re PR c++/42217 (ICE with zero-length bit-field)
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38 #include "cgraph.h"
39 #include "tree-dump.h"
40
41 /* The number of nested classes being processed. If we are not in the
42 scope of any class, this is zero. */
43
44 int current_class_depth;
45
46 /* In order to deal with nested classes, we keep a stack of classes.
47 The topmost entry is the innermost class, and is the entry at index
48 CURRENT_CLASS_DEPTH */
49
50 typedef struct class_stack_node {
51 /* The name of the class. */
52 tree name;
53
54 /* The _TYPE node for the class. */
55 tree type;
56
57 /* The access specifier pending for new declarations in the scope of
58 this class. */
59 tree access;
60
61 /* If were defining TYPE, the names used in this class. */
62 splay_tree names_used;
63
64 /* Nonzero if this class is no longer open, because of a call to
65 push_to_top_level. */
66 size_t hidden;
67 }* class_stack_node_t;
68
69 typedef struct vtbl_init_data_s
70 {
71 /* The base for which we're building initializers. */
72 tree binfo;
73 /* The type of the most-derived type. */
74 tree derived;
75 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
76 unless ctor_vtbl_p is true. */
77 tree rtti_binfo;
78 /* The negative-index vtable initializers built up so far. These
79 are in order from least negative index to most negative index. */
80 tree inits;
81 /* The last (i.e., most negative) entry in INITS. */
82 tree* last_init;
83 /* The binfo for the virtual base for which we're building
84 vcall offset initializers. */
85 tree vbase;
86 /* The functions in vbase for which we have already provided vcall
87 offsets. */
88 VEC(tree,gc) *fns;
89 /* The vtable index of the next vcall or vbase offset. */
90 tree index;
91 /* Nonzero if we are building the initializer for the primary
92 vtable. */
93 int primary_vtbl_p;
94 /* Nonzero if we are building the initializer for a construction
95 vtable. */
96 int ctor_vtbl_p;
97 /* True when adding vcall offset entries to the vtable. False when
98 merely computing the indices. */
99 bool generate_vcall_entries;
100 } vtbl_init_data;
101
102 /* The type of a function passed to walk_subobject_offsets. */
103 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
104
105 /* The stack itself. This is a dynamically resized array. The
106 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
107 static int current_class_stack_size;
108 static class_stack_node_t current_class_stack;
109
110 /* The size of the largest empty class seen in this translation unit. */
111 static GTY (()) tree sizeof_biggest_empty_class;
112
113 /* An array of all local classes present in this translation unit, in
114 declaration order. */
115 VEC(tree,gc) *local_classes;
116
117 static tree get_vfield_name (tree);
118 static void finish_struct_anon (tree);
119 static tree get_vtable_name (tree);
120 static tree get_basefndecls (tree, tree);
121 static int build_primary_vtable (tree, tree);
122 static int build_secondary_vtable (tree);
123 static void finish_vtbls (tree);
124 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
125 static void finish_struct_bits (tree);
126 static int alter_access (tree, tree, tree);
127 static void handle_using_decl (tree, tree);
128 static tree dfs_modify_vtables (tree, void *);
129 static tree modify_all_vtables (tree, tree);
130 static void determine_primary_bases (tree);
131 static void finish_struct_methods (tree);
132 static void maybe_warn_about_overly_private_class (tree);
133 static int method_name_cmp (const void *, const void *);
134 static int resort_method_name_cmp (const void *, const void *);
135 static void add_implicitly_declared_members (tree, int, int);
136 static tree fixed_type_or_null (tree, int *, int *);
137 static tree build_simple_base_path (tree expr, tree binfo);
138 static tree build_vtbl_ref_1 (tree, tree);
139 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
140 static int count_fields (tree);
141 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
142 static bool check_bitfield_decl (tree);
143 static void check_field_decl (tree, tree, int *, int *, int *);
144 static void check_field_decls (tree, tree *, int *, int *);
145 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
146 static void build_base_fields (record_layout_info, splay_tree, tree *);
147 static void check_methods (tree);
148 static void remove_zero_width_bit_fields (tree);
149 static void check_bases (tree, int *, int *);
150 static void check_bases_and_members (tree);
151 static tree create_vtable_ptr (tree, tree *);
152 static void include_empty_classes (record_layout_info);
153 static void layout_class_type (tree, tree *);
154 static void propagate_binfo_offsets (tree, tree);
155 static void layout_virtual_bases (record_layout_info, splay_tree);
156 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
157 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
158 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
159 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
160 static void add_vcall_offset (tree, tree, vtbl_init_data *);
161 static void layout_vtable_decl (tree, int);
162 static tree dfs_find_final_overrider_pre (tree, void *);
163 static tree dfs_find_final_overrider_post (tree, void *);
164 static tree find_final_overrider (tree, tree, tree);
165 static int make_new_vtable (tree, tree);
166 static tree get_primary_binfo (tree);
167 static int maybe_indent_hierarchy (FILE *, int, int);
168 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
169 static void dump_class_hierarchy (tree);
170 static void dump_class_hierarchy_1 (FILE *, int, tree);
171 static void dump_array (FILE *, tree);
172 static void dump_vtable (tree, tree, tree);
173 static void dump_vtt (tree, tree);
174 static void dump_thunk (FILE *, int, tree);
175 static tree build_vtable (tree, tree, tree);
176 static void initialize_vtable (tree, tree);
177 static void layout_nonempty_base_or_field (record_layout_info,
178 tree, tree, splay_tree);
179 static tree end_of_class (tree, int);
180 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
181 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
182 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
183 tree);
184 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
185 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
186 static void clone_constructors_and_destructors (tree);
187 static tree build_clone (tree, tree);
188 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
189 static void build_ctor_vtbl_group (tree, tree);
190 static void build_vtt (tree);
191 static tree binfo_ctor_vtable (tree);
192 static tree *build_vtt_inits (tree, tree, tree *, tree *);
193 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
194 static tree dfs_fixup_binfo_vtbls (tree, void *);
195 static int record_subobject_offset (tree, tree, splay_tree);
196 static int check_subobject_offset (tree, tree, splay_tree);
197 static int walk_subobject_offsets (tree, subobject_offset_fn,
198 tree, splay_tree, tree, int);
199 static void record_subobject_offsets (tree, tree, splay_tree, bool);
200 static int layout_conflict_p (tree, tree, splay_tree, int);
201 static int splay_tree_compare_integer_csts (splay_tree_key k1,
202 splay_tree_key k2);
203 static void warn_about_ambiguous_bases (tree);
204 static bool type_requires_array_cookie (tree);
205 static bool contains_empty_class_p (tree);
206 static bool base_derived_from (tree, tree);
207 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
208 static tree end_of_base (tree);
209 static tree get_vcall_index (tree, tree);
210
211 /* Variables shared between class.c and call.c. */
212
213 #ifdef GATHER_STATISTICS
214 int n_vtables = 0;
215 int n_vtable_entries = 0;
216 int n_vtable_searches = 0;
217 int n_vtable_elems = 0;
218 int n_convert_harshness = 0;
219 int n_compute_conversion_costs = 0;
220 int n_inner_fields_searched = 0;
221 #endif
222
223 /* Convert to or from a base subobject. EXPR is an expression of type
224 `A' or `A*', an expression of type `B' or `B*' is returned. To
225 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
226 the B base instance within A. To convert base A to derived B, CODE
227 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
228 In this latter case, A must not be a morally virtual base of B.
229 NONNULL is true if EXPR is known to be non-NULL (this is only
230 needed when EXPR is of pointer type). CV qualifiers are preserved
231 from EXPR. */
232
233 tree
234 build_base_path (enum tree_code code,
235 tree expr,
236 tree binfo,
237 int nonnull)
238 {
239 tree v_binfo = NULL_TREE;
240 tree d_binfo = NULL_TREE;
241 tree probe;
242 tree offset;
243 tree target_type;
244 tree null_test = NULL;
245 tree ptr_target_type;
246 int fixed_type_p;
247 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
248 bool has_empty = false;
249 bool virtual_access;
250
251 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
252 return error_mark_node;
253
254 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
255 {
256 d_binfo = probe;
257 if (is_empty_class (BINFO_TYPE (probe)))
258 has_empty = true;
259 if (!v_binfo && BINFO_VIRTUAL_P (probe))
260 v_binfo = probe;
261 }
262
263 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
264 if (want_pointer)
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
266
267 gcc_assert ((code == MINUS_EXPR
268 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
269 || (code == PLUS_EXPR
270 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
271
272 if (binfo == d_binfo)
273 /* Nothing to do. */
274 return expr;
275
276 if (code == MINUS_EXPR && v_binfo)
277 {
278 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
279 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
280 return error_mark_node;
281 }
282
283 if (!want_pointer)
284 /* This must happen before the call to save_expr. */
285 expr = cp_build_unary_op (ADDR_EXPR, expr, 0, tf_warning_or_error);
286
287 offset = BINFO_OFFSET (binfo);
288 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
289 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
290
291 /* Do we need to look in the vtable for the real offset? */
292 virtual_access = (v_binfo && fixed_type_p <= 0);
293
294 /* Don't bother with the calculations inside sizeof; they'll ICE if the
295 source type is incomplete and the pointer value doesn't matter. */
296 if (cp_unevaluated_operand != 0)
297 {
298 expr = build_nop (build_pointer_type (target_type), expr);
299 if (!want_pointer)
300 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, NULL);
301 return expr;
302 }
303
304 /* Do we need to check for a null pointer? */
305 if (want_pointer && !nonnull)
306 {
307 /* If we know the conversion will not actually change the value
308 of EXPR, then we can avoid testing the expression for NULL.
309 We have to avoid generating a COMPONENT_REF for a base class
310 field, because other parts of the compiler know that such
311 expressions are always non-NULL. */
312 if (!virtual_access && integer_zerop (offset))
313 {
314 tree class_type;
315 /* TARGET_TYPE has been extracted from BINFO, and, is
316 therefore always cv-unqualified. Extract the
317 cv-qualifiers from EXPR so that the expression returned
318 matches the input. */
319 class_type = TREE_TYPE (TREE_TYPE (expr));
320 target_type
321 = cp_build_qualified_type (target_type,
322 cp_type_quals (class_type));
323 return build_nop (build_pointer_type (target_type), expr);
324 }
325 null_test = error_mark_node;
326 }
327
328 /* Protect against multiple evaluation if necessary. */
329 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
330 expr = save_expr (expr);
331
332 /* Now that we've saved expr, build the real null test. */
333 if (null_test)
334 {
335 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
336 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
337 expr, zero);
338 }
339
340 /* If this is a simple base reference, express it as a COMPONENT_REF. */
341 if (code == PLUS_EXPR && !virtual_access
342 /* We don't build base fields for empty bases, and they aren't very
343 interesting to the optimizers anyway. */
344 && !has_empty)
345 {
346 expr = cp_build_indirect_ref (expr, NULL, tf_warning_or_error);
347 expr = build_simple_base_path (expr, binfo);
348 if (want_pointer)
349 expr = build_address (expr);
350 target_type = TREE_TYPE (expr);
351 goto out;
352 }
353
354 if (virtual_access)
355 {
356 /* Going via virtual base V_BINFO. We need the static offset
357 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
358 V_BINFO. That offset is an entry in D_BINFO's vtable. */
359 tree v_offset;
360
361 if (fixed_type_p < 0 && in_base_initializer)
362 {
363 /* In a base member initializer, we cannot rely on the
364 vtable being set up. We have to indirect via the
365 vtt_parm. */
366 tree t;
367
368 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
369 t = build_pointer_type (t);
370 v_offset = convert (t, current_vtt_parm);
371 v_offset = cp_build_indirect_ref (v_offset, NULL,
372 tf_warning_or_error);
373 }
374 else
375 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, NULL,
376 tf_warning_or_error),
377 TREE_TYPE (TREE_TYPE (expr)));
378
379 v_offset = build2 (POINTER_PLUS_EXPR, TREE_TYPE (v_offset),
380 v_offset, fold_convert (sizetype, BINFO_VPTR_FIELD (v_binfo)));
381 v_offset = build1 (NOP_EXPR,
382 build_pointer_type (ptrdiff_type_node),
383 v_offset);
384 v_offset = cp_build_indirect_ref (v_offset, NULL, tf_warning_or_error);
385 TREE_CONSTANT (v_offset) = 1;
386
387 offset = convert_to_integer (ptrdiff_type_node,
388 size_diffop_loc (input_location, offset,
389 BINFO_OFFSET (v_binfo)));
390
391 if (!integer_zerop (offset))
392 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
393
394 if (fixed_type_p < 0)
395 /* Negative fixed_type_p means this is a constructor or destructor;
396 virtual base layout is fixed in in-charge [cd]tors, but not in
397 base [cd]tors. */
398 offset = build3 (COND_EXPR, ptrdiff_type_node,
399 build2 (EQ_EXPR, boolean_type_node,
400 current_in_charge_parm, integer_zero_node),
401 v_offset,
402 convert_to_integer (ptrdiff_type_node,
403 BINFO_OFFSET (binfo)));
404 else
405 offset = v_offset;
406 }
407
408 target_type = cp_build_qualified_type
409 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
410 ptr_target_type = build_pointer_type (target_type);
411 if (want_pointer)
412 target_type = ptr_target_type;
413
414 expr = build1 (NOP_EXPR, ptr_target_type, expr);
415
416 if (!integer_zerop (offset))
417 {
418 offset = fold_convert (sizetype, offset);
419 if (code == MINUS_EXPR)
420 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
421 expr = build2 (POINTER_PLUS_EXPR, ptr_target_type, expr, offset);
422 }
423 else
424 null_test = NULL;
425
426 if (!want_pointer)
427 expr = cp_build_indirect_ref (expr, NULL, tf_warning_or_error);
428
429 out:
430 if (null_test)
431 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
432 fold_build1_loc (input_location, NOP_EXPR, target_type,
433 integer_zero_node));
434
435 return expr;
436 }
437
438 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
439 Perform a derived-to-base conversion by recursively building up a
440 sequence of COMPONENT_REFs to the appropriate base fields. */
441
442 static tree
443 build_simple_base_path (tree expr, tree binfo)
444 {
445 tree type = BINFO_TYPE (binfo);
446 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
447 tree field;
448
449 if (d_binfo == NULL_TREE)
450 {
451 tree temp;
452
453 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
454
455 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
456 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
457 an lvalue in the front end; only _DECLs and _REFs are lvalues
458 in the back end. */
459 temp = unary_complex_lvalue (ADDR_EXPR, expr);
460 if (temp)
461 expr = cp_build_indirect_ref (temp, NULL, tf_warning_or_error);
462
463 return expr;
464 }
465
466 /* Recurse. */
467 expr = build_simple_base_path (expr, d_binfo);
468
469 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
470 field; field = TREE_CHAIN (field))
471 /* Is this the base field created by build_base_field? */
472 if (TREE_CODE (field) == FIELD_DECL
473 && DECL_FIELD_IS_BASE (field)
474 && TREE_TYPE (field) == type)
475 {
476 /* We don't use build_class_member_access_expr here, as that
477 has unnecessary checks, and more importantly results in
478 recursive calls to dfs_walk_once. */
479 int type_quals = cp_type_quals (TREE_TYPE (expr));
480
481 expr = build3 (COMPONENT_REF,
482 cp_build_qualified_type (type, type_quals),
483 expr, field, NULL_TREE);
484 expr = fold_if_not_in_template (expr);
485
486 /* Mark the expression const or volatile, as appropriate.
487 Even though we've dealt with the type above, we still have
488 to mark the expression itself. */
489 if (type_quals & TYPE_QUAL_CONST)
490 TREE_READONLY (expr) = 1;
491 if (type_quals & TYPE_QUAL_VOLATILE)
492 TREE_THIS_VOLATILE (expr) = 1;
493
494 return expr;
495 }
496
497 /* Didn't find the base field?!? */
498 gcc_unreachable ();
499 }
500
501 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
502 type is a class type or a pointer to a class type. In the former
503 case, TYPE is also a class type; in the latter it is another
504 pointer type. If CHECK_ACCESS is true, an error message is emitted
505 if TYPE is inaccessible. If OBJECT has pointer type, the value is
506 assumed to be non-NULL. */
507
508 tree
509 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
510 {
511 tree binfo;
512 tree object_type;
513
514 if (TYPE_PTR_P (TREE_TYPE (object)))
515 {
516 object_type = TREE_TYPE (TREE_TYPE (object));
517 type = TREE_TYPE (type);
518 }
519 else
520 object_type = TREE_TYPE (object);
521
522 binfo = lookup_base (object_type, type,
523 check_access ? ba_check : ba_unique,
524 NULL);
525 if (!binfo || binfo == error_mark_node)
526 return error_mark_node;
527
528 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
529 }
530
531 /* EXPR is an expression with unqualified class type. BASE is a base
532 binfo of that class type. Returns EXPR, converted to the BASE
533 type. This function assumes that EXPR is the most derived class;
534 therefore virtual bases can be found at their static offsets. */
535
536 tree
537 convert_to_base_statically (tree expr, tree base)
538 {
539 tree expr_type;
540
541 expr_type = TREE_TYPE (expr);
542 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
543 {
544 tree pointer_type;
545
546 pointer_type = build_pointer_type (expr_type);
547
548 /* We use fold_build2 and fold_convert below to simplify the trees
549 provided to the optimizers. It is not safe to call these functions
550 when processing a template because they do not handle C++-specific
551 trees. */
552 gcc_assert (!processing_template_decl);
553 expr = cp_build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1,
554 tf_warning_or_error);
555 if (!integer_zerop (BINFO_OFFSET (base)))
556 expr = fold_build2_loc (input_location,
557 POINTER_PLUS_EXPR, pointer_type, expr,
558 fold_convert (sizetype, BINFO_OFFSET (base)));
559 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
560 expr = build_fold_indirect_ref_loc (input_location, expr);
561 }
562
563 return expr;
564 }
565
566 \f
567 tree
568 build_vfield_ref (tree datum, tree type)
569 {
570 tree vfield, vcontext;
571
572 if (datum == error_mark_node)
573 return error_mark_node;
574
575 /* First, convert to the requested type. */
576 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
577 datum = convert_to_base (datum, type, /*check_access=*/false,
578 /*nonnull=*/true);
579
580 /* Second, the requested type may not be the owner of its own vptr.
581 If not, convert to the base class that owns it. We cannot use
582 convert_to_base here, because VCONTEXT may appear more than once
583 in the inheritance hierarchy of TYPE, and thus direct conversion
584 between the types may be ambiguous. Following the path back up
585 one step at a time via primary bases avoids the problem. */
586 vfield = TYPE_VFIELD (type);
587 vcontext = DECL_CONTEXT (vfield);
588 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
589 {
590 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
591 type = TREE_TYPE (datum);
592 }
593
594 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
595 }
596
597 /* Given an object INSTANCE, return an expression which yields the
598 vtable element corresponding to INDEX. There are many special
599 cases for INSTANCE which we take care of here, mainly to avoid
600 creating extra tree nodes when we don't have to. */
601
602 static tree
603 build_vtbl_ref_1 (tree instance, tree idx)
604 {
605 tree aref;
606 tree vtbl = NULL_TREE;
607
608 /* Try to figure out what a reference refers to, and
609 access its virtual function table directly. */
610
611 int cdtorp = 0;
612 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
613
614 tree basetype = non_reference (TREE_TYPE (instance));
615
616 if (fixed_type && !cdtorp)
617 {
618 tree binfo = lookup_base (fixed_type, basetype,
619 ba_unique | ba_quiet, NULL);
620 if (binfo)
621 vtbl = unshare_expr (BINFO_VTABLE (binfo));
622 }
623
624 if (!vtbl)
625 vtbl = build_vfield_ref (instance, basetype);
626
627 aref = build_array_ref (input_location, vtbl, idx);
628 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
629
630 return aref;
631 }
632
633 tree
634 build_vtbl_ref (tree instance, tree idx)
635 {
636 tree aref = build_vtbl_ref_1 (instance, idx);
637
638 return aref;
639 }
640
641 /* Given a stable object pointer INSTANCE_PTR, return an expression which
642 yields a function pointer corresponding to vtable element INDEX. */
643
644 tree
645 build_vfn_ref (tree instance_ptr, tree idx)
646 {
647 tree aref;
648
649 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, 0,
650 tf_warning_or_error),
651 idx);
652
653 /* When using function descriptors, the address of the
654 vtable entry is treated as a function pointer. */
655 if (TARGET_VTABLE_USES_DESCRIPTORS)
656 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
657 cp_build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1,
658 tf_warning_or_error));
659
660 /* Remember this as a method reference, for later devirtualization. */
661 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
662
663 return aref;
664 }
665
666 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
667 for the given TYPE. */
668
669 static tree
670 get_vtable_name (tree type)
671 {
672 return mangle_vtbl_for_type (type);
673 }
674
675 /* DECL is an entity associated with TYPE, like a virtual table or an
676 implicitly generated constructor. Determine whether or not DECL
677 should have external or internal linkage at the object file
678 level. This routine does not deal with COMDAT linkage and other
679 similar complexities; it simply sets TREE_PUBLIC if it possible for
680 entities in other translation units to contain copies of DECL, in
681 the abstract. */
682
683 void
684 set_linkage_according_to_type (tree type, tree decl)
685 {
686 /* If TYPE involves a local class in a function with internal
687 linkage, then DECL should have internal linkage too. Other local
688 classes have no linkage -- but if their containing functions
689 have external linkage, it makes sense for DECL to have external
690 linkage too. That will allow template definitions to be merged,
691 for example. */
692 if (no_linkage_check (type, /*relaxed_p=*/true))
693 {
694 TREE_PUBLIC (decl) = 0;
695 DECL_INTERFACE_KNOWN (decl) = 1;
696 }
697 else
698 TREE_PUBLIC (decl) = 1;
699 }
700
701 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
702 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
703 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
704
705 static tree
706 build_vtable (tree class_type, tree name, tree vtable_type)
707 {
708 tree decl;
709
710 decl = build_lang_decl (VAR_DECL, name, vtable_type);
711 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
712 now to avoid confusion in mangle_decl. */
713 SET_DECL_ASSEMBLER_NAME (decl, name);
714 DECL_CONTEXT (decl) = class_type;
715 DECL_ARTIFICIAL (decl) = 1;
716 TREE_STATIC (decl) = 1;
717 TREE_READONLY (decl) = 1;
718 DECL_VIRTUAL_P (decl) = 1;
719 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
720 DECL_VTABLE_OR_VTT_P (decl) = 1;
721 /* At one time the vtable info was grabbed 2 words at a time. This
722 fails on sparc unless you have 8-byte alignment. (tiemann) */
723 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
724 DECL_ALIGN (decl));
725 set_linkage_according_to_type (class_type, decl);
726 /* The vtable has not been defined -- yet. */
727 DECL_EXTERNAL (decl) = 1;
728 DECL_NOT_REALLY_EXTERN (decl) = 1;
729
730 /* Mark the VAR_DECL node representing the vtable itself as a
731 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
732 is rather important that such things be ignored because any
733 effort to actually generate DWARF for them will run into
734 trouble when/if we encounter code like:
735
736 #pragma interface
737 struct S { virtual void member (); };
738
739 because the artificial declaration of the vtable itself (as
740 manufactured by the g++ front end) will say that the vtable is
741 a static member of `S' but only *after* the debug output for
742 the definition of `S' has already been output. This causes
743 grief because the DWARF entry for the definition of the vtable
744 will try to refer back to an earlier *declaration* of the
745 vtable as a static member of `S' and there won't be one. We
746 might be able to arrange to have the "vtable static member"
747 attached to the member list for `S' before the debug info for
748 `S' get written (which would solve the problem) but that would
749 require more intrusive changes to the g++ front end. */
750 DECL_IGNORED_P (decl) = 1;
751
752 return decl;
753 }
754
755 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
756 or even complete. If this does not exist, create it. If COMPLETE is
757 nonzero, then complete the definition of it -- that will render it
758 impossible to actually build the vtable, but is useful to get at those
759 which are known to exist in the runtime. */
760
761 tree
762 get_vtable_decl (tree type, int complete)
763 {
764 tree decl;
765
766 if (CLASSTYPE_VTABLES (type))
767 return CLASSTYPE_VTABLES (type);
768
769 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
770 CLASSTYPE_VTABLES (type) = decl;
771
772 if (complete)
773 {
774 DECL_EXTERNAL (decl) = 1;
775 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
776 }
777
778 return decl;
779 }
780
781 /* Build the primary virtual function table for TYPE. If BINFO is
782 non-NULL, build the vtable starting with the initial approximation
783 that it is the same as the one which is the head of the association
784 list. Returns a nonzero value if a new vtable is actually
785 created. */
786
787 static int
788 build_primary_vtable (tree binfo, tree type)
789 {
790 tree decl;
791 tree virtuals;
792
793 decl = get_vtable_decl (type, /*complete=*/0);
794
795 if (binfo)
796 {
797 if (BINFO_NEW_VTABLE_MARKED (binfo))
798 /* We have already created a vtable for this base, so there's
799 no need to do it again. */
800 return 0;
801
802 virtuals = copy_list (BINFO_VIRTUALS (binfo));
803 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
804 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
805 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
806 }
807 else
808 {
809 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
810 virtuals = NULL_TREE;
811 }
812
813 #ifdef GATHER_STATISTICS
814 n_vtables += 1;
815 n_vtable_elems += list_length (virtuals);
816 #endif
817
818 /* Initialize the association list for this type, based
819 on our first approximation. */
820 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
821 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
822 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
823 return 1;
824 }
825
826 /* Give BINFO a new virtual function table which is initialized
827 with a skeleton-copy of its original initialization. The only
828 entry that changes is the `delta' entry, so we can really
829 share a lot of structure.
830
831 FOR_TYPE is the most derived type which caused this table to
832 be needed.
833
834 Returns nonzero if we haven't met BINFO before.
835
836 The order in which vtables are built (by calling this function) for
837 an object must remain the same, otherwise a binary incompatibility
838 can result. */
839
840 static int
841 build_secondary_vtable (tree binfo)
842 {
843 if (BINFO_NEW_VTABLE_MARKED (binfo))
844 /* We already created a vtable for this base. There's no need to
845 do it again. */
846 return 0;
847
848 /* Remember that we've created a vtable for this BINFO, so that we
849 don't try to do so again. */
850 SET_BINFO_NEW_VTABLE_MARKED (binfo);
851
852 /* Make fresh virtual list, so we can smash it later. */
853 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
854
855 /* Secondary vtables are laid out as part of the same structure as
856 the primary vtable. */
857 BINFO_VTABLE (binfo) = NULL_TREE;
858 return 1;
859 }
860
861 /* Create a new vtable for BINFO which is the hierarchy dominated by
862 T. Return nonzero if we actually created a new vtable. */
863
864 static int
865 make_new_vtable (tree t, tree binfo)
866 {
867 if (binfo == TYPE_BINFO (t))
868 /* In this case, it is *type*'s vtable we are modifying. We start
869 with the approximation that its vtable is that of the
870 immediate base class. */
871 return build_primary_vtable (binfo, t);
872 else
873 /* This is our very own copy of `basetype' to play with. Later,
874 we will fill in all the virtual functions that override the
875 virtual functions in these base classes which are not defined
876 by the current type. */
877 return build_secondary_vtable (binfo);
878 }
879
880 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
881 (which is in the hierarchy dominated by T) list FNDECL as its
882 BV_FN. DELTA is the required constant adjustment from the `this'
883 pointer where the vtable entry appears to the `this' required when
884 the function is actually called. */
885
886 static void
887 modify_vtable_entry (tree t,
888 tree binfo,
889 tree fndecl,
890 tree delta,
891 tree *virtuals)
892 {
893 tree v;
894
895 v = *virtuals;
896
897 if (fndecl != BV_FN (v)
898 || !tree_int_cst_equal (delta, BV_DELTA (v)))
899 {
900 /* We need a new vtable for BINFO. */
901 if (make_new_vtable (t, binfo))
902 {
903 /* If we really did make a new vtable, we also made a copy
904 of the BINFO_VIRTUALS list. Now, we have to find the
905 corresponding entry in that list. */
906 *virtuals = BINFO_VIRTUALS (binfo);
907 while (BV_FN (*virtuals) != BV_FN (v))
908 *virtuals = TREE_CHAIN (*virtuals);
909 v = *virtuals;
910 }
911
912 BV_DELTA (v) = delta;
913 BV_VCALL_INDEX (v) = NULL_TREE;
914 BV_FN (v) = fndecl;
915 }
916 }
917
918 \f
919 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
920 the USING_DECL naming METHOD. Returns true if the method could be
921 added to the method vec. */
922
923 bool
924 add_method (tree type, tree method, tree using_decl)
925 {
926 unsigned slot;
927 tree overload;
928 bool template_conv_p = false;
929 bool conv_p;
930 VEC(tree,gc) *method_vec;
931 bool complete_p;
932 bool insert_p = false;
933 tree current_fns;
934 tree fns;
935
936 if (method == error_mark_node)
937 return false;
938
939 complete_p = COMPLETE_TYPE_P (type);
940 conv_p = DECL_CONV_FN_P (method);
941 if (conv_p)
942 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
943 && DECL_TEMPLATE_CONV_FN_P (method));
944
945 method_vec = CLASSTYPE_METHOD_VEC (type);
946 if (!method_vec)
947 {
948 /* Make a new method vector. We start with 8 entries. We must
949 allocate at least two (for constructors and destructors), and
950 we're going to end up with an assignment operator at some
951 point as well. */
952 method_vec = VEC_alloc (tree, gc, 8);
953 /* Create slots for constructors and destructors. */
954 VEC_quick_push (tree, method_vec, NULL_TREE);
955 VEC_quick_push (tree, method_vec, NULL_TREE);
956 CLASSTYPE_METHOD_VEC (type) = method_vec;
957 }
958
959 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
960 grok_special_member_properties (method);
961
962 /* Constructors and destructors go in special slots. */
963 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
964 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
965 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
966 {
967 slot = CLASSTYPE_DESTRUCTOR_SLOT;
968
969 if (TYPE_FOR_JAVA (type))
970 {
971 if (!DECL_ARTIFICIAL (method))
972 error ("Java class %qT cannot have a destructor", type);
973 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
974 error ("Java class %qT cannot have an implicit non-trivial "
975 "destructor",
976 type);
977 }
978 }
979 else
980 {
981 tree m;
982
983 insert_p = true;
984 /* See if we already have an entry with this name. */
985 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
986 VEC_iterate (tree, method_vec, slot, m);
987 ++slot)
988 {
989 m = OVL_CURRENT (m);
990 if (template_conv_p)
991 {
992 if (TREE_CODE (m) == TEMPLATE_DECL
993 && DECL_TEMPLATE_CONV_FN_P (m))
994 insert_p = false;
995 break;
996 }
997 if (conv_p && !DECL_CONV_FN_P (m))
998 break;
999 if (DECL_NAME (m) == DECL_NAME (method))
1000 {
1001 insert_p = false;
1002 break;
1003 }
1004 if (complete_p
1005 && !DECL_CONV_FN_P (m)
1006 && DECL_NAME (m) > DECL_NAME (method))
1007 break;
1008 }
1009 }
1010 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
1011
1012 /* Check to see if we've already got this method. */
1013 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1014 {
1015 tree fn = OVL_CURRENT (fns);
1016 tree fn_type;
1017 tree method_type;
1018 tree parms1;
1019 tree parms2;
1020
1021 if (TREE_CODE (fn) != TREE_CODE (method))
1022 continue;
1023
1024 /* [over.load] Member function declarations with the
1025 same name and the same parameter types cannot be
1026 overloaded if any of them is a static member
1027 function declaration.
1028
1029 [namespace.udecl] When a using-declaration brings names
1030 from a base class into a derived class scope, member
1031 functions in the derived class override and/or hide member
1032 functions with the same name and parameter types in a base
1033 class (rather than conflicting). */
1034 fn_type = TREE_TYPE (fn);
1035 method_type = TREE_TYPE (method);
1036 parms1 = TYPE_ARG_TYPES (fn_type);
1037 parms2 = TYPE_ARG_TYPES (method_type);
1038
1039 /* Compare the quals on the 'this' parm. Don't compare
1040 the whole types, as used functions are treated as
1041 coming from the using class in overload resolution. */
1042 if (! DECL_STATIC_FUNCTION_P (fn)
1043 && ! DECL_STATIC_FUNCTION_P (method)
1044 && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
1045 && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
1046 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1047 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1048 continue;
1049
1050 /* For templates, the return type and template parameters
1051 must be identical. */
1052 if (TREE_CODE (fn) == TEMPLATE_DECL
1053 && (!same_type_p (TREE_TYPE (fn_type),
1054 TREE_TYPE (method_type))
1055 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1056 DECL_TEMPLATE_PARMS (method))))
1057 continue;
1058
1059 if (! DECL_STATIC_FUNCTION_P (fn))
1060 parms1 = TREE_CHAIN (parms1);
1061 if (! DECL_STATIC_FUNCTION_P (method))
1062 parms2 = TREE_CHAIN (parms2);
1063
1064 if (compparms (parms1, parms2)
1065 && (!DECL_CONV_FN_P (fn)
1066 || same_type_p (TREE_TYPE (fn_type),
1067 TREE_TYPE (method_type))))
1068 {
1069 if (using_decl)
1070 {
1071 if (DECL_CONTEXT (fn) == type)
1072 /* Defer to the local function. */
1073 return false;
1074 if (DECL_CONTEXT (fn) == DECL_CONTEXT (method))
1075 error ("repeated using declaration %q+D", using_decl);
1076 else
1077 error ("using declaration %q+D conflicts with a previous using declaration",
1078 using_decl);
1079 }
1080 else
1081 {
1082 error ("%q+#D cannot be overloaded", method);
1083 error ("with %q+#D", fn);
1084 }
1085
1086 /* We don't call duplicate_decls here to merge the
1087 declarations because that will confuse things if the
1088 methods have inline definitions. In particular, we
1089 will crash while processing the definitions. */
1090 return false;
1091 }
1092 }
1093
1094 /* A class should never have more than one destructor. */
1095 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1096 return false;
1097
1098 /* Add the new binding. */
1099 overload = build_overload (method, current_fns);
1100
1101 if (conv_p)
1102 TYPE_HAS_CONVERSION (type) = 1;
1103 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1104 push_class_level_binding (DECL_NAME (method), overload);
1105
1106 if (insert_p)
1107 {
1108 bool reallocated;
1109
1110 /* We only expect to add few methods in the COMPLETE_P case, so
1111 just make room for one more method in that case. */
1112 if (complete_p)
1113 reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
1114 else
1115 reallocated = VEC_reserve (tree, gc, method_vec, 1);
1116 if (reallocated)
1117 CLASSTYPE_METHOD_VEC (type) = method_vec;
1118 if (slot == VEC_length (tree, method_vec))
1119 VEC_quick_push (tree, method_vec, overload);
1120 else
1121 VEC_quick_insert (tree, method_vec, slot, overload);
1122 }
1123 else
1124 /* Replace the current slot. */
1125 VEC_replace (tree, method_vec, slot, overload);
1126 return true;
1127 }
1128
1129 /* Subroutines of finish_struct. */
1130
1131 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1132 legit, otherwise return 0. */
1133
1134 static int
1135 alter_access (tree t, tree fdecl, tree access)
1136 {
1137 tree elem;
1138
1139 if (!DECL_LANG_SPECIFIC (fdecl))
1140 retrofit_lang_decl (fdecl);
1141
1142 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1143
1144 elem = purpose_member (t, DECL_ACCESS (fdecl));
1145 if (elem)
1146 {
1147 if (TREE_VALUE (elem) != access)
1148 {
1149 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1150 error ("conflicting access specifications for method"
1151 " %q+D, ignored", TREE_TYPE (fdecl));
1152 else
1153 error ("conflicting access specifications for field %qE, ignored",
1154 DECL_NAME (fdecl));
1155 }
1156 else
1157 {
1158 /* They're changing the access to the same thing they changed
1159 it to before. That's OK. */
1160 ;
1161 }
1162 }
1163 else
1164 {
1165 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
1166 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1167 return 1;
1168 }
1169 return 0;
1170 }
1171
1172 /* Process the USING_DECL, which is a member of T. */
1173
1174 static void
1175 handle_using_decl (tree using_decl, tree t)
1176 {
1177 tree decl = USING_DECL_DECLS (using_decl);
1178 tree name = DECL_NAME (using_decl);
1179 tree access
1180 = TREE_PRIVATE (using_decl) ? access_private_node
1181 : TREE_PROTECTED (using_decl) ? access_protected_node
1182 : access_public_node;
1183 tree flist = NULL_TREE;
1184 tree old_value;
1185
1186 gcc_assert (!processing_template_decl && decl);
1187
1188 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1189 if (old_value)
1190 {
1191 if (is_overloaded_fn (old_value))
1192 old_value = OVL_CURRENT (old_value);
1193
1194 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1195 /* OK */;
1196 else
1197 old_value = NULL_TREE;
1198 }
1199
1200 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1201
1202 if (is_overloaded_fn (decl))
1203 flist = decl;
1204
1205 if (! old_value)
1206 ;
1207 else if (is_overloaded_fn (old_value))
1208 {
1209 if (flist)
1210 /* It's OK to use functions from a base when there are functions with
1211 the same name already present in the current class. */;
1212 else
1213 {
1214 error ("%q+D invalid in %q#T", using_decl, t);
1215 error (" because of local method %q+#D with same name",
1216 OVL_CURRENT (old_value));
1217 return;
1218 }
1219 }
1220 else if (!DECL_ARTIFICIAL (old_value))
1221 {
1222 error ("%q+D invalid in %q#T", using_decl, t);
1223 error (" because of local member %q+#D with same name", old_value);
1224 return;
1225 }
1226
1227 /* Make type T see field decl FDECL with access ACCESS. */
1228 if (flist)
1229 for (; flist; flist = OVL_NEXT (flist))
1230 {
1231 add_method (t, OVL_CURRENT (flist), using_decl);
1232 alter_access (t, OVL_CURRENT (flist), access);
1233 }
1234 else
1235 alter_access (t, decl, access);
1236 }
1237 \f
1238 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1239 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1240 properties of the bases. */
1241
1242 static void
1243 check_bases (tree t,
1244 int* cant_have_const_ctor_p,
1245 int* no_const_asn_ref_p)
1246 {
1247 int i;
1248 int seen_non_virtual_nearly_empty_base_p;
1249 tree base_binfo;
1250 tree binfo;
1251 tree field = NULL_TREE;
1252
1253 seen_non_virtual_nearly_empty_base_p = 0;
1254
1255 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1256 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
1257 if (TREE_CODE (field) == FIELD_DECL)
1258 break;
1259
1260 for (binfo = TYPE_BINFO (t), i = 0;
1261 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1262 {
1263 tree basetype = TREE_TYPE (base_binfo);
1264
1265 gcc_assert (COMPLETE_TYPE_P (basetype));
1266
1267 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1268 here because the case of virtual functions but non-virtual
1269 dtor is handled in finish_struct_1. */
1270 if (!TYPE_POLYMORPHIC_P (basetype))
1271 warning (OPT_Weffc__,
1272 "base class %q#T has a non-virtual destructor", basetype);
1273
1274 /* If the base class doesn't have copy constructors or
1275 assignment operators that take const references, then the
1276 derived class cannot have such a member automatically
1277 generated. */
1278 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1279 *cant_have_const_ctor_p = 1;
1280 if (TYPE_HAS_ASSIGN_REF (basetype)
1281 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1282 *no_const_asn_ref_p = 1;
1283
1284 if (BINFO_VIRTUAL_P (base_binfo))
1285 /* A virtual base does not effect nearly emptiness. */
1286 ;
1287 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1288 {
1289 if (seen_non_virtual_nearly_empty_base_p)
1290 /* And if there is more than one nearly empty base, then the
1291 derived class is not nearly empty either. */
1292 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1293 else
1294 /* Remember we've seen one. */
1295 seen_non_virtual_nearly_empty_base_p = 1;
1296 }
1297 else if (!is_empty_class (basetype))
1298 /* If the base class is not empty or nearly empty, then this
1299 class cannot be nearly empty. */
1300 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1301
1302 /* A lot of properties from the bases also apply to the derived
1303 class. */
1304 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1305 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1306 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1307 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1308 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1309 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1310 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1311 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1312 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1313 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (basetype);
1314
1315 /* A standard-layout class is a class that:
1316 ...
1317 * has no non-standard-layout base classes, */
1318 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1319 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1320 {
1321 tree basefield;
1322 /* ...has no base classes of the same type as the first non-static
1323 data member... */
1324 if (field && DECL_CONTEXT (field) == t
1325 && (same_type_ignoring_top_level_qualifiers_p
1326 (TREE_TYPE (field), basetype)))
1327 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1328 else
1329 /* ...either has no non-static data members in the most-derived
1330 class and at most one base class with non-static data
1331 members, or has no base classes with non-static data
1332 members */
1333 for (basefield = TYPE_FIELDS (basetype); basefield;
1334 basefield = TREE_CHAIN (basefield))
1335 if (TREE_CODE (basefield) == FIELD_DECL)
1336 {
1337 if (field)
1338 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1339 else
1340 field = basefield;
1341 break;
1342 }
1343 }
1344 }
1345 }
1346
1347 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1348 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1349 that have had a nearly-empty virtual primary base stolen by some
1350 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1351 T. */
1352
1353 static void
1354 determine_primary_bases (tree t)
1355 {
1356 unsigned i;
1357 tree primary = NULL_TREE;
1358 tree type_binfo = TYPE_BINFO (t);
1359 tree base_binfo;
1360
1361 /* Determine the primary bases of our bases. */
1362 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1363 base_binfo = TREE_CHAIN (base_binfo))
1364 {
1365 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1366
1367 /* See if we're the non-virtual primary of our inheritance
1368 chain. */
1369 if (!BINFO_VIRTUAL_P (base_binfo))
1370 {
1371 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1372 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1373
1374 if (parent_primary
1375 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1376 BINFO_TYPE (parent_primary)))
1377 /* We are the primary binfo. */
1378 BINFO_PRIMARY_P (base_binfo) = 1;
1379 }
1380 /* Determine if we have a virtual primary base, and mark it so.
1381 */
1382 if (primary && BINFO_VIRTUAL_P (primary))
1383 {
1384 tree this_primary = copied_binfo (primary, base_binfo);
1385
1386 if (BINFO_PRIMARY_P (this_primary))
1387 /* Someone already claimed this base. */
1388 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1389 else
1390 {
1391 tree delta;
1392
1393 BINFO_PRIMARY_P (this_primary) = 1;
1394 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1395
1396 /* A virtual binfo might have been copied from within
1397 another hierarchy. As we're about to use it as a
1398 primary base, make sure the offsets match. */
1399 delta = size_diffop_loc (input_location,
1400 convert (ssizetype,
1401 BINFO_OFFSET (base_binfo)),
1402 convert (ssizetype,
1403 BINFO_OFFSET (this_primary)));
1404
1405 propagate_binfo_offsets (this_primary, delta);
1406 }
1407 }
1408 }
1409
1410 /* First look for a dynamic direct non-virtual base. */
1411 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1412 {
1413 tree basetype = BINFO_TYPE (base_binfo);
1414
1415 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1416 {
1417 primary = base_binfo;
1418 goto found;
1419 }
1420 }
1421
1422 /* A "nearly-empty" virtual base class can be the primary base
1423 class, if no non-virtual polymorphic base can be found. Look for
1424 a nearly-empty virtual dynamic base that is not already a primary
1425 base of something in the hierarchy. If there is no such base,
1426 just pick the first nearly-empty virtual base. */
1427
1428 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1429 base_binfo = TREE_CHAIN (base_binfo))
1430 if (BINFO_VIRTUAL_P (base_binfo)
1431 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1432 {
1433 if (!BINFO_PRIMARY_P (base_binfo))
1434 {
1435 /* Found one that is not primary. */
1436 primary = base_binfo;
1437 goto found;
1438 }
1439 else if (!primary)
1440 /* Remember the first candidate. */
1441 primary = base_binfo;
1442 }
1443
1444 found:
1445 /* If we've got a primary base, use it. */
1446 if (primary)
1447 {
1448 tree basetype = BINFO_TYPE (primary);
1449
1450 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1451 if (BINFO_PRIMARY_P (primary))
1452 /* We are stealing a primary base. */
1453 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1454 BINFO_PRIMARY_P (primary) = 1;
1455 if (BINFO_VIRTUAL_P (primary))
1456 {
1457 tree delta;
1458
1459 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1460 /* A virtual binfo might have been copied from within
1461 another hierarchy. As we're about to use it as a primary
1462 base, make sure the offsets match. */
1463 delta = size_diffop_loc (input_location, ssize_int (0),
1464 convert (ssizetype, BINFO_OFFSET (primary)));
1465
1466 propagate_binfo_offsets (primary, delta);
1467 }
1468
1469 primary = TYPE_BINFO (basetype);
1470
1471 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1472 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1473 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1474 }
1475 }
1476
1477 /* Update the variant types of T. */
1478
1479 void
1480 fixup_type_variants (tree t)
1481 {
1482 tree variants;
1483
1484 if (!t)
1485 return;
1486
1487 for (variants = TYPE_NEXT_VARIANT (t);
1488 variants;
1489 variants = TYPE_NEXT_VARIANT (variants))
1490 {
1491 /* These fields are in the _TYPE part of the node, not in
1492 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1493 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1494 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1495 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1496 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1497
1498 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1499
1500 TYPE_BINFO (variants) = TYPE_BINFO (t);
1501
1502 /* Copy whatever these are holding today. */
1503 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1504 TYPE_METHODS (variants) = TYPE_METHODS (t);
1505 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1506
1507 /* All variants of a class have the same attributes. */
1508 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1509 }
1510 }
1511
1512 \f
1513 /* Set memoizing fields and bits of T (and its variants) for later
1514 use. */
1515
1516 static void
1517 finish_struct_bits (tree t)
1518 {
1519 /* Fix up variants (if any). */
1520 fixup_type_variants (t);
1521
1522 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1523 /* For a class w/o baseclasses, 'finish_struct' has set
1524 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1525 Similarly for a class whose base classes do not have vtables.
1526 When neither of these is true, we might have removed abstract
1527 virtuals (by providing a definition), added some (by declaring
1528 new ones), or redeclared ones from a base class. We need to
1529 recalculate what's really an abstract virtual at this point (by
1530 looking in the vtables). */
1531 get_pure_virtuals (t);
1532
1533 /* If this type has a copy constructor or a destructor, force its
1534 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1535 nonzero. This will cause it to be passed by invisible reference
1536 and prevent it from being returned in a register. */
1537 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1538 {
1539 tree variants;
1540 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1541 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1542 {
1543 SET_TYPE_MODE (variants, BLKmode);
1544 TREE_ADDRESSABLE (variants) = 1;
1545 }
1546 }
1547 }
1548
1549 /* Issue warnings about T having private constructors, but no friends,
1550 and so forth.
1551
1552 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1553 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1554 non-private static member functions. */
1555
1556 static void
1557 maybe_warn_about_overly_private_class (tree t)
1558 {
1559 int has_member_fn = 0;
1560 int has_nonprivate_method = 0;
1561 tree fn;
1562
1563 if (!warn_ctor_dtor_privacy
1564 /* If the class has friends, those entities might create and
1565 access instances, so we should not warn. */
1566 || (CLASSTYPE_FRIEND_CLASSES (t)
1567 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1568 /* We will have warned when the template was declared; there's
1569 no need to warn on every instantiation. */
1570 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1571 /* There's no reason to even consider warning about this
1572 class. */
1573 return;
1574
1575 /* We only issue one warning, if more than one applies, because
1576 otherwise, on code like:
1577
1578 class A {
1579 // Oops - forgot `public:'
1580 A();
1581 A(const A&);
1582 ~A();
1583 };
1584
1585 we warn several times about essentially the same problem. */
1586
1587 /* Check to see if all (non-constructor, non-destructor) member
1588 functions are private. (Since there are no friends or
1589 non-private statics, we can't ever call any of the private member
1590 functions.) */
1591 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1592 /* We're not interested in compiler-generated methods; they don't
1593 provide any way to call private members. */
1594 if (!DECL_ARTIFICIAL (fn))
1595 {
1596 if (!TREE_PRIVATE (fn))
1597 {
1598 if (DECL_STATIC_FUNCTION_P (fn))
1599 /* A non-private static member function is just like a
1600 friend; it can create and invoke private member
1601 functions, and be accessed without a class
1602 instance. */
1603 return;
1604
1605 has_nonprivate_method = 1;
1606 /* Keep searching for a static member function. */
1607 }
1608 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1609 has_member_fn = 1;
1610 }
1611
1612 if (!has_nonprivate_method && has_member_fn)
1613 {
1614 /* There are no non-private methods, and there's at least one
1615 private member function that isn't a constructor or
1616 destructor. (If all the private members are
1617 constructors/destructors we want to use the code below that
1618 issues error messages specifically referring to
1619 constructors/destructors.) */
1620 unsigned i;
1621 tree binfo = TYPE_BINFO (t);
1622
1623 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1624 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1625 {
1626 has_nonprivate_method = 1;
1627 break;
1628 }
1629 if (!has_nonprivate_method)
1630 {
1631 warning (OPT_Wctor_dtor_privacy,
1632 "all member functions in class %qT are private", t);
1633 return;
1634 }
1635 }
1636
1637 /* Even if some of the member functions are non-private, the class
1638 won't be useful for much if all the constructors or destructors
1639 are private: such an object can never be created or destroyed. */
1640 fn = CLASSTYPE_DESTRUCTORS (t);
1641 if (fn && TREE_PRIVATE (fn))
1642 {
1643 warning (OPT_Wctor_dtor_privacy,
1644 "%q#T only defines a private destructor and has no friends",
1645 t);
1646 return;
1647 }
1648
1649 /* Warn about classes that have private constructors and no friends. */
1650 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1651 /* Implicitly generated constructors are always public. */
1652 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1653 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1654 {
1655 int nonprivate_ctor = 0;
1656
1657 /* If a non-template class does not define a copy
1658 constructor, one is defined for it, enabling it to avoid
1659 this warning. For a template class, this does not
1660 happen, and so we would normally get a warning on:
1661
1662 template <class T> class C { private: C(); };
1663
1664 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1665 complete non-template or fully instantiated classes have this
1666 flag set. */
1667 if (!TYPE_HAS_INIT_REF (t))
1668 nonprivate_ctor = 1;
1669 else
1670 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1671 {
1672 tree ctor = OVL_CURRENT (fn);
1673 /* Ideally, we wouldn't count copy constructors (or, in
1674 fact, any constructor that takes an argument of the
1675 class type as a parameter) because such things cannot
1676 be used to construct an instance of the class unless
1677 you already have one. But, for now at least, we're
1678 more generous. */
1679 if (! TREE_PRIVATE (ctor))
1680 {
1681 nonprivate_ctor = 1;
1682 break;
1683 }
1684 }
1685
1686 if (nonprivate_ctor == 0)
1687 {
1688 warning (OPT_Wctor_dtor_privacy,
1689 "%q#T only defines private constructors and has no friends",
1690 t);
1691 return;
1692 }
1693 }
1694 }
1695
1696 static struct {
1697 gt_pointer_operator new_value;
1698 void *cookie;
1699 } resort_data;
1700
1701 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1702
1703 static int
1704 method_name_cmp (const void* m1_p, const void* m2_p)
1705 {
1706 const tree *const m1 = (const tree *) m1_p;
1707 const tree *const m2 = (const tree *) m2_p;
1708
1709 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1710 return 0;
1711 if (*m1 == NULL_TREE)
1712 return -1;
1713 if (*m2 == NULL_TREE)
1714 return 1;
1715 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1716 return -1;
1717 return 1;
1718 }
1719
1720 /* This routine compares two fields like method_name_cmp but using the
1721 pointer operator in resort_field_decl_data. */
1722
1723 static int
1724 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1725 {
1726 const tree *const m1 = (const tree *) m1_p;
1727 const tree *const m2 = (const tree *) m2_p;
1728 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1729 return 0;
1730 if (*m1 == NULL_TREE)
1731 return -1;
1732 if (*m2 == NULL_TREE)
1733 return 1;
1734 {
1735 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1736 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1737 resort_data.new_value (&d1, resort_data.cookie);
1738 resort_data.new_value (&d2, resort_data.cookie);
1739 if (d1 < d2)
1740 return -1;
1741 }
1742 return 1;
1743 }
1744
1745 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1746
1747 void
1748 resort_type_method_vec (void* obj,
1749 void* orig_obj ATTRIBUTE_UNUSED ,
1750 gt_pointer_operator new_value,
1751 void* cookie)
1752 {
1753 VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
1754 int len = VEC_length (tree, method_vec);
1755 size_t slot;
1756 tree fn;
1757
1758 /* The type conversion ops have to live at the front of the vec, so we
1759 can't sort them. */
1760 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1761 VEC_iterate (tree, method_vec, slot, fn);
1762 ++slot)
1763 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1764 break;
1765
1766 if (len - slot > 1)
1767 {
1768 resort_data.new_value = new_value;
1769 resort_data.cookie = cookie;
1770 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1771 resort_method_name_cmp);
1772 }
1773 }
1774
1775 /* Warn about duplicate methods in fn_fields.
1776
1777 Sort methods that are not special (i.e., constructors, destructors,
1778 and type conversion operators) so that we can find them faster in
1779 search. */
1780
1781 static void
1782 finish_struct_methods (tree t)
1783 {
1784 tree fn_fields;
1785 VEC(tree,gc) *method_vec;
1786 int slot, len;
1787
1788 method_vec = CLASSTYPE_METHOD_VEC (t);
1789 if (!method_vec)
1790 return;
1791
1792 len = VEC_length (tree, method_vec);
1793
1794 /* Clear DECL_IN_AGGR_P for all functions. */
1795 for (fn_fields = TYPE_METHODS (t); fn_fields;
1796 fn_fields = TREE_CHAIN (fn_fields))
1797 DECL_IN_AGGR_P (fn_fields) = 0;
1798
1799 /* Issue warnings about private constructors and such. If there are
1800 no methods, then some public defaults are generated. */
1801 maybe_warn_about_overly_private_class (t);
1802
1803 /* The type conversion ops have to live at the front of the vec, so we
1804 can't sort them. */
1805 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1806 VEC_iterate (tree, method_vec, slot, fn_fields);
1807 ++slot)
1808 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1809 break;
1810 if (len - slot > 1)
1811 qsort (VEC_address (tree, method_vec) + slot,
1812 len-slot, sizeof (tree), method_name_cmp);
1813 }
1814
1815 /* Make BINFO's vtable have N entries, including RTTI entries,
1816 vbase and vcall offsets, etc. Set its type and call the back end
1817 to lay it out. */
1818
1819 static void
1820 layout_vtable_decl (tree binfo, int n)
1821 {
1822 tree atype;
1823 tree vtable;
1824
1825 atype = build_cplus_array_type (vtable_entry_type,
1826 build_index_type (size_int (n - 1)));
1827 layout_type (atype);
1828
1829 /* We may have to grow the vtable. */
1830 vtable = get_vtbl_decl_for_binfo (binfo);
1831 if (!same_type_p (TREE_TYPE (vtable), atype))
1832 {
1833 TREE_TYPE (vtable) = atype;
1834 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1835 layout_decl (vtable, 0);
1836 }
1837 }
1838
1839 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1840 have the same signature. */
1841
1842 int
1843 same_signature_p (const_tree fndecl, const_tree base_fndecl)
1844 {
1845 /* One destructor overrides another if they are the same kind of
1846 destructor. */
1847 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1848 && special_function_p (base_fndecl) == special_function_p (fndecl))
1849 return 1;
1850 /* But a non-destructor never overrides a destructor, nor vice
1851 versa, nor do different kinds of destructors override
1852 one-another. For example, a complete object destructor does not
1853 override a deleting destructor. */
1854 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1855 return 0;
1856
1857 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1858 || (DECL_CONV_FN_P (fndecl)
1859 && DECL_CONV_FN_P (base_fndecl)
1860 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1861 DECL_CONV_FN_TYPE (base_fndecl))))
1862 {
1863 tree types, base_types;
1864 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1865 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1866 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1867 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1868 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1869 return 1;
1870 }
1871 return 0;
1872 }
1873
1874 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1875 subobject. */
1876
1877 static bool
1878 base_derived_from (tree derived, tree base)
1879 {
1880 tree probe;
1881
1882 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1883 {
1884 if (probe == derived)
1885 return true;
1886 else if (BINFO_VIRTUAL_P (probe))
1887 /* If we meet a virtual base, we can't follow the inheritance
1888 any more. See if the complete type of DERIVED contains
1889 such a virtual base. */
1890 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1891 != NULL_TREE);
1892 }
1893 return false;
1894 }
1895
1896 typedef struct find_final_overrider_data_s {
1897 /* The function for which we are trying to find a final overrider. */
1898 tree fn;
1899 /* The base class in which the function was declared. */
1900 tree declaring_base;
1901 /* The candidate overriders. */
1902 tree candidates;
1903 /* Path to most derived. */
1904 VEC(tree,heap) *path;
1905 } find_final_overrider_data;
1906
1907 /* Add the overrider along the current path to FFOD->CANDIDATES.
1908 Returns true if an overrider was found; false otherwise. */
1909
1910 static bool
1911 dfs_find_final_overrider_1 (tree binfo,
1912 find_final_overrider_data *ffod,
1913 unsigned depth)
1914 {
1915 tree method;
1916
1917 /* If BINFO is not the most derived type, try a more derived class.
1918 A definition there will overrider a definition here. */
1919 if (depth)
1920 {
1921 depth--;
1922 if (dfs_find_final_overrider_1
1923 (VEC_index (tree, ffod->path, depth), ffod, depth))
1924 return true;
1925 }
1926
1927 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1928 if (method)
1929 {
1930 tree *candidate = &ffod->candidates;
1931
1932 /* Remove any candidates overridden by this new function. */
1933 while (*candidate)
1934 {
1935 /* If *CANDIDATE overrides METHOD, then METHOD
1936 cannot override anything else on the list. */
1937 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1938 return true;
1939 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1940 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1941 *candidate = TREE_CHAIN (*candidate);
1942 else
1943 candidate = &TREE_CHAIN (*candidate);
1944 }
1945
1946 /* Add the new function. */
1947 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1948 return true;
1949 }
1950
1951 return false;
1952 }
1953
1954 /* Called from find_final_overrider via dfs_walk. */
1955
1956 static tree
1957 dfs_find_final_overrider_pre (tree binfo, void *data)
1958 {
1959 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1960
1961 if (binfo == ffod->declaring_base)
1962 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1963 VEC_safe_push (tree, heap, ffod->path, binfo);
1964
1965 return NULL_TREE;
1966 }
1967
1968 static tree
1969 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1970 {
1971 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1972 VEC_pop (tree, ffod->path);
1973
1974 return NULL_TREE;
1975 }
1976
1977 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1978 FN and whose TREE_VALUE is the binfo for the base where the
1979 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1980 DERIVED) is the base object in which FN is declared. */
1981
1982 static tree
1983 find_final_overrider (tree derived, tree binfo, tree fn)
1984 {
1985 find_final_overrider_data ffod;
1986
1987 /* Getting this right is a little tricky. This is valid:
1988
1989 struct S { virtual void f (); };
1990 struct T { virtual void f (); };
1991 struct U : public S, public T { };
1992
1993 even though calling `f' in `U' is ambiguous. But,
1994
1995 struct R { virtual void f(); };
1996 struct S : virtual public R { virtual void f (); };
1997 struct T : virtual public R { virtual void f (); };
1998 struct U : public S, public T { };
1999
2000 is not -- there's no way to decide whether to put `S::f' or
2001 `T::f' in the vtable for `R'.
2002
2003 The solution is to look at all paths to BINFO. If we find
2004 different overriders along any two, then there is a problem. */
2005 if (DECL_THUNK_P (fn))
2006 fn = THUNK_TARGET (fn);
2007
2008 /* Determine the depth of the hierarchy. */
2009 ffod.fn = fn;
2010 ffod.declaring_base = binfo;
2011 ffod.candidates = NULL_TREE;
2012 ffod.path = VEC_alloc (tree, heap, 30);
2013
2014 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2015 dfs_find_final_overrider_post, &ffod);
2016
2017 VEC_free (tree, heap, ffod.path);
2018
2019 /* If there was no winner, issue an error message. */
2020 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2021 return error_mark_node;
2022
2023 return ffod.candidates;
2024 }
2025
2026 /* Return the index of the vcall offset for FN when TYPE is used as a
2027 virtual base. */
2028
2029 static tree
2030 get_vcall_index (tree fn, tree type)
2031 {
2032 VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
2033 tree_pair_p p;
2034 unsigned ix;
2035
2036 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
2037 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2038 || same_signature_p (fn, p->purpose))
2039 return p->value;
2040
2041 /* There should always be an appropriate index. */
2042 gcc_unreachable ();
2043 }
2044
2045 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2046 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
2047 corresponding position in the BINFO_VIRTUALS list. */
2048
2049 static void
2050 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2051 unsigned ix)
2052 {
2053 tree b;
2054 tree overrider;
2055 tree delta;
2056 tree virtual_base;
2057 tree first_defn;
2058 tree overrider_fn, overrider_target;
2059 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2060 tree over_return, base_return;
2061 bool lost = false;
2062
2063 /* Find the nearest primary base (possibly binfo itself) which defines
2064 this function; this is the class the caller will convert to when
2065 calling FN through BINFO. */
2066 for (b = binfo; ; b = get_primary_binfo (b))
2067 {
2068 gcc_assert (b);
2069 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2070 break;
2071
2072 /* The nearest definition is from a lost primary. */
2073 if (BINFO_LOST_PRIMARY_P (b))
2074 lost = true;
2075 }
2076 first_defn = b;
2077
2078 /* Find the final overrider. */
2079 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2080 if (overrider == error_mark_node)
2081 {
2082 error ("no unique final overrider for %qD in %qT", target_fn, t);
2083 return;
2084 }
2085 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2086
2087 /* Check for adjusting covariant return types. */
2088 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2089 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2090
2091 if (POINTER_TYPE_P (over_return)
2092 && TREE_CODE (over_return) == TREE_CODE (base_return)
2093 && CLASS_TYPE_P (TREE_TYPE (over_return))
2094 && CLASS_TYPE_P (TREE_TYPE (base_return))
2095 /* If the overrider is invalid, don't even try. */
2096 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2097 {
2098 /* If FN is a covariant thunk, we must figure out the adjustment
2099 to the final base FN was converting to. As OVERRIDER_TARGET might
2100 also be converting to the return type of FN, we have to
2101 combine the two conversions here. */
2102 tree fixed_offset, virtual_offset;
2103
2104 over_return = TREE_TYPE (over_return);
2105 base_return = TREE_TYPE (base_return);
2106
2107 if (DECL_THUNK_P (fn))
2108 {
2109 gcc_assert (DECL_RESULT_THUNK_P (fn));
2110 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2111 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2112 }
2113 else
2114 fixed_offset = virtual_offset = NULL_TREE;
2115
2116 if (virtual_offset)
2117 /* Find the equivalent binfo within the return type of the
2118 overriding function. We will want the vbase offset from
2119 there. */
2120 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2121 over_return);
2122 else if (!same_type_ignoring_top_level_qualifiers_p
2123 (over_return, base_return))
2124 {
2125 /* There was no existing virtual thunk (which takes
2126 precedence). So find the binfo of the base function's
2127 return type within the overriding function's return type.
2128 We cannot call lookup base here, because we're inside a
2129 dfs_walk, and will therefore clobber the BINFO_MARKED
2130 flags. Fortunately we know the covariancy is valid (it
2131 has already been checked), so we can just iterate along
2132 the binfos, which have been chained in inheritance graph
2133 order. Of course it is lame that we have to repeat the
2134 search here anyway -- we should really be caching pieces
2135 of the vtable and avoiding this repeated work. */
2136 tree thunk_binfo, base_binfo;
2137
2138 /* Find the base binfo within the overriding function's
2139 return type. We will always find a thunk_binfo, except
2140 when the covariancy is invalid (which we will have
2141 already diagnosed). */
2142 for (base_binfo = TYPE_BINFO (base_return),
2143 thunk_binfo = TYPE_BINFO (over_return);
2144 thunk_binfo;
2145 thunk_binfo = TREE_CHAIN (thunk_binfo))
2146 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2147 BINFO_TYPE (base_binfo)))
2148 break;
2149
2150 /* See if virtual inheritance is involved. */
2151 for (virtual_offset = thunk_binfo;
2152 virtual_offset;
2153 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2154 if (BINFO_VIRTUAL_P (virtual_offset))
2155 break;
2156
2157 if (virtual_offset
2158 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2159 {
2160 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2161
2162 if (virtual_offset)
2163 {
2164 /* We convert via virtual base. Adjust the fixed
2165 offset to be from there. */
2166 offset =
2167 size_diffop (offset,
2168 convert (ssizetype,
2169 BINFO_OFFSET (virtual_offset)));
2170 }
2171 if (fixed_offset)
2172 /* There was an existing fixed offset, this must be
2173 from the base just converted to, and the base the
2174 FN was thunking to. */
2175 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2176 else
2177 fixed_offset = offset;
2178 }
2179 }
2180
2181 if (fixed_offset || virtual_offset)
2182 /* Replace the overriding function with a covariant thunk. We
2183 will emit the overriding function in its own slot as
2184 well. */
2185 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2186 fixed_offset, virtual_offset);
2187 }
2188 else
2189 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2190 !DECL_THUNK_P (fn));
2191
2192 /* Assume that we will produce a thunk that convert all the way to
2193 the final overrider, and not to an intermediate virtual base. */
2194 virtual_base = NULL_TREE;
2195
2196 /* See if we can convert to an intermediate virtual base first, and then
2197 use the vcall offset located there to finish the conversion. */
2198 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2199 {
2200 /* If we find the final overrider, then we can stop
2201 walking. */
2202 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2203 BINFO_TYPE (TREE_VALUE (overrider))))
2204 break;
2205
2206 /* If we find a virtual base, and we haven't yet found the
2207 overrider, then there is a virtual base between the
2208 declaring base (first_defn) and the final overrider. */
2209 if (BINFO_VIRTUAL_P (b))
2210 {
2211 virtual_base = b;
2212 break;
2213 }
2214 }
2215
2216 if (overrider_fn != overrider_target && !virtual_base)
2217 {
2218 /* The ABI specifies that a covariant thunk includes a mangling
2219 for a this pointer adjustment. This-adjusting thunks that
2220 override a function from a virtual base have a vcall
2221 adjustment. When the virtual base in question is a primary
2222 virtual base, we know the adjustments are zero, (and in the
2223 non-covariant case, we would not use the thunk).
2224 Unfortunately we didn't notice this could happen, when
2225 designing the ABI and so never mandated that such a covariant
2226 thunk should be emitted. Because we must use the ABI mandated
2227 name, we must continue searching from the binfo where we
2228 found the most recent definition of the function, towards the
2229 primary binfo which first introduced the function into the
2230 vtable. If that enters a virtual base, we must use a vcall
2231 this-adjusting thunk. Bleah! */
2232 tree probe = first_defn;
2233
2234 while ((probe = get_primary_binfo (probe))
2235 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2236 if (BINFO_VIRTUAL_P (probe))
2237 virtual_base = probe;
2238
2239 if (virtual_base)
2240 /* Even if we find a virtual base, the correct delta is
2241 between the overrider and the binfo we're building a vtable
2242 for. */
2243 goto virtual_covariant;
2244 }
2245
2246 /* Compute the constant adjustment to the `this' pointer. The
2247 `this' pointer, when this function is called, will point at BINFO
2248 (or one of its primary bases, which are at the same offset). */
2249 if (virtual_base)
2250 /* The `this' pointer needs to be adjusted from the declaration to
2251 the nearest virtual base. */
2252 delta = size_diffop_loc (input_location,
2253 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2254 convert (ssizetype, BINFO_OFFSET (first_defn)));
2255 else if (lost)
2256 /* If the nearest definition is in a lost primary, we don't need an
2257 entry in our vtable. Except possibly in a constructor vtable,
2258 if we happen to get our primary back. In that case, the offset
2259 will be zero, as it will be a primary base. */
2260 delta = size_zero_node;
2261 else
2262 /* The `this' pointer needs to be adjusted from pointing to
2263 BINFO to pointing at the base where the final overrider
2264 appears. */
2265 virtual_covariant:
2266 delta = size_diffop_loc (input_location,
2267 convert (ssizetype,
2268 BINFO_OFFSET (TREE_VALUE (overrider))),
2269 convert (ssizetype, BINFO_OFFSET (binfo)));
2270
2271 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2272
2273 if (virtual_base)
2274 BV_VCALL_INDEX (*virtuals)
2275 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2276 else
2277 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2278 }
2279
2280 /* Called from modify_all_vtables via dfs_walk. */
2281
2282 static tree
2283 dfs_modify_vtables (tree binfo, void* data)
2284 {
2285 tree t = (tree) data;
2286 tree virtuals;
2287 tree old_virtuals;
2288 unsigned ix;
2289
2290 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2291 /* A base without a vtable needs no modification, and its bases
2292 are uninteresting. */
2293 return dfs_skip_bases;
2294
2295 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2296 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2297 /* Don't do the primary vtable, if it's new. */
2298 return NULL_TREE;
2299
2300 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2301 /* There's no need to modify the vtable for a non-virtual primary
2302 base; we're not going to use that vtable anyhow. We do still
2303 need to do this for virtual primary bases, as they could become
2304 non-primary in a construction vtable. */
2305 return NULL_TREE;
2306
2307 make_new_vtable (t, binfo);
2308
2309 /* Now, go through each of the virtual functions in the virtual
2310 function table for BINFO. Find the final overrider, and update
2311 the BINFO_VIRTUALS list appropriately. */
2312 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2313 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2314 virtuals;
2315 ix++, virtuals = TREE_CHAIN (virtuals),
2316 old_virtuals = TREE_CHAIN (old_virtuals))
2317 update_vtable_entry_for_fn (t,
2318 binfo,
2319 BV_FN (old_virtuals),
2320 &virtuals, ix);
2321
2322 return NULL_TREE;
2323 }
2324
2325 /* Update all of the primary and secondary vtables for T. Create new
2326 vtables as required, and initialize their RTTI information. Each
2327 of the functions in VIRTUALS is declared in T and may override a
2328 virtual function from a base class; find and modify the appropriate
2329 entries to point to the overriding functions. Returns a list, in
2330 declaration order, of the virtual functions that are declared in T,
2331 but do not appear in the primary base class vtable, and which
2332 should therefore be appended to the end of the vtable for T. */
2333
2334 static tree
2335 modify_all_vtables (tree t, tree virtuals)
2336 {
2337 tree binfo = TYPE_BINFO (t);
2338 tree *fnsp;
2339
2340 /* Update all of the vtables. */
2341 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2342
2343 /* Add virtual functions not already in our primary vtable. These
2344 will be both those introduced by this class, and those overridden
2345 from secondary bases. It does not include virtuals merely
2346 inherited from secondary bases. */
2347 for (fnsp = &virtuals; *fnsp; )
2348 {
2349 tree fn = TREE_VALUE (*fnsp);
2350
2351 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2352 || DECL_VINDEX (fn) == error_mark_node)
2353 {
2354 /* We don't need to adjust the `this' pointer when
2355 calling this function. */
2356 BV_DELTA (*fnsp) = integer_zero_node;
2357 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2358
2359 /* This is a function not already in our vtable. Keep it. */
2360 fnsp = &TREE_CHAIN (*fnsp);
2361 }
2362 else
2363 /* We've already got an entry for this function. Skip it. */
2364 *fnsp = TREE_CHAIN (*fnsp);
2365 }
2366
2367 return virtuals;
2368 }
2369
2370 /* Get the base virtual function declarations in T that have the
2371 indicated NAME. */
2372
2373 static tree
2374 get_basefndecls (tree name, tree t)
2375 {
2376 tree methods;
2377 tree base_fndecls = NULL_TREE;
2378 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2379 int i;
2380
2381 /* Find virtual functions in T with the indicated NAME. */
2382 i = lookup_fnfields_1 (t, name);
2383 if (i != -1)
2384 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2385 methods;
2386 methods = OVL_NEXT (methods))
2387 {
2388 tree method = OVL_CURRENT (methods);
2389
2390 if (TREE_CODE (method) == FUNCTION_DECL
2391 && DECL_VINDEX (method))
2392 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2393 }
2394
2395 if (base_fndecls)
2396 return base_fndecls;
2397
2398 for (i = 0; i < n_baseclasses; i++)
2399 {
2400 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2401 base_fndecls = chainon (get_basefndecls (name, basetype),
2402 base_fndecls);
2403 }
2404
2405 return base_fndecls;
2406 }
2407
2408 /* If this declaration supersedes the declaration of
2409 a method declared virtual in the base class, then
2410 mark this field as being virtual as well. */
2411
2412 void
2413 check_for_override (tree decl, tree ctype)
2414 {
2415 if (TREE_CODE (decl) == TEMPLATE_DECL)
2416 /* In [temp.mem] we have:
2417
2418 A specialization of a member function template does not
2419 override a virtual function from a base class. */
2420 return;
2421 if ((DECL_DESTRUCTOR_P (decl)
2422 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2423 || DECL_CONV_FN_P (decl))
2424 && look_for_overrides (ctype, decl)
2425 && !DECL_STATIC_FUNCTION_P (decl))
2426 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2427 the error_mark_node so that we know it is an overriding
2428 function. */
2429 DECL_VINDEX (decl) = decl;
2430
2431 if (DECL_VIRTUAL_P (decl))
2432 {
2433 if (!DECL_VINDEX (decl))
2434 DECL_VINDEX (decl) = error_mark_node;
2435 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2436 }
2437 }
2438
2439 /* Warn about hidden virtual functions that are not overridden in t.
2440 We know that constructors and destructors don't apply. */
2441
2442 static void
2443 warn_hidden (tree t)
2444 {
2445 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
2446 tree fns;
2447 size_t i;
2448
2449 /* We go through each separately named virtual function. */
2450 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2451 VEC_iterate (tree, method_vec, i, fns);
2452 ++i)
2453 {
2454 tree fn;
2455 tree name;
2456 tree fndecl;
2457 tree base_fndecls;
2458 tree base_binfo;
2459 tree binfo;
2460 int j;
2461
2462 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2463 have the same name. Figure out what name that is. */
2464 name = DECL_NAME (OVL_CURRENT (fns));
2465 /* There are no possibly hidden functions yet. */
2466 base_fndecls = NULL_TREE;
2467 /* Iterate through all of the base classes looking for possibly
2468 hidden functions. */
2469 for (binfo = TYPE_BINFO (t), j = 0;
2470 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2471 {
2472 tree basetype = BINFO_TYPE (base_binfo);
2473 base_fndecls = chainon (get_basefndecls (name, basetype),
2474 base_fndecls);
2475 }
2476
2477 /* If there are no functions to hide, continue. */
2478 if (!base_fndecls)
2479 continue;
2480
2481 /* Remove any overridden functions. */
2482 for (fn = fns; fn; fn = OVL_NEXT (fn))
2483 {
2484 fndecl = OVL_CURRENT (fn);
2485 if (DECL_VINDEX (fndecl))
2486 {
2487 tree *prev = &base_fndecls;
2488
2489 while (*prev)
2490 /* If the method from the base class has the same
2491 signature as the method from the derived class, it
2492 has been overridden. */
2493 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2494 *prev = TREE_CHAIN (*prev);
2495 else
2496 prev = &TREE_CHAIN (*prev);
2497 }
2498 }
2499
2500 /* Now give a warning for all base functions without overriders,
2501 as they are hidden. */
2502 while (base_fndecls)
2503 {
2504 /* Here we know it is a hider, and no overrider exists. */
2505 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2506 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2507 base_fndecls = TREE_CHAIN (base_fndecls);
2508 }
2509 }
2510 }
2511
2512 /* Check for things that are invalid. There are probably plenty of other
2513 things we should check for also. */
2514
2515 static void
2516 finish_struct_anon (tree t)
2517 {
2518 tree field;
2519
2520 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2521 {
2522 if (TREE_STATIC (field))
2523 continue;
2524 if (TREE_CODE (field) != FIELD_DECL)
2525 continue;
2526
2527 if (DECL_NAME (field) == NULL_TREE
2528 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2529 {
2530 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2531 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2532 for (; elt; elt = TREE_CHAIN (elt))
2533 {
2534 /* We're generally only interested in entities the user
2535 declared, but we also find nested classes by noticing
2536 the TYPE_DECL that we create implicitly. You're
2537 allowed to put one anonymous union inside another,
2538 though, so we explicitly tolerate that. We use
2539 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2540 we also allow unnamed types used for defining fields. */
2541 if (DECL_ARTIFICIAL (elt)
2542 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2543 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2544 continue;
2545
2546 if (TREE_CODE (elt) != FIELD_DECL)
2547 {
2548 if (is_union)
2549 permerror (input_location, "%q+#D invalid; an anonymous union can "
2550 "only have non-static data members", elt);
2551 else
2552 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2553 "only have non-static data members", elt);
2554 continue;
2555 }
2556
2557 if (TREE_PRIVATE (elt))
2558 {
2559 if (is_union)
2560 permerror (input_location, "private member %q+#D in anonymous union", elt);
2561 else
2562 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2563 }
2564 else if (TREE_PROTECTED (elt))
2565 {
2566 if (is_union)
2567 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2568 else
2569 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2570 }
2571
2572 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2573 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2574 }
2575 }
2576 }
2577 }
2578
2579 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2580 will be used later during class template instantiation.
2581 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2582 a non-static member data (FIELD_DECL), a member function
2583 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2584 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2585 When FRIEND_P is nonzero, T is either a friend class
2586 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2587 (FUNCTION_DECL, TEMPLATE_DECL). */
2588
2589 void
2590 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2591 {
2592 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2593 if (CLASSTYPE_TEMPLATE_INFO (type))
2594 CLASSTYPE_DECL_LIST (type)
2595 = tree_cons (friend_p ? NULL_TREE : type,
2596 t, CLASSTYPE_DECL_LIST (type));
2597 }
2598
2599 /* Create default constructors, assignment operators, and so forth for
2600 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2601 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2602 the class cannot have a default constructor, copy constructor
2603 taking a const reference argument, or an assignment operator taking
2604 a const reference, respectively. */
2605
2606 static void
2607 add_implicitly_declared_members (tree t,
2608 int cant_have_const_cctor,
2609 int cant_have_const_assignment)
2610 {
2611 /* Destructor. */
2612 if (!CLASSTYPE_DESTRUCTORS (t))
2613 {
2614 /* In general, we create destructors lazily. */
2615 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2616 /* However, if the implicit destructor is non-trivial
2617 destructor, we sometimes have to create it at this point. */
2618 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2619 {
2620 bool lazy_p = true;
2621
2622 if (TYPE_FOR_JAVA (t))
2623 /* If this a Java class, any non-trivial destructor is
2624 invalid, even if compiler-generated. Therefore, if the
2625 destructor is non-trivial we create it now. */
2626 lazy_p = false;
2627 else
2628 {
2629 tree binfo;
2630 tree base_binfo;
2631 int ix;
2632
2633 /* If the implicit destructor will be virtual, then we must
2634 generate it now because (unfortunately) we do not
2635 generate virtual tables lazily. */
2636 binfo = TYPE_BINFO (t);
2637 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2638 {
2639 tree base_type;
2640 tree dtor;
2641
2642 base_type = BINFO_TYPE (base_binfo);
2643 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2644 if (dtor && DECL_VIRTUAL_P (dtor))
2645 {
2646 lazy_p = false;
2647 break;
2648 }
2649 }
2650 }
2651
2652 /* If we can't get away with being lazy, generate the destructor
2653 now. */
2654 if (!lazy_p)
2655 lazily_declare_fn (sfk_destructor, t);
2656 }
2657 }
2658
2659 /* [class.ctor]
2660
2661 If there is no user-declared constructor for a class, a default
2662 constructor is implicitly declared. */
2663 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2664 {
2665 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2666 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2667 }
2668
2669 /* [class.ctor]
2670
2671 If a class definition does not explicitly declare a copy
2672 constructor, one is declared implicitly. */
2673 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2674 {
2675 TYPE_HAS_INIT_REF (t) = 1;
2676 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2677 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2678 }
2679
2680 /* Currently only lambdas get a lazy move ctor, but N2987 adds them for
2681 other classes. */
2682 if (LAMBDA_TYPE_P (t))
2683 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
2684
2685 /* If there is no assignment operator, one will be created if and
2686 when it is needed. For now, just record whether or not the type
2687 of the parameter to the assignment operator will be a const or
2688 non-const reference. */
2689 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2690 {
2691 TYPE_HAS_ASSIGN_REF (t) = 1;
2692 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2693 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2694 }
2695 }
2696
2697 /* Subroutine of finish_struct_1. Recursively count the number of fields
2698 in TYPE, including anonymous union members. */
2699
2700 static int
2701 count_fields (tree fields)
2702 {
2703 tree x;
2704 int n_fields = 0;
2705 for (x = fields; x; x = TREE_CHAIN (x))
2706 {
2707 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2708 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2709 else
2710 n_fields += 1;
2711 }
2712 return n_fields;
2713 }
2714
2715 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2716 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2717
2718 static int
2719 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2720 {
2721 tree x;
2722 for (x = fields; x; x = TREE_CHAIN (x))
2723 {
2724 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2725 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2726 else
2727 field_vec->elts[idx++] = x;
2728 }
2729 return idx;
2730 }
2731
2732 /* FIELD is a bit-field. We are finishing the processing for its
2733 enclosing type. Issue any appropriate messages and set appropriate
2734 flags. Returns false if an error has been diagnosed. */
2735
2736 static bool
2737 check_bitfield_decl (tree field)
2738 {
2739 tree type = TREE_TYPE (field);
2740 tree w;
2741
2742 /* Extract the declared width of the bitfield, which has been
2743 temporarily stashed in DECL_INITIAL. */
2744 w = DECL_INITIAL (field);
2745 gcc_assert (w != NULL_TREE);
2746 /* Remove the bit-field width indicator so that the rest of the
2747 compiler does not treat that value as an initializer. */
2748 DECL_INITIAL (field) = NULL_TREE;
2749
2750 /* Detect invalid bit-field type. */
2751 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
2752 {
2753 error ("bit-field %q+#D with non-integral type", field);
2754 w = error_mark_node;
2755 }
2756 else
2757 {
2758 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2759 STRIP_NOPS (w);
2760
2761 /* detect invalid field size. */
2762 w = integral_constant_value (w);
2763
2764 if (TREE_CODE (w) != INTEGER_CST)
2765 {
2766 error ("bit-field %q+D width not an integer constant", field);
2767 w = error_mark_node;
2768 }
2769 else if (tree_int_cst_sgn (w) < 0)
2770 {
2771 error ("negative width in bit-field %q+D", field);
2772 w = error_mark_node;
2773 }
2774 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2775 {
2776 error ("zero width for bit-field %q+D", field);
2777 w = error_mark_node;
2778 }
2779 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2780 && TREE_CODE (type) != ENUMERAL_TYPE
2781 && TREE_CODE (type) != BOOLEAN_TYPE)
2782 warning (0, "width of %q+D exceeds its type", field);
2783 else if (TREE_CODE (type) == ENUMERAL_TYPE
2784 && (0 > compare_tree_int (w,
2785 tree_int_cst_min_precision
2786 (TYPE_MIN_VALUE (type),
2787 TYPE_UNSIGNED (type)))
2788 || 0 > compare_tree_int (w,
2789 tree_int_cst_min_precision
2790 (TYPE_MAX_VALUE (type),
2791 TYPE_UNSIGNED (type)))))
2792 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
2793 }
2794
2795 if (w != error_mark_node)
2796 {
2797 DECL_SIZE (field) = convert (bitsizetype, w);
2798 DECL_BIT_FIELD (field) = 1;
2799 return true;
2800 }
2801 else
2802 {
2803 /* Non-bit-fields are aligned for their type. */
2804 DECL_BIT_FIELD (field) = 0;
2805 CLEAR_DECL_C_BIT_FIELD (field);
2806 return false;
2807 }
2808 }
2809
2810 /* FIELD is a non bit-field. We are finishing the processing for its
2811 enclosing type T. Issue any appropriate messages and set appropriate
2812 flags. */
2813
2814 static void
2815 check_field_decl (tree field,
2816 tree t,
2817 int* cant_have_const_ctor,
2818 int* no_const_asn_ref,
2819 int* any_default_members)
2820 {
2821 tree type = strip_array_types (TREE_TYPE (field));
2822
2823 /* An anonymous union cannot contain any fields which would change
2824 the settings of CANT_HAVE_CONST_CTOR and friends. */
2825 if (ANON_UNION_TYPE_P (type))
2826 ;
2827 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2828 structs. So, we recurse through their fields here. */
2829 else if (ANON_AGGR_TYPE_P (type))
2830 {
2831 tree fields;
2832
2833 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2834 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2835 check_field_decl (fields, t, cant_have_const_ctor,
2836 no_const_asn_ref, any_default_members);
2837 }
2838 /* Check members with class type for constructors, destructors,
2839 etc. */
2840 else if (CLASS_TYPE_P (type))
2841 {
2842 /* Never let anything with uninheritable virtuals
2843 make it through without complaint. */
2844 abstract_virtuals_error (field, type);
2845
2846 if (TREE_CODE (t) == UNION_TYPE)
2847 {
2848 if (TYPE_NEEDS_CONSTRUCTING (type))
2849 error ("member %q+#D with constructor not allowed in union",
2850 field);
2851 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2852 error ("member %q+#D with destructor not allowed in union", field);
2853 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2854 error ("member %q+#D with copy assignment operator not allowed in union",
2855 field);
2856 }
2857 else
2858 {
2859 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2860 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2861 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2862 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2863 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2864 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (type);
2865 }
2866
2867 if (!TYPE_HAS_CONST_INIT_REF (type))
2868 *cant_have_const_ctor = 1;
2869
2870 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2871 *no_const_asn_ref = 1;
2872 }
2873 if (DECL_INITIAL (field) != NULL_TREE)
2874 {
2875 /* `build_class_init_list' does not recognize
2876 non-FIELD_DECLs. */
2877 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2878 error ("multiple fields in union %qT initialized", t);
2879 *any_default_members = 1;
2880 }
2881 }
2882
2883 /* Check the data members (both static and non-static), class-scoped
2884 typedefs, etc., appearing in the declaration of T. Issue
2885 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2886 declaration order) of access declarations; each TREE_VALUE in this
2887 list is a USING_DECL.
2888
2889 In addition, set the following flags:
2890
2891 EMPTY_P
2892 The class is empty, i.e., contains no non-static data members.
2893
2894 CANT_HAVE_CONST_CTOR_P
2895 This class cannot have an implicitly generated copy constructor
2896 taking a const reference.
2897
2898 CANT_HAVE_CONST_ASN_REF
2899 This class cannot have an implicitly generated assignment
2900 operator taking a const reference.
2901
2902 All of these flags should be initialized before calling this
2903 function.
2904
2905 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2906 fields can be added by adding to this chain. */
2907
2908 static void
2909 check_field_decls (tree t, tree *access_decls,
2910 int *cant_have_const_ctor_p,
2911 int *no_const_asn_ref_p)
2912 {
2913 tree *field;
2914 tree *next;
2915 bool has_pointers;
2916 int any_default_members;
2917 int cant_pack = 0;
2918 int field_access = -1;
2919
2920 /* Assume there are no access declarations. */
2921 *access_decls = NULL_TREE;
2922 /* Assume this class has no pointer members. */
2923 has_pointers = false;
2924 /* Assume none of the members of this class have default
2925 initializations. */
2926 any_default_members = 0;
2927
2928 for (field = &TYPE_FIELDS (t); *field; field = next)
2929 {
2930 tree x = *field;
2931 tree type = TREE_TYPE (x);
2932 int this_field_access;
2933
2934 next = &TREE_CHAIN (x);
2935
2936 if (TREE_CODE (x) == USING_DECL)
2937 {
2938 /* Prune the access declaration from the list of fields. */
2939 *field = TREE_CHAIN (x);
2940
2941 /* Save the access declarations for our caller. */
2942 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2943
2944 /* Since we've reset *FIELD there's no reason to skip to the
2945 next field. */
2946 next = field;
2947 continue;
2948 }
2949
2950 if (TREE_CODE (x) == TYPE_DECL
2951 || TREE_CODE (x) == TEMPLATE_DECL)
2952 continue;
2953
2954 /* If we've gotten this far, it's a data member, possibly static,
2955 or an enumerator. */
2956 DECL_CONTEXT (x) = t;
2957
2958 /* When this goes into scope, it will be a non-local reference. */
2959 DECL_NONLOCAL (x) = 1;
2960
2961 if (TREE_CODE (t) == UNION_TYPE)
2962 {
2963 /* [class.union]
2964
2965 If a union contains a static data member, or a member of
2966 reference type, the program is ill-formed. */
2967 if (TREE_CODE (x) == VAR_DECL)
2968 {
2969 error ("%q+D may not be static because it is a member of a union", x);
2970 continue;
2971 }
2972 if (TREE_CODE (type) == REFERENCE_TYPE)
2973 {
2974 error ("%q+D may not have reference type %qT because"
2975 " it is a member of a union",
2976 x, type);
2977 continue;
2978 }
2979 }
2980
2981 /* Perform error checking that did not get done in
2982 grokdeclarator. */
2983 if (TREE_CODE (type) == FUNCTION_TYPE)
2984 {
2985 error ("field %q+D invalidly declared function type", x);
2986 type = build_pointer_type (type);
2987 TREE_TYPE (x) = type;
2988 }
2989 else if (TREE_CODE (type) == METHOD_TYPE)
2990 {
2991 error ("field %q+D invalidly declared method type", x);
2992 type = build_pointer_type (type);
2993 TREE_TYPE (x) = type;
2994 }
2995
2996 if (type == error_mark_node)
2997 continue;
2998
2999 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
3000 continue;
3001
3002 /* Now it can only be a FIELD_DECL. */
3003
3004 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3005 CLASSTYPE_NON_AGGREGATE (t) = 1;
3006
3007 /* A standard-layout class is a class that:
3008 ...
3009 has the same access control (Clause 11) for all non-static data members,
3010 ... */
3011 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3012 if (field_access == -1)
3013 field_access = this_field_access;
3014 else if (this_field_access != field_access)
3015 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3016
3017 /* If this is of reference type, check if it needs an init. */
3018 if (TREE_CODE (type) == REFERENCE_TYPE)
3019 {
3020 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3021 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3022 if (DECL_INITIAL (x) == NULL_TREE)
3023 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3024
3025 /* ARM $12.6.2: [A member initializer list] (or, for an
3026 aggregate, initialization by a brace-enclosed list) is the
3027 only way to initialize nonstatic const and reference
3028 members. */
3029 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
3030 }
3031
3032 type = strip_array_types (type);
3033
3034 if (TYPE_PACKED (t))
3035 {
3036 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3037 {
3038 warning
3039 (0,
3040 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3041 x);
3042 cant_pack = 1;
3043 }
3044 else if (DECL_C_BIT_FIELD (x)
3045 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3046 DECL_PACKED (x) = 1;
3047 }
3048
3049 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3050 /* We don't treat zero-width bitfields as making a class
3051 non-empty. */
3052 ;
3053 else
3054 {
3055 /* The class is non-empty. */
3056 CLASSTYPE_EMPTY_P (t) = 0;
3057 /* The class is not even nearly empty. */
3058 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3059 /* If one of the data members contains an empty class,
3060 so does T. */
3061 if (CLASS_TYPE_P (type)
3062 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3063 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3064 }
3065
3066 /* This is used by -Weffc++ (see below). Warn only for pointers
3067 to members which might hold dynamic memory. So do not warn
3068 for pointers to functions or pointers to members. */
3069 if (TYPE_PTR_P (type)
3070 && !TYPE_PTRFN_P (type)
3071 && !TYPE_PTR_TO_MEMBER_P (type))
3072 has_pointers = true;
3073
3074 if (CLASS_TYPE_P (type))
3075 {
3076 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3077 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3078 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3079 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3080 }
3081
3082 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3083 CLASSTYPE_HAS_MUTABLE (t) = 1;
3084
3085 if (! layout_pod_type_p (type))
3086 /* DR 148 now allows pointers to members (which are POD themselves),
3087 to be allowed in POD structs. */
3088 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3089
3090 if (!std_layout_type_p (type))
3091 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3092
3093 if (! zero_init_p (type))
3094 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3095
3096 /* If any field is const, the structure type is pseudo-const. */
3097 if (CP_TYPE_CONST_P (type))
3098 {
3099 C_TYPE_FIELDS_READONLY (t) = 1;
3100 if (DECL_INITIAL (x) == NULL_TREE)
3101 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3102
3103 /* ARM $12.6.2: [A member initializer list] (or, for an
3104 aggregate, initialization by a brace-enclosed list) is the
3105 only way to initialize nonstatic const and reference
3106 members. */
3107 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
3108 }
3109 /* A field that is pseudo-const makes the structure likewise. */
3110 else if (CLASS_TYPE_P (type))
3111 {
3112 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3113 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3114 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3115 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3116 }
3117
3118 /* Core issue 80: A nonstatic data member is required to have a
3119 different name from the class iff the class has a
3120 user-declared constructor. */
3121 if (constructor_name_p (DECL_NAME (x), t)
3122 && TYPE_HAS_USER_CONSTRUCTOR (t))
3123 permerror (input_location, "field %q+#D with same name as class", x);
3124
3125 /* We set DECL_C_BIT_FIELD in grokbitfield.
3126 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3127 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3128 check_field_decl (x, t,
3129 cant_have_const_ctor_p,
3130 no_const_asn_ref_p,
3131 &any_default_members);
3132 }
3133
3134 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3135 it should also define a copy constructor and an assignment operator to
3136 implement the correct copy semantic (deep vs shallow, etc.). As it is
3137 not feasible to check whether the constructors do allocate dynamic memory
3138 and store it within members, we approximate the warning like this:
3139
3140 -- Warn only if there are members which are pointers
3141 -- Warn only if there is a non-trivial constructor (otherwise,
3142 there cannot be memory allocated).
3143 -- Warn only if there is a non-trivial destructor. We assume that the
3144 user at least implemented the cleanup correctly, and a destructor
3145 is needed to free dynamic memory.
3146
3147 This seems enough for practical purposes. */
3148 if (warn_ecpp
3149 && has_pointers
3150 && TYPE_HAS_USER_CONSTRUCTOR (t)
3151 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3152 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3153 {
3154 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3155
3156 if (! TYPE_HAS_INIT_REF (t))
3157 {
3158 warning (OPT_Weffc__,
3159 " but does not override %<%T(const %T&)%>", t, t);
3160 if (!TYPE_HAS_ASSIGN_REF (t))
3161 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3162 }
3163 else if (! TYPE_HAS_ASSIGN_REF (t))
3164 warning (OPT_Weffc__,
3165 " but does not override %<operator=(const %T&)%>", t);
3166 }
3167
3168 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3169 if (cant_pack)
3170 TYPE_PACKED (t) = 0;
3171
3172 /* Check anonymous struct/anonymous union fields. */
3173 finish_struct_anon (t);
3174
3175 /* We've built up the list of access declarations in reverse order.
3176 Fix that now. */
3177 *access_decls = nreverse (*access_decls);
3178 }
3179
3180 /* If TYPE is an empty class type, records its OFFSET in the table of
3181 OFFSETS. */
3182
3183 static int
3184 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3185 {
3186 splay_tree_node n;
3187
3188 if (!is_empty_class (type))
3189 return 0;
3190
3191 /* Record the location of this empty object in OFFSETS. */
3192 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3193 if (!n)
3194 n = splay_tree_insert (offsets,
3195 (splay_tree_key) offset,
3196 (splay_tree_value) NULL_TREE);
3197 n->value = ((splay_tree_value)
3198 tree_cons (NULL_TREE,
3199 type,
3200 (tree) n->value));
3201
3202 return 0;
3203 }
3204
3205 /* Returns nonzero if TYPE is an empty class type and there is
3206 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3207
3208 static int
3209 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3210 {
3211 splay_tree_node n;
3212 tree t;
3213
3214 if (!is_empty_class (type))
3215 return 0;
3216
3217 /* Record the location of this empty object in OFFSETS. */
3218 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3219 if (!n)
3220 return 0;
3221
3222 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3223 if (same_type_p (TREE_VALUE (t), type))
3224 return 1;
3225
3226 return 0;
3227 }
3228
3229 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3230 F for every subobject, passing it the type, offset, and table of
3231 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3232 be traversed.
3233
3234 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3235 than MAX_OFFSET will not be walked.
3236
3237 If F returns a nonzero value, the traversal ceases, and that value
3238 is returned. Otherwise, returns zero. */
3239
3240 static int
3241 walk_subobject_offsets (tree type,
3242 subobject_offset_fn f,
3243 tree offset,
3244 splay_tree offsets,
3245 tree max_offset,
3246 int vbases_p)
3247 {
3248 int r = 0;
3249 tree type_binfo = NULL_TREE;
3250
3251 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3252 stop. */
3253 if (max_offset && INT_CST_LT (max_offset, offset))
3254 return 0;
3255
3256 if (type == error_mark_node)
3257 return 0;
3258
3259 if (!TYPE_P (type))
3260 {
3261 if (abi_version_at_least (2))
3262 type_binfo = type;
3263 type = BINFO_TYPE (type);
3264 }
3265
3266 if (CLASS_TYPE_P (type))
3267 {
3268 tree field;
3269 tree binfo;
3270 int i;
3271
3272 /* Avoid recursing into objects that are not interesting. */
3273 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3274 return 0;
3275
3276 /* Record the location of TYPE. */
3277 r = (*f) (type, offset, offsets);
3278 if (r)
3279 return r;
3280
3281 /* Iterate through the direct base classes of TYPE. */
3282 if (!type_binfo)
3283 type_binfo = TYPE_BINFO (type);
3284 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3285 {
3286 tree binfo_offset;
3287
3288 if (abi_version_at_least (2)
3289 && BINFO_VIRTUAL_P (binfo))
3290 continue;
3291
3292 if (!vbases_p
3293 && BINFO_VIRTUAL_P (binfo)
3294 && !BINFO_PRIMARY_P (binfo))
3295 continue;
3296
3297 if (!abi_version_at_least (2))
3298 binfo_offset = size_binop (PLUS_EXPR,
3299 offset,
3300 BINFO_OFFSET (binfo));
3301 else
3302 {
3303 tree orig_binfo;
3304 /* We cannot rely on BINFO_OFFSET being set for the base
3305 class yet, but the offsets for direct non-virtual
3306 bases can be calculated by going back to the TYPE. */
3307 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3308 binfo_offset = size_binop (PLUS_EXPR,
3309 offset,
3310 BINFO_OFFSET (orig_binfo));
3311 }
3312
3313 r = walk_subobject_offsets (binfo,
3314 f,
3315 binfo_offset,
3316 offsets,
3317 max_offset,
3318 (abi_version_at_least (2)
3319 ? /*vbases_p=*/0 : vbases_p));
3320 if (r)
3321 return r;
3322 }
3323
3324 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3325 {
3326 unsigned ix;
3327 VEC(tree,gc) *vbases;
3328
3329 /* Iterate through the virtual base classes of TYPE. In G++
3330 3.2, we included virtual bases in the direct base class
3331 loop above, which results in incorrect results; the
3332 correct offsets for virtual bases are only known when
3333 working with the most derived type. */
3334 if (vbases_p)
3335 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3336 VEC_iterate (tree, vbases, ix, binfo); ix++)
3337 {
3338 r = walk_subobject_offsets (binfo,
3339 f,
3340 size_binop (PLUS_EXPR,
3341 offset,
3342 BINFO_OFFSET (binfo)),
3343 offsets,
3344 max_offset,
3345 /*vbases_p=*/0);
3346 if (r)
3347 return r;
3348 }
3349 else
3350 {
3351 /* We still have to walk the primary base, if it is
3352 virtual. (If it is non-virtual, then it was walked
3353 above.) */
3354 tree vbase = get_primary_binfo (type_binfo);
3355
3356 if (vbase && BINFO_VIRTUAL_P (vbase)
3357 && BINFO_PRIMARY_P (vbase)
3358 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3359 {
3360 r = (walk_subobject_offsets
3361 (vbase, f, offset,
3362 offsets, max_offset, /*vbases_p=*/0));
3363 if (r)
3364 return r;
3365 }
3366 }
3367 }
3368
3369 /* Iterate through the fields of TYPE. */
3370 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3371 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3372 {
3373 tree field_offset;
3374
3375 if (abi_version_at_least (2))
3376 field_offset = byte_position (field);
3377 else
3378 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3379 field_offset = DECL_FIELD_OFFSET (field);
3380
3381 r = walk_subobject_offsets (TREE_TYPE (field),
3382 f,
3383 size_binop (PLUS_EXPR,
3384 offset,
3385 field_offset),
3386 offsets,
3387 max_offset,
3388 /*vbases_p=*/1);
3389 if (r)
3390 return r;
3391 }
3392 }
3393 else if (TREE_CODE (type) == ARRAY_TYPE)
3394 {
3395 tree element_type = strip_array_types (type);
3396 tree domain = TYPE_DOMAIN (type);
3397 tree index;
3398
3399 /* Avoid recursing into objects that are not interesting. */
3400 if (!CLASS_TYPE_P (element_type)
3401 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3402 return 0;
3403
3404 /* Step through each of the elements in the array. */
3405 for (index = size_zero_node;
3406 /* G++ 3.2 had an off-by-one error here. */
3407 (abi_version_at_least (2)
3408 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3409 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3410 index = size_binop (PLUS_EXPR, index, size_one_node))
3411 {
3412 r = walk_subobject_offsets (TREE_TYPE (type),
3413 f,
3414 offset,
3415 offsets,
3416 max_offset,
3417 /*vbases_p=*/1);
3418 if (r)
3419 return r;
3420 offset = size_binop (PLUS_EXPR, offset,
3421 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3422 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3423 there's no point in iterating through the remaining
3424 elements of the array. */
3425 if (max_offset && INT_CST_LT (max_offset, offset))
3426 break;
3427 }
3428 }
3429
3430 return 0;
3431 }
3432
3433 /* Record all of the empty subobjects of TYPE (either a type or a
3434 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3435 is being placed at OFFSET; otherwise, it is a base class that is
3436 being placed at OFFSET. */
3437
3438 static void
3439 record_subobject_offsets (tree type,
3440 tree offset,
3441 splay_tree offsets,
3442 bool is_data_member)
3443 {
3444 tree max_offset;
3445 /* If recording subobjects for a non-static data member or a
3446 non-empty base class , we do not need to record offsets beyond
3447 the size of the biggest empty class. Additional data members
3448 will go at the end of the class. Additional base classes will go
3449 either at offset zero (if empty, in which case they cannot
3450 overlap with offsets past the size of the biggest empty class) or
3451 at the end of the class.
3452
3453 However, if we are placing an empty base class, then we must record
3454 all offsets, as either the empty class is at offset zero (where
3455 other empty classes might later be placed) or at the end of the
3456 class (where other objects might then be placed, so other empty
3457 subobjects might later overlap). */
3458 if (is_data_member
3459 || !is_empty_class (BINFO_TYPE (type)))
3460 max_offset = sizeof_biggest_empty_class;
3461 else
3462 max_offset = NULL_TREE;
3463 walk_subobject_offsets (type, record_subobject_offset, offset,
3464 offsets, max_offset, is_data_member);
3465 }
3466
3467 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3468 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3469 virtual bases of TYPE are examined. */
3470
3471 static int
3472 layout_conflict_p (tree type,
3473 tree offset,
3474 splay_tree offsets,
3475 int vbases_p)
3476 {
3477 splay_tree_node max_node;
3478
3479 /* Get the node in OFFSETS that indicates the maximum offset where
3480 an empty subobject is located. */
3481 max_node = splay_tree_max (offsets);
3482 /* If there aren't any empty subobjects, then there's no point in
3483 performing this check. */
3484 if (!max_node)
3485 return 0;
3486
3487 return walk_subobject_offsets (type, check_subobject_offset, offset,
3488 offsets, (tree) (max_node->key),
3489 vbases_p);
3490 }
3491
3492 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3493 non-static data member of the type indicated by RLI. BINFO is the
3494 binfo corresponding to the base subobject, OFFSETS maps offsets to
3495 types already located at those offsets. This function determines
3496 the position of the DECL. */
3497
3498 static void
3499 layout_nonempty_base_or_field (record_layout_info rli,
3500 tree decl,
3501 tree binfo,
3502 splay_tree offsets)
3503 {
3504 tree offset = NULL_TREE;
3505 bool field_p;
3506 tree type;
3507
3508 if (binfo)
3509 {
3510 /* For the purposes of determining layout conflicts, we want to
3511 use the class type of BINFO; TREE_TYPE (DECL) will be the
3512 CLASSTYPE_AS_BASE version, which does not contain entries for
3513 zero-sized bases. */
3514 type = TREE_TYPE (binfo);
3515 field_p = false;
3516 }
3517 else
3518 {
3519 type = TREE_TYPE (decl);
3520 field_p = true;
3521 }
3522
3523 /* Try to place the field. It may take more than one try if we have
3524 a hard time placing the field without putting two objects of the
3525 same type at the same address. */
3526 while (1)
3527 {
3528 struct record_layout_info_s old_rli = *rli;
3529
3530 /* Place this field. */
3531 place_field (rli, decl);
3532 offset = byte_position (decl);
3533
3534 /* We have to check to see whether or not there is already
3535 something of the same type at the offset we're about to use.
3536 For example, consider:
3537
3538 struct S {};
3539 struct T : public S { int i; };
3540 struct U : public S, public T {};
3541
3542 Here, we put S at offset zero in U. Then, we can't put T at
3543 offset zero -- its S component would be at the same address
3544 as the S we already allocated. So, we have to skip ahead.
3545 Since all data members, including those whose type is an
3546 empty class, have nonzero size, any overlap can happen only
3547 with a direct or indirect base-class -- it can't happen with
3548 a data member. */
3549 /* In a union, overlap is permitted; all members are placed at
3550 offset zero. */
3551 if (TREE_CODE (rli->t) == UNION_TYPE)
3552 break;
3553 /* G++ 3.2 did not check for overlaps when placing a non-empty
3554 virtual base. */
3555 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3556 break;
3557 if (layout_conflict_p (field_p ? type : binfo, offset,
3558 offsets, field_p))
3559 {
3560 /* Strip off the size allocated to this field. That puts us
3561 at the first place we could have put the field with
3562 proper alignment. */
3563 *rli = old_rli;
3564
3565 /* Bump up by the alignment required for the type. */
3566 rli->bitpos
3567 = size_binop (PLUS_EXPR, rli->bitpos,
3568 bitsize_int (binfo
3569 ? CLASSTYPE_ALIGN (type)
3570 : TYPE_ALIGN (type)));
3571 normalize_rli (rli);
3572 }
3573 else
3574 /* There was no conflict. We're done laying out this field. */
3575 break;
3576 }
3577
3578 /* Now that we know where it will be placed, update its
3579 BINFO_OFFSET. */
3580 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3581 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3582 this point because their BINFO_OFFSET is copied from another
3583 hierarchy. Therefore, we may not need to add the entire
3584 OFFSET. */
3585 propagate_binfo_offsets (binfo,
3586 size_diffop_loc (input_location,
3587 convert (ssizetype, offset),
3588 convert (ssizetype,
3589 BINFO_OFFSET (binfo))));
3590 }
3591
3592 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3593
3594 static int
3595 empty_base_at_nonzero_offset_p (tree type,
3596 tree offset,
3597 splay_tree offsets ATTRIBUTE_UNUSED)
3598 {
3599 return is_empty_class (type) && !integer_zerop (offset);
3600 }
3601
3602 /* Layout the empty base BINFO. EOC indicates the byte currently just
3603 past the end of the class, and should be correctly aligned for a
3604 class of the type indicated by BINFO; OFFSETS gives the offsets of
3605 the empty bases allocated so far. T is the most derived
3606 type. Return nonzero iff we added it at the end. */
3607
3608 static bool
3609 layout_empty_base (record_layout_info rli, tree binfo,
3610 tree eoc, splay_tree offsets)
3611 {
3612 tree alignment;
3613 tree basetype = BINFO_TYPE (binfo);
3614 bool atend = false;
3615
3616 /* This routine should only be used for empty classes. */
3617 gcc_assert (is_empty_class (basetype));
3618 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3619
3620 if (!integer_zerop (BINFO_OFFSET (binfo)))
3621 {
3622 if (abi_version_at_least (2))
3623 propagate_binfo_offsets
3624 (binfo, size_diffop_loc (input_location,
3625 size_zero_node, BINFO_OFFSET (binfo)));
3626 else
3627 warning (OPT_Wabi,
3628 "offset of empty base %qT may not be ABI-compliant and may"
3629 "change in a future version of GCC",
3630 BINFO_TYPE (binfo));
3631 }
3632
3633 /* This is an empty base class. We first try to put it at offset
3634 zero. */
3635 if (layout_conflict_p (binfo,
3636 BINFO_OFFSET (binfo),
3637 offsets,
3638 /*vbases_p=*/0))
3639 {
3640 /* That didn't work. Now, we move forward from the next
3641 available spot in the class. */
3642 atend = true;
3643 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3644 while (1)
3645 {
3646 if (!layout_conflict_p (binfo,
3647 BINFO_OFFSET (binfo),
3648 offsets,
3649 /*vbases_p=*/0))
3650 /* We finally found a spot where there's no overlap. */
3651 break;
3652
3653 /* There's overlap here, too. Bump along to the next spot. */
3654 propagate_binfo_offsets (binfo, alignment);
3655 }
3656 }
3657
3658 if (CLASSTYPE_USER_ALIGN (basetype))
3659 {
3660 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
3661 if (warn_packed)
3662 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
3663 TYPE_USER_ALIGN (rli->t) = 1;
3664 }
3665
3666 return atend;
3667 }
3668
3669 /* Layout the base given by BINFO in the class indicated by RLI.
3670 *BASE_ALIGN is a running maximum of the alignments of
3671 any base class. OFFSETS gives the location of empty base
3672 subobjects. T is the most derived type. Return nonzero if the new
3673 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3674 *NEXT_FIELD, unless BINFO is for an empty base class.
3675
3676 Returns the location at which the next field should be inserted. */
3677
3678 static tree *
3679 build_base_field (record_layout_info rli, tree binfo,
3680 splay_tree offsets, tree *next_field)
3681 {
3682 tree t = rli->t;
3683 tree basetype = BINFO_TYPE (binfo);
3684
3685 if (!COMPLETE_TYPE_P (basetype))
3686 /* This error is now reported in xref_tag, thus giving better
3687 location information. */
3688 return next_field;
3689
3690 /* Place the base class. */
3691 if (!is_empty_class (basetype))
3692 {
3693 tree decl;
3694
3695 /* The containing class is non-empty because it has a non-empty
3696 base class. */
3697 CLASSTYPE_EMPTY_P (t) = 0;
3698
3699 /* Create the FIELD_DECL. */
3700 decl = build_decl (input_location,
3701 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3702 DECL_ARTIFICIAL (decl) = 1;
3703 DECL_IGNORED_P (decl) = 1;
3704 DECL_FIELD_CONTEXT (decl) = t;
3705 if (CLASSTYPE_AS_BASE (basetype))
3706 {
3707 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3708 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3709 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3710 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3711 DECL_MODE (decl) = TYPE_MODE (basetype);
3712 DECL_FIELD_IS_BASE (decl) = 1;
3713
3714 /* Try to place the field. It may take more than one try if we
3715 have a hard time placing the field without putting two
3716 objects of the same type at the same address. */
3717 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3718 /* Add the new FIELD_DECL to the list of fields for T. */
3719 TREE_CHAIN (decl) = *next_field;
3720 *next_field = decl;
3721 next_field = &TREE_CHAIN (decl);
3722 }
3723 }
3724 else
3725 {
3726 tree eoc;
3727 bool atend;
3728
3729 /* On some platforms (ARM), even empty classes will not be
3730 byte-aligned. */
3731 eoc = round_up_loc (input_location,
3732 rli_size_unit_so_far (rli),
3733 CLASSTYPE_ALIGN_UNIT (basetype));
3734 atend = layout_empty_base (rli, binfo, eoc, offsets);
3735 /* A nearly-empty class "has no proper base class that is empty,
3736 not morally virtual, and at an offset other than zero." */
3737 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3738 {
3739 if (atend)
3740 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3741 /* The check above (used in G++ 3.2) is insufficient because
3742 an empty class placed at offset zero might itself have an
3743 empty base at a nonzero offset. */
3744 else if (walk_subobject_offsets (basetype,
3745 empty_base_at_nonzero_offset_p,
3746 size_zero_node,
3747 /*offsets=*/NULL,
3748 /*max_offset=*/NULL_TREE,
3749 /*vbases_p=*/true))
3750 {
3751 if (abi_version_at_least (2))
3752 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3753 else
3754 warning (OPT_Wabi,
3755 "class %qT will be considered nearly empty in a "
3756 "future version of GCC", t);
3757 }
3758 }
3759
3760 /* We do not create a FIELD_DECL for empty base classes because
3761 it might overlap some other field. We want to be able to
3762 create CONSTRUCTORs for the class by iterating over the
3763 FIELD_DECLs, and the back end does not handle overlapping
3764 FIELD_DECLs. */
3765
3766 /* An empty virtual base causes a class to be non-empty
3767 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3768 here because that was already done when the virtual table
3769 pointer was created. */
3770 }
3771
3772 /* Record the offsets of BINFO and its base subobjects. */
3773 record_subobject_offsets (binfo,
3774 BINFO_OFFSET (binfo),
3775 offsets,
3776 /*is_data_member=*/false);
3777
3778 return next_field;
3779 }
3780
3781 /* Layout all of the non-virtual base classes. Record empty
3782 subobjects in OFFSETS. T is the most derived type. Return nonzero
3783 if the type cannot be nearly empty. The fields created
3784 corresponding to the base classes will be inserted at
3785 *NEXT_FIELD. */
3786
3787 static void
3788 build_base_fields (record_layout_info rli,
3789 splay_tree offsets, tree *next_field)
3790 {
3791 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3792 subobjects. */
3793 tree t = rli->t;
3794 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3795 int i;
3796
3797 /* The primary base class is always allocated first. */
3798 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3799 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3800 offsets, next_field);
3801
3802 /* Now allocate the rest of the bases. */
3803 for (i = 0; i < n_baseclasses; ++i)
3804 {
3805 tree base_binfo;
3806
3807 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3808
3809 /* The primary base was already allocated above, so we don't
3810 need to allocate it again here. */
3811 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3812 continue;
3813
3814 /* Virtual bases are added at the end (a primary virtual base
3815 will have already been added). */
3816 if (BINFO_VIRTUAL_P (base_binfo))
3817 continue;
3818
3819 next_field = build_base_field (rli, base_binfo,
3820 offsets, next_field);
3821 }
3822 }
3823
3824 /* Go through the TYPE_METHODS of T issuing any appropriate
3825 diagnostics, figuring out which methods override which other
3826 methods, and so forth. */
3827
3828 static void
3829 check_methods (tree t)
3830 {
3831 tree x;
3832
3833 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3834 {
3835 check_for_override (x, t);
3836 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3837 error ("initializer specified for non-virtual method %q+D", x);
3838 /* The name of the field is the original field name
3839 Save this in auxiliary field for later overloading. */
3840 if (DECL_VINDEX (x))
3841 {
3842 TYPE_POLYMORPHIC_P (t) = 1;
3843 if (DECL_PURE_VIRTUAL_P (x))
3844 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
3845 }
3846 /* All user-provided destructors are non-trivial. */
3847 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
3848 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3849 }
3850 }
3851
3852 /* FN is a constructor or destructor. Clone the declaration to create
3853 a specialized in-charge or not-in-charge version, as indicated by
3854 NAME. */
3855
3856 static tree
3857 build_clone (tree fn, tree name)
3858 {
3859 tree parms;
3860 tree clone;
3861
3862 /* Copy the function. */
3863 clone = copy_decl (fn);
3864 /* Reset the function name. */
3865 DECL_NAME (clone) = name;
3866 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3867 /* Remember where this function came from. */
3868 DECL_ABSTRACT_ORIGIN (clone) = fn;
3869 /* Make it easy to find the CLONE given the FN. */
3870 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3871 TREE_CHAIN (fn) = clone;
3872
3873 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
3874 if (TREE_CODE (clone) == TEMPLATE_DECL)
3875 {
3876 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3877 DECL_TEMPLATE_RESULT (clone) = result;
3878 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3879 DECL_TI_TEMPLATE (result) = clone;
3880 TREE_TYPE (clone) = TREE_TYPE (result);
3881 return clone;
3882 }
3883
3884 DECL_CLONED_FUNCTION (clone) = fn;
3885 /* There's no pending inline data for this function. */
3886 DECL_PENDING_INLINE_INFO (clone) = NULL;
3887 DECL_PENDING_INLINE_P (clone) = 0;
3888
3889 /* The base-class destructor is not virtual. */
3890 if (name == base_dtor_identifier)
3891 {
3892 DECL_VIRTUAL_P (clone) = 0;
3893 if (TREE_CODE (clone) != TEMPLATE_DECL)
3894 DECL_VINDEX (clone) = NULL_TREE;
3895 }
3896
3897 /* If there was an in-charge parameter, drop it from the function
3898 type. */
3899 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3900 {
3901 tree basetype;
3902 tree parmtypes;
3903 tree exceptions;
3904
3905 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3906 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3907 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3908 /* Skip the `this' parameter. */
3909 parmtypes = TREE_CHAIN (parmtypes);
3910 /* Skip the in-charge parameter. */
3911 parmtypes = TREE_CHAIN (parmtypes);
3912 /* And the VTT parm, in a complete [cd]tor. */
3913 if (DECL_HAS_VTT_PARM_P (fn)
3914 && ! DECL_NEEDS_VTT_PARM_P (clone))
3915 parmtypes = TREE_CHAIN (parmtypes);
3916 /* If this is subobject constructor or destructor, add the vtt
3917 parameter. */
3918 TREE_TYPE (clone)
3919 = build_method_type_directly (basetype,
3920 TREE_TYPE (TREE_TYPE (clone)),
3921 parmtypes);
3922 if (exceptions)
3923 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3924 exceptions);
3925 TREE_TYPE (clone)
3926 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3927 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3928 }
3929
3930 /* Copy the function parameters. */
3931 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3932 /* Remove the in-charge parameter. */
3933 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3934 {
3935 TREE_CHAIN (DECL_ARGUMENTS (clone))
3936 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3937 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3938 }
3939 /* And the VTT parm, in a complete [cd]tor. */
3940 if (DECL_HAS_VTT_PARM_P (fn))
3941 {
3942 if (DECL_NEEDS_VTT_PARM_P (clone))
3943 DECL_HAS_VTT_PARM_P (clone) = 1;
3944 else
3945 {
3946 TREE_CHAIN (DECL_ARGUMENTS (clone))
3947 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3948 DECL_HAS_VTT_PARM_P (clone) = 0;
3949 }
3950 }
3951
3952 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3953 {
3954 DECL_CONTEXT (parms) = clone;
3955 cxx_dup_lang_specific_decl (parms);
3956 }
3957
3958 /* Create the RTL for this function. */
3959 SET_DECL_RTL (clone, NULL_RTX);
3960 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3961
3962 if (pch_file)
3963 note_decl_for_pch (clone);
3964
3965 return clone;
3966 }
3967
3968 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
3969 not invoke this function directly.
3970
3971 For a non-thunk function, returns the address of the slot for storing
3972 the function it is a clone of. Otherwise returns NULL_TREE.
3973
3974 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
3975 cloned_function is unset. This is to support the separate
3976 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
3977 on a template makes sense, but not the former. */
3978
3979 tree *
3980 decl_cloned_function_p (const_tree decl, bool just_testing)
3981 {
3982 tree *ptr;
3983 if (just_testing)
3984 decl = STRIP_TEMPLATE (decl);
3985
3986 if (TREE_CODE (decl) != FUNCTION_DECL
3987 || !DECL_LANG_SPECIFIC (decl)
3988 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
3989 {
3990 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
3991 if (!just_testing)
3992 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
3993 else
3994 #endif
3995 return NULL;
3996 }
3997
3998 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
3999 if (just_testing && *ptr == NULL_TREE)
4000 return NULL;
4001 else
4002 return ptr;
4003 }
4004
4005 /* Produce declarations for all appropriate clones of FN. If
4006 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4007 CLASTYPE_METHOD_VEC as well. */
4008
4009 void
4010 clone_function_decl (tree fn, int update_method_vec_p)
4011 {
4012 tree clone;
4013
4014 /* Avoid inappropriate cloning. */
4015 if (TREE_CHAIN (fn)
4016 && DECL_CLONED_FUNCTION_P (TREE_CHAIN (fn)))
4017 return;
4018
4019 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4020 {
4021 /* For each constructor, we need two variants: an in-charge version
4022 and a not-in-charge version. */
4023 clone = build_clone (fn, complete_ctor_identifier);
4024 if (update_method_vec_p)
4025 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4026 clone = build_clone (fn, base_ctor_identifier);
4027 if (update_method_vec_p)
4028 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4029 }
4030 else
4031 {
4032 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4033
4034 /* For each destructor, we need three variants: an in-charge
4035 version, a not-in-charge version, and an in-charge deleting
4036 version. We clone the deleting version first because that
4037 means it will go second on the TYPE_METHODS list -- and that
4038 corresponds to the correct layout order in the virtual
4039 function table.
4040
4041 For a non-virtual destructor, we do not build a deleting
4042 destructor. */
4043 if (DECL_VIRTUAL_P (fn))
4044 {
4045 clone = build_clone (fn, deleting_dtor_identifier);
4046 if (update_method_vec_p)
4047 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4048 }
4049 clone = build_clone (fn, complete_dtor_identifier);
4050 if (update_method_vec_p)
4051 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4052 clone = build_clone (fn, base_dtor_identifier);
4053 if (update_method_vec_p)
4054 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4055 }
4056
4057 /* Note that this is an abstract function that is never emitted. */
4058 DECL_ABSTRACT (fn) = 1;
4059 }
4060
4061 /* DECL is an in charge constructor, which is being defined. This will
4062 have had an in class declaration, from whence clones were
4063 declared. An out-of-class definition can specify additional default
4064 arguments. As it is the clones that are involved in overload
4065 resolution, we must propagate the information from the DECL to its
4066 clones. */
4067
4068 void
4069 adjust_clone_args (tree decl)
4070 {
4071 tree clone;
4072
4073 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4074 clone = TREE_CHAIN (clone))
4075 {
4076 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4077 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4078 tree decl_parms, clone_parms;
4079
4080 clone_parms = orig_clone_parms;
4081
4082 /* Skip the 'this' parameter. */
4083 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4084 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4085
4086 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4087 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4088 if (DECL_HAS_VTT_PARM_P (decl))
4089 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4090
4091 clone_parms = orig_clone_parms;
4092 if (DECL_HAS_VTT_PARM_P (clone))
4093 clone_parms = TREE_CHAIN (clone_parms);
4094
4095 for (decl_parms = orig_decl_parms; decl_parms;
4096 decl_parms = TREE_CHAIN (decl_parms),
4097 clone_parms = TREE_CHAIN (clone_parms))
4098 {
4099 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4100 TREE_TYPE (clone_parms)));
4101
4102 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4103 {
4104 /* A default parameter has been added. Adjust the
4105 clone's parameters. */
4106 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4107 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4108 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4109 tree type;
4110
4111 clone_parms = orig_decl_parms;
4112
4113 if (DECL_HAS_VTT_PARM_P (clone))
4114 {
4115 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4116 TREE_VALUE (orig_clone_parms),
4117 clone_parms);
4118 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4119 }
4120 type = build_method_type_directly (basetype,
4121 TREE_TYPE (TREE_TYPE (clone)),
4122 clone_parms);
4123 if (exceptions)
4124 type = build_exception_variant (type, exceptions);
4125 if (attrs)
4126 type = cp_build_type_attribute_variant (type, attrs);
4127 TREE_TYPE (clone) = type;
4128
4129 clone_parms = NULL_TREE;
4130 break;
4131 }
4132 }
4133 gcc_assert (!clone_parms);
4134 }
4135 }
4136
4137 /* For each of the constructors and destructors in T, create an
4138 in-charge and not-in-charge variant. */
4139
4140 static void
4141 clone_constructors_and_destructors (tree t)
4142 {
4143 tree fns;
4144
4145 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4146 out now. */
4147 if (!CLASSTYPE_METHOD_VEC (t))
4148 return;
4149
4150 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4151 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4152 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4153 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4154 }
4155
4156 /* Returns true iff class T has a user-defined constructor other than
4157 the default constructor. */
4158
4159 bool
4160 type_has_user_nondefault_constructor (tree t)
4161 {
4162 tree fns;
4163
4164 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4165 return false;
4166
4167 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4168 {
4169 tree fn = OVL_CURRENT (fns);
4170 if (!DECL_ARTIFICIAL (fn)
4171 && (TREE_CODE (fn) == TEMPLATE_DECL
4172 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4173 != NULL_TREE)))
4174 return true;
4175 }
4176
4177 return false;
4178 }
4179
4180 /* Returns true iff FN is a user-provided function, i.e. user-declared
4181 and not defaulted at its first declaration; or explicit, private,
4182 protected, or non-const. */
4183
4184 bool
4185 user_provided_p (tree fn)
4186 {
4187 if (TREE_CODE (fn) == TEMPLATE_DECL)
4188 return true;
4189 else
4190 return (!DECL_ARTIFICIAL (fn)
4191 && !DECL_DEFAULTED_IN_CLASS_P (fn));
4192 }
4193
4194 /* Returns true iff class T has a user-provided constructor. */
4195
4196 bool
4197 type_has_user_provided_constructor (tree t)
4198 {
4199 tree fns;
4200
4201 if (!CLASS_TYPE_P (t))
4202 return false;
4203
4204 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4205 return false;
4206
4207 /* This can happen in error cases; avoid crashing. */
4208 if (!CLASSTYPE_METHOD_VEC (t))
4209 return false;
4210
4211 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4212 if (user_provided_p (OVL_CURRENT (fns)))
4213 return true;
4214
4215 return false;
4216 }
4217
4218 /* Returns true iff class T has a user-provided default constructor. */
4219
4220 bool
4221 type_has_user_provided_default_constructor (tree t)
4222 {
4223 tree fns, args;
4224
4225 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4226 return false;
4227
4228 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4229 {
4230 tree fn = OVL_CURRENT (fns);
4231 if (TREE_CODE (fn) == FUNCTION_DECL
4232 && user_provided_p (fn))
4233 {
4234 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4235 while (args && TREE_PURPOSE (args))
4236 args = TREE_CHAIN (args);
4237 if (!args || args == void_list_node)
4238 return true;
4239 }
4240 }
4241
4242 return false;
4243 }
4244
4245 /* Remove all zero-width bit-fields from T. */
4246
4247 static void
4248 remove_zero_width_bit_fields (tree t)
4249 {
4250 tree *fieldsp;
4251
4252 fieldsp = &TYPE_FIELDS (t);
4253 while (*fieldsp)
4254 {
4255 if (TREE_CODE (*fieldsp) == FIELD_DECL
4256 && DECL_C_BIT_FIELD (*fieldsp)
4257 /* We should not be confused by the fact that grokbitfield
4258 temporarily sets the width of the bit field into
4259 DECL_INITIAL (*fieldsp).
4260 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
4261 to that width. */
4262 && integer_zerop (DECL_SIZE (*fieldsp)))
4263 *fieldsp = TREE_CHAIN (*fieldsp);
4264 else
4265 fieldsp = &TREE_CHAIN (*fieldsp);
4266 }
4267 }
4268
4269 /* Returns TRUE iff we need a cookie when dynamically allocating an
4270 array whose elements have the indicated class TYPE. */
4271
4272 static bool
4273 type_requires_array_cookie (tree type)
4274 {
4275 tree fns;
4276 bool has_two_argument_delete_p = false;
4277
4278 gcc_assert (CLASS_TYPE_P (type));
4279
4280 /* If there's a non-trivial destructor, we need a cookie. In order
4281 to iterate through the array calling the destructor for each
4282 element, we'll have to know how many elements there are. */
4283 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4284 return true;
4285
4286 /* If the usual deallocation function is a two-argument whose second
4287 argument is of type `size_t', then we have to pass the size of
4288 the array to the deallocation function, so we will need to store
4289 a cookie. */
4290 fns = lookup_fnfields (TYPE_BINFO (type),
4291 ansi_opname (VEC_DELETE_EXPR),
4292 /*protect=*/0);
4293 /* If there are no `operator []' members, or the lookup is
4294 ambiguous, then we don't need a cookie. */
4295 if (!fns || fns == error_mark_node)
4296 return false;
4297 /* Loop through all of the functions. */
4298 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4299 {
4300 tree fn;
4301 tree second_parm;
4302
4303 /* Select the current function. */
4304 fn = OVL_CURRENT (fns);
4305 /* See if this function is a one-argument delete function. If
4306 it is, then it will be the usual deallocation function. */
4307 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4308 if (second_parm == void_list_node)
4309 return false;
4310 /* Do not consider this function if its second argument is an
4311 ellipsis. */
4312 if (!second_parm)
4313 continue;
4314 /* Otherwise, if we have a two-argument function and the second
4315 argument is `size_t', it will be the usual deallocation
4316 function -- unless there is one-argument function, too. */
4317 if (TREE_CHAIN (second_parm) == void_list_node
4318 && same_type_p (TREE_VALUE (second_parm), size_type_node))
4319 has_two_argument_delete_p = true;
4320 }
4321
4322 return has_two_argument_delete_p;
4323 }
4324
4325 /* Check the validity of the bases and members declared in T. Add any
4326 implicitly-generated functions (like copy-constructors and
4327 assignment operators). Compute various flag bits (like
4328 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
4329 level: i.e., independently of the ABI in use. */
4330
4331 static void
4332 check_bases_and_members (tree t)
4333 {
4334 /* Nonzero if the implicitly generated copy constructor should take
4335 a non-const reference argument. */
4336 int cant_have_const_ctor;
4337 /* Nonzero if the implicitly generated assignment operator
4338 should take a non-const reference argument. */
4339 int no_const_asn_ref;
4340 tree access_decls;
4341 bool saved_complex_asn_ref;
4342 bool saved_nontrivial_dtor;
4343 tree fn;
4344
4345 /* By default, we use const reference arguments and generate default
4346 constructors. */
4347 cant_have_const_ctor = 0;
4348 no_const_asn_ref = 0;
4349
4350 /* Check all the base-classes. */
4351 check_bases (t, &cant_have_const_ctor,
4352 &no_const_asn_ref);
4353
4354 /* Check all the method declarations. */
4355 check_methods (t);
4356
4357 /* Save the initial values of these flags which only indicate whether
4358 or not the class has user-provided functions. As we analyze the
4359 bases and members we can set these flags for other reasons. */
4360 saved_complex_asn_ref = TYPE_HAS_COMPLEX_ASSIGN_REF (t);
4361 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
4362
4363 /* Check all the data member declarations. We cannot call
4364 check_field_decls until we have called check_bases check_methods,
4365 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4366 being set appropriately. */
4367 check_field_decls (t, &access_decls,
4368 &cant_have_const_ctor,
4369 &no_const_asn_ref);
4370
4371 /* A nearly-empty class has to be vptr-containing; a nearly empty
4372 class contains just a vptr. */
4373 if (!TYPE_CONTAINS_VPTR_P (t))
4374 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4375
4376 /* Do some bookkeeping that will guide the generation of implicitly
4377 declared member functions. */
4378 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_CONTAINS_VPTR_P (t);
4379 /* We need to call a constructor for this class if it has a
4380 user-provided constructor, or if the default constructor is going
4381 to initialize the vptr. (This is not an if-and-only-if;
4382 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
4383 themselves need constructing.) */
4384 TYPE_NEEDS_CONSTRUCTING (t)
4385 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
4386 /* [dcl.init.aggr]
4387
4388 An aggregate is an array or a class with no user-provided
4389 constructors ... and no virtual functions.
4390
4391 Again, other conditions for being an aggregate are checked
4392 elsewhere. */
4393 CLASSTYPE_NON_AGGREGATE (t)
4394 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
4395 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
4396 retain the old definition internally for ABI reasons. */
4397 CLASSTYPE_NON_LAYOUT_POD_P (t)
4398 |= (CLASSTYPE_NON_AGGREGATE (t)
4399 || saved_nontrivial_dtor || saved_complex_asn_ref);
4400 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
4401 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_CONTAINS_VPTR_P (t);
4402 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
4403
4404 /* If the class has no user-declared constructor, but does have
4405 non-static const or reference data members that can never be
4406 initialized, issue a warning. */
4407 if (warn_uninitialized
4408 /* Classes with user-declared constructors are presumed to
4409 initialize these members. */
4410 && !TYPE_HAS_USER_CONSTRUCTOR (t)
4411 /* Aggregates can be initialized with brace-enclosed
4412 initializers. */
4413 && CLASSTYPE_NON_AGGREGATE (t))
4414 {
4415 tree field;
4416
4417 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4418 {
4419 tree type;
4420
4421 if (TREE_CODE (field) != FIELD_DECL)
4422 continue;
4423
4424 type = TREE_TYPE (field);
4425 if (TREE_CODE (type) == REFERENCE_TYPE)
4426 warning (OPT_Wuninitialized, "non-static reference %q+#D "
4427 "in class without a constructor", field);
4428 else if (CP_TYPE_CONST_P (type)
4429 && (!CLASS_TYPE_P (type)
4430 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
4431 warning (OPT_Wuninitialized, "non-static const member %q+#D "
4432 "in class without a constructor", field);
4433 }
4434 }
4435
4436 /* Synthesize any needed methods. */
4437 add_implicitly_declared_members (t,
4438 cant_have_const_ctor,
4439 no_const_asn_ref);
4440
4441 /* Check defaulted declarations here so we have cant_have_const_ctor
4442 and don't need to worry about clones. */
4443 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4444 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4445 {
4446 int copy = copy_fn_p (fn);
4447 if (copy > 0)
4448 {
4449 bool imp_const_p
4450 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
4451 : !no_const_asn_ref);
4452 bool fn_const_p = (copy == 2);
4453
4454 if (fn_const_p && !imp_const_p)
4455 /* If the function is defaulted outside the class, we just
4456 give the synthesis error. */
4457 error ("%q+D declared to take const reference, but implicit "
4458 "declaration would take non-const", fn);
4459 else if (imp_const_p && !fn_const_p)
4460 error ("%q+D declared to take non-const reference cannot be "
4461 "defaulted in the class body", fn);
4462 }
4463 defaulted_late_check (fn);
4464 }
4465
4466 if (LAMBDA_TYPE_P (t))
4467 {
4468 /* "The closure type associated with a lambda-expression has a deleted
4469 default constructor and a deleted copy assignment operator." */
4470 TYPE_NEEDS_CONSTRUCTING (t) = 1;
4471 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 0;
4472 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 0;
4473 TYPE_HAS_ASSIGN_REF (t) = 0;
4474 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 0;
4475
4476 /* "This class type is not an aggregate." */
4477 CLASSTYPE_NON_AGGREGATE (t) = 1;
4478 }
4479
4480 /* Create the in-charge and not-in-charge variants of constructors
4481 and destructors. */
4482 clone_constructors_and_destructors (t);
4483
4484 /* Process the using-declarations. */
4485 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4486 handle_using_decl (TREE_VALUE (access_decls), t);
4487
4488 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4489 finish_struct_methods (t);
4490
4491 /* Figure out whether or not we will need a cookie when dynamically
4492 allocating an array of this type. */
4493 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4494 = type_requires_array_cookie (t);
4495 }
4496
4497 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4498 accordingly. If a new vfield was created (because T doesn't have a
4499 primary base class), then the newly created field is returned. It
4500 is not added to the TYPE_FIELDS list; it is the caller's
4501 responsibility to do that. Accumulate declared virtual functions
4502 on VIRTUALS_P. */
4503
4504 static tree
4505 create_vtable_ptr (tree t, tree* virtuals_p)
4506 {
4507 tree fn;
4508
4509 /* Collect the virtual functions declared in T. */
4510 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4511 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4512 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4513 {
4514 tree new_virtual = make_node (TREE_LIST);
4515
4516 BV_FN (new_virtual) = fn;
4517 BV_DELTA (new_virtual) = integer_zero_node;
4518 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4519
4520 TREE_CHAIN (new_virtual) = *virtuals_p;
4521 *virtuals_p = new_virtual;
4522 }
4523
4524 /* If we couldn't find an appropriate base class, create a new field
4525 here. Even if there weren't any new virtual functions, we might need a
4526 new virtual function table if we're supposed to include vptrs in
4527 all classes that need them. */
4528 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4529 {
4530 /* We build this decl with vtbl_ptr_type_node, which is a
4531 `vtable_entry_type*'. It might seem more precise to use
4532 `vtable_entry_type (*)[N]' where N is the number of virtual
4533 functions. However, that would require the vtable pointer in
4534 base classes to have a different type than the vtable pointer
4535 in derived classes. We could make that happen, but that
4536 still wouldn't solve all the problems. In particular, the
4537 type-based alias analysis code would decide that assignments
4538 to the base class vtable pointer can't alias assignments to
4539 the derived class vtable pointer, since they have different
4540 types. Thus, in a derived class destructor, where the base
4541 class constructor was inlined, we could generate bad code for
4542 setting up the vtable pointer.
4543
4544 Therefore, we use one type for all vtable pointers. We still
4545 use a type-correct type; it's just doesn't indicate the array
4546 bounds. That's better than using `void*' or some such; it's
4547 cleaner, and it let's the alias analysis code know that these
4548 stores cannot alias stores to void*! */
4549 tree field;
4550
4551 field = build_decl (input_location,
4552 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4553 DECL_VIRTUAL_P (field) = 1;
4554 DECL_ARTIFICIAL (field) = 1;
4555 DECL_FIELD_CONTEXT (field) = t;
4556 DECL_FCONTEXT (field) = t;
4557
4558 TYPE_VFIELD (t) = field;
4559
4560 /* This class is non-empty. */
4561 CLASSTYPE_EMPTY_P (t) = 0;
4562
4563 return field;
4564 }
4565
4566 return NULL_TREE;
4567 }
4568
4569 /* Add OFFSET to all base types of BINFO which is a base in the
4570 hierarchy dominated by T.
4571
4572 OFFSET, which is a type offset, is number of bytes. */
4573
4574 static void
4575 propagate_binfo_offsets (tree binfo, tree offset)
4576 {
4577 int i;
4578 tree primary_binfo;
4579 tree base_binfo;
4580
4581 /* Update BINFO's offset. */
4582 BINFO_OFFSET (binfo)
4583 = convert (sizetype,
4584 size_binop (PLUS_EXPR,
4585 convert (ssizetype, BINFO_OFFSET (binfo)),
4586 offset));
4587
4588 /* Find the primary base class. */
4589 primary_binfo = get_primary_binfo (binfo);
4590
4591 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4592 propagate_binfo_offsets (primary_binfo, offset);
4593
4594 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4595 downwards. */
4596 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4597 {
4598 /* Don't do the primary base twice. */
4599 if (base_binfo == primary_binfo)
4600 continue;
4601
4602 if (BINFO_VIRTUAL_P (base_binfo))
4603 continue;
4604
4605 propagate_binfo_offsets (base_binfo, offset);
4606 }
4607 }
4608
4609 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4610 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4611 empty subobjects of T. */
4612
4613 static void
4614 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4615 {
4616 tree vbase;
4617 tree t = rli->t;
4618 bool first_vbase = true;
4619 tree *next_field;
4620
4621 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4622 return;
4623
4624 if (!abi_version_at_least(2))
4625 {
4626 /* In G++ 3.2, we incorrectly rounded the size before laying out
4627 the virtual bases. */
4628 finish_record_layout (rli, /*free_p=*/false);
4629 #ifdef STRUCTURE_SIZE_BOUNDARY
4630 /* Packed structures don't need to have minimum size. */
4631 if (! TYPE_PACKED (t))
4632 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4633 #endif
4634 rli->offset = TYPE_SIZE_UNIT (t);
4635 rli->bitpos = bitsize_zero_node;
4636 rli->record_align = TYPE_ALIGN (t);
4637 }
4638
4639 /* Find the last field. The artificial fields created for virtual
4640 bases will go after the last extant field to date. */
4641 next_field = &TYPE_FIELDS (t);
4642 while (*next_field)
4643 next_field = &TREE_CHAIN (*next_field);
4644
4645 /* Go through the virtual bases, allocating space for each virtual
4646 base that is not already a primary base class. These are
4647 allocated in inheritance graph order. */
4648 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4649 {
4650 if (!BINFO_VIRTUAL_P (vbase))
4651 continue;
4652
4653 if (!BINFO_PRIMARY_P (vbase))
4654 {
4655 tree basetype = TREE_TYPE (vbase);
4656
4657 /* This virtual base is not a primary base of any class in the
4658 hierarchy, so we have to add space for it. */
4659 next_field = build_base_field (rli, vbase,
4660 offsets, next_field);
4661
4662 /* If the first virtual base might have been placed at a
4663 lower address, had we started from CLASSTYPE_SIZE, rather
4664 than TYPE_SIZE, issue a warning. There can be both false
4665 positives and false negatives from this warning in rare
4666 cases; to deal with all the possibilities would probably
4667 require performing both layout algorithms and comparing
4668 the results which is not particularly tractable. */
4669 if (warn_abi
4670 && first_vbase
4671 && (tree_int_cst_lt
4672 (size_binop (CEIL_DIV_EXPR,
4673 round_up_loc (input_location,
4674 CLASSTYPE_SIZE (t),
4675 CLASSTYPE_ALIGN (basetype)),
4676 bitsize_unit_node),
4677 BINFO_OFFSET (vbase))))
4678 warning (OPT_Wabi,
4679 "offset of virtual base %qT is not ABI-compliant and "
4680 "may change in a future version of GCC",
4681 basetype);
4682
4683 first_vbase = false;
4684 }
4685 }
4686 }
4687
4688 /* Returns the offset of the byte just past the end of the base class
4689 BINFO. */
4690
4691 static tree
4692 end_of_base (tree binfo)
4693 {
4694 tree size;
4695
4696 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
4697 size = TYPE_SIZE_UNIT (char_type_node);
4698 else if (is_empty_class (BINFO_TYPE (binfo)))
4699 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4700 allocate some space for it. It cannot have virtual bases, so
4701 TYPE_SIZE_UNIT is fine. */
4702 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4703 else
4704 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4705
4706 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4707 }
4708
4709 /* Returns the offset of the byte just past the end of the base class
4710 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4711 only non-virtual bases are included. */
4712
4713 static tree
4714 end_of_class (tree t, int include_virtuals_p)
4715 {
4716 tree result = size_zero_node;
4717 VEC(tree,gc) *vbases;
4718 tree binfo;
4719 tree base_binfo;
4720 tree offset;
4721 int i;
4722
4723 for (binfo = TYPE_BINFO (t), i = 0;
4724 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4725 {
4726 if (!include_virtuals_p
4727 && BINFO_VIRTUAL_P (base_binfo)
4728 && (!BINFO_PRIMARY_P (base_binfo)
4729 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4730 continue;
4731
4732 offset = end_of_base (base_binfo);
4733 if (INT_CST_LT_UNSIGNED (result, offset))
4734 result = offset;
4735 }
4736
4737 /* G++ 3.2 did not check indirect virtual bases. */
4738 if (abi_version_at_least (2) && include_virtuals_p)
4739 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4740 VEC_iterate (tree, vbases, i, base_binfo); i++)
4741 {
4742 offset = end_of_base (base_binfo);
4743 if (INT_CST_LT_UNSIGNED (result, offset))
4744 result = offset;
4745 }
4746
4747 return result;
4748 }
4749
4750 /* Warn about bases of T that are inaccessible because they are
4751 ambiguous. For example:
4752
4753 struct S {};
4754 struct T : public S {};
4755 struct U : public S, public T {};
4756
4757 Here, `(S*) new U' is not allowed because there are two `S'
4758 subobjects of U. */
4759
4760 static void
4761 warn_about_ambiguous_bases (tree t)
4762 {
4763 int i;
4764 VEC(tree,gc) *vbases;
4765 tree basetype;
4766 tree binfo;
4767 tree base_binfo;
4768
4769 /* If there are no repeated bases, nothing can be ambiguous. */
4770 if (!CLASSTYPE_REPEATED_BASE_P (t))
4771 return;
4772
4773 /* Check direct bases. */
4774 for (binfo = TYPE_BINFO (t), i = 0;
4775 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4776 {
4777 basetype = BINFO_TYPE (base_binfo);
4778
4779 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4780 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4781 basetype, t);
4782 }
4783
4784 /* Check for ambiguous virtual bases. */
4785 if (extra_warnings)
4786 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4787 VEC_iterate (tree, vbases, i, binfo); i++)
4788 {
4789 basetype = BINFO_TYPE (binfo);
4790
4791 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4792 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
4793 basetype, t);
4794 }
4795 }
4796
4797 /* Compare two INTEGER_CSTs K1 and K2. */
4798
4799 static int
4800 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4801 {
4802 return tree_int_cst_compare ((tree) k1, (tree) k2);
4803 }
4804
4805 /* Increase the size indicated in RLI to account for empty classes
4806 that are "off the end" of the class. */
4807
4808 static void
4809 include_empty_classes (record_layout_info rli)
4810 {
4811 tree eoc;
4812 tree rli_size;
4813
4814 /* It might be the case that we grew the class to allocate a
4815 zero-sized base class. That won't be reflected in RLI, yet,
4816 because we are willing to overlay multiple bases at the same
4817 offset. However, now we need to make sure that RLI is big enough
4818 to reflect the entire class. */
4819 eoc = end_of_class (rli->t,
4820 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4821 rli_size = rli_size_unit_so_far (rli);
4822 if (TREE_CODE (rli_size) == INTEGER_CST
4823 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4824 {
4825 if (!abi_version_at_least (2))
4826 /* In version 1 of the ABI, the size of a class that ends with
4827 a bitfield was not rounded up to a whole multiple of a
4828 byte. Because rli_size_unit_so_far returns only the number
4829 of fully allocated bytes, any extra bits were not included
4830 in the size. */
4831 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4832 else
4833 /* The size should have been rounded to a whole byte. */
4834 gcc_assert (tree_int_cst_equal
4835 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4836 rli->bitpos
4837 = size_binop (PLUS_EXPR,
4838 rli->bitpos,
4839 size_binop (MULT_EXPR,
4840 convert (bitsizetype,
4841 size_binop (MINUS_EXPR,
4842 eoc, rli_size)),
4843 bitsize_int (BITS_PER_UNIT)));
4844 normalize_rli (rli);
4845 }
4846 }
4847
4848 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4849 BINFO_OFFSETs for all of the base-classes. Position the vtable
4850 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4851
4852 static void
4853 layout_class_type (tree t, tree *virtuals_p)
4854 {
4855 tree non_static_data_members;
4856 tree field;
4857 tree vptr;
4858 record_layout_info rli;
4859 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4860 types that appear at that offset. */
4861 splay_tree empty_base_offsets;
4862 /* True if the last field layed out was a bit-field. */
4863 bool last_field_was_bitfield = false;
4864 /* The location at which the next field should be inserted. */
4865 tree *next_field;
4866 /* T, as a base class. */
4867 tree base_t;
4868
4869 /* Keep track of the first non-static data member. */
4870 non_static_data_members = TYPE_FIELDS (t);
4871
4872 /* Start laying out the record. */
4873 rli = start_record_layout (t);
4874
4875 /* Mark all the primary bases in the hierarchy. */
4876 determine_primary_bases (t);
4877
4878 /* Create a pointer to our virtual function table. */
4879 vptr = create_vtable_ptr (t, virtuals_p);
4880
4881 /* The vptr is always the first thing in the class. */
4882 if (vptr)
4883 {
4884 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4885 TYPE_FIELDS (t) = vptr;
4886 next_field = &TREE_CHAIN (vptr);
4887 place_field (rli, vptr);
4888 }
4889 else
4890 next_field = &TYPE_FIELDS (t);
4891
4892 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4893 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4894 NULL, NULL);
4895 build_base_fields (rli, empty_base_offsets, next_field);
4896
4897 /* Layout the non-static data members. */
4898 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4899 {
4900 tree type;
4901 tree padding;
4902
4903 /* We still pass things that aren't non-static data members to
4904 the back end, in case it wants to do something with them. */
4905 if (TREE_CODE (field) != FIELD_DECL)
4906 {
4907 place_field (rli, field);
4908 /* If the static data member has incomplete type, keep track
4909 of it so that it can be completed later. (The handling
4910 of pending statics in finish_record_layout is
4911 insufficient; consider:
4912
4913 struct S1;
4914 struct S2 { static S1 s1; };
4915
4916 At this point, finish_record_layout will be called, but
4917 S1 is still incomplete.) */
4918 if (TREE_CODE (field) == VAR_DECL)
4919 {
4920 maybe_register_incomplete_var (field);
4921 /* The visibility of static data members is determined
4922 at their point of declaration, not their point of
4923 definition. */
4924 determine_visibility (field);
4925 }
4926 continue;
4927 }
4928
4929 type = TREE_TYPE (field);
4930 if (type == error_mark_node)
4931 continue;
4932
4933 padding = NULL_TREE;
4934
4935 /* If this field is a bit-field whose width is greater than its
4936 type, then there are some special rules for allocating
4937 it. */
4938 if (DECL_C_BIT_FIELD (field)
4939 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4940 {
4941 unsigned int itk;
4942 tree integer_type;
4943 bool was_unnamed_p = false;
4944 /* We must allocate the bits as if suitably aligned for the
4945 longest integer type that fits in this many bits. type
4946 of the field. Then, we are supposed to use the left over
4947 bits as additional padding. */
4948 for (itk = itk_char; itk != itk_none; ++itk)
4949 if (INT_CST_LT (DECL_SIZE (field),
4950 TYPE_SIZE (integer_types[itk])))
4951 break;
4952
4953 /* ITK now indicates a type that is too large for the
4954 field. We have to back up by one to find the largest
4955 type that fits. */
4956 integer_type = integer_types[itk - 1];
4957
4958 /* Figure out how much additional padding is required. GCC
4959 3.2 always created a padding field, even if it had zero
4960 width. */
4961 if (!abi_version_at_least (2)
4962 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4963 {
4964 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4965 /* In a union, the padding field must have the full width
4966 of the bit-field; all fields start at offset zero. */
4967 padding = DECL_SIZE (field);
4968 else
4969 {
4970 if (TREE_CODE (t) == UNION_TYPE)
4971 warning (OPT_Wabi, "size assigned to %qT may not be "
4972 "ABI-compliant and may change in a future "
4973 "version of GCC",
4974 t);
4975 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4976 TYPE_SIZE (integer_type));
4977 }
4978 }
4979 #ifdef PCC_BITFIELD_TYPE_MATTERS
4980 /* An unnamed bitfield does not normally affect the
4981 alignment of the containing class on a target where
4982 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4983 make any exceptions for unnamed bitfields when the
4984 bitfields are longer than their types. Therefore, we
4985 temporarily give the field a name. */
4986 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4987 {
4988 was_unnamed_p = true;
4989 DECL_NAME (field) = make_anon_name ();
4990 }
4991 #endif
4992 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4993 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4994 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4995 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4996 empty_base_offsets);
4997 if (was_unnamed_p)
4998 DECL_NAME (field) = NULL_TREE;
4999 /* Now that layout has been performed, set the size of the
5000 field to the size of its declared type; the rest of the
5001 field is effectively invisible. */
5002 DECL_SIZE (field) = TYPE_SIZE (type);
5003 /* We must also reset the DECL_MODE of the field. */
5004 if (abi_version_at_least (2))
5005 DECL_MODE (field) = TYPE_MODE (type);
5006 else if (warn_abi
5007 && DECL_MODE (field) != TYPE_MODE (type))
5008 /* Versions of G++ before G++ 3.4 did not reset the
5009 DECL_MODE. */
5010 warning (OPT_Wabi,
5011 "the offset of %qD may not be ABI-compliant and may "
5012 "change in a future version of GCC", field);
5013 }
5014 else
5015 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5016 empty_base_offsets);
5017
5018 /* Remember the location of any empty classes in FIELD. */
5019 if (abi_version_at_least (2))
5020 record_subobject_offsets (TREE_TYPE (field),
5021 byte_position(field),
5022 empty_base_offsets,
5023 /*is_data_member=*/true);
5024
5025 /* If a bit-field does not immediately follow another bit-field,
5026 and yet it starts in the middle of a byte, we have failed to
5027 comply with the ABI. */
5028 if (warn_abi
5029 && DECL_C_BIT_FIELD (field)
5030 /* The TREE_NO_WARNING flag gets set by Objective-C when
5031 laying out an Objective-C class. The ObjC ABI differs
5032 from the C++ ABI, and so we do not want a warning
5033 here. */
5034 && !TREE_NO_WARNING (field)
5035 && !last_field_was_bitfield
5036 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
5037 DECL_FIELD_BIT_OFFSET (field),
5038 bitsize_unit_node)))
5039 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
5040 "change in a future version of GCC", field);
5041
5042 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
5043 offset of the field. */
5044 if (warn_abi
5045 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
5046 byte_position (field))
5047 && contains_empty_class_p (TREE_TYPE (field)))
5048 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
5049 "classes to be placed at different locations in a "
5050 "future version of GCC", field);
5051
5052 /* The middle end uses the type of expressions to determine the
5053 possible range of expression values. In order to optimize
5054 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
5055 must be made aware of the width of "i", via its type.
5056
5057 Because C++ does not have integer types of arbitrary width,
5058 we must (for the purposes of the front end) convert from the
5059 type assigned here to the declared type of the bitfield
5060 whenever a bitfield expression is used as an rvalue.
5061 Similarly, when assigning a value to a bitfield, the value
5062 must be converted to the type given the bitfield here. */
5063 if (DECL_C_BIT_FIELD (field))
5064 {
5065 unsigned HOST_WIDE_INT width;
5066 tree ftype = TREE_TYPE (field);
5067 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
5068 if (width != TYPE_PRECISION (ftype))
5069 {
5070 TREE_TYPE (field)
5071 = c_build_bitfield_integer_type (width,
5072 TYPE_UNSIGNED (ftype));
5073 TREE_TYPE (field)
5074 = cp_build_qualified_type (TREE_TYPE (field),
5075 TYPE_QUALS (ftype));
5076 }
5077 }
5078
5079 /* If we needed additional padding after this field, add it
5080 now. */
5081 if (padding)
5082 {
5083 tree padding_field;
5084
5085 padding_field = build_decl (input_location,
5086 FIELD_DECL,
5087 NULL_TREE,
5088 char_type_node);
5089 DECL_BIT_FIELD (padding_field) = 1;
5090 DECL_SIZE (padding_field) = padding;
5091 DECL_CONTEXT (padding_field) = t;
5092 DECL_ARTIFICIAL (padding_field) = 1;
5093 DECL_IGNORED_P (padding_field) = 1;
5094 layout_nonempty_base_or_field (rli, padding_field,
5095 NULL_TREE,
5096 empty_base_offsets);
5097 }
5098
5099 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
5100 }
5101
5102 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
5103 {
5104 /* Make sure that we are on a byte boundary so that the size of
5105 the class without virtual bases will always be a round number
5106 of bytes. */
5107 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
5108 normalize_rli (rli);
5109 }
5110
5111 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
5112 padding. */
5113 if (!abi_version_at_least (2))
5114 include_empty_classes(rli);
5115
5116 /* Delete all zero-width bit-fields from the list of fields. Now
5117 that the type is laid out they are no longer important. */
5118 remove_zero_width_bit_fields (t);
5119
5120 /* Create the version of T used for virtual bases. We do not use
5121 make_class_type for this version; this is an artificial type. For
5122 a POD type, we just reuse T. */
5123 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
5124 {
5125 base_t = make_node (TREE_CODE (t));
5126
5127 /* Set the size and alignment for the new type. In G++ 3.2, all
5128 empty classes were considered to have size zero when used as
5129 base classes. */
5130 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
5131 {
5132 TYPE_SIZE (base_t) = bitsize_zero_node;
5133 TYPE_SIZE_UNIT (base_t) = size_zero_node;
5134 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
5135 warning (OPT_Wabi,
5136 "layout of classes derived from empty class %qT "
5137 "may change in a future version of GCC",
5138 t);
5139 }
5140 else
5141 {
5142 tree eoc;
5143
5144 /* If the ABI version is not at least two, and the last
5145 field was a bit-field, RLI may not be on a byte
5146 boundary. In particular, rli_size_unit_so_far might
5147 indicate the last complete byte, while rli_size_so_far
5148 indicates the total number of bits used. Therefore,
5149 rli_size_so_far, rather than rli_size_unit_so_far, is
5150 used to compute TYPE_SIZE_UNIT. */
5151 eoc = end_of_class (t, /*include_virtuals_p=*/0);
5152 TYPE_SIZE_UNIT (base_t)
5153 = size_binop (MAX_EXPR,
5154 convert (sizetype,
5155 size_binop (CEIL_DIV_EXPR,
5156 rli_size_so_far (rli),
5157 bitsize_int (BITS_PER_UNIT))),
5158 eoc);
5159 TYPE_SIZE (base_t)
5160 = size_binop (MAX_EXPR,
5161 rli_size_so_far (rli),
5162 size_binop (MULT_EXPR,
5163 convert (bitsizetype, eoc),
5164 bitsize_int (BITS_PER_UNIT)));
5165 }
5166 TYPE_ALIGN (base_t) = rli->record_align;
5167 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
5168
5169 /* Copy the fields from T. */
5170 next_field = &TYPE_FIELDS (base_t);
5171 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5172 if (TREE_CODE (field) == FIELD_DECL)
5173 {
5174 *next_field = build_decl (input_location,
5175 FIELD_DECL,
5176 DECL_NAME (field),
5177 TREE_TYPE (field));
5178 DECL_CONTEXT (*next_field) = base_t;
5179 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
5180 DECL_FIELD_BIT_OFFSET (*next_field)
5181 = DECL_FIELD_BIT_OFFSET (field);
5182 DECL_SIZE (*next_field) = DECL_SIZE (field);
5183 DECL_MODE (*next_field) = DECL_MODE (field);
5184 next_field = &TREE_CHAIN (*next_field);
5185 }
5186
5187 /* Record the base version of the type. */
5188 CLASSTYPE_AS_BASE (t) = base_t;
5189 TYPE_CONTEXT (base_t) = t;
5190 }
5191 else
5192 CLASSTYPE_AS_BASE (t) = t;
5193
5194 /* Every empty class contains an empty class. */
5195 if (CLASSTYPE_EMPTY_P (t))
5196 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
5197
5198 /* Set the TYPE_DECL for this type to contain the right
5199 value for DECL_OFFSET, so that we can use it as part
5200 of a COMPONENT_REF for multiple inheritance. */
5201 layout_decl (TYPE_MAIN_DECL (t), 0);
5202
5203 /* Now fix up any virtual base class types that we left lying
5204 around. We must get these done before we try to lay out the
5205 virtual function table. As a side-effect, this will remove the
5206 base subobject fields. */
5207 layout_virtual_bases (rli, empty_base_offsets);
5208
5209 /* Make sure that empty classes are reflected in RLI at this
5210 point. */
5211 include_empty_classes(rli);
5212
5213 /* Make sure not to create any structures with zero size. */
5214 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
5215 place_field (rli,
5216 build_decl (input_location,
5217 FIELD_DECL, NULL_TREE, char_type_node));
5218
5219 /* Let the back end lay out the type. */
5220 finish_record_layout (rli, /*free_p=*/true);
5221
5222 /* Warn about bases that can't be talked about due to ambiguity. */
5223 warn_about_ambiguous_bases (t);
5224
5225 /* Now that we're done with layout, give the base fields the real types. */
5226 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5227 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
5228 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
5229
5230 /* Clean up. */
5231 splay_tree_delete (empty_base_offsets);
5232
5233 if (CLASSTYPE_EMPTY_P (t)
5234 && tree_int_cst_lt (sizeof_biggest_empty_class,
5235 TYPE_SIZE_UNIT (t)))
5236 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
5237 }
5238
5239 /* Determine the "key method" for the class type indicated by TYPE,
5240 and set CLASSTYPE_KEY_METHOD accordingly. */
5241
5242 void
5243 determine_key_method (tree type)
5244 {
5245 tree method;
5246
5247 if (TYPE_FOR_JAVA (type)
5248 || processing_template_decl
5249 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
5250 || CLASSTYPE_INTERFACE_KNOWN (type))
5251 return;
5252
5253 /* The key method is the first non-pure virtual function that is not
5254 inline at the point of class definition. On some targets the
5255 key function may not be inline; those targets should not call
5256 this function until the end of the translation unit. */
5257 for (method = TYPE_METHODS (type); method != NULL_TREE;
5258 method = TREE_CHAIN (method))
5259 if (DECL_VINDEX (method) != NULL_TREE
5260 && ! DECL_DECLARED_INLINE_P (method)
5261 && ! DECL_PURE_VIRTUAL_P (method))
5262 {
5263 CLASSTYPE_KEY_METHOD (type) = method;
5264 break;
5265 }
5266
5267 return;
5268 }
5269
5270 /* Perform processing required when the definition of T (a class type)
5271 is complete. */
5272
5273 void
5274 finish_struct_1 (tree t)
5275 {
5276 tree x;
5277 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
5278 tree virtuals = NULL_TREE;
5279 int n_fields = 0;
5280
5281 if (COMPLETE_TYPE_P (t))
5282 {
5283 gcc_assert (MAYBE_CLASS_TYPE_P (t));
5284 error ("redefinition of %q#T", t);
5285 popclass ();
5286 return;
5287 }
5288
5289 /* If this type was previously laid out as a forward reference,
5290 make sure we lay it out again. */
5291 TYPE_SIZE (t) = NULL_TREE;
5292 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
5293
5294 /* Make assumptions about the class; we'll reset the flags if
5295 necessary. */
5296 CLASSTYPE_EMPTY_P (t) = 1;
5297 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
5298 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
5299
5300 /* Do end-of-class semantic processing: checking the validity of the
5301 bases and members and add implicitly generated methods. */
5302 check_bases_and_members (t);
5303
5304 /* Find the key method. */
5305 if (TYPE_CONTAINS_VPTR_P (t))
5306 {
5307 /* The Itanium C++ ABI permits the key method to be chosen when
5308 the class is defined -- even though the key method so
5309 selected may later turn out to be an inline function. On
5310 some systems (such as ARM Symbian OS) the key method cannot
5311 be determined until the end of the translation unit. On such
5312 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
5313 will cause the class to be added to KEYED_CLASSES. Then, in
5314 finish_file we will determine the key method. */
5315 if (targetm.cxx.key_method_may_be_inline ())
5316 determine_key_method (t);
5317
5318 /* If a polymorphic class has no key method, we may emit the vtable
5319 in every translation unit where the class definition appears. */
5320 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
5321 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
5322 }
5323
5324 /* Layout the class itself. */
5325 layout_class_type (t, &virtuals);
5326 if (CLASSTYPE_AS_BASE (t) != t)
5327 /* We use the base type for trivial assignments, and hence it
5328 needs a mode. */
5329 compute_record_mode (CLASSTYPE_AS_BASE (t));
5330
5331 virtuals = modify_all_vtables (t, nreverse (virtuals));
5332
5333 /* If necessary, create the primary vtable for this class. */
5334 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
5335 {
5336 /* We must enter these virtuals into the table. */
5337 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5338 build_primary_vtable (NULL_TREE, t);
5339 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
5340 /* Here we know enough to change the type of our virtual
5341 function table, but we will wait until later this function. */
5342 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
5343 }
5344
5345 if (TYPE_CONTAINS_VPTR_P (t))
5346 {
5347 int vindex;
5348 tree fn;
5349
5350 if (BINFO_VTABLE (TYPE_BINFO (t)))
5351 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
5352 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5353 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
5354
5355 /* Add entries for virtual functions introduced by this class. */
5356 BINFO_VIRTUALS (TYPE_BINFO (t))
5357 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
5358
5359 /* Set DECL_VINDEX for all functions declared in this class. */
5360 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5361 fn;
5362 fn = TREE_CHAIN (fn),
5363 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5364 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5365 {
5366 tree fndecl = BV_FN (fn);
5367
5368 if (DECL_THUNK_P (fndecl))
5369 /* A thunk. We should never be calling this entry directly
5370 from this vtable -- we'd use the entry for the non
5371 thunk base function. */
5372 DECL_VINDEX (fndecl) = NULL_TREE;
5373 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5374 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
5375 }
5376 }
5377
5378 finish_struct_bits (t);
5379
5380 /* Complete the rtl for any static member objects of the type we're
5381 working on. */
5382 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5383 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5384 && TREE_TYPE (x) != error_mark_node
5385 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5386 DECL_MODE (x) = TYPE_MODE (t);
5387
5388 /* Done with FIELDS...now decide whether to sort these for
5389 faster lookups later.
5390
5391 We use a small number because most searches fail (succeeding
5392 ultimately as the search bores through the inheritance
5393 hierarchy), and we want this failure to occur quickly. */
5394
5395 n_fields = count_fields (TYPE_FIELDS (t));
5396 if (n_fields > 7)
5397 {
5398 struct sorted_fields_type *field_vec = GGC_NEWVAR
5399 (struct sorted_fields_type,
5400 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5401 field_vec->len = n_fields;
5402 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5403 qsort (field_vec->elts, n_fields, sizeof (tree),
5404 field_decl_cmp);
5405 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
5406 }
5407
5408 /* Complain if one of the field types requires lower visibility. */
5409 constrain_class_visibility (t);
5410
5411 /* Make the rtl for any new vtables we have created, and unmark
5412 the base types we marked. */
5413 finish_vtbls (t);
5414
5415 /* Build the VTT for T. */
5416 build_vtt (t);
5417
5418 /* This warning does not make sense for Java classes, since they
5419 cannot have destructors. */
5420 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5421 {
5422 tree dtor;
5423
5424 dtor = CLASSTYPE_DESTRUCTORS (t);
5425 if (/* An implicitly declared destructor is always public. And,
5426 if it were virtual, we would have created it by now. */
5427 !dtor
5428 || (!DECL_VINDEX (dtor)
5429 && (/* public non-virtual */
5430 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
5431 || (/* non-public non-virtual with friends */
5432 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
5433 && (CLASSTYPE_FRIEND_CLASSES (t)
5434 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
5435 warning (OPT_Wnon_virtual_dtor,
5436 "%q#T has virtual functions and accessible"
5437 " non-virtual destructor", t);
5438 }
5439
5440 complete_vars (t);
5441
5442 if (warn_overloaded_virtual)
5443 warn_hidden (t);
5444
5445 /* Class layout, assignment of virtual table slots, etc., is now
5446 complete. Give the back end a chance to tweak the visibility of
5447 the class or perform any other required target modifications. */
5448 targetm.cxx.adjust_class_at_definition (t);
5449
5450 maybe_suppress_debug_info (t);
5451
5452 dump_class_hierarchy (t);
5453
5454 /* Finish debugging output for this type. */
5455 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5456 }
5457
5458 /* When T was built up, the member declarations were added in reverse
5459 order. Rearrange them to declaration order. */
5460
5461 void
5462 unreverse_member_declarations (tree t)
5463 {
5464 tree next;
5465 tree prev;
5466 tree x;
5467
5468 /* The following lists are all in reverse order. Put them in
5469 declaration order now. */
5470 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5471 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5472
5473 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5474 reverse order, so we can't just use nreverse. */
5475 prev = NULL_TREE;
5476 for (x = TYPE_FIELDS (t);
5477 x && TREE_CODE (x) != TYPE_DECL;
5478 x = next)
5479 {
5480 next = TREE_CHAIN (x);
5481 TREE_CHAIN (x) = prev;
5482 prev = x;
5483 }
5484 if (prev)
5485 {
5486 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5487 if (prev)
5488 TYPE_FIELDS (t) = prev;
5489 }
5490 }
5491
5492 tree
5493 finish_struct (tree t, tree attributes)
5494 {
5495 location_t saved_loc = input_location;
5496
5497 /* Now that we've got all the field declarations, reverse everything
5498 as necessary. */
5499 unreverse_member_declarations (t);
5500
5501 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5502
5503 /* Nadger the current location so that diagnostics point to the start of
5504 the struct, not the end. */
5505 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5506
5507 if (processing_template_decl)
5508 {
5509 tree x;
5510
5511 finish_struct_methods (t);
5512 TYPE_SIZE (t) = bitsize_zero_node;
5513 TYPE_SIZE_UNIT (t) = size_zero_node;
5514
5515 /* We need to emit an error message if this type was used as a parameter
5516 and it is an abstract type, even if it is a template. We construct
5517 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5518 account and we call complete_vars with this type, which will check
5519 the PARM_DECLS. Note that while the type is being defined,
5520 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5521 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5522 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5523 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5524 if (DECL_PURE_VIRTUAL_P (x))
5525 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
5526 complete_vars (t);
5527
5528 /* Remember current #pragma pack value. */
5529 TYPE_PRECISION (t) = maximum_field_alignment;
5530 }
5531 else
5532 finish_struct_1 (t);
5533
5534 input_location = saved_loc;
5535
5536 TYPE_BEING_DEFINED (t) = 0;
5537
5538 if (current_class_type)
5539 popclass ();
5540 else
5541 error ("trying to finish struct, but kicked out due to previous parse errors");
5542
5543 if (processing_template_decl && at_function_scope_p ())
5544 add_stmt (build_min (TAG_DEFN, t));
5545
5546 return t;
5547 }
5548 \f
5549 /* Return the dynamic type of INSTANCE, if known.
5550 Used to determine whether the virtual function table is needed
5551 or not.
5552
5553 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5554 of our knowledge of its type. *NONNULL should be initialized
5555 before this function is called. */
5556
5557 static tree
5558 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
5559 {
5560 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
5561
5562 switch (TREE_CODE (instance))
5563 {
5564 case INDIRECT_REF:
5565 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5566 return NULL_TREE;
5567 else
5568 return RECUR (TREE_OPERAND (instance, 0));
5569
5570 case CALL_EXPR:
5571 /* This is a call to a constructor, hence it's never zero. */
5572 if (TREE_HAS_CONSTRUCTOR (instance))
5573 {
5574 if (nonnull)
5575 *nonnull = 1;
5576 return TREE_TYPE (instance);
5577 }
5578 return NULL_TREE;
5579
5580 case SAVE_EXPR:
5581 /* This is a call to a constructor, hence it's never zero. */
5582 if (TREE_HAS_CONSTRUCTOR (instance))
5583 {
5584 if (nonnull)
5585 *nonnull = 1;
5586 return TREE_TYPE (instance);
5587 }
5588 return RECUR (TREE_OPERAND (instance, 0));
5589
5590 case POINTER_PLUS_EXPR:
5591 case PLUS_EXPR:
5592 case MINUS_EXPR:
5593 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5594 return RECUR (TREE_OPERAND (instance, 0));
5595 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5596 /* Propagate nonnull. */
5597 return RECUR (TREE_OPERAND (instance, 0));
5598
5599 return NULL_TREE;
5600
5601 CASE_CONVERT:
5602 return RECUR (TREE_OPERAND (instance, 0));
5603
5604 case ADDR_EXPR:
5605 instance = TREE_OPERAND (instance, 0);
5606 if (nonnull)
5607 {
5608 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5609 with a real object -- given &p->f, p can still be null. */
5610 tree t = get_base_address (instance);
5611 /* ??? Probably should check DECL_WEAK here. */
5612 if (t && DECL_P (t))
5613 *nonnull = 1;
5614 }
5615 return RECUR (instance);
5616
5617 case COMPONENT_REF:
5618 /* If this component is really a base class reference, then the field
5619 itself isn't definitive. */
5620 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5621 return RECUR (TREE_OPERAND (instance, 0));
5622 return RECUR (TREE_OPERAND (instance, 1));
5623
5624 case VAR_DECL:
5625 case FIELD_DECL:
5626 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5627 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
5628 {
5629 if (nonnull)
5630 *nonnull = 1;
5631 return TREE_TYPE (TREE_TYPE (instance));
5632 }
5633 /* fall through... */
5634 case TARGET_EXPR:
5635 case PARM_DECL:
5636 case RESULT_DECL:
5637 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
5638 {
5639 if (nonnull)
5640 *nonnull = 1;
5641 return TREE_TYPE (instance);
5642 }
5643 else if (instance == current_class_ptr)
5644 {
5645 if (nonnull)
5646 *nonnull = 1;
5647
5648 /* if we're in a ctor or dtor, we know our type. */
5649 if (DECL_LANG_SPECIFIC (current_function_decl)
5650 && (DECL_CONSTRUCTOR_P (current_function_decl)
5651 || DECL_DESTRUCTOR_P (current_function_decl)))
5652 {
5653 if (cdtorp)
5654 *cdtorp = 1;
5655 return TREE_TYPE (TREE_TYPE (instance));
5656 }
5657 }
5658 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5659 {
5660 /* We only need one hash table because it is always left empty. */
5661 static htab_t ht;
5662 if (!ht)
5663 ht = htab_create (37,
5664 htab_hash_pointer,
5665 htab_eq_pointer,
5666 /*htab_del=*/NULL);
5667
5668 /* Reference variables should be references to objects. */
5669 if (nonnull)
5670 *nonnull = 1;
5671
5672 /* Enter the INSTANCE in a table to prevent recursion; a
5673 variable's initializer may refer to the variable
5674 itself. */
5675 if (TREE_CODE (instance) == VAR_DECL
5676 && DECL_INITIAL (instance)
5677 && !htab_find (ht, instance))
5678 {
5679 tree type;
5680 void **slot;
5681
5682 slot = htab_find_slot (ht, instance, INSERT);
5683 *slot = instance;
5684 type = RECUR (DECL_INITIAL (instance));
5685 htab_remove_elt (ht, instance);
5686
5687 return type;
5688 }
5689 }
5690 return NULL_TREE;
5691
5692 default:
5693 return NULL_TREE;
5694 }
5695 #undef RECUR
5696 }
5697
5698 /* Return nonzero if the dynamic type of INSTANCE is known, and
5699 equivalent to the static type. We also handle the case where
5700 INSTANCE is really a pointer. Return negative if this is a
5701 ctor/dtor. There the dynamic type is known, but this might not be
5702 the most derived base of the original object, and hence virtual
5703 bases may not be layed out according to this type.
5704
5705 Used to determine whether the virtual function table is needed
5706 or not.
5707
5708 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5709 of our knowledge of its type. *NONNULL should be initialized
5710 before this function is called. */
5711
5712 int
5713 resolves_to_fixed_type_p (tree instance, int* nonnull)
5714 {
5715 tree t = TREE_TYPE (instance);
5716 int cdtorp = 0;
5717 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5718 if (fixed == NULL_TREE)
5719 return 0;
5720 if (POINTER_TYPE_P (t))
5721 t = TREE_TYPE (t);
5722 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5723 return 0;
5724 return cdtorp ? -1 : 1;
5725 }
5726
5727 \f
5728 void
5729 init_class_processing (void)
5730 {
5731 current_class_depth = 0;
5732 current_class_stack_size = 10;
5733 current_class_stack
5734 = XNEWVEC (struct class_stack_node, current_class_stack_size);
5735 local_classes = VEC_alloc (tree, gc, 8);
5736 sizeof_biggest_empty_class = size_zero_node;
5737
5738 ridpointers[(int) RID_PUBLIC] = access_public_node;
5739 ridpointers[(int) RID_PRIVATE] = access_private_node;
5740 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5741 }
5742
5743 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5744
5745 static void
5746 restore_class_cache (void)
5747 {
5748 tree type;
5749
5750 /* We are re-entering the same class we just left, so we don't
5751 have to search the whole inheritance matrix to find all the
5752 decls to bind again. Instead, we install the cached
5753 class_shadowed list and walk through it binding names. */
5754 push_binding_level (previous_class_level);
5755 class_binding_level = previous_class_level;
5756 /* Restore IDENTIFIER_TYPE_VALUE. */
5757 for (type = class_binding_level->type_shadowed;
5758 type;
5759 type = TREE_CHAIN (type))
5760 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5761 }
5762
5763 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5764 appropriate for TYPE.
5765
5766 So that we may avoid calls to lookup_name, we cache the _TYPE
5767 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5768
5769 For multiple inheritance, we perform a two-pass depth-first search
5770 of the type lattice. */
5771
5772 void
5773 pushclass (tree type)
5774 {
5775 class_stack_node_t csn;
5776
5777 type = TYPE_MAIN_VARIANT (type);
5778
5779 /* Make sure there is enough room for the new entry on the stack. */
5780 if (current_class_depth + 1 >= current_class_stack_size)
5781 {
5782 current_class_stack_size *= 2;
5783 current_class_stack
5784 = XRESIZEVEC (struct class_stack_node, current_class_stack,
5785 current_class_stack_size);
5786 }
5787
5788 /* Insert a new entry on the class stack. */
5789 csn = current_class_stack + current_class_depth;
5790 csn->name = current_class_name;
5791 csn->type = current_class_type;
5792 csn->access = current_access_specifier;
5793 csn->names_used = 0;
5794 csn->hidden = 0;
5795 current_class_depth++;
5796
5797 /* Now set up the new type. */
5798 current_class_name = TYPE_NAME (type);
5799 if (TREE_CODE (current_class_name) == TYPE_DECL)
5800 current_class_name = DECL_NAME (current_class_name);
5801 current_class_type = type;
5802
5803 /* By default, things in classes are private, while things in
5804 structures or unions are public. */
5805 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5806 ? access_private_node
5807 : access_public_node);
5808
5809 if (previous_class_level
5810 && type != previous_class_level->this_entity
5811 && current_class_depth == 1)
5812 {
5813 /* Forcibly remove any old class remnants. */
5814 invalidate_class_lookup_cache ();
5815 }
5816
5817 if (!previous_class_level
5818 || type != previous_class_level->this_entity
5819 || current_class_depth > 1)
5820 pushlevel_class ();
5821 else
5822 restore_class_cache ();
5823 }
5824
5825 /* When we exit a toplevel class scope, we save its binding level so
5826 that we can restore it quickly. Here, we've entered some other
5827 class, so we must invalidate our cache. */
5828
5829 void
5830 invalidate_class_lookup_cache (void)
5831 {
5832 previous_class_level = NULL;
5833 }
5834
5835 /* Get out of the current class scope. If we were in a class scope
5836 previously, that is the one popped to. */
5837
5838 void
5839 popclass (void)
5840 {
5841 poplevel_class ();
5842
5843 current_class_depth--;
5844 current_class_name = current_class_stack[current_class_depth].name;
5845 current_class_type = current_class_stack[current_class_depth].type;
5846 current_access_specifier = current_class_stack[current_class_depth].access;
5847 if (current_class_stack[current_class_depth].names_used)
5848 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5849 }
5850
5851 /* Mark the top of the class stack as hidden. */
5852
5853 void
5854 push_class_stack (void)
5855 {
5856 if (current_class_depth)
5857 ++current_class_stack[current_class_depth - 1].hidden;
5858 }
5859
5860 /* Mark the top of the class stack as un-hidden. */
5861
5862 void
5863 pop_class_stack (void)
5864 {
5865 if (current_class_depth)
5866 --current_class_stack[current_class_depth - 1].hidden;
5867 }
5868
5869 /* Returns 1 if the class type currently being defined is either T or
5870 a nested type of T. */
5871
5872 bool
5873 currently_open_class (tree t)
5874 {
5875 int i;
5876
5877 if (!CLASS_TYPE_P (t))
5878 return false;
5879
5880 t = TYPE_MAIN_VARIANT (t);
5881
5882 /* We start looking from 1 because entry 0 is from global scope,
5883 and has no type. */
5884 for (i = current_class_depth; i > 0; --i)
5885 {
5886 tree c;
5887 if (i == current_class_depth)
5888 c = current_class_type;
5889 else
5890 {
5891 if (current_class_stack[i].hidden)
5892 break;
5893 c = current_class_stack[i].type;
5894 }
5895 if (!c)
5896 continue;
5897 if (same_type_p (c, t))
5898 return true;
5899 }
5900 return false;
5901 }
5902
5903 /* If either current_class_type or one of its enclosing classes are derived
5904 from T, return the appropriate type. Used to determine how we found
5905 something via unqualified lookup. */
5906
5907 tree
5908 currently_open_derived_class (tree t)
5909 {
5910 int i;
5911
5912 /* The bases of a dependent type are unknown. */
5913 if (dependent_type_p (t))
5914 return NULL_TREE;
5915
5916 if (!current_class_type)
5917 return NULL_TREE;
5918
5919 if (DERIVED_FROM_P (t, current_class_type))
5920 return current_class_type;
5921
5922 for (i = current_class_depth - 1; i > 0; --i)
5923 {
5924 if (current_class_stack[i].hidden)
5925 break;
5926 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5927 return current_class_stack[i].type;
5928 }
5929
5930 return NULL_TREE;
5931 }
5932
5933 /* When entering a class scope, all enclosing class scopes' names with
5934 static meaning (static variables, static functions, types and
5935 enumerators) have to be visible. This recursive function calls
5936 pushclass for all enclosing class contexts until global or a local
5937 scope is reached. TYPE is the enclosed class. */
5938
5939 void
5940 push_nested_class (tree type)
5941 {
5942 /* A namespace might be passed in error cases, like A::B:C. */
5943 if (type == NULL_TREE
5944 || !CLASS_TYPE_P (type))
5945 return;
5946
5947 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
5948
5949 pushclass (type);
5950 }
5951
5952 /* Undoes a push_nested_class call. */
5953
5954 void
5955 pop_nested_class (void)
5956 {
5957 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5958
5959 popclass ();
5960 if (context && CLASS_TYPE_P (context))
5961 pop_nested_class ();
5962 }
5963
5964 /* Returns the number of extern "LANG" blocks we are nested within. */
5965
5966 int
5967 current_lang_depth (void)
5968 {
5969 return VEC_length (tree, current_lang_base);
5970 }
5971
5972 /* Set global variables CURRENT_LANG_NAME to appropriate value
5973 so that behavior of name-mangling machinery is correct. */
5974
5975 void
5976 push_lang_context (tree name)
5977 {
5978 VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
5979
5980 if (name == lang_name_cplusplus)
5981 {
5982 current_lang_name = name;
5983 }
5984 else if (name == lang_name_java)
5985 {
5986 current_lang_name = name;
5987 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5988 (See record_builtin_java_type in decl.c.) However, that causes
5989 incorrect debug entries if these types are actually used.
5990 So we re-enable debug output after extern "Java". */
5991 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5992 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5993 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5994 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5995 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5996 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5997 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5998 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5999 }
6000 else if (name == lang_name_c)
6001 {
6002 current_lang_name = name;
6003 }
6004 else
6005 error ("language string %<\"%E\"%> not recognized", name);
6006 }
6007
6008 /* Get out of the current language scope. */
6009
6010 void
6011 pop_lang_context (void)
6012 {
6013 current_lang_name = VEC_pop (tree, current_lang_base);
6014 }
6015 \f
6016 /* Type instantiation routines. */
6017
6018 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
6019 matches the TARGET_TYPE. If there is no satisfactory match, return
6020 error_mark_node, and issue an error & warning messages under
6021 control of FLAGS. Permit pointers to member function if FLAGS
6022 permits. If TEMPLATE_ONLY, the name of the overloaded function was
6023 a template-id, and EXPLICIT_TARGS are the explicitly provided
6024 template arguments.
6025
6026 If OVERLOAD is for one or more member functions, then ACCESS_PATH
6027 is the base path used to reference those member functions. If
6028 TF_NO_ACCESS_CONTROL is not set in FLAGS, and the address is
6029 resolved to a member function, access checks will be performed and
6030 errors issued if appropriate. */
6031
6032 static tree
6033 resolve_address_of_overloaded_function (tree target_type,
6034 tree overload,
6035 tsubst_flags_t flags,
6036 bool template_only,
6037 tree explicit_targs,
6038 tree access_path)
6039 {
6040 /* Here's what the standard says:
6041
6042 [over.over]
6043
6044 If the name is a function template, template argument deduction
6045 is done, and if the argument deduction succeeds, the deduced
6046 arguments are used to generate a single template function, which
6047 is added to the set of overloaded functions considered.
6048
6049 Non-member functions and static member functions match targets of
6050 type "pointer-to-function" or "reference-to-function." Nonstatic
6051 member functions match targets of type "pointer-to-member
6052 function;" the function type of the pointer to member is used to
6053 select the member function from the set of overloaded member
6054 functions. If a nonstatic member function is selected, the
6055 reference to the overloaded function name is required to have the
6056 form of a pointer to member as described in 5.3.1.
6057
6058 If more than one function is selected, any template functions in
6059 the set are eliminated if the set also contains a non-template
6060 function, and any given template function is eliminated if the
6061 set contains a second template function that is more specialized
6062 than the first according to the partial ordering rules 14.5.5.2.
6063 After such eliminations, if any, there shall remain exactly one
6064 selected function. */
6065
6066 int is_ptrmem = 0;
6067 /* We store the matches in a TREE_LIST rooted here. The functions
6068 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
6069 interoperability with most_specialized_instantiation. */
6070 tree matches = NULL_TREE;
6071 tree fn;
6072 tree target_fn_type;
6073
6074 /* By the time we get here, we should be seeing only real
6075 pointer-to-member types, not the internal POINTER_TYPE to
6076 METHOD_TYPE representation. */
6077 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
6078 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
6079
6080 gcc_assert (is_overloaded_fn (overload));
6081
6082 /* Check that the TARGET_TYPE is reasonable. */
6083 if (TYPE_PTRFN_P (target_type))
6084 /* This is OK. */;
6085 else if (TYPE_PTRMEMFUNC_P (target_type))
6086 /* This is OK, too. */
6087 is_ptrmem = 1;
6088 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
6089 /* This is OK, too. This comes from a conversion to reference
6090 type. */
6091 target_type = build_reference_type (target_type);
6092 else
6093 {
6094 if (flags & tf_error)
6095 error ("cannot resolve overloaded function %qD based on"
6096 " conversion to type %qT",
6097 DECL_NAME (OVL_FUNCTION (overload)), target_type);
6098 return error_mark_node;
6099 }
6100
6101 /* Non-member functions and static member functions match targets of type
6102 "pointer-to-function" or "reference-to-function." Nonstatic member
6103 functions match targets of type "pointer-to-member-function;" the
6104 function type of the pointer to member is used to select the member
6105 function from the set of overloaded member functions.
6106
6107 So figure out the FUNCTION_TYPE that we want to match against. */
6108 target_fn_type = static_fn_type (target_type);
6109
6110 /* If we can find a non-template function that matches, we can just
6111 use it. There's no point in generating template instantiations
6112 if we're just going to throw them out anyhow. But, of course, we
6113 can only do this when we don't *need* a template function. */
6114 if (!template_only)
6115 {
6116 tree fns;
6117
6118 for (fns = overload; fns; fns = OVL_NEXT (fns))
6119 {
6120 tree fn = OVL_CURRENT (fns);
6121
6122 if (TREE_CODE (fn) == TEMPLATE_DECL)
6123 /* We're not looking for templates just yet. */
6124 continue;
6125
6126 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6127 != is_ptrmem)
6128 /* We're looking for a non-static member, and this isn't
6129 one, or vice versa. */
6130 continue;
6131
6132 /* Ignore functions which haven't been explicitly
6133 declared. */
6134 if (DECL_ANTICIPATED (fn))
6135 continue;
6136
6137 /* See if there's a match. */
6138 if (same_type_p (target_fn_type, static_fn_type (fn)))
6139 matches = tree_cons (fn, NULL_TREE, matches);
6140 }
6141 }
6142
6143 /* Now, if we've already got a match (or matches), there's no need
6144 to proceed to the template functions. But, if we don't have a
6145 match we need to look at them, too. */
6146 if (!matches)
6147 {
6148 tree target_arg_types;
6149 tree target_ret_type;
6150 tree fns;
6151 tree *args;
6152 unsigned int nargs, ia;
6153 tree arg;
6154
6155 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
6156 target_ret_type = TREE_TYPE (target_fn_type);
6157
6158 nargs = list_length (target_arg_types);
6159 args = XALLOCAVEC (tree, nargs);
6160 for (arg = target_arg_types, ia = 0;
6161 arg != NULL_TREE && arg != void_list_node;
6162 arg = TREE_CHAIN (arg), ++ia)
6163 args[ia] = TREE_VALUE (arg);
6164 nargs = ia;
6165
6166 for (fns = overload; fns; fns = OVL_NEXT (fns))
6167 {
6168 tree fn = OVL_CURRENT (fns);
6169 tree instantiation;
6170 tree targs;
6171
6172 if (TREE_CODE (fn) != TEMPLATE_DECL)
6173 /* We're only looking for templates. */
6174 continue;
6175
6176 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6177 != is_ptrmem)
6178 /* We're not looking for a non-static member, and this is
6179 one, or vice versa. */
6180 continue;
6181
6182 /* Try to do argument deduction. */
6183 targs = make_tree_vec (DECL_NTPARMS (fn));
6184 if (fn_type_unification (fn, explicit_targs, targs, args, nargs,
6185 target_ret_type, DEDUCE_EXACT,
6186 LOOKUP_NORMAL))
6187 /* Argument deduction failed. */
6188 continue;
6189
6190 /* Instantiate the template. */
6191 instantiation = instantiate_template (fn, targs, flags);
6192 if (instantiation == error_mark_node)
6193 /* Instantiation failed. */
6194 continue;
6195
6196 /* See if there's a match. */
6197 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
6198 matches = tree_cons (instantiation, fn, matches);
6199 }
6200
6201 /* Now, remove all but the most specialized of the matches. */
6202 if (matches)
6203 {
6204 tree match = most_specialized_instantiation (matches);
6205
6206 if (match != error_mark_node)
6207 matches = tree_cons (TREE_PURPOSE (match),
6208 NULL_TREE,
6209 NULL_TREE);
6210 }
6211 }
6212
6213 /* Now we should have exactly one function in MATCHES. */
6214 if (matches == NULL_TREE)
6215 {
6216 /* There were *no* matches. */
6217 if (flags & tf_error)
6218 {
6219 error ("no matches converting function %qD to type %q#T",
6220 DECL_NAME (OVL_CURRENT (overload)),
6221 target_type);
6222
6223 /* print_candidates expects a chain with the functions in
6224 TREE_VALUE slots, so we cons one up here (we're losing anyway,
6225 so why be clever?). */
6226 for (; overload; overload = OVL_NEXT (overload))
6227 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
6228 matches);
6229
6230 print_candidates (matches);
6231 }
6232 return error_mark_node;
6233 }
6234 else if (TREE_CHAIN (matches))
6235 {
6236 /* There were too many matches. First check if they're all
6237 the same function. */
6238 tree match;
6239
6240 fn = TREE_PURPOSE (matches);
6241 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
6242 if (!decls_match (fn, TREE_PURPOSE (match)))
6243 break;
6244
6245 if (match)
6246 {
6247 if (flags & tf_error)
6248 {
6249 error ("converting overloaded function %qD to type %q#T is ambiguous",
6250 DECL_NAME (OVL_FUNCTION (overload)),
6251 target_type);
6252
6253 /* Since print_candidates expects the functions in the
6254 TREE_VALUE slot, we flip them here. */
6255 for (match = matches; match; match = TREE_CHAIN (match))
6256 TREE_VALUE (match) = TREE_PURPOSE (match);
6257
6258 print_candidates (matches);
6259 }
6260
6261 return error_mark_node;
6262 }
6263 }
6264
6265 /* Good, exactly one match. Now, convert it to the correct type. */
6266 fn = TREE_PURPOSE (matches);
6267
6268 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
6269 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
6270 {
6271 static int explained;
6272
6273 if (!(flags & tf_error))
6274 return error_mark_node;
6275
6276 permerror (input_location, "assuming pointer to member %qD", fn);
6277 if (!explained)
6278 {
6279 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
6280 explained = 1;
6281 }
6282 }
6283
6284 /* If we're doing overload resolution purely for the purpose of
6285 determining conversion sequences, we should not consider the
6286 function used. If this conversion sequence is selected, the
6287 function will be marked as used at this point. */
6288 if (!(flags & tf_conv))
6289 {
6290 /* Make =delete work with SFINAE. */
6291 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
6292 return error_mark_node;
6293
6294 mark_used (fn);
6295 }
6296
6297 /* We could not check access to member functions when this
6298 expression was originally created since we did not know at that
6299 time to which function the expression referred. */
6300 if (!(flags & tf_no_access_control)
6301 && DECL_FUNCTION_MEMBER_P (fn))
6302 {
6303 gcc_assert (access_path);
6304 perform_or_defer_access_check (access_path, fn, fn);
6305 }
6306
6307 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
6308 return cp_build_unary_op (ADDR_EXPR, fn, 0, flags);
6309 else
6310 {
6311 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
6312 will mark the function as addressed, but here we must do it
6313 explicitly. */
6314 cxx_mark_addressable (fn);
6315
6316 return fn;
6317 }
6318 }
6319
6320 /* This function will instantiate the type of the expression given in
6321 RHS to match the type of LHSTYPE. If errors exist, then return
6322 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
6323 we complain on errors. If we are not complaining, never modify rhs,
6324 as overload resolution wants to try many possible instantiations, in
6325 the hope that at least one will work.
6326
6327 For non-recursive calls, LHSTYPE should be a function, pointer to
6328 function, or a pointer to member function. */
6329
6330 tree
6331 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
6332 {
6333 tsubst_flags_t flags_in = flags;
6334 tree access_path = NULL_TREE;
6335
6336 flags &= ~tf_ptrmem_ok;
6337
6338 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
6339 {
6340 if (flags & tf_error)
6341 error ("not enough type information");
6342 return error_mark_node;
6343 }
6344
6345 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
6346 {
6347 if (same_type_p (lhstype, TREE_TYPE (rhs)))
6348 return rhs;
6349 if (flag_ms_extensions
6350 && TYPE_PTRMEMFUNC_P (lhstype)
6351 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
6352 /* Microsoft allows `A::f' to be resolved to a
6353 pointer-to-member. */
6354 ;
6355 else
6356 {
6357 if (flags & tf_error)
6358 error ("argument of type %qT does not match %qT",
6359 TREE_TYPE (rhs), lhstype);
6360 return error_mark_node;
6361 }
6362 }
6363
6364 if (TREE_CODE (rhs) == BASELINK)
6365 {
6366 access_path = BASELINK_ACCESS_BINFO (rhs);
6367 rhs = BASELINK_FUNCTIONS (rhs);
6368 }
6369
6370 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
6371 deduce any type information. */
6372 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
6373 {
6374 if (flags & tf_error)
6375 error ("not enough type information");
6376 return error_mark_node;
6377 }
6378
6379 /* There only a few kinds of expressions that may have a type
6380 dependent on overload resolution. */
6381 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
6382 || TREE_CODE (rhs) == COMPONENT_REF
6383 || really_overloaded_fn (rhs)
6384 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
6385
6386 /* This should really only be used when attempting to distinguish
6387 what sort of a pointer to function we have. For now, any
6388 arithmetic operation which is not supported on pointers
6389 is rejected as an error. */
6390
6391 switch (TREE_CODE (rhs))
6392 {
6393 case COMPONENT_REF:
6394 {
6395 tree member = TREE_OPERAND (rhs, 1);
6396
6397 member = instantiate_type (lhstype, member, flags);
6398 if (member != error_mark_node
6399 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
6400 /* Do not lose object's side effects. */
6401 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
6402 TREE_OPERAND (rhs, 0), member);
6403 return member;
6404 }
6405
6406 case OFFSET_REF:
6407 rhs = TREE_OPERAND (rhs, 1);
6408 if (BASELINK_P (rhs))
6409 return instantiate_type (lhstype, rhs, flags_in);
6410
6411 /* This can happen if we are forming a pointer-to-member for a
6412 member template. */
6413 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
6414
6415 /* Fall through. */
6416
6417 case TEMPLATE_ID_EXPR:
6418 {
6419 tree fns = TREE_OPERAND (rhs, 0);
6420 tree args = TREE_OPERAND (rhs, 1);
6421
6422 return
6423 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6424 /*template_only=*/true,
6425 args, access_path);
6426 }
6427
6428 case OVERLOAD:
6429 case FUNCTION_DECL:
6430 return
6431 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6432 /*template_only=*/false,
6433 /*explicit_targs=*/NULL_TREE,
6434 access_path);
6435
6436 case ADDR_EXPR:
6437 {
6438 if (PTRMEM_OK_P (rhs))
6439 flags |= tf_ptrmem_ok;
6440
6441 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6442 }
6443
6444 case ERROR_MARK:
6445 return error_mark_node;
6446
6447 default:
6448 gcc_unreachable ();
6449 }
6450 return error_mark_node;
6451 }
6452 \f
6453 /* Return the name of the virtual function pointer field
6454 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6455 this may have to look back through base types to find the
6456 ultimate field name. (For single inheritance, these could
6457 all be the same name. Who knows for multiple inheritance). */
6458
6459 static tree
6460 get_vfield_name (tree type)
6461 {
6462 tree binfo, base_binfo;
6463 char *buf;
6464
6465 for (binfo = TYPE_BINFO (type);
6466 BINFO_N_BASE_BINFOS (binfo);
6467 binfo = base_binfo)
6468 {
6469 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6470
6471 if (BINFO_VIRTUAL_P (base_binfo)
6472 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6473 break;
6474 }
6475
6476 type = BINFO_TYPE (binfo);
6477 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
6478 + TYPE_NAME_LENGTH (type) + 2);
6479 sprintf (buf, VFIELD_NAME_FORMAT,
6480 IDENTIFIER_POINTER (constructor_name (type)));
6481 return get_identifier (buf);
6482 }
6483
6484 void
6485 print_class_statistics (void)
6486 {
6487 #ifdef GATHER_STATISTICS
6488 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6489 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6490 if (n_vtables)
6491 {
6492 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6493 n_vtables, n_vtable_searches);
6494 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6495 n_vtable_entries, n_vtable_elems);
6496 }
6497 #endif
6498 }
6499
6500 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6501 according to [class]:
6502 The class-name is also inserted
6503 into the scope of the class itself. For purposes of access checking,
6504 the inserted class name is treated as if it were a public member name. */
6505
6506 void
6507 build_self_reference (void)
6508 {
6509 tree name = constructor_name (current_class_type);
6510 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6511 tree saved_cas;
6512
6513 DECL_NONLOCAL (value) = 1;
6514 DECL_CONTEXT (value) = current_class_type;
6515 DECL_ARTIFICIAL (value) = 1;
6516 SET_DECL_SELF_REFERENCE_P (value);
6517 set_underlying_type (value);
6518
6519 if (processing_template_decl)
6520 value = push_template_decl (value);
6521
6522 saved_cas = current_access_specifier;
6523 current_access_specifier = access_public_node;
6524 finish_member_declaration (value);
6525 current_access_specifier = saved_cas;
6526 }
6527
6528 /* Returns 1 if TYPE contains only padding bytes. */
6529
6530 int
6531 is_empty_class (tree type)
6532 {
6533 if (type == error_mark_node)
6534 return 0;
6535
6536 if (! CLASS_TYPE_P (type))
6537 return 0;
6538
6539 /* In G++ 3.2, whether or not a class was empty was determined by
6540 looking at its size. */
6541 if (abi_version_at_least (2))
6542 return CLASSTYPE_EMPTY_P (type);
6543 else
6544 return integer_zerop (CLASSTYPE_SIZE (type));
6545 }
6546
6547 /* Returns true if TYPE contains an empty class. */
6548
6549 static bool
6550 contains_empty_class_p (tree type)
6551 {
6552 if (is_empty_class (type))
6553 return true;
6554 if (CLASS_TYPE_P (type))
6555 {
6556 tree field;
6557 tree binfo;
6558 tree base_binfo;
6559 int i;
6560
6561 for (binfo = TYPE_BINFO (type), i = 0;
6562 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6563 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6564 return true;
6565 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6566 if (TREE_CODE (field) == FIELD_DECL
6567 && !DECL_ARTIFICIAL (field)
6568 && is_empty_class (TREE_TYPE (field)))
6569 return true;
6570 }
6571 else if (TREE_CODE (type) == ARRAY_TYPE)
6572 return contains_empty_class_p (TREE_TYPE (type));
6573 return false;
6574 }
6575
6576 /* Returns true if TYPE contains no actual data, just various
6577 possible combinations of empty classes. */
6578
6579 bool
6580 is_really_empty_class (tree type)
6581 {
6582 if (is_empty_class (type))
6583 return true;
6584 if (CLASS_TYPE_P (type))
6585 {
6586 tree field;
6587 tree binfo;
6588 tree base_binfo;
6589 int i;
6590
6591 for (binfo = TYPE_BINFO (type), i = 0;
6592 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6593 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
6594 return false;
6595 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6596 if (TREE_CODE (field) == FIELD_DECL
6597 && !DECL_ARTIFICIAL (field)
6598 && !is_really_empty_class (TREE_TYPE (field)))
6599 return false;
6600 return true;
6601 }
6602 else if (TREE_CODE (type) == ARRAY_TYPE)
6603 return is_really_empty_class (TREE_TYPE (type));
6604 return false;
6605 }
6606
6607 /* Note that NAME was looked up while the current class was being
6608 defined and that the result of that lookup was DECL. */
6609
6610 void
6611 maybe_note_name_used_in_class (tree name, tree decl)
6612 {
6613 splay_tree names_used;
6614
6615 /* If we're not defining a class, there's nothing to do. */
6616 if (!(innermost_scope_kind() == sk_class
6617 && TYPE_BEING_DEFINED (current_class_type)
6618 && !LAMBDA_TYPE_P (current_class_type)))
6619 return;
6620
6621 /* If there's already a binding for this NAME, then we don't have
6622 anything to worry about. */
6623 if (lookup_member (current_class_type, name,
6624 /*protect=*/0, /*want_type=*/false))
6625 return;
6626
6627 if (!current_class_stack[current_class_depth - 1].names_used)
6628 current_class_stack[current_class_depth - 1].names_used
6629 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6630 names_used = current_class_stack[current_class_depth - 1].names_used;
6631
6632 splay_tree_insert (names_used,
6633 (splay_tree_key) name,
6634 (splay_tree_value) decl);
6635 }
6636
6637 /* Note that NAME was declared (as DECL) in the current class. Check
6638 to see that the declaration is valid. */
6639
6640 void
6641 note_name_declared_in_class (tree name, tree decl)
6642 {
6643 splay_tree names_used;
6644 splay_tree_node n;
6645
6646 /* Look to see if we ever used this name. */
6647 names_used
6648 = current_class_stack[current_class_depth - 1].names_used;
6649 if (!names_used)
6650 return;
6651
6652 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6653 if (n)
6654 {
6655 /* [basic.scope.class]
6656
6657 A name N used in a class S shall refer to the same declaration
6658 in its context and when re-evaluated in the completed scope of
6659 S. */
6660 permerror (input_location, "declaration of %q#D", decl);
6661 permerror (input_location, "changes meaning of %qD from %q+#D",
6662 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
6663 }
6664 }
6665
6666 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6667 Secondary vtables are merged with primary vtables; this function
6668 will return the VAR_DECL for the primary vtable. */
6669
6670 tree
6671 get_vtbl_decl_for_binfo (tree binfo)
6672 {
6673 tree decl;
6674
6675 decl = BINFO_VTABLE (binfo);
6676 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
6677 {
6678 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6679 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6680 }
6681 if (decl)
6682 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6683 return decl;
6684 }
6685
6686
6687 /* Returns the binfo for the primary base of BINFO. If the resulting
6688 BINFO is a virtual base, and it is inherited elsewhere in the
6689 hierarchy, then the returned binfo might not be the primary base of
6690 BINFO in the complete object. Check BINFO_PRIMARY_P or
6691 BINFO_LOST_PRIMARY_P to be sure. */
6692
6693 static tree
6694 get_primary_binfo (tree binfo)
6695 {
6696 tree primary_base;
6697
6698 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6699 if (!primary_base)
6700 return NULL_TREE;
6701
6702 return copied_binfo (primary_base, binfo);
6703 }
6704
6705 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6706
6707 static int
6708 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6709 {
6710 if (!indented_p)
6711 fprintf (stream, "%*s", indent, "");
6712 return 1;
6713 }
6714
6715 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6716 INDENT should be zero when called from the top level; it is
6717 incremented recursively. IGO indicates the next expected BINFO in
6718 inheritance graph ordering. */
6719
6720 static tree
6721 dump_class_hierarchy_r (FILE *stream,
6722 int flags,
6723 tree binfo,
6724 tree igo,
6725 int indent)
6726 {
6727 int indented = 0;
6728 tree base_binfo;
6729 int i;
6730
6731 indented = maybe_indent_hierarchy (stream, indent, 0);
6732 fprintf (stream, "%s (0x%lx) ",
6733 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6734 (unsigned long) binfo);
6735 if (binfo != igo)
6736 {
6737 fprintf (stream, "alternative-path\n");
6738 return igo;
6739 }
6740 igo = TREE_CHAIN (binfo);
6741
6742 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6743 tree_low_cst (BINFO_OFFSET (binfo), 0));
6744 if (is_empty_class (BINFO_TYPE (binfo)))
6745 fprintf (stream, " empty");
6746 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6747 fprintf (stream, " nearly-empty");
6748 if (BINFO_VIRTUAL_P (binfo))
6749 fprintf (stream, " virtual");
6750 fprintf (stream, "\n");
6751
6752 indented = 0;
6753 if (BINFO_PRIMARY_P (binfo))
6754 {
6755 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6756 fprintf (stream, " primary-for %s (0x%lx)",
6757 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6758 TFF_PLAIN_IDENTIFIER),
6759 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6760 }
6761 if (BINFO_LOST_PRIMARY_P (binfo))
6762 {
6763 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6764 fprintf (stream, " lost-primary");
6765 }
6766 if (indented)
6767 fprintf (stream, "\n");
6768
6769 if (!(flags & TDF_SLIM))
6770 {
6771 int indented = 0;
6772
6773 if (BINFO_SUBVTT_INDEX (binfo))
6774 {
6775 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6776 fprintf (stream, " subvttidx=%s",
6777 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6778 TFF_PLAIN_IDENTIFIER));
6779 }
6780 if (BINFO_VPTR_INDEX (binfo))
6781 {
6782 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6783 fprintf (stream, " vptridx=%s",
6784 expr_as_string (BINFO_VPTR_INDEX (binfo),
6785 TFF_PLAIN_IDENTIFIER));
6786 }
6787 if (BINFO_VPTR_FIELD (binfo))
6788 {
6789 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6790 fprintf (stream, " vbaseoffset=%s",
6791 expr_as_string (BINFO_VPTR_FIELD (binfo),
6792 TFF_PLAIN_IDENTIFIER));
6793 }
6794 if (BINFO_VTABLE (binfo))
6795 {
6796 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6797 fprintf (stream, " vptr=%s",
6798 expr_as_string (BINFO_VTABLE (binfo),
6799 TFF_PLAIN_IDENTIFIER));
6800 }
6801
6802 if (indented)
6803 fprintf (stream, "\n");
6804 }
6805
6806 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6807 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6808
6809 return igo;
6810 }
6811
6812 /* Dump the BINFO hierarchy for T. */
6813
6814 static void
6815 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6816 {
6817 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6818 fprintf (stream, " size=%lu align=%lu\n",
6819 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6820 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6821 fprintf (stream, " base size=%lu base align=%lu\n",
6822 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6823 / BITS_PER_UNIT),
6824 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6825 / BITS_PER_UNIT));
6826 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6827 fprintf (stream, "\n");
6828 }
6829
6830 /* Debug interface to hierarchy dumping. */
6831
6832 void
6833 debug_class (tree t)
6834 {
6835 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6836 }
6837
6838 static void
6839 dump_class_hierarchy (tree t)
6840 {
6841 int flags;
6842 FILE *stream = dump_begin (TDI_class, &flags);
6843
6844 if (stream)
6845 {
6846 dump_class_hierarchy_1 (stream, flags, t);
6847 dump_end (TDI_class, stream);
6848 }
6849 }
6850
6851 static void
6852 dump_array (FILE * stream, tree decl)
6853 {
6854 tree value;
6855 unsigned HOST_WIDE_INT ix;
6856 HOST_WIDE_INT elt;
6857 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6858
6859 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6860 / BITS_PER_UNIT);
6861 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6862 fprintf (stream, " %s entries",
6863 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6864 TFF_PLAIN_IDENTIFIER));
6865 fprintf (stream, "\n");
6866
6867 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
6868 ix, value)
6869 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6870 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
6871 }
6872
6873 static void
6874 dump_vtable (tree t, tree binfo, tree vtable)
6875 {
6876 int flags;
6877 FILE *stream = dump_begin (TDI_class, &flags);
6878
6879 if (!stream)
6880 return;
6881
6882 if (!(flags & TDF_SLIM))
6883 {
6884 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6885
6886 fprintf (stream, "%s for %s",
6887 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6888 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6889 if (ctor_vtbl_p)
6890 {
6891 if (!BINFO_VIRTUAL_P (binfo))
6892 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6893 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6894 }
6895 fprintf (stream, "\n");
6896 dump_array (stream, vtable);
6897 fprintf (stream, "\n");
6898 }
6899
6900 dump_end (TDI_class, stream);
6901 }
6902
6903 static void
6904 dump_vtt (tree t, tree vtt)
6905 {
6906 int flags;
6907 FILE *stream = dump_begin (TDI_class, &flags);
6908
6909 if (!stream)
6910 return;
6911
6912 if (!(flags & TDF_SLIM))
6913 {
6914 fprintf (stream, "VTT for %s\n",
6915 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6916 dump_array (stream, vtt);
6917 fprintf (stream, "\n");
6918 }
6919
6920 dump_end (TDI_class, stream);
6921 }
6922
6923 /* Dump a function or thunk and its thunkees. */
6924
6925 static void
6926 dump_thunk (FILE *stream, int indent, tree thunk)
6927 {
6928 static const char spaces[] = " ";
6929 tree name = DECL_NAME (thunk);
6930 tree thunks;
6931
6932 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6933 (void *)thunk,
6934 !DECL_THUNK_P (thunk) ? "function"
6935 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6936 name ? IDENTIFIER_POINTER (name) : "<unset>");
6937 if (DECL_THUNK_P (thunk))
6938 {
6939 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6940 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6941
6942 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6943 if (!virtual_adjust)
6944 /*NOP*/;
6945 else if (DECL_THIS_THUNK_P (thunk))
6946 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6947 tree_low_cst (virtual_adjust, 0));
6948 else
6949 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6950 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6951 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6952 if (THUNK_ALIAS (thunk))
6953 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6954 }
6955 fprintf (stream, "\n");
6956 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6957 dump_thunk (stream, indent + 2, thunks);
6958 }
6959
6960 /* Dump the thunks for FN. */
6961
6962 void
6963 debug_thunks (tree fn)
6964 {
6965 dump_thunk (stderr, 0, fn);
6966 }
6967
6968 /* Virtual function table initialization. */
6969
6970 /* Create all the necessary vtables for T and its base classes. */
6971
6972 static void
6973 finish_vtbls (tree t)
6974 {
6975 tree list;
6976 tree vbase;
6977
6978 /* We lay out the primary and secondary vtables in one contiguous
6979 vtable. The primary vtable is first, followed by the non-virtual
6980 secondary vtables in inheritance graph order. */
6981 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6982 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6983 TYPE_BINFO (t), t, list);
6984
6985 /* Then come the virtual bases, also in inheritance graph order. */
6986 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6987 {
6988 if (!BINFO_VIRTUAL_P (vbase))
6989 continue;
6990 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6991 }
6992
6993 if (BINFO_VTABLE (TYPE_BINFO (t)))
6994 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6995 }
6996
6997 /* Initialize the vtable for BINFO with the INITS. */
6998
6999 static void
7000 initialize_vtable (tree binfo, tree inits)
7001 {
7002 tree decl;
7003
7004 layout_vtable_decl (binfo, list_length (inits));
7005 decl = get_vtbl_decl_for_binfo (binfo);
7006 initialize_artificial_var (decl, inits);
7007 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
7008 }
7009
7010 /* Build the VTT (virtual table table) for T.
7011 A class requires a VTT if it has virtual bases.
7012
7013 This holds
7014 1 - primary virtual pointer for complete object T
7015 2 - secondary VTTs for each direct non-virtual base of T which requires a
7016 VTT
7017 3 - secondary virtual pointers for each direct or indirect base of T which
7018 has virtual bases or is reachable via a virtual path from T.
7019 4 - secondary VTTs for each direct or indirect virtual base of T.
7020
7021 Secondary VTTs look like complete object VTTs without part 4. */
7022
7023 static void
7024 build_vtt (tree t)
7025 {
7026 tree inits;
7027 tree type;
7028 tree vtt;
7029 tree index;
7030
7031 /* Build up the initializers for the VTT. */
7032 inits = NULL_TREE;
7033 index = size_zero_node;
7034 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
7035
7036 /* If we didn't need a VTT, we're done. */
7037 if (!inits)
7038 return;
7039
7040 /* Figure out the type of the VTT. */
7041 type = build_index_type (size_int (list_length (inits) - 1));
7042 type = build_cplus_array_type (const_ptr_type_node, type);
7043
7044 /* Now, build the VTT object itself. */
7045 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
7046 initialize_artificial_var (vtt, inits);
7047 /* Add the VTT to the vtables list. */
7048 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
7049 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
7050
7051 dump_vtt (t, vtt);
7052 }
7053
7054 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
7055 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
7056 and CHAIN the vtable pointer for this binfo after construction is
7057 complete. VALUE can also be another BINFO, in which case we recurse. */
7058
7059 static tree
7060 binfo_ctor_vtable (tree binfo)
7061 {
7062 tree vt;
7063
7064 while (1)
7065 {
7066 vt = BINFO_VTABLE (binfo);
7067 if (TREE_CODE (vt) == TREE_LIST)
7068 vt = TREE_VALUE (vt);
7069 if (TREE_CODE (vt) == TREE_BINFO)
7070 binfo = vt;
7071 else
7072 break;
7073 }
7074
7075 return vt;
7076 }
7077
7078 /* Data for secondary VTT initialization. */
7079 typedef struct secondary_vptr_vtt_init_data_s
7080 {
7081 /* Is this the primary VTT? */
7082 bool top_level_p;
7083
7084 /* Current index into the VTT. */
7085 tree index;
7086
7087 /* TREE_LIST of initializers built up. */
7088 tree inits;
7089
7090 /* The type being constructed by this secondary VTT. */
7091 tree type_being_constructed;
7092 } secondary_vptr_vtt_init_data;
7093
7094 /* Recursively build the VTT-initializer for BINFO (which is in the
7095 hierarchy dominated by T). INITS points to the end of the initializer
7096 list to date. INDEX is the VTT index where the next element will be
7097 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
7098 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
7099 for virtual bases of T. When it is not so, we build the constructor
7100 vtables for the BINFO-in-T variant. */
7101
7102 static tree *
7103 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
7104 {
7105 int i;
7106 tree b;
7107 tree init;
7108 tree secondary_vptrs;
7109 secondary_vptr_vtt_init_data data;
7110 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7111
7112 /* We only need VTTs for subobjects with virtual bases. */
7113 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7114 return inits;
7115
7116 /* We need to use a construction vtable if this is not the primary
7117 VTT. */
7118 if (!top_level_p)
7119 {
7120 build_ctor_vtbl_group (binfo, t);
7121
7122 /* Record the offset in the VTT where this sub-VTT can be found. */
7123 BINFO_SUBVTT_INDEX (binfo) = *index;
7124 }
7125
7126 /* Add the address of the primary vtable for the complete object. */
7127 init = binfo_ctor_vtable (binfo);
7128 *inits = build_tree_list (NULL_TREE, init);
7129 inits = &TREE_CHAIN (*inits);
7130 if (top_level_p)
7131 {
7132 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7133 BINFO_VPTR_INDEX (binfo) = *index;
7134 }
7135 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
7136
7137 /* Recursively add the secondary VTTs for non-virtual bases. */
7138 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
7139 if (!BINFO_VIRTUAL_P (b))
7140 inits = build_vtt_inits (b, t, inits, index);
7141
7142 /* Add secondary virtual pointers for all subobjects of BINFO with
7143 either virtual bases or reachable along a virtual path, except
7144 subobjects that are non-virtual primary bases. */
7145 data.top_level_p = top_level_p;
7146 data.index = *index;
7147 data.inits = NULL;
7148 data.type_being_constructed = BINFO_TYPE (binfo);
7149
7150 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
7151
7152 *index = data.index;
7153
7154 /* The secondary vptrs come back in reverse order. After we reverse
7155 them, and add the INITS, the last init will be the first element
7156 of the chain. */
7157 secondary_vptrs = data.inits;
7158 if (secondary_vptrs)
7159 {
7160 *inits = nreverse (secondary_vptrs);
7161 inits = &TREE_CHAIN (secondary_vptrs);
7162 gcc_assert (*inits == NULL_TREE);
7163 }
7164
7165 if (top_level_p)
7166 /* Add the secondary VTTs for virtual bases in inheritance graph
7167 order. */
7168 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
7169 {
7170 if (!BINFO_VIRTUAL_P (b))
7171 continue;
7172
7173 inits = build_vtt_inits (b, t, inits, index);
7174 }
7175 else
7176 /* Remove the ctor vtables we created. */
7177 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
7178
7179 return inits;
7180 }
7181
7182 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
7183 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
7184
7185 static tree
7186 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
7187 {
7188 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
7189
7190 /* We don't care about bases that don't have vtables. */
7191 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
7192 return dfs_skip_bases;
7193
7194 /* We're only interested in proper subobjects of the type being
7195 constructed. */
7196 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
7197 return NULL_TREE;
7198
7199 /* We're only interested in bases with virtual bases or reachable
7200 via a virtual path from the type being constructed. */
7201 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7202 || binfo_via_virtual (binfo, data->type_being_constructed)))
7203 return dfs_skip_bases;
7204
7205 /* We're not interested in non-virtual primary bases. */
7206 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
7207 return NULL_TREE;
7208
7209 /* Record the index where this secondary vptr can be found. */
7210 if (data->top_level_p)
7211 {
7212 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7213 BINFO_VPTR_INDEX (binfo) = data->index;
7214
7215 if (BINFO_VIRTUAL_P (binfo))
7216 {
7217 /* It's a primary virtual base, and this is not a
7218 construction vtable. Find the base this is primary of in
7219 the inheritance graph, and use that base's vtable
7220 now. */
7221 while (BINFO_PRIMARY_P (binfo))
7222 binfo = BINFO_INHERITANCE_CHAIN (binfo);
7223 }
7224 }
7225
7226 /* Add the initializer for the secondary vptr itself. */
7227 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
7228
7229 /* Advance the vtt index. */
7230 data->index = size_binop (PLUS_EXPR, data->index,
7231 TYPE_SIZE_UNIT (ptr_type_node));
7232
7233 return NULL_TREE;
7234 }
7235
7236 /* Called from build_vtt_inits via dfs_walk. After building
7237 constructor vtables and generating the sub-vtt from them, we need
7238 to restore the BINFO_VTABLES that were scribbled on. DATA is the
7239 binfo of the base whose sub vtt was generated. */
7240
7241 static tree
7242 dfs_fixup_binfo_vtbls (tree binfo, void* data)
7243 {
7244 tree vtable = BINFO_VTABLE (binfo);
7245
7246 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7247 /* If this class has no vtable, none of its bases do. */
7248 return dfs_skip_bases;
7249
7250 if (!vtable)
7251 /* This might be a primary base, so have no vtable in this
7252 hierarchy. */
7253 return NULL_TREE;
7254
7255 /* If we scribbled the construction vtable vptr into BINFO, clear it
7256 out now. */
7257 if (TREE_CODE (vtable) == TREE_LIST
7258 && (TREE_PURPOSE (vtable) == (tree) data))
7259 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
7260
7261 return NULL_TREE;
7262 }
7263
7264 /* Build the construction vtable group for BINFO which is in the
7265 hierarchy dominated by T. */
7266
7267 static void
7268 build_ctor_vtbl_group (tree binfo, tree t)
7269 {
7270 tree list;
7271 tree type;
7272 tree vtbl;
7273 tree inits;
7274 tree id;
7275 tree vbase;
7276
7277 /* See if we've already created this construction vtable group. */
7278 id = mangle_ctor_vtbl_for_type (t, binfo);
7279 if (IDENTIFIER_GLOBAL_VALUE (id))
7280 return;
7281
7282 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
7283 /* Build a version of VTBL (with the wrong type) for use in
7284 constructing the addresses of secondary vtables in the
7285 construction vtable group. */
7286 vtbl = build_vtable (t, id, ptr_type_node);
7287 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
7288 list = build_tree_list (vtbl, NULL_TREE);
7289 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
7290 binfo, t, list);
7291
7292 /* Add the vtables for each of our virtual bases using the vbase in T
7293 binfo. */
7294 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7295 vbase;
7296 vbase = TREE_CHAIN (vbase))
7297 {
7298 tree b;
7299
7300 if (!BINFO_VIRTUAL_P (vbase))
7301 continue;
7302 b = copied_binfo (vbase, binfo);
7303
7304 accumulate_vtbl_inits (b, vbase, binfo, t, list);
7305 }
7306 inits = TREE_VALUE (list);
7307
7308 /* Figure out the type of the construction vtable. */
7309 type = build_index_type (size_int (list_length (inits) - 1));
7310 type = build_cplus_array_type (vtable_entry_type, type);
7311 layout_type (type);
7312 TREE_TYPE (vtbl) = type;
7313 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
7314 layout_decl (vtbl, 0);
7315
7316 /* Initialize the construction vtable. */
7317 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
7318 initialize_artificial_var (vtbl, inits);
7319 dump_vtable (t, binfo, vtbl);
7320 }
7321
7322 /* Add the vtbl initializers for BINFO (and its bases other than
7323 non-virtual primaries) to the list of INITS. BINFO is in the
7324 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
7325 the constructor the vtbl inits should be accumulated for. (If this
7326 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
7327 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
7328 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
7329 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
7330 but are not necessarily the same in terms of layout. */
7331
7332 static void
7333 accumulate_vtbl_inits (tree binfo,
7334 tree orig_binfo,
7335 tree rtti_binfo,
7336 tree t,
7337 tree inits)
7338 {
7339 int i;
7340 tree base_binfo;
7341 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7342
7343 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
7344
7345 /* If it doesn't have a vptr, we don't do anything. */
7346 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7347 return;
7348
7349 /* If we're building a construction vtable, we're not interested in
7350 subobjects that don't require construction vtables. */
7351 if (ctor_vtbl_p
7352 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7353 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
7354 return;
7355
7356 /* Build the initializers for the BINFO-in-T vtable. */
7357 TREE_VALUE (inits)
7358 = chainon (TREE_VALUE (inits),
7359 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
7360 rtti_binfo, t, inits));
7361
7362 /* Walk the BINFO and its bases. We walk in preorder so that as we
7363 initialize each vtable we can figure out at what offset the
7364 secondary vtable lies from the primary vtable. We can't use
7365 dfs_walk here because we need to iterate through bases of BINFO
7366 and RTTI_BINFO simultaneously. */
7367 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7368 {
7369 /* Skip virtual bases. */
7370 if (BINFO_VIRTUAL_P (base_binfo))
7371 continue;
7372 accumulate_vtbl_inits (base_binfo,
7373 BINFO_BASE_BINFO (orig_binfo, i),
7374 rtti_binfo, t,
7375 inits);
7376 }
7377 }
7378
7379 /* Called from accumulate_vtbl_inits. Returns the initializers for
7380 the BINFO vtable. */
7381
7382 static tree
7383 dfs_accumulate_vtbl_inits (tree binfo,
7384 tree orig_binfo,
7385 tree rtti_binfo,
7386 tree t,
7387 tree l)
7388 {
7389 tree inits = NULL_TREE;
7390 tree vtbl = NULL_TREE;
7391 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7392
7393 if (ctor_vtbl_p
7394 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7395 {
7396 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7397 primary virtual base. If it is not the same primary in
7398 the hierarchy of T, we'll need to generate a ctor vtable
7399 for it, to place at its location in T. If it is the same
7400 primary, we still need a VTT entry for the vtable, but it
7401 should point to the ctor vtable for the base it is a
7402 primary for within the sub-hierarchy of RTTI_BINFO.
7403
7404 There are three possible cases:
7405
7406 1) We are in the same place.
7407 2) We are a primary base within a lost primary virtual base of
7408 RTTI_BINFO.
7409 3) We are primary to something not a base of RTTI_BINFO. */
7410
7411 tree b;
7412 tree last = NULL_TREE;
7413
7414 /* First, look through the bases we are primary to for RTTI_BINFO
7415 or a virtual base. */
7416 b = binfo;
7417 while (BINFO_PRIMARY_P (b))
7418 {
7419 b = BINFO_INHERITANCE_CHAIN (b);
7420 last = b;
7421 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7422 goto found;
7423 }
7424 /* If we run out of primary links, keep looking down our
7425 inheritance chain; we might be an indirect primary. */
7426 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7427 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7428 break;
7429 found:
7430
7431 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7432 base B and it is a base of RTTI_BINFO, this is case 2. In
7433 either case, we share our vtable with LAST, i.e. the
7434 derived-most base within B of which we are a primary. */
7435 if (b == rtti_binfo
7436 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7437 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7438 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7439 binfo_ctor_vtable after everything's been set up. */
7440 vtbl = last;
7441
7442 /* Otherwise, this is case 3 and we get our own. */
7443 }
7444 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7445 return inits;
7446
7447 if (!vtbl)
7448 {
7449 tree index;
7450 int non_fn_entries;
7451
7452 /* Compute the initializer for this vtable. */
7453 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7454 &non_fn_entries);
7455
7456 /* Figure out the position to which the VPTR should point. */
7457 vtbl = TREE_PURPOSE (l);
7458 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7459 index = size_binop (PLUS_EXPR,
7460 size_int (non_fn_entries),
7461 size_int (list_length (TREE_VALUE (l))));
7462 index = size_binop (MULT_EXPR,
7463 TYPE_SIZE_UNIT (vtable_entry_type),
7464 index);
7465 vtbl = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7466 }
7467
7468 if (ctor_vtbl_p)
7469 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7470 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7471 straighten this out. */
7472 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7473 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7474 inits = NULL_TREE;
7475 else
7476 /* For an ordinary vtable, set BINFO_VTABLE. */
7477 BINFO_VTABLE (binfo) = vtbl;
7478
7479 return inits;
7480 }
7481
7482 static GTY(()) tree abort_fndecl_addr;
7483
7484 /* Construct the initializer for BINFO's virtual function table. BINFO
7485 is part of the hierarchy dominated by T. If we're building a
7486 construction vtable, the ORIG_BINFO is the binfo we should use to
7487 find the actual function pointers to put in the vtable - but they
7488 can be overridden on the path to most-derived in the graph that
7489 ORIG_BINFO belongs. Otherwise,
7490 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7491 BINFO that should be indicated by the RTTI information in the
7492 vtable; it will be a base class of T, rather than T itself, if we
7493 are building a construction vtable.
7494
7495 The value returned is a TREE_LIST suitable for wrapping in a
7496 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7497 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7498 number of non-function entries in the vtable.
7499
7500 It might seem that this function should never be called with a
7501 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7502 base is always subsumed by a derived class vtable. However, when
7503 we are building construction vtables, we do build vtables for
7504 primary bases; we need these while the primary base is being
7505 constructed. */
7506
7507 static tree
7508 build_vtbl_initializer (tree binfo,
7509 tree orig_binfo,
7510 tree t,
7511 tree rtti_binfo,
7512 int* non_fn_entries_p)
7513 {
7514 tree v, b;
7515 tree vfun_inits;
7516 vtbl_init_data vid;
7517 unsigned ix;
7518 tree vbinfo;
7519 VEC(tree,gc) *vbases;
7520
7521 /* Initialize VID. */
7522 memset (&vid, 0, sizeof (vid));
7523 vid.binfo = binfo;
7524 vid.derived = t;
7525 vid.rtti_binfo = rtti_binfo;
7526 vid.last_init = &vid.inits;
7527 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7528 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7529 vid.generate_vcall_entries = true;
7530 /* The first vbase or vcall offset is at index -3 in the vtable. */
7531 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7532
7533 /* Add entries to the vtable for RTTI. */
7534 build_rtti_vtbl_entries (binfo, &vid);
7535
7536 /* Create an array for keeping track of the functions we've
7537 processed. When we see multiple functions with the same
7538 signature, we share the vcall offsets. */
7539 vid.fns = VEC_alloc (tree, gc, 32);
7540 /* Add the vcall and vbase offset entries. */
7541 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7542
7543 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7544 build_vbase_offset_vtbl_entries. */
7545 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7546 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7547 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7548
7549 /* If the target requires padding between data entries, add that now. */
7550 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7551 {
7552 tree cur, *prev;
7553
7554 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7555 {
7556 tree add = cur;
7557 int i;
7558
7559 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7560 add = tree_cons (NULL_TREE,
7561 build1 (NOP_EXPR, vtable_entry_type,
7562 null_pointer_node),
7563 add);
7564 *prev = add;
7565 }
7566 }
7567
7568 if (non_fn_entries_p)
7569 *non_fn_entries_p = list_length (vid.inits);
7570
7571 /* Go through all the ordinary virtual functions, building up
7572 initializers. */
7573 vfun_inits = NULL_TREE;
7574 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7575 {
7576 tree delta;
7577 tree vcall_index;
7578 tree fn, fn_original;
7579 tree init = NULL_TREE;
7580
7581 fn = BV_FN (v);
7582 fn_original = fn;
7583 if (DECL_THUNK_P (fn))
7584 {
7585 if (!DECL_NAME (fn))
7586 finish_thunk (fn);
7587 if (THUNK_ALIAS (fn))
7588 {
7589 fn = THUNK_ALIAS (fn);
7590 BV_FN (v) = fn;
7591 }
7592 fn_original = THUNK_TARGET (fn);
7593 }
7594
7595 /* If the only definition of this function signature along our
7596 primary base chain is from a lost primary, this vtable slot will
7597 never be used, so just zero it out. This is important to avoid
7598 requiring extra thunks which cannot be generated with the function.
7599
7600 We first check this in update_vtable_entry_for_fn, so we handle
7601 restored primary bases properly; we also need to do it here so we
7602 zero out unused slots in ctor vtables, rather than filling them
7603 with erroneous values (though harmless, apart from relocation
7604 costs). */
7605 for (b = binfo; ; b = get_primary_binfo (b))
7606 {
7607 /* We found a defn before a lost primary; go ahead as normal. */
7608 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7609 break;
7610
7611 /* The nearest definition is from a lost primary; clear the
7612 slot. */
7613 if (BINFO_LOST_PRIMARY_P (b))
7614 {
7615 init = size_zero_node;
7616 break;
7617 }
7618 }
7619
7620 if (! init)
7621 {
7622 /* Pull the offset for `this', and the function to call, out of
7623 the list. */
7624 delta = BV_DELTA (v);
7625 vcall_index = BV_VCALL_INDEX (v);
7626
7627 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7628 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7629
7630 /* You can't call an abstract virtual function; it's abstract.
7631 So, we replace these functions with __pure_virtual. */
7632 if (DECL_PURE_VIRTUAL_P (fn_original))
7633 {
7634 fn = abort_fndecl;
7635 if (abort_fndecl_addr == NULL)
7636 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7637 init = abort_fndecl_addr;
7638 }
7639 else
7640 {
7641 if (!integer_zerop (delta) || vcall_index)
7642 {
7643 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7644 if (!DECL_NAME (fn))
7645 finish_thunk (fn);
7646 }
7647 /* Take the address of the function, considering it to be of an
7648 appropriate generic type. */
7649 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7650 }
7651 }
7652
7653 /* And add it to the chain of initializers. */
7654 if (TARGET_VTABLE_USES_DESCRIPTORS)
7655 {
7656 int i;
7657 if (init == size_zero_node)
7658 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7659 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7660 else
7661 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7662 {
7663 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7664 TREE_OPERAND (init, 0),
7665 build_int_cst (NULL_TREE, i));
7666 TREE_CONSTANT (fdesc) = 1;
7667
7668 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7669 }
7670 }
7671 else
7672 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7673 }
7674
7675 /* The initializers for virtual functions were built up in reverse
7676 order; straighten them out now. */
7677 vfun_inits = nreverse (vfun_inits);
7678
7679 /* The negative offset initializers are also in reverse order. */
7680 vid.inits = nreverse (vid.inits);
7681
7682 /* Chain the two together. */
7683 return chainon (vid.inits, vfun_inits);
7684 }
7685
7686 /* Adds to vid->inits the initializers for the vbase and vcall
7687 offsets in BINFO, which is in the hierarchy dominated by T. */
7688
7689 static void
7690 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7691 {
7692 tree b;
7693
7694 /* If this is a derived class, we must first create entries
7695 corresponding to the primary base class. */
7696 b = get_primary_binfo (binfo);
7697 if (b)
7698 build_vcall_and_vbase_vtbl_entries (b, vid);
7699
7700 /* Add the vbase entries for this base. */
7701 build_vbase_offset_vtbl_entries (binfo, vid);
7702 /* Add the vcall entries for this base. */
7703 build_vcall_offset_vtbl_entries (binfo, vid);
7704 }
7705
7706 /* Returns the initializers for the vbase offset entries in the vtable
7707 for BINFO (which is part of the class hierarchy dominated by T), in
7708 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7709 where the next vbase offset will go. */
7710
7711 static void
7712 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7713 {
7714 tree vbase;
7715 tree t;
7716 tree non_primary_binfo;
7717
7718 /* If there are no virtual baseclasses, then there is nothing to
7719 do. */
7720 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7721 return;
7722
7723 t = vid->derived;
7724
7725 /* We might be a primary base class. Go up the inheritance hierarchy
7726 until we find the most derived class of which we are a primary base:
7727 it is the offset of that which we need to use. */
7728 non_primary_binfo = binfo;
7729 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7730 {
7731 tree b;
7732
7733 /* If we have reached a virtual base, then it must be a primary
7734 base (possibly multi-level) of vid->binfo, or we wouldn't
7735 have called build_vcall_and_vbase_vtbl_entries for it. But it
7736 might be a lost primary, so just skip down to vid->binfo. */
7737 if (BINFO_VIRTUAL_P (non_primary_binfo))
7738 {
7739 non_primary_binfo = vid->binfo;
7740 break;
7741 }
7742
7743 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7744 if (get_primary_binfo (b) != non_primary_binfo)
7745 break;
7746 non_primary_binfo = b;
7747 }
7748
7749 /* Go through the virtual bases, adding the offsets. */
7750 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7751 vbase;
7752 vbase = TREE_CHAIN (vbase))
7753 {
7754 tree b;
7755 tree delta;
7756
7757 if (!BINFO_VIRTUAL_P (vbase))
7758 continue;
7759
7760 /* Find the instance of this virtual base in the complete
7761 object. */
7762 b = copied_binfo (vbase, binfo);
7763
7764 /* If we've already got an offset for this virtual base, we
7765 don't need another one. */
7766 if (BINFO_VTABLE_PATH_MARKED (b))
7767 continue;
7768 BINFO_VTABLE_PATH_MARKED (b) = 1;
7769
7770 /* Figure out where we can find this vbase offset. */
7771 delta = size_binop (MULT_EXPR,
7772 vid->index,
7773 convert (ssizetype,
7774 TYPE_SIZE_UNIT (vtable_entry_type)));
7775 if (vid->primary_vtbl_p)
7776 BINFO_VPTR_FIELD (b) = delta;
7777
7778 if (binfo != TYPE_BINFO (t))
7779 /* The vbase offset had better be the same. */
7780 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7781
7782 /* The next vbase will come at a more negative offset. */
7783 vid->index = size_binop (MINUS_EXPR, vid->index,
7784 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7785
7786 /* The initializer is the delta from BINFO to this virtual base.
7787 The vbase offsets go in reverse inheritance-graph order, and
7788 we are walking in inheritance graph order so these end up in
7789 the right order. */
7790 delta = size_diffop_loc (input_location,
7791 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7792
7793 *vid->last_init
7794 = build_tree_list (NULL_TREE,
7795 fold_build1_loc (input_location, NOP_EXPR,
7796 vtable_entry_type,
7797 delta));
7798 vid->last_init = &TREE_CHAIN (*vid->last_init);
7799 }
7800 }
7801
7802 /* Adds the initializers for the vcall offset entries in the vtable
7803 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7804 to VID->INITS. */
7805
7806 static void
7807 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7808 {
7809 /* We only need these entries if this base is a virtual base. We
7810 compute the indices -- but do not add to the vtable -- when
7811 building the main vtable for a class. */
7812 if (binfo == TYPE_BINFO (vid->derived)
7813 || (BINFO_VIRTUAL_P (binfo)
7814 /* If BINFO is RTTI_BINFO, then (since BINFO does not
7815 correspond to VID->DERIVED), we are building a primary
7816 construction virtual table. Since this is a primary
7817 virtual table, we do not need the vcall offsets for
7818 BINFO. */
7819 && binfo != vid->rtti_binfo))
7820 {
7821 /* We need a vcall offset for each of the virtual functions in this
7822 vtable. For example:
7823
7824 class A { virtual void f (); };
7825 class B1 : virtual public A { virtual void f (); };
7826 class B2 : virtual public A { virtual void f (); };
7827 class C: public B1, public B2 { virtual void f (); };
7828
7829 A C object has a primary base of B1, which has a primary base of A. A
7830 C also has a secondary base of B2, which no longer has a primary base
7831 of A. So the B2-in-C construction vtable needs a secondary vtable for
7832 A, which will adjust the A* to a B2* to call f. We have no way of
7833 knowing what (or even whether) this offset will be when we define B2,
7834 so we store this "vcall offset" in the A sub-vtable and look it up in
7835 a "virtual thunk" for B2::f.
7836
7837 We need entries for all the functions in our primary vtable and
7838 in our non-virtual bases' secondary vtables. */
7839 vid->vbase = binfo;
7840 /* If we are just computing the vcall indices -- but do not need
7841 the actual entries -- not that. */
7842 if (!BINFO_VIRTUAL_P (binfo))
7843 vid->generate_vcall_entries = false;
7844 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7845 add_vcall_offset_vtbl_entries_r (binfo, vid);
7846 }
7847 }
7848
7849 /* Build vcall offsets, starting with those for BINFO. */
7850
7851 static void
7852 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7853 {
7854 int i;
7855 tree primary_binfo;
7856 tree base_binfo;
7857
7858 /* Don't walk into virtual bases -- except, of course, for the
7859 virtual base for which we are building vcall offsets. Any
7860 primary virtual base will have already had its offsets generated
7861 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7862 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7863 return;
7864
7865 /* If BINFO has a primary base, process it first. */
7866 primary_binfo = get_primary_binfo (binfo);
7867 if (primary_binfo)
7868 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7869
7870 /* Add BINFO itself to the list. */
7871 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7872
7873 /* Scan the non-primary bases of BINFO. */
7874 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7875 if (base_binfo != primary_binfo)
7876 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7877 }
7878
7879 /* Called from build_vcall_offset_vtbl_entries_r. */
7880
7881 static void
7882 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7883 {
7884 /* Make entries for the rest of the virtuals. */
7885 if (abi_version_at_least (2))
7886 {
7887 tree orig_fn;
7888
7889 /* The ABI requires that the methods be processed in declaration
7890 order. G++ 3.2 used the order in the vtable. */
7891 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7892 orig_fn;
7893 orig_fn = TREE_CHAIN (orig_fn))
7894 if (DECL_VINDEX (orig_fn))
7895 add_vcall_offset (orig_fn, binfo, vid);
7896 }
7897 else
7898 {
7899 tree derived_virtuals;
7900 tree base_virtuals;
7901 tree orig_virtuals;
7902 /* If BINFO is a primary base, the most derived class which has
7903 BINFO as a primary base; otherwise, just BINFO. */
7904 tree non_primary_binfo;
7905
7906 /* We might be a primary base class. Go up the inheritance hierarchy
7907 until we find the most derived class of which we are a primary base:
7908 it is the BINFO_VIRTUALS there that we need to consider. */
7909 non_primary_binfo = binfo;
7910 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7911 {
7912 tree b;
7913
7914 /* If we have reached a virtual base, then it must be vid->vbase,
7915 because we ignore other virtual bases in
7916 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7917 base (possibly multi-level) of vid->binfo, or we wouldn't
7918 have called build_vcall_and_vbase_vtbl_entries for it. But it
7919 might be a lost primary, so just skip down to vid->binfo. */
7920 if (BINFO_VIRTUAL_P (non_primary_binfo))
7921 {
7922 gcc_assert (non_primary_binfo == vid->vbase);
7923 non_primary_binfo = vid->binfo;
7924 break;
7925 }
7926
7927 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7928 if (get_primary_binfo (b) != non_primary_binfo)
7929 break;
7930 non_primary_binfo = b;
7931 }
7932
7933 if (vid->ctor_vtbl_p)
7934 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7935 where rtti_binfo is the most derived type. */
7936 non_primary_binfo
7937 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7938
7939 for (base_virtuals = BINFO_VIRTUALS (binfo),
7940 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7941 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7942 base_virtuals;
7943 base_virtuals = TREE_CHAIN (base_virtuals),
7944 derived_virtuals = TREE_CHAIN (derived_virtuals),
7945 orig_virtuals = TREE_CHAIN (orig_virtuals))
7946 {
7947 tree orig_fn;
7948
7949 /* Find the declaration that originally caused this function to
7950 be present in BINFO_TYPE (binfo). */
7951 orig_fn = BV_FN (orig_virtuals);
7952
7953 /* When processing BINFO, we only want to generate vcall slots for
7954 function slots introduced in BINFO. So don't try to generate
7955 one if the function isn't even defined in BINFO. */
7956 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7957 continue;
7958
7959 add_vcall_offset (orig_fn, binfo, vid);
7960 }
7961 }
7962 }
7963
7964 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7965
7966 static void
7967 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7968 {
7969 size_t i;
7970 tree vcall_offset;
7971 tree derived_entry;
7972
7973 /* If there is already an entry for a function with the same
7974 signature as FN, then we do not need a second vcall offset.
7975 Check the list of functions already present in the derived
7976 class vtable. */
7977 for (i = 0; VEC_iterate (tree, vid->fns, i, derived_entry); ++i)
7978 {
7979 if (same_signature_p (derived_entry, orig_fn)
7980 /* We only use one vcall offset for virtual destructors,
7981 even though there are two virtual table entries. */
7982 || (DECL_DESTRUCTOR_P (derived_entry)
7983 && DECL_DESTRUCTOR_P (orig_fn)))
7984 return;
7985 }
7986
7987 /* If we are building these vcall offsets as part of building
7988 the vtable for the most derived class, remember the vcall
7989 offset. */
7990 if (vid->binfo == TYPE_BINFO (vid->derived))
7991 {
7992 tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
7993 CLASSTYPE_VCALL_INDICES (vid->derived),
7994 NULL);
7995 elt->purpose = orig_fn;
7996 elt->value = vid->index;
7997 }
7998
7999 /* The next vcall offset will be found at a more negative
8000 offset. */
8001 vid->index = size_binop (MINUS_EXPR, vid->index,
8002 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
8003
8004 /* Keep track of this function. */
8005 VEC_safe_push (tree, gc, vid->fns, orig_fn);
8006
8007 if (vid->generate_vcall_entries)
8008 {
8009 tree base;
8010 tree fn;
8011
8012 /* Find the overriding function. */
8013 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
8014 if (fn == error_mark_node)
8015 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
8016 integer_zero_node);
8017 else
8018 {
8019 base = TREE_VALUE (fn);
8020
8021 /* The vbase we're working on is a primary base of
8022 vid->binfo. But it might be a lost primary, so its
8023 BINFO_OFFSET might be wrong, so we just use the
8024 BINFO_OFFSET from vid->binfo. */
8025 vcall_offset = size_diffop_loc (input_location,
8026 BINFO_OFFSET (base),
8027 BINFO_OFFSET (vid->binfo));
8028 vcall_offset = fold_build1_loc (input_location,
8029 NOP_EXPR, vtable_entry_type,
8030 vcall_offset);
8031 }
8032 /* Add the initializer to the vtable. */
8033 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
8034 vid->last_init = &TREE_CHAIN (*vid->last_init);
8035 }
8036 }
8037
8038 /* Return vtbl initializers for the RTTI entries corresponding to the
8039 BINFO's vtable. The RTTI entries should indicate the object given
8040 by VID->rtti_binfo. */
8041
8042 static void
8043 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
8044 {
8045 tree b;
8046 tree t;
8047 tree offset;
8048 tree decl;
8049 tree init;
8050
8051 t = BINFO_TYPE (vid->rtti_binfo);
8052
8053 /* To find the complete object, we will first convert to our most
8054 primary base, and then add the offset in the vtbl to that value. */
8055 b = binfo;
8056 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
8057 && !BINFO_LOST_PRIMARY_P (b))
8058 {
8059 tree primary_base;
8060
8061 primary_base = get_primary_binfo (b);
8062 gcc_assert (BINFO_PRIMARY_P (primary_base)
8063 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
8064 b = primary_base;
8065 }
8066 offset = size_diffop_loc (input_location,
8067 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
8068
8069 /* The second entry is the address of the typeinfo object. */
8070 if (flag_rtti)
8071 decl = build_address (get_tinfo_decl (t));
8072 else
8073 decl = integer_zero_node;
8074
8075 /* Convert the declaration to a type that can be stored in the
8076 vtable. */
8077 init = build_nop (vfunc_ptr_type_node, decl);
8078 *vid->last_init = build_tree_list (NULL_TREE, init);
8079 vid->last_init = &TREE_CHAIN (*vid->last_init);
8080
8081 /* Add the offset-to-top entry. It comes earlier in the vtable than
8082 the typeinfo entry. Convert the offset to look like a
8083 function pointer, so that we can put it in the vtable. */
8084 init = build_nop (vfunc_ptr_type_node, offset);
8085 *vid->last_init = build_tree_list (NULL_TREE, init);
8086 vid->last_init = &TREE_CHAIN (*vid->last_init);
8087 }
8088
8089 /* Fold a OBJ_TYPE_REF expression to the address of a function.
8090 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
8091
8092 tree
8093 cp_fold_obj_type_ref (tree ref, tree known_type)
8094 {
8095 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
8096 HOST_WIDE_INT i = 0;
8097 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
8098 tree fndecl;
8099
8100 while (i != index)
8101 {
8102 i += (TARGET_VTABLE_USES_DESCRIPTORS
8103 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
8104 v = TREE_CHAIN (v);
8105 }
8106
8107 fndecl = BV_FN (v);
8108
8109 #ifdef ENABLE_CHECKING
8110 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
8111 DECL_VINDEX (fndecl)));
8112 #endif
8113
8114 cgraph_node (fndecl)->local.vtable_method = true;
8115
8116 return build_address (fndecl);
8117 }
8118
8119 #include "gt-cp-class.h"