re PR middle-end/21282 (Converting floor into lfloor built-in function)
[gcc.git] / gcc / convert.c
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
37
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
40
41 tree
42 convert_to_pointer (tree type, tree expr)
43 {
44 if (integer_zerop (expr))
45 {
46 expr = build_int_cst (type, 0);
47 return expr;
48 }
49
50 switch (TREE_CODE (TREE_TYPE (expr)))
51 {
52 case POINTER_TYPE:
53 case REFERENCE_TYPE:
54 return build1 (NOP_EXPR, type, expr);
55
56 case INTEGER_TYPE:
57 case ENUMERAL_TYPE:
58 case BOOLEAN_TYPE:
59 case CHAR_TYPE:
60 if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
61 return build1 (CONVERT_EXPR, type, expr);
62
63 return
64 convert_to_pointer (type,
65 convert (lang_hooks.types.type_for_size
66 (POINTER_SIZE, 0), expr));
67
68 default:
69 error ("cannot convert to a pointer type");
70 return convert_to_pointer (type, integer_zero_node);
71 }
72 }
73
74 /* Avoid any floating point extensions from EXP. */
75 tree
76 strip_float_extensions (tree exp)
77 {
78 tree sub, expt, subt;
79
80 /* For floating point constant look up the narrowest type that can hold
81 it properly and handle it like (type)(narrowest_type)constant.
82 This way we can optimize for instance a=a*2.0 where "a" is float
83 but 2.0 is double constant. */
84 if (TREE_CODE (exp) == REAL_CST)
85 {
86 REAL_VALUE_TYPE orig;
87 tree type = NULL;
88
89 orig = TREE_REAL_CST (exp);
90 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
91 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
92 type = float_type_node;
93 else if (TYPE_PRECISION (TREE_TYPE (exp))
94 > TYPE_PRECISION (double_type_node)
95 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
96 type = double_type_node;
97 if (type)
98 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
99 }
100
101 if (TREE_CODE (exp) != NOP_EXPR
102 && TREE_CODE (exp) != CONVERT_EXPR)
103 return exp;
104
105 sub = TREE_OPERAND (exp, 0);
106 subt = TREE_TYPE (sub);
107 expt = TREE_TYPE (exp);
108
109 if (!FLOAT_TYPE_P (subt))
110 return exp;
111
112 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
113 return exp;
114
115 return strip_float_extensions (sub);
116 }
117
118
119 /* Convert EXPR to some floating-point type TYPE.
120
121 EXPR must be float, integer, or enumeral;
122 in other cases error is called. */
123
124 tree
125 convert_to_real (tree type, tree expr)
126 {
127 enum built_in_function fcode = builtin_mathfn_code (expr);
128 tree itype = TREE_TYPE (expr);
129
130 /* Disable until we figure out how to decide whether the functions are
131 present in runtime. */
132 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
133 if (optimize
134 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
135 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
136 {
137 switch (fcode)
138 {
139 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
140 CASE_MATHFN (ACOS)
141 CASE_MATHFN (ACOSH)
142 CASE_MATHFN (ASIN)
143 CASE_MATHFN (ASINH)
144 CASE_MATHFN (ATAN)
145 CASE_MATHFN (ATANH)
146 CASE_MATHFN (CBRT)
147 CASE_MATHFN (COS)
148 CASE_MATHFN (COSH)
149 CASE_MATHFN (ERF)
150 CASE_MATHFN (ERFC)
151 CASE_MATHFN (EXP)
152 CASE_MATHFN (EXP10)
153 CASE_MATHFN (EXP2)
154 CASE_MATHFN (EXPM1)
155 CASE_MATHFN (FABS)
156 CASE_MATHFN (GAMMA)
157 CASE_MATHFN (J0)
158 CASE_MATHFN (J1)
159 CASE_MATHFN (LGAMMA)
160 CASE_MATHFN (LOG)
161 CASE_MATHFN (LOG10)
162 CASE_MATHFN (LOG1P)
163 CASE_MATHFN (LOG2)
164 CASE_MATHFN (LOGB)
165 CASE_MATHFN (POW10)
166 CASE_MATHFN (SIN)
167 CASE_MATHFN (SINH)
168 CASE_MATHFN (SQRT)
169 CASE_MATHFN (TAN)
170 CASE_MATHFN (TANH)
171 CASE_MATHFN (TGAMMA)
172 CASE_MATHFN (Y0)
173 CASE_MATHFN (Y1)
174 #undef CASE_MATHFN
175 {
176 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
177 tree newtype = type;
178
179 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
180 the both as the safe type for operation. */
181 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
182 newtype = TREE_TYPE (arg0);
183
184 /* Be careful about integer to fp conversions.
185 These may overflow still. */
186 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
187 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
188 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
189 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
190 {
191 tree arglist;
192 tree fn = mathfn_built_in (newtype, fcode);
193
194 if (fn)
195 {
196 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
197 expr = build_function_call_expr (fn, arglist);
198 if (newtype == type)
199 return expr;
200 }
201 }
202 }
203 default:
204 break;
205 }
206 }
207 if (optimize
208 && (((fcode == BUILT_IN_FLOORL
209 || fcode == BUILT_IN_CEILL
210 || fcode == BUILT_IN_ROUNDL
211 || fcode == BUILT_IN_RINTL
212 || fcode == BUILT_IN_TRUNCL
213 || fcode == BUILT_IN_NEARBYINTL)
214 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
215 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
216 || ((fcode == BUILT_IN_FLOOR
217 || fcode == BUILT_IN_CEIL
218 || fcode == BUILT_IN_ROUND
219 || fcode == BUILT_IN_RINT
220 || fcode == BUILT_IN_TRUNC
221 || fcode == BUILT_IN_NEARBYINT)
222 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
223 {
224 tree fn = mathfn_built_in (type, fcode);
225
226 if (fn)
227 {
228 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr,
229 1)));
230 tree arglist = build_tree_list (NULL_TREE,
231 fold (convert_to_real (type, arg0)));
232
233 return build_function_call_expr (fn, arglist);
234 }
235 }
236
237 /* Propagate the cast into the operation. */
238 if (itype != type && FLOAT_TYPE_P (type))
239 switch (TREE_CODE (expr))
240 {
241 /* Convert (float)-x into -(float)x. This is always safe. */
242 case ABS_EXPR:
243 case NEGATE_EXPR:
244 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
245 return build1 (TREE_CODE (expr), type,
246 fold (convert_to_real (type,
247 TREE_OPERAND (expr, 0))));
248 break;
249 /* Convert (outertype)((innertype0)a+(innertype1)b)
250 into ((newtype)a+(newtype)b) where newtype
251 is the widest mode from all of these. */
252 case PLUS_EXPR:
253 case MINUS_EXPR:
254 case MULT_EXPR:
255 case RDIV_EXPR:
256 {
257 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
258 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
259
260 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
261 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
262 {
263 tree newtype = type;
264 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
265 newtype = TREE_TYPE (arg0);
266 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
267 newtype = TREE_TYPE (arg1);
268 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
269 {
270 expr = build2 (TREE_CODE (expr), newtype,
271 fold (convert_to_real (newtype, arg0)),
272 fold (convert_to_real (newtype, arg1)));
273 if (newtype == type)
274 return expr;
275 }
276 }
277 }
278 break;
279 default:
280 break;
281 }
282
283 switch (TREE_CODE (TREE_TYPE (expr)))
284 {
285 case REAL_TYPE:
286 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
287 type, expr);
288
289 case INTEGER_TYPE:
290 case ENUMERAL_TYPE:
291 case BOOLEAN_TYPE:
292 case CHAR_TYPE:
293 return build1 (FLOAT_EXPR, type, expr);
294
295 case COMPLEX_TYPE:
296 return convert (type,
297 fold (build1 (REALPART_EXPR,
298 TREE_TYPE (TREE_TYPE (expr)), expr)));
299
300 case POINTER_TYPE:
301 case REFERENCE_TYPE:
302 error ("pointer value used where a floating point value was expected");
303 return convert_to_real (type, integer_zero_node);
304
305 default:
306 error ("aggregate value used where a float was expected");
307 return convert_to_real (type, integer_zero_node);
308 }
309 }
310
311 /* Convert EXPR to some integer (or enum) type TYPE.
312
313 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
314 vector; in other cases error is called.
315
316 The result of this is always supposed to be a newly created tree node
317 not in use in any existing structure. */
318
319 tree
320 convert_to_integer (tree type, tree expr)
321 {
322 enum tree_code ex_form = TREE_CODE (expr);
323 tree intype = TREE_TYPE (expr);
324 unsigned int inprec = TYPE_PRECISION (intype);
325 unsigned int outprec = TYPE_PRECISION (type);
326
327 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
328 be. Consider `enum E = { a, b = (enum E) 3 };'. */
329 if (!COMPLETE_TYPE_P (type))
330 {
331 error ("conversion to incomplete type");
332 return error_mark_node;
333 }
334
335 /* Convert e.g. (long)round(d) -> lround(d). */
336 /* If we're converting to char, we may encounter differing behavior
337 between converting from double->char vs double->long->char.
338 We're in "undefined" territory but we prefer to be conservative,
339 so only proceed in "unsafe" math mode. */
340 if (optimize
341 && (flag_unsafe_math_optimizations
342 || (long_integer_type_node
343 && outprec >= TYPE_PRECISION (long_integer_type_node))))
344 {
345 tree s_expr = strip_float_extensions (expr);
346 tree s_intype = TREE_TYPE (s_expr);
347 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
348 tree fn = 0;
349
350 switch (fcode)
351 {
352 case BUILT_IN_CEIL: case BUILT_IN_CEILF: case BUILT_IN_CEILL:
353 /* Only convert in ISO C99 mode. */
354 if (!TARGET_C99_FUNCTIONS)
355 break;
356 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
357 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
358 else
359 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
360 break;
361
362 case BUILT_IN_FLOOR: case BUILT_IN_FLOORF: case BUILT_IN_FLOORL:
363 /* Only convert in ISO C99 mode. */
364 if (!TARGET_C99_FUNCTIONS)
365 break;
366 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
367 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
368 else
369 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
370 break;
371
372 case BUILT_IN_ROUND: case BUILT_IN_ROUNDF: case BUILT_IN_ROUNDL:
373 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
374 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
375 else
376 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
377 break;
378
379 case BUILT_IN_RINT: case BUILT_IN_RINTF: case BUILT_IN_RINTL:
380 /* Only convert rint* if we can ignore math exceptions. */
381 if (flag_trapping_math)
382 break;
383 /* ... Fall through ... */
384 case BUILT_IN_NEARBYINT: case BUILT_IN_NEARBYINTF: case BUILT_IN_NEARBYINTL:
385 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
386 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
387 else
388 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
389 break;
390
391 case BUILT_IN_TRUNC: case BUILT_IN_TRUNCF: case BUILT_IN_TRUNCL:
392 {
393 tree arglist = TREE_OPERAND (s_expr, 1);
394 return convert_to_integer (type, TREE_VALUE (arglist));
395 }
396
397 default:
398 break;
399 }
400
401 if (fn)
402 {
403 tree arglist = TREE_OPERAND (s_expr, 1);
404 tree newexpr = build_function_call_expr (fn, arglist);
405 return convert_to_integer (type, newexpr);
406 }
407 }
408
409 switch (TREE_CODE (intype))
410 {
411 case POINTER_TYPE:
412 case REFERENCE_TYPE:
413 if (integer_zerop (expr))
414 expr = integer_zero_node;
415 else
416 expr = fold (build1 (CONVERT_EXPR,
417 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
418 expr));
419
420 return convert_to_integer (type, expr);
421
422 case INTEGER_TYPE:
423 case ENUMERAL_TYPE:
424 case BOOLEAN_TYPE:
425 case CHAR_TYPE:
426 /* If this is a logical operation, which just returns 0 or 1, we can
427 change the type of the expression. */
428
429 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
430 {
431 expr = copy_node (expr);
432 TREE_TYPE (expr) = type;
433 return expr;
434 }
435
436 /* If we are widening the type, put in an explicit conversion.
437 Similarly if we are not changing the width. After this, we know
438 we are truncating EXPR. */
439
440 else if (outprec >= inprec)
441 {
442 enum tree_code code;
443
444 /* If the precision of the EXPR's type is K bits and the
445 destination mode has more bits, and the sign is changing,
446 it is not safe to use a NOP_EXPR. For example, suppose
447 that EXPR's type is a 3-bit unsigned integer type, the
448 TYPE is a 3-bit signed integer type, and the machine mode
449 for the types is 8-bit QImode. In that case, the
450 conversion necessitates an explicit sign-extension. In
451 the signed-to-unsigned case the high-order bits have to
452 be cleared. */
453 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
454 && (TYPE_PRECISION (TREE_TYPE (expr))
455 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
456 code = CONVERT_EXPR;
457 else
458 code = NOP_EXPR;
459
460 return build1 (code, type, expr);
461 }
462
463 /* If TYPE is an enumeral type or a type with a precision less
464 than the number of bits in its mode, do the conversion to the
465 type corresponding to its mode, then do a nop conversion
466 to TYPE. */
467 else if (TREE_CODE (type) == ENUMERAL_TYPE
468 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
469 return build1 (NOP_EXPR, type,
470 convert (lang_hooks.types.type_for_mode
471 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
472 expr));
473
474 /* Here detect when we can distribute the truncation down past some
475 arithmetic. For example, if adding two longs and converting to an
476 int, we can equally well convert both to ints and then add.
477 For the operations handled here, such truncation distribution
478 is always safe.
479 It is desirable in these cases:
480 1) when truncating down to full-word from a larger size
481 2) when truncating takes no work.
482 3) when at least one operand of the arithmetic has been extended
483 (as by C's default conversions). In this case we need two conversions
484 if we do the arithmetic as already requested, so we might as well
485 truncate both and then combine. Perhaps that way we need only one.
486
487 Note that in general we cannot do the arithmetic in a type
488 shorter than the desired result of conversion, even if the operands
489 are both extended from a shorter type, because they might overflow
490 if combined in that type. The exceptions to this--the times when
491 two narrow values can be combined in their narrow type even to
492 make a wider result--are handled by "shorten" in build_binary_op. */
493
494 switch (ex_form)
495 {
496 case RSHIFT_EXPR:
497 /* We can pass truncation down through right shifting
498 when the shift count is a nonpositive constant. */
499 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
500 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
501 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
502 integer_one_node)))
503 goto trunc1;
504 break;
505
506 case LSHIFT_EXPR:
507 /* We can pass truncation down through left shifting
508 when the shift count is a nonnegative constant and
509 the target type is unsigned. */
510 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
511 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
512 && TYPE_UNSIGNED (type)
513 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
514 {
515 /* If shift count is less than the width of the truncated type,
516 really shift. */
517 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
518 /* In this case, shifting is like multiplication. */
519 goto trunc1;
520 else
521 {
522 /* If it is >= that width, result is zero.
523 Handling this with trunc1 would give the wrong result:
524 (int) ((long long) a << 32) is well defined (as 0)
525 but (int) a << 32 is undefined and would get a
526 warning. */
527
528 tree t = convert_to_integer (type, integer_zero_node);
529
530 /* If the original expression had side-effects, we must
531 preserve it. */
532 if (TREE_SIDE_EFFECTS (expr))
533 return build2 (COMPOUND_EXPR, type, expr, t);
534 else
535 return t;
536 }
537 }
538 break;
539
540 case MAX_EXPR:
541 case MIN_EXPR:
542 case MULT_EXPR:
543 {
544 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
545 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
546
547 /* Don't distribute unless the output precision is at least as big
548 as the actual inputs. Otherwise, the comparison of the
549 truncated values will be wrong. */
550 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
551 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
552 /* If signedness of arg0 and arg1 don't match,
553 we can't necessarily find a type to compare them in. */
554 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
555 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
556 goto trunc1;
557 break;
558 }
559
560 case PLUS_EXPR:
561 case MINUS_EXPR:
562 case BIT_AND_EXPR:
563 case BIT_IOR_EXPR:
564 case BIT_XOR_EXPR:
565 trunc1:
566 {
567 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
568 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
569
570 if (outprec >= BITS_PER_WORD
571 || TRULY_NOOP_TRUNCATION (outprec, inprec)
572 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
573 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
574 {
575 /* Do the arithmetic in type TYPEX,
576 then convert result to TYPE. */
577 tree typex = type;
578
579 /* Can't do arithmetic in enumeral types
580 so use an integer type that will hold the values. */
581 if (TREE_CODE (typex) == ENUMERAL_TYPE)
582 typex = lang_hooks.types.type_for_size
583 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
584
585 /* But now perhaps TYPEX is as wide as INPREC.
586 In that case, do nothing special here.
587 (Otherwise would recurse infinitely in convert. */
588 if (TYPE_PRECISION (typex) != inprec)
589 {
590 /* Don't do unsigned arithmetic where signed was wanted,
591 or vice versa.
592 Exception: if both of the original operands were
593 unsigned then we can safely do the work as unsigned.
594 Exception: shift operations take their type solely
595 from the first argument.
596 Exception: the LSHIFT_EXPR case above requires that
597 we perform this operation unsigned lest we produce
598 signed-overflow undefinedness.
599 And we may need to do it as unsigned
600 if we truncate to the original size. */
601 if (TYPE_UNSIGNED (TREE_TYPE (expr))
602 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
603 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
604 || ex_form == LSHIFT_EXPR
605 || ex_form == RSHIFT_EXPR
606 || ex_form == LROTATE_EXPR
607 || ex_form == RROTATE_EXPR))
608 || ex_form == LSHIFT_EXPR)
609 typex = lang_hooks.types.unsigned_type (typex);
610 else
611 typex = lang_hooks.types.signed_type (typex);
612 return convert (type,
613 fold (build2 (ex_form, typex,
614 convert (typex, arg0),
615 convert (typex, arg1))));
616 }
617 }
618 }
619 break;
620
621 case NEGATE_EXPR:
622 case BIT_NOT_EXPR:
623 /* This is not correct for ABS_EXPR,
624 since we must test the sign before truncation. */
625 {
626 tree typex = type;
627
628 /* Can't do arithmetic in enumeral types
629 so use an integer type that will hold the values. */
630 if (TREE_CODE (typex) == ENUMERAL_TYPE)
631 typex = lang_hooks.types.type_for_size
632 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
633
634 /* But now perhaps TYPEX is as wide as INPREC.
635 In that case, do nothing special here.
636 (Otherwise would recurse infinitely in convert. */
637 if (TYPE_PRECISION (typex) != inprec)
638 {
639 /* Don't do unsigned arithmetic where signed was wanted,
640 or vice versa. */
641 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
642 typex = lang_hooks.types.unsigned_type (typex);
643 else
644 typex = lang_hooks.types.signed_type (typex);
645 return convert (type,
646 fold (build1 (ex_form, typex,
647 convert (typex,
648 TREE_OPERAND (expr, 0)))));
649 }
650 }
651
652 case NOP_EXPR:
653 /* Don't introduce a
654 "can't convert between vector values of different size" error. */
655 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
656 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
657 != GET_MODE_SIZE (TYPE_MODE (type))))
658 break;
659 /* If truncating after truncating, might as well do all at once.
660 If truncating after extending, we may get rid of wasted work. */
661 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
662
663 case COND_EXPR:
664 /* It is sometimes worthwhile to push the narrowing down through
665 the conditional and never loses. */
666 return fold (build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
667 convert (type, TREE_OPERAND (expr, 1)),
668 convert (type, TREE_OPERAND (expr, 2))));
669
670 default:
671 break;
672 }
673
674 return build1 (CONVERT_EXPR, type, expr);
675
676 case REAL_TYPE:
677 return build1 (FIX_TRUNC_EXPR, type, expr);
678
679 case COMPLEX_TYPE:
680 return convert (type,
681 fold (build1 (REALPART_EXPR,
682 TREE_TYPE (TREE_TYPE (expr)), expr)));
683
684 case VECTOR_TYPE:
685 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
686 {
687 error ("can't convert between vector values of different size");
688 return error_mark_node;
689 }
690 return build1 (NOP_EXPR, type, expr);
691
692 default:
693 error ("aggregate value used where an integer was expected");
694 return convert (type, integer_zero_node);
695 }
696 }
697
698 /* Convert EXPR to the complex type TYPE in the usual ways. */
699
700 tree
701 convert_to_complex (tree type, tree expr)
702 {
703 tree subtype = TREE_TYPE (type);
704
705 switch (TREE_CODE (TREE_TYPE (expr)))
706 {
707 case REAL_TYPE:
708 case INTEGER_TYPE:
709 case ENUMERAL_TYPE:
710 case BOOLEAN_TYPE:
711 case CHAR_TYPE:
712 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
713 convert (subtype, integer_zero_node));
714
715 case COMPLEX_TYPE:
716 {
717 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
718
719 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
720 return expr;
721 else if (TREE_CODE (expr) == COMPLEX_EXPR)
722 return fold (build2 (COMPLEX_EXPR, type,
723 convert (subtype, TREE_OPERAND (expr, 0)),
724 convert (subtype, TREE_OPERAND (expr, 1))));
725 else
726 {
727 expr = save_expr (expr);
728 return
729 fold (build2 (COMPLEX_EXPR, type,
730 convert (subtype,
731 fold (build1 (REALPART_EXPR,
732 TREE_TYPE (TREE_TYPE (expr)),
733 expr))),
734 convert (subtype,
735 fold (build1 (IMAGPART_EXPR,
736 TREE_TYPE (TREE_TYPE (expr)),
737 expr)))));
738 }
739 }
740
741 case POINTER_TYPE:
742 case REFERENCE_TYPE:
743 error ("pointer value used where a complex was expected");
744 return convert_to_complex (type, integer_zero_node);
745
746 default:
747 error ("aggregate value used where a complex was expected");
748 return convert_to_complex (type, integer_zero_node);
749 }
750 }
751
752 /* Convert EXPR to the vector type TYPE in the usual ways. */
753
754 tree
755 convert_to_vector (tree type, tree expr)
756 {
757 switch (TREE_CODE (TREE_TYPE (expr)))
758 {
759 case INTEGER_TYPE:
760 case VECTOR_TYPE:
761 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
762 {
763 error ("can't convert between vector values of different size");
764 return error_mark_node;
765 }
766 return build1 (NOP_EXPR, type, expr);
767
768 default:
769 error ("can't convert value to a vector");
770 return error_mark_node;
771 }
772 }