* builtins.def (BUILT_IN_LFLOOR, BUILT_IN_LFLOORF, BUILT_IN_LFLOORL)
[gcc.git] / gcc / convert.c
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
37
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
40
41 tree
42 convert_to_pointer (tree type, tree expr)
43 {
44 if (integer_zerop (expr))
45 {
46 expr = build_int_cst (type, 0);
47 return expr;
48 }
49
50 switch (TREE_CODE (TREE_TYPE (expr)))
51 {
52 case POINTER_TYPE:
53 case REFERENCE_TYPE:
54 return build1 (NOP_EXPR, type, expr);
55
56 case INTEGER_TYPE:
57 case ENUMERAL_TYPE:
58 case BOOLEAN_TYPE:
59 case CHAR_TYPE:
60 if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
61 return build1 (CONVERT_EXPR, type, expr);
62
63 return
64 convert_to_pointer (type,
65 convert (lang_hooks.types.type_for_size
66 (POINTER_SIZE, 0), expr));
67
68 default:
69 error ("cannot convert to a pointer type");
70 return convert_to_pointer (type, integer_zero_node);
71 }
72 }
73
74 /* Avoid any floating point extensions from EXP. */
75 tree
76 strip_float_extensions (tree exp)
77 {
78 tree sub, expt, subt;
79
80 /* For floating point constant look up the narrowest type that can hold
81 it properly and handle it like (type)(narrowest_type)constant.
82 This way we can optimize for instance a=a*2.0 where "a" is float
83 but 2.0 is double constant. */
84 if (TREE_CODE (exp) == REAL_CST)
85 {
86 REAL_VALUE_TYPE orig;
87 tree type = NULL;
88
89 orig = TREE_REAL_CST (exp);
90 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
91 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
92 type = float_type_node;
93 else if (TYPE_PRECISION (TREE_TYPE (exp))
94 > TYPE_PRECISION (double_type_node)
95 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
96 type = double_type_node;
97 if (type)
98 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
99 }
100
101 if (TREE_CODE (exp) != NOP_EXPR
102 && TREE_CODE (exp) != CONVERT_EXPR)
103 return exp;
104
105 sub = TREE_OPERAND (exp, 0);
106 subt = TREE_TYPE (sub);
107 expt = TREE_TYPE (exp);
108
109 if (!FLOAT_TYPE_P (subt))
110 return exp;
111
112 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
113 return exp;
114
115 return strip_float_extensions (sub);
116 }
117
118
119 /* Convert EXPR to some floating-point type TYPE.
120
121 EXPR must be float, integer, or enumeral;
122 in other cases error is called. */
123
124 tree
125 convert_to_real (tree type, tree expr)
126 {
127 enum built_in_function fcode = builtin_mathfn_code (expr);
128 tree itype = TREE_TYPE (expr);
129
130 /* Disable until we figure out how to decide whether the functions are
131 present in runtime. */
132 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
133 if (optimize
134 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
135 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
136 {
137 switch (fcode)
138 {
139 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
140 CASE_MATHFN (ACOS)
141 CASE_MATHFN (ACOSH)
142 CASE_MATHFN (ASIN)
143 CASE_MATHFN (ASINH)
144 CASE_MATHFN (ATAN)
145 CASE_MATHFN (ATANH)
146 CASE_MATHFN (CBRT)
147 CASE_MATHFN (COS)
148 CASE_MATHFN (COSH)
149 CASE_MATHFN (ERF)
150 CASE_MATHFN (ERFC)
151 CASE_MATHFN (EXP)
152 CASE_MATHFN (EXP10)
153 CASE_MATHFN (EXP2)
154 CASE_MATHFN (EXPM1)
155 CASE_MATHFN (FABS)
156 CASE_MATHFN (GAMMA)
157 CASE_MATHFN (J0)
158 CASE_MATHFN (J1)
159 CASE_MATHFN (LGAMMA)
160 CASE_MATHFN (LOG)
161 CASE_MATHFN (LOG10)
162 CASE_MATHFN (LOG1P)
163 CASE_MATHFN (LOG2)
164 CASE_MATHFN (LOGB)
165 CASE_MATHFN (POW10)
166 CASE_MATHFN (SIN)
167 CASE_MATHFN (SINH)
168 CASE_MATHFN (SQRT)
169 CASE_MATHFN (TAN)
170 CASE_MATHFN (TANH)
171 CASE_MATHFN (TGAMMA)
172 CASE_MATHFN (Y0)
173 CASE_MATHFN (Y1)
174 #undef CASE_MATHFN
175 {
176 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
177 tree newtype = type;
178
179 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
180 the both as the safe type for operation. */
181 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
182 newtype = TREE_TYPE (arg0);
183
184 /* Be careful about integer to fp conversions.
185 These may overflow still. */
186 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
187 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
188 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
189 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
190 {
191 tree arglist;
192 tree fn = mathfn_built_in (newtype, fcode);
193
194 if (fn)
195 {
196 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
197 expr = build_function_call_expr (fn, arglist);
198 if (newtype == type)
199 return expr;
200 }
201 }
202 }
203 default:
204 break;
205 }
206 }
207 if (optimize
208 && (((fcode == BUILT_IN_FLOORL
209 || fcode == BUILT_IN_CEILL
210 || fcode == BUILT_IN_ROUNDL
211 || fcode == BUILT_IN_RINTL
212 || fcode == BUILT_IN_TRUNCL
213 || fcode == BUILT_IN_NEARBYINTL)
214 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
215 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
216 || ((fcode == BUILT_IN_FLOOR
217 || fcode == BUILT_IN_CEIL
218 || fcode == BUILT_IN_ROUND
219 || fcode == BUILT_IN_RINT
220 || fcode == BUILT_IN_TRUNC
221 || fcode == BUILT_IN_NEARBYINT)
222 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
223 {
224 tree fn = mathfn_built_in (type, fcode);
225
226 if (fn)
227 {
228 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr,
229 1)));
230 tree arglist = build_tree_list (NULL_TREE,
231 fold (convert_to_real (type, arg0)));
232
233 return build_function_call_expr (fn, arglist);
234 }
235 }
236
237 /* Propagate the cast into the operation. */
238 if (itype != type && FLOAT_TYPE_P (type))
239 switch (TREE_CODE (expr))
240 {
241 /* Convert (float)-x into -(float)x. This is always safe. */
242 case ABS_EXPR:
243 case NEGATE_EXPR:
244 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
245 return build1 (TREE_CODE (expr), type,
246 fold (convert_to_real (type,
247 TREE_OPERAND (expr, 0))));
248 break;
249 /* Convert (outertype)((innertype0)a+(innertype1)b)
250 into ((newtype)a+(newtype)b) where newtype
251 is the widest mode from all of these. */
252 case PLUS_EXPR:
253 case MINUS_EXPR:
254 case MULT_EXPR:
255 case RDIV_EXPR:
256 {
257 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
258 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
259
260 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
261 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
262 {
263 tree newtype = type;
264 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
265 newtype = TREE_TYPE (arg0);
266 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
267 newtype = TREE_TYPE (arg1);
268 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
269 {
270 expr = build2 (TREE_CODE (expr), newtype,
271 fold (convert_to_real (newtype, arg0)),
272 fold (convert_to_real (newtype, arg1)));
273 if (newtype == type)
274 return expr;
275 }
276 }
277 }
278 break;
279 default:
280 break;
281 }
282
283 switch (TREE_CODE (TREE_TYPE (expr)))
284 {
285 case REAL_TYPE:
286 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
287 type, expr);
288
289 case INTEGER_TYPE:
290 case ENUMERAL_TYPE:
291 case BOOLEAN_TYPE:
292 case CHAR_TYPE:
293 return build1 (FLOAT_EXPR, type, expr);
294
295 case COMPLEX_TYPE:
296 return convert (type,
297 fold (build1 (REALPART_EXPR,
298 TREE_TYPE (TREE_TYPE (expr)), expr)));
299
300 case POINTER_TYPE:
301 case REFERENCE_TYPE:
302 error ("pointer value used where a floating point value was expected");
303 return convert_to_real (type, integer_zero_node);
304
305 default:
306 error ("aggregate value used where a float was expected");
307 return convert_to_real (type, integer_zero_node);
308 }
309 }
310
311 /* Convert EXPR to some integer (or enum) type TYPE.
312
313 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
314 vector; in other cases error is called.
315
316 The result of this is always supposed to be a newly created tree node
317 not in use in any existing structure. */
318
319 tree
320 convert_to_integer (tree type, tree expr)
321 {
322 enum tree_code ex_form = TREE_CODE (expr);
323 tree intype = TREE_TYPE (expr);
324 unsigned int inprec = TYPE_PRECISION (intype);
325 unsigned int outprec = TYPE_PRECISION (type);
326
327 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
328 be. Consider `enum E = { a, b = (enum E) 3 };'. */
329 if (!COMPLETE_TYPE_P (type))
330 {
331 error ("conversion to incomplete type");
332 return error_mark_node;
333 }
334
335 /* Convert e.g. (long)round(d) -> lround(d). */
336 /* If we're converting to char, we may encounter differing behavior
337 between converting from double->char vs double->long->char.
338 We're in "undefined" territory but we prefer to be conservative,
339 so only proceed in "unsafe" math mode. */
340 if (optimize
341 && (flag_unsafe_math_optimizations
342 || (long_integer_type_node
343 && outprec >= TYPE_PRECISION (long_integer_type_node))))
344 {
345 tree s_expr = strip_float_extensions (expr);
346 tree s_intype = TREE_TYPE (s_expr);
347 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
348 tree fn = 0;
349
350 switch (fcode)
351 {
352 case BUILT_IN_FLOOR: case BUILT_IN_FLOORF: case BUILT_IN_FLOORL:
353 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
354 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
355 else
356 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
357 break;
358
359 case BUILT_IN_ROUND: case BUILT_IN_ROUNDF: case BUILT_IN_ROUNDL:
360 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
361 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
362 else
363 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
364 break;
365
366 case BUILT_IN_RINT: case BUILT_IN_RINTF: case BUILT_IN_RINTL:
367 /* Only convert rint* if we can ignore math exceptions. */
368 if (flag_trapping_math)
369 break;
370 /* ... Fall through ... */
371 case BUILT_IN_NEARBYINT: case BUILT_IN_NEARBYINTF: case BUILT_IN_NEARBYINTL:
372 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
373 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
374 else
375 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
376 break;
377 default:
378 break;
379 }
380
381 if (fn)
382 {
383 tree arglist = TREE_OPERAND (s_expr, 1);
384 tree newexpr = build_function_call_expr (fn, arglist);
385 return convert_to_integer (type, newexpr);
386 }
387 }
388
389 switch (TREE_CODE (intype))
390 {
391 case POINTER_TYPE:
392 case REFERENCE_TYPE:
393 if (integer_zerop (expr))
394 expr = integer_zero_node;
395 else
396 expr = fold (build1 (CONVERT_EXPR,
397 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
398 expr));
399
400 return convert_to_integer (type, expr);
401
402 case INTEGER_TYPE:
403 case ENUMERAL_TYPE:
404 case BOOLEAN_TYPE:
405 case CHAR_TYPE:
406 /* If this is a logical operation, which just returns 0 or 1, we can
407 change the type of the expression. */
408
409 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
410 {
411 expr = copy_node (expr);
412 TREE_TYPE (expr) = type;
413 return expr;
414 }
415
416 /* If we are widening the type, put in an explicit conversion.
417 Similarly if we are not changing the width. After this, we know
418 we are truncating EXPR. */
419
420 else if (outprec >= inprec)
421 {
422 enum tree_code code;
423
424 /* If the precision of the EXPR's type is K bits and the
425 destination mode has more bits, and the sign is changing,
426 it is not safe to use a NOP_EXPR. For example, suppose
427 that EXPR's type is a 3-bit unsigned integer type, the
428 TYPE is a 3-bit signed integer type, and the machine mode
429 for the types is 8-bit QImode. In that case, the
430 conversion necessitates an explicit sign-extension. In
431 the signed-to-unsigned case the high-order bits have to
432 be cleared. */
433 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
434 && (TYPE_PRECISION (TREE_TYPE (expr))
435 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
436 code = CONVERT_EXPR;
437 else
438 code = NOP_EXPR;
439
440 return build1 (code, type, expr);
441 }
442
443 /* If TYPE is an enumeral type or a type with a precision less
444 than the number of bits in its mode, do the conversion to the
445 type corresponding to its mode, then do a nop conversion
446 to TYPE. */
447 else if (TREE_CODE (type) == ENUMERAL_TYPE
448 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
449 return build1 (NOP_EXPR, type,
450 convert (lang_hooks.types.type_for_mode
451 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
452 expr));
453
454 /* Here detect when we can distribute the truncation down past some
455 arithmetic. For example, if adding two longs and converting to an
456 int, we can equally well convert both to ints and then add.
457 For the operations handled here, such truncation distribution
458 is always safe.
459 It is desirable in these cases:
460 1) when truncating down to full-word from a larger size
461 2) when truncating takes no work.
462 3) when at least one operand of the arithmetic has been extended
463 (as by C's default conversions). In this case we need two conversions
464 if we do the arithmetic as already requested, so we might as well
465 truncate both and then combine. Perhaps that way we need only one.
466
467 Note that in general we cannot do the arithmetic in a type
468 shorter than the desired result of conversion, even if the operands
469 are both extended from a shorter type, because they might overflow
470 if combined in that type. The exceptions to this--the times when
471 two narrow values can be combined in their narrow type even to
472 make a wider result--are handled by "shorten" in build_binary_op. */
473
474 switch (ex_form)
475 {
476 case RSHIFT_EXPR:
477 /* We can pass truncation down through right shifting
478 when the shift count is a nonpositive constant. */
479 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
480 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
481 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
482 integer_one_node)))
483 goto trunc1;
484 break;
485
486 case LSHIFT_EXPR:
487 /* We can pass truncation down through left shifting
488 when the shift count is a nonnegative constant and
489 the target type is unsigned. */
490 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
491 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
492 && TYPE_UNSIGNED (type)
493 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
494 {
495 /* If shift count is less than the width of the truncated type,
496 really shift. */
497 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
498 /* In this case, shifting is like multiplication. */
499 goto trunc1;
500 else
501 {
502 /* If it is >= that width, result is zero.
503 Handling this with trunc1 would give the wrong result:
504 (int) ((long long) a << 32) is well defined (as 0)
505 but (int) a << 32 is undefined and would get a
506 warning. */
507
508 tree t = convert_to_integer (type, integer_zero_node);
509
510 /* If the original expression had side-effects, we must
511 preserve it. */
512 if (TREE_SIDE_EFFECTS (expr))
513 return build2 (COMPOUND_EXPR, type, expr, t);
514 else
515 return t;
516 }
517 }
518 break;
519
520 case MAX_EXPR:
521 case MIN_EXPR:
522 case MULT_EXPR:
523 {
524 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
525 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
526
527 /* Don't distribute unless the output precision is at least as big
528 as the actual inputs. Otherwise, the comparison of the
529 truncated values will be wrong. */
530 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
531 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
532 /* If signedness of arg0 and arg1 don't match,
533 we can't necessarily find a type to compare them in. */
534 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
535 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
536 goto trunc1;
537 break;
538 }
539
540 case PLUS_EXPR:
541 case MINUS_EXPR:
542 case BIT_AND_EXPR:
543 case BIT_IOR_EXPR:
544 case BIT_XOR_EXPR:
545 trunc1:
546 {
547 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
548 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
549
550 if (outprec >= BITS_PER_WORD
551 || TRULY_NOOP_TRUNCATION (outprec, inprec)
552 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
553 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
554 {
555 /* Do the arithmetic in type TYPEX,
556 then convert result to TYPE. */
557 tree typex = type;
558
559 /* Can't do arithmetic in enumeral types
560 so use an integer type that will hold the values. */
561 if (TREE_CODE (typex) == ENUMERAL_TYPE)
562 typex = lang_hooks.types.type_for_size
563 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
564
565 /* But now perhaps TYPEX is as wide as INPREC.
566 In that case, do nothing special here.
567 (Otherwise would recurse infinitely in convert. */
568 if (TYPE_PRECISION (typex) != inprec)
569 {
570 /* Don't do unsigned arithmetic where signed was wanted,
571 or vice versa.
572 Exception: if both of the original operands were
573 unsigned then we can safely do the work as unsigned.
574 Exception: shift operations take their type solely
575 from the first argument.
576 Exception: the LSHIFT_EXPR case above requires that
577 we perform this operation unsigned lest we produce
578 signed-overflow undefinedness.
579 And we may need to do it as unsigned
580 if we truncate to the original size. */
581 if (TYPE_UNSIGNED (TREE_TYPE (expr))
582 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
583 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
584 || ex_form == LSHIFT_EXPR
585 || ex_form == RSHIFT_EXPR
586 || ex_form == LROTATE_EXPR
587 || ex_form == RROTATE_EXPR))
588 || ex_form == LSHIFT_EXPR)
589 typex = lang_hooks.types.unsigned_type (typex);
590 else
591 typex = lang_hooks.types.signed_type (typex);
592 return convert (type,
593 fold (build2 (ex_form, typex,
594 convert (typex, arg0),
595 convert (typex, arg1))));
596 }
597 }
598 }
599 break;
600
601 case NEGATE_EXPR:
602 case BIT_NOT_EXPR:
603 /* This is not correct for ABS_EXPR,
604 since we must test the sign before truncation. */
605 {
606 tree typex = type;
607
608 /* Can't do arithmetic in enumeral types
609 so use an integer type that will hold the values. */
610 if (TREE_CODE (typex) == ENUMERAL_TYPE)
611 typex = lang_hooks.types.type_for_size
612 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
613
614 /* But now perhaps TYPEX is as wide as INPREC.
615 In that case, do nothing special here.
616 (Otherwise would recurse infinitely in convert. */
617 if (TYPE_PRECISION (typex) != inprec)
618 {
619 /* Don't do unsigned arithmetic where signed was wanted,
620 or vice versa. */
621 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
622 typex = lang_hooks.types.unsigned_type (typex);
623 else
624 typex = lang_hooks.types.signed_type (typex);
625 return convert (type,
626 fold (build1 (ex_form, typex,
627 convert (typex,
628 TREE_OPERAND (expr, 0)))));
629 }
630 }
631
632 case NOP_EXPR:
633 /* Don't introduce a
634 "can't convert between vector values of different size" error. */
635 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
636 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
637 != GET_MODE_SIZE (TYPE_MODE (type))))
638 break;
639 /* If truncating after truncating, might as well do all at once.
640 If truncating after extending, we may get rid of wasted work. */
641 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
642
643 case COND_EXPR:
644 /* It is sometimes worthwhile to push the narrowing down through
645 the conditional and never loses. */
646 return fold (build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
647 convert (type, TREE_OPERAND (expr, 1)),
648 convert (type, TREE_OPERAND (expr, 2))));
649
650 default:
651 break;
652 }
653
654 return build1 (CONVERT_EXPR, type, expr);
655
656 case REAL_TYPE:
657 return build1 (FIX_TRUNC_EXPR, type, expr);
658
659 case COMPLEX_TYPE:
660 return convert (type,
661 fold (build1 (REALPART_EXPR,
662 TREE_TYPE (TREE_TYPE (expr)), expr)));
663
664 case VECTOR_TYPE:
665 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
666 {
667 error ("can't convert between vector values of different size");
668 return error_mark_node;
669 }
670 return build1 (NOP_EXPR, type, expr);
671
672 default:
673 error ("aggregate value used where an integer was expected");
674 return convert (type, integer_zero_node);
675 }
676 }
677
678 /* Convert EXPR to the complex type TYPE in the usual ways. */
679
680 tree
681 convert_to_complex (tree type, tree expr)
682 {
683 tree subtype = TREE_TYPE (type);
684
685 switch (TREE_CODE (TREE_TYPE (expr)))
686 {
687 case REAL_TYPE:
688 case INTEGER_TYPE:
689 case ENUMERAL_TYPE:
690 case BOOLEAN_TYPE:
691 case CHAR_TYPE:
692 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
693 convert (subtype, integer_zero_node));
694
695 case COMPLEX_TYPE:
696 {
697 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
698
699 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
700 return expr;
701 else if (TREE_CODE (expr) == COMPLEX_EXPR)
702 return fold (build2 (COMPLEX_EXPR, type,
703 convert (subtype, TREE_OPERAND (expr, 0)),
704 convert (subtype, TREE_OPERAND (expr, 1))));
705 else
706 {
707 expr = save_expr (expr);
708 return
709 fold (build2 (COMPLEX_EXPR, type,
710 convert (subtype,
711 fold (build1 (REALPART_EXPR,
712 TREE_TYPE (TREE_TYPE (expr)),
713 expr))),
714 convert (subtype,
715 fold (build1 (IMAGPART_EXPR,
716 TREE_TYPE (TREE_TYPE (expr)),
717 expr)))));
718 }
719 }
720
721 case POINTER_TYPE:
722 case REFERENCE_TYPE:
723 error ("pointer value used where a complex was expected");
724 return convert_to_complex (type, integer_zero_node);
725
726 default:
727 error ("aggregate value used where a complex was expected");
728 return convert_to_complex (type, integer_zero_node);
729 }
730 }
731
732 /* Convert EXPR to the vector type TYPE in the usual ways. */
733
734 tree
735 convert_to_vector (tree type, tree expr)
736 {
737 switch (TREE_CODE (TREE_TYPE (expr)))
738 {
739 case INTEGER_TYPE:
740 case VECTOR_TYPE:
741 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
742 {
743 error ("can't convert between vector values of different size");
744 return error_mark_node;
745 }
746 return build1 (NOP_EXPR, type, expr);
747
748 default:
749 error ("can't convert value to a vector");
750 return error_mark_node;
751 }
752 }