re PR middle-end/19857 (alignment check of SSE constant fails in simple test program)
[gcc.git] / gcc / convert.c
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
37
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
40
41 tree
42 convert_to_pointer (tree type, tree expr)
43 {
44 if (integer_zerop (expr))
45 {
46 expr = build_int_cst (type, 0);
47 return expr;
48 }
49
50 switch (TREE_CODE (TREE_TYPE (expr)))
51 {
52 case POINTER_TYPE:
53 case REFERENCE_TYPE:
54 return build1 (NOP_EXPR, type, expr);
55
56 case INTEGER_TYPE:
57 case ENUMERAL_TYPE:
58 case BOOLEAN_TYPE:
59 case CHAR_TYPE:
60 if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
61 return build1 (CONVERT_EXPR, type, expr);
62
63 return
64 convert_to_pointer (type,
65 convert (lang_hooks.types.type_for_size
66 (POINTER_SIZE, 0), expr));
67
68 default:
69 error ("cannot convert to a pointer type");
70 return convert_to_pointer (type, integer_zero_node);
71 }
72 }
73
74 /* Avoid any floating point extensions from EXP. */
75 tree
76 strip_float_extensions (tree exp)
77 {
78 tree sub, expt, subt;
79
80 /* For floating point constant look up the narrowest type that can hold
81 it properly and handle it like (type)(narrowest_type)constant.
82 This way we can optimize for instance a=a*2.0 where "a" is float
83 but 2.0 is double constant. */
84 if (TREE_CODE (exp) == REAL_CST)
85 {
86 REAL_VALUE_TYPE orig;
87 tree type = NULL;
88
89 orig = TREE_REAL_CST (exp);
90 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
91 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
92 type = float_type_node;
93 else if (TYPE_PRECISION (TREE_TYPE (exp))
94 > TYPE_PRECISION (double_type_node)
95 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
96 type = double_type_node;
97 if (type)
98 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
99 }
100
101 if (TREE_CODE (exp) != NOP_EXPR
102 && TREE_CODE (exp) != CONVERT_EXPR)
103 return exp;
104
105 sub = TREE_OPERAND (exp, 0);
106 subt = TREE_TYPE (sub);
107 expt = TREE_TYPE (exp);
108
109 if (!FLOAT_TYPE_P (subt))
110 return exp;
111
112 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
113 return exp;
114
115 return strip_float_extensions (sub);
116 }
117
118
119 /* Convert EXPR to some floating-point type TYPE.
120
121 EXPR must be float, integer, or enumeral;
122 in other cases error is called. */
123
124 tree
125 convert_to_real (tree type, tree expr)
126 {
127 enum built_in_function fcode = builtin_mathfn_code (expr);
128 tree itype = TREE_TYPE (expr);
129
130 /* Disable until we figure out how to decide whether the functions are
131 present in runtime. */
132 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
133 if (optimize
134 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
135 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
136 {
137 switch (fcode)
138 {
139 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
140 CASE_MATHFN (ACOS)
141 CASE_MATHFN (ACOSH)
142 CASE_MATHFN (ASIN)
143 CASE_MATHFN (ASINH)
144 CASE_MATHFN (ATAN)
145 CASE_MATHFN (ATANH)
146 CASE_MATHFN (CBRT)
147 CASE_MATHFN (COS)
148 CASE_MATHFN (COSH)
149 CASE_MATHFN (ERF)
150 CASE_MATHFN (ERFC)
151 CASE_MATHFN (EXP)
152 CASE_MATHFN (EXP10)
153 CASE_MATHFN (EXP2)
154 CASE_MATHFN (EXPM1)
155 CASE_MATHFN (FABS)
156 CASE_MATHFN (GAMMA)
157 CASE_MATHFN (J0)
158 CASE_MATHFN (J1)
159 CASE_MATHFN (LGAMMA)
160 CASE_MATHFN (LOG)
161 CASE_MATHFN (LOG10)
162 CASE_MATHFN (LOG1P)
163 CASE_MATHFN (LOG2)
164 CASE_MATHFN (LOGB)
165 CASE_MATHFN (POW10)
166 CASE_MATHFN (SIN)
167 CASE_MATHFN (SINH)
168 CASE_MATHFN (SQRT)
169 CASE_MATHFN (TAN)
170 CASE_MATHFN (TANH)
171 CASE_MATHFN (TGAMMA)
172 CASE_MATHFN (Y0)
173 CASE_MATHFN (Y1)
174 #undef CASE_MATHFN
175 {
176 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
177 tree newtype = type;
178
179 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
180 the both as the safe type for operation. */
181 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
182 newtype = TREE_TYPE (arg0);
183
184 /* Be careful about integer to fp conversions.
185 These may overflow still. */
186 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
187 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
188 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
189 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
190 {
191 tree arglist;
192 tree fn = mathfn_built_in (newtype, fcode);
193
194 if (fn)
195 {
196 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
197 expr = build_function_call_expr (fn, arglist);
198 if (newtype == type)
199 return expr;
200 }
201 }
202 }
203 default:
204 break;
205 }
206 }
207 if (optimize
208 && (((fcode == BUILT_IN_FLOORL
209 || fcode == BUILT_IN_CEILL
210 || fcode == BUILT_IN_ROUNDL
211 || fcode == BUILT_IN_RINTL
212 || fcode == BUILT_IN_TRUNCL
213 || fcode == BUILT_IN_NEARBYINTL)
214 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
215 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
216 || ((fcode == BUILT_IN_FLOOR
217 || fcode == BUILT_IN_CEIL
218 || fcode == BUILT_IN_ROUND
219 || fcode == BUILT_IN_RINT
220 || fcode == BUILT_IN_TRUNC
221 || fcode == BUILT_IN_NEARBYINT)
222 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
223 {
224 tree fn = mathfn_built_in (type, fcode);
225
226 if (fn)
227 {
228 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr,
229 1)));
230 tree arglist = build_tree_list (NULL_TREE,
231 fold (convert_to_real (type, arg0)));
232
233 return build_function_call_expr (fn, arglist);
234 }
235 }
236
237 /* Propagate the cast into the operation. */
238 if (itype != type && FLOAT_TYPE_P (type))
239 switch (TREE_CODE (expr))
240 {
241 /* Convert (float)-x into -(float)x. This is always safe. */
242 case ABS_EXPR:
243 case NEGATE_EXPR:
244 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
245 return build1 (TREE_CODE (expr), type,
246 fold (convert_to_real (type,
247 TREE_OPERAND (expr, 0))));
248 break;
249 /* Convert (outertype)((innertype0)a+(innertype1)b)
250 into ((newtype)a+(newtype)b) where newtype
251 is the widest mode from all of these. */
252 case PLUS_EXPR:
253 case MINUS_EXPR:
254 case MULT_EXPR:
255 case RDIV_EXPR:
256 {
257 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
258 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
259
260 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
261 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
262 {
263 tree newtype = type;
264 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
265 newtype = TREE_TYPE (arg0);
266 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
267 newtype = TREE_TYPE (arg1);
268 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
269 {
270 expr = build2 (TREE_CODE (expr), newtype,
271 fold (convert_to_real (newtype, arg0)),
272 fold (convert_to_real (newtype, arg1)));
273 if (newtype == type)
274 return expr;
275 }
276 }
277 }
278 break;
279 default:
280 break;
281 }
282
283 switch (TREE_CODE (TREE_TYPE (expr)))
284 {
285 case REAL_TYPE:
286 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
287 type, expr);
288
289 case INTEGER_TYPE:
290 case ENUMERAL_TYPE:
291 case BOOLEAN_TYPE:
292 case CHAR_TYPE:
293 return build1 (FLOAT_EXPR, type, expr);
294
295 case COMPLEX_TYPE:
296 return convert (type,
297 fold (build1 (REALPART_EXPR,
298 TREE_TYPE (TREE_TYPE (expr)), expr)));
299
300 case POINTER_TYPE:
301 case REFERENCE_TYPE:
302 error ("pointer value used where a floating point value was expected");
303 return convert_to_real (type, integer_zero_node);
304
305 default:
306 error ("aggregate value used where a float was expected");
307 return convert_to_real (type, integer_zero_node);
308 }
309 }
310
311 /* Convert EXPR to some integer (or enum) type TYPE.
312
313 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
314 vector; in other cases error is called.
315
316 The result of this is always supposed to be a newly created tree node
317 not in use in any existing structure. */
318
319 tree
320 convert_to_integer (tree type, tree expr)
321 {
322 enum tree_code ex_form = TREE_CODE (expr);
323 tree intype = TREE_TYPE (expr);
324 unsigned int inprec = TYPE_PRECISION (intype);
325 unsigned int outprec = TYPE_PRECISION (type);
326
327 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
328 be. Consider `enum E = { a, b = (enum E) 3 };'. */
329 if (!COMPLETE_TYPE_P (type))
330 {
331 error ("conversion to incomplete type");
332 return error_mark_node;
333 }
334
335 /* Convert e.g. (long)round(d) -> lround(d). */
336 /* If we're converting to char, we may encounter differing behavior
337 between converting from double->char vs double->long->char.
338 We're in "undefined" territory but we prefer to be conservative,
339 so only proceed in "unsafe" math mode. */
340 if (optimize
341 && (flag_unsafe_math_optimizations
342 || (long_integer_type_node
343 && outprec >= TYPE_PRECISION (long_integer_type_node))))
344 {
345 tree s_expr = strip_float_extensions (expr);
346 tree s_intype = TREE_TYPE (s_expr);
347 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
348 tree fn = 0;
349
350 switch (fcode)
351 {
352 case BUILT_IN_ROUND: case BUILT_IN_ROUNDF: case BUILT_IN_ROUNDL:
353 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
354 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
355 else
356 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
357 break;
358
359 case BUILT_IN_RINT: case BUILT_IN_RINTF: case BUILT_IN_RINTL:
360 /* Only convert rint* if we can ignore math exceptions. */
361 if (flag_trapping_math)
362 break;
363 /* ... Fall through ... */
364 case BUILT_IN_NEARBYINT: case BUILT_IN_NEARBYINTF: case BUILT_IN_NEARBYINTL:
365 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
366 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
367 else
368 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
369 break;
370 default:
371 break;
372 }
373
374 if (fn)
375 {
376 tree arglist = TREE_OPERAND (s_expr, 1);
377 tree newexpr = build_function_call_expr (fn, arglist);
378 return convert_to_integer (type, newexpr);
379 }
380 }
381
382 switch (TREE_CODE (intype))
383 {
384 case POINTER_TYPE:
385 case REFERENCE_TYPE:
386 if (integer_zerop (expr))
387 expr = integer_zero_node;
388 else
389 expr = fold (build1 (CONVERT_EXPR,
390 lang_hooks.types.type_for_size
391 (POINTER_SIZE, TYPE_UNSIGNED (type)),
392 expr));
393
394 return convert_to_integer (type, expr);
395
396 case INTEGER_TYPE:
397 case ENUMERAL_TYPE:
398 case BOOLEAN_TYPE:
399 case CHAR_TYPE:
400 /* If this is a logical operation, which just returns 0 or 1, we can
401 change the type of the expression. */
402
403 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
404 {
405 expr = copy_node (expr);
406 TREE_TYPE (expr) = type;
407 return expr;
408 }
409
410 /* If we are widening the type, put in an explicit conversion.
411 Similarly if we are not changing the width. After this, we know
412 we are truncating EXPR. */
413
414 else if (outprec >= inprec)
415 {
416 enum tree_code code;
417
418 /* If the precision of the EXPR's type is K bits and the
419 destination mode has more bits, and the sign is changing,
420 it is not safe to use a NOP_EXPR. For example, suppose
421 that EXPR's type is a 3-bit unsigned integer type, the
422 TYPE is a 3-bit signed integer type, and the machine mode
423 for the types is 8-bit QImode. In that case, the
424 conversion necessitates an explicit sign-extension. In
425 the signed-to-unsigned case the high-order bits have to
426 be cleared. */
427 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
428 && (TYPE_PRECISION (TREE_TYPE (expr))
429 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
430 code = CONVERT_EXPR;
431 else
432 code = NOP_EXPR;
433
434 return build1 (code, type, expr);
435 }
436
437 /* If TYPE is an enumeral type or a type with a precision less
438 than the number of bits in its mode, do the conversion to the
439 type corresponding to its mode, then do a nop conversion
440 to TYPE. */
441 else if (TREE_CODE (type) == ENUMERAL_TYPE
442 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
443 return build1 (NOP_EXPR, type,
444 convert (lang_hooks.types.type_for_mode
445 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
446 expr));
447
448 /* Here detect when we can distribute the truncation down past some
449 arithmetic. For example, if adding two longs and converting to an
450 int, we can equally well convert both to ints and then add.
451 For the operations handled here, such truncation distribution
452 is always safe.
453 It is desirable in these cases:
454 1) when truncating down to full-word from a larger size
455 2) when truncating takes no work.
456 3) when at least one operand of the arithmetic has been extended
457 (as by C's default conversions). In this case we need two conversions
458 if we do the arithmetic as already requested, so we might as well
459 truncate both and then combine. Perhaps that way we need only one.
460
461 Note that in general we cannot do the arithmetic in a type
462 shorter than the desired result of conversion, even if the operands
463 are both extended from a shorter type, because they might overflow
464 if combined in that type. The exceptions to this--the times when
465 two narrow values can be combined in their narrow type even to
466 make a wider result--are handled by "shorten" in build_binary_op. */
467
468 switch (ex_form)
469 {
470 case RSHIFT_EXPR:
471 /* We can pass truncation down through right shifting
472 when the shift count is a nonpositive constant. */
473 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
474 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
475 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
476 integer_one_node)))
477 goto trunc1;
478 break;
479
480 case LSHIFT_EXPR:
481 /* We can pass truncation down through left shifting
482 when the shift count is a nonnegative constant and
483 the target type is unsigned. */
484 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
485 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
486 && TYPE_UNSIGNED (type)
487 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
488 {
489 /* If shift count is less than the width of the truncated type,
490 really shift. */
491 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
492 /* In this case, shifting is like multiplication. */
493 goto trunc1;
494 else
495 {
496 /* If it is >= that width, result is zero.
497 Handling this with trunc1 would give the wrong result:
498 (int) ((long long) a << 32) is well defined (as 0)
499 but (int) a << 32 is undefined and would get a
500 warning. */
501
502 tree t = convert_to_integer (type, integer_zero_node);
503
504 /* If the original expression had side-effects, we must
505 preserve it. */
506 if (TREE_SIDE_EFFECTS (expr))
507 return build2 (COMPOUND_EXPR, type, expr, t);
508 else
509 return t;
510 }
511 }
512 break;
513
514 case MAX_EXPR:
515 case MIN_EXPR:
516 case MULT_EXPR:
517 {
518 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
519 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
520
521 /* Don't distribute unless the output precision is at least as big
522 as the actual inputs. Otherwise, the comparison of the
523 truncated values will be wrong. */
524 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
525 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
526 /* If signedness of arg0 and arg1 don't match,
527 we can't necessarily find a type to compare them in. */
528 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
529 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
530 goto trunc1;
531 break;
532 }
533
534 case PLUS_EXPR:
535 case MINUS_EXPR:
536 case BIT_AND_EXPR:
537 case BIT_IOR_EXPR:
538 case BIT_XOR_EXPR:
539 trunc1:
540 {
541 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
542 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
543
544 if (outprec >= BITS_PER_WORD
545 || TRULY_NOOP_TRUNCATION (outprec, inprec)
546 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
547 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
548 {
549 /* Do the arithmetic in type TYPEX,
550 then convert result to TYPE. */
551 tree typex = type;
552
553 /* Can't do arithmetic in enumeral types
554 so use an integer type that will hold the values. */
555 if (TREE_CODE (typex) == ENUMERAL_TYPE)
556 typex = lang_hooks.types.type_for_size
557 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
558
559 /* But now perhaps TYPEX is as wide as INPREC.
560 In that case, do nothing special here.
561 (Otherwise would recurse infinitely in convert. */
562 if (TYPE_PRECISION (typex) != inprec)
563 {
564 /* Don't do unsigned arithmetic where signed was wanted,
565 or vice versa.
566 Exception: if both of the original operands were
567 unsigned then we can safely do the work as unsigned.
568 Exception: shift operations take their type solely
569 from the first argument.
570 Exception: the LSHIFT_EXPR case above requires that
571 we perform this operation unsigned lest we produce
572 signed-overflow undefinedness.
573 And we may need to do it as unsigned
574 if we truncate to the original size. */
575 if (TYPE_UNSIGNED (TREE_TYPE (expr))
576 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
577 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
578 || ex_form == LSHIFT_EXPR
579 || ex_form == RSHIFT_EXPR
580 || ex_form == LROTATE_EXPR
581 || ex_form == RROTATE_EXPR))
582 || ex_form == LSHIFT_EXPR)
583 typex = lang_hooks.types.unsigned_type (typex);
584 else
585 typex = lang_hooks.types.signed_type (typex);
586 return convert (type,
587 fold (build2 (ex_form, typex,
588 convert (typex, arg0),
589 convert (typex, arg1))));
590 }
591 }
592 }
593 break;
594
595 case NEGATE_EXPR:
596 case BIT_NOT_EXPR:
597 /* This is not correct for ABS_EXPR,
598 since we must test the sign before truncation. */
599 {
600 tree typex = type;
601
602 /* Can't do arithmetic in enumeral types
603 so use an integer type that will hold the values. */
604 if (TREE_CODE (typex) == ENUMERAL_TYPE)
605 typex = lang_hooks.types.type_for_size
606 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
607
608 /* But now perhaps TYPEX is as wide as INPREC.
609 In that case, do nothing special here.
610 (Otherwise would recurse infinitely in convert. */
611 if (TYPE_PRECISION (typex) != inprec)
612 {
613 /* Don't do unsigned arithmetic where signed was wanted,
614 or vice versa. */
615 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
616 typex = lang_hooks.types.unsigned_type (typex);
617 else
618 typex = lang_hooks.types.signed_type (typex);
619 return convert (type,
620 fold (build1 (ex_form, typex,
621 convert (typex,
622 TREE_OPERAND (expr, 0)))));
623 }
624 }
625
626 case NOP_EXPR:
627 /* Don't introduce a
628 "can't convert between vector values of different size" error. */
629 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
630 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
631 != GET_MODE_SIZE (TYPE_MODE (type))))
632 break;
633 /* If truncating after truncating, might as well do all at once.
634 If truncating after extending, we may get rid of wasted work. */
635 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
636
637 case COND_EXPR:
638 /* It is sometimes worthwhile to push the narrowing down through
639 the conditional and never loses. */
640 return fold (build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
641 convert (type, TREE_OPERAND (expr, 1)),
642 convert (type, TREE_OPERAND (expr, 2))));
643
644 default:
645 break;
646 }
647
648 return build1 (CONVERT_EXPR, type, expr);
649
650 case REAL_TYPE:
651 return build1 (FIX_TRUNC_EXPR, type, expr);
652
653 case COMPLEX_TYPE:
654 return convert (type,
655 fold (build1 (REALPART_EXPR,
656 TREE_TYPE (TREE_TYPE (expr)), expr)));
657
658 case VECTOR_TYPE:
659 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
660 {
661 error ("can't convert between vector values of different size");
662 return error_mark_node;
663 }
664 return build1 (NOP_EXPR, type, expr);
665
666 default:
667 error ("aggregate value used where an integer was expected");
668 return convert (type, integer_zero_node);
669 }
670 }
671
672 /* Convert EXPR to the complex type TYPE in the usual ways. */
673
674 tree
675 convert_to_complex (tree type, tree expr)
676 {
677 tree subtype = TREE_TYPE (type);
678
679 switch (TREE_CODE (TREE_TYPE (expr)))
680 {
681 case REAL_TYPE:
682 case INTEGER_TYPE:
683 case ENUMERAL_TYPE:
684 case BOOLEAN_TYPE:
685 case CHAR_TYPE:
686 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
687 convert (subtype, integer_zero_node));
688
689 case COMPLEX_TYPE:
690 {
691 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
692
693 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
694 return expr;
695 else if (TREE_CODE (expr) == COMPLEX_EXPR)
696 return fold (build2 (COMPLEX_EXPR, type,
697 convert (subtype, TREE_OPERAND (expr, 0)),
698 convert (subtype, TREE_OPERAND (expr, 1))));
699 else
700 {
701 expr = save_expr (expr);
702 return
703 fold (build2 (COMPLEX_EXPR, type,
704 convert (subtype,
705 fold (build1 (REALPART_EXPR,
706 TREE_TYPE (TREE_TYPE (expr)),
707 expr))),
708 convert (subtype,
709 fold (build1 (IMAGPART_EXPR,
710 TREE_TYPE (TREE_TYPE (expr)),
711 expr)))));
712 }
713 }
714
715 case POINTER_TYPE:
716 case REFERENCE_TYPE:
717 error ("pointer value used where a complex was expected");
718 return convert_to_complex (type, integer_zero_node);
719
720 default:
721 error ("aggregate value used where a complex was expected");
722 return convert_to_complex (type, integer_zero_node);
723 }
724 }
725
726 /* Convert EXPR to the vector type TYPE in the usual ways. */
727
728 tree
729 convert_to_vector (tree type, tree expr)
730 {
731 switch (TREE_CODE (TREE_TYPE (expr)))
732 {
733 case INTEGER_TYPE:
734 case VECTOR_TYPE:
735 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
736 {
737 error ("can't convert between vector values of different size");
738 return error_mark_node;
739 }
740 return build1 (NOP_EXPR, type, expr);
741
742 default:
743 error ("can't convert value to a vector");
744 return error_mark_node;
745 }
746 }