build_binary_op. */
496
497 switch (ex_form)
498 {
499 case RSHIFT_EXPR:
500 /* We can pass truncation down through right shifting
501 when the shift count is a nonpositive constant. */
502 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
503 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
504 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
505 integer_one_node)))
506 goto trunc1;
507 break;
508
509 case LSHIFT_EXPR:
510 /* We can pass truncation down through left shifting
511 when the shift count is a nonnegative constant and
512 the target type is unsigned. */
513 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
514 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
515 && TYPE_UNSIGNED (type)
516 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
517 {
518 /* If shift count is less than the width of the truncated type,
519 really shift. */
520 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
521 /* In this case, shifting is like multiplication. */
522 goto trunc1;
523 else
524 {
525 /* If it is >= that width, result is zero.
526 Handling this with trunc1 would give the wrong result:
527 (int) ((long long) a << 32) is well defined (as 0)
528 but (int) a << 32 is undefined and would get a
529 warning. */
530
531 tree t = convert_to_integer (type, integer_zero_node);
532
533 /* If the original expression had side-effects, we must
534 preserve it. */
535 if (TREE_SIDE_EFFECTS (expr))
536 return build2 (COMPOUND_EXPR, type, expr, t);
537 else
538 return t;
539 }
540 }
541 break;
542
543 case MAX_EXPR:
544 case MIN_EXPR:
545 case MULT_EXPR:
546 {
547 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
548 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
549
550 /* Don't distribute unless the output precision is at least as big
551 as the actual inputs. Otherwise, the comparison of the
552 truncated values will be wrong. */
553 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
554 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
555 /* If signedness of arg0 and arg1 don't match,
556 we can't necessarily find a type to compare them in. */
557 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
558 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
559 goto trunc1;
560 break;
561 }
562
563 case PLUS_EXPR:
564 case MINUS_EXPR:
565 case BIT_AND_EXPR:
566 case BIT_IOR_EXPR:
567 case BIT_XOR_EXPR:
568 trunc1:
569 {
570 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
571 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
572
573 if (outprec >= BITS_PER_WORD
574 || TRULY_NOOP_TRUNCATION (outprec, inprec)
575 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
576 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
577 {
578 /* Do the arithmetic in type TYPEX,
579 then convert result to TYPE. */
580 tree typex = type;
581
582 /* Can't do arithmetic in enumeral types
583 so use an integer type that will hold the values. */
584 if (TREE_CODE (typex) == ENUMERAL_TYPE)
585 typex = lang_hooks.types.type_for_size
586 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
587
588 /* But now perhaps TYPEX is as wide as INPREC.
589 In that case, do nothing special here.
590 (Otherwise would recurse infinitely in convert. */
591 if (TYPE_PRECISION (typex) != inprec)
592 {
593 /* Don't do unsigned arithmetic where signed was wanted,
594 or vice versa.
595 Exception: if both of the original operands were
596 unsigned then we can safely do the work as unsigned.
597 Exception: shift operations take their type solely
598 from the first argument.
599 Exception: the LSHIFT_EXPR case above requires that
600 we perform this operation unsigned lest we produce
601 signed-overflow undefinedness.
602 And we may need to do it as unsigned
603 if we truncate to the original size. */
604 if (TYPE_UNSIGNED (TREE_TYPE (expr))
605 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
606 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
607 || ex_form == LSHIFT_EXPR
608 || ex_form == RSHIFT_EXPR
609 || ex_form == LROTATE_EXPR
610 || ex_form == RROTATE_EXPR))
611 || ex_form == LSHIFT_EXPR)
612 typex = lang_hooks.types.unsigned_type (typex);
613 else
614 typex = lang_hooks.types.signed_type (typex);
615 return convert (type,
616 fold_build2 (ex_form, typex,
617 convert (typex, arg0),
618 convert (typex, arg1)));
619 }
620 }
621 }
622 break;
623
624 case NEGATE_EXPR:
625 case BIT_NOT_EXPR:
626 /* This is not correct for ABS_EXPR,
627 since we must test the sign before truncation. */
628 {
629 tree typex;
630
631 /* Don't do unsigned arithmetic where signed was wanted,
632 or vice versa. */
633 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
634 typex = lang_hooks.types.unsigned_type (type);
635 else
636 typex = lang_hooks.types.signed_type (type);
637 return convert (type,
638 fold_build1 (ex_form, typex,
639 convert (typex,
640 TREE_OPERAND (expr, 0))));
641 }
642
643 case NOP_EXPR:
644 /* Don't introduce a
645 "can't convert between vector values of different size" error. */
646 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
647 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
648 != GET_MODE_SIZE (TYPE_MODE (type))))
649 break;
650 /* If truncating after truncating, might as well do all at once.
651 If truncating after extending, we may get rid of wasted work. */
652 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
653
654 case COND_EXPR:
655 /* It is sometimes worthwhile to push the narrowing down through
656 the conditional and never loses. */
657 return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
658 convert (type, TREE_OPERAND (expr, 1)),
659 convert (type, TREE_OPERAND (expr, 2)));
660
661 default:
662 break;
663 }
664
665 return build1 (CONVERT_EXPR, type, expr);
666
667 case REAL_TYPE:
668 return build1 (FIX_TRUNC_EXPR, type, expr);
669
670 case COMPLEX_TYPE:
671 return convert (type,
672 fold_build1 (REALPART_EXPR,
673 TREE_TYPE (TREE_TYPE (expr)), expr));
674
675 case VECTOR_TYPE:
676 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
677 {
678 error ("can't convert between vector values of different size");
679 return error_mark_node;
680 }
681 return build1 (VIEW_CONVERT_EXPR, type, expr);
682
683 default:
684 error ("aggregate value used where an integer was expected");
685 return convert (type, integer_zero_node);
686 }
687 }
688
689 /* Convert EXPR to the complex type TYPE in the usual ways. */
690
691 tree
692 convert_to_complex (tree type, tree expr)
693 {
694 tree subtype = TREE_TYPE (type);
695
696 switch (TREE_CODE (TREE_TYPE (expr)))
697 {
698 case REAL_TYPE:
699 case INTEGER_TYPE:
700 case ENUMERAL_TYPE:
701 case BOOLEAN_TYPE:
702 case CHAR_TYPE:
703 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
704 convert (subtype, integer_zero_node));
705
706 case COMPLEX_TYPE:
707 {
708 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
709
710 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
711 return expr;
712 else if (TREE_CODE (expr) == COMPLEX_EXPR)
713 return fold_build2 (COMPLEX_EXPR, type,
714 convert (subtype, TREE_OPERAND (expr, 0)),
715 convert (subtype, TREE_OPERAND (expr, 1)));
716 else
717 {
718 expr = save_expr (expr);
719 return
720 fold_build2 (COMPLEX_EXPR, type,
721 convert (subtype,
722 fold_build1 (REALPART_EXPR,
723 TREE_TYPE (TREE_TYPE (expr)),
724 expr)),
725 convert (subtype,
726 fold_build1 (IMAGPART_EXPR,
727 TREE_TYPE (TREE_TYPE (expr)),
728 expr)));
729 }
730 }
731
732 case POINTER_TYPE:
733 case REFERENCE_TYPE:
734 error ("pointer value used where a complex was expected");
735 return convert_to_complex (type, integer_zero_node);
736
737 default:
738 error ("aggregate value used where a complex was expected");
739 return convert_to_complex (type, integer_zero_node);
740 }
741 }
742
743 /* Convert EXPR to the vector type TYPE in the usual ways. */
744
745 tree
746 convert_to_vector (tree type, tree expr)
747 {
748 switch (TREE_CODE (TREE_TYPE (expr)))
749 {
750 case INTEGER_TYPE:
751 case VECTOR_TYPE:
752 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
753 {
754 error ("can't convert between vector values of different size");
755 return error_mark_node;
756 }
757 return build1 (VIEW_CONVERT_EXPR, type, expr);
758
759 default:
760 error ("can't convert value to a vector");
761 return error_mark_node;
762 }
763 }