* builtins.def (BUILT_IN_LCEIL, BUILT_IN_LCEILF, BUILT_IN_LCEILL)
[gcc.git] / gcc / convert.c
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
37
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
40
41 tree
42 convert_to_pointer (tree type, tree expr)
43 {
44 if (integer_zerop (expr))
45 {
46 expr = build_int_cst (type, 0);
47 return expr;
48 }
49
50 switch (TREE_CODE (TREE_TYPE (expr)))
51 {
52 case POINTER_TYPE:
53 case REFERENCE_TYPE:
54 return build1 (NOP_EXPR, type, expr);
55
56 case INTEGER_TYPE:
57 case ENUMERAL_TYPE:
58 case BOOLEAN_TYPE:
59 case CHAR_TYPE:
60 if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
61 return build1 (CONVERT_EXPR, type, expr);
62
63 return
64 convert_to_pointer (type,
65 convert (lang_hooks.types.type_for_size
66 (POINTER_SIZE, 0), expr));
67
68 default:
69 error ("cannot convert to a pointer type");
70 return convert_to_pointer (type, integer_zero_node);
71 }
72 }
73
74 /* Avoid any floating point extensions from EXP. */
75 tree
76 strip_float_extensions (tree exp)
77 {
78 tree sub, expt, subt;
79
80 /* For floating point constant look up the narrowest type that can hold
81 it properly and handle it like (type)(narrowest_type)constant.
82 This way we can optimize for instance a=a*2.0 where "a" is float
83 but 2.0 is double constant. */
84 if (TREE_CODE (exp) == REAL_CST)
85 {
86 REAL_VALUE_TYPE orig;
87 tree type = NULL;
88
89 orig = TREE_REAL_CST (exp);
90 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
91 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
92 type = float_type_node;
93 else if (TYPE_PRECISION (TREE_TYPE (exp))
94 > TYPE_PRECISION (double_type_node)
95 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
96 type = double_type_node;
97 if (type)
98 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
99 }
100
101 if (TREE_CODE (exp) != NOP_EXPR
102 && TREE_CODE (exp) != CONVERT_EXPR)
103 return exp;
104
105 sub = TREE_OPERAND (exp, 0);
106 subt = TREE_TYPE (sub);
107 expt = TREE_TYPE (exp);
108
109 if (!FLOAT_TYPE_P (subt))
110 return exp;
111
112 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
113 return exp;
114
115 return strip_float_extensions (sub);
116 }
117
118
119 /* Convert EXPR to some floating-point type TYPE.
120
121 EXPR must be float, integer, or enumeral;
122 in other cases error is called. */
123
124 tree
125 convert_to_real (tree type, tree expr)
126 {
127 enum built_in_function fcode = builtin_mathfn_code (expr);
128 tree itype = TREE_TYPE (expr);
129
130 /* Disable until we figure out how to decide whether the functions are
131 present in runtime. */
132 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
133 if (optimize
134 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
135 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
136 {
137 switch (fcode)
138 {
139 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
140 CASE_MATHFN (ACOS)
141 CASE_MATHFN (ACOSH)
142 CASE_MATHFN (ASIN)
143 CASE_MATHFN (ASINH)
144 CASE_MATHFN (ATAN)
145 CASE_MATHFN (ATANH)
146 CASE_MATHFN (CBRT)
147 CASE_MATHFN (COS)
148 CASE_MATHFN (COSH)
149 CASE_MATHFN (ERF)
150 CASE_MATHFN (ERFC)
151 CASE_MATHFN (EXP)
152 CASE_MATHFN (EXP10)
153 CASE_MATHFN (EXP2)
154 CASE_MATHFN (EXPM1)
155 CASE_MATHFN (FABS)
156 CASE_MATHFN (GAMMA)
157 CASE_MATHFN (J0)
158 CASE_MATHFN (J1)
159 CASE_MATHFN (LGAMMA)
160 CASE_MATHFN (LOG)
161 CASE_MATHFN (LOG10)
162 CASE_MATHFN (LOG1P)
163 CASE_MATHFN (LOG2)
164 CASE_MATHFN (LOGB)
165 CASE_MATHFN (POW10)
166 CASE_MATHFN (SIN)
167 CASE_MATHFN (SINH)
168 CASE_MATHFN (SQRT)
169 CASE_MATHFN (TAN)
170 CASE_MATHFN (TANH)
171 CASE_MATHFN (TGAMMA)
172 CASE_MATHFN (Y0)
173 CASE_MATHFN (Y1)
174 #undef CASE_MATHFN
175 {
176 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
177 tree newtype = type;
178
179 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
180 the both as the safe type for operation. */
181 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
182 newtype = TREE_TYPE (arg0);
183
184 /* Be careful about integer to fp conversions.
185 These may overflow still. */
186 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
187 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
188 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
189 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
190 {
191 tree arglist;
192 tree fn = mathfn_built_in (newtype, fcode);
193
194 if (fn)
195 {
196 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
197 expr = build_function_call_expr (fn, arglist);
198 if (newtype == type)
199 return expr;
200 }
201 }
202 }
203 default:
204 break;
205 }
206 }
207 if (optimize
208 && (((fcode == BUILT_IN_FLOORL
209 || fcode == BUILT_IN_CEILL
210 || fcode == BUILT_IN_ROUNDL
211 || fcode == BUILT_IN_RINTL
212 || fcode == BUILT_IN_TRUNCL
213 || fcode == BUILT_IN_NEARBYINTL)
214 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
215 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
216 || ((fcode == BUILT_IN_FLOOR
217 || fcode == BUILT_IN_CEIL
218 || fcode == BUILT_IN_ROUND
219 || fcode == BUILT_IN_RINT
220 || fcode == BUILT_IN_TRUNC
221 || fcode == BUILT_IN_NEARBYINT)
222 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
223 {
224 tree fn = mathfn_built_in (type, fcode);
225
226 if (fn)
227 {
228 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr,
229 1)));
230 tree arglist = build_tree_list (NULL_TREE,
231 fold (convert_to_real (type, arg0)));
232
233 return build_function_call_expr (fn, arglist);
234 }
235 }
236
237 /* Propagate the cast into the operation. */
238 if (itype != type && FLOAT_TYPE_P (type))
239 switch (TREE_CODE (expr))
240 {
241 /* Convert (float)-x into -(float)x. This is always safe. */
242 case ABS_EXPR:
243 case NEGATE_EXPR:
244 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
245 return build1 (TREE_CODE (expr), type,
246 fold (convert_to_real (type,
247 TREE_OPERAND (expr, 0))));
248 break;
249 /* Convert (outertype)((innertype0)a+(innertype1)b)
250 into ((newtype)a+(newtype)b) where newtype
251 is the widest mode from all of these. */
252 case PLUS_EXPR:
253 case MINUS_EXPR:
254 case MULT_EXPR:
255 case RDIV_EXPR:
256 {
257 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
258 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
259
260 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
261 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
262 {
263 tree newtype = type;
264 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
265 newtype = TREE_TYPE (arg0);
266 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
267 newtype = TREE_TYPE (arg1);
268 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
269 {
270 expr = build2 (TREE_CODE (expr), newtype,
271 fold (convert_to_real (newtype, arg0)),
272 fold (convert_to_real (newtype, arg1)));
273 if (newtype == type)
274 return expr;
275 }
276 }
277 }
278 break;
279 default:
280 break;
281 }
282
283 switch (TREE_CODE (TREE_TYPE (expr)))
284 {
285 case REAL_TYPE:
286 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
287 type, expr);
288
289 case INTEGER_TYPE:
290 case ENUMERAL_TYPE:
291 case BOOLEAN_TYPE:
292 case CHAR_TYPE:
293 return build1 (FLOAT_EXPR, type, expr);
294
295 case COMPLEX_TYPE:
296 return convert (type,
297 fold (build1 (REALPART_EXPR,
298 TREE_TYPE (TREE_TYPE (expr)), expr)));
299
300 case POINTER_TYPE:
301 case REFERENCE_TYPE:
302 error ("pointer value used where a floating point value was expected");
303 return convert_to_real (type, integer_zero_node);
304
305 default:
306 error ("aggregate value used where a float was expected");
307 return convert_to_real (type, integer_zero_node);
308 }
309 }
310
311 /* Convert EXPR to some integer (or enum) type TYPE.
312
313 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
314 vector; in other cases error is called.
315
316 The result of this is always supposed to be a newly created tree node
317 not in use in any existing structure. */
318
319 tree
320 convert_to_integer (tree type, tree expr)
321 {
322 enum tree_code ex_form = TREE_CODE (expr);
323 tree intype = TREE_TYPE (expr);
324 unsigned int inprec = TYPE_PRECISION (intype);
325 unsigned int outprec = TYPE_PRECISION (type);
326
327 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
328 be. Consider `enum E = { a, b = (enum E) 3 };'. */
329 if (!COMPLETE_TYPE_P (type))
330 {
331 error ("conversion to incomplete type");
332 return error_mark_node;
333 }
334
335 /* Convert e.g. (long)round(d) -> lround(d). */
336 /* If we're converting to char, we may encounter differing behavior
337 between converting from double->char vs double->long->char.
338 We're in "undefined" territory but we prefer to be conservative,
339 so only proceed in "unsafe" math mode. */
340 if (optimize
341 && (flag_unsafe_math_optimizations
342 || (long_integer_type_node
343 && outprec >= TYPE_PRECISION (long_integer_type_node))))
344 {
345 tree s_expr = strip_float_extensions (expr);
346 tree s_intype = TREE_TYPE (s_expr);
347 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
348 tree fn = 0;
349
350 switch (fcode)
351 {
352 case BUILT_IN_CEIL: case BUILT_IN_CEILF: case BUILT_IN_CEILL:
353 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
354 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
355 else
356 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
357 break;
358
359 case BUILT_IN_FLOOR: case BUILT_IN_FLOORF: case BUILT_IN_FLOORL:
360 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
361 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
362 else
363 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
364 break;
365
366 case BUILT_IN_ROUND: case BUILT_IN_ROUNDF: case BUILT_IN_ROUNDL:
367 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
368 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
369 else
370 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
371 break;
372
373 case BUILT_IN_RINT: case BUILT_IN_RINTF: case BUILT_IN_RINTL:
374 /* Only convert rint* if we can ignore math exceptions. */
375 if (flag_trapping_math)
376 break;
377 /* ... Fall through ... */
378 case BUILT_IN_NEARBYINT: case BUILT_IN_NEARBYINTF: case BUILT_IN_NEARBYINTL:
379 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
380 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
381 else
382 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
383 break;
384 default:
385 break;
386 }
387
388 if (fn)
389 {
390 tree arglist = TREE_OPERAND (s_expr, 1);
391 tree newexpr = build_function_call_expr (fn, arglist);
392 return convert_to_integer (type, newexpr);
393 }
394 }
395
396 switch (TREE_CODE (intype))
397 {
398 case POINTER_TYPE:
399 case REFERENCE_TYPE:
400 if (integer_zerop (expr))
401 expr = integer_zero_node;
402 else
403 expr = fold (build1 (CONVERT_EXPR,
404 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
405 expr));
406
407 return convert_to_integer (type, expr);
408
409 case INTEGER_TYPE:
410 case ENUMERAL_TYPE:
411 case BOOLEAN_TYPE:
412 case CHAR_TYPE:
413 /* If this is a logical operation, which just returns 0 or 1, we can
414 change the type of the expression. */
415
416 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
417 {
418 expr = copy_node (expr);
419 TREE_TYPE (expr) = type;
420 return expr;
421 }
422
423 /* If we are widening the type, put in an explicit conversion.
424 Similarly if we are not changing the width. After this, we know
425 we are truncating EXPR. */
426
427 else if (outprec >= inprec)
428 {
429 enum tree_code code;
430
431 /* If the precision of the EXPR's type is K bits and the
432 destination mode has more bits, and the sign is changing,
433 it is not safe to use a NOP_EXPR. For example, suppose
434 that EXPR's type is a 3-bit unsigned integer type, the
435 TYPE is a 3-bit signed integer type, and the machine mode
436 for the types is 8-bit QImode. In that case, the
437 conversion necessitates an explicit sign-extension. In
438 the signed-to-unsigned case the high-order bits have to
439 be cleared. */
440 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
441 && (TYPE_PRECISION (TREE_TYPE (expr))
442 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
443 code = CONVERT_EXPR;
444 else
445 code = NOP_EXPR;
446
447 return build1 (code, type, expr);
448 }
449
450 /* If TYPE is an enumeral type or a type with a precision less
451 than the number of bits in its mode, do the conversion to the
452 type corresponding to its mode, then do a nop conversion
453 to TYPE. */
454 else if (TREE_CODE (type) == ENUMERAL_TYPE
455 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
456 return build1 (NOP_EXPR, type,
457 convert (lang_hooks.types.type_for_mode
458 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
459 expr));
460
461 /* Here detect when we can distribute the truncation down past some
462 arithmetic. For example, if adding two longs and converting to an
463 int, we can equally well convert both to ints and then add.
464 For the operations handled here, such truncation distribution
465 is always safe.
466 It is desirable in these cases:
467 1) when truncating down to full-word from a larger size
468 2) when truncating takes no work.
469 3) when at least one operand of the arithmetic has been extended
470 (as by C's default conversions). In this case we need two conversions
471 if we do the arithmetic as already requested, so we might as well
472 truncate both and then combine. Perhaps that way we need only one.
473
474 Note that in general we cannot do the arithmetic in a type
475 shorter than the desired result of conversion, even if the operands
476 are both extended from a shorter type, because they might overflow
477 if combined in that type. The exceptions to this--the times when
478 two narrow values can be combined in their narrow type even to
479 make a wider result--are handled by "shorten" in build_binary_op. */
480
481 switch (ex_form)
482 {
483 case RSHIFT_EXPR:
484 /* We can pass truncation down through right shifting
485 when the shift count is a nonpositive constant. */
486 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
487 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
488 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
489 integer_one_node)))
490 goto trunc1;
491 break;
492
493 case LSHIFT_EXPR:
494 /* We can pass truncation down through left shifting
495 when the shift count is a nonnegative constant and
496 the target type is unsigned. */
497 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
498 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
499 && TYPE_UNSIGNED (type)
500 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
501 {
502 /* If shift count is less than the width of the truncated type,
503 really shift. */
504 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
505 /* In this case, shifting is like multiplication. */
506 goto trunc1;
507 else
508 {
509 /* If it is >= that width, result is zero.
510 Handling this with trunc1 would give the wrong result:
511 (int) ((long long) a << 32) is well defined (as 0)
512 but (int) a << 32 is undefined and would get a
513 warning. */
514
515 tree t = convert_to_integer (type, integer_zero_node);
516
517 /* If the original expression had side-effects, we must
518 preserve it. */
519 if (TREE_SIDE_EFFECTS (expr))
520 return build2 (COMPOUND_EXPR, type, expr, t);
521 else
522 return t;
523 }
524 }
525 break;
526
527 case MAX_EXPR:
528 case MIN_EXPR:
529 case MULT_EXPR:
530 {
531 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
532 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
533
534 /* Don't distribute unless the output precision is at least as big
535 as the actual inputs. Otherwise, the comparison of the
536 truncated values will be wrong. */
537 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
538 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
539 /* If signedness of arg0 and arg1 don't match,
540 we can't necessarily find a type to compare them in. */
541 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
542 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
543 goto trunc1;
544 break;
545 }
546
547 case PLUS_EXPR:
548 case MINUS_EXPR:
549 case BIT_AND_EXPR:
550 case BIT_IOR_EXPR:
551 case BIT_XOR_EXPR:
552 trunc1:
553 {
554 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
555 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
556
557 if (outprec >= BITS_PER_WORD
558 || TRULY_NOOP_TRUNCATION (outprec, inprec)
559 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
560 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
561 {
562 /* Do the arithmetic in type TYPEX,
563 then convert result to TYPE. */
564 tree typex = type;
565
566 /* Can't do arithmetic in enumeral types
567 so use an integer type that will hold the values. */
568 if (TREE_CODE (typex) == ENUMERAL_TYPE)
569 typex = lang_hooks.types.type_for_size
570 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
571
572 /* But now perhaps TYPEX is as wide as INPREC.
573 In that case, do nothing special here.
574 (Otherwise would recurse infinitely in convert. */
575 if (TYPE_PRECISION (typex) != inprec)
576 {
577 /* Don't do unsigned arithmetic where signed was wanted,
578 or vice versa.
579 Exception: if both of the original operands were
580 unsigned then we can safely do the work as unsigned.
581 Exception: shift operations take their type solely
582 from the first argument.
583 Exception: the LSHIFT_EXPR case above requires that
584 we perform this operation unsigned lest we produce
585 signed-overflow undefinedness.
586 And we may need to do it as unsigned
587 if we truncate to the original size. */
588 if (TYPE_UNSIGNED (TREE_TYPE (expr))
589 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
590 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
591 || ex_form == LSHIFT_EXPR
592 || ex_form == RSHIFT_EXPR
593 || ex_form == LROTATE_EXPR
594 || ex_form == RROTATE_EXPR))
595 || ex_form == LSHIFT_EXPR)
596 typex = lang_hooks.types.unsigned_type (typex);
597 else
598 typex = lang_hooks.types.signed_type (typex);
599 return convert (type,
600 fold (build2 (ex_form, typex,
601 convert (typex, arg0),
602 convert (typex, arg1))));
603 }
604 }
605 }
606 break;
607
608 case NEGATE_EXPR:
609 case BIT_NOT_EXPR:
610 /* This is not correct for ABS_EXPR,
611 since we must test the sign before truncation. */
612 {
613 tree typex = type;
614
615 /* Can't do arithmetic in enumeral types
616 so use an integer type that will hold the values. */
617 if (TREE_CODE (typex) == ENUMERAL_TYPE)
618 typex = lang_hooks.types.type_for_size
619 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
620
621 /* But now perhaps TYPEX is as wide as INPREC.
622 In that case, do nothing special here.
623 (Otherwise would recurse infinitely in convert. */
624 if (TYPE_PRECISION (typex) != inprec)
625 {
626 /* Don't do unsigned arithmetic where signed was wanted,
627 or vice versa. */
628 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
629 typex = lang_hooks.types.unsigned_type (typex);
630 else
631 typex = lang_hooks.types.signed_type (typex);
632 return convert (type,
633 fold (build1 (ex_form, typex,
634 convert (typex,
635 TREE_OPERAND (expr, 0)))));
636 }
637 }
638
639 case NOP_EXPR:
640 /* Don't introduce a
641 "can't convert between vector values of different size" error. */
642 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
643 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
644 != GET_MODE_SIZE (TYPE_MODE (type))))
645 break;
646 /* If truncating after truncating, might as well do all at once.
647 If truncating after extending, we may get rid of wasted work. */
648 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
649
650 case COND_EXPR:
651 /* It is sometimes worthwhile to push the narrowing down through
652 the conditional and never loses. */
653 return fold (build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
654 convert (type, TREE_OPERAND (expr, 1)),
655 convert (type, TREE_OPERAND (expr, 2))));
656
657 default:
658 break;
659 }
660
661 return build1 (CONVERT_EXPR, type, expr);
662
663 case REAL_TYPE:
664 return build1 (FIX_TRUNC_EXPR, type, expr);
665
666 case COMPLEX_TYPE:
667 return convert (type,
668 fold (build1 (REALPART_EXPR,
669 TREE_TYPE (TREE_TYPE (expr)), expr)));
670
671 case VECTOR_TYPE:
672 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
673 {
674 error ("can't convert between vector values of different size");
675 return error_mark_node;
676 }
677 return build1 (NOP_EXPR, type, expr);
678
679 default:
680 error ("aggregate value used where an integer was expected");
681 return convert (type, integer_zero_node);
682 }
683 }
684
685 /* Convert EXPR to the complex type TYPE in the usual ways. */
686
687 tree
688 convert_to_complex (tree type, tree expr)
689 {
690 tree subtype = TREE_TYPE (type);
691
692 switch (TREE_CODE (TREE_TYPE (expr)))
693 {
694 case REAL_TYPE:
695 case INTEGER_TYPE:
696 case ENUMERAL_TYPE:
697 case BOOLEAN_TYPE:
698 case CHAR_TYPE:
699 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
700 convert (subtype, integer_zero_node));
701
702 case COMPLEX_TYPE:
703 {
704 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
705
706 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
707 return expr;
708 else if (TREE_CODE (expr) == COMPLEX_EXPR)
709 return fold (build2 (COMPLEX_EXPR, type,
710 convert (subtype, TREE_OPERAND (expr, 0)),
711 convert (subtype, TREE_OPERAND (expr, 1))));
712 else
713 {
714 expr = save_expr (expr);
715 return
716 fold (build2 (COMPLEX_EXPR, type,
717 convert (subtype,
718 fold (build1 (REALPART_EXPR,
719 TREE_TYPE (TREE_TYPE (expr)),
720 expr))),
721 convert (subtype,
722 fold (build1 (IMAGPART_EXPR,
723 TREE_TYPE (TREE_TYPE (expr)),
724 expr)))));
725 }
726 }
727
728 case POINTER_TYPE:
729 case REFERENCE_TYPE:
730 error ("pointer value used where a complex was expected");
731 return convert_to_complex (type, integer_zero_node);
732
733 default:
734 error ("aggregate value used where a complex was expected");
735 return convert_to_complex (type, integer_zero_node);
736 }
737 }
738
739 /* Convert EXPR to the vector type TYPE in the usual ways. */
740
741 tree
742 convert_to_vector (tree type, tree expr)
743 {
744 switch (TREE_CODE (TREE_TYPE (expr)))
745 {
746 case INTEGER_TYPE:
747 case VECTOR_TYPE:
748 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
749 {
750 error ("can't convert between vector values of different size");
751 return error_mark_node;
752 }
753 return build1 (NOP_EXPR, type, expr);
754
755 default:
756 error ("can't convert value to a vector");
757 return error_mark_node;
758 }
759 }