re PR c++/60848 (Crash while experimenting with c++-0x initializer lists)
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "stringpool.h"
30 #include "stor-layout.h"
31 #include "attribs.h"
32 #include "pointer-set.h"
33 #include "hash-table.h"
34 #include "cp-tree.h"
35 #include "flags.h"
36 #include "toplev.h"
37 #include "target.h"
38 #include "convert.h"
39 #include "cgraph.h"
40 #include "dumpfile.h"
41 #include "splay-tree.h"
42 #include "gimplify.h"
43 #include "wide-int.h"
44
45 /* The number of nested classes being processed. If we are not in the
46 scope of any class, this is zero. */
47
48 int current_class_depth;
49
50 /* In order to deal with nested classes, we keep a stack of classes.
51 The topmost entry is the innermost class, and is the entry at index
52 CURRENT_CLASS_DEPTH */
53
54 typedef struct class_stack_node {
55 /* The name of the class. */
56 tree name;
57
58 /* The _TYPE node for the class. */
59 tree type;
60
61 /* The access specifier pending for new declarations in the scope of
62 this class. */
63 tree access;
64
65 /* If were defining TYPE, the names used in this class. */
66 splay_tree names_used;
67
68 /* Nonzero if this class is no longer open, because of a call to
69 push_to_top_level. */
70 size_t hidden;
71 }* class_stack_node_t;
72
73 typedef struct vtbl_init_data_s
74 {
75 /* The base for which we're building initializers. */
76 tree binfo;
77 /* The type of the most-derived type. */
78 tree derived;
79 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
80 unless ctor_vtbl_p is true. */
81 tree rtti_binfo;
82 /* The negative-index vtable initializers built up so far. These
83 are in order from least negative index to most negative index. */
84 vec<constructor_elt, va_gc> *inits;
85 /* The binfo for the virtual base for which we're building
86 vcall offset initializers. */
87 tree vbase;
88 /* The functions in vbase for which we have already provided vcall
89 offsets. */
90 vec<tree, va_gc> *fns;
91 /* The vtable index of the next vcall or vbase offset. */
92 tree index;
93 /* Nonzero if we are building the initializer for the primary
94 vtable. */
95 int primary_vtbl_p;
96 /* Nonzero if we are building the initializer for a construction
97 vtable. */
98 int ctor_vtbl_p;
99 /* True when adding vcall offset entries to the vtable. False when
100 merely computing the indices. */
101 bool generate_vcall_entries;
102 } vtbl_init_data;
103
104 /* The type of a function passed to walk_subobject_offsets. */
105 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
106
107 /* The stack itself. This is a dynamically resized array. The
108 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
109 static int current_class_stack_size;
110 static class_stack_node_t current_class_stack;
111
112 /* The size of the largest empty class seen in this translation unit. */
113 static GTY (()) tree sizeof_biggest_empty_class;
114
115 /* An array of all local classes present in this translation unit, in
116 declaration order. */
117 vec<tree, va_gc> *local_classes;
118
119 static tree get_vfield_name (tree);
120 static void finish_struct_anon (tree);
121 static tree get_vtable_name (tree);
122 static tree get_basefndecls (tree, tree);
123 static int build_primary_vtable (tree, tree);
124 static int build_secondary_vtable (tree);
125 static void finish_vtbls (tree);
126 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
127 static void finish_struct_bits (tree);
128 static int alter_access (tree, tree, tree);
129 static void handle_using_decl (tree, tree);
130 static tree dfs_modify_vtables (tree, void *);
131 static tree modify_all_vtables (tree, tree);
132 static void determine_primary_bases (tree);
133 static void finish_struct_methods (tree);
134 static void maybe_warn_about_overly_private_class (tree);
135 static int method_name_cmp (const void *, const void *);
136 static int resort_method_name_cmp (const void *, const void *);
137 static void add_implicitly_declared_members (tree, tree*, int, int);
138 static tree fixed_type_or_null (tree, int *, int *);
139 static tree build_simple_base_path (tree expr, tree binfo);
140 static tree build_vtbl_ref_1 (tree, tree);
141 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
142 vec<constructor_elt, va_gc> **);
143 static int count_fields (tree);
144 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
145 static void insert_into_classtype_sorted_fields (tree, tree, int);
146 static bool check_bitfield_decl (tree);
147 static void check_field_decl (tree, tree, int *, int *, int *);
148 static void check_field_decls (tree, tree *, int *, int *);
149 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
150 static void build_base_fields (record_layout_info, splay_tree, tree *);
151 static void check_methods (tree);
152 static void remove_zero_width_bit_fields (tree);
153 static bool accessible_nvdtor_p (tree);
154 static void check_bases (tree, int *, int *);
155 static void check_bases_and_members (tree);
156 static tree create_vtable_ptr (tree, tree *);
157 static void include_empty_classes (record_layout_info);
158 static void layout_class_type (tree, tree *);
159 static void propagate_binfo_offsets (tree, tree);
160 static void layout_virtual_bases (record_layout_info, splay_tree);
161 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
162 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
163 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
164 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
165 static void add_vcall_offset (tree, tree, vtbl_init_data *);
166 static void layout_vtable_decl (tree, int);
167 static tree dfs_find_final_overrider_pre (tree, void *);
168 static tree dfs_find_final_overrider_post (tree, void *);
169 static tree find_final_overrider (tree, tree, tree);
170 static int make_new_vtable (tree, tree);
171 static tree get_primary_binfo (tree);
172 static int maybe_indent_hierarchy (FILE *, int, int);
173 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
174 static void dump_class_hierarchy (tree);
175 static void dump_class_hierarchy_1 (FILE *, int, tree);
176 static void dump_array (FILE *, tree);
177 static void dump_vtable (tree, tree, tree);
178 static void dump_vtt (tree, tree);
179 static void dump_thunk (FILE *, int, tree);
180 static tree build_vtable (tree, tree, tree);
181 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
182 static void layout_nonempty_base_or_field (record_layout_info,
183 tree, tree, splay_tree);
184 static tree end_of_class (tree, int);
185 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
186 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
187 vec<constructor_elt, va_gc> **);
188 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
189 vec<constructor_elt, va_gc> **);
190 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
191 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
192 static void clone_constructors_and_destructors (tree);
193 static tree build_clone (tree, tree);
194 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
195 static void build_ctor_vtbl_group (tree, tree);
196 static void build_vtt (tree);
197 static tree binfo_ctor_vtable (tree);
198 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
199 tree *);
200 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
201 static tree dfs_fixup_binfo_vtbls (tree, void *);
202 static int record_subobject_offset (tree, tree, splay_tree);
203 static int check_subobject_offset (tree, tree, splay_tree);
204 static int walk_subobject_offsets (tree, subobject_offset_fn,
205 tree, splay_tree, tree, int);
206 static void record_subobject_offsets (tree, tree, splay_tree, bool);
207 static int layout_conflict_p (tree, tree, splay_tree, int);
208 static int splay_tree_compare_integer_csts (splay_tree_key k1,
209 splay_tree_key k2);
210 static void warn_about_ambiguous_bases (tree);
211 static bool type_requires_array_cookie (tree);
212 static bool contains_empty_class_p (tree);
213 static bool base_derived_from (tree, tree);
214 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
215 static tree end_of_base (tree);
216 static tree get_vcall_index (tree, tree);
217
218 /* Variables shared between class.c and call.c. */
219
220 int n_vtables = 0;
221 int n_vtable_entries = 0;
222 int n_vtable_searches = 0;
223 int n_vtable_elems = 0;
224 int n_convert_harshness = 0;
225 int n_compute_conversion_costs = 0;
226 int n_inner_fields_searched = 0;
227
228 /* Convert to or from a base subobject. EXPR is an expression of type
229 `A' or `A*', an expression of type `B' or `B*' is returned. To
230 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
231 the B base instance within A. To convert base A to derived B, CODE
232 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
233 In this latter case, A must not be a morally virtual base of B.
234 NONNULL is true if EXPR is known to be non-NULL (this is only
235 needed when EXPR is of pointer type). CV qualifiers are preserved
236 from EXPR. */
237
238 tree
239 build_base_path (enum tree_code code,
240 tree expr,
241 tree binfo,
242 int nonnull,
243 tsubst_flags_t complain)
244 {
245 tree v_binfo = NULL_TREE;
246 tree d_binfo = NULL_TREE;
247 tree probe;
248 tree offset;
249 tree target_type;
250 tree null_test = NULL;
251 tree ptr_target_type;
252 int fixed_type_p;
253 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
254 bool has_empty = false;
255 bool virtual_access;
256
257 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
258 return error_mark_node;
259
260 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
261 {
262 d_binfo = probe;
263 if (is_empty_class (BINFO_TYPE (probe)))
264 has_empty = true;
265 if (!v_binfo && BINFO_VIRTUAL_P (probe))
266 v_binfo = probe;
267 }
268
269 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
270 if (want_pointer)
271 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
272
273 if (code == PLUS_EXPR
274 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
275 {
276 /* This can happen when adjust_result_of_qualified_name_lookup can't
277 find a unique base binfo in a call to a member function. We
278 couldn't give the diagnostic then since we might have been calling
279 a static member function, so we do it now. */
280 if (complain & tf_error)
281 {
282 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
283 ba_unique, NULL, complain);
284 gcc_assert (base == error_mark_node);
285 }
286 return error_mark_node;
287 }
288
289 gcc_assert ((code == MINUS_EXPR
290 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
291 || code == PLUS_EXPR);
292
293 if (binfo == d_binfo)
294 /* Nothing to do. */
295 return expr;
296
297 if (code == MINUS_EXPR && v_binfo)
298 {
299 if (complain & tf_error)
300 {
301 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo)))
302 {
303 if (want_pointer)
304 error ("cannot convert from pointer to base class %qT to "
305 "pointer to derived class %qT because the base is "
306 "virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
307 else
308 error ("cannot convert from base class %qT to derived "
309 "class %qT because the base is virtual",
310 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
311 }
312 else
313 {
314 if (want_pointer)
315 error ("cannot convert from pointer to base class %qT to "
316 "pointer to derived class %qT via virtual base %qT",
317 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
318 BINFO_TYPE (v_binfo));
319 else
320 error ("cannot convert from base class %qT to derived "
321 "class %qT via virtual base %qT", BINFO_TYPE (binfo),
322 BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
323 }
324 }
325 return error_mark_node;
326 }
327
328 if (!want_pointer)
329 /* This must happen before the call to save_expr. */
330 expr = cp_build_addr_expr (expr, complain);
331 else
332 expr = mark_rvalue_use (expr);
333
334 offset = BINFO_OFFSET (binfo);
335 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
336 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
337 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
338 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
339 expression returned matches the input. */
340 target_type = cp_build_qualified_type
341 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
342 ptr_target_type = build_pointer_type (target_type);
343
344 /* Do we need to look in the vtable for the real offset? */
345 virtual_access = (v_binfo && fixed_type_p <= 0);
346
347 /* Don't bother with the calculations inside sizeof; they'll ICE if the
348 source type is incomplete and the pointer value doesn't matter. In a
349 template (even in fold_non_dependent_expr), we don't have vtables set
350 up properly yet, and the value doesn't matter there either; we're just
351 interested in the result of overload resolution. */
352 if (cp_unevaluated_operand != 0
353 || in_template_function ())
354 {
355 expr = build_nop (ptr_target_type, expr);
356 if (!want_pointer)
357 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
358 return expr;
359 }
360
361 /* If we're in an NSDMI, we don't have the full constructor context yet
362 that we need for converting to a virtual base, so just build a stub
363 CONVERT_EXPR and expand it later in bot_replace. */
364 if (virtual_access && fixed_type_p < 0
365 && current_scope () != current_function_decl)
366 {
367 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
368 CONVERT_EXPR_VBASE_PATH (expr) = true;
369 if (!want_pointer)
370 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
371 return expr;
372 }
373
374 /* Do we need to check for a null pointer? */
375 if (want_pointer && !nonnull)
376 {
377 /* If we know the conversion will not actually change the value
378 of EXPR, then we can avoid testing the expression for NULL.
379 We have to avoid generating a COMPONENT_REF for a base class
380 field, because other parts of the compiler know that such
381 expressions are always non-NULL. */
382 if (!virtual_access && integer_zerop (offset))
383 return build_nop (ptr_target_type, expr);
384 null_test = error_mark_node;
385 }
386
387 /* Protect against multiple evaluation if necessary. */
388 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
389 expr = save_expr (expr);
390
391 /* Now that we've saved expr, build the real null test. */
392 if (null_test)
393 {
394 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
395 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
396 expr, zero);
397 }
398
399 /* If this is a simple base reference, express it as a COMPONENT_REF. */
400 if (code == PLUS_EXPR && !virtual_access
401 /* We don't build base fields for empty bases, and they aren't very
402 interesting to the optimizers anyway. */
403 && !has_empty)
404 {
405 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
406 expr = build_simple_base_path (expr, binfo);
407 if (want_pointer)
408 expr = build_address (expr);
409 target_type = TREE_TYPE (expr);
410 goto out;
411 }
412
413 if (virtual_access)
414 {
415 /* Going via virtual base V_BINFO. We need the static offset
416 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
417 V_BINFO. That offset is an entry in D_BINFO's vtable. */
418 tree v_offset;
419
420 if (fixed_type_p < 0 && in_base_initializer)
421 {
422 /* In a base member initializer, we cannot rely on the
423 vtable being set up. We have to indirect via the
424 vtt_parm. */
425 tree t;
426
427 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
428 t = build_pointer_type (t);
429 v_offset = convert (t, current_vtt_parm);
430 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
431 }
432 else
433 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
434 complain),
435 TREE_TYPE (TREE_TYPE (expr)));
436
437 if (v_offset == error_mark_node)
438 return error_mark_node;
439
440 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
441 v_offset = build1 (NOP_EXPR,
442 build_pointer_type (ptrdiff_type_node),
443 v_offset);
444 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
445 TREE_CONSTANT (v_offset) = 1;
446
447 offset = convert_to_integer (ptrdiff_type_node,
448 size_diffop_loc (input_location, offset,
449 BINFO_OFFSET (v_binfo)));
450
451 if (!integer_zerop (offset))
452 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
453
454 if (fixed_type_p < 0)
455 /* Negative fixed_type_p means this is a constructor or destructor;
456 virtual base layout is fixed in in-charge [cd]tors, but not in
457 base [cd]tors. */
458 offset = build3 (COND_EXPR, ptrdiff_type_node,
459 build2 (EQ_EXPR, boolean_type_node,
460 current_in_charge_parm, integer_zero_node),
461 v_offset,
462 convert_to_integer (ptrdiff_type_node,
463 BINFO_OFFSET (binfo)));
464 else
465 offset = v_offset;
466 }
467
468 if (want_pointer)
469 target_type = ptr_target_type;
470
471 expr = build1 (NOP_EXPR, ptr_target_type, expr);
472
473 if (!integer_zerop (offset))
474 {
475 offset = fold_convert (sizetype, offset);
476 if (code == MINUS_EXPR)
477 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
478 expr = fold_build_pointer_plus (expr, offset);
479 }
480 else
481 null_test = NULL;
482
483 if (!want_pointer)
484 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
485
486 out:
487 if (null_test)
488 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
489 build_zero_cst (target_type));
490
491 return expr;
492 }
493
494 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
495 Perform a derived-to-base conversion by recursively building up a
496 sequence of COMPONENT_REFs to the appropriate base fields. */
497
498 static tree
499 build_simple_base_path (tree expr, tree binfo)
500 {
501 tree type = BINFO_TYPE (binfo);
502 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
503 tree field;
504
505 if (d_binfo == NULL_TREE)
506 {
507 tree temp;
508
509 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
510
511 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
512 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
513 an lvalue in the front end; only _DECLs and _REFs are lvalues
514 in the back end. */
515 temp = unary_complex_lvalue (ADDR_EXPR, expr);
516 if (temp)
517 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
518
519 return expr;
520 }
521
522 /* Recurse. */
523 expr = build_simple_base_path (expr, d_binfo);
524
525 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
526 field; field = DECL_CHAIN (field))
527 /* Is this the base field created by build_base_field? */
528 if (TREE_CODE (field) == FIELD_DECL
529 && DECL_FIELD_IS_BASE (field)
530 && TREE_TYPE (field) == type
531 /* If we're looking for a field in the most-derived class,
532 also check the field offset; we can have two base fields
533 of the same type if one is an indirect virtual base and one
534 is a direct non-virtual base. */
535 && (BINFO_INHERITANCE_CHAIN (d_binfo)
536 || tree_int_cst_equal (byte_position (field),
537 BINFO_OFFSET (binfo))))
538 {
539 /* We don't use build_class_member_access_expr here, as that
540 has unnecessary checks, and more importantly results in
541 recursive calls to dfs_walk_once. */
542 int type_quals = cp_type_quals (TREE_TYPE (expr));
543
544 expr = build3 (COMPONENT_REF,
545 cp_build_qualified_type (type, type_quals),
546 expr, field, NULL_TREE);
547 expr = fold_if_not_in_template (expr);
548
549 /* Mark the expression const or volatile, as appropriate.
550 Even though we've dealt with the type above, we still have
551 to mark the expression itself. */
552 if (type_quals & TYPE_QUAL_CONST)
553 TREE_READONLY (expr) = 1;
554 if (type_quals & TYPE_QUAL_VOLATILE)
555 TREE_THIS_VOLATILE (expr) = 1;
556
557 return expr;
558 }
559
560 /* Didn't find the base field?!? */
561 gcc_unreachable ();
562 }
563
564 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
565 type is a class type or a pointer to a class type. In the former
566 case, TYPE is also a class type; in the latter it is another
567 pointer type. If CHECK_ACCESS is true, an error message is emitted
568 if TYPE is inaccessible. If OBJECT has pointer type, the value is
569 assumed to be non-NULL. */
570
571 tree
572 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
573 tsubst_flags_t complain)
574 {
575 tree binfo;
576 tree object_type;
577
578 if (TYPE_PTR_P (TREE_TYPE (object)))
579 {
580 object_type = TREE_TYPE (TREE_TYPE (object));
581 type = TREE_TYPE (type);
582 }
583 else
584 object_type = TREE_TYPE (object);
585
586 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
587 NULL, complain);
588 if (!binfo || binfo == error_mark_node)
589 return error_mark_node;
590
591 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
592 }
593
594 /* EXPR is an expression with unqualified class type. BASE is a base
595 binfo of that class type. Returns EXPR, converted to the BASE
596 type. This function assumes that EXPR is the most derived class;
597 therefore virtual bases can be found at their static offsets. */
598
599 tree
600 convert_to_base_statically (tree expr, tree base)
601 {
602 tree expr_type;
603
604 expr_type = TREE_TYPE (expr);
605 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
606 {
607 /* If this is a non-empty base, use a COMPONENT_REF. */
608 if (!is_empty_class (BINFO_TYPE (base)))
609 return build_simple_base_path (expr, base);
610
611 /* We use fold_build2 and fold_convert below to simplify the trees
612 provided to the optimizers. It is not safe to call these functions
613 when processing a template because they do not handle C++-specific
614 trees. */
615 gcc_assert (!processing_template_decl);
616 expr = cp_build_addr_expr (expr, tf_warning_or_error);
617 if (!integer_zerop (BINFO_OFFSET (base)))
618 expr = fold_build_pointer_plus_loc (input_location,
619 expr, BINFO_OFFSET (base));
620 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
621 expr = build_fold_indirect_ref_loc (input_location, expr);
622 }
623
624 return expr;
625 }
626
627 \f
628 tree
629 build_vfield_ref (tree datum, tree type)
630 {
631 tree vfield, vcontext;
632
633 if (datum == error_mark_node
634 /* Can happen in case of duplicate base types (c++/59082). */
635 || !TYPE_VFIELD (type))
636 return error_mark_node;
637
638 /* First, convert to the requested type. */
639 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
640 datum = convert_to_base (datum, type, /*check_access=*/false,
641 /*nonnull=*/true, tf_warning_or_error);
642
643 /* Second, the requested type may not be the owner of its own vptr.
644 If not, convert to the base class that owns it. We cannot use
645 convert_to_base here, because VCONTEXT may appear more than once
646 in the inheritance hierarchy of TYPE, and thus direct conversion
647 between the types may be ambiguous. Following the path back up
648 one step at a time via primary bases avoids the problem. */
649 vfield = TYPE_VFIELD (type);
650 vcontext = DECL_CONTEXT (vfield);
651 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
652 {
653 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
654 type = TREE_TYPE (datum);
655 }
656
657 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
658 }
659
660 /* Given an object INSTANCE, return an expression which yields the
661 vtable element corresponding to INDEX. There are many special
662 cases for INSTANCE which we take care of here, mainly to avoid
663 creating extra tree nodes when we don't have to. */
664
665 static tree
666 build_vtbl_ref_1 (tree instance, tree idx)
667 {
668 tree aref;
669 tree vtbl = NULL_TREE;
670
671 /* Try to figure out what a reference refers to, and
672 access its virtual function table directly. */
673
674 int cdtorp = 0;
675 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
676
677 tree basetype = non_reference (TREE_TYPE (instance));
678
679 if (fixed_type && !cdtorp)
680 {
681 tree binfo = lookup_base (fixed_type, basetype,
682 ba_unique, NULL, tf_none);
683 if (binfo && binfo != error_mark_node)
684 vtbl = unshare_expr (BINFO_VTABLE (binfo));
685 }
686
687 if (!vtbl)
688 vtbl = build_vfield_ref (instance, basetype);
689
690 aref = build_array_ref (input_location, vtbl, idx);
691 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
692
693 return aref;
694 }
695
696 tree
697 build_vtbl_ref (tree instance, tree idx)
698 {
699 tree aref = build_vtbl_ref_1 (instance, idx);
700
701 return aref;
702 }
703
704 /* Given a stable object pointer INSTANCE_PTR, return an expression which
705 yields a function pointer corresponding to vtable element INDEX. */
706
707 tree
708 build_vfn_ref (tree instance_ptr, tree idx)
709 {
710 tree aref;
711
712 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
713 tf_warning_or_error),
714 idx);
715
716 /* When using function descriptors, the address of the
717 vtable entry is treated as a function pointer. */
718 if (TARGET_VTABLE_USES_DESCRIPTORS)
719 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
720 cp_build_addr_expr (aref, tf_warning_or_error));
721
722 /* Remember this as a method reference, for later devirtualization. */
723 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
724
725 return aref;
726 }
727
728 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
729 for the given TYPE. */
730
731 static tree
732 get_vtable_name (tree type)
733 {
734 return mangle_vtbl_for_type (type);
735 }
736
737 /* DECL is an entity associated with TYPE, like a virtual table or an
738 implicitly generated constructor. Determine whether or not DECL
739 should have external or internal linkage at the object file
740 level. This routine does not deal with COMDAT linkage and other
741 similar complexities; it simply sets TREE_PUBLIC if it possible for
742 entities in other translation units to contain copies of DECL, in
743 the abstract. */
744
745 void
746 set_linkage_according_to_type (tree /*type*/, tree decl)
747 {
748 TREE_PUBLIC (decl) = 1;
749 determine_visibility (decl);
750 }
751
752 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
753 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
754 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
755
756 static tree
757 build_vtable (tree class_type, tree name, tree vtable_type)
758 {
759 tree decl;
760
761 decl = build_lang_decl (VAR_DECL, name, vtable_type);
762 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
763 now to avoid confusion in mangle_decl. */
764 SET_DECL_ASSEMBLER_NAME (decl, name);
765 DECL_CONTEXT (decl) = class_type;
766 DECL_ARTIFICIAL (decl) = 1;
767 TREE_STATIC (decl) = 1;
768 TREE_READONLY (decl) = 1;
769 DECL_VIRTUAL_P (decl) = 1;
770 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
771 DECL_USER_ALIGN (decl) = true;
772 DECL_VTABLE_OR_VTT_P (decl) = 1;
773 set_linkage_according_to_type (class_type, decl);
774 /* The vtable has not been defined -- yet. */
775 DECL_EXTERNAL (decl) = 1;
776 DECL_NOT_REALLY_EXTERN (decl) = 1;
777
778 /* Mark the VAR_DECL node representing the vtable itself as a
779 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
780 is rather important that such things be ignored because any
781 effort to actually generate DWARF for them will run into
782 trouble when/if we encounter code like:
783
784 #pragma interface
785 struct S { virtual void member (); };
786
787 because the artificial declaration of the vtable itself (as
788 manufactured by the g++ front end) will say that the vtable is
789 a static member of `S' but only *after* the debug output for
790 the definition of `S' has already been output. This causes
791 grief because the DWARF entry for the definition of the vtable
792 will try to refer back to an earlier *declaration* of the
793 vtable as a static member of `S' and there won't be one. We
794 might be able to arrange to have the "vtable static member"
795 attached to the member list for `S' before the debug info for
796 `S' get written (which would solve the problem) but that would
797 require more intrusive changes to the g++ front end. */
798 DECL_IGNORED_P (decl) = 1;
799
800 return decl;
801 }
802
803 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
804 or even complete. If this does not exist, create it. If COMPLETE is
805 nonzero, then complete the definition of it -- that will render it
806 impossible to actually build the vtable, but is useful to get at those
807 which are known to exist in the runtime. */
808
809 tree
810 get_vtable_decl (tree type, int complete)
811 {
812 tree decl;
813
814 if (CLASSTYPE_VTABLES (type))
815 return CLASSTYPE_VTABLES (type);
816
817 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
818 CLASSTYPE_VTABLES (type) = decl;
819
820 if (complete)
821 {
822 DECL_EXTERNAL (decl) = 1;
823 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
824 }
825
826 return decl;
827 }
828
829 /* Build the primary virtual function table for TYPE. If BINFO is
830 non-NULL, build the vtable starting with the initial approximation
831 that it is the same as the one which is the head of the association
832 list. Returns a nonzero value if a new vtable is actually
833 created. */
834
835 static int
836 build_primary_vtable (tree binfo, tree type)
837 {
838 tree decl;
839 tree virtuals;
840
841 decl = get_vtable_decl (type, /*complete=*/0);
842
843 if (binfo)
844 {
845 if (BINFO_NEW_VTABLE_MARKED (binfo))
846 /* We have already created a vtable for this base, so there's
847 no need to do it again. */
848 return 0;
849
850 virtuals = copy_list (BINFO_VIRTUALS (binfo));
851 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
852 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
853 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
854 }
855 else
856 {
857 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
858 virtuals = NULL_TREE;
859 }
860
861 if (GATHER_STATISTICS)
862 {
863 n_vtables += 1;
864 n_vtable_elems += list_length (virtuals);
865 }
866
867 /* Initialize the association list for this type, based
868 on our first approximation. */
869 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
870 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
871 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
872 return 1;
873 }
874
875 /* Give BINFO a new virtual function table which is initialized
876 with a skeleton-copy of its original initialization. The only
877 entry that changes is the `delta' entry, so we can really
878 share a lot of structure.
879
880 FOR_TYPE is the most derived type which caused this table to
881 be needed.
882
883 Returns nonzero if we haven't met BINFO before.
884
885 The order in which vtables are built (by calling this function) for
886 an object must remain the same, otherwise a binary incompatibility
887 can result. */
888
889 static int
890 build_secondary_vtable (tree binfo)
891 {
892 if (BINFO_NEW_VTABLE_MARKED (binfo))
893 /* We already created a vtable for this base. There's no need to
894 do it again. */
895 return 0;
896
897 /* Remember that we've created a vtable for this BINFO, so that we
898 don't try to do so again. */
899 SET_BINFO_NEW_VTABLE_MARKED (binfo);
900
901 /* Make fresh virtual list, so we can smash it later. */
902 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
903
904 /* Secondary vtables are laid out as part of the same structure as
905 the primary vtable. */
906 BINFO_VTABLE (binfo) = NULL_TREE;
907 return 1;
908 }
909
910 /* Create a new vtable for BINFO which is the hierarchy dominated by
911 T. Return nonzero if we actually created a new vtable. */
912
913 static int
914 make_new_vtable (tree t, tree binfo)
915 {
916 if (binfo == TYPE_BINFO (t))
917 /* In this case, it is *type*'s vtable we are modifying. We start
918 with the approximation that its vtable is that of the
919 immediate base class. */
920 return build_primary_vtable (binfo, t);
921 else
922 /* This is our very own copy of `basetype' to play with. Later,
923 we will fill in all the virtual functions that override the
924 virtual functions in these base classes which are not defined
925 by the current type. */
926 return build_secondary_vtable (binfo);
927 }
928
929 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
930 (which is in the hierarchy dominated by T) list FNDECL as its
931 BV_FN. DELTA is the required constant adjustment from the `this'
932 pointer where the vtable entry appears to the `this' required when
933 the function is actually called. */
934
935 static void
936 modify_vtable_entry (tree t,
937 tree binfo,
938 tree fndecl,
939 tree delta,
940 tree *virtuals)
941 {
942 tree v;
943
944 v = *virtuals;
945
946 if (fndecl != BV_FN (v)
947 || !tree_int_cst_equal (delta, BV_DELTA (v)))
948 {
949 /* We need a new vtable for BINFO. */
950 if (make_new_vtable (t, binfo))
951 {
952 /* If we really did make a new vtable, we also made a copy
953 of the BINFO_VIRTUALS list. Now, we have to find the
954 corresponding entry in that list. */
955 *virtuals = BINFO_VIRTUALS (binfo);
956 while (BV_FN (*virtuals) != BV_FN (v))
957 *virtuals = TREE_CHAIN (*virtuals);
958 v = *virtuals;
959 }
960
961 BV_DELTA (v) = delta;
962 BV_VCALL_INDEX (v) = NULL_TREE;
963 BV_FN (v) = fndecl;
964 }
965 }
966
967 \f
968 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
969 the USING_DECL naming METHOD. Returns true if the method could be
970 added to the method vec. */
971
972 bool
973 add_method (tree type, tree method, tree using_decl)
974 {
975 unsigned slot;
976 tree overload;
977 bool template_conv_p = false;
978 bool conv_p;
979 vec<tree, va_gc> *method_vec;
980 bool complete_p;
981 bool insert_p = false;
982 tree current_fns;
983 tree fns;
984
985 if (method == error_mark_node)
986 return false;
987
988 complete_p = COMPLETE_TYPE_P (type);
989 conv_p = DECL_CONV_FN_P (method);
990 if (conv_p)
991 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
992 && DECL_TEMPLATE_CONV_FN_P (method));
993
994 method_vec = CLASSTYPE_METHOD_VEC (type);
995 if (!method_vec)
996 {
997 /* Make a new method vector. We start with 8 entries. We must
998 allocate at least two (for constructors and destructors), and
999 we're going to end up with an assignment operator at some
1000 point as well. */
1001 vec_alloc (method_vec, 8);
1002 /* Create slots for constructors and destructors. */
1003 method_vec->quick_push (NULL_TREE);
1004 method_vec->quick_push (NULL_TREE);
1005 CLASSTYPE_METHOD_VEC (type) = method_vec;
1006 }
1007
1008 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
1009 grok_special_member_properties (method);
1010
1011 /* Constructors and destructors go in special slots. */
1012 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
1013 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
1014 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1015 {
1016 slot = CLASSTYPE_DESTRUCTOR_SLOT;
1017
1018 if (TYPE_FOR_JAVA (type))
1019 {
1020 if (!DECL_ARTIFICIAL (method))
1021 error ("Java class %qT cannot have a destructor", type);
1022 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1023 error ("Java class %qT cannot have an implicit non-trivial "
1024 "destructor",
1025 type);
1026 }
1027 }
1028 else
1029 {
1030 tree m;
1031
1032 insert_p = true;
1033 /* See if we already have an entry with this name. */
1034 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1035 vec_safe_iterate (method_vec, slot, &m);
1036 ++slot)
1037 {
1038 m = OVL_CURRENT (m);
1039 if (template_conv_p)
1040 {
1041 if (TREE_CODE (m) == TEMPLATE_DECL
1042 && DECL_TEMPLATE_CONV_FN_P (m))
1043 insert_p = false;
1044 break;
1045 }
1046 if (conv_p && !DECL_CONV_FN_P (m))
1047 break;
1048 if (DECL_NAME (m) == DECL_NAME (method))
1049 {
1050 insert_p = false;
1051 break;
1052 }
1053 if (complete_p
1054 && !DECL_CONV_FN_P (m)
1055 && DECL_NAME (m) > DECL_NAME (method))
1056 break;
1057 }
1058 }
1059 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1060
1061 /* Check to see if we've already got this method. */
1062 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1063 {
1064 tree fn = OVL_CURRENT (fns);
1065 tree fn_type;
1066 tree method_type;
1067 tree parms1;
1068 tree parms2;
1069
1070 if (TREE_CODE (fn) != TREE_CODE (method))
1071 continue;
1072
1073 /* [over.load] Member function declarations with the
1074 same name and the same parameter types cannot be
1075 overloaded if any of them is a static member
1076 function declaration.
1077
1078 [over.load] Member function declarations with the same name and
1079 the same parameter-type-list as well as member function template
1080 declarations with the same name, the same parameter-type-list, and
1081 the same template parameter lists cannot be overloaded if any of
1082 them, but not all, have a ref-qualifier.
1083
1084 [namespace.udecl] When a using-declaration brings names
1085 from a base class into a derived class scope, member
1086 functions in the derived class override and/or hide member
1087 functions with the same name and parameter types in a base
1088 class (rather than conflicting). */
1089 fn_type = TREE_TYPE (fn);
1090 method_type = TREE_TYPE (method);
1091 parms1 = TYPE_ARG_TYPES (fn_type);
1092 parms2 = TYPE_ARG_TYPES (method_type);
1093
1094 /* Compare the quals on the 'this' parm. Don't compare
1095 the whole types, as used functions are treated as
1096 coming from the using class in overload resolution. */
1097 if (! DECL_STATIC_FUNCTION_P (fn)
1098 && ! DECL_STATIC_FUNCTION_P (method)
1099 /* Either both or neither need to be ref-qualified for
1100 differing quals to allow overloading. */
1101 && (FUNCTION_REF_QUALIFIED (fn_type)
1102 == FUNCTION_REF_QUALIFIED (method_type))
1103 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1104 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1105 continue;
1106
1107 /* For templates, the return type and template parameters
1108 must be identical. */
1109 if (TREE_CODE (fn) == TEMPLATE_DECL
1110 && (!same_type_p (TREE_TYPE (fn_type),
1111 TREE_TYPE (method_type))
1112 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1113 DECL_TEMPLATE_PARMS (method))))
1114 continue;
1115
1116 if (! DECL_STATIC_FUNCTION_P (fn))
1117 parms1 = TREE_CHAIN (parms1);
1118 if (! DECL_STATIC_FUNCTION_P (method))
1119 parms2 = TREE_CHAIN (parms2);
1120
1121 if (compparms (parms1, parms2)
1122 && (!DECL_CONV_FN_P (fn)
1123 || same_type_p (TREE_TYPE (fn_type),
1124 TREE_TYPE (method_type))))
1125 {
1126 /* For function versions, their parms and types match
1127 but they are not duplicates. Record function versions
1128 as and when they are found. extern "C" functions are
1129 not treated as versions. */
1130 if (TREE_CODE (fn) == FUNCTION_DECL
1131 && TREE_CODE (method) == FUNCTION_DECL
1132 && !DECL_EXTERN_C_P (fn)
1133 && !DECL_EXTERN_C_P (method)
1134 && targetm.target_option.function_versions (fn, method))
1135 {
1136 /* Mark functions as versions if necessary. Modify the mangled
1137 decl name if necessary. */
1138 if (!DECL_FUNCTION_VERSIONED (fn))
1139 {
1140 DECL_FUNCTION_VERSIONED (fn) = 1;
1141 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1142 mangle_decl (fn);
1143 }
1144 if (!DECL_FUNCTION_VERSIONED (method))
1145 {
1146 DECL_FUNCTION_VERSIONED (method) = 1;
1147 if (DECL_ASSEMBLER_NAME_SET_P (method))
1148 mangle_decl (method);
1149 }
1150 record_function_versions (fn, method);
1151 continue;
1152 }
1153 if (DECL_INHERITED_CTOR_BASE (method))
1154 {
1155 if (DECL_INHERITED_CTOR_BASE (fn))
1156 {
1157 error_at (DECL_SOURCE_LOCATION (method),
1158 "%q#D inherited from %qT", method,
1159 DECL_INHERITED_CTOR_BASE (method));
1160 error_at (DECL_SOURCE_LOCATION (fn),
1161 "conflicts with version inherited from %qT",
1162 DECL_INHERITED_CTOR_BASE (fn));
1163 }
1164 /* Otherwise defer to the other function. */
1165 return false;
1166 }
1167 if (using_decl)
1168 {
1169 if (DECL_CONTEXT (fn) == type)
1170 /* Defer to the local function. */
1171 return false;
1172 }
1173 else
1174 {
1175 error ("%q+#D cannot be overloaded", method);
1176 error ("with %q+#D", fn);
1177 }
1178
1179 /* We don't call duplicate_decls here to merge the
1180 declarations because that will confuse things if the
1181 methods have inline definitions. In particular, we
1182 will crash while processing the definitions. */
1183 return false;
1184 }
1185 }
1186
1187 /* A class should never have more than one destructor. */
1188 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1189 return false;
1190
1191 /* Add the new binding. */
1192 if (using_decl)
1193 {
1194 overload = ovl_cons (method, current_fns);
1195 OVL_USED (overload) = true;
1196 }
1197 else
1198 overload = build_overload (method, current_fns);
1199
1200 if (conv_p)
1201 TYPE_HAS_CONVERSION (type) = 1;
1202 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1203 push_class_level_binding (DECL_NAME (method), overload);
1204
1205 if (insert_p)
1206 {
1207 bool reallocated;
1208
1209 /* We only expect to add few methods in the COMPLETE_P case, so
1210 just make room for one more method in that case. */
1211 if (complete_p)
1212 reallocated = vec_safe_reserve_exact (method_vec, 1);
1213 else
1214 reallocated = vec_safe_reserve (method_vec, 1);
1215 if (reallocated)
1216 CLASSTYPE_METHOD_VEC (type) = method_vec;
1217 if (slot == method_vec->length ())
1218 method_vec->quick_push (overload);
1219 else
1220 method_vec->quick_insert (slot, overload);
1221 }
1222 else
1223 /* Replace the current slot. */
1224 (*method_vec)[slot] = overload;
1225 return true;
1226 }
1227
1228 /* Subroutines of finish_struct. */
1229
1230 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1231 legit, otherwise return 0. */
1232
1233 static int
1234 alter_access (tree t, tree fdecl, tree access)
1235 {
1236 tree elem;
1237
1238 if (!DECL_LANG_SPECIFIC (fdecl))
1239 retrofit_lang_decl (fdecl);
1240
1241 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1242
1243 elem = purpose_member (t, DECL_ACCESS (fdecl));
1244 if (elem)
1245 {
1246 if (TREE_VALUE (elem) != access)
1247 {
1248 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1249 error ("conflicting access specifications for method"
1250 " %q+D, ignored", TREE_TYPE (fdecl));
1251 else
1252 error ("conflicting access specifications for field %qE, ignored",
1253 DECL_NAME (fdecl));
1254 }
1255 else
1256 {
1257 /* They're changing the access to the same thing they changed
1258 it to before. That's OK. */
1259 ;
1260 }
1261 }
1262 else
1263 {
1264 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1265 tf_warning_or_error);
1266 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1267 return 1;
1268 }
1269 return 0;
1270 }
1271
1272 /* Process the USING_DECL, which is a member of T. */
1273
1274 static void
1275 handle_using_decl (tree using_decl, tree t)
1276 {
1277 tree decl = USING_DECL_DECLS (using_decl);
1278 tree name = DECL_NAME (using_decl);
1279 tree access
1280 = TREE_PRIVATE (using_decl) ? access_private_node
1281 : TREE_PROTECTED (using_decl) ? access_protected_node
1282 : access_public_node;
1283 tree flist = NULL_TREE;
1284 tree old_value;
1285
1286 gcc_assert (!processing_template_decl && decl);
1287
1288 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1289 tf_warning_or_error);
1290 if (old_value)
1291 {
1292 if (is_overloaded_fn (old_value))
1293 old_value = OVL_CURRENT (old_value);
1294
1295 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1296 /* OK */;
1297 else
1298 old_value = NULL_TREE;
1299 }
1300
1301 cp_emit_debug_info_for_using (decl, t);
1302
1303 if (is_overloaded_fn (decl))
1304 flist = decl;
1305
1306 if (! old_value)
1307 ;
1308 else if (is_overloaded_fn (old_value))
1309 {
1310 if (flist)
1311 /* It's OK to use functions from a base when there are functions with
1312 the same name already present in the current class. */;
1313 else
1314 {
1315 error ("%q+D invalid in %q#T", using_decl, t);
1316 error (" because of local method %q+#D with same name",
1317 OVL_CURRENT (old_value));
1318 return;
1319 }
1320 }
1321 else if (!DECL_ARTIFICIAL (old_value))
1322 {
1323 error ("%q+D invalid in %q#T", using_decl, t);
1324 error (" because of local member %q+#D with same name", old_value);
1325 return;
1326 }
1327
1328 /* Make type T see field decl FDECL with access ACCESS. */
1329 if (flist)
1330 for (; flist; flist = OVL_NEXT (flist))
1331 {
1332 add_method (t, OVL_CURRENT (flist), using_decl);
1333 alter_access (t, OVL_CURRENT (flist), access);
1334 }
1335 else
1336 alter_access (t, decl, access);
1337 }
1338 \f
1339 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1340 types with abi tags, add the corresponding identifiers to the VEC in
1341 *DATA and set IDENTIFIER_MARKED. */
1342
1343 struct abi_tag_data
1344 {
1345 tree t;
1346 tree subob;
1347 // error_mark_node to get diagnostics; otherwise collect missing tags here
1348 tree tags;
1349 };
1350
1351 static tree
1352 find_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
1353 {
1354 if (!OVERLOAD_TYPE_P (*tp))
1355 return NULL_TREE;
1356
1357 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1358 anyway, but let's make sure of it. */
1359 *walk_subtrees = false;
1360
1361 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1362 {
1363 struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1364 for (tree list = TREE_VALUE (attributes); list;
1365 list = TREE_CHAIN (list))
1366 {
1367 tree tag = TREE_VALUE (list);
1368 tree id = get_identifier (TREE_STRING_POINTER (tag));
1369 if (!IDENTIFIER_MARKED (id))
1370 {
1371 if (p->tags != error_mark_node)
1372 {
1373 /* We're collecting tags from template arguments. */
1374 tree str = build_string (IDENTIFIER_LENGTH (id),
1375 IDENTIFIER_POINTER (id));
1376 p->tags = tree_cons (NULL_TREE, str, p->tags);
1377 ABI_TAG_IMPLICIT (p->tags) = true;
1378
1379 /* Don't inherit this tag multiple times. */
1380 IDENTIFIER_MARKED (id) = true;
1381 }
1382
1383 /* Otherwise we're diagnosing missing tags. */
1384 else if (TYPE_P (p->subob))
1385 {
1386 if (warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1387 "that base %qT has", p->t, tag, p->subob))
1388 inform (location_of (p->subob), "%qT declared here",
1389 p->subob);
1390 }
1391 else
1392 {
1393 if (warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1394 "that %qT (used in the type of %qD) has",
1395 p->t, tag, *tp, p->subob))
1396 {
1397 inform (location_of (p->subob), "%qD declared here",
1398 p->subob);
1399 inform (location_of (*tp), "%qT declared here", *tp);
1400 }
1401 }
1402 }
1403 }
1404 }
1405 return NULL_TREE;
1406 }
1407
1408 /* Set IDENTIFIER_MARKED on all the ABI tags on T and its (transitively
1409 complete) template arguments. */
1410
1411 static void
1412 mark_type_abi_tags (tree t, bool val)
1413 {
1414 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1415 if (attributes)
1416 {
1417 for (tree list = TREE_VALUE (attributes); list;
1418 list = TREE_CHAIN (list))
1419 {
1420 tree tag = TREE_VALUE (list);
1421 tree id = get_identifier (TREE_STRING_POINTER (tag));
1422 IDENTIFIER_MARKED (id) = val;
1423 }
1424 }
1425 }
1426
1427 /* Check that class T has all the abi tags that subobject SUBOB has, or
1428 warn if not. */
1429
1430 static void
1431 check_abi_tags (tree t, tree subob)
1432 {
1433 mark_type_abi_tags (t, true);
1434
1435 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1436 struct abi_tag_data data = { t, subob, error_mark_node };
1437
1438 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1439
1440 mark_type_abi_tags (t, false);
1441 }
1442
1443 void
1444 inherit_targ_abi_tags (tree t)
1445 {
1446 if (CLASSTYPE_TEMPLATE_INFO (t) == NULL_TREE)
1447 return;
1448
1449 mark_type_abi_tags (t, true);
1450
1451 tree args = CLASSTYPE_TI_ARGS (t);
1452 struct abi_tag_data data = { t, NULL_TREE, NULL_TREE };
1453 for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
1454 {
1455 tree level = TMPL_ARGS_LEVEL (args, i+1);
1456 for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1457 {
1458 tree arg = TREE_VEC_ELT (level, j);
1459 data.subob = arg;
1460 cp_walk_tree_without_duplicates (&arg, find_abi_tags_r, &data);
1461 }
1462 }
1463
1464 // If we found some tags on our template arguments, add them to our
1465 // abi_tag attribute.
1466 if (data.tags)
1467 {
1468 tree attr = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1469 if (attr)
1470 TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
1471 else
1472 TYPE_ATTRIBUTES (t)
1473 = tree_cons (get_identifier ("abi_tag"), data.tags,
1474 TYPE_ATTRIBUTES (t));
1475 }
1476
1477 mark_type_abi_tags (t, false);
1478 }
1479
1480 /* Return true, iff class T has a non-virtual destructor that is
1481 accessible from outside the class heirarchy (i.e. is public, or
1482 there's a suitable friend. */
1483
1484 static bool
1485 accessible_nvdtor_p (tree t)
1486 {
1487 tree dtor = CLASSTYPE_DESTRUCTORS (t);
1488
1489 /* An implicitly declared destructor is always public. And,
1490 if it were virtual, we would have created it by now. */
1491 if (!dtor)
1492 return true;
1493
1494 if (DECL_VINDEX (dtor))
1495 return false; /* Virtual */
1496
1497 if (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
1498 return true; /* Public */
1499
1500 if (CLASSTYPE_FRIEND_CLASSES (t)
1501 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1502 return true; /* Has friends */
1503
1504 return false;
1505 }
1506
1507 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1508 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1509 properties of the bases. */
1510
1511 static void
1512 check_bases (tree t,
1513 int* cant_have_const_ctor_p,
1514 int* no_const_asn_ref_p)
1515 {
1516 int i;
1517 bool seen_non_virtual_nearly_empty_base_p = 0;
1518 int seen_tm_mask = 0;
1519 tree base_binfo;
1520 tree binfo;
1521 tree field = NULL_TREE;
1522
1523 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1524 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1525 if (TREE_CODE (field) == FIELD_DECL)
1526 break;
1527
1528 for (binfo = TYPE_BINFO (t), i = 0;
1529 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1530 {
1531 tree basetype = TREE_TYPE (base_binfo);
1532
1533 gcc_assert (COMPLETE_TYPE_P (basetype));
1534
1535 if (CLASSTYPE_FINAL (basetype))
1536 error ("cannot derive from %<final%> base %qT in derived type %qT",
1537 basetype, t);
1538
1539 /* If any base class is non-literal, so is the derived class. */
1540 if (!CLASSTYPE_LITERAL_P (basetype))
1541 CLASSTYPE_LITERAL_P (t) = false;
1542
1543 /* If the base class doesn't have copy constructors or
1544 assignment operators that take const references, then the
1545 derived class cannot have such a member automatically
1546 generated. */
1547 if (TYPE_HAS_COPY_CTOR (basetype)
1548 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1549 *cant_have_const_ctor_p = 1;
1550 if (TYPE_HAS_COPY_ASSIGN (basetype)
1551 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1552 *no_const_asn_ref_p = 1;
1553
1554 if (BINFO_VIRTUAL_P (base_binfo))
1555 /* A virtual base does not effect nearly emptiness. */
1556 ;
1557 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1558 {
1559 if (seen_non_virtual_nearly_empty_base_p)
1560 /* And if there is more than one nearly empty base, then the
1561 derived class is not nearly empty either. */
1562 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1563 else
1564 /* Remember we've seen one. */
1565 seen_non_virtual_nearly_empty_base_p = 1;
1566 }
1567 else if (!is_empty_class (basetype))
1568 /* If the base class is not empty or nearly empty, then this
1569 class cannot be nearly empty. */
1570 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1571
1572 /* A lot of properties from the bases also apply to the derived
1573 class. */
1574 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1575 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1576 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1577 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1578 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1579 || !TYPE_HAS_COPY_ASSIGN (basetype));
1580 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1581 || !TYPE_HAS_COPY_CTOR (basetype));
1582 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1583 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1584 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1585 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1586 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1587 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1588 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1589 || TYPE_HAS_COMPLEX_DFLT (basetype));
1590 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
1591 (t, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
1592 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype));
1593 SET_CLASSTYPE_REF_FIELDS_NEED_INIT
1594 (t, CLASSTYPE_REF_FIELDS_NEED_INIT (t)
1595 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype));
1596
1597 /* A standard-layout class is a class that:
1598 ...
1599 * has no non-standard-layout base classes, */
1600 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1601 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1602 {
1603 tree basefield;
1604 /* ...has no base classes of the same type as the first non-static
1605 data member... */
1606 if (field && DECL_CONTEXT (field) == t
1607 && (same_type_ignoring_top_level_qualifiers_p
1608 (TREE_TYPE (field), basetype)))
1609 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1610 else
1611 /* ...either has no non-static data members in the most-derived
1612 class and at most one base class with non-static data
1613 members, or has no base classes with non-static data
1614 members */
1615 for (basefield = TYPE_FIELDS (basetype); basefield;
1616 basefield = DECL_CHAIN (basefield))
1617 if (TREE_CODE (basefield) == FIELD_DECL)
1618 {
1619 if (field)
1620 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1621 else
1622 field = basefield;
1623 break;
1624 }
1625 }
1626
1627 /* Don't bother collecting tm attributes if transactional memory
1628 support is not enabled. */
1629 if (flag_tm)
1630 {
1631 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1632 if (tm_attr)
1633 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1634 }
1635
1636 check_abi_tags (t, basetype);
1637 }
1638
1639 /* If one of the base classes had TM attributes, and the current class
1640 doesn't define its own, then the current class inherits one. */
1641 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1642 {
1643 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1644 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1645 }
1646 }
1647
1648 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1649 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1650 that have had a nearly-empty virtual primary base stolen by some
1651 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1652 T. */
1653
1654 static void
1655 determine_primary_bases (tree t)
1656 {
1657 unsigned i;
1658 tree primary = NULL_TREE;
1659 tree type_binfo = TYPE_BINFO (t);
1660 tree base_binfo;
1661
1662 /* Determine the primary bases of our bases. */
1663 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1664 base_binfo = TREE_CHAIN (base_binfo))
1665 {
1666 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1667
1668 /* See if we're the non-virtual primary of our inheritance
1669 chain. */
1670 if (!BINFO_VIRTUAL_P (base_binfo))
1671 {
1672 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1673 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1674
1675 if (parent_primary
1676 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1677 BINFO_TYPE (parent_primary)))
1678 /* We are the primary binfo. */
1679 BINFO_PRIMARY_P (base_binfo) = 1;
1680 }
1681 /* Determine if we have a virtual primary base, and mark it so.
1682 */
1683 if (primary && BINFO_VIRTUAL_P (primary))
1684 {
1685 tree this_primary = copied_binfo (primary, base_binfo);
1686
1687 if (BINFO_PRIMARY_P (this_primary))
1688 /* Someone already claimed this base. */
1689 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1690 else
1691 {
1692 tree delta;
1693
1694 BINFO_PRIMARY_P (this_primary) = 1;
1695 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1696
1697 /* A virtual binfo might have been copied from within
1698 another hierarchy. As we're about to use it as a
1699 primary base, make sure the offsets match. */
1700 delta = size_diffop_loc (input_location,
1701 convert (ssizetype,
1702 BINFO_OFFSET (base_binfo)),
1703 convert (ssizetype,
1704 BINFO_OFFSET (this_primary)));
1705
1706 propagate_binfo_offsets (this_primary, delta);
1707 }
1708 }
1709 }
1710
1711 /* First look for a dynamic direct non-virtual base. */
1712 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1713 {
1714 tree basetype = BINFO_TYPE (base_binfo);
1715
1716 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1717 {
1718 primary = base_binfo;
1719 goto found;
1720 }
1721 }
1722
1723 /* A "nearly-empty" virtual base class can be the primary base
1724 class, if no non-virtual polymorphic base can be found. Look for
1725 a nearly-empty virtual dynamic base that is not already a primary
1726 base of something in the hierarchy. If there is no such base,
1727 just pick the first nearly-empty virtual base. */
1728
1729 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1730 base_binfo = TREE_CHAIN (base_binfo))
1731 if (BINFO_VIRTUAL_P (base_binfo)
1732 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1733 {
1734 if (!BINFO_PRIMARY_P (base_binfo))
1735 {
1736 /* Found one that is not primary. */
1737 primary = base_binfo;
1738 goto found;
1739 }
1740 else if (!primary)
1741 /* Remember the first candidate. */
1742 primary = base_binfo;
1743 }
1744
1745 found:
1746 /* If we've got a primary base, use it. */
1747 if (primary)
1748 {
1749 tree basetype = BINFO_TYPE (primary);
1750
1751 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1752 if (BINFO_PRIMARY_P (primary))
1753 /* We are stealing a primary base. */
1754 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1755 BINFO_PRIMARY_P (primary) = 1;
1756 if (BINFO_VIRTUAL_P (primary))
1757 {
1758 tree delta;
1759
1760 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1761 /* A virtual binfo might have been copied from within
1762 another hierarchy. As we're about to use it as a primary
1763 base, make sure the offsets match. */
1764 delta = size_diffop_loc (input_location, ssize_int (0),
1765 convert (ssizetype, BINFO_OFFSET (primary)));
1766
1767 propagate_binfo_offsets (primary, delta);
1768 }
1769
1770 primary = TYPE_BINFO (basetype);
1771
1772 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1773 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1774 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1775 }
1776 }
1777
1778 /* Update the variant types of T. */
1779
1780 void
1781 fixup_type_variants (tree t)
1782 {
1783 tree variants;
1784
1785 if (!t)
1786 return;
1787
1788 for (variants = TYPE_NEXT_VARIANT (t);
1789 variants;
1790 variants = TYPE_NEXT_VARIANT (variants))
1791 {
1792 /* These fields are in the _TYPE part of the node, not in
1793 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1794 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1795 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1796 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1797 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1798
1799 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1800
1801 TYPE_BINFO (variants) = TYPE_BINFO (t);
1802
1803 /* Copy whatever these are holding today. */
1804 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1805 TYPE_METHODS (variants) = TYPE_METHODS (t);
1806 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1807 }
1808 }
1809
1810 /* Early variant fixups: we apply attributes at the beginning of the class
1811 definition, and we need to fix up any variants that have already been
1812 made via elaborated-type-specifier so that check_qualified_type works. */
1813
1814 void
1815 fixup_attribute_variants (tree t)
1816 {
1817 tree variants;
1818
1819 if (!t)
1820 return;
1821
1822 for (variants = TYPE_NEXT_VARIANT (t);
1823 variants;
1824 variants = TYPE_NEXT_VARIANT (variants))
1825 {
1826 /* These are the two fields that check_qualified_type looks at and
1827 are affected by attributes. */
1828 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1829 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1830 }
1831 }
1832 \f
1833 /* Set memoizing fields and bits of T (and its variants) for later
1834 use. */
1835
1836 static void
1837 finish_struct_bits (tree t)
1838 {
1839 /* Fix up variants (if any). */
1840 fixup_type_variants (t);
1841
1842 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1843 /* For a class w/o baseclasses, 'finish_struct' has set
1844 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1845 Similarly for a class whose base classes do not have vtables.
1846 When neither of these is true, we might have removed abstract
1847 virtuals (by providing a definition), added some (by declaring
1848 new ones), or redeclared ones from a base class. We need to
1849 recalculate what's really an abstract virtual at this point (by
1850 looking in the vtables). */
1851 get_pure_virtuals (t);
1852
1853 /* If this type has a copy constructor or a destructor, force its
1854 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1855 nonzero. This will cause it to be passed by invisible reference
1856 and prevent it from being returned in a register. */
1857 if (type_has_nontrivial_copy_init (t)
1858 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1859 {
1860 tree variants;
1861 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1862 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1863 {
1864 SET_TYPE_MODE (variants, BLKmode);
1865 TREE_ADDRESSABLE (variants) = 1;
1866 }
1867 }
1868 }
1869
1870 /* Issue warnings about T having private constructors, but no friends,
1871 and so forth.
1872
1873 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1874 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1875 non-private static member functions. */
1876
1877 static void
1878 maybe_warn_about_overly_private_class (tree t)
1879 {
1880 int has_member_fn = 0;
1881 int has_nonprivate_method = 0;
1882 tree fn;
1883
1884 if (!warn_ctor_dtor_privacy
1885 /* If the class has friends, those entities might create and
1886 access instances, so we should not warn. */
1887 || (CLASSTYPE_FRIEND_CLASSES (t)
1888 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1889 /* We will have warned when the template was declared; there's
1890 no need to warn on every instantiation. */
1891 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1892 /* There's no reason to even consider warning about this
1893 class. */
1894 return;
1895
1896 /* We only issue one warning, if more than one applies, because
1897 otherwise, on code like:
1898
1899 class A {
1900 // Oops - forgot `public:'
1901 A();
1902 A(const A&);
1903 ~A();
1904 };
1905
1906 we warn several times about essentially the same problem. */
1907
1908 /* Check to see if all (non-constructor, non-destructor) member
1909 functions are private. (Since there are no friends or
1910 non-private statics, we can't ever call any of the private member
1911 functions.) */
1912 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1913 /* We're not interested in compiler-generated methods; they don't
1914 provide any way to call private members. */
1915 if (!DECL_ARTIFICIAL (fn))
1916 {
1917 if (!TREE_PRIVATE (fn))
1918 {
1919 if (DECL_STATIC_FUNCTION_P (fn))
1920 /* A non-private static member function is just like a
1921 friend; it can create and invoke private member
1922 functions, and be accessed without a class
1923 instance. */
1924 return;
1925
1926 has_nonprivate_method = 1;
1927 /* Keep searching for a static member function. */
1928 }
1929 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1930 has_member_fn = 1;
1931 }
1932
1933 if (!has_nonprivate_method && has_member_fn)
1934 {
1935 /* There are no non-private methods, and there's at least one
1936 private member function that isn't a constructor or
1937 destructor. (If all the private members are
1938 constructors/destructors we want to use the code below that
1939 issues error messages specifically referring to
1940 constructors/destructors.) */
1941 unsigned i;
1942 tree binfo = TYPE_BINFO (t);
1943
1944 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1945 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1946 {
1947 has_nonprivate_method = 1;
1948 break;
1949 }
1950 if (!has_nonprivate_method)
1951 {
1952 warning (OPT_Wctor_dtor_privacy,
1953 "all member functions in class %qT are private", t);
1954 return;
1955 }
1956 }
1957
1958 /* Even if some of the member functions are non-private, the class
1959 won't be useful for much if all the constructors or destructors
1960 are private: such an object can never be created or destroyed. */
1961 fn = CLASSTYPE_DESTRUCTORS (t);
1962 if (fn && TREE_PRIVATE (fn))
1963 {
1964 warning (OPT_Wctor_dtor_privacy,
1965 "%q#T only defines a private destructor and has no friends",
1966 t);
1967 return;
1968 }
1969
1970 /* Warn about classes that have private constructors and no friends. */
1971 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1972 /* Implicitly generated constructors are always public. */
1973 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1974 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1975 {
1976 int nonprivate_ctor = 0;
1977
1978 /* If a non-template class does not define a copy
1979 constructor, one is defined for it, enabling it to avoid
1980 this warning. For a template class, this does not
1981 happen, and so we would normally get a warning on:
1982
1983 template <class T> class C { private: C(); };
1984
1985 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1986 complete non-template or fully instantiated classes have this
1987 flag set. */
1988 if (!TYPE_HAS_COPY_CTOR (t))
1989 nonprivate_ctor = 1;
1990 else
1991 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1992 {
1993 tree ctor = OVL_CURRENT (fn);
1994 /* Ideally, we wouldn't count copy constructors (or, in
1995 fact, any constructor that takes an argument of the
1996 class type as a parameter) because such things cannot
1997 be used to construct an instance of the class unless
1998 you already have one. But, for now at least, we're
1999 more generous. */
2000 if (! TREE_PRIVATE (ctor))
2001 {
2002 nonprivate_ctor = 1;
2003 break;
2004 }
2005 }
2006
2007 if (nonprivate_ctor == 0)
2008 {
2009 warning (OPT_Wctor_dtor_privacy,
2010 "%q#T only defines private constructors and has no friends",
2011 t);
2012 return;
2013 }
2014 }
2015 }
2016
2017 static struct {
2018 gt_pointer_operator new_value;
2019 void *cookie;
2020 } resort_data;
2021
2022 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
2023
2024 static int
2025 method_name_cmp (const void* m1_p, const void* m2_p)
2026 {
2027 const tree *const m1 = (const tree *) m1_p;
2028 const tree *const m2 = (const tree *) m2_p;
2029
2030 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2031 return 0;
2032 if (*m1 == NULL_TREE)
2033 return -1;
2034 if (*m2 == NULL_TREE)
2035 return 1;
2036 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
2037 return -1;
2038 return 1;
2039 }
2040
2041 /* This routine compares two fields like method_name_cmp but using the
2042 pointer operator in resort_field_decl_data. */
2043
2044 static int
2045 resort_method_name_cmp (const void* m1_p, const void* m2_p)
2046 {
2047 const tree *const m1 = (const tree *) m1_p;
2048 const tree *const m2 = (const tree *) m2_p;
2049 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2050 return 0;
2051 if (*m1 == NULL_TREE)
2052 return -1;
2053 if (*m2 == NULL_TREE)
2054 return 1;
2055 {
2056 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
2057 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
2058 resort_data.new_value (&d1, resort_data.cookie);
2059 resort_data.new_value (&d2, resort_data.cookie);
2060 if (d1 < d2)
2061 return -1;
2062 }
2063 return 1;
2064 }
2065
2066 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
2067
2068 void
2069 resort_type_method_vec (void* obj,
2070 void* /*orig_obj*/,
2071 gt_pointer_operator new_value,
2072 void* cookie)
2073 {
2074 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
2075 int len = vec_safe_length (method_vec);
2076 size_t slot;
2077 tree fn;
2078
2079 /* The type conversion ops have to live at the front of the vec, so we
2080 can't sort them. */
2081 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2082 vec_safe_iterate (method_vec, slot, &fn);
2083 ++slot)
2084 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
2085 break;
2086
2087 if (len - slot > 1)
2088 {
2089 resort_data.new_value = new_value;
2090 resort_data.cookie = cookie;
2091 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
2092 resort_method_name_cmp);
2093 }
2094 }
2095
2096 /* Warn about duplicate methods in fn_fields.
2097
2098 Sort methods that are not special (i.e., constructors, destructors,
2099 and type conversion operators) so that we can find them faster in
2100 search. */
2101
2102 static void
2103 finish_struct_methods (tree t)
2104 {
2105 tree fn_fields;
2106 vec<tree, va_gc> *method_vec;
2107 int slot, len;
2108
2109 method_vec = CLASSTYPE_METHOD_VEC (t);
2110 if (!method_vec)
2111 return;
2112
2113 len = method_vec->length ();
2114
2115 /* Clear DECL_IN_AGGR_P for all functions. */
2116 for (fn_fields = TYPE_METHODS (t); fn_fields;
2117 fn_fields = DECL_CHAIN (fn_fields))
2118 DECL_IN_AGGR_P (fn_fields) = 0;
2119
2120 /* Issue warnings about private constructors and such. If there are
2121 no methods, then some public defaults are generated. */
2122 maybe_warn_about_overly_private_class (t);
2123
2124 /* The type conversion ops have to live at the front of the vec, so we
2125 can't sort them. */
2126 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2127 method_vec->iterate (slot, &fn_fields);
2128 ++slot)
2129 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2130 break;
2131 if (len - slot > 1)
2132 qsort (method_vec->address () + slot,
2133 len-slot, sizeof (tree), method_name_cmp);
2134 }
2135
2136 /* Make BINFO's vtable have N entries, including RTTI entries,
2137 vbase and vcall offsets, etc. Set its type and call the back end
2138 to lay it out. */
2139
2140 static void
2141 layout_vtable_decl (tree binfo, int n)
2142 {
2143 tree atype;
2144 tree vtable;
2145
2146 atype = build_array_of_n_type (vtable_entry_type, n);
2147 layout_type (atype);
2148
2149 /* We may have to grow the vtable. */
2150 vtable = get_vtbl_decl_for_binfo (binfo);
2151 if (!same_type_p (TREE_TYPE (vtable), atype))
2152 {
2153 TREE_TYPE (vtable) = atype;
2154 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2155 layout_decl (vtable, 0);
2156 }
2157 }
2158
2159 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2160 have the same signature. */
2161
2162 int
2163 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2164 {
2165 /* One destructor overrides another if they are the same kind of
2166 destructor. */
2167 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2168 && special_function_p (base_fndecl) == special_function_p (fndecl))
2169 return 1;
2170 /* But a non-destructor never overrides a destructor, nor vice
2171 versa, nor do different kinds of destructors override
2172 one-another. For example, a complete object destructor does not
2173 override a deleting destructor. */
2174 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2175 return 0;
2176
2177 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2178 || (DECL_CONV_FN_P (fndecl)
2179 && DECL_CONV_FN_P (base_fndecl)
2180 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2181 DECL_CONV_FN_TYPE (base_fndecl))))
2182 {
2183 tree fntype = TREE_TYPE (fndecl);
2184 tree base_fntype = TREE_TYPE (base_fndecl);
2185 if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2186 && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2187 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2188 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2189 return 1;
2190 }
2191 return 0;
2192 }
2193
2194 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2195 subobject. */
2196
2197 static bool
2198 base_derived_from (tree derived, tree base)
2199 {
2200 tree probe;
2201
2202 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2203 {
2204 if (probe == derived)
2205 return true;
2206 else if (BINFO_VIRTUAL_P (probe))
2207 /* If we meet a virtual base, we can't follow the inheritance
2208 any more. See if the complete type of DERIVED contains
2209 such a virtual base. */
2210 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2211 != NULL_TREE);
2212 }
2213 return false;
2214 }
2215
2216 typedef struct find_final_overrider_data_s {
2217 /* The function for which we are trying to find a final overrider. */
2218 tree fn;
2219 /* The base class in which the function was declared. */
2220 tree declaring_base;
2221 /* The candidate overriders. */
2222 tree candidates;
2223 /* Path to most derived. */
2224 vec<tree> path;
2225 } find_final_overrider_data;
2226
2227 /* Add the overrider along the current path to FFOD->CANDIDATES.
2228 Returns true if an overrider was found; false otherwise. */
2229
2230 static bool
2231 dfs_find_final_overrider_1 (tree binfo,
2232 find_final_overrider_data *ffod,
2233 unsigned depth)
2234 {
2235 tree method;
2236
2237 /* If BINFO is not the most derived type, try a more derived class.
2238 A definition there will overrider a definition here. */
2239 if (depth)
2240 {
2241 depth--;
2242 if (dfs_find_final_overrider_1
2243 (ffod->path[depth], ffod, depth))
2244 return true;
2245 }
2246
2247 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2248 if (method)
2249 {
2250 tree *candidate = &ffod->candidates;
2251
2252 /* Remove any candidates overridden by this new function. */
2253 while (*candidate)
2254 {
2255 /* If *CANDIDATE overrides METHOD, then METHOD
2256 cannot override anything else on the list. */
2257 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2258 return true;
2259 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2260 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2261 *candidate = TREE_CHAIN (*candidate);
2262 else
2263 candidate = &TREE_CHAIN (*candidate);
2264 }
2265
2266 /* Add the new function. */
2267 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2268 return true;
2269 }
2270
2271 return false;
2272 }
2273
2274 /* Called from find_final_overrider via dfs_walk. */
2275
2276 static tree
2277 dfs_find_final_overrider_pre (tree binfo, void *data)
2278 {
2279 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2280
2281 if (binfo == ffod->declaring_base)
2282 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2283 ffod->path.safe_push (binfo);
2284
2285 return NULL_TREE;
2286 }
2287
2288 static tree
2289 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2290 {
2291 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2292 ffod->path.pop ();
2293
2294 return NULL_TREE;
2295 }
2296
2297 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2298 FN and whose TREE_VALUE is the binfo for the base where the
2299 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2300 DERIVED) is the base object in which FN is declared. */
2301
2302 static tree
2303 find_final_overrider (tree derived, tree binfo, tree fn)
2304 {
2305 find_final_overrider_data ffod;
2306
2307 /* Getting this right is a little tricky. This is valid:
2308
2309 struct S { virtual void f (); };
2310 struct T { virtual void f (); };
2311 struct U : public S, public T { };
2312
2313 even though calling `f' in `U' is ambiguous. But,
2314
2315 struct R { virtual void f(); };
2316 struct S : virtual public R { virtual void f (); };
2317 struct T : virtual public R { virtual void f (); };
2318 struct U : public S, public T { };
2319
2320 is not -- there's no way to decide whether to put `S::f' or
2321 `T::f' in the vtable for `R'.
2322
2323 The solution is to look at all paths to BINFO. If we find
2324 different overriders along any two, then there is a problem. */
2325 if (DECL_THUNK_P (fn))
2326 fn = THUNK_TARGET (fn);
2327
2328 /* Determine the depth of the hierarchy. */
2329 ffod.fn = fn;
2330 ffod.declaring_base = binfo;
2331 ffod.candidates = NULL_TREE;
2332 ffod.path.create (30);
2333
2334 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2335 dfs_find_final_overrider_post, &ffod);
2336
2337 ffod.path.release ();
2338
2339 /* If there was no winner, issue an error message. */
2340 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2341 return error_mark_node;
2342
2343 return ffod.candidates;
2344 }
2345
2346 /* Return the index of the vcall offset for FN when TYPE is used as a
2347 virtual base. */
2348
2349 static tree
2350 get_vcall_index (tree fn, tree type)
2351 {
2352 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2353 tree_pair_p p;
2354 unsigned ix;
2355
2356 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2357 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2358 || same_signature_p (fn, p->purpose))
2359 return p->value;
2360
2361 /* There should always be an appropriate index. */
2362 gcc_unreachable ();
2363 }
2364
2365 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2366 dominated by T. FN is the old function; VIRTUALS points to the
2367 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2368 of that entry in the list. */
2369
2370 static void
2371 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2372 unsigned ix)
2373 {
2374 tree b;
2375 tree overrider;
2376 tree delta;
2377 tree virtual_base;
2378 tree first_defn;
2379 tree overrider_fn, overrider_target;
2380 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2381 tree over_return, base_return;
2382 bool lost = false;
2383
2384 /* Find the nearest primary base (possibly binfo itself) which defines
2385 this function; this is the class the caller will convert to when
2386 calling FN through BINFO. */
2387 for (b = binfo; ; b = get_primary_binfo (b))
2388 {
2389 gcc_assert (b);
2390 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2391 break;
2392
2393 /* The nearest definition is from a lost primary. */
2394 if (BINFO_LOST_PRIMARY_P (b))
2395 lost = true;
2396 }
2397 first_defn = b;
2398
2399 /* Find the final overrider. */
2400 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2401 if (overrider == error_mark_node)
2402 {
2403 error ("no unique final overrider for %qD in %qT", target_fn, t);
2404 return;
2405 }
2406 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2407
2408 /* Check for adjusting covariant return types. */
2409 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2410 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2411
2412 if (POINTER_TYPE_P (over_return)
2413 && TREE_CODE (over_return) == TREE_CODE (base_return)
2414 && CLASS_TYPE_P (TREE_TYPE (over_return))
2415 && CLASS_TYPE_P (TREE_TYPE (base_return))
2416 /* If the overrider is invalid, don't even try. */
2417 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2418 {
2419 /* If FN is a covariant thunk, we must figure out the adjustment
2420 to the final base FN was converting to. As OVERRIDER_TARGET might
2421 also be converting to the return type of FN, we have to
2422 combine the two conversions here. */
2423 tree fixed_offset, virtual_offset;
2424
2425 over_return = TREE_TYPE (over_return);
2426 base_return = TREE_TYPE (base_return);
2427
2428 if (DECL_THUNK_P (fn))
2429 {
2430 gcc_assert (DECL_RESULT_THUNK_P (fn));
2431 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2432 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2433 }
2434 else
2435 fixed_offset = virtual_offset = NULL_TREE;
2436
2437 if (virtual_offset)
2438 /* Find the equivalent binfo within the return type of the
2439 overriding function. We will want the vbase offset from
2440 there. */
2441 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2442 over_return);
2443 else if (!same_type_ignoring_top_level_qualifiers_p
2444 (over_return, base_return))
2445 {
2446 /* There was no existing virtual thunk (which takes
2447 precedence). So find the binfo of the base function's
2448 return type within the overriding function's return type.
2449 We cannot call lookup base here, because we're inside a
2450 dfs_walk, and will therefore clobber the BINFO_MARKED
2451 flags. Fortunately we know the covariancy is valid (it
2452 has already been checked), so we can just iterate along
2453 the binfos, which have been chained in inheritance graph
2454 order. Of course it is lame that we have to repeat the
2455 search here anyway -- we should really be caching pieces
2456 of the vtable and avoiding this repeated work. */
2457 tree thunk_binfo, base_binfo;
2458
2459 /* Find the base binfo within the overriding function's
2460 return type. We will always find a thunk_binfo, except
2461 when the covariancy is invalid (which we will have
2462 already diagnosed). */
2463 for (base_binfo = TYPE_BINFO (base_return),
2464 thunk_binfo = TYPE_BINFO (over_return);
2465 thunk_binfo;
2466 thunk_binfo = TREE_CHAIN (thunk_binfo))
2467 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2468 BINFO_TYPE (base_binfo)))
2469 break;
2470
2471 /* See if virtual inheritance is involved. */
2472 for (virtual_offset = thunk_binfo;
2473 virtual_offset;
2474 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2475 if (BINFO_VIRTUAL_P (virtual_offset))
2476 break;
2477
2478 if (virtual_offset
2479 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2480 {
2481 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2482
2483 if (virtual_offset)
2484 {
2485 /* We convert via virtual base. Adjust the fixed
2486 offset to be from there. */
2487 offset =
2488 size_diffop (offset,
2489 convert (ssizetype,
2490 BINFO_OFFSET (virtual_offset)));
2491 }
2492 if (fixed_offset)
2493 /* There was an existing fixed offset, this must be
2494 from the base just converted to, and the base the
2495 FN was thunking to. */
2496 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2497 else
2498 fixed_offset = offset;
2499 }
2500 }
2501
2502 if (fixed_offset || virtual_offset)
2503 /* Replace the overriding function with a covariant thunk. We
2504 will emit the overriding function in its own slot as
2505 well. */
2506 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2507 fixed_offset, virtual_offset);
2508 }
2509 else
2510 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2511 !DECL_THUNK_P (fn));
2512
2513 /* If we need a covariant thunk, then we may need to adjust first_defn.
2514 The ABI specifies that the thunks emitted with a function are
2515 determined by which bases the function overrides, so we need to be
2516 sure that we're using a thunk for some overridden base; even if we
2517 know that the necessary this adjustment is zero, there may not be an
2518 appropriate zero-this-adjusment thunk for us to use since thunks for
2519 overriding virtual bases always use the vcall offset.
2520
2521 Furthermore, just choosing any base that overrides this function isn't
2522 quite right, as this slot won't be used for calls through a type that
2523 puts a covariant thunk here. Calling the function through such a type
2524 will use a different slot, and that slot is the one that determines
2525 the thunk emitted for that base.
2526
2527 So, keep looking until we find the base that we're really overriding
2528 in this slot: the nearest primary base that doesn't use a covariant
2529 thunk in this slot. */
2530 if (overrider_target != overrider_fn)
2531 {
2532 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2533 /* We already know that the overrider needs a covariant thunk. */
2534 b = get_primary_binfo (b);
2535 for (; ; b = get_primary_binfo (b))
2536 {
2537 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2538 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2539 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2540 break;
2541 if (BINFO_LOST_PRIMARY_P (b))
2542 lost = true;
2543 }
2544 first_defn = b;
2545 }
2546
2547 /* Assume that we will produce a thunk that convert all the way to
2548 the final overrider, and not to an intermediate virtual base. */
2549 virtual_base = NULL_TREE;
2550
2551 /* See if we can convert to an intermediate virtual base first, and then
2552 use the vcall offset located there to finish the conversion. */
2553 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2554 {
2555 /* If we find the final overrider, then we can stop
2556 walking. */
2557 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2558 BINFO_TYPE (TREE_VALUE (overrider))))
2559 break;
2560
2561 /* If we find a virtual base, and we haven't yet found the
2562 overrider, then there is a virtual base between the
2563 declaring base (first_defn) and the final overrider. */
2564 if (BINFO_VIRTUAL_P (b))
2565 {
2566 virtual_base = b;
2567 break;
2568 }
2569 }
2570
2571 /* Compute the constant adjustment to the `this' pointer. The
2572 `this' pointer, when this function is called, will point at BINFO
2573 (or one of its primary bases, which are at the same offset). */
2574 if (virtual_base)
2575 /* The `this' pointer needs to be adjusted from the declaration to
2576 the nearest virtual base. */
2577 delta = size_diffop_loc (input_location,
2578 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2579 convert (ssizetype, BINFO_OFFSET (first_defn)));
2580 else if (lost)
2581 /* If the nearest definition is in a lost primary, we don't need an
2582 entry in our vtable. Except possibly in a constructor vtable,
2583 if we happen to get our primary back. In that case, the offset
2584 will be zero, as it will be a primary base. */
2585 delta = size_zero_node;
2586 else
2587 /* The `this' pointer needs to be adjusted from pointing to
2588 BINFO to pointing at the base where the final overrider
2589 appears. */
2590 delta = size_diffop_loc (input_location,
2591 convert (ssizetype,
2592 BINFO_OFFSET (TREE_VALUE (overrider))),
2593 convert (ssizetype, BINFO_OFFSET (binfo)));
2594
2595 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2596
2597 if (virtual_base)
2598 BV_VCALL_INDEX (*virtuals)
2599 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2600 else
2601 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2602
2603 BV_LOST_PRIMARY (*virtuals) = lost;
2604 }
2605
2606 /* Called from modify_all_vtables via dfs_walk. */
2607
2608 static tree
2609 dfs_modify_vtables (tree binfo, void* data)
2610 {
2611 tree t = (tree) data;
2612 tree virtuals;
2613 tree old_virtuals;
2614 unsigned ix;
2615
2616 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2617 /* A base without a vtable needs no modification, and its bases
2618 are uninteresting. */
2619 return dfs_skip_bases;
2620
2621 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2622 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2623 /* Don't do the primary vtable, if it's new. */
2624 return NULL_TREE;
2625
2626 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2627 /* There's no need to modify the vtable for a non-virtual primary
2628 base; we're not going to use that vtable anyhow. We do still
2629 need to do this for virtual primary bases, as they could become
2630 non-primary in a construction vtable. */
2631 return NULL_TREE;
2632
2633 make_new_vtable (t, binfo);
2634
2635 /* Now, go through each of the virtual functions in the virtual
2636 function table for BINFO. Find the final overrider, and update
2637 the BINFO_VIRTUALS list appropriately. */
2638 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2639 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2640 virtuals;
2641 ix++, virtuals = TREE_CHAIN (virtuals),
2642 old_virtuals = TREE_CHAIN (old_virtuals))
2643 update_vtable_entry_for_fn (t,
2644 binfo,
2645 BV_FN (old_virtuals),
2646 &virtuals, ix);
2647
2648 return NULL_TREE;
2649 }
2650
2651 /* Update all of the primary and secondary vtables for T. Create new
2652 vtables as required, and initialize their RTTI information. Each
2653 of the functions in VIRTUALS is declared in T and may override a
2654 virtual function from a base class; find and modify the appropriate
2655 entries to point to the overriding functions. Returns a list, in
2656 declaration order, of the virtual functions that are declared in T,
2657 but do not appear in the primary base class vtable, and which
2658 should therefore be appended to the end of the vtable for T. */
2659
2660 static tree
2661 modify_all_vtables (tree t, tree virtuals)
2662 {
2663 tree binfo = TYPE_BINFO (t);
2664 tree *fnsp;
2665
2666 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2667 if (TYPE_CONTAINS_VPTR_P (t))
2668 get_vtable_decl (t, false);
2669
2670 /* Update all of the vtables. */
2671 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2672
2673 /* Add virtual functions not already in our primary vtable. These
2674 will be both those introduced by this class, and those overridden
2675 from secondary bases. It does not include virtuals merely
2676 inherited from secondary bases. */
2677 for (fnsp = &virtuals; *fnsp; )
2678 {
2679 tree fn = TREE_VALUE (*fnsp);
2680
2681 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2682 || DECL_VINDEX (fn) == error_mark_node)
2683 {
2684 /* We don't need to adjust the `this' pointer when
2685 calling this function. */
2686 BV_DELTA (*fnsp) = integer_zero_node;
2687 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2688
2689 /* This is a function not already in our vtable. Keep it. */
2690 fnsp = &TREE_CHAIN (*fnsp);
2691 }
2692 else
2693 /* We've already got an entry for this function. Skip it. */
2694 *fnsp = TREE_CHAIN (*fnsp);
2695 }
2696
2697 return virtuals;
2698 }
2699
2700 /* Get the base virtual function declarations in T that have the
2701 indicated NAME. */
2702
2703 static tree
2704 get_basefndecls (tree name, tree t)
2705 {
2706 tree methods;
2707 tree base_fndecls = NULL_TREE;
2708 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2709 int i;
2710
2711 /* Find virtual functions in T with the indicated NAME. */
2712 i = lookup_fnfields_1 (t, name);
2713 if (i != -1)
2714 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2715 methods;
2716 methods = OVL_NEXT (methods))
2717 {
2718 tree method = OVL_CURRENT (methods);
2719
2720 if (TREE_CODE (method) == FUNCTION_DECL
2721 && DECL_VINDEX (method))
2722 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2723 }
2724
2725 if (base_fndecls)
2726 return base_fndecls;
2727
2728 for (i = 0; i < n_baseclasses; i++)
2729 {
2730 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2731 base_fndecls = chainon (get_basefndecls (name, basetype),
2732 base_fndecls);
2733 }
2734
2735 return base_fndecls;
2736 }
2737
2738 /* If this declaration supersedes the declaration of
2739 a method declared virtual in the base class, then
2740 mark this field as being virtual as well. */
2741
2742 void
2743 check_for_override (tree decl, tree ctype)
2744 {
2745 bool overrides_found = false;
2746 if (TREE_CODE (decl) == TEMPLATE_DECL)
2747 /* In [temp.mem] we have:
2748
2749 A specialization of a member function template does not
2750 override a virtual function from a base class. */
2751 return;
2752 if ((DECL_DESTRUCTOR_P (decl)
2753 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2754 || DECL_CONV_FN_P (decl))
2755 && look_for_overrides (ctype, decl)
2756 && !DECL_STATIC_FUNCTION_P (decl))
2757 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2758 the error_mark_node so that we know it is an overriding
2759 function. */
2760 {
2761 DECL_VINDEX (decl) = decl;
2762 overrides_found = true;
2763 }
2764
2765 if (DECL_VIRTUAL_P (decl))
2766 {
2767 if (!DECL_VINDEX (decl))
2768 DECL_VINDEX (decl) = error_mark_node;
2769 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2770 if (DECL_DESTRUCTOR_P (decl))
2771 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2772 }
2773 else if (DECL_FINAL_P (decl))
2774 error ("%q+#D marked %<final%>, but is not virtual", decl);
2775 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2776 error ("%q+#D marked %<override%>, but does not override", decl);
2777 }
2778
2779 /* Warn about hidden virtual functions that are not overridden in t.
2780 We know that constructors and destructors don't apply. */
2781
2782 static void
2783 warn_hidden (tree t)
2784 {
2785 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2786 tree fns;
2787 size_t i;
2788
2789 /* We go through each separately named virtual function. */
2790 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2791 vec_safe_iterate (method_vec, i, &fns);
2792 ++i)
2793 {
2794 tree fn;
2795 tree name;
2796 tree fndecl;
2797 tree base_fndecls;
2798 tree base_binfo;
2799 tree binfo;
2800 int j;
2801
2802 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2803 have the same name. Figure out what name that is. */
2804 name = DECL_NAME (OVL_CURRENT (fns));
2805 /* There are no possibly hidden functions yet. */
2806 base_fndecls = NULL_TREE;
2807 /* Iterate through all of the base classes looking for possibly
2808 hidden functions. */
2809 for (binfo = TYPE_BINFO (t), j = 0;
2810 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2811 {
2812 tree basetype = BINFO_TYPE (base_binfo);
2813 base_fndecls = chainon (get_basefndecls (name, basetype),
2814 base_fndecls);
2815 }
2816
2817 /* If there are no functions to hide, continue. */
2818 if (!base_fndecls)
2819 continue;
2820
2821 /* Remove any overridden functions. */
2822 for (fn = fns; fn; fn = OVL_NEXT (fn))
2823 {
2824 fndecl = OVL_CURRENT (fn);
2825 if (DECL_VINDEX (fndecl))
2826 {
2827 tree *prev = &base_fndecls;
2828
2829 while (*prev)
2830 /* If the method from the base class has the same
2831 signature as the method from the derived class, it
2832 has been overridden. */
2833 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2834 *prev = TREE_CHAIN (*prev);
2835 else
2836 prev = &TREE_CHAIN (*prev);
2837 }
2838 }
2839
2840 /* Now give a warning for all base functions without overriders,
2841 as they are hidden. */
2842 while (base_fndecls)
2843 {
2844 /* Here we know it is a hider, and no overrider exists. */
2845 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2846 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2847 base_fndecls = TREE_CHAIN (base_fndecls);
2848 }
2849 }
2850 }
2851
2852 /* Recursive helper for finish_struct_anon. */
2853
2854 static void
2855 finish_struct_anon_r (tree field, bool complain)
2856 {
2857 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2858 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2859 for (; elt; elt = DECL_CHAIN (elt))
2860 {
2861 /* We're generally only interested in entities the user
2862 declared, but we also find nested classes by noticing
2863 the TYPE_DECL that we create implicitly. You're
2864 allowed to put one anonymous union inside another,
2865 though, so we explicitly tolerate that. We use
2866 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2867 we also allow unnamed types used for defining fields. */
2868 if (DECL_ARTIFICIAL (elt)
2869 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2870 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2871 continue;
2872
2873 if (TREE_CODE (elt) != FIELD_DECL)
2874 {
2875 /* We already complained about static data members in
2876 finish_static_data_member_decl. */
2877 if (complain && TREE_CODE (elt) != VAR_DECL)
2878 {
2879 if (is_union)
2880 permerror (input_location,
2881 "%q+#D invalid; an anonymous union can "
2882 "only have non-static data members", elt);
2883 else
2884 permerror (input_location,
2885 "%q+#D invalid; an anonymous struct can "
2886 "only have non-static data members", elt);
2887 }
2888 continue;
2889 }
2890
2891 if (complain)
2892 {
2893 if (TREE_PRIVATE (elt))
2894 {
2895 if (is_union)
2896 permerror (input_location,
2897 "private member %q+#D in anonymous union", elt);
2898 else
2899 permerror (input_location,
2900 "private member %q+#D in anonymous struct", elt);
2901 }
2902 else if (TREE_PROTECTED (elt))
2903 {
2904 if (is_union)
2905 permerror (input_location,
2906 "protected member %q+#D in anonymous union", elt);
2907 else
2908 permerror (input_location,
2909 "protected member %q+#D in anonymous struct", elt);
2910 }
2911 }
2912
2913 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2914 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2915
2916 /* Recurse into the anonymous aggregates to handle correctly
2917 access control (c++/24926):
2918
2919 class A {
2920 union {
2921 union {
2922 int i;
2923 };
2924 };
2925 };
2926
2927 int j=A().i; */
2928 if (DECL_NAME (elt) == NULL_TREE
2929 && ANON_AGGR_TYPE_P (TREE_TYPE (elt)))
2930 finish_struct_anon_r (elt, /*complain=*/false);
2931 }
2932 }
2933
2934 /* Check for things that are invalid. There are probably plenty of other
2935 things we should check for also. */
2936
2937 static void
2938 finish_struct_anon (tree t)
2939 {
2940 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2941 {
2942 if (TREE_STATIC (field))
2943 continue;
2944 if (TREE_CODE (field) != FIELD_DECL)
2945 continue;
2946
2947 if (DECL_NAME (field) == NULL_TREE
2948 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2949 finish_struct_anon_r (field, /*complain=*/true);
2950 }
2951 }
2952
2953 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2954 will be used later during class template instantiation.
2955 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2956 a non-static member data (FIELD_DECL), a member function
2957 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2958 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2959 When FRIEND_P is nonzero, T is either a friend class
2960 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2961 (FUNCTION_DECL, TEMPLATE_DECL). */
2962
2963 void
2964 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2965 {
2966 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2967 if (CLASSTYPE_TEMPLATE_INFO (type))
2968 CLASSTYPE_DECL_LIST (type)
2969 = tree_cons (friend_p ? NULL_TREE : type,
2970 t, CLASSTYPE_DECL_LIST (type));
2971 }
2972
2973 /* This function is called from declare_virt_assop_and_dtor via
2974 dfs_walk_all.
2975
2976 DATA is a type that direcly or indirectly inherits the base
2977 represented by BINFO. If BINFO contains a virtual assignment [copy
2978 assignment or move assigment] operator or a virtual constructor,
2979 declare that function in DATA if it hasn't been already declared. */
2980
2981 static tree
2982 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2983 {
2984 tree bv, fn, t = (tree)data;
2985 tree opname = ansi_assopname (NOP_EXPR);
2986
2987 gcc_assert (t && CLASS_TYPE_P (t));
2988 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2989
2990 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2991 /* A base without a vtable needs no modification, and its bases
2992 are uninteresting. */
2993 return dfs_skip_bases;
2994
2995 if (BINFO_PRIMARY_P (binfo))
2996 /* If this is a primary base, then we have already looked at the
2997 virtual functions of its vtable. */
2998 return NULL_TREE;
2999
3000 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
3001 {
3002 fn = BV_FN (bv);
3003
3004 if (DECL_NAME (fn) == opname)
3005 {
3006 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
3007 lazily_declare_fn (sfk_copy_assignment, t);
3008 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
3009 lazily_declare_fn (sfk_move_assignment, t);
3010 }
3011 else if (DECL_DESTRUCTOR_P (fn)
3012 && CLASSTYPE_LAZY_DESTRUCTOR (t))
3013 lazily_declare_fn (sfk_destructor, t);
3014 }
3015
3016 return NULL_TREE;
3017 }
3018
3019 /* If the class type T has a direct or indirect base that contains a
3020 virtual assignment operator or a virtual destructor, declare that
3021 function in T if it hasn't been already declared. */
3022
3023 static void
3024 declare_virt_assop_and_dtor (tree t)
3025 {
3026 if (!(TYPE_POLYMORPHIC_P (t)
3027 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
3028 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
3029 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
3030 return;
3031
3032 dfs_walk_all (TYPE_BINFO (t),
3033 dfs_declare_virt_assop_and_dtor,
3034 NULL, t);
3035 }
3036
3037 /* Declare the inheriting constructor for class T inherited from base
3038 constructor CTOR with the parameter array PARMS of size NPARMS. */
3039
3040 static void
3041 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
3042 {
3043 /* We don't declare an inheriting ctor that would be a default,
3044 copy or move ctor for derived or base. */
3045 if (nparms == 0)
3046 return;
3047 if (nparms == 1
3048 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
3049 {
3050 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
3051 if (parm == t || parm == DECL_CONTEXT (ctor))
3052 return;
3053 }
3054
3055 tree parmlist = void_list_node;
3056 for (int i = nparms - 1; i >= 0; i--)
3057 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
3058 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
3059 t, false, ctor, parmlist);
3060 if (add_method (t, fn, NULL_TREE))
3061 {
3062 DECL_CHAIN (fn) = TYPE_METHODS (t);
3063 TYPE_METHODS (t) = fn;
3064 }
3065 }
3066
3067 /* Declare all the inheriting constructors for class T inherited from base
3068 constructor CTOR. */
3069
3070 static void
3071 one_inherited_ctor (tree ctor, tree t)
3072 {
3073 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
3074
3075 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
3076 int i = 0;
3077 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
3078 {
3079 if (TREE_PURPOSE (parms))
3080 one_inheriting_sig (t, ctor, new_parms, i);
3081 new_parms[i++] = TREE_VALUE (parms);
3082 }
3083 one_inheriting_sig (t, ctor, new_parms, i);
3084 if (parms == NULL_TREE)
3085 {
3086 if (warning (OPT_Winherited_variadic_ctor,
3087 "the ellipsis in %qD is not inherited", ctor))
3088 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
3089 }
3090 }
3091
3092 /* Create default constructors, assignment operators, and so forth for
3093 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
3094 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
3095 the class cannot have a default constructor, copy constructor
3096 taking a const reference argument, or an assignment operator taking
3097 a const reference, respectively. */
3098
3099 static void
3100 add_implicitly_declared_members (tree t, tree* access_decls,
3101 int cant_have_const_cctor,
3102 int cant_have_const_assignment)
3103 {
3104 bool move_ok = false;
3105
3106 if (cxx_dialect >= cxx11 && !CLASSTYPE_DESTRUCTORS (t)
3107 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
3108 && !type_has_move_constructor (t) && !type_has_move_assign (t))
3109 move_ok = true;
3110
3111 /* Destructor. */
3112 if (!CLASSTYPE_DESTRUCTORS (t))
3113 {
3114 /* In general, we create destructors lazily. */
3115 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
3116
3117 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3118 && TYPE_FOR_JAVA (t))
3119 /* But if this is a Java class, any non-trivial destructor is
3120 invalid, even if compiler-generated. Therefore, if the
3121 destructor is non-trivial we create it now. */
3122 lazily_declare_fn (sfk_destructor, t);
3123 }
3124
3125 /* [class.ctor]
3126
3127 If there is no user-declared constructor for a class, a default
3128 constructor is implicitly declared. */
3129 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
3130 {
3131 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
3132 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
3133 if (cxx_dialect >= cxx11)
3134 TYPE_HAS_CONSTEXPR_CTOR (t)
3135 /* This might force the declaration. */
3136 = type_has_constexpr_default_constructor (t);
3137 }
3138
3139 /* [class.ctor]
3140
3141 If a class definition does not explicitly declare a copy
3142 constructor, one is declared implicitly. */
3143 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
3144 {
3145 TYPE_HAS_COPY_CTOR (t) = 1;
3146 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
3147 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3148 if (move_ok)
3149 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3150 }
3151
3152 /* If there is no assignment operator, one will be created if and
3153 when it is needed. For now, just record whether or not the type
3154 of the parameter to the assignment operator will be a const or
3155 non-const reference. */
3156 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3157 {
3158 TYPE_HAS_COPY_ASSIGN (t) = 1;
3159 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3160 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3161 if (move_ok)
3162 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3163 }
3164
3165 /* We can't be lazy about declaring functions that might override
3166 a virtual function from a base class. */
3167 declare_virt_assop_and_dtor (t);
3168
3169 while (*access_decls)
3170 {
3171 tree using_decl = TREE_VALUE (*access_decls);
3172 tree decl = USING_DECL_DECLS (using_decl);
3173 if (DECL_NAME (using_decl) == ctor_identifier)
3174 {
3175 /* declare, then remove the decl */
3176 tree ctor_list = decl;
3177 location_t loc = input_location;
3178 input_location = DECL_SOURCE_LOCATION (using_decl);
3179 if (ctor_list)
3180 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3181 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3182 *access_decls = TREE_CHAIN (*access_decls);
3183 input_location = loc;
3184 }
3185 else
3186 access_decls = &TREE_CHAIN (*access_decls);
3187 }
3188 }
3189
3190 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3191 count the number of fields in TYPE, including anonymous union
3192 members. */
3193
3194 static int
3195 count_fields (tree fields)
3196 {
3197 tree x;
3198 int n_fields = 0;
3199 for (x = fields; x; x = DECL_CHAIN (x))
3200 {
3201 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3202 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3203 else
3204 n_fields += 1;
3205 }
3206 return n_fields;
3207 }
3208
3209 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3210 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3211 elts, starting at offset IDX. */
3212
3213 static int
3214 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3215 {
3216 tree x;
3217 for (x = fields; x; x = DECL_CHAIN (x))
3218 {
3219 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3220 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3221 else
3222 field_vec->elts[idx++] = x;
3223 }
3224 return idx;
3225 }
3226
3227 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3228 starting at offset IDX. */
3229
3230 static int
3231 add_enum_fields_to_record_type (tree enumtype,
3232 struct sorted_fields_type *field_vec,
3233 int idx)
3234 {
3235 tree values;
3236 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3237 field_vec->elts[idx++] = TREE_VALUE (values);
3238 return idx;
3239 }
3240
3241 /* FIELD is a bit-field. We are finishing the processing for its
3242 enclosing type. Issue any appropriate messages and set appropriate
3243 flags. Returns false if an error has been diagnosed. */
3244
3245 static bool
3246 check_bitfield_decl (tree field)
3247 {
3248 tree type = TREE_TYPE (field);
3249 tree w;
3250
3251 /* Extract the declared width of the bitfield, which has been
3252 temporarily stashed in DECL_INITIAL. */
3253 w = DECL_INITIAL (field);
3254 gcc_assert (w != NULL_TREE);
3255 /* Remove the bit-field width indicator so that the rest of the
3256 compiler does not treat that value as an initializer. */
3257 DECL_INITIAL (field) = NULL_TREE;
3258
3259 /* Detect invalid bit-field type. */
3260 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3261 {
3262 error ("bit-field %q+#D with non-integral type", field);
3263 w = error_mark_node;
3264 }
3265 else
3266 {
3267 location_t loc = input_location;
3268 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3269 STRIP_NOPS (w);
3270
3271 /* detect invalid field size. */
3272 input_location = DECL_SOURCE_LOCATION (field);
3273 w = cxx_constant_value (w);
3274 input_location = loc;
3275
3276 if (TREE_CODE (w) != INTEGER_CST)
3277 {
3278 error ("bit-field %q+D width not an integer constant", field);
3279 w = error_mark_node;
3280 }
3281 else if (tree_int_cst_sgn (w) < 0)
3282 {
3283 error ("negative width in bit-field %q+D", field);
3284 w = error_mark_node;
3285 }
3286 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3287 {
3288 error ("zero width for bit-field %q+D", field);
3289 w = error_mark_node;
3290 }
3291 else if ((TREE_CODE (type) != ENUMERAL_TYPE
3292 && TREE_CODE (type) != BOOLEAN_TYPE
3293 && compare_tree_int (w, TYPE_PRECISION (type)) > 0)
3294 || ((TREE_CODE (type) == ENUMERAL_TYPE
3295 || TREE_CODE (type) == BOOLEAN_TYPE)
3296 && tree_int_cst_lt (TYPE_SIZE (type), w)))
3297 warning (0, "width of %q+D exceeds its type", field);
3298 else if (TREE_CODE (type) == ENUMERAL_TYPE
3299 && (0 > (compare_tree_int
3300 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3301 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3302 }
3303
3304 if (w != error_mark_node)
3305 {
3306 DECL_SIZE (field) = convert (bitsizetype, w);
3307 DECL_BIT_FIELD (field) = 1;
3308 return true;
3309 }
3310 else
3311 {
3312 /* Non-bit-fields are aligned for their type. */
3313 DECL_BIT_FIELD (field) = 0;
3314 CLEAR_DECL_C_BIT_FIELD (field);
3315 return false;
3316 }
3317 }
3318
3319 /* FIELD is a non bit-field. We are finishing the processing for its
3320 enclosing type T. Issue any appropriate messages and set appropriate
3321 flags. */
3322
3323 static void
3324 check_field_decl (tree field,
3325 tree t,
3326 int* cant_have_const_ctor,
3327 int* no_const_asn_ref,
3328 int* any_default_members)
3329 {
3330 tree type = strip_array_types (TREE_TYPE (field));
3331
3332 /* In C++98 an anonymous union cannot contain any fields which would change
3333 the settings of CANT_HAVE_CONST_CTOR and friends. */
3334 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11)
3335 ;
3336 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3337 structs. So, we recurse through their fields here. */
3338 else if (ANON_AGGR_TYPE_P (type))
3339 {
3340 tree fields;
3341
3342 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3343 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3344 check_field_decl (fields, t, cant_have_const_ctor,
3345 no_const_asn_ref, any_default_members);
3346 }
3347 /* Check members with class type for constructors, destructors,
3348 etc. */
3349 else if (CLASS_TYPE_P (type))
3350 {
3351 /* Never let anything with uninheritable virtuals
3352 make it through without complaint. */
3353 abstract_virtuals_error (field, type);
3354
3355 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11)
3356 {
3357 static bool warned;
3358 int oldcount = errorcount;
3359 if (TYPE_NEEDS_CONSTRUCTING (type))
3360 error ("member %q+#D with constructor not allowed in union",
3361 field);
3362 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3363 error ("member %q+#D with destructor not allowed in union", field);
3364 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3365 error ("member %q+#D with copy assignment operator not allowed in union",
3366 field);
3367 if (!warned && errorcount > oldcount)
3368 {
3369 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3370 "only available with -std=c++11 or -std=gnu++11");
3371 warned = true;
3372 }
3373 }
3374 else
3375 {
3376 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3377 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3378 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3379 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3380 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3381 || !TYPE_HAS_COPY_ASSIGN (type));
3382 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3383 || !TYPE_HAS_COPY_CTOR (type));
3384 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3385 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3386 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3387 || TYPE_HAS_COMPLEX_DFLT (type));
3388 }
3389
3390 if (TYPE_HAS_COPY_CTOR (type)
3391 && !TYPE_HAS_CONST_COPY_CTOR (type))
3392 *cant_have_const_ctor = 1;
3393
3394 if (TYPE_HAS_COPY_ASSIGN (type)
3395 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3396 *no_const_asn_ref = 1;
3397 }
3398
3399 check_abi_tags (t, field);
3400
3401 if (DECL_INITIAL (field) != NULL_TREE)
3402 {
3403 /* `build_class_init_list' does not recognize
3404 non-FIELD_DECLs. */
3405 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3406 error ("multiple fields in union %qT initialized", t);
3407 *any_default_members = 1;
3408 }
3409 }
3410
3411 /* Check the data members (both static and non-static), class-scoped
3412 typedefs, etc., appearing in the declaration of T. Issue
3413 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3414 declaration order) of access declarations; each TREE_VALUE in this
3415 list is a USING_DECL.
3416
3417 In addition, set the following flags:
3418
3419 EMPTY_P
3420 The class is empty, i.e., contains no non-static data members.
3421
3422 CANT_HAVE_CONST_CTOR_P
3423 This class cannot have an implicitly generated copy constructor
3424 taking a const reference.
3425
3426 CANT_HAVE_CONST_ASN_REF
3427 This class cannot have an implicitly generated assignment
3428 operator taking a const reference.
3429
3430 All of these flags should be initialized before calling this
3431 function.
3432
3433 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3434 fields can be added by adding to this chain. */
3435
3436 static void
3437 check_field_decls (tree t, tree *access_decls,
3438 int *cant_have_const_ctor_p,
3439 int *no_const_asn_ref_p)
3440 {
3441 tree *field;
3442 tree *next;
3443 bool has_pointers;
3444 int any_default_members;
3445 int cant_pack = 0;
3446 int field_access = -1;
3447
3448 /* Assume there are no access declarations. */
3449 *access_decls = NULL_TREE;
3450 /* Assume this class has no pointer members. */
3451 has_pointers = false;
3452 /* Assume none of the members of this class have default
3453 initializations. */
3454 any_default_members = 0;
3455
3456 for (field = &TYPE_FIELDS (t); *field; field = next)
3457 {
3458 tree x = *field;
3459 tree type = TREE_TYPE (x);
3460 int this_field_access;
3461
3462 next = &DECL_CHAIN (x);
3463
3464 if (TREE_CODE (x) == USING_DECL)
3465 {
3466 /* Save the access declarations for our caller. */
3467 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3468 continue;
3469 }
3470
3471 if (TREE_CODE (x) == TYPE_DECL
3472 || TREE_CODE (x) == TEMPLATE_DECL)
3473 continue;
3474
3475 /* If we've gotten this far, it's a data member, possibly static,
3476 or an enumerator. */
3477 if (TREE_CODE (x) != CONST_DECL)
3478 DECL_CONTEXT (x) = t;
3479
3480 /* When this goes into scope, it will be a non-local reference. */
3481 DECL_NONLOCAL (x) = 1;
3482
3483 if (TREE_CODE (t) == UNION_TYPE
3484 && cxx_dialect < cxx11)
3485 {
3486 /* [class.union] (C++98)
3487
3488 If a union contains a static data member, or a member of
3489 reference type, the program is ill-formed.
3490
3491 In C++11 this limitation doesn't exist anymore. */
3492 if (VAR_P (x))
3493 {
3494 error ("in C++98 %q+D may not be static because it is "
3495 "a member of a union", x);
3496 continue;
3497 }
3498 if (TREE_CODE (type) == REFERENCE_TYPE)
3499 {
3500 error ("in C++98 %q+D may not have reference type %qT "
3501 "because it is a member of a union", x, type);
3502 continue;
3503 }
3504 }
3505
3506 /* Perform error checking that did not get done in
3507 grokdeclarator. */
3508 if (TREE_CODE (type) == FUNCTION_TYPE)
3509 {
3510 error ("field %q+D invalidly declared function type", x);
3511 type = build_pointer_type (type);
3512 TREE_TYPE (x) = type;
3513 }
3514 else if (TREE_CODE (type) == METHOD_TYPE)
3515 {
3516 error ("field %q+D invalidly declared method type", x);
3517 type = build_pointer_type (type);
3518 TREE_TYPE (x) = type;
3519 }
3520
3521 if (type == error_mark_node)
3522 continue;
3523
3524 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3525 continue;
3526
3527 /* Now it can only be a FIELD_DECL. */
3528
3529 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3530 CLASSTYPE_NON_AGGREGATE (t) = 1;
3531
3532 /* If at least one non-static data member is non-literal, the whole
3533 class becomes non-literal. Note: if the type is incomplete we
3534 will complain later on. */
3535 if (COMPLETE_TYPE_P (type) && !literal_type_p (type))
3536 CLASSTYPE_LITERAL_P (t) = false;
3537
3538 /* A standard-layout class is a class that:
3539 ...
3540 has the same access control (Clause 11) for all non-static data members,
3541 ... */
3542 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3543 if (field_access == -1)
3544 field_access = this_field_access;
3545 else if (this_field_access != field_access)
3546 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3547
3548 /* If this is of reference type, check if it needs an init. */
3549 if (TREE_CODE (type) == REFERENCE_TYPE)
3550 {
3551 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3552 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3553 if (DECL_INITIAL (x) == NULL_TREE)
3554 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3555
3556 /* ARM $12.6.2: [A member initializer list] (or, for an
3557 aggregate, initialization by a brace-enclosed list) is the
3558 only way to initialize nonstatic const and reference
3559 members. */
3560 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3561 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3562 }
3563
3564 type = strip_array_types (type);
3565
3566 if (TYPE_PACKED (t))
3567 {
3568 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3569 {
3570 warning
3571 (0,
3572 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3573 x);
3574 cant_pack = 1;
3575 }
3576 else if (DECL_C_BIT_FIELD (x)
3577 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3578 DECL_PACKED (x) = 1;
3579 }
3580
3581 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3582 /* We don't treat zero-width bitfields as making a class
3583 non-empty. */
3584 ;
3585 else
3586 {
3587 /* The class is non-empty. */
3588 CLASSTYPE_EMPTY_P (t) = 0;
3589 /* The class is not even nearly empty. */
3590 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3591 /* If one of the data members contains an empty class,
3592 so does T. */
3593 if (CLASS_TYPE_P (type)
3594 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3595 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3596 }
3597
3598 /* This is used by -Weffc++ (see below). Warn only for pointers
3599 to members which might hold dynamic memory. So do not warn
3600 for pointers to functions or pointers to members. */
3601 if (TYPE_PTR_P (type)
3602 && !TYPE_PTRFN_P (type))
3603 has_pointers = true;
3604
3605 if (CLASS_TYPE_P (type))
3606 {
3607 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3608 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3609 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3610 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3611 }
3612
3613 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3614 CLASSTYPE_HAS_MUTABLE (t) = 1;
3615
3616 if (DECL_MUTABLE_P (x))
3617 {
3618 if (CP_TYPE_CONST_P (type))
3619 {
3620 error ("member %q+D cannot be declared both %<const%> "
3621 "and %<mutable%>", x);
3622 continue;
3623 }
3624 if (TREE_CODE (type) == REFERENCE_TYPE)
3625 {
3626 error ("member %q+D cannot be declared as a %<mutable%> "
3627 "reference", x);
3628 continue;
3629 }
3630 }
3631
3632 if (! layout_pod_type_p (type))
3633 /* DR 148 now allows pointers to members (which are POD themselves),
3634 to be allowed in POD structs. */
3635 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3636
3637 if (!std_layout_type_p (type))
3638 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3639
3640 if (! zero_init_p (type))
3641 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3642
3643 /* We set DECL_C_BIT_FIELD in grokbitfield.
3644 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3645 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3646 check_field_decl (x, t,
3647 cant_have_const_ctor_p,
3648 no_const_asn_ref_p,
3649 &any_default_members);
3650
3651 /* Now that we've removed bit-field widths from DECL_INITIAL,
3652 anything left in DECL_INITIAL is an NSDMI that makes the class
3653 non-aggregate. */
3654 if (DECL_INITIAL (x))
3655 CLASSTYPE_NON_AGGREGATE (t) = true;
3656
3657 /* If any field is const, the structure type is pseudo-const. */
3658 if (CP_TYPE_CONST_P (type))
3659 {
3660 C_TYPE_FIELDS_READONLY (t) = 1;
3661 if (DECL_INITIAL (x) == NULL_TREE)
3662 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3663
3664 /* ARM $12.6.2: [A member initializer list] (or, for an
3665 aggregate, initialization by a brace-enclosed list) is the
3666 only way to initialize nonstatic const and reference
3667 members. */
3668 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3669 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3670 }
3671 /* A field that is pseudo-const makes the structure likewise. */
3672 else if (CLASS_TYPE_P (type))
3673 {
3674 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3675 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3676 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3677 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3678 }
3679
3680 /* Core issue 80: A nonstatic data member is required to have a
3681 different name from the class iff the class has a
3682 user-declared constructor. */
3683 if (constructor_name_p (DECL_NAME (x), t)
3684 && TYPE_HAS_USER_CONSTRUCTOR (t))
3685 permerror (input_location, "field %q+#D with same name as class", x);
3686 }
3687
3688 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3689 it should also define a copy constructor and an assignment operator to
3690 implement the correct copy semantic (deep vs shallow, etc.). As it is
3691 not feasible to check whether the constructors do allocate dynamic memory
3692 and store it within members, we approximate the warning like this:
3693
3694 -- Warn only if there are members which are pointers
3695 -- Warn only if there is a non-trivial constructor (otherwise,
3696 there cannot be memory allocated).
3697 -- Warn only if there is a non-trivial destructor. We assume that the
3698 user at least implemented the cleanup correctly, and a destructor
3699 is needed to free dynamic memory.
3700
3701 This seems enough for practical purposes. */
3702 if (warn_ecpp
3703 && has_pointers
3704 && TYPE_HAS_USER_CONSTRUCTOR (t)
3705 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3706 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3707 {
3708 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3709
3710 if (! TYPE_HAS_COPY_CTOR (t))
3711 {
3712 warning (OPT_Weffc__,
3713 " but does not override %<%T(const %T&)%>", t, t);
3714 if (!TYPE_HAS_COPY_ASSIGN (t))
3715 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3716 }
3717 else if (! TYPE_HAS_COPY_ASSIGN (t))
3718 warning (OPT_Weffc__,
3719 " but does not override %<operator=(const %T&)%>", t);
3720 }
3721
3722 /* Non-static data member initializers make the default constructor
3723 non-trivial. */
3724 if (any_default_members)
3725 {
3726 TYPE_NEEDS_CONSTRUCTING (t) = true;
3727 TYPE_HAS_COMPLEX_DFLT (t) = true;
3728 }
3729
3730 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3731 if (cant_pack)
3732 TYPE_PACKED (t) = 0;
3733
3734 /* Check anonymous struct/anonymous union fields. */
3735 finish_struct_anon (t);
3736
3737 /* We've built up the list of access declarations in reverse order.
3738 Fix that now. */
3739 *access_decls = nreverse (*access_decls);
3740 }
3741
3742 /* If TYPE is an empty class type, records its OFFSET in the table of
3743 OFFSETS. */
3744
3745 static int
3746 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3747 {
3748 splay_tree_node n;
3749
3750 if (!is_empty_class (type))
3751 return 0;
3752
3753 /* Record the location of this empty object in OFFSETS. */
3754 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3755 if (!n)
3756 n = splay_tree_insert (offsets,
3757 (splay_tree_key) offset,
3758 (splay_tree_value) NULL_TREE);
3759 n->value = ((splay_tree_value)
3760 tree_cons (NULL_TREE,
3761 type,
3762 (tree) n->value));
3763
3764 return 0;
3765 }
3766
3767 /* Returns nonzero if TYPE is an empty class type and there is
3768 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3769
3770 static int
3771 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3772 {
3773 splay_tree_node n;
3774 tree t;
3775
3776 if (!is_empty_class (type))
3777 return 0;
3778
3779 /* Record the location of this empty object in OFFSETS. */
3780 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3781 if (!n)
3782 return 0;
3783
3784 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3785 if (same_type_p (TREE_VALUE (t), type))
3786 return 1;
3787
3788 return 0;
3789 }
3790
3791 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3792 F for every subobject, passing it the type, offset, and table of
3793 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3794 be traversed.
3795
3796 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3797 than MAX_OFFSET will not be walked.
3798
3799 If F returns a nonzero value, the traversal ceases, and that value
3800 is returned. Otherwise, returns zero. */
3801
3802 static int
3803 walk_subobject_offsets (tree type,
3804 subobject_offset_fn f,
3805 tree offset,
3806 splay_tree offsets,
3807 tree max_offset,
3808 int vbases_p)
3809 {
3810 int r = 0;
3811 tree type_binfo = NULL_TREE;
3812
3813 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3814 stop. */
3815 if (max_offset && tree_int_cst_lt (max_offset, offset))
3816 return 0;
3817
3818 if (type == error_mark_node)
3819 return 0;
3820
3821 if (!TYPE_P (type))
3822 {
3823 type_binfo = type;
3824 type = BINFO_TYPE (type);
3825 }
3826
3827 if (CLASS_TYPE_P (type))
3828 {
3829 tree field;
3830 tree binfo;
3831 int i;
3832
3833 /* Avoid recursing into objects that are not interesting. */
3834 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3835 return 0;
3836
3837 /* Record the location of TYPE. */
3838 r = (*f) (type, offset, offsets);
3839 if (r)
3840 return r;
3841
3842 /* Iterate through the direct base classes of TYPE. */
3843 if (!type_binfo)
3844 type_binfo = TYPE_BINFO (type);
3845 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3846 {
3847 tree binfo_offset;
3848
3849 if (BINFO_VIRTUAL_P (binfo))
3850 continue;
3851
3852 tree orig_binfo;
3853 /* We cannot rely on BINFO_OFFSET being set for the base
3854 class yet, but the offsets for direct non-virtual
3855 bases can be calculated by going back to the TYPE. */
3856 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3857 binfo_offset = size_binop (PLUS_EXPR,
3858 offset,
3859 BINFO_OFFSET (orig_binfo));
3860
3861 r = walk_subobject_offsets (binfo,
3862 f,
3863 binfo_offset,
3864 offsets,
3865 max_offset,
3866 /*vbases_p=*/0);
3867 if (r)
3868 return r;
3869 }
3870
3871 if (CLASSTYPE_VBASECLASSES (type))
3872 {
3873 unsigned ix;
3874 vec<tree, va_gc> *vbases;
3875
3876 /* Iterate through the virtual base classes of TYPE. In G++
3877 3.2, we included virtual bases in the direct base class
3878 loop above, which results in incorrect results; the
3879 correct offsets for virtual bases are only known when
3880 working with the most derived type. */
3881 if (vbases_p)
3882 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3883 vec_safe_iterate (vbases, ix, &binfo); ix++)
3884 {
3885 r = walk_subobject_offsets (binfo,
3886 f,
3887 size_binop (PLUS_EXPR,
3888 offset,
3889 BINFO_OFFSET (binfo)),
3890 offsets,
3891 max_offset,
3892 /*vbases_p=*/0);
3893 if (r)
3894 return r;
3895 }
3896 else
3897 {
3898 /* We still have to walk the primary base, if it is
3899 virtual. (If it is non-virtual, then it was walked
3900 above.) */
3901 tree vbase = get_primary_binfo (type_binfo);
3902
3903 if (vbase && BINFO_VIRTUAL_P (vbase)
3904 && BINFO_PRIMARY_P (vbase)
3905 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3906 {
3907 r = (walk_subobject_offsets
3908 (vbase, f, offset,
3909 offsets, max_offset, /*vbases_p=*/0));
3910 if (r)
3911 return r;
3912 }
3913 }
3914 }
3915
3916 /* Iterate through the fields of TYPE. */
3917 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3918 if (TREE_CODE (field) == FIELD_DECL
3919 && TREE_TYPE (field) != error_mark_node
3920 && !DECL_ARTIFICIAL (field))
3921 {
3922 tree field_offset;
3923
3924 field_offset = byte_position (field);
3925
3926 r = walk_subobject_offsets (TREE_TYPE (field),
3927 f,
3928 size_binop (PLUS_EXPR,
3929 offset,
3930 field_offset),
3931 offsets,
3932 max_offset,
3933 /*vbases_p=*/1);
3934 if (r)
3935 return r;
3936 }
3937 }
3938 else if (TREE_CODE (type) == ARRAY_TYPE)
3939 {
3940 tree element_type = strip_array_types (type);
3941 tree domain = TYPE_DOMAIN (type);
3942 tree index;
3943
3944 /* Avoid recursing into objects that are not interesting. */
3945 if (!CLASS_TYPE_P (element_type)
3946 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3947 return 0;
3948
3949 /* Step through each of the elements in the array. */
3950 for (index = size_zero_node;
3951 !tree_int_cst_lt (TYPE_MAX_VALUE (domain), index);
3952 index = size_binop (PLUS_EXPR, index, size_one_node))
3953 {
3954 r = walk_subobject_offsets (TREE_TYPE (type),
3955 f,
3956 offset,
3957 offsets,
3958 max_offset,
3959 /*vbases_p=*/1);
3960 if (r)
3961 return r;
3962 offset = size_binop (PLUS_EXPR, offset,
3963 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3964 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3965 there's no point in iterating through the remaining
3966 elements of the array. */
3967 if (max_offset && tree_int_cst_lt (max_offset, offset))
3968 break;
3969 }
3970 }
3971
3972 return 0;
3973 }
3974
3975 /* Record all of the empty subobjects of TYPE (either a type or a
3976 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3977 is being placed at OFFSET; otherwise, it is a base class that is
3978 being placed at OFFSET. */
3979
3980 static void
3981 record_subobject_offsets (tree type,
3982 tree offset,
3983 splay_tree offsets,
3984 bool is_data_member)
3985 {
3986 tree max_offset;
3987 /* If recording subobjects for a non-static data member or a
3988 non-empty base class , we do not need to record offsets beyond
3989 the size of the biggest empty class. Additional data members
3990 will go at the end of the class. Additional base classes will go
3991 either at offset zero (if empty, in which case they cannot
3992 overlap with offsets past the size of the biggest empty class) or
3993 at the end of the class.
3994
3995 However, if we are placing an empty base class, then we must record
3996 all offsets, as either the empty class is at offset zero (where
3997 other empty classes might later be placed) or at the end of the
3998 class (where other objects might then be placed, so other empty
3999 subobjects might later overlap). */
4000 if (is_data_member
4001 || !is_empty_class (BINFO_TYPE (type)))
4002 max_offset = sizeof_biggest_empty_class;
4003 else
4004 max_offset = NULL_TREE;
4005 walk_subobject_offsets (type, record_subobject_offset, offset,
4006 offsets, max_offset, is_data_member);
4007 }
4008
4009 /* Returns nonzero if any of the empty subobjects of TYPE (located at
4010 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
4011 virtual bases of TYPE are examined. */
4012
4013 static int
4014 layout_conflict_p (tree type,
4015 tree offset,
4016 splay_tree offsets,
4017 int vbases_p)
4018 {
4019 splay_tree_node max_node;
4020
4021 /* Get the node in OFFSETS that indicates the maximum offset where
4022 an empty subobject is located. */
4023 max_node = splay_tree_max (offsets);
4024 /* If there aren't any empty subobjects, then there's no point in
4025 performing this check. */
4026 if (!max_node)
4027 return 0;
4028
4029 return walk_subobject_offsets (type, check_subobject_offset, offset,
4030 offsets, (tree) (max_node->key),
4031 vbases_p);
4032 }
4033
4034 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
4035 non-static data member of the type indicated by RLI. BINFO is the
4036 binfo corresponding to the base subobject, OFFSETS maps offsets to
4037 types already located at those offsets. This function determines
4038 the position of the DECL. */
4039
4040 static void
4041 layout_nonempty_base_or_field (record_layout_info rli,
4042 tree decl,
4043 tree binfo,
4044 splay_tree offsets)
4045 {
4046 tree offset = NULL_TREE;
4047 bool field_p;
4048 tree type;
4049
4050 if (binfo)
4051 {
4052 /* For the purposes of determining layout conflicts, we want to
4053 use the class type of BINFO; TREE_TYPE (DECL) will be the
4054 CLASSTYPE_AS_BASE version, which does not contain entries for
4055 zero-sized bases. */
4056 type = TREE_TYPE (binfo);
4057 field_p = false;
4058 }
4059 else
4060 {
4061 type = TREE_TYPE (decl);
4062 field_p = true;
4063 }
4064
4065 /* Try to place the field. It may take more than one try if we have
4066 a hard time placing the field without putting two objects of the
4067 same type at the same address. */
4068 while (1)
4069 {
4070 struct record_layout_info_s old_rli = *rli;
4071
4072 /* Place this field. */
4073 place_field (rli, decl);
4074 offset = byte_position (decl);
4075
4076 /* We have to check to see whether or not there is already
4077 something of the same type at the offset we're about to use.
4078 For example, consider:
4079
4080 struct S {};
4081 struct T : public S { int i; };
4082 struct U : public S, public T {};
4083
4084 Here, we put S at offset zero in U. Then, we can't put T at
4085 offset zero -- its S component would be at the same address
4086 as the S we already allocated. So, we have to skip ahead.
4087 Since all data members, including those whose type is an
4088 empty class, have nonzero size, any overlap can happen only
4089 with a direct or indirect base-class -- it can't happen with
4090 a data member. */
4091 /* In a union, overlap is permitted; all members are placed at
4092 offset zero. */
4093 if (TREE_CODE (rli->t) == UNION_TYPE)
4094 break;
4095 if (layout_conflict_p (field_p ? type : binfo, offset,
4096 offsets, field_p))
4097 {
4098 /* Strip off the size allocated to this field. That puts us
4099 at the first place we could have put the field with
4100 proper alignment. */
4101 *rli = old_rli;
4102
4103 /* Bump up by the alignment required for the type. */
4104 rli->bitpos
4105 = size_binop (PLUS_EXPR, rli->bitpos,
4106 bitsize_int (binfo
4107 ? CLASSTYPE_ALIGN (type)
4108 : TYPE_ALIGN (type)));
4109 normalize_rli (rli);
4110 }
4111 else
4112 /* There was no conflict. We're done laying out this field. */
4113 break;
4114 }
4115
4116 /* Now that we know where it will be placed, update its
4117 BINFO_OFFSET. */
4118 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
4119 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4120 this point because their BINFO_OFFSET is copied from another
4121 hierarchy. Therefore, we may not need to add the entire
4122 OFFSET. */
4123 propagate_binfo_offsets (binfo,
4124 size_diffop_loc (input_location,
4125 convert (ssizetype, offset),
4126 convert (ssizetype,
4127 BINFO_OFFSET (binfo))));
4128 }
4129
4130 /* Returns true if TYPE is empty and OFFSET is nonzero. */
4131
4132 static int
4133 empty_base_at_nonzero_offset_p (tree type,
4134 tree offset,
4135 splay_tree /*offsets*/)
4136 {
4137 return is_empty_class (type) && !integer_zerop (offset);
4138 }
4139
4140 /* Layout the empty base BINFO. EOC indicates the byte currently just
4141 past the end of the class, and should be correctly aligned for a
4142 class of the type indicated by BINFO; OFFSETS gives the offsets of
4143 the empty bases allocated so far. T is the most derived
4144 type. Return nonzero iff we added it at the end. */
4145
4146 static bool
4147 layout_empty_base (record_layout_info rli, tree binfo,
4148 tree eoc, splay_tree offsets)
4149 {
4150 tree alignment;
4151 tree basetype = BINFO_TYPE (binfo);
4152 bool atend = false;
4153
4154 /* This routine should only be used for empty classes. */
4155 gcc_assert (is_empty_class (basetype));
4156 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4157
4158 if (!integer_zerop (BINFO_OFFSET (binfo)))
4159 propagate_binfo_offsets
4160 (binfo, size_diffop_loc (input_location,
4161 size_zero_node, BINFO_OFFSET (binfo)));
4162
4163 /* This is an empty base class. We first try to put it at offset
4164 zero. */
4165 if (layout_conflict_p (binfo,
4166 BINFO_OFFSET (binfo),
4167 offsets,
4168 /*vbases_p=*/0))
4169 {
4170 /* That didn't work. Now, we move forward from the next
4171 available spot in the class. */
4172 atend = true;
4173 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4174 while (1)
4175 {
4176 if (!layout_conflict_p (binfo,
4177 BINFO_OFFSET (binfo),
4178 offsets,
4179 /*vbases_p=*/0))
4180 /* We finally found a spot where there's no overlap. */
4181 break;
4182
4183 /* There's overlap here, too. Bump along to the next spot. */
4184 propagate_binfo_offsets (binfo, alignment);
4185 }
4186 }
4187
4188 if (CLASSTYPE_USER_ALIGN (basetype))
4189 {
4190 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4191 if (warn_packed)
4192 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4193 TYPE_USER_ALIGN (rli->t) = 1;
4194 }
4195
4196 return atend;
4197 }
4198
4199 /* Layout the base given by BINFO in the class indicated by RLI.
4200 *BASE_ALIGN is a running maximum of the alignments of
4201 any base class. OFFSETS gives the location of empty base
4202 subobjects. T is the most derived type. Return nonzero if the new
4203 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4204 *NEXT_FIELD, unless BINFO is for an empty base class.
4205
4206 Returns the location at which the next field should be inserted. */
4207
4208 static tree *
4209 build_base_field (record_layout_info rli, tree binfo,
4210 splay_tree offsets, tree *next_field)
4211 {
4212 tree t = rli->t;
4213 tree basetype = BINFO_TYPE (binfo);
4214
4215 if (!COMPLETE_TYPE_P (basetype))
4216 /* This error is now reported in xref_tag, thus giving better
4217 location information. */
4218 return next_field;
4219
4220 /* Place the base class. */
4221 if (!is_empty_class (basetype))
4222 {
4223 tree decl;
4224
4225 /* The containing class is non-empty because it has a non-empty
4226 base class. */
4227 CLASSTYPE_EMPTY_P (t) = 0;
4228
4229 /* Create the FIELD_DECL. */
4230 decl = build_decl (input_location,
4231 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4232 DECL_ARTIFICIAL (decl) = 1;
4233 DECL_IGNORED_P (decl) = 1;
4234 DECL_FIELD_CONTEXT (decl) = t;
4235 if (CLASSTYPE_AS_BASE (basetype))
4236 {
4237 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4238 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4239 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4240 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4241 DECL_MODE (decl) = TYPE_MODE (basetype);
4242 DECL_FIELD_IS_BASE (decl) = 1;
4243
4244 /* Try to place the field. It may take more than one try if we
4245 have a hard time placing the field without putting two
4246 objects of the same type at the same address. */
4247 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4248 /* Add the new FIELD_DECL to the list of fields for T. */
4249 DECL_CHAIN (decl) = *next_field;
4250 *next_field = decl;
4251 next_field = &DECL_CHAIN (decl);
4252 }
4253 }
4254 else
4255 {
4256 tree eoc;
4257 bool atend;
4258
4259 /* On some platforms (ARM), even empty classes will not be
4260 byte-aligned. */
4261 eoc = round_up_loc (input_location,
4262 rli_size_unit_so_far (rli),
4263 CLASSTYPE_ALIGN_UNIT (basetype));
4264 atend = layout_empty_base (rli, binfo, eoc, offsets);
4265 /* A nearly-empty class "has no proper base class that is empty,
4266 not morally virtual, and at an offset other than zero." */
4267 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4268 {
4269 if (atend)
4270 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4271 /* The check above (used in G++ 3.2) is insufficient because
4272 an empty class placed at offset zero might itself have an
4273 empty base at a nonzero offset. */
4274 else if (walk_subobject_offsets (basetype,
4275 empty_base_at_nonzero_offset_p,
4276 size_zero_node,
4277 /*offsets=*/NULL,
4278 /*max_offset=*/NULL_TREE,
4279 /*vbases_p=*/true))
4280 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4281 }
4282
4283 /* We do not create a FIELD_DECL for empty base classes because
4284 it might overlap some other field. We want to be able to
4285 create CONSTRUCTORs for the class by iterating over the
4286 FIELD_DECLs, and the back end does not handle overlapping
4287 FIELD_DECLs. */
4288
4289 /* An empty virtual base causes a class to be non-empty
4290 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4291 here because that was already done when the virtual table
4292 pointer was created. */
4293 }
4294
4295 /* Record the offsets of BINFO and its base subobjects. */
4296 record_subobject_offsets (binfo,
4297 BINFO_OFFSET (binfo),
4298 offsets,
4299 /*is_data_member=*/false);
4300
4301 return next_field;
4302 }
4303
4304 /* Layout all of the non-virtual base classes. Record empty
4305 subobjects in OFFSETS. T is the most derived type. Return nonzero
4306 if the type cannot be nearly empty. The fields created
4307 corresponding to the base classes will be inserted at
4308 *NEXT_FIELD. */
4309
4310 static void
4311 build_base_fields (record_layout_info rli,
4312 splay_tree offsets, tree *next_field)
4313 {
4314 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4315 subobjects. */
4316 tree t = rli->t;
4317 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4318 int i;
4319
4320 /* The primary base class is always allocated first. */
4321 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4322 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4323 offsets, next_field);
4324
4325 /* Now allocate the rest of the bases. */
4326 for (i = 0; i < n_baseclasses; ++i)
4327 {
4328 tree base_binfo;
4329
4330 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4331
4332 /* The primary base was already allocated above, so we don't
4333 need to allocate it again here. */
4334 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4335 continue;
4336
4337 /* Virtual bases are added at the end (a primary virtual base
4338 will have already been added). */
4339 if (BINFO_VIRTUAL_P (base_binfo))
4340 continue;
4341
4342 next_field = build_base_field (rli, base_binfo,
4343 offsets, next_field);
4344 }
4345 }
4346
4347 /* Go through the TYPE_METHODS of T issuing any appropriate
4348 diagnostics, figuring out which methods override which other
4349 methods, and so forth. */
4350
4351 static void
4352 check_methods (tree t)
4353 {
4354 tree x;
4355
4356 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4357 {
4358 check_for_override (x, t);
4359 if (DECL_PURE_VIRTUAL_P (x) && (TREE_CODE (x) != FUNCTION_DECL || ! DECL_VINDEX (x)))
4360 error ("initializer specified for non-virtual method %q+D", x);
4361 /* The name of the field is the original field name
4362 Save this in auxiliary field for later overloading. */
4363 if (TREE_CODE (x) == FUNCTION_DECL && DECL_VINDEX (x))
4364 {
4365 TYPE_POLYMORPHIC_P (t) = 1;
4366 if (DECL_PURE_VIRTUAL_P (x))
4367 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4368 }
4369 /* All user-provided destructors are non-trivial.
4370 Constructors and assignment ops are handled in
4371 grok_special_member_properties. */
4372 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4373 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4374 }
4375 }
4376
4377 /* FN is a constructor or destructor. Clone the declaration to create
4378 a specialized in-charge or not-in-charge version, as indicated by
4379 NAME. */
4380
4381 static tree
4382 build_clone (tree fn, tree name)
4383 {
4384 tree parms;
4385 tree clone;
4386
4387 /* Copy the function. */
4388 clone = copy_decl (fn);
4389 /* Reset the function name. */
4390 DECL_NAME (clone) = name;
4391 /* Remember where this function came from. */
4392 DECL_ABSTRACT_ORIGIN (clone) = fn;
4393 /* Make it easy to find the CLONE given the FN. */
4394 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4395 DECL_CHAIN (fn) = clone;
4396
4397 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4398 if (TREE_CODE (clone) == TEMPLATE_DECL)
4399 {
4400 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4401 DECL_TEMPLATE_RESULT (clone) = result;
4402 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4403 DECL_TI_TEMPLATE (result) = clone;
4404 TREE_TYPE (clone) = TREE_TYPE (result);
4405 return clone;
4406 }
4407
4408 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4409 DECL_CLONED_FUNCTION (clone) = fn;
4410 /* There's no pending inline data for this function. */
4411 DECL_PENDING_INLINE_INFO (clone) = NULL;
4412 DECL_PENDING_INLINE_P (clone) = 0;
4413
4414 /* The base-class destructor is not virtual. */
4415 if (name == base_dtor_identifier)
4416 {
4417 DECL_VIRTUAL_P (clone) = 0;
4418 if (TREE_CODE (clone) != TEMPLATE_DECL)
4419 DECL_VINDEX (clone) = NULL_TREE;
4420 }
4421
4422 /* If there was an in-charge parameter, drop it from the function
4423 type. */
4424 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4425 {
4426 tree basetype;
4427 tree parmtypes;
4428 tree exceptions;
4429
4430 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4431 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4432 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4433 /* Skip the `this' parameter. */
4434 parmtypes = TREE_CHAIN (parmtypes);
4435 /* Skip the in-charge parameter. */
4436 parmtypes = TREE_CHAIN (parmtypes);
4437 /* And the VTT parm, in a complete [cd]tor. */
4438 if (DECL_HAS_VTT_PARM_P (fn)
4439 && ! DECL_NEEDS_VTT_PARM_P (clone))
4440 parmtypes = TREE_CHAIN (parmtypes);
4441 /* If this is subobject constructor or destructor, add the vtt
4442 parameter. */
4443 TREE_TYPE (clone)
4444 = build_method_type_directly (basetype,
4445 TREE_TYPE (TREE_TYPE (clone)),
4446 parmtypes);
4447 if (exceptions)
4448 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4449 exceptions);
4450 TREE_TYPE (clone)
4451 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4452 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4453 }
4454
4455 /* Copy the function parameters. */
4456 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4457 /* Remove the in-charge parameter. */
4458 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4459 {
4460 DECL_CHAIN (DECL_ARGUMENTS (clone))
4461 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4462 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4463 }
4464 /* And the VTT parm, in a complete [cd]tor. */
4465 if (DECL_HAS_VTT_PARM_P (fn))
4466 {
4467 if (DECL_NEEDS_VTT_PARM_P (clone))
4468 DECL_HAS_VTT_PARM_P (clone) = 1;
4469 else
4470 {
4471 DECL_CHAIN (DECL_ARGUMENTS (clone))
4472 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4473 DECL_HAS_VTT_PARM_P (clone) = 0;
4474 }
4475 }
4476
4477 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4478 {
4479 DECL_CONTEXT (parms) = clone;
4480 cxx_dup_lang_specific_decl (parms);
4481 }
4482
4483 /* Create the RTL for this function. */
4484 SET_DECL_RTL (clone, NULL);
4485 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4486
4487 if (pch_file)
4488 note_decl_for_pch (clone);
4489
4490 return clone;
4491 }
4492
4493 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4494 not invoke this function directly.
4495
4496 For a non-thunk function, returns the address of the slot for storing
4497 the function it is a clone of. Otherwise returns NULL_TREE.
4498
4499 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4500 cloned_function is unset. This is to support the separate
4501 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4502 on a template makes sense, but not the former. */
4503
4504 tree *
4505 decl_cloned_function_p (const_tree decl, bool just_testing)
4506 {
4507 tree *ptr;
4508 if (just_testing)
4509 decl = STRIP_TEMPLATE (decl);
4510
4511 if (TREE_CODE (decl) != FUNCTION_DECL
4512 || !DECL_LANG_SPECIFIC (decl)
4513 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4514 {
4515 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4516 if (!just_testing)
4517 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4518 else
4519 #endif
4520 return NULL;
4521 }
4522
4523 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4524 if (just_testing && *ptr == NULL_TREE)
4525 return NULL;
4526 else
4527 return ptr;
4528 }
4529
4530 /* Produce declarations for all appropriate clones of FN. If
4531 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4532 CLASTYPE_METHOD_VEC as well. */
4533
4534 void
4535 clone_function_decl (tree fn, int update_method_vec_p)
4536 {
4537 tree clone;
4538
4539 /* Avoid inappropriate cloning. */
4540 if (DECL_CHAIN (fn)
4541 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4542 return;
4543
4544 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4545 {
4546 /* For each constructor, we need two variants: an in-charge version
4547 and a not-in-charge version. */
4548 clone = build_clone (fn, complete_ctor_identifier);
4549 if (update_method_vec_p)
4550 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4551 clone = build_clone (fn, base_ctor_identifier);
4552 if (update_method_vec_p)
4553 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4554 }
4555 else
4556 {
4557 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4558
4559 /* For each destructor, we need three variants: an in-charge
4560 version, a not-in-charge version, and an in-charge deleting
4561 version. We clone the deleting version first because that
4562 means it will go second on the TYPE_METHODS list -- and that
4563 corresponds to the correct layout order in the virtual
4564 function table.
4565
4566 For a non-virtual destructor, we do not build a deleting
4567 destructor. */
4568 if (DECL_VIRTUAL_P (fn))
4569 {
4570 clone = build_clone (fn, deleting_dtor_identifier);
4571 if (update_method_vec_p)
4572 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4573 }
4574 clone = build_clone (fn, complete_dtor_identifier);
4575 if (update_method_vec_p)
4576 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4577 clone = build_clone (fn, base_dtor_identifier);
4578 if (update_method_vec_p)
4579 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4580 }
4581
4582 /* Note that this is an abstract function that is never emitted. */
4583 DECL_ABSTRACT (fn) = 1;
4584 }
4585
4586 /* DECL is an in charge constructor, which is being defined. This will
4587 have had an in class declaration, from whence clones were
4588 declared. An out-of-class definition can specify additional default
4589 arguments. As it is the clones that are involved in overload
4590 resolution, we must propagate the information from the DECL to its
4591 clones. */
4592
4593 void
4594 adjust_clone_args (tree decl)
4595 {
4596 tree clone;
4597
4598 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4599 clone = DECL_CHAIN (clone))
4600 {
4601 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4602 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4603 tree decl_parms, clone_parms;
4604
4605 clone_parms = orig_clone_parms;
4606
4607 /* Skip the 'this' parameter. */
4608 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4609 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4610
4611 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4612 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4613 if (DECL_HAS_VTT_PARM_P (decl))
4614 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4615
4616 clone_parms = orig_clone_parms;
4617 if (DECL_HAS_VTT_PARM_P (clone))
4618 clone_parms = TREE_CHAIN (clone_parms);
4619
4620 for (decl_parms = orig_decl_parms; decl_parms;
4621 decl_parms = TREE_CHAIN (decl_parms),
4622 clone_parms = TREE_CHAIN (clone_parms))
4623 {
4624 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4625 TREE_TYPE (clone_parms)));
4626
4627 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4628 {
4629 /* A default parameter has been added. Adjust the
4630 clone's parameters. */
4631 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4632 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4633 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4634 tree type;
4635
4636 clone_parms = orig_decl_parms;
4637
4638 if (DECL_HAS_VTT_PARM_P (clone))
4639 {
4640 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4641 TREE_VALUE (orig_clone_parms),
4642 clone_parms);
4643 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4644 }
4645 type = build_method_type_directly (basetype,
4646 TREE_TYPE (TREE_TYPE (clone)),
4647 clone_parms);
4648 if (exceptions)
4649 type = build_exception_variant (type, exceptions);
4650 if (attrs)
4651 type = cp_build_type_attribute_variant (type, attrs);
4652 TREE_TYPE (clone) = type;
4653
4654 clone_parms = NULL_TREE;
4655 break;
4656 }
4657 }
4658 gcc_assert (!clone_parms);
4659 }
4660 }
4661
4662 /* For each of the constructors and destructors in T, create an
4663 in-charge and not-in-charge variant. */
4664
4665 static void
4666 clone_constructors_and_destructors (tree t)
4667 {
4668 tree fns;
4669
4670 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4671 out now. */
4672 if (!CLASSTYPE_METHOD_VEC (t))
4673 return;
4674
4675 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4676 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4677 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4678 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4679 }
4680
4681 /* Deduce noexcept for a destructor DTOR. */
4682
4683 void
4684 deduce_noexcept_on_destructor (tree dtor)
4685 {
4686 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4687 {
4688 tree eh_spec = unevaluated_noexcept_spec ();
4689 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4690 }
4691 }
4692
4693 /* For each destructor in T, deduce noexcept:
4694
4695 12.4/3: A declaration of a destructor that does not have an
4696 exception-specification is implicitly considered to have the
4697 same exception-specification as an implicit declaration (15.4). */
4698
4699 static void
4700 deduce_noexcept_on_destructors (tree t)
4701 {
4702 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4703 out now. */
4704 if (!CLASSTYPE_METHOD_VEC (t))
4705 return;
4706
4707 for (tree fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4708 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4709 }
4710
4711 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4712 of TYPE for virtual functions which FNDECL overrides. Return a
4713 mask of the tm attributes found therein. */
4714
4715 static int
4716 look_for_tm_attr_overrides (tree type, tree fndecl)
4717 {
4718 tree binfo = TYPE_BINFO (type);
4719 tree base_binfo;
4720 int ix, found = 0;
4721
4722 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4723 {
4724 tree o, basetype = BINFO_TYPE (base_binfo);
4725
4726 if (!TYPE_POLYMORPHIC_P (basetype))
4727 continue;
4728
4729 o = look_for_overrides_here (basetype, fndecl);
4730 if (o)
4731 found |= tm_attr_to_mask (find_tm_attribute
4732 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4733 else
4734 found |= look_for_tm_attr_overrides (basetype, fndecl);
4735 }
4736
4737 return found;
4738 }
4739
4740 /* Subroutine of set_method_tm_attributes. Handle the checks and
4741 inheritance for one virtual method FNDECL. */
4742
4743 static void
4744 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4745 {
4746 tree tm_attr;
4747 int found, have;
4748
4749 found = look_for_tm_attr_overrides (type, fndecl);
4750
4751 /* If FNDECL doesn't actually override anything (i.e. T is the
4752 class that first declares FNDECL virtual), then we're done. */
4753 if (found == 0)
4754 return;
4755
4756 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4757 have = tm_attr_to_mask (tm_attr);
4758
4759 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4760 tm_pure must match exactly, otherwise no weakening of
4761 tm_safe > tm_callable > nothing. */
4762 /* ??? The tm_pure attribute didn't make the transition to the
4763 multivendor language spec. */
4764 if (have == TM_ATTR_PURE)
4765 {
4766 if (found != TM_ATTR_PURE)
4767 {
4768 found &= -found;
4769 goto err_override;
4770 }
4771 }
4772 /* If the overridden function is tm_pure, then FNDECL must be. */
4773 else if (found == TM_ATTR_PURE && tm_attr)
4774 goto err_override;
4775 /* Look for base class combinations that cannot be satisfied. */
4776 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4777 {
4778 found &= ~TM_ATTR_PURE;
4779 found &= -found;
4780 error_at (DECL_SOURCE_LOCATION (fndecl),
4781 "method overrides both %<transaction_pure%> and %qE methods",
4782 tm_mask_to_attr (found));
4783 }
4784 /* If FNDECL did not declare an attribute, then inherit the most
4785 restrictive one. */
4786 else if (tm_attr == NULL)
4787 {
4788 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4789 }
4790 /* Otherwise validate that we're not weaker than a function
4791 that is being overridden. */
4792 else
4793 {
4794 found &= -found;
4795 if (found <= TM_ATTR_CALLABLE && have > found)
4796 goto err_override;
4797 }
4798 return;
4799
4800 err_override:
4801 error_at (DECL_SOURCE_LOCATION (fndecl),
4802 "method declared %qE overriding %qE method",
4803 tm_attr, tm_mask_to_attr (found));
4804 }
4805
4806 /* For each of the methods in T, propagate a class-level tm attribute. */
4807
4808 static void
4809 set_method_tm_attributes (tree t)
4810 {
4811 tree class_tm_attr, fndecl;
4812
4813 /* Don't bother collecting tm attributes if transactional memory
4814 support is not enabled. */
4815 if (!flag_tm)
4816 return;
4817
4818 /* Process virtual methods first, as they inherit directly from the
4819 base virtual function and also require validation of new attributes. */
4820 if (TYPE_CONTAINS_VPTR_P (t))
4821 {
4822 tree vchain;
4823 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4824 vchain = TREE_CHAIN (vchain))
4825 {
4826 fndecl = BV_FN (vchain);
4827 if (DECL_THUNK_P (fndecl))
4828 fndecl = THUNK_TARGET (fndecl);
4829 set_one_vmethod_tm_attributes (t, fndecl);
4830 }
4831 }
4832
4833 /* If the class doesn't have an attribute, nothing more to do. */
4834 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4835 if (class_tm_attr == NULL)
4836 return;
4837
4838 /* Any method that does not yet have a tm attribute inherits
4839 the one from the class. */
4840 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4841 {
4842 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4843 apply_tm_attr (fndecl, class_tm_attr);
4844 }
4845 }
4846
4847 /* Returns true iff class T has a user-defined constructor other than
4848 the default constructor. */
4849
4850 bool
4851 type_has_user_nondefault_constructor (tree t)
4852 {
4853 tree fns;
4854
4855 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4856 return false;
4857
4858 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4859 {
4860 tree fn = OVL_CURRENT (fns);
4861 if (!DECL_ARTIFICIAL (fn)
4862 && (TREE_CODE (fn) == TEMPLATE_DECL
4863 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4864 != NULL_TREE)))
4865 return true;
4866 }
4867
4868 return false;
4869 }
4870
4871 /* Returns the defaulted constructor if T has one. Otherwise, returns
4872 NULL_TREE. */
4873
4874 tree
4875 in_class_defaulted_default_constructor (tree t)
4876 {
4877 tree fns, args;
4878
4879 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4880 return NULL_TREE;
4881
4882 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4883 {
4884 tree fn = OVL_CURRENT (fns);
4885
4886 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4887 {
4888 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4889 while (args && TREE_PURPOSE (args))
4890 args = TREE_CHAIN (args);
4891 if (!args || args == void_list_node)
4892 return fn;
4893 }
4894 }
4895
4896 return NULL_TREE;
4897 }
4898
4899 /* Returns true iff FN is a user-provided function, i.e. user-declared
4900 and not defaulted at its first declaration; or explicit, private,
4901 protected, or non-const. */
4902
4903 bool
4904 user_provided_p (tree fn)
4905 {
4906 if (TREE_CODE (fn) == TEMPLATE_DECL)
4907 return true;
4908 else
4909 return (!DECL_ARTIFICIAL (fn)
4910 && !(DECL_INITIALIZED_IN_CLASS_P (fn)
4911 && (DECL_DEFAULTED_FN (fn) || DECL_DELETED_FN (fn))));
4912 }
4913
4914 /* Returns true iff class T has a user-provided constructor. */
4915
4916 bool
4917 type_has_user_provided_constructor (tree t)
4918 {
4919 tree fns;
4920
4921 if (!CLASS_TYPE_P (t))
4922 return false;
4923
4924 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4925 return false;
4926
4927 /* This can happen in error cases; avoid crashing. */
4928 if (!CLASSTYPE_METHOD_VEC (t))
4929 return false;
4930
4931 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4932 if (user_provided_p (OVL_CURRENT (fns)))
4933 return true;
4934
4935 return false;
4936 }
4937
4938 /* Returns true iff class T has a user-provided default constructor. */
4939
4940 bool
4941 type_has_user_provided_default_constructor (tree t)
4942 {
4943 tree fns;
4944
4945 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4946 return false;
4947
4948 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4949 {
4950 tree fn = OVL_CURRENT (fns);
4951 if (TREE_CODE (fn) == FUNCTION_DECL
4952 && user_provided_p (fn)
4953 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4954 return true;
4955 }
4956
4957 return false;
4958 }
4959
4960 /* TYPE is being used as a virtual base, and has a non-trivial move
4961 assignment. Return true if this is due to there being a user-provided
4962 move assignment in TYPE or one of its subobjects; if there isn't, then
4963 multiple move assignment can't cause any harm. */
4964
4965 bool
4966 vbase_has_user_provided_move_assign (tree type)
4967 {
4968 /* Does the type itself have a user-provided move assignment operator? */
4969 for (tree fns
4970 = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR));
4971 fns; fns = OVL_NEXT (fns))
4972 {
4973 tree fn = OVL_CURRENT (fns);
4974 if (move_fn_p (fn) && user_provided_p (fn))
4975 return true;
4976 }
4977
4978 /* Do any of its bases? */
4979 tree binfo = TYPE_BINFO (type);
4980 tree base_binfo;
4981 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4982 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
4983 return true;
4984
4985 /* Or non-static data members? */
4986 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4987 {
4988 if (TREE_CODE (field) == FIELD_DECL
4989 && CLASS_TYPE_P (TREE_TYPE (field))
4990 && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
4991 return true;
4992 }
4993
4994 /* Seems not. */
4995 return false;
4996 }
4997
4998 /* If default-initialization leaves part of TYPE uninitialized, returns
4999 a DECL for the field or TYPE itself (DR 253). */
5000
5001 tree
5002 default_init_uninitialized_part (tree type)
5003 {
5004 tree t, r, binfo;
5005 int i;
5006
5007 type = strip_array_types (type);
5008 if (!CLASS_TYPE_P (type))
5009 return type;
5010 if (type_has_user_provided_default_constructor (type))
5011 return NULL_TREE;
5012 for (binfo = TYPE_BINFO (type), i = 0;
5013 BINFO_BASE_ITERATE (binfo, i, t); ++i)
5014 {
5015 r = default_init_uninitialized_part (BINFO_TYPE (t));
5016 if (r)
5017 return r;
5018 }
5019 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
5020 if (TREE_CODE (t) == FIELD_DECL
5021 && !DECL_ARTIFICIAL (t)
5022 && !DECL_INITIAL (t))
5023 {
5024 r = default_init_uninitialized_part (TREE_TYPE (t));
5025 if (r)
5026 return DECL_P (r) ? r : t;
5027 }
5028
5029 return NULL_TREE;
5030 }
5031
5032 /* Returns true iff for class T, a trivial synthesized default constructor
5033 would be constexpr. */
5034
5035 bool
5036 trivial_default_constructor_is_constexpr (tree t)
5037 {
5038 /* A defaulted trivial default constructor is constexpr
5039 if there is nothing to initialize. */
5040 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
5041 return is_really_empty_class (t);
5042 }
5043
5044 /* Returns true iff class T has a constexpr default constructor. */
5045
5046 bool
5047 type_has_constexpr_default_constructor (tree t)
5048 {
5049 tree fns;
5050
5051 if (!CLASS_TYPE_P (t))
5052 {
5053 /* The caller should have stripped an enclosing array. */
5054 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
5055 return false;
5056 }
5057 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5058 {
5059 if (!TYPE_HAS_COMPLEX_DFLT (t))
5060 return trivial_default_constructor_is_constexpr (t);
5061 /* Non-trivial, we need to check subobject constructors. */
5062 lazily_declare_fn (sfk_constructor, t);
5063 }
5064 fns = locate_ctor (t);
5065 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
5066 }
5067
5068 /* Returns true iff class TYPE has a virtual destructor. */
5069
5070 bool
5071 type_has_virtual_destructor (tree type)
5072 {
5073 tree dtor;
5074
5075 if (!CLASS_TYPE_P (type))
5076 return false;
5077
5078 gcc_assert (COMPLETE_TYPE_P (type));
5079 dtor = CLASSTYPE_DESTRUCTORS (type);
5080 return (dtor && DECL_VIRTUAL_P (dtor));
5081 }
5082
5083 /* Returns true iff class T has a move constructor. */
5084
5085 bool
5086 type_has_move_constructor (tree t)
5087 {
5088 tree fns;
5089
5090 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5091 {
5092 gcc_assert (COMPLETE_TYPE_P (t));
5093 lazily_declare_fn (sfk_move_constructor, t);
5094 }
5095
5096 if (!CLASSTYPE_METHOD_VEC (t))
5097 return false;
5098
5099 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5100 if (move_fn_p (OVL_CURRENT (fns)))
5101 return true;
5102
5103 return false;
5104 }
5105
5106 /* Returns true iff class T has a move assignment operator. */
5107
5108 bool
5109 type_has_move_assign (tree t)
5110 {
5111 tree fns;
5112
5113 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5114 {
5115 gcc_assert (COMPLETE_TYPE_P (t));
5116 lazily_declare_fn (sfk_move_assignment, t);
5117 }
5118
5119 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5120 fns; fns = OVL_NEXT (fns))
5121 if (move_fn_p (OVL_CURRENT (fns)))
5122 return true;
5123
5124 return false;
5125 }
5126
5127 /* Returns true iff class T has a move constructor that was explicitly
5128 declared in the class body. Note that this is different from
5129 "user-provided", which doesn't include functions that are defaulted in
5130 the class. */
5131
5132 bool
5133 type_has_user_declared_move_constructor (tree t)
5134 {
5135 tree fns;
5136
5137 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5138 return false;
5139
5140 if (!CLASSTYPE_METHOD_VEC (t))
5141 return false;
5142
5143 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5144 {
5145 tree fn = OVL_CURRENT (fns);
5146 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5147 return true;
5148 }
5149
5150 return false;
5151 }
5152
5153 /* Returns true iff class T has a move assignment operator that was
5154 explicitly declared in the class body. */
5155
5156 bool
5157 type_has_user_declared_move_assign (tree t)
5158 {
5159 tree fns;
5160
5161 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5162 return false;
5163
5164 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5165 fns; fns = OVL_NEXT (fns))
5166 {
5167 tree fn = OVL_CURRENT (fns);
5168 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5169 return true;
5170 }
5171
5172 return false;
5173 }
5174
5175 /* Nonzero if we need to build up a constructor call when initializing an
5176 object of this class, either because it has a user-declared constructor
5177 or because it doesn't have a default constructor (so we need to give an
5178 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5179 what you care about is whether or not an object can be produced by a
5180 constructor (e.g. so we don't set TREE_READONLY on const variables of
5181 such type); use this function when what you care about is whether or not
5182 to try to call a constructor to create an object. The latter case is
5183 the former plus some cases of constructors that cannot be called. */
5184
5185 bool
5186 type_build_ctor_call (tree t)
5187 {
5188 tree inner;
5189 if (TYPE_NEEDS_CONSTRUCTING (t))
5190 return true;
5191 inner = strip_array_types (t);
5192 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner))
5193 return false;
5194 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner))
5195 return true;
5196 if (cxx_dialect < cxx11)
5197 return false;
5198 /* A user-declared constructor might be private, and a constructor might
5199 be trivial but deleted. */
5200 for (tree fns = lookup_fnfields_slot (inner, complete_ctor_identifier);
5201 fns; fns = OVL_NEXT (fns))
5202 {
5203 tree fn = OVL_CURRENT (fns);
5204 if (!DECL_ARTIFICIAL (fn)
5205 || DECL_DELETED_FN (fn))
5206 return true;
5207 }
5208 return false;
5209 }
5210
5211 /* Like type_build_ctor_call, but for destructors. */
5212
5213 bool
5214 type_build_dtor_call (tree t)
5215 {
5216 tree inner;
5217 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5218 return true;
5219 inner = strip_array_types (t);
5220 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner)
5221 || !COMPLETE_TYPE_P (inner))
5222 return false;
5223 if (cxx_dialect < cxx11)
5224 return false;
5225 /* A user-declared destructor might be private, and a destructor might
5226 be trivial but deleted. */
5227 for (tree fns = lookup_fnfields_slot (inner, complete_dtor_identifier);
5228 fns; fns = OVL_NEXT (fns))
5229 {
5230 tree fn = OVL_CURRENT (fns);
5231 if (!DECL_ARTIFICIAL (fn)
5232 || DECL_DELETED_FN (fn))
5233 return true;
5234 }
5235 return false;
5236 }
5237
5238 /* Remove all zero-width bit-fields from T. */
5239
5240 static void
5241 remove_zero_width_bit_fields (tree t)
5242 {
5243 tree *fieldsp;
5244
5245 fieldsp = &TYPE_FIELDS (t);
5246 while (*fieldsp)
5247 {
5248 if (TREE_CODE (*fieldsp) == FIELD_DECL
5249 && DECL_C_BIT_FIELD (*fieldsp)
5250 /* We should not be confused by the fact that grokbitfield
5251 temporarily sets the width of the bit field into
5252 DECL_INITIAL (*fieldsp).
5253 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5254 to that width. */
5255 && integer_zerop (DECL_SIZE (*fieldsp)))
5256 *fieldsp = DECL_CHAIN (*fieldsp);
5257 else
5258 fieldsp = &DECL_CHAIN (*fieldsp);
5259 }
5260 }
5261
5262 /* Returns TRUE iff we need a cookie when dynamically allocating an
5263 array whose elements have the indicated class TYPE. */
5264
5265 static bool
5266 type_requires_array_cookie (tree type)
5267 {
5268 tree fns;
5269 bool has_two_argument_delete_p = false;
5270
5271 gcc_assert (CLASS_TYPE_P (type));
5272
5273 /* If there's a non-trivial destructor, we need a cookie. In order
5274 to iterate through the array calling the destructor for each
5275 element, we'll have to know how many elements there are. */
5276 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5277 return true;
5278
5279 /* If the usual deallocation function is a two-argument whose second
5280 argument is of type `size_t', then we have to pass the size of
5281 the array to the deallocation function, so we will need to store
5282 a cookie. */
5283 fns = lookup_fnfields (TYPE_BINFO (type),
5284 ansi_opname (VEC_DELETE_EXPR),
5285 /*protect=*/0);
5286 /* If there are no `operator []' members, or the lookup is
5287 ambiguous, then we don't need a cookie. */
5288 if (!fns || fns == error_mark_node)
5289 return false;
5290 /* Loop through all of the functions. */
5291 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5292 {
5293 tree fn;
5294 tree second_parm;
5295
5296 /* Select the current function. */
5297 fn = OVL_CURRENT (fns);
5298 /* See if this function is a one-argument delete function. If
5299 it is, then it will be the usual deallocation function. */
5300 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5301 if (second_parm == void_list_node)
5302 return false;
5303 /* Do not consider this function if its second argument is an
5304 ellipsis. */
5305 if (!second_parm)
5306 continue;
5307 /* Otherwise, if we have a two-argument function and the second
5308 argument is `size_t', it will be the usual deallocation
5309 function -- unless there is one-argument function, too. */
5310 if (TREE_CHAIN (second_parm) == void_list_node
5311 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5312 has_two_argument_delete_p = true;
5313 }
5314
5315 return has_two_argument_delete_p;
5316 }
5317
5318 /* Finish computing the `literal type' property of class type T.
5319
5320 At this point, we have already processed base classes and
5321 non-static data members. We need to check whether the copy
5322 constructor is trivial, the destructor is trivial, and there
5323 is a trivial default constructor or at least one constexpr
5324 constructor other than the copy constructor. */
5325
5326 static void
5327 finalize_literal_type_property (tree t)
5328 {
5329 tree fn;
5330
5331 if (cxx_dialect < cxx11
5332 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5333 CLASSTYPE_LITERAL_P (t) = false;
5334 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5335 && CLASSTYPE_NON_AGGREGATE (t)
5336 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5337 CLASSTYPE_LITERAL_P (t) = false;
5338
5339 if (!CLASSTYPE_LITERAL_P (t))
5340 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5341 if (DECL_DECLARED_CONSTEXPR_P (fn)
5342 && TREE_CODE (fn) != TEMPLATE_DECL
5343 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5344 && !DECL_CONSTRUCTOR_P (fn))
5345 {
5346 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5347 if (!DECL_GENERATED_P (fn))
5348 {
5349 error ("enclosing class of constexpr non-static member "
5350 "function %q+#D is not a literal type", fn);
5351 explain_non_literal_class (t);
5352 }
5353 }
5354 }
5355
5356 /* T is a non-literal type used in a context which requires a constant
5357 expression. Explain why it isn't literal. */
5358
5359 void
5360 explain_non_literal_class (tree t)
5361 {
5362 static struct pointer_set_t *diagnosed;
5363
5364 if (!CLASS_TYPE_P (t))
5365 return;
5366 t = TYPE_MAIN_VARIANT (t);
5367
5368 if (diagnosed == NULL)
5369 diagnosed = pointer_set_create ();
5370 if (pointer_set_insert (diagnosed, t) != 0)
5371 /* Already explained. */
5372 return;
5373
5374 inform (0, "%q+T is not literal because:", t);
5375 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5376 inform (0, " %q+T has a non-trivial destructor", t);
5377 else if (CLASSTYPE_NON_AGGREGATE (t)
5378 && !TYPE_HAS_TRIVIAL_DFLT (t)
5379 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5380 {
5381 inform (0, " %q+T is not an aggregate, does not have a trivial "
5382 "default constructor, and has no constexpr constructor that "
5383 "is not a copy or move constructor", t);
5384 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5385 && !type_has_user_provided_default_constructor (t))
5386 {
5387 /* Note that we can't simply call locate_ctor because when the
5388 constructor is deleted it just returns NULL_TREE. */
5389 tree fns;
5390 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5391 {
5392 tree fn = OVL_CURRENT (fns);
5393 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5394
5395 parms = skip_artificial_parms_for (fn, parms);
5396
5397 if (sufficient_parms_p (parms))
5398 {
5399 if (DECL_DELETED_FN (fn))
5400 maybe_explain_implicit_delete (fn);
5401 else
5402 explain_invalid_constexpr_fn (fn);
5403 break;
5404 }
5405 }
5406 }
5407 }
5408 else
5409 {
5410 tree binfo, base_binfo, field; int i;
5411 for (binfo = TYPE_BINFO (t), i = 0;
5412 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5413 {
5414 tree basetype = TREE_TYPE (base_binfo);
5415 if (!CLASSTYPE_LITERAL_P (basetype))
5416 {
5417 inform (0, " base class %qT of %q+T is non-literal",
5418 basetype, t);
5419 explain_non_literal_class (basetype);
5420 return;
5421 }
5422 }
5423 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5424 {
5425 tree ftype;
5426 if (TREE_CODE (field) != FIELD_DECL)
5427 continue;
5428 ftype = TREE_TYPE (field);
5429 if (!literal_type_p (ftype))
5430 {
5431 inform (0, " non-static data member %q+D has "
5432 "non-literal type", field);
5433 if (CLASS_TYPE_P (ftype))
5434 explain_non_literal_class (ftype);
5435 }
5436 }
5437 }
5438 }
5439
5440 /* Check the validity of the bases and members declared in T. Add any
5441 implicitly-generated functions (like copy-constructors and
5442 assignment operators). Compute various flag bits (like
5443 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5444 level: i.e., independently of the ABI in use. */
5445
5446 static void
5447 check_bases_and_members (tree t)
5448 {
5449 /* Nonzero if the implicitly generated copy constructor should take
5450 a non-const reference argument. */
5451 int cant_have_const_ctor;
5452 /* Nonzero if the implicitly generated assignment operator
5453 should take a non-const reference argument. */
5454 int no_const_asn_ref;
5455 tree access_decls;
5456 bool saved_complex_asn_ref;
5457 bool saved_nontrivial_dtor;
5458 tree fn;
5459
5460 /* Pick up any abi_tags from our template arguments before checking. */
5461 inherit_targ_abi_tags (t);
5462
5463 /* By default, we use const reference arguments and generate default
5464 constructors. */
5465 cant_have_const_ctor = 0;
5466 no_const_asn_ref = 0;
5467
5468 /* Check all the base-classes. */
5469 check_bases (t, &cant_have_const_ctor,
5470 &no_const_asn_ref);
5471
5472 /* Deduce noexcept on destructors. This needs to happen after we've set
5473 triviality flags appropriately for our bases. */
5474 if (cxx_dialect >= cxx11)
5475 deduce_noexcept_on_destructors (t);
5476
5477 /* Check all the method declarations. */
5478 check_methods (t);
5479
5480 /* Save the initial values of these flags which only indicate whether
5481 or not the class has user-provided functions. As we analyze the
5482 bases and members we can set these flags for other reasons. */
5483 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5484 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5485
5486 /* Check all the data member declarations. We cannot call
5487 check_field_decls until we have called check_bases check_methods,
5488 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5489 being set appropriately. */
5490 check_field_decls (t, &access_decls,
5491 &cant_have_const_ctor,
5492 &no_const_asn_ref);
5493
5494 /* A nearly-empty class has to be vptr-containing; a nearly empty
5495 class contains just a vptr. */
5496 if (!TYPE_CONTAINS_VPTR_P (t))
5497 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5498
5499 /* Do some bookkeeping that will guide the generation of implicitly
5500 declared member functions. */
5501 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5502 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5503 /* We need to call a constructor for this class if it has a
5504 user-provided constructor, or if the default constructor is going
5505 to initialize the vptr. (This is not an if-and-only-if;
5506 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5507 themselves need constructing.) */
5508 TYPE_NEEDS_CONSTRUCTING (t)
5509 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5510 /* [dcl.init.aggr]
5511
5512 An aggregate is an array or a class with no user-provided
5513 constructors ... and no virtual functions.
5514
5515 Again, other conditions for being an aggregate are checked
5516 elsewhere. */
5517 CLASSTYPE_NON_AGGREGATE (t)
5518 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5519 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5520 retain the old definition internally for ABI reasons. */
5521 CLASSTYPE_NON_LAYOUT_POD_P (t)
5522 |= (CLASSTYPE_NON_AGGREGATE (t)
5523 || saved_nontrivial_dtor || saved_complex_asn_ref);
5524 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5525 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5526 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5527 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5528
5529 /* Warn if a public base of a polymorphic type has an accessible
5530 non-virtual destructor. It is only now that we know the class is
5531 polymorphic. Although a polymorphic base will have a already
5532 been diagnosed during its definition, we warn on use too. */
5533 if (TYPE_POLYMORPHIC_P (t) && warn_nonvdtor)
5534 {
5535 tree binfo = TYPE_BINFO (t);
5536 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
5537 tree base_binfo;
5538 unsigned i;
5539
5540 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5541 {
5542 tree basetype = TREE_TYPE (base_binfo);
5543
5544 if ((*accesses)[i] == access_public_node
5545 && (TYPE_POLYMORPHIC_P (basetype) || warn_ecpp)
5546 && accessible_nvdtor_p (basetype))
5547 warning (OPT_Wnon_virtual_dtor,
5548 "base class %q#T has accessible non-virtual destructor",
5549 basetype);
5550 }
5551 }
5552
5553 /* If the class has no user-declared constructor, but does have
5554 non-static const or reference data members that can never be
5555 initialized, issue a warning. */
5556 if (warn_uninitialized
5557 /* Classes with user-declared constructors are presumed to
5558 initialize these members. */
5559 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5560 /* Aggregates can be initialized with brace-enclosed
5561 initializers. */
5562 && CLASSTYPE_NON_AGGREGATE (t))
5563 {
5564 tree field;
5565
5566 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5567 {
5568 tree type;
5569
5570 if (TREE_CODE (field) != FIELD_DECL
5571 || DECL_INITIAL (field) != NULL_TREE)
5572 continue;
5573
5574 type = TREE_TYPE (field);
5575 if (TREE_CODE (type) == REFERENCE_TYPE)
5576 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5577 "in class without a constructor", field);
5578 else if (CP_TYPE_CONST_P (type)
5579 && (!CLASS_TYPE_P (type)
5580 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5581 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5582 "in class without a constructor", field);
5583 }
5584 }
5585
5586 /* Synthesize any needed methods. */
5587 add_implicitly_declared_members (t, &access_decls,
5588 cant_have_const_ctor,
5589 no_const_asn_ref);
5590
5591 /* Check defaulted declarations here so we have cant_have_const_ctor
5592 and don't need to worry about clones. */
5593 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5594 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5595 {
5596 int copy = copy_fn_p (fn);
5597 if (copy > 0)
5598 {
5599 bool imp_const_p
5600 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5601 : !no_const_asn_ref);
5602 bool fn_const_p = (copy == 2);
5603
5604 if (fn_const_p && !imp_const_p)
5605 /* If the function is defaulted outside the class, we just
5606 give the synthesis error. */
5607 error ("%q+D declared to take const reference, but implicit "
5608 "declaration would take non-const", fn);
5609 }
5610 defaulted_late_check (fn);
5611 }
5612
5613 if (LAMBDA_TYPE_P (t))
5614 {
5615 /* "The closure type associated with a lambda-expression has a deleted
5616 default constructor and a deleted copy assignment operator." */
5617 TYPE_NEEDS_CONSTRUCTING (t) = 1;
5618 TYPE_HAS_COMPLEX_DFLT (t) = 1;
5619 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
5620 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
5621
5622 /* "This class type is not an aggregate." */
5623 CLASSTYPE_NON_AGGREGATE (t) = 1;
5624 }
5625
5626 /* Compute the 'literal type' property before we
5627 do anything with non-static member functions. */
5628 finalize_literal_type_property (t);
5629
5630 /* Create the in-charge and not-in-charge variants of constructors
5631 and destructors. */
5632 clone_constructors_and_destructors (t);
5633
5634 /* Process the using-declarations. */
5635 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5636 handle_using_decl (TREE_VALUE (access_decls), t);
5637
5638 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5639 finish_struct_methods (t);
5640
5641 /* Figure out whether or not we will need a cookie when dynamically
5642 allocating an array of this type. */
5643 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5644 = type_requires_array_cookie (t);
5645 }
5646
5647 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5648 accordingly. If a new vfield was created (because T doesn't have a
5649 primary base class), then the newly created field is returned. It
5650 is not added to the TYPE_FIELDS list; it is the caller's
5651 responsibility to do that. Accumulate declared virtual functions
5652 on VIRTUALS_P. */
5653
5654 static tree
5655 create_vtable_ptr (tree t, tree* virtuals_p)
5656 {
5657 tree fn;
5658
5659 /* Collect the virtual functions declared in T. */
5660 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5661 if (TREE_CODE (fn) == FUNCTION_DECL
5662 && DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5663 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5664 {
5665 tree new_virtual = make_node (TREE_LIST);
5666
5667 BV_FN (new_virtual) = fn;
5668 BV_DELTA (new_virtual) = integer_zero_node;
5669 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5670
5671 TREE_CHAIN (new_virtual) = *virtuals_p;
5672 *virtuals_p = new_virtual;
5673 }
5674
5675 /* If we couldn't find an appropriate base class, create a new field
5676 here. Even if there weren't any new virtual functions, we might need a
5677 new virtual function table if we're supposed to include vptrs in
5678 all classes that need them. */
5679 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5680 {
5681 /* We build this decl with vtbl_ptr_type_node, which is a
5682 `vtable_entry_type*'. It might seem more precise to use
5683 `vtable_entry_type (*)[N]' where N is the number of virtual
5684 functions. However, that would require the vtable pointer in
5685 base classes to have a different type than the vtable pointer
5686 in derived classes. We could make that happen, but that
5687 still wouldn't solve all the problems. In particular, the
5688 type-based alias analysis code would decide that assignments
5689 to the base class vtable pointer can't alias assignments to
5690 the derived class vtable pointer, since they have different
5691 types. Thus, in a derived class destructor, where the base
5692 class constructor was inlined, we could generate bad code for
5693 setting up the vtable pointer.
5694
5695 Therefore, we use one type for all vtable pointers. We still
5696 use a type-correct type; it's just doesn't indicate the array
5697 bounds. That's better than using `void*' or some such; it's
5698 cleaner, and it let's the alias analysis code know that these
5699 stores cannot alias stores to void*! */
5700 tree field;
5701
5702 field = build_decl (input_location,
5703 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5704 DECL_VIRTUAL_P (field) = 1;
5705 DECL_ARTIFICIAL (field) = 1;
5706 DECL_FIELD_CONTEXT (field) = t;
5707 DECL_FCONTEXT (field) = t;
5708 if (TYPE_PACKED (t))
5709 DECL_PACKED (field) = 1;
5710
5711 TYPE_VFIELD (t) = field;
5712
5713 /* This class is non-empty. */
5714 CLASSTYPE_EMPTY_P (t) = 0;
5715
5716 return field;
5717 }
5718
5719 return NULL_TREE;
5720 }
5721
5722 /* Add OFFSET to all base types of BINFO which is a base in the
5723 hierarchy dominated by T.
5724
5725 OFFSET, which is a type offset, is number of bytes. */
5726
5727 static void
5728 propagate_binfo_offsets (tree binfo, tree offset)
5729 {
5730 int i;
5731 tree primary_binfo;
5732 tree base_binfo;
5733
5734 /* Update BINFO's offset. */
5735 BINFO_OFFSET (binfo)
5736 = convert (sizetype,
5737 size_binop (PLUS_EXPR,
5738 convert (ssizetype, BINFO_OFFSET (binfo)),
5739 offset));
5740
5741 /* Find the primary base class. */
5742 primary_binfo = get_primary_binfo (binfo);
5743
5744 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5745 propagate_binfo_offsets (primary_binfo, offset);
5746
5747 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5748 downwards. */
5749 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5750 {
5751 /* Don't do the primary base twice. */
5752 if (base_binfo == primary_binfo)
5753 continue;
5754
5755 if (BINFO_VIRTUAL_P (base_binfo))
5756 continue;
5757
5758 propagate_binfo_offsets (base_binfo, offset);
5759 }
5760 }
5761
5762 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5763 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5764 empty subobjects of T. */
5765
5766 static void
5767 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5768 {
5769 tree vbase;
5770 tree t = rli->t;
5771 tree *next_field;
5772
5773 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5774 return;
5775
5776 /* Find the last field. The artificial fields created for virtual
5777 bases will go after the last extant field to date. */
5778 next_field = &TYPE_FIELDS (t);
5779 while (*next_field)
5780 next_field = &DECL_CHAIN (*next_field);
5781
5782 /* Go through the virtual bases, allocating space for each virtual
5783 base that is not already a primary base class. These are
5784 allocated in inheritance graph order. */
5785 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5786 {
5787 if (!BINFO_VIRTUAL_P (vbase))
5788 continue;
5789
5790 if (!BINFO_PRIMARY_P (vbase))
5791 {
5792 /* This virtual base is not a primary base of any class in the
5793 hierarchy, so we have to add space for it. */
5794 next_field = build_base_field (rli, vbase,
5795 offsets, next_field);
5796 }
5797 }
5798 }
5799
5800 /* Returns the offset of the byte just past the end of the base class
5801 BINFO. */
5802
5803 static tree
5804 end_of_base (tree binfo)
5805 {
5806 tree size;
5807
5808 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5809 size = TYPE_SIZE_UNIT (char_type_node);
5810 else if (is_empty_class (BINFO_TYPE (binfo)))
5811 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5812 allocate some space for it. It cannot have virtual bases, so
5813 TYPE_SIZE_UNIT is fine. */
5814 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5815 else
5816 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5817
5818 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5819 }
5820
5821 /* Returns the offset of the byte just past the end of the base class
5822 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5823 only non-virtual bases are included. */
5824
5825 static tree
5826 end_of_class (tree t, int include_virtuals_p)
5827 {
5828 tree result = size_zero_node;
5829 vec<tree, va_gc> *vbases;
5830 tree binfo;
5831 tree base_binfo;
5832 tree offset;
5833 int i;
5834
5835 for (binfo = TYPE_BINFO (t), i = 0;
5836 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5837 {
5838 if (!include_virtuals_p
5839 && BINFO_VIRTUAL_P (base_binfo)
5840 && (!BINFO_PRIMARY_P (base_binfo)
5841 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5842 continue;
5843
5844 offset = end_of_base (base_binfo);
5845 if (tree_int_cst_lt (result, offset))
5846 result = offset;
5847 }
5848
5849 if (include_virtuals_p)
5850 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5851 vec_safe_iterate (vbases, i, &base_binfo); i++)
5852 {
5853 offset = end_of_base (base_binfo);
5854 if (tree_int_cst_lt (result, offset))
5855 result = offset;
5856 }
5857
5858 return result;
5859 }
5860
5861 /* Warn about bases of T that are inaccessible because they are
5862 ambiguous. For example:
5863
5864 struct S {};
5865 struct T : public S {};
5866 struct U : public S, public T {};
5867
5868 Here, `(S*) new U' is not allowed because there are two `S'
5869 subobjects of U. */
5870
5871 static void
5872 warn_about_ambiguous_bases (tree t)
5873 {
5874 int i;
5875 vec<tree, va_gc> *vbases;
5876 tree basetype;
5877 tree binfo;
5878 tree base_binfo;
5879
5880 /* If there are no repeated bases, nothing can be ambiguous. */
5881 if (!CLASSTYPE_REPEATED_BASE_P (t))
5882 return;
5883
5884 /* Check direct bases. */
5885 for (binfo = TYPE_BINFO (t), i = 0;
5886 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5887 {
5888 basetype = BINFO_TYPE (base_binfo);
5889
5890 if (!uniquely_derived_from_p (basetype, t))
5891 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5892 basetype, t);
5893 }
5894
5895 /* Check for ambiguous virtual bases. */
5896 if (extra_warnings)
5897 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5898 vec_safe_iterate (vbases, i, &binfo); i++)
5899 {
5900 basetype = BINFO_TYPE (binfo);
5901
5902 if (!uniquely_derived_from_p (basetype, t))
5903 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5904 "to ambiguity", basetype, t);
5905 }
5906 }
5907
5908 /* Compare two INTEGER_CSTs K1 and K2. */
5909
5910 static int
5911 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5912 {
5913 return tree_int_cst_compare ((tree) k1, (tree) k2);
5914 }
5915
5916 /* Increase the size indicated in RLI to account for empty classes
5917 that are "off the end" of the class. */
5918
5919 static void
5920 include_empty_classes (record_layout_info rli)
5921 {
5922 tree eoc;
5923 tree rli_size;
5924
5925 /* It might be the case that we grew the class to allocate a
5926 zero-sized base class. That won't be reflected in RLI, yet,
5927 because we are willing to overlay multiple bases at the same
5928 offset. However, now we need to make sure that RLI is big enough
5929 to reflect the entire class. */
5930 eoc = end_of_class (rli->t,
5931 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5932 rli_size = rli_size_unit_so_far (rli);
5933 if (TREE_CODE (rli_size) == INTEGER_CST
5934 && tree_int_cst_lt (rli_size, eoc))
5935 {
5936 /* The size should have been rounded to a whole byte. */
5937 gcc_assert (tree_int_cst_equal
5938 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5939 rli->bitpos
5940 = size_binop (PLUS_EXPR,
5941 rli->bitpos,
5942 size_binop (MULT_EXPR,
5943 convert (bitsizetype,
5944 size_binop (MINUS_EXPR,
5945 eoc, rli_size)),
5946 bitsize_int (BITS_PER_UNIT)));
5947 normalize_rli (rli);
5948 }
5949 }
5950
5951 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5952 BINFO_OFFSETs for all of the base-classes. Position the vtable
5953 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5954
5955 static void
5956 layout_class_type (tree t, tree *virtuals_p)
5957 {
5958 tree non_static_data_members;
5959 tree field;
5960 tree vptr;
5961 record_layout_info rli;
5962 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
5963 types that appear at that offset. */
5964 splay_tree empty_base_offsets;
5965 /* True if the last field laid out was a bit-field. */
5966 bool last_field_was_bitfield = false;
5967 /* The location at which the next field should be inserted. */
5968 tree *next_field;
5969 /* T, as a base class. */
5970 tree base_t;
5971
5972 /* Keep track of the first non-static data member. */
5973 non_static_data_members = TYPE_FIELDS (t);
5974
5975 /* Start laying out the record. */
5976 rli = start_record_layout (t);
5977
5978 /* Mark all the primary bases in the hierarchy. */
5979 determine_primary_bases (t);
5980
5981 /* Create a pointer to our virtual function table. */
5982 vptr = create_vtable_ptr (t, virtuals_p);
5983
5984 /* The vptr is always the first thing in the class. */
5985 if (vptr)
5986 {
5987 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
5988 TYPE_FIELDS (t) = vptr;
5989 next_field = &DECL_CHAIN (vptr);
5990 place_field (rli, vptr);
5991 }
5992 else
5993 next_field = &TYPE_FIELDS (t);
5994
5995 /* Build FIELD_DECLs for all of the non-virtual base-types. */
5996 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5997 NULL, NULL);
5998 build_base_fields (rli, empty_base_offsets, next_field);
5999
6000 /* Layout the non-static data members. */
6001 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
6002 {
6003 tree type;
6004 tree padding;
6005
6006 /* We still pass things that aren't non-static data members to
6007 the back end, in case it wants to do something with them. */
6008 if (TREE_CODE (field) != FIELD_DECL)
6009 {
6010 place_field (rli, field);
6011 /* If the static data member has incomplete type, keep track
6012 of it so that it can be completed later. (The handling
6013 of pending statics in finish_record_layout is
6014 insufficient; consider:
6015
6016 struct S1;
6017 struct S2 { static S1 s1; };
6018
6019 At this point, finish_record_layout will be called, but
6020 S1 is still incomplete.) */
6021 if (VAR_P (field))
6022 {
6023 maybe_register_incomplete_var (field);
6024 /* The visibility of static data members is determined
6025 at their point of declaration, not their point of
6026 definition. */
6027 determine_visibility (field);
6028 }
6029 continue;
6030 }
6031
6032 type = TREE_TYPE (field);
6033 if (type == error_mark_node)
6034 continue;
6035
6036 padding = NULL_TREE;
6037
6038 /* If this field is a bit-field whose width is greater than its
6039 type, then there are some special rules for allocating
6040 it. */
6041 if (DECL_C_BIT_FIELD (field)
6042 && tree_int_cst_lt (TYPE_SIZE (type), DECL_SIZE (field)))
6043 {
6044 unsigned int itk;
6045 tree integer_type;
6046 bool was_unnamed_p = false;
6047 /* We must allocate the bits as if suitably aligned for the
6048 longest integer type that fits in this many bits. type
6049 of the field. Then, we are supposed to use the left over
6050 bits as additional padding. */
6051 for (itk = itk_char; itk != itk_none; ++itk)
6052 if (integer_types[itk] != NULL_TREE
6053 && (tree_int_cst_lt (size_int (MAX_FIXED_MODE_SIZE),
6054 TYPE_SIZE (integer_types[itk]))
6055 || tree_int_cst_lt (DECL_SIZE (field),
6056 TYPE_SIZE (integer_types[itk]))))
6057 break;
6058
6059 /* ITK now indicates a type that is too large for the
6060 field. We have to back up by one to find the largest
6061 type that fits. */
6062 do
6063 {
6064 --itk;
6065 integer_type = integer_types[itk];
6066 } while (itk > 0 && integer_type == NULL_TREE);
6067
6068 /* Figure out how much additional padding is required. */
6069 if (tree_int_cst_lt (TYPE_SIZE (integer_type), DECL_SIZE (field)))
6070 {
6071 if (TREE_CODE (t) == UNION_TYPE)
6072 /* In a union, the padding field must have the full width
6073 of the bit-field; all fields start at offset zero. */
6074 padding = DECL_SIZE (field);
6075 else
6076 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
6077 TYPE_SIZE (integer_type));
6078 }
6079 #ifdef PCC_BITFIELD_TYPE_MATTERS
6080 /* An unnamed bitfield does not normally affect the
6081 alignment of the containing class on a target where
6082 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
6083 make any exceptions for unnamed bitfields when the
6084 bitfields are longer than their types. Therefore, we
6085 temporarily give the field a name. */
6086 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
6087 {
6088 was_unnamed_p = true;
6089 DECL_NAME (field) = make_anon_name ();
6090 }
6091 #endif
6092 DECL_SIZE (field) = TYPE_SIZE (integer_type);
6093 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
6094 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
6095 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6096 empty_base_offsets);
6097 if (was_unnamed_p)
6098 DECL_NAME (field) = NULL_TREE;
6099 /* Now that layout has been performed, set the size of the
6100 field to the size of its declared type; the rest of the
6101 field is effectively invisible. */
6102 DECL_SIZE (field) = TYPE_SIZE (type);
6103 /* We must also reset the DECL_MODE of the field. */
6104 DECL_MODE (field) = TYPE_MODE (type);
6105 }
6106 else
6107 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6108 empty_base_offsets);
6109
6110 /* Remember the location of any empty classes in FIELD. */
6111 record_subobject_offsets (TREE_TYPE (field),
6112 byte_position(field),
6113 empty_base_offsets,
6114 /*is_data_member=*/true);
6115
6116 /* If a bit-field does not immediately follow another bit-field,
6117 and yet it starts in the middle of a byte, we have failed to
6118 comply with the ABI. */
6119 if (warn_abi
6120 && DECL_C_BIT_FIELD (field)
6121 /* The TREE_NO_WARNING flag gets set by Objective-C when
6122 laying out an Objective-C class. The ObjC ABI differs
6123 from the C++ ABI, and so we do not want a warning
6124 here. */
6125 && !TREE_NO_WARNING (field)
6126 && !last_field_was_bitfield
6127 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6128 DECL_FIELD_BIT_OFFSET (field),
6129 bitsize_unit_node)))
6130 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
6131 "change in a future version of GCC", field);
6132
6133 /* The middle end uses the type of expressions to determine the
6134 possible range of expression values. In order to optimize
6135 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6136 must be made aware of the width of "i", via its type.
6137
6138 Because C++ does not have integer types of arbitrary width,
6139 we must (for the purposes of the front end) convert from the
6140 type assigned here to the declared type of the bitfield
6141 whenever a bitfield expression is used as an rvalue.
6142 Similarly, when assigning a value to a bitfield, the value
6143 must be converted to the type given the bitfield here. */
6144 if (DECL_C_BIT_FIELD (field))
6145 {
6146 unsigned HOST_WIDE_INT width;
6147 tree ftype = TREE_TYPE (field);
6148 width = tree_to_uhwi (DECL_SIZE (field));
6149 if (width != TYPE_PRECISION (ftype))
6150 {
6151 TREE_TYPE (field)
6152 = c_build_bitfield_integer_type (width,
6153 TYPE_UNSIGNED (ftype));
6154 TREE_TYPE (field)
6155 = cp_build_qualified_type (TREE_TYPE (field),
6156 cp_type_quals (ftype));
6157 }
6158 }
6159
6160 /* If we needed additional padding after this field, add it
6161 now. */
6162 if (padding)
6163 {
6164 tree padding_field;
6165
6166 padding_field = build_decl (input_location,
6167 FIELD_DECL,
6168 NULL_TREE,
6169 char_type_node);
6170 DECL_BIT_FIELD (padding_field) = 1;
6171 DECL_SIZE (padding_field) = padding;
6172 DECL_CONTEXT (padding_field) = t;
6173 DECL_ARTIFICIAL (padding_field) = 1;
6174 DECL_IGNORED_P (padding_field) = 1;
6175 layout_nonempty_base_or_field (rli, padding_field,
6176 NULL_TREE,
6177 empty_base_offsets);
6178 }
6179
6180 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6181 }
6182
6183 if (!integer_zerop (rli->bitpos))
6184 {
6185 /* Make sure that we are on a byte boundary so that the size of
6186 the class without virtual bases will always be a round number
6187 of bytes. */
6188 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6189 normalize_rli (rli);
6190 }
6191
6192 /* Delete all zero-width bit-fields from the list of fields. Now
6193 that the type is laid out they are no longer important. */
6194 remove_zero_width_bit_fields (t);
6195
6196 /* Create the version of T used for virtual bases. We do not use
6197 make_class_type for this version; this is an artificial type. For
6198 a POD type, we just reuse T. */
6199 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6200 {
6201 base_t = make_node (TREE_CODE (t));
6202
6203 /* Set the size and alignment for the new type. */
6204 tree eoc;
6205
6206 /* If the ABI version is not at least two, and the last
6207 field was a bit-field, RLI may not be on a byte
6208 boundary. In particular, rli_size_unit_so_far might
6209 indicate the last complete byte, while rli_size_so_far
6210 indicates the total number of bits used. Therefore,
6211 rli_size_so_far, rather than rli_size_unit_so_far, is
6212 used to compute TYPE_SIZE_UNIT. */
6213 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6214 TYPE_SIZE_UNIT (base_t)
6215 = size_binop (MAX_EXPR,
6216 convert (sizetype,
6217 size_binop (CEIL_DIV_EXPR,
6218 rli_size_so_far (rli),
6219 bitsize_int (BITS_PER_UNIT))),
6220 eoc);
6221 TYPE_SIZE (base_t)
6222 = size_binop (MAX_EXPR,
6223 rli_size_so_far (rli),
6224 size_binop (MULT_EXPR,
6225 convert (bitsizetype, eoc),
6226 bitsize_int (BITS_PER_UNIT)));
6227 TYPE_ALIGN (base_t) = rli->record_align;
6228 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6229
6230 /* Copy the fields from T. */
6231 next_field = &TYPE_FIELDS (base_t);
6232 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6233 if (TREE_CODE (field) == FIELD_DECL)
6234 {
6235 *next_field = build_decl (input_location,
6236 FIELD_DECL,
6237 DECL_NAME (field),
6238 TREE_TYPE (field));
6239 DECL_CONTEXT (*next_field) = base_t;
6240 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6241 DECL_FIELD_BIT_OFFSET (*next_field)
6242 = DECL_FIELD_BIT_OFFSET (field);
6243 DECL_SIZE (*next_field) = DECL_SIZE (field);
6244 DECL_MODE (*next_field) = DECL_MODE (field);
6245 next_field = &DECL_CHAIN (*next_field);
6246 }
6247
6248 /* Record the base version of the type. */
6249 CLASSTYPE_AS_BASE (t) = base_t;
6250 TYPE_CONTEXT (base_t) = t;
6251 }
6252 else
6253 CLASSTYPE_AS_BASE (t) = t;
6254
6255 /* Every empty class contains an empty class. */
6256 if (CLASSTYPE_EMPTY_P (t))
6257 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6258
6259 /* Set the TYPE_DECL for this type to contain the right
6260 value for DECL_OFFSET, so that we can use it as part
6261 of a COMPONENT_REF for multiple inheritance. */
6262 layout_decl (TYPE_MAIN_DECL (t), 0);
6263
6264 /* Now fix up any virtual base class types that we left lying
6265 around. We must get these done before we try to lay out the
6266 virtual function table. As a side-effect, this will remove the
6267 base subobject fields. */
6268 layout_virtual_bases (rli, empty_base_offsets);
6269
6270 /* Make sure that empty classes are reflected in RLI at this
6271 point. */
6272 include_empty_classes(rli);
6273
6274 /* Make sure not to create any structures with zero size. */
6275 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6276 place_field (rli,
6277 build_decl (input_location,
6278 FIELD_DECL, NULL_TREE, char_type_node));
6279
6280 /* If this is a non-POD, declaring it packed makes a difference to how it
6281 can be used as a field; don't let finalize_record_size undo it. */
6282 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6283 rli->packed_maybe_necessary = true;
6284
6285 /* Let the back end lay out the type. */
6286 finish_record_layout (rli, /*free_p=*/true);
6287
6288 if (TYPE_SIZE_UNIT (t)
6289 && TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST
6290 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t))
6291 && !valid_constant_size_p (TYPE_SIZE_UNIT (t)))
6292 error ("type %qT is too large", t);
6293
6294 /* Warn about bases that can't be talked about due to ambiguity. */
6295 warn_about_ambiguous_bases (t);
6296
6297 /* Now that we're done with layout, give the base fields the real types. */
6298 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6299 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6300 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6301
6302 /* Clean up. */
6303 splay_tree_delete (empty_base_offsets);
6304
6305 if (CLASSTYPE_EMPTY_P (t)
6306 && tree_int_cst_lt (sizeof_biggest_empty_class,
6307 TYPE_SIZE_UNIT (t)))
6308 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6309 }
6310
6311 /* Determine the "key method" for the class type indicated by TYPE,
6312 and set CLASSTYPE_KEY_METHOD accordingly. */
6313
6314 void
6315 determine_key_method (tree type)
6316 {
6317 tree method;
6318
6319 if (TYPE_FOR_JAVA (type)
6320 || processing_template_decl
6321 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6322 || CLASSTYPE_INTERFACE_KNOWN (type))
6323 return;
6324
6325 /* The key method is the first non-pure virtual function that is not
6326 inline at the point of class definition. On some targets the
6327 key function may not be inline; those targets should not call
6328 this function until the end of the translation unit. */
6329 for (method = TYPE_METHODS (type); method != NULL_TREE;
6330 method = DECL_CHAIN (method))
6331 if (TREE_CODE (method) == FUNCTION_DECL
6332 && DECL_VINDEX (method) != NULL_TREE
6333 && ! DECL_DECLARED_INLINE_P (method)
6334 && ! DECL_PURE_VIRTUAL_P (method))
6335 {
6336 CLASSTYPE_KEY_METHOD (type) = method;
6337 break;
6338 }
6339
6340 return;
6341 }
6342
6343
6344 /* Allocate and return an instance of struct sorted_fields_type with
6345 N fields. */
6346
6347 static struct sorted_fields_type *
6348 sorted_fields_type_new (int n)
6349 {
6350 struct sorted_fields_type *sft;
6351 sft = (sorted_fields_type *) ggc_internal_alloc (sizeof (sorted_fields_type)
6352 + n * sizeof (tree));
6353 sft->len = n;
6354
6355 return sft;
6356 }
6357
6358
6359 /* Perform processing required when the definition of T (a class type)
6360 is complete. */
6361
6362 void
6363 finish_struct_1 (tree t)
6364 {
6365 tree x;
6366 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6367 tree virtuals = NULL_TREE;
6368
6369 if (COMPLETE_TYPE_P (t))
6370 {
6371 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6372 error ("redefinition of %q#T", t);
6373 popclass ();
6374 return;
6375 }
6376
6377 /* If this type was previously laid out as a forward reference,
6378 make sure we lay it out again. */
6379 TYPE_SIZE (t) = NULL_TREE;
6380 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6381
6382 /* Make assumptions about the class; we'll reset the flags if
6383 necessary. */
6384 CLASSTYPE_EMPTY_P (t) = 1;
6385 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6386 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6387 CLASSTYPE_LITERAL_P (t) = true;
6388
6389 /* Do end-of-class semantic processing: checking the validity of the
6390 bases and members and add implicitly generated methods. */
6391 check_bases_and_members (t);
6392
6393 /* Find the key method. */
6394 if (TYPE_CONTAINS_VPTR_P (t))
6395 {
6396 /* The Itanium C++ ABI permits the key method to be chosen when
6397 the class is defined -- even though the key method so
6398 selected may later turn out to be an inline function. On
6399 some systems (such as ARM Symbian OS) the key method cannot
6400 be determined until the end of the translation unit. On such
6401 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6402 will cause the class to be added to KEYED_CLASSES. Then, in
6403 finish_file we will determine the key method. */
6404 if (targetm.cxx.key_method_may_be_inline ())
6405 determine_key_method (t);
6406
6407 /* If a polymorphic class has no key method, we may emit the vtable
6408 in every translation unit where the class definition appears. If
6409 we're devirtualizing, we can look into the vtable even if we
6410 aren't emitting it. */
6411 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE || flag_use_all_virtuals)
6412 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6413 }
6414
6415 /* Layout the class itself. */
6416 layout_class_type (t, &virtuals);
6417 if (CLASSTYPE_AS_BASE (t) != t)
6418 /* We use the base type for trivial assignments, and hence it
6419 needs a mode. */
6420 compute_record_mode (CLASSTYPE_AS_BASE (t));
6421
6422 virtuals = modify_all_vtables (t, nreverse (virtuals));
6423
6424 /* If necessary, create the primary vtable for this class. */
6425 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6426 {
6427 /* We must enter these virtuals into the table. */
6428 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6429 build_primary_vtable (NULL_TREE, t);
6430 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6431 /* Here we know enough to change the type of our virtual
6432 function table, but we will wait until later this function. */
6433 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6434
6435 /* If we're warning about ABI tags, check the types of the new
6436 virtual functions. */
6437 if (warn_abi_tag)
6438 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6439 check_abi_tags (t, TREE_VALUE (v));
6440 }
6441
6442 if (TYPE_CONTAINS_VPTR_P (t))
6443 {
6444 int vindex;
6445 tree fn;
6446
6447 if (BINFO_VTABLE (TYPE_BINFO (t)))
6448 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6449 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6450 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6451
6452 /* Add entries for virtual functions introduced by this class. */
6453 BINFO_VIRTUALS (TYPE_BINFO (t))
6454 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6455
6456 /* Set DECL_VINDEX for all functions declared in this class. */
6457 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6458 fn;
6459 fn = TREE_CHAIN (fn),
6460 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6461 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6462 {
6463 tree fndecl = BV_FN (fn);
6464
6465 if (DECL_THUNK_P (fndecl))
6466 /* A thunk. We should never be calling this entry directly
6467 from this vtable -- we'd use the entry for the non
6468 thunk base function. */
6469 DECL_VINDEX (fndecl) = NULL_TREE;
6470 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6471 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6472 }
6473 }
6474
6475 finish_struct_bits (t);
6476 set_method_tm_attributes (t);
6477
6478 /* Complete the rtl for any static member objects of the type we're
6479 working on. */
6480 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6481 if (VAR_P (x) && TREE_STATIC (x)
6482 && TREE_TYPE (x) != error_mark_node
6483 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6484 DECL_MODE (x) = TYPE_MODE (t);
6485
6486 /* Done with FIELDS...now decide whether to sort these for
6487 faster lookups later.
6488
6489 We use a small number because most searches fail (succeeding
6490 ultimately as the search bores through the inheritance
6491 hierarchy), and we want this failure to occur quickly. */
6492
6493 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6494
6495 /* Complain if one of the field types requires lower visibility. */
6496 constrain_class_visibility (t);
6497
6498 /* Make the rtl for any new vtables we have created, and unmark
6499 the base types we marked. */
6500 finish_vtbls (t);
6501
6502 /* Build the VTT for T. */
6503 build_vtt (t);
6504
6505 /* This warning does not make sense for Java classes, since they
6506 cannot have destructors. */
6507 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor
6508 && TYPE_POLYMORPHIC_P (t) && accessible_nvdtor_p (t))
6509 warning (OPT_Wnon_virtual_dtor,
6510 "%q#T has virtual functions and accessible"
6511 " non-virtual destructor", t);
6512
6513 complete_vars (t);
6514
6515 if (warn_overloaded_virtual)
6516 warn_hidden (t);
6517
6518 /* Class layout, assignment of virtual table slots, etc., is now
6519 complete. Give the back end a chance to tweak the visibility of
6520 the class or perform any other required target modifications. */
6521 targetm.cxx.adjust_class_at_definition (t);
6522
6523 maybe_suppress_debug_info (t);
6524
6525 if (flag_vtable_verify)
6526 vtv_save_class_info (t);
6527
6528 dump_class_hierarchy (t);
6529
6530 /* Finish debugging output for this type. */
6531 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6532
6533 if (TYPE_TRANSPARENT_AGGR (t))
6534 {
6535 tree field = first_field (t);
6536 if (field == NULL_TREE || error_operand_p (field))
6537 {
6538 error ("type transparent %q#T does not have any fields", t);
6539 TYPE_TRANSPARENT_AGGR (t) = 0;
6540 }
6541 else if (DECL_ARTIFICIAL (field))
6542 {
6543 if (DECL_FIELD_IS_BASE (field))
6544 error ("type transparent class %qT has base classes", t);
6545 else
6546 {
6547 gcc_checking_assert (DECL_VIRTUAL_P (field));
6548 error ("type transparent class %qT has virtual functions", t);
6549 }
6550 TYPE_TRANSPARENT_AGGR (t) = 0;
6551 }
6552 else if (TYPE_MODE (t) != DECL_MODE (field))
6553 {
6554 error ("type transparent %q#T cannot be made transparent because "
6555 "the type of the first field has a different ABI from the "
6556 "class overall", t);
6557 TYPE_TRANSPARENT_AGGR (t) = 0;
6558 }
6559 }
6560 }
6561
6562 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6563 equal to THRESHOLD or greater than THRESHOLD. */
6564
6565 static void
6566 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6567 {
6568 int n_fields = count_fields (fields);
6569 if (n_fields >= threshold)
6570 {
6571 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6572 add_fields_to_record_type (fields, field_vec, 0);
6573 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6574 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6575 }
6576 }
6577
6578 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6579
6580 void
6581 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6582 {
6583 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6584 if (sorted_fields)
6585 {
6586 int i;
6587 int n_fields
6588 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6589 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6590
6591 for (i = 0; i < sorted_fields->len; ++i)
6592 field_vec->elts[i] = sorted_fields->elts[i];
6593
6594 add_enum_fields_to_record_type (enumtype, field_vec,
6595 sorted_fields->len);
6596 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6597 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6598 }
6599 }
6600
6601 /* When T was built up, the member declarations were added in reverse
6602 order. Rearrange them to declaration order. */
6603
6604 void
6605 unreverse_member_declarations (tree t)
6606 {
6607 tree next;
6608 tree prev;
6609 tree x;
6610
6611 /* The following lists are all in reverse order. Put them in
6612 declaration order now. */
6613 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6614 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6615
6616 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6617 reverse order, so we can't just use nreverse. */
6618 prev = NULL_TREE;
6619 for (x = TYPE_FIELDS (t);
6620 x && TREE_CODE (x) != TYPE_DECL;
6621 x = next)
6622 {
6623 next = DECL_CHAIN (x);
6624 DECL_CHAIN (x) = prev;
6625 prev = x;
6626 }
6627 if (prev)
6628 {
6629 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6630 if (prev)
6631 TYPE_FIELDS (t) = prev;
6632 }
6633 }
6634
6635 tree
6636 finish_struct (tree t, tree attributes)
6637 {
6638 location_t saved_loc = input_location;
6639
6640 /* Now that we've got all the field declarations, reverse everything
6641 as necessary. */
6642 unreverse_member_declarations (t);
6643
6644 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6645
6646 /* Nadger the current location so that diagnostics point to the start of
6647 the struct, not the end. */
6648 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6649
6650 if (processing_template_decl)
6651 {
6652 tree x;
6653
6654 finish_struct_methods (t);
6655 TYPE_SIZE (t) = bitsize_zero_node;
6656 TYPE_SIZE_UNIT (t) = size_zero_node;
6657
6658 /* We need to emit an error message if this type was used as a parameter
6659 and it is an abstract type, even if it is a template. We construct
6660 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6661 account and we call complete_vars with this type, which will check
6662 the PARM_DECLS. Note that while the type is being defined,
6663 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6664 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6665 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6666 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6667 if (DECL_PURE_VIRTUAL_P (x))
6668 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6669 complete_vars (t);
6670 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6671 an enclosing scope is a template class, so that this function be
6672 found by lookup_fnfields_1 when the using declaration is not
6673 instantiated yet. */
6674 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6675 if (TREE_CODE (x) == USING_DECL)
6676 {
6677 tree fn = strip_using_decl (x);
6678 if (is_overloaded_fn (fn))
6679 for (; fn; fn = OVL_NEXT (fn))
6680 add_method (t, OVL_CURRENT (fn), x);
6681 }
6682
6683 /* Remember current #pragma pack value. */
6684 TYPE_PRECISION (t) = maximum_field_alignment;
6685
6686 /* Fix up any variants we've already built. */
6687 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6688 {
6689 TYPE_SIZE (x) = TYPE_SIZE (t);
6690 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6691 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6692 TYPE_METHODS (x) = TYPE_METHODS (t);
6693 }
6694 }
6695 else
6696 finish_struct_1 (t);
6697
6698 if (is_std_init_list (t))
6699 {
6700 /* People keep complaining that the compiler crashes on an invalid
6701 definition of initializer_list, so I guess we should explicitly
6702 reject it. What the compiler internals care about is that it's a
6703 template and has a pointer field followed by an integer field. */
6704 bool ok = false;
6705 if (processing_template_decl)
6706 {
6707 tree f = next_initializable_field (TYPE_FIELDS (t));
6708 if (f && TREE_CODE (TREE_TYPE (f)) == POINTER_TYPE)
6709 {
6710 f = next_initializable_field (DECL_CHAIN (f));
6711 if (f && TREE_CODE (TREE_TYPE (f)) == INTEGER_TYPE)
6712 ok = true;
6713 }
6714 }
6715 if (!ok)
6716 fatal_error ("definition of std::initializer_list does not match "
6717 "#include <initializer_list>");
6718 }
6719
6720 input_location = saved_loc;
6721
6722 TYPE_BEING_DEFINED (t) = 0;
6723
6724 if (current_class_type)
6725 popclass ();
6726 else
6727 error ("trying to finish struct, but kicked out due to previous parse errors");
6728
6729 if (processing_template_decl && at_function_scope_p ()
6730 /* Lambdas are defined by the LAMBDA_EXPR. */
6731 && !LAMBDA_TYPE_P (t))
6732 add_stmt (build_min (TAG_DEFN, t));
6733
6734 return t;
6735 }
6736 \f
6737 /* Hash table to avoid endless recursion when handling references. */
6738 static hash_table<pointer_hash<tree_node> > *fixed_type_or_null_ref_ht;
6739
6740 /* Return the dynamic type of INSTANCE, if known.
6741 Used to determine whether the virtual function table is needed
6742 or not.
6743
6744 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6745 of our knowledge of its type. *NONNULL should be initialized
6746 before this function is called. */
6747
6748 static tree
6749 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6750 {
6751 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6752
6753 switch (TREE_CODE (instance))
6754 {
6755 case INDIRECT_REF:
6756 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6757 return NULL_TREE;
6758 else
6759 return RECUR (TREE_OPERAND (instance, 0));
6760
6761 case CALL_EXPR:
6762 /* This is a call to a constructor, hence it's never zero. */
6763 if (TREE_HAS_CONSTRUCTOR (instance))
6764 {
6765 if (nonnull)
6766 *nonnull = 1;
6767 return TREE_TYPE (instance);
6768 }
6769 return NULL_TREE;
6770
6771 case SAVE_EXPR:
6772 /* This is a call to a constructor, hence it's never zero. */
6773 if (TREE_HAS_CONSTRUCTOR (instance))
6774 {
6775 if (nonnull)
6776 *nonnull = 1;
6777 return TREE_TYPE (instance);
6778 }
6779 return RECUR (TREE_OPERAND (instance, 0));
6780
6781 case POINTER_PLUS_EXPR:
6782 case PLUS_EXPR:
6783 case MINUS_EXPR:
6784 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6785 return RECUR (TREE_OPERAND (instance, 0));
6786 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6787 /* Propagate nonnull. */
6788 return RECUR (TREE_OPERAND (instance, 0));
6789
6790 return NULL_TREE;
6791
6792 CASE_CONVERT:
6793 return RECUR (TREE_OPERAND (instance, 0));
6794
6795 case ADDR_EXPR:
6796 instance = TREE_OPERAND (instance, 0);
6797 if (nonnull)
6798 {
6799 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6800 with a real object -- given &p->f, p can still be null. */
6801 tree t = get_base_address (instance);
6802 /* ??? Probably should check DECL_WEAK here. */
6803 if (t && DECL_P (t))
6804 *nonnull = 1;
6805 }
6806 return RECUR (instance);
6807
6808 case COMPONENT_REF:
6809 /* If this component is really a base class reference, then the field
6810 itself isn't definitive. */
6811 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6812 return RECUR (TREE_OPERAND (instance, 0));
6813 return RECUR (TREE_OPERAND (instance, 1));
6814
6815 case VAR_DECL:
6816 case FIELD_DECL:
6817 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6818 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6819 {
6820 if (nonnull)
6821 *nonnull = 1;
6822 return TREE_TYPE (TREE_TYPE (instance));
6823 }
6824 /* fall through... */
6825 case TARGET_EXPR:
6826 case PARM_DECL:
6827 case RESULT_DECL:
6828 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6829 {
6830 if (nonnull)
6831 *nonnull = 1;
6832 return TREE_TYPE (instance);
6833 }
6834 else if (instance == current_class_ptr)
6835 {
6836 if (nonnull)
6837 *nonnull = 1;
6838
6839 /* if we're in a ctor or dtor, we know our type. If
6840 current_class_ptr is set but we aren't in a function, we're in
6841 an NSDMI (and therefore a constructor). */
6842 if (current_scope () != current_function_decl
6843 || (DECL_LANG_SPECIFIC (current_function_decl)
6844 && (DECL_CONSTRUCTOR_P (current_function_decl)
6845 || DECL_DESTRUCTOR_P (current_function_decl))))
6846 {
6847 if (cdtorp)
6848 *cdtorp = 1;
6849 return TREE_TYPE (TREE_TYPE (instance));
6850 }
6851 }
6852 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6853 {
6854 /* We only need one hash table because it is always left empty. */
6855 if (!fixed_type_or_null_ref_ht)
6856 fixed_type_or_null_ref_ht
6857 = new hash_table<pointer_hash<tree_node> > (37);
6858
6859 /* Reference variables should be references to objects. */
6860 if (nonnull)
6861 *nonnull = 1;
6862
6863 /* Enter the INSTANCE in a table to prevent recursion; a
6864 variable's initializer may refer to the variable
6865 itself. */
6866 if (VAR_P (instance)
6867 && DECL_INITIAL (instance)
6868 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6869 && !fixed_type_or_null_ref_ht->find (instance))
6870 {
6871 tree type;
6872 tree_node **slot;
6873
6874 slot = fixed_type_or_null_ref_ht->find_slot (instance, INSERT);
6875 *slot = instance;
6876 type = RECUR (DECL_INITIAL (instance));
6877 fixed_type_or_null_ref_ht->remove_elt (instance);
6878
6879 return type;
6880 }
6881 }
6882 return NULL_TREE;
6883
6884 default:
6885 return NULL_TREE;
6886 }
6887 #undef RECUR
6888 }
6889
6890 /* Return nonzero if the dynamic type of INSTANCE is known, and
6891 equivalent to the static type. We also handle the case where
6892 INSTANCE is really a pointer. Return negative if this is a
6893 ctor/dtor. There the dynamic type is known, but this might not be
6894 the most derived base of the original object, and hence virtual
6895 bases may not be laid out according to this type.
6896
6897 Used to determine whether the virtual function table is needed
6898 or not.
6899
6900 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6901 of our knowledge of its type. *NONNULL should be initialized
6902 before this function is called. */
6903
6904 int
6905 resolves_to_fixed_type_p (tree instance, int* nonnull)
6906 {
6907 tree t = TREE_TYPE (instance);
6908 int cdtorp = 0;
6909 tree fixed;
6910
6911 /* processing_template_decl can be false in a template if we're in
6912 fold_non_dependent_expr, but we still want to suppress this check. */
6913 if (in_template_function ())
6914 {
6915 /* In a template we only care about the type of the result. */
6916 if (nonnull)
6917 *nonnull = true;
6918 return true;
6919 }
6920
6921 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6922 if (fixed == NULL_TREE)
6923 return 0;
6924 if (POINTER_TYPE_P (t))
6925 t = TREE_TYPE (t);
6926 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6927 return 0;
6928 return cdtorp ? -1 : 1;
6929 }
6930
6931 \f
6932 void
6933 init_class_processing (void)
6934 {
6935 current_class_depth = 0;
6936 current_class_stack_size = 10;
6937 current_class_stack
6938 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6939 vec_alloc (local_classes, 8);
6940 sizeof_biggest_empty_class = size_zero_node;
6941
6942 ridpointers[(int) RID_PUBLIC] = access_public_node;
6943 ridpointers[(int) RID_PRIVATE] = access_private_node;
6944 ridpointers[(int) RID_PROTECTED] = access_protected_node;
6945 }
6946
6947 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
6948
6949 static void
6950 restore_class_cache (void)
6951 {
6952 tree type;
6953
6954 /* We are re-entering the same class we just left, so we don't
6955 have to search the whole inheritance matrix to find all the
6956 decls to bind again. Instead, we install the cached
6957 class_shadowed list and walk through it binding names. */
6958 push_binding_level (previous_class_level);
6959 class_binding_level = previous_class_level;
6960 /* Restore IDENTIFIER_TYPE_VALUE. */
6961 for (type = class_binding_level->type_shadowed;
6962 type;
6963 type = TREE_CHAIN (type))
6964 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
6965 }
6966
6967 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
6968 appropriate for TYPE.
6969
6970 So that we may avoid calls to lookup_name, we cache the _TYPE
6971 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
6972
6973 For multiple inheritance, we perform a two-pass depth-first search
6974 of the type lattice. */
6975
6976 void
6977 pushclass (tree type)
6978 {
6979 class_stack_node_t csn;
6980
6981 type = TYPE_MAIN_VARIANT (type);
6982
6983 /* Make sure there is enough room for the new entry on the stack. */
6984 if (current_class_depth + 1 >= current_class_stack_size)
6985 {
6986 current_class_stack_size *= 2;
6987 current_class_stack
6988 = XRESIZEVEC (struct class_stack_node, current_class_stack,
6989 current_class_stack_size);
6990 }
6991
6992 /* Insert a new entry on the class stack. */
6993 csn = current_class_stack + current_class_depth;
6994 csn->name = current_class_name;
6995 csn->type = current_class_type;
6996 csn->access = current_access_specifier;
6997 csn->names_used = 0;
6998 csn->hidden = 0;
6999 current_class_depth++;
7000
7001 /* Now set up the new type. */
7002 current_class_name = TYPE_NAME (type);
7003 if (TREE_CODE (current_class_name) == TYPE_DECL)
7004 current_class_name = DECL_NAME (current_class_name);
7005 current_class_type = type;
7006
7007 /* By default, things in classes are private, while things in
7008 structures or unions are public. */
7009 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
7010 ? access_private_node
7011 : access_public_node);
7012
7013 if (previous_class_level
7014 && type != previous_class_level->this_entity
7015 && current_class_depth == 1)
7016 {
7017 /* Forcibly remove any old class remnants. */
7018 invalidate_class_lookup_cache ();
7019 }
7020
7021 if (!previous_class_level
7022 || type != previous_class_level->this_entity
7023 || current_class_depth > 1)
7024 pushlevel_class ();
7025 else
7026 restore_class_cache ();
7027 }
7028
7029 /* When we exit a toplevel class scope, we save its binding level so
7030 that we can restore it quickly. Here, we've entered some other
7031 class, so we must invalidate our cache. */
7032
7033 void
7034 invalidate_class_lookup_cache (void)
7035 {
7036 previous_class_level = NULL;
7037 }
7038
7039 /* Get out of the current class scope. If we were in a class scope
7040 previously, that is the one popped to. */
7041
7042 void
7043 popclass (void)
7044 {
7045 poplevel_class ();
7046
7047 current_class_depth--;
7048 current_class_name = current_class_stack[current_class_depth].name;
7049 current_class_type = current_class_stack[current_class_depth].type;
7050 current_access_specifier = current_class_stack[current_class_depth].access;
7051 if (current_class_stack[current_class_depth].names_used)
7052 splay_tree_delete (current_class_stack[current_class_depth].names_used);
7053 }
7054
7055 /* Mark the top of the class stack as hidden. */
7056
7057 void
7058 push_class_stack (void)
7059 {
7060 if (current_class_depth)
7061 ++current_class_stack[current_class_depth - 1].hidden;
7062 }
7063
7064 /* Mark the top of the class stack as un-hidden. */
7065
7066 void
7067 pop_class_stack (void)
7068 {
7069 if (current_class_depth)
7070 --current_class_stack[current_class_depth - 1].hidden;
7071 }
7072
7073 /* Returns 1 if the class type currently being defined is either T or
7074 a nested type of T. */
7075
7076 bool
7077 currently_open_class (tree t)
7078 {
7079 int i;
7080
7081 if (!CLASS_TYPE_P (t))
7082 return false;
7083
7084 t = TYPE_MAIN_VARIANT (t);
7085
7086 /* We start looking from 1 because entry 0 is from global scope,
7087 and has no type. */
7088 for (i = current_class_depth; i > 0; --i)
7089 {
7090 tree c;
7091 if (i == current_class_depth)
7092 c = current_class_type;
7093 else
7094 {
7095 if (current_class_stack[i].hidden)
7096 break;
7097 c = current_class_stack[i].type;
7098 }
7099 if (!c)
7100 continue;
7101 if (same_type_p (c, t))
7102 return true;
7103 }
7104 return false;
7105 }
7106
7107 /* If either current_class_type or one of its enclosing classes are derived
7108 from T, return the appropriate type. Used to determine how we found
7109 something via unqualified lookup. */
7110
7111 tree
7112 currently_open_derived_class (tree t)
7113 {
7114 int i;
7115
7116 /* The bases of a dependent type are unknown. */
7117 if (dependent_type_p (t))
7118 return NULL_TREE;
7119
7120 if (!current_class_type)
7121 return NULL_TREE;
7122
7123 if (DERIVED_FROM_P (t, current_class_type))
7124 return current_class_type;
7125
7126 for (i = current_class_depth - 1; i > 0; --i)
7127 {
7128 if (current_class_stack[i].hidden)
7129 break;
7130 if (DERIVED_FROM_P (t, current_class_stack[i].type))
7131 return current_class_stack[i].type;
7132 }
7133
7134 return NULL_TREE;
7135 }
7136
7137 /* Returns the innermost class type which is not a lambda closure type. */
7138
7139 tree
7140 current_nonlambda_class_type (void)
7141 {
7142 int i;
7143
7144 /* We start looking from 1 because entry 0 is from global scope,
7145 and has no type. */
7146 for (i = current_class_depth; i > 0; --i)
7147 {
7148 tree c;
7149 if (i == current_class_depth)
7150 c = current_class_type;
7151 else
7152 {
7153 if (current_class_stack[i].hidden)
7154 break;
7155 c = current_class_stack[i].type;
7156 }
7157 if (!c)
7158 continue;
7159 if (!LAMBDA_TYPE_P (c))
7160 return c;
7161 }
7162 return NULL_TREE;
7163 }
7164
7165 /* When entering a class scope, all enclosing class scopes' names with
7166 static meaning (static variables, static functions, types and
7167 enumerators) have to be visible. This recursive function calls
7168 pushclass for all enclosing class contexts until global or a local
7169 scope is reached. TYPE is the enclosed class. */
7170
7171 void
7172 push_nested_class (tree type)
7173 {
7174 /* A namespace might be passed in error cases, like A::B:C. */
7175 if (type == NULL_TREE
7176 || !CLASS_TYPE_P (type))
7177 return;
7178
7179 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7180
7181 pushclass (type);
7182 }
7183
7184 /* Undoes a push_nested_class call. */
7185
7186 void
7187 pop_nested_class (void)
7188 {
7189 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7190
7191 popclass ();
7192 if (context && CLASS_TYPE_P (context))
7193 pop_nested_class ();
7194 }
7195
7196 /* Returns the number of extern "LANG" blocks we are nested within. */
7197
7198 int
7199 current_lang_depth (void)
7200 {
7201 return vec_safe_length (current_lang_base);
7202 }
7203
7204 /* Set global variables CURRENT_LANG_NAME to appropriate value
7205 so that behavior of name-mangling machinery is correct. */
7206
7207 void
7208 push_lang_context (tree name)
7209 {
7210 vec_safe_push (current_lang_base, current_lang_name);
7211
7212 if (name == lang_name_cplusplus)
7213 {
7214 current_lang_name = name;
7215 }
7216 else if (name == lang_name_java)
7217 {
7218 current_lang_name = name;
7219 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7220 (See record_builtin_java_type in decl.c.) However, that causes
7221 incorrect debug entries if these types are actually used.
7222 So we re-enable debug output after extern "Java". */
7223 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7224 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7225 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7226 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7227 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7228 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7229 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7230 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7231 }
7232 else if (name == lang_name_c)
7233 {
7234 current_lang_name = name;
7235 }
7236 else
7237 error ("language string %<\"%E\"%> not recognized", name);
7238 }
7239
7240 /* Get out of the current language scope. */
7241
7242 void
7243 pop_lang_context (void)
7244 {
7245 current_lang_name = current_lang_base->pop ();
7246 }
7247 \f
7248 /* Type instantiation routines. */
7249
7250 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7251 matches the TARGET_TYPE. If there is no satisfactory match, return
7252 error_mark_node, and issue an error & warning messages under
7253 control of FLAGS. Permit pointers to member function if FLAGS
7254 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7255 a template-id, and EXPLICIT_TARGS are the explicitly provided
7256 template arguments.
7257
7258 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7259 is the base path used to reference those member functions. If
7260 the address is resolved to a member function, access checks will be
7261 performed and errors issued if appropriate. */
7262
7263 static tree
7264 resolve_address_of_overloaded_function (tree target_type,
7265 tree overload,
7266 tsubst_flags_t flags,
7267 bool template_only,
7268 tree explicit_targs,
7269 tree access_path)
7270 {
7271 /* Here's what the standard says:
7272
7273 [over.over]
7274
7275 If the name is a function template, template argument deduction
7276 is done, and if the argument deduction succeeds, the deduced
7277 arguments are used to generate a single template function, which
7278 is added to the set of overloaded functions considered.
7279
7280 Non-member functions and static member functions match targets of
7281 type "pointer-to-function" or "reference-to-function." Nonstatic
7282 member functions match targets of type "pointer-to-member
7283 function;" the function type of the pointer to member is used to
7284 select the member function from the set of overloaded member
7285 functions. If a nonstatic member function is selected, the
7286 reference to the overloaded function name is required to have the
7287 form of a pointer to member as described in 5.3.1.
7288
7289 If more than one function is selected, any template functions in
7290 the set are eliminated if the set also contains a non-template
7291 function, and any given template function is eliminated if the
7292 set contains a second template function that is more specialized
7293 than the first according to the partial ordering rules 14.5.5.2.
7294 After such eliminations, if any, there shall remain exactly one
7295 selected function. */
7296
7297 int is_ptrmem = 0;
7298 /* We store the matches in a TREE_LIST rooted here. The functions
7299 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7300 interoperability with most_specialized_instantiation. */
7301 tree matches = NULL_TREE;
7302 tree fn;
7303 tree target_fn_type;
7304
7305 /* By the time we get here, we should be seeing only real
7306 pointer-to-member types, not the internal POINTER_TYPE to
7307 METHOD_TYPE representation. */
7308 gcc_assert (!TYPE_PTR_P (target_type)
7309 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7310
7311 gcc_assert (is_overloaded_fn (overload));
7312
7313 /* Check that the TARGET_TYPE is reasonable. */
7314 if (TYPE_PTRFN_P (target_type)
7315 || TYPE_REFFN_P (target_type))
7316 /* This is OK. */;
7317 else if (TYPE_PTRMEMFUNC_P (target_type))
7318 /* This is OK, too. */
7319 is_ptrmem = 1;
7320 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7321 /* This is OK, too. This comes from a conversion to reference
7322 type. */
7323 target_type = build_reference_type (target_type);
7324 else
7325 {
7326 if (flags & tf_error)
7327 error ("cannot resolve overloaded function %qD based on"
7328 " conversion to type %qT",
7329 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7330 return error_mark_node;
7331 }
7332
7333 /* Non-member functions and static member functions match targets of type
7334 "pointer-to-function" or "reference-to-function." Nonstatic member
7335 functions match targets of type "pointer-to-member-function;" the
7336 function type of the pointer to member is used to select the member
7337 function from the set of overloaded member functions.
7338
7339 So figure out the FUNCTION_TYPE that we want to match against. */
7340 target_fn_type = static_fn_type (target_type);
7341
7342 /* If we can find a non-template function that matches, we can just
7343 use it. There's no point in generating template instantiations
7344 if we're just going to throw them out anyhow. But, of course, we
7345 can only do this when we don't *need* a template function. */
7346 if (!template_only)
7347 {
7348 tree fns;
7349
7350 for (fns = overload; fns; fns = OVL_NEXT (fns))
7351 {
7352 tree fn = OVL_CURRENT (fns);
7353
7354 if (TREE_CODE (fn) == TEMPLATE_DECL)
7355 /* We're not looking for templates just yet. */
7356 continue;
7357
7358 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7359 != is_ptrmem)
7360 /* We're looking for a non-static member, and this isn't
7361 one, or vice versa. */
7362 continue;
7363
7364 /* Ignore functions which haven't been explicitly
7365 declared. */
7366 if (DECL_ANTICIPATED (fn))
7367 continue;
7368
7369 /* See if there's a match. */
7370 if (same_type_p (target_fn_type, static_fn_type (fn)))
7371 matches = tree_cons (fn, NULL_TREE, matches);
7372 }
7373 }
7374
7375 /* Now, if we've already got a match (or matches), there's no need
7376 to proceed to the template functions. But, if we don't have a
7377 match we need to look at them, too. */
7378 if (!matches)
7379 {
7380 tree target_arg_types;
7381 tree target_ret_type;
7382 tree fns;
7383 tree *args;
7384 unsigned int nargs, ia;
7385 tree arg;
7386
7387 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7388 target_ret_type = TREE_TYPE (target_fn_type);
7389
7390 nargs = list_length (target_arg_types);
7391 args = XALLOCAVEC (tree, nargs);
7392 for (arg = target_arg_types, ia = 0;
7393 arg != NULL_TREE && arg != void_list_node;
7394 arg = TREE_CHAIN (arg), ++ia)
7395 args[ia] = TREE_VALUE (arg);
7396 nargs = ia;
7397
7398 for (fns = overload; fns; fns = OVL_NEXT (fns))
7399 {
7400 tree fn = OVL_CURRENT (fns);
7401 tree instantiation;
7402 tree targs;
7403
7404 if (TREE_CODE (fn) != TEMPLATE_DECL)
7405 /* We're only looking for templates. */
7406 continue;
7407
7408 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7409 != is_ptrmem)
7410 /* We're not looking for a non-static member, and this is
7411 one, or vice versa. */
7412 continue;
7413
7414 tree ret = target_ret_type;
7415
7416 /* If the template has a deduced return type, don't expose it to
7417 template argument deduction. */
7418 if (undeduced_auto_decl (fn))
7419 ret = NULL_TREE;
7420
7421 /* Try to do argument deduction. */
7422 targs = make_tree_vec (DECL_NTPARMS (fn));
7423 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7424 nargs, ret,
7425 DEDUCE_EXACT, LOOKUP_NORMAL,
7426 false, false);
7427 if (instantiation == error_mark_node)
7428 /* Instantiation failed. */
7429 continue;
7430
7431 /* And now force instantiation to do return type deduction. */
7432 if (undeduced_auto_decl (instantiation))
7433 {
7434 ++function_depth;
7435 instantiate_decl (instantiation, /*defer*/false, /*class*/false);
7436 --function_depth;
7437
7438 require_deduced_type (instantiation);
7439 }
7440
7441 /* See if there's a match. */
7442 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7443 matches = tree_cons (instantiation, fn, matches);
7444 }
7445
7446 /* Now, remove all but the most specialized of the matches. */
7447 if (matches)
7448 {
7449 tree match = most_specialized_instantiation (matches);
7450
7451 if (match != error_mark_node)
7452 matches = tree_cons (TREE_PURPOSE (match),
7453 NULL_TREE,
7454 NULL_TREE);
7455 }
7456 }
7457
7458 /* Now we should have exactly one function in MATCHES. */
7459 if (matches == NULL_TREE)
7460 {
7461 /* There were *no* matches. */
7462 if (flags & tf_error)
7463 {
7464 error ("no matches converting function %qD to type %q#T",
7465 DECL_NAME (OVL_CURRENT (overload)),
7466 target_type);
7467
7468 print_candidates (overload);
7469 }
7470 return error_mark_node;
7471 }
7472 else if (TREE_CHAIN (matches))
7473 {
7474 /* There were too many matches. First check if they're all
7475 the same function. */
7476 tree match = NULL_TREE;
7477
7478 fn = TREE_PURPOSE (matches);
7479
7480 /* For multi-versioned functions, more than one match is just fine and
7481 decls_match will return false as they are different. */
7482 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7483 if (!decls_match (fn, TREE_PURPOSE (match))
7484 && !targetm.target_option.function_versions
7485 (fn, TREE_PURPOSE (match)))
7486 break;
7487
7488 if (match)
7489 {
7490 if (flags & tf_error)
7491 {
7492 error ("converting overloaded function %qD to type %q#T is ambiguous",
7493 DECL_NAME (OVL_FUNCTION (overload)),
7494 target_type);
7495
7496 /* Since print_candidates expects the functions in the
7497 TREE_VALUE slot, we flip them here. */
7498 for (match = matches; match; match = TREE_CHAIN (match))
7499 TREE_VALUE (match) = TREE_PURPOSE (match);
7500
7501 print_candidates (matches);
7502 }
7503
7504 return error_mark_node;
7505 }
7506 }
7507
7508 /* Good, exactly one match. Now, convert it to the correct type. */
7509 fn = TREE_PURPOSE (matches);
7510
7511 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7512 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7513 {
7514 static int explained;
7515
7516 if (!(flags & tf_error))
7517 return error_mark_node;
7518
7519 permerror (input_location, "assuming pointer to member %qD", fn);
7520 if (!explained)
7521 {
7522 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7523 explained = 1;
7524 }
7525 }
7526
7527 /* If a pointer to a function that is multi-versioned is requested, the
7528 pointer to the dispatcher function is returned instead. This works
7529 well because indirectly calling the function will dispatch the right
7530 function version at run-time. */
7531 if (DECL_FUNCTION_VERSIONED (fn))
7532 {
7533 fn = get_function_version_dispatcher (fn);
7534 if (fn == NULL)
7535 return error_mark_node;
7536 /* Mark all the versions corresponding to the dispatcher as used. */
7537 if (!(flags & tf_conv))
7538 mark_versions_used (fn);
7539 }
7540
7541 /* If we're doing overload resolution purely for the purpose of
7542 determining conversion sequences, we should not consider the
7543 function used. If this conversion sequence is selected, the
7544 function will be marked as used at this point. */
7545 if (!(flags & tf_conv))
7546 {
7547 /* Make =delete work with SFINAE. */
7548 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7549 return error_mark_node;
7550
7551 mark_used (fn);
7552 }
7553
7554 /* We could not check access to member functions when this
7555 expression was originally created since we did not know at that
7556 time to which function the expression referred. */
7557 if (DECL_FUNCTION_MEMBER_P (fn))
7558 {
7559 gcc_assert (access_path);
7560 perform_or_defer_access_check (access_path, fn, fn, flags);
7561 }
7562
7563 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7564 return cp_build_addr_expr (fn, flags);
7565 else
7566 {
7567 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7568 will mark the function as addressed, but here we must do it
7569 explicitly. */
7570 cxx_mark_addressable (fn);
7571
7572 return fn;
7573 }
7574 }
7575
7576 /* This function will instantiate the type of the expression given in
7577 RHS to match the type of LHSTYPE. If errors exist, then return
7578 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7579 we complain on errors. If we are not complaining, never modify rhs,
7580 as overload resolution wants to try many possible instantiations, in
7581 the hope that at least one will work.
7582
7583 For non-recursive calls, LHSTYPE should be a function, pointer to
7584 function, or a pointer to member function. */
7585
7586 tree
7587 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7588 {
7589 tsubst_flags_t flags_in = flags;
7590 tree access_path = NULL_TREE;
7591
7592 flags &= ~tf_ptrmem_ok;
7593
7594 if (lhstype == unknown_type_node)
7595 {
7596 if (flags & tf_error)
7597 error ("not enough type information");
7598 return error_mark_node;
7599 }
7600
7601 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7602 {
7603 tree fntype = non_reference (lhstype);
7604 if (same_type_p (fntype, TREE_TYPE (rhs)))
7605 return rhs;
7606 if (flag_ms_extensions
7607 && TYPE_PTRMEMFUNC_P (fntype)
7608 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7609 /* Microsoft allows `A::f' to be resolved to a
7610 pointer-to-member. */
7611 ;
7612 else
7613 {
7614 if (flags & tf_error)
7615 error ("cannot convert %qE from type %qT to type %qT",
7616 rhs, TREE_TYPE (rhs), fntype);
7617 return error_mark_node;
7618 }
7619 }
7620
7621 if (BASELINK_P (rhs))
7622 {
7623 access_path = BASELINK_ACCESS_BINFO (rhs);
7624 rhs = BASELINK_FUNCTIONS (rhs);
7625 }
7626
7627 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7628 deduce any type information. */
7629 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7630 {
7631 if (flags & tf_error)
7632 error ("not enough type information");
7633 return error_mark_node;
7634 }
7635
7636 /* There only a few kinds of expressions that may have a type
7637 dependent on overload resolution. */
7638 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7639 || TREE_CODE (rhs) == COMPONENT_REF
7640 || is_overloaded_fn (rhs)
7641 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7642
7643 /* This should really only be used when attempting to distinguish
7644 what sort of a pointer to function we have. For now, any
7645 arithmetic operation which is not supported on pointers
7646 is rejected as an error. */
7647
7648 switch (TREE_CODE (rhs))
7649 {
7650 case COMPONENT_REF:
7651 {
7652 tree member = TREE_OPERAND (rhs, 1);
7653
7654 member = instantiate_type (lhstype, member, flags);
7655 if (member != error_mark_node
7656 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7657 /* Do not lose object's side effects. */
7658 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7659 TREE_OPERAND (rhs, 0), member);
7660 return member;
7661 }
7662
7663 case OFFSET_REF:
7664 rhs = TREE_OPERAND (rhs, 1);
7665 if (BASELINK_P (rhs))
7666 return instantiate_type (lhstype, rhs, flags_in);
7667
7668 /* This can happen if we are forming a pointer-to-member for a
7669 member template. */
7670 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7671
7672 /* Fall through. */
7673
7674 case TEMPLATE_ID_EXPR:
7675 {
7676 tree fns = TREE_OPERAND (rhs, 0);
7677 tree args = TREE_OPERAND (rhs, 1);
7678
7679 return
7680 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7681 /*template_only=*/true,
7682 args, access_path);
7683 }
7684
7685 case OVERLOAD:
7686 case FUNCTION_DECL:
7687 return
7688 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7689 /*template_only=*/false,
7690 /*explicit_targs=*/NULL_TREE,
7691 access_path);
7692
7693 case ADDR_EXPR:
7694 {
7695 if (PTRMEM_OK_P (rhs))
7696 flags |= tf_ptrmem_ok;
7697
7698 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7699 }
7700
7701 case ERROR_MARK:
7702 return error_mark_node;
7703
7704 default:
7705 gcc_unreachable ();
7706 }
7707 return error_mark_node;
7708 }
7709 \f
7710 /* Return the name of the virtual function pointer field
7711 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7712 this may have to look back through base types to find the
7713 ultimate field name. (For single inheritance, these could
7714 all be the same name. Who knows for multiple inheritance). */
7715
7716 static tree
7717 get_vfield_name (tree type)
7718 {
7719 tree binfo, base_binfo;
7720 char *buf;
7721
7722 for (binfo = TYPE_BINFO (type);
7723 BINFO_N_BASE_BINFOS (binfo);
7724 binfo = base_binfo)
7725 {
7726 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7727
7728 if (BINFO_VIRTUAL_P (base_binfo)
7729 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7730 break;
7731 }
7732
7733 type = BINFO_TYPE (binfo);
7734 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7735 + TYPE_NAME_LENGTH (type) + 2);
7736 sprintf (buf, VFIELD_NAME_FORMAT,
7737 IDENTIFIER_POINTER (constructor_name (type)));
7738 return get_identifier (buf);
7739 }
7740
7741 void
7742 print_class_statistics (void)
7743 {
7744 if (! GATHER_STATISTICS)
7745 return;
7746
7747 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7748 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7749 if (n_vtables)
7750 {
7751 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7752 n_vtables, n_vtable_searches);
7753 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7754 n_vtable_entries, n_vtable_elems);
7755 }
7756 }
7757
7758 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7759 according to [class]:
7760 The class-name is also inserted
7761 into the scope of the class itself. For purposes of access checking,
7762 the inserted class name is treated as if it were a public member name. */
7763
7764 void
7765 build_self_reference (void)
7766 {
7767 tree name = constructor_name (current_class_type);
7768 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7769 tree saved_cas;
7770
7771 DECL_NONLOCAL (value) = 1;
7772 DECL_CONTEXT (value) = current_class_type;
7773 DECL_ARTIFICIAL (value) = 1;
7774 SET_DECL_SELF_REFERENCE_P (value);
7775 set_underlying_type (value);
7776
7777 if (processing_template_decl)
7778 value = push_template_decl (value);
7779
7780 saved_cas = current_access_specifier;
7781 current_access_specifier = access_public_node;
7782 finish_member_declaration (value);
7783 current_access_specifier = saved_cas;
7784 }
7785
7786 /* Returns 1 if TYPE contains only padding bytes. */
7787
7788 int
7789 is_empty_class (tree type)
7790 {
7791 if (type == error_mark_node)
7792 return 0;
7793
7794 if (! CLASS_TYPE_P (type))
7795 return 0;
7796
7797 return CLASSTYPE_EMPTY_P (type);
7798 }
7799
7800 /* Returns true if TYPE contains an empty class. */
7801
7802 static bool
7803 contains_empty_class_p (tree type)
7804 {
7805 if (is_empty_class (type))
7806 return true;
7807 if (CLASS_TYPE_P (type))
7808 {
7809 tree field;
7810 tree binfo;
7811 tree base_binfo;
7812 int i;
7813
7814 for (binfo = TYPE_BINFO (type), i = 0;
7815 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7816 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
7817 return true;
7818 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
7819 if (TREE_CODE (field) == FIELD_DECL
7820 && !DECL_ARTIFICIAL (field)
7821 && is_empty_class (TREE_TYPE (field)))
7822 return true;
7823 }
7824 else if (TREE_CODE (type) == ARRAY_TYPE)
7825 return contains_empty_class_p (TREE_TYPE (type));
7826 return false;
7827 }
7828
7829 /* Returns true if TYPE contains no actual data, just various
7830 possible combinations of empty classes and possibly a vptr. */
7831
7832 bool
7833 is_really_empty_class (tree type)
7834 {
7835 if (CLASS_TYPE_P (type))
7836 {
7837 tree field;
7838 tree binfo;
7839 tree base_binfo;
7840 int i;
7841
7842 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7843 out, but we'd like to be able to check this before then. */
7844 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7845 return true;
7846
7847 for (binfo = TYPE_BINFO (type), i = 0;
7848 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7849 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7850 return false;
7851 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7852 if (TREE_CODE (field) == FIELD_DECL
7853 && !DECL_ARTIFICIAL (field)
7854 && !is_really_empty_class (TREE_TYPE (field)))
7855 return false;
7856 return true;
7857 }
7858 else if (TREE_CODE (type) == ARRAY_TYPE)
7859 return is_really_empty_class (TREE_TYPE (type));
7860 return false;
7861 }
7862
7863 /* Note that NAME was looked up while the current class was being
7864 defined and that the result of that lookup was DECL. */
7865
7866 void
7867 maybe_note_name_used_in_class (tree name, tree decl)
7868 {
7869 splay_tree names_used;
7870
7871 /* If we're not defining a class, there's nothing to do. */
7872 if (!(innermost_scope_kind() == sk_class
7873 && TYPE_BEING_DEFINED (current_class_type)
7874 && !LAMBDA_TYPE_P (current_class_type)))
7875 return;
7876
7877 /* If there's already a binding for this NAME, then we don't have
7878 anything to worry about. */
7879 if (lookup_member (current_class_type, name,
7880 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7881 return;
7882
7883 if (!current_class_stack[current_class_depth - 1].names_used)
7884 current_class_stack[current_class_depth - 1].names_used
7885 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7886 names_used = current_class_stack[current_class_depth - 1].names_used;
7887
7888 splay_tree_insert (names_used,
7889 (splay_tree_key) name,
7890 (splay_tree_value) decl);
7891 }
7892
7893 /* Note that NAME was declared (as DECL) in the current class. Check
7894 to see that the declaration is valid. */
7895
7896 void
7897 note_name_declared_in_class (tree name, tree decl)
7898 {
7899 splay_tree names_used;
7900 splay_tree_node n;
7901
7902 /* Look to see if we ever used this name. */
7903 names_used
7904 = current_class_stack[current_class_depth - 1].names_used;
7905 if (!names_used)
7906 return;
7907 /* The C language allows members to be declared with a type of the same
7908 name, and the C++ standard says this diagnostic is not required. So
7909 allow it in extern "C" blocks unless predantic is specified.
7910 Allow it in all cases if -ms-extensions is specified. */
7911 if ((!pedantic && current_lang_name == lang_name_c)
7912 || flag_ms_extensions)
7913 return;
7914 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7915 if (n)
7916 {
7917 /* [basic.scope.class]
7918
7919 A name N used in a class S shall refer to the same declaration
7920 in its context and when re-evaluated in the completed scope of
7921 S. */
7922 permerror (input_location, "declaration of %q#D", decl);
7923 permerror (input_location, "changes meaning of %qD from %q+#D",
7924 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7925 }
7926 }
7927
7928 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7929 Secondary vtables are merged with primary vtables; this function
7930 will return the VAR_DECL for the primary vtable. */
7931
7932 tree
7933 get_vtbl_decl_for_binfo (tree binfo)
7934 {
7935 tree decl;
7936
7937 decl = BINFO_VTABLE (binfo);
7938 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7939 {
7940 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7941 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7942 }
7943 if (decl)
7944 gcc_assert (VAR_P (decl));
7945 return decl;
7946 }
7947
7948
7949 /* Returns the binfo for the primary base of BINFO. If the resulting
7950 BINFO is a virtual base, and it is inherited elsewhere in the
7951 hierarchy, then the returned binfo might not be the primary base of
7952 BINFO in the complete object. Check BINFO_PRIMARY_P or
7953 BINFO_LOST_PRIMARY_P to be sure. */
7954
7955 static tree
7956 get_primary_binfo (tree binfo)
7957 {
7958 tree primary_base;
7959
7960 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
7961 if (!primary_base)
7962 return NULL_TREE;
7963
7964 return copied_binfo (primary_base, binfo);
7965 }
7966
7967 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
7968
7969 static int
7970 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
7971 {
7972 if (!indented_p)
7973 fprintf (stream, "%*s", indent, "");
7974 return 1;
7975 }
7976
7977 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
7978 INDENT should be zero when called from the top level; it is
7979 incremented recursively. IGO indicates the next expected BINFO in
7980 inheritance graph ordering. */
7981
7982 static tree
7983 dump_class_hierarchy_r (FILE *stream,
7984 int flags,
7985 tree binfo,
7986 tree igo,
7987 int indent)
7988 {
7989 int indented = 0;
7990 tree base_binfo;
7991 int i;
7992
7993 indented = maybe_indent_hierarchy (stream, indent, 0);
7994 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
7995 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
7996 (HOST_WIDE_INT) (uintptr_t) binfo);
7997 if (binfo != igo)
7998 {
7999 fprintf (stream, "alternative-path\n");
8000 return igo;
8001 }
8002 igo = TREE_CHAIN (binfo);
8003
8004 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
8005 tree_to_shwi (BINFO_OFFSET (binfo)));
8006 if (is_empty_class (BINFO_TYPE (binfo)))
8007 fprintf (stream, " empty");
8008 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
8009 fprintf (stream, " nearly-empty");
8010 if (BINFO_VIRTUAL_P (binfo))
8011 fprintf (stream, " virtual");
8012 fprintf (stream, "\n");
8013
8014 indented = 0;
8015 if (BINFO_PRIMARY_P (binfo))
8016 {
8017 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8018 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
8019 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
8020 TFF_PLAIN_IDENTIFIER),
8021 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
8022 }
8023 if (BINFO_LOST_PRIMARY_P (binfo))
8024 {
8025 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8026 fprintf (stream, " lost-primary");
8027 }
8028 if (indented)
8029 fprintf (stream, "\n");
8030
8031 if (!(flags & TDF_SLIM))
8032 {
8033 int indented = 0;
8034
8035 if (BINFO_SUBVTT_INDEX (binfo))
8036 {
8037 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8038 fprintf (stream, " subvttidx=%s",
8039 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
8040 TFF_PLAIN_IDENTIFIER));
8041 }
8042 if (BINFO_VPTR_INDEX (binfo))
8043 {
8044 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8045 fprintf (stream, " vptridx=%s",
8046 expr_as_string (BINFO_VPTR_INDEX (binfo),
8047 TFF_PLAIN_IDENTIFIER));
8048 }
8049 if (BINFO_VPTR_FIELD (binfo))
8050 {
8051 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8052 fprintf (stream, " vbaseoffset=%s",
8053 expr_as_string (BINFO_VPTR_FIELD (binfo),
8054 TFF_PLAIN_IDENTIFIER));
8055 }
8056 if (BINFO_VTABLE (binfo))
8057 {
8058 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8059 fprintf (stream, " vptr=%s",
8060 expr_as_string (BINFO_VTABLE (binfo),
8061 TFF_PLAIN_IDENTIFIER));
8062 }
8063
8064 if (indented)
8065 fprintf (stream, "\n");
8066 }
8067
8068 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
8069 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
8070
8071 return igo;
8072 }
8073
8074 /* Dump the BINFO hierarchy for T. */
8075
8076 static void
8077 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
8078 {
8079 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8080 fprintf (stream, " size=%lu align=%lu\n",
8081 (unsigned long)(tree_to_shwi (TYPE_SIZE (t)) / BITS_PER_UNIT),
8082 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
8083 fprintf (stream, " base size=%lu base align=%lu\n",
8084 (unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t)))
8085 / BITS_PER_UNIT),
8086 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
8087 / BITS_PER_UNIT));
8088 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
8089 fprintf (stream, "\n");
8090 }
8091
8092 /* Debug interface to hierarchy dumping. */
8093
8094 void
8095 debug_class (tree t)
8096 {
8097 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
8098 }
8099
8100 static void
8101 dump_class_hierarchy (tree t)
8102 {
8103 int flags;
8104 FILE *stream = get_dump_info (TDI_class, &flags);
8105
8106 if (stream)
8107 {
8108 dump_class_hierarchy_1 (stream, flags, t);
8109 }
8110 }
8111
8112 static void
8113 dump_array (FILE * stream, tree decl)
8114 {
8115 tree value;
8116 unsigned HOST_WIDE_INT ix;
8117 HOST_WIDE_INT elt;
8118 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8119
8120 elt = (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))))
8121 / BITS_PER_UNIT);
8122 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8123 fprintf (stream, " %s entries",
8124 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8125 TFF_PLAIN_IDENTIFIER));
8126 fprintf (stream, "\n");
8127
8128 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8129 ix, value)
8130 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
8131 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8132 }
8133
8134 static void
8135 dump_vtable (tree t, tree binfo, tree vtable)
8136 {
8137 int flags;
8138 FILE *stream = get_dump_info (TDI_class, &flags);
8139
8140 if (!stream)
8141 return;
8142
8143 if (!(flags & TDF_SLIM))
8144 {
8145 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8146
8147 fprintf (stream, "%s for %s",
8148 ctor_vtbl_p ? "Construction vtable" : "Vtable",
8149 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8150 if (ctor_vtbl_p)
8151 {
8152 if (!BINFO_VIRTUAL_P (binfo))
8153 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8154 (HOST_WIDE_INT) (uintptr_t) binfo);
8155 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8156 }
8157 fprintf (stream, "\n");
8158 dump_array (stream, vtable);
8159 fprintf (stream, "\n");
8160 }
8161 }
8162
8163 static void
8164 dump_vtt (tree t, tree vtt)
8165 {
8166 int flags;
8167 FILE *stream = get_dump_info (TDI_class, &flags);
8168
8169 if (!stream)
8170 return;
8171
8172 if (!(flags & TDF_SLIM))
8173 {
8174 fprintf (stream, "VTT for %s\n",
8175 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8176 dump_array (stream, vtt);
8177 fprintf (stream, "\n");
8178 }
8179 }
8180
8181 /* Dump a function or thunk and its thunkees. */
8182
8183 static void
8184 dump_thunk (FILE *stream, int indent, tree thunk)
8185 {
8186 static const char spaces[] = " ";
8187 tree name = DECL_NAME (thunk);
8188 tree thunks;
8189
8190 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8191 (void *)thunk,
8192 !DECL_THUNK_P (thunk) ? "function"
8193 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8194 name ? IDENTIFIER_POINTER (name) : "<unset>");
8195 if (DECL_THUNK_P (thunk))
8196 {
8197 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8198 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8199
8200 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8201 if (!virtual_adjust)
8202 /*NOP*/;
8203 else if (DECL_THIS_THUNK_P (thunk))
8204 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8205 tree_to_shwi (virtual_adjust));
8206 else
8207 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8208 tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust)),
8209 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8210 if (THUNK_ALIAS (thunk))
8211 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8212 }
8213 fprintf (stream, "\n");
8214 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8215 dump_thunk (stream, indent + 2, thunks);
8216 }
8217
8218 /* Dump the thunks for FN. */
8219
8220 void
8221 debug_thunks (tree fn)
8222 {
8223 dump_thunk (stderr, 0, fn);
8224 }
8225
8226 /* Virtual function table initialization. */
8227
8228 /* Create all the necessary vtables for T and its base classes. */
8229
8230 static void
8231 finish_vtbls (tree t)
8232 {
8233 tree vbase;
8234 vec<constructor_elt, va_gc> *v = NULL;
8235 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8236
8237 /* We lay out the primary and secondary vtables in one contiguous
8238 vtable. The primary vtable is first, followed by the non-virtual
8239 secondary vtables in inheritance graph order. */
8240 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8241 vtable, t, &v);
8242
8243 /* Then come the virtual bases, also in inheritance graph order. */
8244 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8245 {
8246 if (!BINFO_VIRTUAL_P (vbase))
8247 continue;
8248 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8249 }
8250
8251 if (BINFO_VTABLE (TYPE_BINFO (t)))
8252 initialize_vtable (TYPE_BINFO (t), v);
8253 }
8254
8255 /* Initialize the vtable for BINFO with the INITS. */
8256
8257 static void
8258 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8259 {
8260 tree decl;
8261
8262 layout_vtable_decl (binfo, vec_safe_length (inits));
8263 decl = get_vtbl_decl_for_binfo (binfo);
8264 initialize_artificial_var (decl, inits);
8265 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8266 }
8267
8268 /* Build the VTT (virtual table table) for T.
8269 A class requires a VTT if it has virtual bases.
8270
8271 This holds
8272 1 - primary virtual pointer for complete object T
8273 2 - secondary VTTs for each direct non-virtual base of T which requires a
8274 VTT
8275 3 - secondary virtual pointers for each direct or indirect base of T which
8276 has virtual bases or is reachable via a virtual path from T.
8277 4 - secondary VTTs for each direct or indirect virtual base of T.
8278
8279 Secondary VTTs look like complete object VTTs without part 4. */
8280
8281 static void
8282 build_vtt (tree t)
8283 {
8284 tree type;
8285 tree vtt;
8286 tree index;
8287 vec<constructor_elt, va_gc> *inits;
8288
8289 /* Build up the initializers for the VTT. */
8290 inits = NULL;
8291 index = size_zero_node;
8292 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8293
8294 /* If we didn't need a VTT, we're done. */
8295 if (!inits)
8296 return;
8297
8298 /* Figure out the type of the VTT. */
8299 type = build_array_of_n_type (const_ptr_type_node,
8300 inits->length ());
8301
8302 /* Now, build the VTT object itself. */
8303 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8304 initialize_artificial_var (vtt, inits);
8305 /* Add the VTT to the vtables list. */
8306 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8307 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8308
8309 dump_vtt (t, vtt);
8310 }
8311
8312 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8313 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8314 and CHAIN the vtable pointer for this binfo after construction is
8315 complete. VALUE can also be another BINFO, in which case we recurse. */
8316
8317 static tree
8318 binfo_ctor_vtable (tree binfo)
8319 {
8320 tree vt;
8321
8322 while (1)
8323 {
8324 vt = BINFO_VTABLE (binfo);
8325 if (TREE_CODE (vt) == TREE_LIST)
8326 vt = TREE_VALUE (vt);
8327 if (TREE_CODE (vt) == TREE_BINFO)
8328 binfo = vt;
8329 else
8330 break;
8331 }
8332
8333 return vt;
8334 }
8335
8336 /* Data for secondary VTT initialization. */
8337 typedef struct secondary_vptr_vtt_init_data_s
8338 {
8339 /* Is this the primary VTT? */
8340 bool top_level_p;
8341
8342 /* Current index into the VTT. */
8343 tree index;
8344
8345 /* Vector of initializers built up. */
8346 vec<constructor_elt, va_gc> *inits;
8347
8348 /* The type being constructed by this secondary VTT. */
8349 tree type_being_constructed;
8350 } secondary_vptr_vtt_init_data;
8351
8352 /* Recursively build the VTT-initializer for BINFO (which is in the
8353 hierarchy dominated by T). INITS points to the end of the initializer
8354 list to date. INDEX is the VTT index where the next element will be
8355 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8356 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8357 for virtual bases of T. When it is not so, we build the constructor
8358 vtables for the BINFO-in-T variant. */
8359
8360 static void
8361 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8362 tree *index)
8363 {
8364 int i;
8365 tree b;
8366 tree init;
8367 secondary_vptr_vtt_init_data data;
8368 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8369
8370 /* We only need VTTs for subobjects with virtual bases. */
8371 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8372 return;
8373
8374 /* We need to use a construction vtable if this is not the primary
8375 VTT. */
8376 if (!top_level_p)
8377 {
8378 build_ctor_vtbl_group (binfo, t);
8379
8380 /* Record the offset in the VTT where this sub-VTT can be found. */
8381 BINFO_SUBVTT_INDEX (binfo) = *index;
8382 }
8383
8384 /* Add the address of the primary vtable for the complete object. */
8385 init = binfo_ctor_vtable (binfo);
8386 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8387 if (top_level_p)
8388 {
8389 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8390 BINFO_VPTR_INDEX (binfo) = *index;
8391 }
8392 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8393
8394 /* Recursively add the secondary VTTs for non-virtual bases. */
8395 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8396 if (!BINFO_VIRTUAL_P (b))
8397 build_vtt_inits (b, t, inits, index);
8398
8399 /* Add secondary virtual pointers for all subobjects of BINFO with
8400 either virtual bases or reachable along a virtual path, except
8401 subobjects that are non-virtual primary bases. */
8402 data.top_level_p = top_level_p;
8403 data.index = *index;
8404 data.inits = *inits;
8405 data.type_being_constructed = BINFO_TYPE (binfo);
8406
8407 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8408
8409 *index = data.index;
8410
8411 /* data.inits might have grown as we added secondary virtual pointers.
8412 Make sure our caller knows about the new vector. */
8413 *inits = data.inits;
8414
8415 if (top_level_p)
8416 /* Add the secondary VTTs for virtual bases in inheritance graph
8417 order. */
8418 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8419 {
8420 if (!BINFO_VIRTUAL_P (b))
8421 continue;
8422
8423 build_vtt_inits (b, t, inits, index);
8424 }
8425 else
8426 /* Remove the ctor vtables we created. */
8427 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8428 }
8429
8430 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8431 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8432
8433 static tree
8434 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8435 {
8436 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8437
8438 /* We don't care about bases that don't have vtables. */
8439 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8440 return dfs_skip_bases;
8441
8442 /* We're only interested in proper subobjects of the type being
8443 constructed. */
8444 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8445 return NULL_TREE;
8446
8447 /* We're only interested in bases with virtual bases or reachable
8448 via a virtual path from the type being constructed. */
8449 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8450 || binfo_via_virtual (binfo, data->type_being_constructed)))
8451 return dfs_skip_bases;
8452
8453 /* We're not interested in non-virtual primary bases. */
8454 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8455 return NULL_TREE;
8456
8457 /* Record the index where this secondary vptr can be found. */
8458 if (data->top_level_p)
8459 {
8460 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8461 BINFO_VPTR_INDEX (binfo) = data->index;
8462
8463 if (BINFO_VIRTUAL_P (binfo))
8464 {
8465 /* It's a primary virtual base, and this is not a
8466 construction vtable. Find the base this is primary of in
8467 the inheritance graph, and use that base's vtable
8468 now. */
8469 while (BINFO_PRIMARY_P (binfo))
8470 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8471 }
8472 }
8473
8474 /* Add the initializer for the secondary vptr itself. */
8475 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8476
8477 /* Advance the vtt index. */
8478 data->index = size_binop (PLUS_EXPR, data->index,
8479 TYPE_SIZE_UNIT (ptr_type_node));
8480
8481 return NULL_TREE;
8482 }
8483
8484 /* Called from build_vtt_inits via dfs_walk. After building
8485 constructor vtables and generating the sub-vtt from them, we need
8486 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8487 binfo of the base whose sub vtt was generated. */
8488
8489 static tree
8490 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8491 {
8492 tree vtable = BINFO_VTABLE (binfo);
8493
8494 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8495 /* If this class has no vtable, none of its bases do. */
8496 return dfs_skip_bases;
8497
8498 if (!vtable)
8499 /* This might be a primary base, so have no vtable in this
8500 hierarchy. */
8501 return NULL_TREE;
8502
8503 /* If we scribbled the construction vtable vptr into BINFO, clear it
8504 out now. */
8505 if (TREE_CODE (vtable) == TREE_LIST
8506 && (TREE_PURPOSE (vtable) == (tree) data))
8507 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8508
8509 return NULL_TREE;
8510 }
8511
8512 /* Build the construction vtable group for BINFO which is in the
8513 hierarchy dominated by T. */
8514
8515 static void
8516 build_ctor_vtbl_group (tree binfo, tree t)
8517 {
8518 tree type;
8519 tree vtbl;
8520 tree id;
8521 tree vbase;
8522 vec<constructor_elt, va_gc> *v;
8523
8524 /* See if we've already created this construction vtable group. */
8525 id = mangle_ctor_vtbl_for_type (t, binfo);
8526 if (IDENTIFIER_GLOBAL_VALUE (id))
8527 return;
8528
8529 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8530 /* Build a version of VTBL (with the wrong type) for use in
8531 constructing the addresses of secondary vtables in the
8532 construction vtable group. */
8533 vtbl = build_vtable (t, id, ptr_type_node);
8534 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8535 /* Don't export construction vtables from shared libraries. Even on
8536 targets that don't support hidden visibility, this tells
8537 can_refer_decl_in_current_unit_p not to assume that it's safe to
8538 access from a different compilation unit (bz 54314). */
8539 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8540 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8541
8542 v = NULL;
8543 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8544 binfo, vtbl, t, &v);
8545
8546 /* Add the vtables for each of our virtual bases using the vbase in T
8547 binfo. */
8548 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8549 vbase;
8550 vbase = TREE_CHAIN (vbase))
8551 {
8552 tree b;
8553
8554 if (!BINFO_VIRTUAL_P (vbase))
8555 continue;
8556 b = copied_binfo (vbase, binfo);
8557
8558 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8559 }
8560
8561 /* Figure out the type of the construction vtable. */
8562 type = build_array_of_n_type (vtable_entry_type, v->length ());
8563 layout_type (type);
8564 TREE_TYPE (vtbl) = type;
8565 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8566 layout_decl (vtbl, 0);
8567
8568 /* Initialize the construction vtable. */
8569 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8570 initialize_artificial_var (vtbl, v);
8571 dump_vtable (t, binfo, vtbl);
8572 }
8573
8574 /* Add the vtbl initializers for BINFO (and its bases other than
8575 non-virtual primaries) to the list of INITS. BINFO is in the
8576 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8577 the constructor the vtbl inits should be accumulated for. (If this
8578 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8579 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8580 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8581 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8582 but are not necessarily the same in terms of layout. */
8583
8584 static void
8585 accumulate_vtbl_inits (tree binfo,
8586 tree orig_binfo,
8587 tree rtti_binfo,
8588 tree vtbl,
8589 tree t,
8590 vec<constructor_elt, va_gc> **inits)
8591 {
8592 int i;
8593 tree base_binfo;
8594 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8595
8596 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8597
8598 /* If it doesn't have a vptr, we don't do anything. */
8599 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8600 return;
8601
8602 /* If we're building a construction vtable, we're not interested in
8603 subobjects that don't require construction vtables. */
8604 if (ctor_vtbl_p
8605 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8606 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8607 return;
8608
8609 /* Build the initializers for the BINFO-in-T vtable. */
8610 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8611
8612 /* Walk the BINFO and its bases. We walk in preorder so that as we
8613 initialize each vtable we can figure out at what offset the
8614 secondary vtable lies from the primary vtable. We can't use
8615 dfs_walk here because we need to iterate through bases of BINFO
8616 and RTTI_BINFO simultaneously. */
8617 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8618 {
8619 /* Skip virtual bases. */
8620 if (BINFO_VIRTUAL_P (base_binfo))
8621 continue;
8622 accumulate_vtbl_inits (base_binfo,
8623 BINFO_BASE_BINFO (orig_binfo, i),
8624 rtti_binfo, vtbl, t,
8625 inits);
8626 }
8627 }
8628
8629 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8630 BINFO vtable to L. */
8631
8632 static void
8633 dfs_accumulate_vtbl_inits (tree binfo,
8634 tree orig_binfo,
8635 tree rtti_binfo,
8636 tree orig_vtbl,
8637 tree t,
8638 vec<constructor_elt, va_gc> **l)
8639 {
8640 tree vtbl = NULL_TREE;
8641 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8642 int n_inits;
8643
8644 if (ctor_vtbl_p
8645 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8646 {
8647 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8648 primary virtual base. If it is not the same primary in
8649 the hierarchy of T, we'll need to generate a ctor vtable
8650 for it, to place at its location in T. If it is the same
8651 primary, we still need a VTT entry for the vtable, but it
8652 should point to the ctor vtable for the base it is a
8653 primary for within the sub-hierarchy of RTTI_BINFO.
8654
8655 There are three possible cases:
8656
8657 1) We are in the same place.
8658 2) We are a primary base within a lost primary virtual base of
8659 RTTI_BINFO.
8660 3) We are primary to something not a base of RTTI_BINFO. */
8661
8662 tree b;
8663 tree last = NULL_TREE;
8664
8665 /* First, look through the bases we are primary to for RTTI_BINFO
8666 or a virtual base. */
8667 b = binfo;
8668 while (BINFO_PRIMARY_P (b))
8669 {
8670 b = BINFO_INHERITANCE_CHAIN (b);
8671 last = b;
8672 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8673 goto found;
8674 }
8675 /* If we run out of primary links, keep looking down our
8676 inheritance chain; we might be an indirect primary. */
8677 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8678 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8679 break;
8680 found:
8681
8682 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8683 base B and it is a base of RTTI_BINFO, this is case 2. In
8684 either case, we share our vtable with LAST, i.e. the
8685 derived-most base within B of which we are a primary. */
8686 if (b == rtti_binfo
8687 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8688 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8689 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8690 binfo_ctor_vtable after everything's been set up. */
8691 vtbl = last;
8692
8693 /* Otherwise, this is case 3 and we get our own. */
8694 }
8695 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8696 return;
8697
8698 n_inits = vec_safe_length (*l);
8699
8700 if (!vtbl)
8701 {
8702 tree index;
8703 int non_fn_entries;
8704
8705 /* Add the initializer for this vtable. */
8706 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8707 &non_fn_entries, l);
8708
8709 /* Figure out the position to which the VPTR should point. */
8710 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8711 index = size_binop (MULT_EXPR,
8712 TYPE_SIZE_UNIT (vtable_entry_type),
8713 size_int (non_fn_entries + n_inits));
8714 vtbl = fold_build_pointer_plus (vtbl, index);
8715 }
8716
8717 if (ctor_vtbl_p)
8718 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8719 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8720 straighten this out. */
8721 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8722 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8723 /* Throw away any unneeded intializers. */
8724 (*l)->truncate (n_inits);
8725 else
8726 /* For an ordinary vtable, set BINFO_VTABLE. */
8727 BINFO_VTABLE (binfo) = vtbl;
8728 }
8729
8730 static GTY(()) tree abort_fndecl_addr;
8731
8732 /* Construct the initializer for BINFO's virtual function table. BINFO
8733 is part of the hierarchy dominated by T. If we're building a
8734 construction vtable, the ORIG_BINFO is the binfo we should use to
8735 find the actual function pointers to put in the vtable - but they
8736 can be overridden on the path to most-derived in the graph that
8737 ORIG_BINFO belongs. Otherwise,
8738 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8739 BINFO that should be indicated by the RTTI information in the
8740 vtable; it will be a base class of T, rather than T itself, if we
8741 are building a construction vtable.
8742
8743 The value returned is a TREE_LIST suitable for wrapping in a
8744 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8745 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8746 number of non-function entries in the vtable.
8747
8748 It might seem that this function should never be called with a
8749 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8750 base is always subsumed by a derived class vtable. However, when
8751 we are building construction vtables, we do build vtables for
8752 primary bases; we need these while the primary base is being
8753 constructed. */
8754
8755 static void
8756 build_vtbl_initializer (tree binfo,
8757 tree orig_binfo,
8758 tree t,
8759 tree rtti_binfo,
8760 int* non_fn_entries_p,
8761 vec<constructor_elt, va_gc> **inits)
8762 {
8763 tree v;
8764 vtbl_init_data vid;
8765 unsigned ix, jx;
8766 tree vbinfo;
8767 vec<tree, va_gc> *vbases;
8768 constructor_elt *e;
8769
8770 /* Initialize VID. */
8771 memset (&vid, 0, sizeof (vid));
8772 vid.binfo = binfo;
8773 vid.derived = t;
8774 vid.rtti_binfo = rtti_binfo;
8775 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8776 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8777 vid.generate_vcall_entries = true;
8778 /* The first vbase or vcall offset is at index -3 in the vtable. */
8779 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8780
8781 /* Add entries to the vtable for RTTI. */
8782 build_rtti_vtbl_entries (binfo, &vid);
8783
8784 /* Create an array for keeping track of the functions we've
8785 processed. When we see multiple functions with the same
8786 signature, we share the vcall offsets. */
8787 vec_alloc (vid.fns, 32);
8788 /* Add the vcall and vbase offset entries. */
8789 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8790
8791 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8792 build_vbase_offset_vtbl_entries. */
8793 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8794 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8795 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8796
8797 /* If the target requires padding between data entries, add that now. */
8798 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8799 {
8800 int n_entries = vec_safe_length (vid.inits);
8801
8802 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8803
8804 /* Move data entries into their new positions and add padding
8805 after the new positions. Iterate backwards so we don't
8806 overwrite entries that we would need to process later. */
8807 for (ix = n_entries - 1;
8808 vid.inits->iterate (ix, &e);
8809 ix--)
8810 {
8811 int j;
8812 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8813 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8814
8815 (*vid.inits)[new_position] = *e;
8816
8817 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8818 {
8819 constructor_elt *f = &(*vid.inits)[new_position - j];
8820 f->index = NULL_TREE;
8821 f->value = build1 (NOP_EXPR, vtable_entry_type,
8822 null_pointer_node);
8823 }
8824 }
8825 }
8826
8827 if (non_fn_entries_p)
8828 *non_fn_entries_p = vec_safe_length (vid.inits);
8829
8830 /* The initializers for virtual functions were built up in reverse
8831 order. Straighten them out and add them to the running list in one
8832 step. */
8833 jx = vec_safe_length (*inits);
8834 vec_safe_grow (*inits, jx + vid.inits->length ());
8835
8836 for (ix = vid.inits->length () - 1;
8837 vid.inits->iterate (ix, &e);
8838 ix--, jx++)
8839 (**inits)[jx] = *e;
8840
8841 /* Go through all the ordinary virtual functions, building up
8842 initializers. */
8843 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8844 {
8845 tree delta;
8846 tree vcall_index;
8847 tree fn, fn_original;
8848 tree init = NULL_TREE;
8849
8850 fn = BV_FN (v);
8851 fn_original = fn;
8852 if (DECL_THUNK_P (fn))
8853 {
8854 if (!DECL_NAME (fn))
8855 finish_thunk (fn);
8856 if (THUNK_ALIAS (fn))
8857 {
8858 fn = THUNK_ALIAS (fn);
8859 BV_FN (v) = fn;
8860 }
8861 fn_original = THUNK_TARGET (fn);
8862 }
8863
8864 /* If the only definition of this function signature along our
8865 primary base chain is from a lost primary, this vtable slot will
8866 never be used, so just zero it out. This is important to avoid
8867 requiring extra thunks which cannot be generated with the function.
8868
8869 We first check this in update_vtable_entry_for_fn, so we handle
8870 restored primary bases properly; we also need to do it here so we
8871 zero out unused slots in ctor vtables, rather than filling them
8872 with erroneous values (though harmless, apart from relocation
8873 costs). */
8874 if (BV_LOST_PRIMARY (v))
8875 init = size_zero_node;
8876
8877 if (! init)
8878 {
8879 /* Pull the offset for `this', and the function to call, out of
8880 the list. */
8881 delta = BV_DELTA (v);
8882 vcall_index = BV_VCALL_INDEX (v);
8883
8884 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8885 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8886
8887 /* You can't call an abstract virtual function; it's abstract.
8888 So, we replace these functions with __pure_virtual. */
8889 if (DECL_PURE_VIRTUAL_P (fn_original))
8890 {
8891 fn = abort_fndecl;
8892 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8893 {
8894 if (abort_fndecl_addr == NULL)
8895 abort_fndecl_addr
8896 = fold_convert (vfunc_ptr_type_node,
8897 build_fold_addr_expr (fn));
8898 init = abort_fndecl_addr;
8899 }
8900 }
8901 /* Likewise for deleted virtuals. */
8902 else if (DECL_DELETED_FN (fn_original))
8903 {
8904 fn = get_identifier ("__cxa_deleted_virtual");
8905 if (!get_global_value_if_present (fn, &fn))
8906 fn = push_library_fn (fn, (build_function_type_list
8907 (void_type_node, NULL_TREE)),
8908 NULL_TREE, ECF_NORETURN);
8909 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8910 init = fold_convert (vfunc_ptr_type_node,
8911 build_fold_addr_expr (fn));
8912 }
8913 else
8914 {
8915 if (!integer_zerop (delta) || vcall_index)
8916 {
8917 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8918 if (!DECL_NAME (fn))
8919 finish_thunk (fn);
8920 }
8921 /* Take the address of the function, considering it to be of an
8922 appropriate generic type. */
8923 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8924 init = fold_convert (vfunc_ptr_type_node,
8925 build_fold_addr_expr (fn));
8926 /* Don't refer to a virtual destructor from a constructor
8927 vtable or a vtable for an abstract class, since destroying
8928 an object under construction is undefined behavior and we
8929 don't want it to be considered a candidate for speculative
8930 devirtualization. But do create the thunk for ABI
8931 compliance. */
8932 if (DECL_DESTRUCTOR_P (fn_original)
8933 && (CLASSTYPE_PURE_VIRTUALS (DECL_CONTEXT (fn_original))
8934 || orig_binfo != binfo))
8935 init = size_zero_node;
8936 }
8937 }
8938
8939 /* And add it to the chain of initializers. */
8940 if (TARGET_VTABLE_USES_DESCRIPTORS)
8941 {
8942 int i;
8943 if (init == size_zero_node)
8944 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8945 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8946 else
8947 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8948 {
8949 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
8950 fn, build_int_cst (NULL_TREE, i));
8951 TREE_CONSTANT (fdesc) = 1;
8952
8953 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
8954 }
8955 }
8956 else
8957 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8958 }
8959 }
8960
8961 /* Adds to vid->inits the initializers for the vbase and vcall
8962 offsets in BINFO, which is in the hierarchy dominated by T. */
8963
8964 static void
8965 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
8966 {
8967 tree b;
8968
8969 /* If this is a derived class, we must first create entries
8970 corresponding to the primary base class. */
8971 b = get_primary_binfo (binfo);
8972 if (b)
8973 build_vcall_and_vbase_vtbl_entries (b, vid);
8974
8975 /* Add the vbase entries for this base. */
8976 build_vbase_offset_vtbl_entries (binfo, vid);
8977 /* Add the vcall entries for this base. */
8978 build_vcall_offset_vtbl_entries (binfo, vid);
8979 }
8980
8981 /* Returns the initializers for the vbase offset entries in the vtable
8982 for BINFO (which is part of the class hierarchy dominated by T), in
8983 reverse order. VBASE_OFFSET_INDEX gives the vtable index
8984 where the next vbase offset will go. */
8985
8986 static void
8987 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8988 {
8989 tree vbase;
8990 tree t;
8991 tree non_primary_binfo;
8992
8993 /* If there are no virtual baseclasses, then there is nothing to
8994 do. */
8995 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8996 return;
8997
8998 t = vid->derived;
8999
9000 /* We might be a primary base class. Go up the inheritance hierarchy
9001 until we find the most derived class of which we are a primary base:
9002 it is the offset of that which we need to use. */
9003 non_primary_binfo = binfo;
9004 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9005 {
9006 tree b;
9007
9008 /* If we have reached a virtual base, then it must be a primary
9009 base (possibly multi-level) of vid->binfo, or we wouldn't
9010 have called build_vcall_and_vbase_vtbl_entries for it. But it
9011 might be a lost primary, so just skip down to vid->binfo. */
9012 if (BINFO_VIRTUAL_P (non_primary_binfo))
9013 {
9014 non_primary_binfo = vid->binfo;
9015 break;
9016 }
9017
9018 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9019 if (get_primary_binfo (b) != non_primary_binfo)
9020 break;
9021 non_primary_binfo = b;
9022 }
9023
9024 /* Go through the virtual bases, adding the offsets. */
9025 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
9026 vbase;
9027 vbase = TREE_CHAIN (vbase))
9028 {
9029 tree b;
9030 tree delta;
9031
9032 if (!BINFO_VIRTUAL_P (vbase))
9033 continue;
9034
9035 /* Find the instance of this virtual base in the complete
9036 object. */
9037 b = copied_binfo (vbase, binfo);
9038
9039 /* If we've already got an offset for this virtual base, we
9040 don't need another one. */
9041 if (BINFO_VTABLE_PATH_MARKED (b))
9042 continue;
9043 BINFO_VTABLE_PATH_MARKED (b) = 1;
9044
9045 /* Figure out where we can find this vbase offset. */
9046 delta = size_binop (MULT_EXPR,
9047 vid->index,
9048 convert (ssizetype,
9049 TYPE_SIZE_UNIT (vtable_entry_type)));
9050 if (vid->primary_vtbl_p)
9051 BINFO_VPTR_FIELD (b) = delta;
9052
9053 if (binfo != TYPE_BINFO (t))
9054 /* The vbase offset had better be the same. */
9055 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
9056
9057 /* The next vbase will come at a more negative offset. */
9058 vid->index = size_binop (MINUS_EXPR, vid->index,
9059 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9060
9061 /* The initializer is the delta from BINFO to this virtual base.
9062 The vbase offsets go in reverse inheritance-graph order, and
9063 we are walking in inheritance graph order so these end up in
9064 the right order. */
9065 delta = size_diffop_loc (input_location,
9066 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
9067
9068 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
9069 fold_build1_loc (input_location, NOP_EXPR,
9070 vtable_entry_type, delta));
9071 }
9072 }
9073
9074 /* Adds the initializers for the vcall offset entries in the vtable
9075 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9076 to VID->INITS. */
9077
9078 static void
9079 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9080 {
9081 /* We only need these entries if this base is a virtual base. We
9082 compute the indices -- but do not add to the vtable -- when
9083 building the main vtable for a class. */
9084 if (binfo == TYPE_BINFO (vid->derived)
9085 || (BINFO_VIRTUAL_P (binfo)
9086 /* If BINFO is RTTI_BINFO, then (since BINFO does not
9087 correspond to VID->DERIVED), we are building a primary
9088 construction virtual table. Since this is a primary
9089 virtual table, we do not need the vcall offsets for
9090 BINFO. */
9091 && binfo != vid->rtti_binfo))
9092 {
9093 /* We need a vcall offset for each of the virtual functions in this
9094 vtable. For example:
9095
9096 class A { virtual void f (); };
9097 class B1 : virtual public A { virtual void f (); };
9098 class B2 : virtual public A { virtual void f (); };
9099 class C: public B1, public B2 { virtual void f (); };
9100
9101 A C object has a primary base of B1, which has a primary base of A. A
9102 C also has a secondary base of B2, which no longer has a primary base
9103 of A. So the B2-in-C construction vtable needs a secondary vtable for
9104 A, which will adjust the A* to a B2* to call f. We have no way of
9105 knowing what (or even whether) this offset will be when we define B2,
9106 so we store this "vcall offset" in the A sub-vtable and look it up in
9107 a "virtual thunk" for B2::f.
9108
9109 We need entries for all the functions in our primary vtable and
9110 in our non-virtual bases' secondary vtables. */
9111 vid->vbase = binfo;
9112 /* If we are just computing the vcall indices -- but do not need
9113 the actual entries -- not that. */
9114 if (!BINFO_VIRTUAL_P (binfo))
9115 vid->generate_vcall_entries = false;
9116 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9117 add_vcall_offset_vtbl_entries_r (binfo, vid);
9118 }
9119 }
9120
9121 /* Build vcall offsets, starting with those for BINFO. */
9122
9123 static void
9124 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9125 {
9126 int i;
9127 tree primary_binfo;
9128 tree base_binfo;
9129
9130 /* Don't walk into virtual bases -- except, of course, for the
9131 virtual base for which we are building vcall offsets. Any
9132 primary virtual base will have already had its offsets generated
9133 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9134 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9135 return;
9136
9137 /* If BINFO has a primary base, process it first. */
9138 primary_binfo = get_primary_binfo (binfo);
9139 if (primary_binfo)
9140 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9141
9142 /* Add BINFO itself to the list. */
9143 add_vcall_offset_vtbl_entries_1 (binfo, vid);
9144
9145 /* Scan the non-primary bases of BINFO. */
9146 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9147 if (base_binfo != primary_binfo)
9148 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9149 }
9150
9151 /* Called from build_vcall_offset_vtbl_entries_r. */
9152
9153 static void
9154 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9155 {
9156 /* Make entries for the rest of the virtuals. */
9157 tree orig_fn;
9158
9159 /* The ABI requires that the methods be processed in declaration
9160 order. */
9161 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
9162 orig_fn;
9163 orig_fn = DECL_CHAIN (orig_fn))
9164 if (TREE_CODE (orig_fn) == FUNCTION_DECL && DECL_VINDEX (orig_fn))
9165 add_vcall_offset (orig_fn, binfo, vid);
9166 }
9167
9168 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9169
9170 static void
9171 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9172 {
9173 size_t i;
9174 tree vcall_offset;
9175 tree derived_entry;
9176
9177 /* If there is already an entry for a function with the same
9178 signature as FN, then we do not need a second vcall offset.
9179 Check the list of functions already present in the derived
9180 class vtable. */
9181 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9182 {
9183 if (same_signature_p (derived_entry, orig_fn)
9184 /* We only use one vcall offset for virtual destructors,
9185 even though there are two virtual table entries. */
9186 || (DECL_DESTRUCTOR_P (derived_entry)
9187 && DECL_DESTRUCTOR_P (orig_fn)))
9188 return;
9189 }
9190
9191 /* If we are building these vcall offsets as part of building
9192 the vtable for the most derived class, remember the vcall
9193 offset. */
9194 if (vid->binfo == TYPE_BINFO (vid->derived))
9195 {
9196 tree_pair_s elt = {orig_fn, vid->index};
9197 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9198 }
9199
9200 /* The next vcall offset will be found at a more negative
9201 offset. */
9202 vid->index = size_binop (MINUS_EXPR, vid->index,
9203 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9204
9205 /* Keep track of this function. */
9206 vec_safe_push (vid->fns, orig_fn);
9207
9208 if (vid->generate_vcall_entries)
9209 {
9210 tree base;
9211 tree fn;
9212
9213 /* Find the overriding function. */
9214 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9215 if (fn == error_mark_node)
9216 vcall_offset = build_zero_cst (vtable_entry_type);
9217 else
9218 {
9219 base = TREE_VALUE (fn);
9220
9221 /* The vbase we're working on is a primary base of
9222 vid->binfo. But it might be a lost primary, so its
9223 BINFO_OFFSET might be wrong, so we just use the
9224 BINFO_OFFSET from vid->binfo. */
9225 vcall_offset = size_diffop_loc (input_location,
9226 BINFO_OFFSET (base),
9227 BINFO_OFFSET (vid->binfo));
9228 vcall_offset = fold_build1_loc (input_location,
9229 NOP_EXPR, vtable_entry_type,
9230 vcall_offset);
9231 }
9232 /* Add the initializer to the vtable. */
9233 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9234 }
9235 }
9236
9237 /* Return vtbl initializers for the RTTI entries corresponding to the
9238 BINFO's vtable. The RTTI entries should indicate the object given
9239 by VID->rtti_binfo. */
9240
9241 static void
9242 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9243 {
9244 tree b;
9245 tree t;
9246 tree offset;
9247 tree decl;
9248 tree init;
9249
9250 t = BINFO_TYPE (vid->rtti_binfo);
9251
9252 /* To find the complete object, we will first convert to our most
9253 primary base, and then add the offset in the vtbl to that value. */
9254 b = binfo;
9255 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9256 && !BINFO_LOST_PRIMARY_P (b))
9257 {
9258 tree primary_base;
9259
9260 primary_base = get_primary_binfo (b);
9261 gcc_assert (BINFO_PRIMARY_P (primary_base)
9262 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9263 b = primary_base;
9264 }
9265 offset = size_diffop_loc (input_location,
9266 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9267
9268 /* The second entry is the address of the typeinfo object. */
9269 if (flag_rtti)
9270 decl = build_address (get_tinfo_decl (t));
9271 else
9272 decl = integer_zero_node;
9273
9274 /* Convert the declaration to a type that can be stored in the
9275 vtable. */
9276 init = build_nop (vfunc_ptr_type_node, decl);
9277 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9278
9279 /* Add the offset-to-top entry. It comes earlier in the vtable than
9280 the typeinfo entry. Convert the offset to look like a
9281 function pointer, so that we can put it in the vtable. */
9282 init = build_nop (vfunc_ptr_type_node, offset);
9283 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9284 }
9285
9286 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9287 accessibility. */
9288
9289 bool
9290 uniquely_derived_from_p (tree parent, tree type)
9291 {
9292 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9293 return base && base != error_mark_node;
9294 }
9295
9296 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9297
9298 bool
9299 publicly_uniquely_derived_p (tree parent, tree type)
9300 {
9301 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9302 NULL, tf_none);
9303 return base && base != error_mark_node;
9304 }
9305
9306 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9307 class between them, if any. */
9308
9309 tree
9310 common_enclosing_class (tree ctx1, tree ctx2)
9311 {
9312 if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
9313 return NULL_TREE;
9314 gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
9315 && ctx2 == TYPE_MAIN_VARIANT (ctx2));
9316 if (ctx1 == ctx2)
9317 return ctx1;
9318 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9319 TYPE_MARKED_P (t) = true;
9320 tree found = NULL_TREE;
9321 for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
9322 if (TYPE_MARKED_P (t))
9323 {
9324 found = t;
9325 break;
9326 }
9327 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9328 TYPE_MARKED_P (t) = false;
9329 return found;
9330 }
9331
9332 #include "gt-cp-class.h"