convert.c (convert_to_real): Don't convert (float)floor(double d) to floorf((float)d).
[gcc.git] / gcc / convert.c
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
37
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
40
41 tree
42 convert_to_pointer (tree type, tree expr)
43 {
44 if (integer_zerop (expr))
45 return build_int_cst (type, 0);
46
47 switch (TREE_CODE (TREE_TYPE (expr)))
48 {
49 case POINTER_TYPE:
50 case REFERENCE_TYPE:
51 return build1 (NOP_EXPR, type, expr);
52
53 case INTEGER_TYPE:
54 case ENUMERAL_TYPE:
55 case BOOLEAN_TYPE:
56 case CHAR_TYPE:
57 if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
58 expr = fold_build1 (NOP_EXPR,
59 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
60 expr);
61 return fold_build1 (CONVERT_EXPR, type, expr);
62
63
64 default:
65 error ("cannot convert to a pointer type");
66 return convert_to_pointer (type, integer_zero_node);
67 }
68 }
69
70 /* Avoid any floating point extensions from EXP. */
71 tree
72 strip_float_extensions (tree exp)
73 {
74 tree sub, expt, subt;
75
76 /* For floating point constant look up the narrowest type that can hold
77 it properly and handle it like (type)(narrowest_type)constant.
78 This way we can optimize for instance a=a*2.0 where "a" is float
79 but 2.0 is double constant. */
80 if (TREE_CODE (exp) == REAL_CST)
81 {
82 REAL_VALUE_TYPE orig;
83 tree type = NULL;
84
85 orig = TREE_REAL_CST (exp);
86 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
87 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
88 type = float_type_node;
89 else if (TYPE_PRECISION (TREE_TYPE (exp))
90 > TYPE_PRECISION (double_type_node)
91 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
92 type = double_type_node;
93 if (type)
94 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
95 }
96
97 if (TREE_CODE (exp) != NOP_EXPR
98 && TREE_CODE (exp) != CONVERT_EXPR)
99 return exp;
100
101 sub = TREE_OPERAND (exp, 0);
102 subt = TREE_TYPE (sub);
103 expt = TREE_TYPE (exp);
104
105 if (!FLOAT_TYPE_P (subt))
106 return exp;
107
108 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
109 return exp;
110
111 return strip_float_extensions (sub);
112 }
113
114
115 /* Convert EXPR to some floating-point type TYPE.
116
117 EXPR must be float, integer, or enumeral;
118 in other cases error is called. */
119
120 tree
121 convert_to_real (tree type, tree expr)
122 {
123 enum built_in_function fcode = builtin_mathfn_code (expr);
124 tree itype = TREE_TYPE (expr);
125
126 /* Disable until we figure out how to decide whether the functions are
127 present in runtime. */
128 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
129 if (optimize
130 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
131 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
132 {
133 switch (fcode)
134 {
135 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
136 CASE_MATHFN (ACOS)
137 CASE_MATHFN (ACOSH)
138 CASE_MATHFN (ASIN)
139 CASE_MATHFN (ASINH)
140 CASE_MATHFN (ATAN)
141 CASE_MATHFN (ATANH)
142 CASE_MATHFN (CBRT)
143 CASE_MATHFN (COS)
144 CASE_MATHFN (COSH)
145 CASE_MATHFN (ERF)
146 CASE_MATHFN (ERFC)
147 CASE_MATHFN (EXP)
148 CASE_MATHFN (EXP10)
149 CASE_MATHFN (EXP2)
150 CASE_MATHFN (EXPM1)
151 CASE_MATHFN (FABS)
152 CASE_MATHFN (GAMMA)
153 CASE_MATHFN (J0)
154 CASE_MATHFN (J1)
155 CASE_MATHFN (LGAMMA)
156 CASE_MATHFN (LOG)
157 CASE_MATHFN (LOG10)
158 CASE_MATHFN (LOG1P)
159 CASE_MATHFN (LOG2)
160 CASE_MATHFN (LOGB)
161 CASE_MATHFN (POW10)
162 CASE_MATHFN (SIN)
163 CASE_MATHFN (SINH)
164 CASE_MATHFN (SQRT)
165 CASE_MATHFN (TAN)
166 CASE_MATHFN (TANH)
167 CASE_MATHFN (TGAMMA)
168 CASE_MATHFN (Y0)
169 CASE_MATHFN (Y1)
170 #undef CASE_MATHFN
171 {
172 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
173 tree newtype = type;
174
175 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
176 the both as the safe type for operation. */
177 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
178 newtype = TREE_TYPE (arg0);
179
180 /* Be careful about integer to fp conversions.
181 These may overflow still. */
182 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
183 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
184 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
185 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
186 {
187 tree arglist;
188 tree fn = mathfn_built_in (newtype, fcode);
189
190 if (fn)
191 {
192 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
193 expr = build_function_call_expr (fn, arglist);
194 if (newtype == type)
195 return expr;
196 }
197 }
198 }
199 default:
200 break;
201 }
202 }
203 /* This code formerly changed (float)floor(double d) to
204 floorf((float)d). This is incorrect, because (float)d uses
205 round-to-nearest and can round up to the next integer. */
206
207 /* Propagate the cast into the operation. */
208 if (itype != type && FLOAT_TYPE_P (type))
209 switch (TREE_CODE (expr))
210 {
211 /* Convert (float)-x into -(float)x. This is always safe. */
212 case ABS_EXPR:
213 case NEGATE_EXPR:
214 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
215 return build1 (TREE_CODE (expr), type,
216 fold (convert_to_real (type,
217 TREE_OPERAND (expr, 0))));
218 break;
219 /* Convert (outertype)((innertype0)a+(innertype1)b)
220 into ((newtype)a+(newtype)b) where newtype
221 is the widest mode from all of these. */
222 case PLUS_EXPR:
223 case MINUS_EXPR:
224 case MULT_EXPR:
225 case RDIV_EXPR:
226 {
227 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
228 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
229
230 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
231 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
232 {
233 tree newtype = type;
234 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
235 newtype = TREE_TYPE (arg0);
236 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
237 newtype = TREE_TYPE (arg1);
238 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
239 {
240 expr = build2 (TREE_CODE (expr), newtype,
241 fold (convert_to_real (newtype, arg0)),
242 fold (convert_to_real (newtype, arg1)));
243 if (newtype == type)
244 return expr;
245 }
246 }
247 }
248 break;
249 default:
250 break;
251 }
252
253 switch (TREE_CODE (TREE_TYPE (expr)))
254 {
255 case REAL_TYPE:
256 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
257 type, expr);
258
259 case INTEGER_TYPE:
260 case ENUMERAL_TYPE:
261 case BOOLEAN_TYPE:
262 case CHAR_TYPE:
263 return build1 (FLOAT_EXPR, type, expr);
264
265 case COMPLEX_TYPE:
266 return convert (type,
267 fold_build1 (REALPART_EXPR,
268 TREE_TYPE (TREE_TYPE (expr)), expr));
269
270 case POINTER_TYPE:
271 case REFERENCE_TYPE:
272 error ("pointer value used where a floating point value was expected");
273 return convert_to_real (type, integer_zero_node);
274
275 default:
276 error ("aggregate value used where a float was expected");
277 return convert_to_real (type, integer_zero_node);
278 }
279 }
280
281 /* Convert EXPR to some integer (or enum) type TYPE.
282
283 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
284 vector; in other cases error is called.
285
286 The result of this is always supposed to be a newly created tree node
287 not in use in any existing structure. */
288
289 tree
290 convert_to_integer (tree type, tree expr)
291 {
292 enum tree_code ex_form = TREE_CODE (expr);
293 tree intype = TREE_TYPE (expr);
294 unsigned int inprec = TYPE_PRECISION (intype);
295 unsigned int outprec = TYPE_PRECISION (type);
296
297 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
298 be. Consider `enum E = { a, b = (enum E) 3 };'. */
299 if (!COMPLETE_TYPE_P (type))
300 {
301 error ("conversion to incomplete type");
302 return error_mark_node;
303 }
304
305 /* Convert e.g. (long)round(d) -> lround(d). */
306 /* If we're converting to char, we may encounter differing behavior
307 between converting from double->char vs double->long->char.
308 We're in "undefined" territory but we prefer to be conservative,
309 so only proceed in "unsafe" math mode. */
310 if (optimize
311 && (flag_unsafe_math_optimizations
312 || (long_integer_type_node
313 && outprec >= TYPE_PRECISION (long_integer_type_node))))
314 {
315 tree s_expr = strip_float_extensions (expr);
316 tree s_intype = TREE_TYPE (s_expr);
317 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
318 tree fn = 0;
319
320 switch (fcode)
321 {
322 case BUILT_IN_CEIL: case BUILT_IN_CEILF: case BUILT_IN_CEILL:
323 /* Only convert in ISO C99 mode. */
324 if (!TARGET_C99_FUNCTIONS)
325 break;
326 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
327 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
328 else
329 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
330 break;
331
332 case BUILT_IN_FLOOR: case BUILT_IN_FLOORF: case BUILT_IN_FLOORL:
333 /* Only convert in ISO C99 mode. */
334 if (!TARGET_C99_FUNCTIONS)
335 break;
336 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
337 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
338 else
339 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
340 break;
341
342 case BUILT_IN_ROUND: case BUILT_IN_ROUNDF: case BUILT_IN_ROUNDL:
343 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
344 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
345 else
346 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
347 break;
348
349 case BUILT_IN_RINT: case BUILT_IN_RINTF: case BUILT_IN_RINTL:
350 /* Only convert rint* if we can ignore math exceptions. */
351 if (flag_trapping_math)
352 break;
353 /* ... Fall through ... */
354 case BUILT_IN_NEARBYINT: case BUILT_IN_NEARBYINTF: case BUILT_IN_NEARBYINTL:
355 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
356 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
357 else
358 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
359 break;
360
361 case BUILT_IN_TRUNC: case BUILT_IN_TRUNCF: case BUILT_IN_TRUNCL:
362 {
363 tree arglist = TREE_OPERAND (s_expr, 1);
364 return convert_to_integer (type, TREE_VALUE (arglist));
365 }
366
367 default:
368 break;
369 }
370
371 if (fn)
372 {
373 tree arglist = TREE_OPERAND (s_expr, 1);
374 tree newexpr = build_function_call_expr (fn, arglist);
375 return convert_to_integer (type, newexpr);
376 }
377 }
378
379 switch (TREE_CODE (intype))
380 {
381 case POINTER_TYPE:
382 case REFERENCE_TYPE:
383 if (integer_zerop (expr))
384 return build_int_cst (type, 0);
385
386 /* Convert to an unsigned integer of the correct width first,
387 and from there widen/truncate to the required type. */
388 expr = fold_build1 (CONVERT_EXPR,
389 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
390 expr);
391 return fold_build1 (NOP_EXPR, type, expr);
392
393 case INTEGER_TYPE:
394 case ENUMERAL_TYPE:
395 case BOOLEAN_TYPE:
396 case CHAR_TYPE:
397 /* If this is a logical operation, which just returns 0 or 1, we can
398 change the type of the expression. */
399
400 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
401 {
402 expr = copy_node (expr);
403 TREE_TYPE (expr) = type;
404 return expr;
405 }
406
407 /* If we are widening the type, put in an explicit conversion.
408 Similarly if we are not changing the width. After this, we know
409 we are truncating EXPR. */
410
411 else if (outprec >= inprec)
412 {
413 enum tree_code code;
414
415 /* If the precision of the EXPR's type is K bits and the
416 destination mode has more bits, and the sign is changing,
417 it is not safe to use a NOP_EXPR. For example, suppose
418 that EXPR's type is a 3-bit unsigned integer type, the
419 TYPE is a 3-bit signed integer type, and the machine mode
420 for the types is 8-bit QImode. In that case, the
421 conversion necessitates an explicit sign-extension. In
422 the signed-to-unsigned case the high-order bits have to
423 be cleared. */
424 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
425 && (TYPE_PRECISION (TREE_TYPE (expr))
426 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
427 code = CONVERT_EXPR;
428 else
429 code = NOP_EXPR;
430
431 return fold_build1 (code, type, expr);
432 }
433
434 /* If TYPE is an enumeral type or a type with a precision less
435 than the number of bits in its mode, do the conversion to the
436 type corresponding to its mode, then do a nop conversion
437 to TYPE. */
438 else if (TREE_CODE (type) == ENUMERAL_TYPE
439 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
440 return build1 (NOP_EXPR, type,
441 convert (lang_hooks.types.type_for_mode
442 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
443 expr));
444
445 /* Here detect when we can distribute the truncation down past some
446 arithmetic. For example, if adding two longs and converting to an
447 int, we can equally well convert both to ints and then add.
448 For the operations handled here, such truncation distribution
449 is always safe.
450 It is desirable in these cases:
451 1) when truncating down to full-word from a larger size
452 2) when truncating takes no work.
453 3) when at least one operand of the arithmetic has been extended
454 (as by C's default conversions). In this case we need two conversions
455 if we do the arithmetic as already requested, so we might as well
456 truncate both and then combine. Perhaps that way we need only one.
457
458 Note that in general we cannot do the arithmetic in a type
459 shorter than the desired result of conversion, even if the operands
460 are both extended from a shorter type, because they might overflow
461 if combined in that type. The exceptions to this--the times when
462 two narrow values can be combined in their narrow type even to
463 make a wider result--are handled by "shorten" in build_binary_op. */
464
465 switch (ex_form)
466 {
467 case RSHIFT_EXPR:
468 /* We can pass truncation down through right shifting
469 when the shift count is a nonpositive constant. */
470 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
471 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
472 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
473 integer_one_node)))
474 goto trunc1;
475 break;
476
477 case LSHIFT_EXPR:
478 /* We can pass truncation down through left shifting
479 when the shift count is a nonnegative constant and
480 the target type is unsigned. */
481 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
482 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
483 && TYPE_UNSIGNED (type)
484 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
485 {
486 /* If shift count is less than the width of the truncated type,
487 really shift. */
488 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
489 /* In this case, shifting is like multiplication. */
490 goto trunc1;
491 else
492 {
493 /* If it is >= that width, result is zero.
494 Handling this with trunc1 would give the wrong result:
495 (int) ((long long) a << 32) is well defined (as 0)
496 but (int) a << 32 is undefined and would get a
497 warning. */
498
499 tree t = convert_to_integer (type, integer_zero_node);
500
501 /* If the original expression had side-effects, we must
502 preserve it. */
503 if (TREE_SIDE_EFFECTS (expr))
504 return build2 (COMPOUND_EXPR, type, expr, t);
505 else
506 return t;
507 }
508 }
509 break;
510
511 case MAX_EXPR:
512 case MIN_EXPR:
513 case MULT_EXPR:
514 {
515 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
516 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
517
518 /* Don't distribute unless the output precision is at least as big
519 as the actual inputs. Otherwise, the comparison of the
520 truncated values will be wrong. */
521 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
522 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
523 /* If signedness of arg0 and arg1 don't match,
524 we can't necessarily find a type to compare them in. */
525 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
526 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
527 goto trunc1;
528 break;
529 }
530
531 case PLUS_EXPR:
532 case MINUS_EXPR:
533 case BIT_AND_EXPR:
534 case BIT_IOR_EXPR:
535 case BIT_XOR_EXPR:
536 trunc1:
537 {
538 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
539 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
540
541 if (outprec >= BITS_PER_WORD
542 || TRULY_NOOP_TRUNCATION (outprec, inprec)
543 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
544 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
545 {
546 /* Do the arithmetic in type TYPEX,
547 then convert result to TYPE. */
548 tree typex = type;
549
550 /* Can't do arithmetic in enumeral types
551 so use an integer type that will hold the values. */
552 if (TREE_CODE (typex) == ENUMERAL_TYPE)
553 typex = lang_hooks.types.type_for_size
554 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
555
556 /* But now perhaps TYPEX is as wide as INPREC.
557 In that case, do nothing special here.
558 (Otherwise would recurse infinitely in convert. */
559 if (TYPE_PRECISION (typex) != inprec)
560 {
561 /* Don't do unsigned arithmetic where signed was wanted,
562 or vice versa.
563 Exception: if both of the original operands were
564 unsigned then we can safely do the work as unsigned.
565 Exception: shift operations take their type solely
566 from the first argument.
567 Exception: the LSHIFT_EXPR case above requires that
568 we perform this operation unsigned lest we produce
569 signed-overflow undefinedness.
570 And we may need to do it as unsigned
571 if we truncate to the original size. */
572 if (TYPE_UNSIGNED (TREE_TYPE (expr))
573 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
574 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
575 || ex_form == LSHIFT_EXPR
576 || ex_form == RSHIFT_EXPR
577 || ex_form == LROTATE_EXPR
578 || ex_form == RROTATE_EXPR))
579 || ex_form == LSHIFT_EXPR)
580 typex = lang_hooks.types.unsigned_type (typex);
581 else
582 typex = lang_hooks.types.signed_type (typex);
583 return convert (type,
584 fold_build2 (ex_form, typex,
585 convert (typex, arg0),
586 convert (typex, arg1)));
587 }
588 }
589 }
590 break;
591
592 case NEGATE_EXPR:
593 case BIT_NOT_EXPR:
594 /* This is not correct for ABS_EXPR,
595 since we must test the sign before truncation. */
596 {
597 tree typex;
598
599 /* Don't do unsigned arithmetic where signed was wanted,
600 or vice versa. */
601 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
602 typex = lang_hooks.types.unsigned_type (type);
603 else
604 typex = lang_hooks.types.signed_type (type);
605 return convert (type,
606 fold_build1 (ex_form, typex,
607 convert (typex,
608 TREE_OPERAND (expr, 0))));
609 }
610
611 case NOP_EXPR:
612 /* Don't introduce a
613 "can't convert between vector values of different size" error. */
614 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
615 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
616 != GET_MODE_SIZE (TYPE_MODE (type))))
617 break;
618 /* If truncating after truncating, might as well do all at once.
619 If truncating after extending, we may get rid of wasted work. */
620 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
621
622 case COND_EXPR:
623 /* It is sometimes worthwhile to push the narrowing down through
624 the conditional and never loses. */
625 return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
626 convert (type, TREE_OPERAND (expr, 1)),
627 convert (type, TREE_OPERAND (expr, 2)));
628
629 default:
630 break;
631 }
632
633 return build1 (CONVERT_EXPR, type, expr);
634
635 case REAL_TYPE:
636 return build1 (FIX_TRUNC_EXPR, type, expr);
637
638 case COMPLEX_TYPE:
639 return convert (type,
640 fold_build1 (REALPART_EXPR,
641 TREE_TYPE (TREE_TYPE (expr)), expr));
642
643 case VECTOR_TYPE:
644 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
645 {
646 error ("can't convert between vector values of different size");
647 return error_mark_node;
648 }
649 return build1 (VIEW_CONVERT_EXPR, type, expr);
650
651 default:
652 error ("aggregate value used where an integer was expected");
653 return convert (type, integer_zero_node);
654 }
655 }
656
657 /* Convert EXPR to the complex type TYPE in the usual ways. */
658
659 tree
660 convert_to_complex (tree type, tree expr)
661 {
662 tree subtype = TREE_TYPE (type);
663
664 switch (TREE_CODE (TREE_TYPE (expr)))
665 {
666 case REAL_TYPE:
667 case INTEGER_TYPE:
668 case ENUMERAL_TYPE:
669 case BOOLEAN_TYPE:
670 case CHAR_TYPE:
671 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
672 convert (subtype, integer_zero_node));
673
674 case COMPLEX_TYPE:
675 {
676 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
677
678 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
679 return expr;
680 else if (TREE_CODE (expr) == COMPLEX_EXPR)
681 return fold_build2 (COMPLEX_EXPR, type,
682 convert (subtype, TREE_OPERAND (expr, 0)),
683 convert (subtype, TREE_OPERAND (expr, 1)));
684 else
685 {
686 expr = save_expr (expr);
687 return
688 fold_build2 (COMPLEX_EXPR, type,
689 convert (subtype,
690 fold_build1 (REALPART_EXPR,
691 TREE_TYPE (TREE_TYPE (expr)),
692 expr)),
693 convert (subtype,
694 fold_build1 (IMAGPART_EXPR,
695 TREE_TYPE (TREE_TYPE (expr)),
696 expr)));
697 }
698 }
699
700 case POINTER_TYPE:
701 case REFERENCE_TYPE:
702 error ("pointer value used where a complex was expected");
703 return convert_to_complex (type, integer_zero_node);
704
705 default:
706 error ("aggregate value used where a complex was expected");
707 return convert_to_complex (type, integer_zero_node);
708 }
709 }
710
711 /* Convert EXPR to the vector type TYPE in the usual ways. */
712
713 tree
714 convert_to_vector (tree type, tree expr)
715 {
716 switch (TREE_CODE (TREE_TYPE (expr)))
717 {
718 case INTEGER_TYPE:
719 case VECTOR_TYPE:
720 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
721 {
722 error ("can't convert between vector values of different size");
723 return error_mark_node;
724 }
725 return build1 (VIEW_CONVERT_EXPR, type, expr);
726
727 default:
728 error ("can't convert value to a vector");
729 return error_mark_node;
730 }
731 }