re PR c++/33916 (Default constructor fails to initialize array members)
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38 #include "cgraph.h"
39 #include "tree-dump.h"
40
41 /* The number of nested classes being processed. If we are not in the
42 scope of any class, this is zero. */
43
44 int current_class_depth;
45
46 /* In order to deal with nested classes, we keep a stack of classes.
47 The topmost entry is the innermost class, and is the entry at index
48 CURRENT_CLASS_DEPTH */
49
50 typedef struct class_stack_node {
51 /* The name of the class. */
52 tree name;
53
54 /* The _TYPE node for the class. */
55 tree type;
56
57 /* The access specifier pending for new declarations in the scope of
58 this class. */
59 tree access;
60
61 /* If were defining TYPE, the names used in this class. */
62 splay_tree names_used;
63
64 /* Nonzero if this class is no longer open, because of a call to
65 push_to_top_level. */
66 size_t hidden;
67 }* class_stack_node_t;
68
69 typedef struct vtbl_init_data_s
70 {
71 /* The base for which we're building initializers. */
72 tree binfo;
73 /* The type of the most-derived type. */
74 tree derived;
75 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
76 unless ctor_vtbl_p is true. */
77 tree rtti_binfo;
78 /* The negative-index vtable initializers built up so far. These
79 are in order from least negative index to most negative index. */
80 tree inits;
81 /* The last (i.e., most negative) entry in INITS. */
82 tree* last_init;
83 /* The binfo for the virtual base for which we're building
84 vcall offset initializers. */
85 tree vbase;
86 /* The functions in vbase for which we have already provided vcall
87 offsets. */
88 VEC(tree,gc) *fns;
89 /* The vtable index of the next vcall or vbase offset. */
90 tree index;
91 /* Nonzero if we are building the initializer for the primary
92 vtable. */
93 int primary_vtbl_p;
94 /* Nonzero if we are building the initializer for a construction
95 vtable. */
96 int ctor_vtbl_p;
97 /* True when adding vcall offset entries to the vtable. False when
98 merely computing the indices. */
99 bool generate_vcall_entries;
100 } vtbl_init_data;
101
102 /* The type of a function passed to walk_subobject_offsets. */
103 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
104
105 /* The stack itself. This is a dynamically resized array. The
106 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
107 static int current_class_stack_size;
108 static class_stack_node_t current_class_stack;
109
110 /* The size of the largest empty class seen in this translation unit. */
111 static GTY (()) tree sizeof_biggest_empty_class;
112
113 /* An array of all local classes present in this translation unit, in
114 declaration order. */
115 VEC(tree,gc) *local_classes;
116
117 static tree get_vfield_name (tree);
118 static void finish_struct_anon (tree);
119 static tree get_vtable_name (tree);
120 static tree get_basefndecls (tree, tree);
121 static int build_primary_vtable (tree, tree);
122 static int build_secondary_vtable (tree);
123 static void finish_vtbls (tree);
124 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
125 static void finish_struct_bits (tree);
126 static int alter_access (tree, tree, tree);
127 static void handle_using_decl (tree, tree);
128 static tree dfs_modify_vtables (tree, void *);
129 static tree modify_all_vtables (tree, tree);
130 static void determine_primary_bases (tree);
131 static void finish_struct_methods (tree);
132 static void maybe_warn_about_overly_private_class (tree);
133 static int method_name_cmp (const void *, const void *);
134 static int resort_method_name_cmp (const void *, const void *);
135 static void add_implicitly_declared_members (tree, int, int);
136 static tree fixed_type_or_null (tree, int *, int *);
137 static tree build_simple_base_path (tree expr, tree binfo);
138 static tree build_vtbl_ref_1 (tree, tree);
139 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
140 static int count_fields (tree);
141 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
142 static bool check_bitfield_decl (tree);
143 static void check_field_decl (tree, tree, int *, int *, int *);
144 static void check_field_decls (tree, tree *, int *, int *);
145 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
146 static void build_base_fields (record_layout_info, splay_tree, tree *);
147 static void check_methods (tree);
148 static void remove_zero_width_bit_fields (tree);
149 static void check_bases (tree, int *, int *);
150 static void check_bases_and_members (tree);
151 static tree create_vtable_ptr (tree, tree *);
152 static void include_empty_classes (record_layout_info);
153 static void layout_class_type (tree, tree *);
154 static void fixup_pending_inline (tree);
155 static void fixup_inline_methods (tree);
156 static void propagate_binfo_offsets (tree, tree);
157 static void layout_virtual_bases (record_layout_info, splay_tree);
158 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
160 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
161 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
162 static void add_vcall_offset (tree, tree, vtbl_init_data *);
163 static void layout_vtable_decl (tree, int);
164 static tree dfs_find_final_overrider_pre (tree, void *);
165 static tree dfs_find_final_overrider_post (tree, void *);
166 static tree find_final_overrider (tree, tree, tree);
167 static int make_new_vtable (tree, tree);
168 static tree get_primary_binfo (tree);
169 static int maybe_indent_hierarchy (FILE *, int, int);
170 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
171 static void dump_class_hierarchy (tree);
172 static void dump_class_hierarchy_1 (FILE *, int, tree);
173 static void dump_array (FILE *, tree);
174 static void dump_vtable (tree, tree, tree);
175 static void dump_vtt (tree, tree);
176 static void dump_thunk (FILE *, int, tree);
177 static tree build_vtable (tree, tree, tree);
178 static void initialize_vtable (tree, tree);
179 static void layout_nonempty_base_or_field (record_layout_info,
180 tree, tree, splay_tree);
181 static tree end_of_class (tree, int);
182 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
183 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
184 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
185 tree);
186 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
187 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
188 static void clone_constructors_and_destructors (tree);
189 static tree build_clone (tree, tree);
190 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
191 static void build_ctor_vtbl_group (tree, tree);
192 static void build_vtt (tree);
193 static tree binfo_ctor_vtable (tree);
194 static tree *build_vtt_inits (tree, tree, tree *, tree *);
195 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
196 static tree dfs_fixup_binfo_vtbls (tree, void *);
197 static int record_subobject_offset (tree, tree, splay_tree);
198 static int check_subobject_offset (tree, tree, splay_tree);
199 static int walk_subobject_offsets (tree, subobject_offset_fn,
200 tree, splay_tree, tree, int);
201 static void record_subobject_offsets (tree, tree, splay_tree, bool);
202 static int layout_conflict_p (tree, tree, splay_tree, int);
203 static int splay_tree_compare_integer_csts (splay_tree_key k1,
204 splay_tree_key k2);
205 static void warn_about_ambiguous_bases (tree);
206 static bool type_requires_array_cookie (tree);
207 static bool contains_empty_class_p (tree);
208 static bool base_derived_from (tree, tree);
209 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
210 static tree end_of_base (tree);
211 static tree get_vcall_index (tree, tree);
212
213 /* Variables shared between class.c and call.c. */
214
215 #ifdef GATHER_STATISTICS
216 int n_vtables = 0;
217 int n_vtable_entries = 0;
218 int n_vtable_searches = 0;
219 int n_vtable_elems = 0;
220 int n_convert_harshness = 0;
221 int n_compute_conversion_costs = 0;
222 int n_inner_fields_searched = 0;
223 #endif
224
225 /* Convert to or from a base subobject. EXPR is an expression of type
226 `A' or `A*', an expression of type `B' or `B*' is returned. To
227 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
228 the B base instance within A. To convert base A to derived B, CODE
229 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
230 In this latter case, A must not be a morally virtual base of B.
231 NONNULL is true if EXPR is known to be non-NULL (this is only
232 needed when EXPR is of pointer type). CV qualifiers are preserved
233 from EXPR. */
234
235 tree
236 build_base_path (enum tree_code code,
237 tree expr,
238 tree binfo,
239 int nonnull)
240 {
241 tree v_binfo = NULL_TREE;
242 tree d_binfo = NULL_TREE;
243 tree probe;
244 tree offset;
245 tree target_type;
246 tree null_test = NULL;
247 tree ptr_target_type;
248 int fixed_type_p;
249 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
250 bool has_empty = false;
251 bool virtual_access;
252
253 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
254 return error_mark_node;
255
256 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
257 {
258 d_binfo = probe;
259 if (is_empty_class (BINFO_TYPE (probe)))
260 has_empty = true;
261 if (!v_binfo && BINFO_VIRTUAL_P (probe))
262 v_binfo = probe;
263 }
264
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
266 if (want_pointer)
267 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
268
269 gcc_assert ((code == MINUS_EXPR
270 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
271 || (code == PLUS_EXPR
272 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
273
274 if (binfo == d_binfo)
275 /* Nothing to do. */
276 return expr;
277
278 if (code == MINUS_EXPR && v_binfo)
279 {
280 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
281 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
282 return error_mark_node;
283 }
284
285 if (!want_pointer)
286 /* This must happen before the call to save_expr. */
287 expr = build_unary_op (ADDR_EXPR, expr, 0);
288
289 offset = BINFO_OFFSET (binfo);
290 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
291 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
292
293 /* Do we need to look in the vtable for the real offset? */
294 virtual_access = (v_binfo && fixed_type_p <= 0);
295
296 /* Don't bother with the calculations inside sizeof; they'll ICE if the
297 source type is incomplete and the pointer value doesn't matter. */
298 if (skip_evaluation)
299 {
300 expr = build_nop (build_pointer_type (target_type), expr);
301 if (!want_pointer)
302 expr = build_indirect_ref (expr, NULL);
303 return expr;
304 }
305
306 /* Do we need to check for a null pointer? */
307 if (want_pointer && !nonnull)
308 {
309 /* If we know the conversion will not actually change the value
310 of EXPR, then we can avoid testing the expression for NULL.
311 We have to avoid generating a COMPONENT_REF for a base class
312 field, because other parts of the compiler know that such
313 expressions are always non-NULL. */
314 if (!virtual_access && integer_zerop (offset))
315 {
316 tree class_type;
317 /* TARGET_TYPE has been extracted from BINFO, and, is
318 therefore always cv-unqualified. Extract the
319 cv-qualifiers from EXPR so that the expression returned
320 matches the input. */
321 class_type = TREE_TYPE (TREE_TYPE (expr));
322 target_type
323 = cp_build_qualified_type (target_type,
324 cp_type_quals (class_type));
325 return build_nop (build_pointer_type (target_type), expr);
326 }
327 null_test = error_mark_node;
328 }
329
330 /* Protect against multiple evaluation if necessary. */
331 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
332 expr = save_expr (expr);
333
334 /* Now that we've saved expr, build the real null test. */
335 if (null_test)
336 {
337 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
338 null_test = fold_build2 (NE_EXPR, boolean_type_node,
339 expr, zero);
340 }
341
342 /* If this is a simple base reference, express it as a COMPONENT_REF. */
343 if (code == PLUS_EXPR && !virtual_access
344 /* We don't build base fields for empty bases, and they aren't very
345 interesting to the optimizers anyway. */
346 && !has_empty)
347 {
348 expr = build_indirect_ref (expr, NULL);
349 expr = build_simple_base_path (expr, binfo);
350 if (want_pointer)
351 expr = build_address (expr);
352 target_type = TREE_TYPE (expr);
353 goto out;
354 }
355
356 if (virtual_access)
357 {
358 /* Going via virtual base V_BINFO. We need the static offset
359 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
360 V_BINFO. That offset is an entry in D_BINFO's vtable. */
361 tree v_offset;
362
363 if (fixed_type_p < 0 && in_base_initializer)
364 {
365 /* In a base member initializer, we cannot rely on the
366 vtable being set up. We have to indirect via the
367 vtt_parm. */
368 tree t;
369
370 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
371 t = build_pointer_type (t);
372 v_offset = convert (t, current_vtt_parm);
373 v_offset = build_indirect_ref (v_offset, NULL);
374 }
375 else
376 v_offset = build_vfield_ref (build_indirect_ref (expr, NULL),
377 TREE_TYPE (TREE_TYPE (expr)));
378
379 v_offset = build2 (POINTER_PLUS_EXPR, TREE_TYPE (v_offset),
380 v_offset, fold_convert (sizetype, BINFO_VPTR_FIELD (v_binfo)));
381 v_offset = build1 (NOP_EXPR,
382 build_pointer_type (ptrdiff_type_node),
383 v_offset);
384 v_offset = build_indirect_ref (v_offset, NULL);
385 TREE_CONSTANT (v_offset) = 1;
386 TREE_INVARIANT (v_offset) = 1;
387
388 offset = convert_to_integer (ptrdiff_type_node,
389 size_diffop (offset,
390 BINFO_OFFSET (v_binfo)));
391
392 if (!integer_zerop (offset))
393 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
394
395 if (fixed_type_p < 0)
396 /* Negative fixed_type_p means this is a constructor or destructor;
397 virtual base layout is fixed in in-charge [cd]tors, but not in
398 base [cd]tors. */
399 offset = build3 (COND_EXPR, ptrdiff_type_node,
400 build2 (EQ_EXPR, boolean_type_node,
401 current_in_charge_parm, integer_zero_node),
402 v_offset,
403 convert_to_integer (ptrdiff_type_node,
404 BINFO_OFFSET (binfo)));
405 else
406 offset = v_offset;
407 }
408
409 target_type = cp_build_qualified_type
410 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
411 ptr_target_type = build_pointer_type (target_type);
412 if (want_pointer)
413 target_type = ptr_target_type;
414
415 expr = build1 (NOP_EXPR, ptr_target_type, expr);
416
417 if (!integer_zerop (offset))
418 {
419 offset = fold_convert (sizetype, offset);
420 if (code == MINUS_EXPR)
421 offset = fold_build1 (NEGATE_EXPR, sizetype, offset);
422 expr = build2 (POINTER_PLUS_EXPR, ptr_target_type, expr, offset);
423 }
424 else
425 null_test = NULL;
426
427 if (!want_pointer)
428 expr = build_indirect_ref (expr, NULL);
429
430 out:
431 if (null_test)
432 expr = fold_build3 (COND_EXPR, target_type, null_test, expr,
433 fold_build1 (NOP_EXPR, target_type,
434 integer_zero_node));
435
436 return expr;
437 }
438
439 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
440 Perform a derived-to-base conversion by recursively building up a
441 sequence of COMPONENT_REFs to the appropriate base fields. */
442
443 static tree
444 build_simple_base_path (tree expr, tree binfo)
445 {
446 tree type = BINFO_TYPE (binfo);
447 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
448 tree field;
449
450 if (d_binfo == NULL_TREE)
451 {
452 tree temp;
453
454 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
455
456 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
457 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
458 an lvalue in the front end; only _DECLs and _REFs are lvalues
459 in the back end. */
460 temp = unary_complex_lvalue (ADDR_EXPR, expr);
461 if (temp)
462 expr = build_indirect_ref (temp, NULL);
463
464 return expr;
465 }
466
467 /* Recurse. */
468 expr = build_simple_base_path (expr, d_binfo);
469
470 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
471 field; field = TREE_CHAIN (field))
472 /* Is this the base field created by build_base_field? */
473 if (TREE_CODE (field) == FIELD_DECL
474 && DECL_FIELD_IS_BASE (field)
475 && TREE_TYPE (field) == type)
476 {
477 /* We don't use build_class_member_access_expr here, as that
478 has unnecessary checks, and more importantly results in
479 recursive calls to dfs_walk_once. */
480 int type_quals = cp_type_quals (TREE_TYPE (expr));
481
482 expr = build3 (COMPONENT_REF,
483 cp_build_qualified_type (type, type_quals),
484 expr, field, NULL_TREE);
485 expr = fold_if_not_in_template (expr);
486
487 /* Mark the expression const or volatile, as appropriate.
488 Even though we've dealt with the type above, we still have
489 to mark the expression itself. */
490 if (type_quals & TYPE_QUAL_CONST)
491 TREE_READONLY (expr) = 1;
492 if (type_quals & TYPE_QUAL_VOLATILE)
493 TREE_THIS_VOLATILE (expr) = 1;
494
495 return expr;
496 }
497
498 /* Didn't find the base field?!? */
499 gcc_unreachable ();
500 }
501
502 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
503 type is a class type or a pointer to a class type. In the former
504 case, TYPE is also a class type; in the latter it is another
505 pointer type. If CHECK_ACCESS is true, an error message is emitted
506 if TYPE is inaccessible. If OBJECT has pointer type, the value is
507 assumed to be non-NULL. */
508
509 tree
510 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
511 {
512 tree binfo;
513 tree object_type;
514
515 if (TYPE_PTR_P (TREE_TYPE (object)))
516 {
517 object_type = TREE_TYPE (TREE_TYPE (object));
518 type = TREE_TYPE (type);
519 }
520 else
521 object_type = TREE_TYPE (object);
522
523 binfo = lookup_base (object_type, type,
524 check_access ? ba_check : ba_unique,
525 NULL);
526 if (!binfo || binfo == error_mark_node)
527 return error_mark_node;
528
529 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
530 }
531
532 /* EXPR is an expression with unqualified class type. BASE is a base
533 binfo of that class type. Returns EXPR, converted to the BASE
534 type. This function assumes that EXPR is the most derived class;
535 therefore virtual bases can be found at their static offsets. */
536
537 tree
538 convert_to_base_statically (tree expr, tree base)
539 {
540 tree expr_type;
541
542 expr_type = TREE_TYPE (expr);
543 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
544 {
545 tree pointer_type;
546
547 pointer_type = build_pointer_type (expr_type);
548
549 /* We use fold_build2 and fold_convert below to simplify the trees
550 provided to the optimizers. It is not safe to call these functions
551 when processing a template because they do not handle C++-specific
552 trees. */
553 gcc_assert (!processing_template_decl);
554 expr = build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1);
555 if (!integer_zerop (BINFO_OFFSET (base)))
556 expr = fold_build2 (POINTER_PLUS_EXPR, pointer_type, expr,
557 fold_convert (sizetype, BINFO_OFFSET (base)));
558 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
559 expr = build_fold_indirect_ref (expr);
560 }
561
562 return expr;
563 }
564
565 \f
566 tree
567 build_vfield_ref (tree datum, tree type)
568 {
569 tree vfield, vcontext;
570
571 if (datum == error_mark_node)
572 return error_mark_node;
573
574 /* First, convert to the requested type. */
575 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
576 datum = convert_to_base (datum, type, /*check_access=*/false,
577 /*nonnull=*/true);
578
579 /* Second, the requested type may not be the owner of its own vptr.
580 If not, convert to the base class that owns it. We cannot use
581 convert_to_base here, because VCONTEXT may appear more than once
582 in the inheritance hierarchy of TYPE, and thus direct conversion
583 between the types may be ambiguous. Following the path back up
584 one step at a time via primary bases avoids the problem. */
585 vfield = TYPE_VFIELD (type);
586 vcontext = DECL_CONTEXT (vfield);
587 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
588 {
589 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
590 type = TREE_TYPE (datum);
591 }
592
593 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
594 }
595
596 /* Given an object INSTANCE, return an expression which yields the
597 vtable element corresponding to INDEX. There are many special
598 cases for INSTANCE which we take care of here, mainly to avoid
599 creating extra tree nodes when we don't have to. */
600
601 static tree
602 build_vtbl_ref_1 (tree instance, tree idx)
603 {
604 tree aref;
605 tree vtbl = NULL_TREE;
606
607 /* Try to figure out what a reference refers to, and
608 access its virtual function table directly. */
609
610 int cdtorp = 0;
611 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
612
613 tree basetype = non_reference (TREE_TYPE (instance));
614
615 if (fixed_type && !cdtorp)
616 {
617 tree binfo = lookup_base (fixed_type, basetype,
618 ba_unique | ba_quiet, NULL);
619 if (binfo)
620 vtbl = unshare_expr (BINFO_VTABLE (binfo));
621 }
622
623 if (!vtbl)
624 vtbl = build_vfield_ref (instance, basetype);
625
626 assemble_external (vtbl);
627
628 aref = build_array_ref (vtbl, idx);
629 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
630 TREE_INVARIANT (aref) = TREE_CONSTANT (aref);
631
632 return aref;
633 }
634
635 tree
636 build_vtbl_ref (tree instance, tree idx)
637 {
638 tree aref = build_vtbl_ref_1 (instance, idx);
639
640 return aref;
641 }
642
643 /* Given a stable object pointer INSTANCE_PTR, return an expression which
644 yields a function pointer corresponding to vtable element INDEX. */
645
646 tree
647 build_vfn_ref (tree instance_ptr, tree idx)
648 {
649 tree aref;
650
651 aref = build_vtbl_ref_1 (build_indirect_ref (instance_ptr, 0), idx);
652
653 /* When using function descriptors, the address of the
654 vtable entry is treated as a function pointer. */
655 if (TARGET_VTABLE_USES_DESCRIPTORS)
656 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
657 build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1));
658
659 /* Remember this as a method reference, for later devirtualization. */
660 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
661
662 return aref;
663 }
664
665 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
666 for the given TYPE. */
667
668 static tree
669 get_vtable_name (tree type)
670 {
671 return mangle_vtbl_for_type (type);
672 }
673
674 /* DECL is an entity associated with TYPE, like a virtual table or an
675 implicitly generated constructor. Determine whether or not DECL
676 should have external or internal linkage at the object file
677 level. This routine does not deal with COMDAT linkage and other
678 similar complexities; it simply sets TREE_PUBLIC if it possible for
679 entities in other translation units to contain copies of DECL, in
680 the abstract. */
681
682 void
683 set_linkage_according_to_type (tree type, tree decl)
684 {
685 /* If TYPE involves a local class in a function with internal
686 linkage, then DECL should have internal linkage too. Other local
687 classes have no linkage -- but if their containing functions
688 have external linkage, it makes sense for DECL to have external
689 linkage too. That will allow template definitions to be merged,
690 for example. */
691 if (no_linkage_check (type, /*relaxed_p=*/true))
692 {
693 TREE_PUBLIC (decl) = 0;
694 DECL_INTERFACE_KNOWN (decl) = 1;
695 }
696 else
697 TREE_PUBLIC (decl) = 1;
698 }
699
700 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
701 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
702 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
703
704 static tree
705 build_vtable (tree class_type, tree name, tree vtable_type)
706 {
707 tree decl;
708
709 decl = build_lang_decl (VAR_DECL, name, vtable_type);
710 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
711 now to avoid confusion in mangle_decl. */
712 SET_DECL_ASSEMBLER_NAME (decl, name);
713 DECL_CONTEXT (decl) = class_type;
714 DECL_ARTIFICIAL (decl) = 1;
715 TREE_STATIC (decl) = 1;
716 TREE_READONLY (decl) = 1;
717 DECL_VIRTUAL_P (decl) = 1;
718 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
719 DECL_VTABLE_OR_VTT_P (decl) = 1;
720 /* At one time the vtable info was grabbed 2 words at a time. This
721 fails on sparc unless you have 8-byte alignment. (tiemann) */
722 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
723 DECL_ALIGN (decl));
724 set_linkage_according_to_type (class_type, decl);
725 /* The vtable has not been defined -- yet. */
726 DECL_EXTERNAL (decl) = 1;
727 DECL_NOT_REALLY_EXTERN (decl) = 1;
728
729 /* Mark the VAR_DECL node representing the vtable itself as a
730 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
731 is rather important that such things be ignored because any
732 effort to actually generate DWARF for them will run into
733 trouble when/if we encounter code like:
734
735 #pragma interface
736 struct S { virtual void member (); };
737
738 because the artificial declaration of the vtable itself (as
739 manufactured by the g++ front end) will say that the vtable is
740 a static member of `S' but only *after* the debug output for
741 the definition of `S' has already been output. This causes
742 grief because the DWARF entry for the definition of the vtable
743 will try to refer back to an earlier *declaration* of the
744 vtable as a static member of `S' and there won't be one. We
745 might be able to arrange to have the "vtable static member"
746 attached to the member list for `S' before the debug info for
747 `S' get written (which would solve the problem) but that would
748 require more intrusive changes to the g++ front end. */
749 DECL_IGNORED_P (decl) = 1;
750
751 return decl;
752 }
753
754 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
755 or even complete. If this does not exist, create it. If COMPLETE is
756 nonzero, then complete the definition of it -- that will render it
757 impossible to actually build the vtable, but is useful to get at those
758 which are known to exist in the runtime. */
759
760 tree
761 get_vtable_decl (tree type, int complete)
762 {
763 tree decl;
764
765 if (CLASSTYPE_VTABLES (type))
766 return CLASSTYPE_VTABLES (type);
767
768 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
769 CLASSTYPE_VTABLES (type) = decl;
770
771 if (complete)
772 {
773 DECL_EXTERNAL (decl) = 1;
774 finish_decl (decl, NULL_TREE, NULL_TREE);
775 }
776
777 return decl;
778 }
779
780 /* Build the primary virtual function table for TYPE. If BINFO is
781 non-NULL, build the vtable starting with the initial approximation
782 that it is the same as the one which is the head of the association
783 list. Returns a nonzero value if a new vtable is actually
784 created. */
785
786 static int
787 build_primary_vtable (tree binfo, tree type)
788 {
789 tree decl;
790 tree virtuals;
791
792 decl = get_vtable_decl (type, /*complete=*/0);
793
794 if (binfo)
795 {
796 if (BINFO_NEW_VTABLE_MARKED (binfo))
797 /* We have already created a vtable for this base, so there's
798 no need to do it again. */
799 return 0;
800
801 virtuals = copy_list (BINFO_VIRTUALS (binfo));
802 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
803 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
804 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
805 }
806 else
807 {
808 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
809 virtuals = NULL_TREE;
810 }
811
812 #ifdef GATHER_STATISTICS
813 n_vtables += 1;
814 n_vtable_elems += list_length (virtuals);
815 #endif
816
817 /* Initialize the association list for this type, based
818 on our first approximation. */
819 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
820 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
821 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
822 return 1;
823 }
824
825 /* Give BINFO a new virtual function table which is initialized
826 with a skeleton-copy of its original initialization. The only
827 entry that changes is the `delta' entry, so we can really
828 share a lot of structure.
829
830 FOR_TYPE is the most derived type which caused this table to
831 be needed.
832
833 Returns nonzero if we haven't met BINFO before.
834
835 The order in which vtables are built (by calling this function) for
836 an object must remain the same, otherwise a binary incompatibility
837 can result. */
838
839 static int
840 build_secondary_vtable (tree binfo)
841 {
842 if (BINFO_NEW_VTABLE_MARKED (binfo))
843 /* We already created a vtable for this base. There's no need to
844 do it again. */
845 return 0;
846
847 /* Remember that we've created a vtable for this BINFO, so that we
848 don't try to do so again. */
849 SET_BINFO_NEW_VTABLE_MARKED (binfo);
850
851 /* Make fresh virtual list, so we can smash it later. */
852 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
853
854 /* Secondary vtables are laid out as part of the same structure as
855 the primary vtable. */
856 BINFO_VTABLE (binfo) = NULL_TREE;
857 return 1;
858 }
859
860 /* Create a new vtable for BINFO which is the hierarchy dominated by
861 T. Return nonzero if we actually created a new vtable. */
862
863 static int
864 make_new_vtable (tree t, tree binfo)
865 {
866 if (binfo == TYPE_BINFO (t))
867 /* In this case, it is *type*'s vtable we are modifying. We start
868 with the approximation that its vtable is that of the
869 immediate base class. */
870 return build_primary_vtable (binfo, t);
871 else
872 /* This is our very own copy of `basetype' to play with. Later,
873 we will fill in all the virtual functions that override the
874 virtual functions in these base classes which are not defined
875 by the current type. */
876 return build_secondary_vtable (binfo);
877 }
878
879 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
880 (which is in the hierarchy dominated by T) list FNDECL as its
881 BV_FN. DELTA is the required constant adjustment from the `this'
882 pointer where the vtable entry appears to the `this' required when
883 the function is actually called. */
884
885 static void
886 modify_vtable_entry (tree t,
887 tree binfo,
888 tree fndecl,
889 tree delta,
890 tree *virtuals)
891 {
892 tree v;
893
894 v = *virtuals;
895
896 if (fndecl != BV_FN (v)
897 || !tree_int_cst_equal (delta, BV_DELTA (v)))
898 {
899 /* We need a new vtable for BINFO. */
900 if (make_new_vtable (t, binfo))
901 {
902 /* If we really did make a new vtable, we also made a copy
903 of the BINFO_VIRTUALS list. Now, we have to find the
904 corresponding entry in that list. */
905 *virtuals = BINFO_VIRTUALS (binfo);
906 while (BV_FN (*virtuals) != BV_FN (v))
907 *virtuals = TREE_CHAIN (*virtuals);
908 v = *virtuals;
909 }
910
911 BV_DELTA (v) = delta;
912 BV_VCALL_INDEX (v) = NULL_TREE;
913 BV_FN (v) = fndecl;
914 }
915 }
916
917 \f
918 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
919 the USING_DECL naming METHOD. Returns true if the method could be
920 added to the method vec. */
921
922 bool
923 add_method (tree type, tree method, tree using_decl)
924 {
925 unsigned slot;
926 tree overload;
927 bool template_conv_p = false;
928 bool conv_p;
929 VEC(tree,gc) *method_vec;
930 bool complete_p;
931 bool insert_p = false;
932 tree current_fns;
933 tree fns;
934
935 if (method == error_mark_node)
936 return false;
937
938 complete_p = COMPLETE_TYPE_P (type);
939 conv_p = DECL_CONV_FN_P (method);
940 if (conv_p)
941 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
942 && DECL_TEMPLATE_CONV_FN_P (method));
943
944 method_vec = CLASSTYPE_METHOD_VEC (type);
945 if (!method_vec)
946 {
947 /* Make a new method vector. We start with 8 entries. We must
948 allocate at least two (for constructors and destructors), and
949 we're going to end up with an assignment operator at some
950 point as well. */
951 method_vec = VEC_alloc (tree, gc, 8);
952 /* Create slots for constructors and destructors. */
953 VEC_quick_push (tree, method_vec, NULL_TREE);
954 VEC_quick_push (tree, method_vec, NULL_TREE);
955 CLASSTYPE_METHOD_VEC (type) = method_vec;
956 }
957
958 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
959 grok_special_member_properties (method);
960
961 /* Constructors and destructors go in special slots. */
962 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
963 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
964 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
965 {
966 slot = CLASSTYPE_DESTRUCTOR_SLOT;
967
968 if (TYPE_FOR_JAVA (type))
969 {
970 if (!DECL_ARTIFICIAL (method))
971 error ("Java class %qT cannot have a destructor", type);
972 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
973 error ("Java class %qT cannot have an implicit non-trivial "
974 "destructor",
975 type);
976 }
977 }
978 else
979 {
980 tree m;
981
982 insert_p = true;
983 /* See if we already have an entry with this name. */
984 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
985 VEC_iterate (tree, method_vec, slot, m);
986 ++slot)
987 {
988 m = OVL_CURRENT (m);
989 if (template_conv_p)
990 {
991 if (TREE_CODE (m) == TEMPLATE_DECL
992 && DECL_TEMPLATE_CONV_FN_P (m))
993 insert_p = false;
994 break;
995 }
996 if (conv_p && !DECL_CONV_FN_P (m))
997 break;
998 if (DECL_NAME (m) == DECL_NAME (method))
999 {
1000 insert_p = false;
1001 break;
1002 }
1003 if (complete_p
1004 && !DECL_CONV_FN_P (m)
1005 && DECL_NAME (m) > DECL_NAME (method))
1006 break;
1007 }
1008 }
1009 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
1010
1011 /* Check to see if we've already got this method. */
1012 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1013 {
1014 tree fn = OVL_CURRENT (fns);
1015 tree fn_type;
1016 tree method_type;
1017 tree parms1;
1018 tree parms2;
1019
1020 if (TREE_CODE (fn) != TREE_CODE (method))
1021 continue;
1022
1023 /* [over.load] Member function declarations with the
1024 same name and the same parameter types cannot be
1025 overloaded if any of them is a static member
1026 function declaration.
1027
1028 [namespace.udecl] When a using-declaration brings names
1029 from a base class into a derived class scope, member
1030 functions in the derived class override and/or hide member
1031 functions with the same name and parameter types in a base
1032 class (rather than conflicting). */
1033 fn_type = TREE_TYPE (fn);
1034 method_type = TREE_TYPE (method);
1035 parms1 = TYPE_ARG_TYPES (fn_type);
1036 parms2 = TYPE_ARG_TYPES (method_type);
1037
1038 /* Compare the quals on the 'this' parm. Don't compare
1039 the whole types, as used functions are treated as
1040 coming from the using class in overload resolution. */
1041 if (! DECL_STATIC_FUNCTION_P (fn)
1042 && ! DECL_STATIC_FUNCTION_P (method)
1043 && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
1044 && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
1045 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1046 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1047 continue;
1048
1049 /* For templates, the return type and template parameters
1050 must be identical. */
1051 if (TREE_CODE (fn) == TEMPLATE_DECL
1052 && (!same_type_p (TREE_TYPE (fn_type),
1053 TREE_TYPE (method_type))
1054 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1055 DECL_TEMPLATE_PARMS (method))))
1056 continue;
1057
1058 if (! DECL_STATIC_FUNCTION_P (fn))
1059 parms1 = TREE_CHAIN (parms1);
1060 if (! DECL_STATIC_FUNCTION_P (method))
1061 parms2 = TREE_CHAIN (parms2);
1062
1063 if (compparms (parms1, parms2)
1064 && (!DECL_CONV_FN_P (fn)
1065 || same_type_p (TREE_TYPE (fn_type),
1066 TREE_TYPE (method_type))))
1067 {
1068 if (using_decl)
1069 {
1070 if (DECL_CONTEXT (fn) == type)
1071 /* Defer to the local function. */
1072 return false;
1073 if (DECL_CONTEXT (fn) == DECL_CONTEXT (method))
1074 error ("repeated using declaration %q+D", using_decl);
1075 else
1076 error ("using declaration %q+D conflicts with a previous using declaration",
1077 using_decl);
1078 }
1079 else
1080 {
1081 error ("%q+#D cannot be overloaded", method);
1082 error ("with %q+#D", fn);
1083 }
1084
1085 /* We don't call duplicate_decls here to merge the
1086 declarations because that will confuse things if the
1087 methods have inline definitions. In particular, we
1088 will crash while processing the definitions. */
1089 return false;
1090 }
1091 }
1092
1093 /* A class should never have more than one destructor. */
1094 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1095 return false;
1096
1097 /* Add the new binding. */
1098 overload = build_overload (method, current_fns);
1099
1100 if (conv_p)
1101 TYPE_HAS_CONVERSION (type) = 1;
1102 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1103 push_class_level_binding (DECL_NAME (method), overload);
1104
1105 if (insert_p)
1106 {
1107 bool reallocated;
1108
1109 /* We only expect to add few methods in the COMPLETE_P case, so
1110 just make room for one more method in that case. */
1111 if (complete_p)
1112 reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
1113 else
1114 reallocated = VEC_reserve (tree, gc, method_vec, 1);
1115 if (reallocated)
1116 CLASSTYPE_METHOD_VEC (type) = method_vec;
1117 if (slot == VEC_length (tree, method_vec))
1118 VEC_quick_push (tree, method_vec, overload);
1119 else
1120 VEC_quick_insert (tree, method_vec, slot, overload);
1121 }
1122 else
1123 /* Replace the current slot. */
1124 VEC_replace (tree, method_vec, slot, overload);
1125 return true;
1126 }
1127
1128 /* Subroutines of finish_struct. */
1129
1130 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1131 legit, otherwise return 0. */
1132
1133 static int
1134 alter_access (tree t, tree fdecl, tree access)
1135 {
1136 tree elem;
1137
1138 if (!DECL_LANG_SPECIFIC (fdecl))
1139 retrofit_lang_decl (fdecl);
1140
1141 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1142
1143 elem = purpose_member (t, DECL_ACCESS (fdecl));
1144 if (elem)
1145 {
1146 if (TREE_VALUE (elem) != access)
1147 {
1148 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1149 error ("conflicting access specifications for method"
1150 " %q+D, ignored", TREE_TYPE (fdecl));
1151 else
1152 error ("conflicting access specifications for field %qE, ignored",
1153 DECL_NAME (fdecl));
1154 }
1155 else
1156 {
1157 /* They're changing the access to the same thing they changed
1158 it to before. That's OK. */
1159 ;
1160 }
1161 }
1162 else
1163 {
1164 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
1165 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1166 return 1;
1167 }
1168 return 0;
1169 }
1170
1171 /* Process the USING_DECL, which is a member of T. */
1172
1173 static void
1174 handle_using_decl (tree using_decl, tree t)
1175 {
1176 tree decl = USING_DECL_DECLS (using_decl);
1177 tree name = DECL_NAME (using_decl);
1178 tree access
1179 = TREE_PRIVATE (using_decl) ? access_private_node
1180 : TREE_PROTECTED (using_decl) ? access_protected_node
1181 : access_public_node;
1182 tree flist = NULL_TREE;
1183 tree old_value;
1184
1185 gcc_assert (!processing_template_decl && decl);
1186
1187 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1188 if (old_value)
1189 {
1190 if (is_overloaded_fn (old_value))
1191 old_value = OVL_CURRENT (old_value);
1192
1193 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1194 /* OK */;
1195 else
1196 old_value = NULL_TREE;
1197 }
1198
1199 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1200
1201 if (is_overloaded_fn (decl))
1202 flist = decl;
1203
1204 if (! old_value)
1205 ;
1206 else if (is_overloaded_fn (old_value))
1207 {
1208 if (flist)
1209 /* It's OK to use functions from a base when there are functions with
1210 the same name already present in the current class. */;
1211 else
1212 {
1213 error ("%q+D invalid in %q#T", using_decl, t);
1214 error (" because of local method %q+#D with same name",
1215 OVL_CURRENT (old_value));
1216 return;
1217 }
1218 }
1219 else if (!DECL_ARTIFICIAL (old_value))
1220 {
1221 error ("%q+D invalid in %q#T", using_decl, t);
1222 error (" because of local member %q+#D with same name", old_value);
1223 return;
1224 }
1225
1226 /* Make type T see field decl FDECL with access ACCESS. */
1227 if (flist)
1228 for (; flist; flist = OVL_NEXT (flist))
1229 {
1230 add_method (t, OVL_CURRENT (flist), using_decl);
1231 alter_access (t, OVL_CURRENT (flist), access);
1232 }
1233 else
1234 alter_access (t, decl, access);
1235 }
1236 \f
1237 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1238 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1239 properties of the bases. */
1240
1241 static void
1242 check_bases (tree t,
1243 int* cant_have_const_ctor_p,
1244 int* no_const_asn_ref_p)
1245 {
1246 int i;
1247 int seen_non_virtual_nearly_empty_base_p;
1248 tree base_binfo;
1249 tree binfo;
1250
1251 seen_non_virtual_nearly_empty_base_p = 0;
1252
1253 for (binfo = TYPE_BINFO (t), i = 0;
1254 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1255 {
1256 tree basetype = TREE_TYPE (base_binfo);
1257
1258 gcc_assert (COMPLETE_TYPE_P (basetype));
1259
1260 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1261 here because the case of virtual functions but non-virtual
1262 dtor is handled in finish_struct_1. */
1263 if (!TYPE_POLYMORPHIC_P (basetype))
1264 warning (OPT_Weffc__,
1265 "base class %q#T has a non-virtual destructor", basetype);
1266
1267 /* If the base class doesn't have copy constructors or
1268 assignment operators that take const references, then the
1269 derived class cannot have such a member automatically
1270 generated. */
1271 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1272 *cant_have_const_ctor_p = 1;
1273 if (TYPE_HAS_ASSIGN_REF (basetype)
1274 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1275 *no_const_asn_ref_p = 1;
1276
1277 if (BINFO_VIRTUAL_P (base_binfo))
1278 /* A virtual base does not effect nearly emptiness. */
1279 ;
1280 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1281 {
1282 if (seen_non_virtual_nearly_empty_base_p)
1283 /* And if there is more than one nearly empty base, then the
1284 derived class is not nearly empty either. */
1285 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1286 else
1287 /* Remember we've seen one. */
1288 seen_non_virtual_nearly_empty_base_p = 1;
1289 }
1290 else if (!is_empty_class (basetype))
1291 /* If the base class is not empty or nearly empty, then this
1292 class cannot be nearly empty. */
1293 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1294
1295 /* A lot of properties from the bases also apply to the derived
1296 class. */
1297 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1298 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1299 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1300 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1301 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1302 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1303 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1304 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1305 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1306 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (basetype);
1307 }
1308 }
1309
1310 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1311 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1312 that have had a nearly-empty virtual primary base stolen by some
1313 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1314 T. */
1315
1316 static void
1317 determine_primary_bases (tree t)
1318 {
1319 unsigned i;
1320 tree primary = NULL_TREE;
1321 tree type_binfo = TYPE_BINFO (t);
1322 tree base_binfo;
1323
1324 /* Determine the primary bases of our bases. */
1325 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1326 base_binfo = TREE_CHAIN (base_binfo))
1327 {
1328 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1329
1330 /* See if we're the non-virtual primary of our inheritance
1331 chain. */
1332 if (!BINFO_VIRTUAL_P (base_binfo))
1333 {
1334 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1335 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1336
1337 if (parent_primary
1338 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1339 BINFO_TYPE (parent_primary)))
1340 /* We are the primary binfo. */
1341 BINFO_PRIMARY_P (base_binfo) = 1;
1342 }
1343 /* Determine if we have a virtual primary base, and mark it so.
1344 */
1345 if (primary && BINFO_VIRTUAL_P (primary))
1346 {
1347 tree this_primary = copied_binfo (primary, base_binfo);
1348
1349 if (BINFO_PRIMARY_P (this_primary))
1350 /* Someone already claimed this base. */
1351 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1352 else
1353 {
1354 tree delta;
1355
1356 BINFO_PRIMARY_P (this_primary) = 1;
1357 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1358
1359 /* A virtual binfo might have been copied from within
1360 another hierarchy. As we're about to use it as a
1361 primary base, make sure the offsets match. */
1362 delta = size_diffop (convert (ssizetype,
1363 BINFO_OFFSET (base_binfo)),
1364 convert (ssizetype,
1365 BINFO_OFFSET (this_primary)));
1366
1367 propagate_binfo_offsets (this_primary, delta);
1368 }
1369 }
1370 }
1371
1372 /* First look for a dynamic direct non-virtual base. */
1373 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1374 {
1375 tree basetype = BINFO_TYPE (base_binfo);
1376
1377 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1378 {
1379 primary = base_binfo;
1380 goto found;
1381 }
1382 }
1383
1384 /* A "nearly-empty" virtual base class can be the primary base
1385 class, if no non-virtual polymorphic base can be found. Look for
1386 a nearly-empty virtual dynamic base that is not already a primary
1387 base of something in the hierarchy. If there is no such base,
1388 just pick the first nearly-empty virtual base. */
1389
1390 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1391 base_binfo = TREE_CHAIN (base_binfo))
1392 if (BINFO_VIRTUAL_P (base_binfo)
1393 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1394 {
1395 if (!BINFO_PRIMARY_P (base_binfo))
1396 {
1397 /* Found one that is not primary. */
1398 primary = base_binfo;
1399 goto found;
1400 }
1401 else if (!primary)
1402 /* Remember the first candidate. */
1403 primary = base_binfo;
1404 }
1405
1406 found:
1407 /* If we've got a primary base, use it. */
1408 if (primary)
1409 {
1410 tree basetype = BINFO_TYPE (primary);
1411
1412 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1413 if (BINFO_PRIMARY_P (primary))
1414 /* We are stealing a primary base. */
1415 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1416 BINFO_PRIMARY_P (primary) = 1;
1417 if (BINFO_VIRTUAL_P (primary))
1418 {
1419 tree delta;
1420
1421 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1422 /* A virtual binfo might have been copied from within
1423 another hierarchy. As we're about to use it as a primary
1424 base, make sure the offsets match. */
1425 delta = size_diffop (ssize_int (0),
1426 convert (ssizetype, BINFO_OFFSET (primary)));
1427
1428 propagate_binfo_offsets (primary, delta);
1429 }
1430
1431 primary = TYPE_BINFO (basetype);
1432
1433 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1434 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1435 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1436 }
1437 }
1438 \f
1439 /* Set memoizing fields and bits of T (and its variants) for later
1440 use. */
1441
1442 static void
1443 finish_struct_bits (tree t)
1444 {
1445 tree variants;
1446
1447 /* Fix up variants (if any). */
1448 for (variants = TYPE_NEXT_VARIANT (t);
1449 variants;
1450 variants = TYPE_NEXT_VARIANT (variants))
1451 {
1452 /* These fields are in the _TYPE part of the node, not in
1453 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1454 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1455 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1456 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1457 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1458
1459 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1460
1461 TYPE_BINFO (variants) = TYPE_BINFO (t);
1462
1463 /* Copy whatever these are holding today. */
1464 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1465 TYPE_METHODS (variants) = TYPE_METHODS (t);
1466 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1467
1468 /* All variants of a class have the same attributes. */
1469 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1470 }
1471
1472 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1473 /* For a class w/o baseclasses, 'finish_struct' has set
1474 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1475 Similarly for a class whose base classes do not have vtables.
1476 When neither of these is true, we might have removed abstract
1477 virtuals (by providing a definition), added some (by declaring
1478 new ones), or redeclared ones from a base class. We need to
1479 recalculate what's really an abstract virtual at this point (by
1480 looking in the vtables). */
1481 get_pure_virtuals (t);
1482
1483 /* If this type has a copy constructor or a destructor, force its
1484 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1485 nonzero. This will cause it to be passed by invisible reference
1486 and prevent it from being returned in a register. */
1487 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1488 {
1489 tree variants;
1490 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1491 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1492 {
1493 TYPE_MODE (variants) = BLKmode;
1494 TREE_ADDRESSABLE (variants) = 1;
1495 }
1496 }
1497 }
1498
1499 /* Issue warnings about T having private constructors, but no friends,
1500 and so forth.
1501
1502 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1503 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1504 non-private static member functions. */
1505
1506 static void
1507 maybe_warn_about_overly_private_class (tree t)
1508 {
1509 int has_member_fn = 0;
1510 int has_nonprivate_method = 0;
1511 tree fn;
1512
1513 if (!warn_ctor_dtor_privacy
1514 /* If the class has friends, those entities might create and
1515 access instances, so we should not warn. */
1516 || (CLASSTYPE_FRIEND_CLASSES (t)
1517 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1518 /* We will have warned when the template was declared; there's
1519 no need to warn on every instantiation. */
1520 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1521 /* There's no reason to even consider warning about this
1522 class. */
1523 return;
1524
1525 /* We only issue one warning, if more than one applies, because
1526 otherwise, on code like:
1527
1528 class A {
1529 // Oops - forgot `public:'
1530 A();
1531 A(const A&);
1532 ~A();
1533 };
1534
1535 we warn several times about essentially the same problem. */
1536
1537 /* Check to see if all (non-constructor, non-destructor) member
1538 functions are private. (Since there are no friends or
1539 non-private statics, we can't ever call any of the private member
1540 functions.) */
1541 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1542 /* We're not interested in compiler-generated methods; they don't
1543 provide any way to call private members. */
1544 if (!DECL_ARTIFICIAL (fn))
1545 {
1546 if (!TREE_PRIVATE (fn))
1547 {
1548 if (DECL_STATIC_FUNCTION_P (fn))
1549 /* A non-private static member function is just like a
1550 friend; it can create and invoke private member
1551 functions, and be accessed without a class
1552 instance. */
1553 return;
1554
1555 has_nonprivate_method = 1;
1556 /* Keep searching for a static member function. */
1557 }
1558 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1559 has_member_fn = 1;
1560 }
1561
1562 if (!has_nonprivate_method && has_member_fn)
1563 {
1564 /* There are no non-private methods, and there's at least one
1565 private member function that isn't a constructor or
1566 destructor. (If all the private members are
1567 constructors/destructors we want to use the code below that
1568 issues error messages specifically referring to
1569 constructors/destructors.) */
1570 unsigned i;
1571 tree binfo = TYPE_BINFO (t);
1572
1573 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1574 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1575 {
1576 has_nonprivate_method = 1;
1577 break;
1578 }
1579 if (!has_nonprivate_method)
1580 {
1581 warning (OPT_Wctor_dtor_privacy,
1582 "all member functions in class %qT are private", t);
1583 return;
1584 }
1585 }
1586
1587 /* Even if some of the member functions are non-private, the class
1588 won't be useful for much if all the constructors or destructors
1589 are private: such an object can never be created or destroyed. */
1590 fn = CLASSTYPE_DESTRUCTORS (t);
1591 if (fn && TREE_PRIVATE (fn))
1592 {
1593 warning (OPT_Wctor_dtor_privacy,
1594 "%q#T only defines a private destructor and has no friends",
1595 t);
1596 return;
1597 }
1598
1599 /* Warn about classes that have private constructors and no friends. */
1600 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1601 /* Implicitly generated constructors are always public. */
1602 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1603 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1604 {
1605 int nonprivate_ctor = 0;
1606
1607 /* If a non-template class does not define a copy
1608 constructor, one is defined for it, enabling it to avoid
1609 this warning. For a template class, this does not
1610 happen, and so we would normally get a warning on:
1611
1612 template <class T> class C { private: C(); };
1613
1614 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1615 complete non-template or fully instantiated classes have this
1616 flag set. */
1617 if (!TYPE_HAS_INIT_REF (t))
1618 nonprivate_ctor = 1;
1619 else
1620 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1621 {
1622 tree ctor = OVL_CURRENT (fn);
1623 /* Ideally, we wouldn't count copy constructors (or, in
1624 fact, any constructor that takes an argument of the
1625 class type as a parameter) because such things cannot
1626 be used to construct an instance of the class unless
1627 you already have one. But, for now at least, we're
1628 more generous. */
1629 if (! TREE_PRIVATE (ctor))
1630 {
1631 nonprivate_ctor = 1;
1632 break;
1633 }
1634 }
1635
1636 if (nonprivate_ctor == 0)
1637 {
1638 warning (OPT_Wctor_dtor_privacy,
1639 "%q#T only defines private constructors and has no friends",
1640 t);
1641 return;
1642 }
1643 }
1644 }
1645
1646 static struct {
1647 gt_pointer_operator new_value;
1648 void *cookie;
1649 } resort_data;
1650
1651 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1652
1653 static int
1654 method_name_cmp (const void* m1_p, const void* m2_p)
1655 {
1656 const tree *const m1 = (const tree *) m1_p;
1657 const tree *const m2 = (const tree *) m2_p;
1658
1659 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1660 return 0;
1661 if (*m1 == NULL_TREE)
1662 return -1;
1663 if (*m2 == NULL_TREE)
1664 return 1;
1665 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1666 return -1;
1667 return 1;
1668 }
1669
1670 /* This routine compares two fields like method_name_cmp but using the
1671 pointer operator in resort_field_decl_data. */
1672
1673 static int
1674 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1675 {
1676 const tree *const m1 = (const tree *) m1_p;
1677 const tree *const m2 = (const tree *) m2_p;
1678 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1679 return 0;
1680 if (*m1 == NULL_TREE)
1681 return -1;
1682 if (*m2 == NULL_TREE)
1683 return 1;
1684 {
1685 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1686 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1687 resort_data.new_value (&d1, resort_data.cookie);
1688 resort_data.new_value (&d2, resort_data.cookie);
1689 if (d1 < d2)
1690 return -1;
1691 }
1692 return 1;
1693 }
1694
1695 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1696
1697 void
1698 resort_type_method_vec (void* obj,
1699 void* orig_obj ATTRIBUTE_UNUSED ,
1700 gt_pointer_operator new_value,
1701 void* cookie)
1702 {
1703 VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
1704 int len = VEC_length (tree, method_vec);
1705 size_t slot;
1706 tree fn;
1707
1708 /* The type conversion ops have to live at the front of the vec, so we
1709 can't sort them. */
1710 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1711 VEC_iterate (tree, method_vec, slot, fn);
1712 ++slot)
1713 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1714 break;
1715
1716 if (len - slot > 1)
1717 {
1718 resort_data.new_value = new_value;
1719 resort_data.cookie = cookie;
1720 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1721 resort_method_name_cmp);
1722 }
1723 }
1724
1725 /* Warn about duplicate methods in fn_fields.
1726
1727 Sort methods that are not special (i.e., constructors, destructors,
1728 and type conversion operators) so that we can find them faster in
1729 search. */
1730
1731 static void
1732 finish_struct_methods (tree t)
1733 {
1734 tree fn_fields;
1735 VEC(tree,gc) *method_vec;
1736 int slot, len;
1737
1738 method_vec = CLASSTYPE_METHOD_VEC (t);
1739 if (!method_vec)
1740 return;
1741
1742 len = VEC_length (tree, method_vec);
1743
1744 /* Clear DECL_IN_AGGR_P for all functions. */
1745 for (fn_fields = TYPE_METHODS (t); fn_fields;
1746 fn_fields = TREE_CHAIN (fn_fields))
1747 DECL_IN_AGGR_P (fn_fields) = 0;
1748
1749 /* Issue warnings about private constructors and such. If there are
1750 no methods, then some public defaults are generated. */
1751 maybe_warn_about_overly_private_class (t);
1752
1753 /* The type conversion ops have to live at the front of the vec, so we
1754 can't sort them. */
1755 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1756 VEC_iterate (tree, method_vec, slot, fn_fields);
1757 ++slot)
1758 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1759 break;
1760 if (len - slot > 1)
1761 qsort (VEC_address (tree, method_vec) + slot,
1762 len-slot, sizeof (tree), method_name_cmp);
1763 }
1764
1765 /* Make BINFO's vtable have N entries, including RTTI entries,
1766 vbase and vcall offsets, etc. Set its type and call the back end
1767 to lay it out. */
1768
1769 static void
1770 layout_vtable_decl (tree binfo, int n)
1771 {
1772 tree atype;
1773 tree vtable;
1774
1775 atype = build_cplus_array_type (vtable_entry_type,
1776 build_index_type (size_int (n - 1)));
1777 layout_type (atype);
1778
1779 /* We may have to grow the vtable. */
1780 vtable = get_vtbl_decl_for_binfo (binfo);
1781 if (!same_type_p (TREE_TYPE (vtable), atype))
1782 {
1783 TREE_TYPE (vtable) = atype;
1784 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1785 layout_decl (vtable, 0);
1786 }
1787 }
1788
1789 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1790 have the same signature. */
1791
1792 int
1793 same_signature_p (const_tree fndecl, const_tree base_fndecl)
1794 {
1795 /* One destructor overrides another if they are the same kind of
1796 destructor. */
1797 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1798 && special_function_p (base_fndecl) == special_function_p (fndecl))
1799 return 1;
1800 /* But a non-destructor never overrides a destructor, nor vice
1801 versa, nor do different kinds of destructors override
1802 one-another. For example, a complete object destructor does not
1803 override a deleting destructor. */
1804 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1805 return 0;
1806
1807 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1808 || (DECL_CONV_FN_P (fndecl)
1809 && DECL_CONV_FN_P (base_fndecl)
1810 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1811 DECL_CONV_FN_TYPE (base_fndecl))))
1812 {
1813 tree types, base_types;
1814 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1815 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1816 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1817 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1818 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1819 return 1;
1820 }
1821 return 0;
1822 }
1823
1824 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1825 subobject. */
1826
1827 static bool
1828 base_derived_from (tree derived, tree base)
1829 {
1830 tree probe;
1831
1832 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1833 {
1834 if (probe == derived)
1835 return true;
1836 else if (BINFO_VIRTUAL_P (probe))
1837 /* If we meet a virtual base, we can't follow the inheritance
1838 any more. See if the complete type of DERIVED contains
1839 such a virtual base. */
1840 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1841 != NULL_TREE);
1842 }
1843 return false;
1844 }
1845
1846 typedef struct find_final_overrider_data_s {
1847 /* The function for which we are trying to find a final overrider. */
1848 tree fn;
1849 /* The base class in which the function was declared. */
1850 tree declaring_base;
1851 /* The candidate overriders. */
1852 tree candidates;
1853 /* Path to most derived. */
1854 VEC(tree,heap) *path;
1855 } find_final_overrider_data;
1856
1857 /* Add the overrider along the current path to FFOD->CANDIDATES.
1858 Returns true if an overrider was found; false otherwise. */
1859
1860 static bool
1861 dfs_find_final_overrider_1 (tree binfo,
1862 find_final_overrider_data *ffod,
1863 unsigned depth)
1864 {
1865 tree method;
1866
1867 /* If BINFO is not the most derived type, try a more derived class.
1868 A definition there will overrider a definition here. */
1869 if (depth)
1870 {
1871 depth--;
1872 if (dfs_find_final_overrider_1
1873 (VEC_index (tree, ffod->path, depth), ffod, depth))
1874 return true;
1875 }
1876
1877 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1878 if (method)
1879 {
1880 tree *candidate = &ffod->candidates;
1881
1882 /* Remove any candidates overridden by this new function. */
1883 while (*candidate)
1884 {
1885 /* If *CANDIDATE overrides METHOD, then METHOD
1886 cannot override anything else on the list. */
1887 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1888 return true;
1889 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1890 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1891 *candidate = TREE_CHAIN (*candidate);
1892 else
1893 candidate = &TREE_CHAIN (*candidate);
1894 }
1895
1896 /* Add the new function. */
1897 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1898 return true;
1899 }
1900
1901 return false;
1902 }
1903
1904 /* Called from find_final_overrider via dfs_walk. */
1905
1906 static tree
1907 dfs_find_final_overrider_pre (tree binfo, void *data)
1908 {
1909 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1910
1911 if (binfo == ffod->declaring_base)
1912 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1913 VEC_safe_push (tree, heap, ffod->path, binfo);
1914
1915 return NULL_TREE;
1916 }
1917
1918 static tree
1919 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1920 {
1921 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1922 VEC_pop (tree, ffod->path);
1923
1924 return NULL_TREE;
1925 }
1926
1927 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1928 FN and whose TREE_VALUE is the binfo for the base where the
1929 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1930 DERIVED) is the base object in which FN is declared. */
1931
1932 static tree
1933 find_final_overrider (tree derived, tree binfo, tree fn)
1934 {
1935 find_final_overrider_data ffod;
1936
1937 /* Getting this right is a little tricky. This is valid:
1938
1939 struct S { virtual void f (); };
1940 struct T { virtual void f (); };
1941 struct U : public S, public T { };
1942
1943 even though calling `f' in `U' is ambiguous. But,
1944
1945 struct R { virtual void f(); };
1946 struct S : virtual public R { virtual void f (); };
1947 struct T : virtual public R { virtual void f (); };
1948 struct U : public S, public T { };
1949
1950 is not -- there's no way to decide whether to put `S::f' or
1951 `T::f' in the vtable for `R'.
1952
1953 The solution is to look at all paths to BINFO. If we find
1954 different overriders along any two, then there is a problem. */
1955 if (DECL_THUNK_P (fn))
1956 fn = THUNK_TARGET (fn);
1957
1958 /* Determine the depth of the hierarchy. */
1959 ffod.fn = fn;
1960 ffod.declaring_base = binfo;
1961 ffod.candidates = NULL_TREE;
1962 ffod.path = VEC_alloc (tree, heap, 30);
1963
1964 dfs_walk_all (derived, dfs_find_final_overrider_pre,
1965 dfs_find_final_overrider_post, &ffod);
1966
1967 VEC_free (tree, heap, ffod.path);
1968
1969 /* If there was no winner, issue an error message. */
1970 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
1971 return error_mark_node;
1972
1973 return ffod.candidates;
1974 }
1975
1976 /* Return the index of the vcall offset for FN when TYPE is used as a
1977 virtual base. */
1978
1979 static tree
1980 get_vcall_index (tree fn, tree type)
1981 {
1982 VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
1983 tree_pair_p p;
1984 unsigned ix;
1985
1986 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
1987 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
1988 || same_signature_p (fn, p->purpose))
1989 return p->value;
1990
1991 /* There should always be an appropriate index. */
1992 gcc_unreachable ();
1993 }
1994
1995 /* Update an entry in the vtable for BINFO, which is in the hierarchy
1996 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
1997 corresponding position in the BINFO_VIRTUALS list. */
1998
1999 static void
2000 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2001 unsigned ix)
2002 {
2003 tree b;
2004 tree overrider;
2005 tree delta;
2006 tree virtual_base;
2007 tree first_defn;
2008 tree overrider_fn, overrider_target;
2009 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2010 tree over_return, base_return;
2011 bool lost = false;
2012
2013 /* Find the nearest primary base (possibly binfo itself) which defines
2014 this function; this is the class the caller will convert to when
2015 calling FN through BINFO. */
2016 for (b = binfo; ; b = get_primary_binfo (b))
2017 {
2018 gcc_assert (b);
2019 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2020 break;
2021
2022 /* The nearest definition is from a lost primary. */
2023 if (BINFO_LOST_PRIMARY_P (b))
2024 lost = true;
2025 }
2026 first_defn = b;
2027
2028 /* Find the final overrider. */
2029 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2030 if (overrider == error_mark_node)
2031 {
2032 error ("no unique final overrider for %qD in %qT", target_fn, t);
2033 return;
2034 }
2035 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2036
2037 /* Check for adjusting covariant return types. */
2038 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2039 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2040
2041 if (POINTER_TYPE_P (over_return)
2042 && TREE_CODE (over_return) == TREE_CODE (base_return)
2043 && CLASS_TYPE_P (TREE_TYPE (over_return))
2044 && CLASS_TYPE_P (TREE_TYPE (base_return))
2045 /* If the overrider is invalid, don't even try. */
2046 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2047 {
2048 /* If FN is a covariant thunk, we must figure out the adjustment
2049 to the final base FN was converting to. As OVERRIDER_TARGET might
2050 also be converting to the return type of FN, we have to
2051 combine the two conversions here. */
2052 tree fixed_offset, virtual_offset;
2053
2054 over_return = TREE_TYPE (over_return);
2055 base_return = TREE_TYPE (base_return);
2056
2057 if (DECL_THUNK_P (fn))
2058 {
2059 gcc_assert (DECL_RESULT_THUNK_P (fn));
2060 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2061 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2062 }
2063 else
2064 fixed_offset = virtual_offset = NULL_TREE;
2065
2066 if (virtual_offset)
2067 /* Find the equivalent binfo within the return type of the
2068 overriding function. We will want the vbase offset from
2069 there. */
2070 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2071 over_return);
2072 else if (!same_type_ignoring_top_level_qualifiers_p
2073 (over_return, base_return))
2074 {
2075 /* There was no existing virtual thunk (which takes
2076 precedence). So find the binfo of the base function's
2077 return type within the overriding function's return type.
2078 We cannot call lookup base here, because we're inside a
2079 dfs_walk, and will therefore clobber the BINFO_MARKED
2080 flags. Fortunately we know the covariancy is valid (it
2081 has already been checked), so we can just iterate along
2082 the binfos, which have been chained in inheritance graph
2083 order. Of course it is lame that we have to repeat the
2084 search here anyway -- we should really be caching pieces
2085 of the vtable and avoiding this repeated work. */
2086 tree thunk_binfo, base_binfo;
2087
2088 /* Find the base binfo within the overriding function's
2089 return type. We will always find a thunk_binfo, except
2090 when the covariancy is invalid (which we will have
2091 already diagnosed). */
2092 for (base_binfo = TYPE_BINFO (base_return),
2093 thunk_binfo = TYPE_BINFO (over_return);
2094 thunk_binfo;
2095 thunk_binfo = TREE_CHAIN (thunk_binfo))
2096 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2097 BINFO_TYPE (base_binfo)))
2098 break;
2099
2100 /* See if virtual inheritance is involved. */
2101 for (virtual_offset = thunk_binfo;
2102 virtual_offset;
2103 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2104 if (BINFO_VIRTUAL_P (virtual_offset))
2105 break;
2106
2107 if (virtual_offset
2108 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2109 {
2110 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2111
2112 if (virtual_offset)
2113 {
2114 /* We convert via virtual base. Adjust the fixed
2115 offset to be from there. */
2116 offset = size_diffop
2117 (offset, convert
2118 (ssizetype, BINFO_OFFSET (virtual_offset)));
2119 }
2120 if (fixed_offset)
2121 /* There was an existing fixed offset, this must be
2122 from the base just converted to, and the base the
2123 FN was thunking to. */
2124 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2125 else
2126 fixed_offset = offset;
2127 }
2128 }
2129
2130 if (fixed_offset || virtual_offset)
2131 /* Replace the overriding function with a covariant thunk. We
2132 will emit the overriding function in its own slot as
2133 well. */
2134 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2135 fixed_offset, virtual_offset);
2136 }
2137 else
2138 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2139 !DECL_THUNK_P (fn));
2140
2141 /* Assume that we will produce a thunk that convert all the way to
2142 the final overrider, and not to an intermediate virtual base. */
2143 virtual_base = NULL_TREE;
2144
2145 /* See if we can convert to an intermediate virtual base first, and then
2146 use the vcall offset located there to finish the conversion. */
2147 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2148 {
2149 /* If we find the final overrider, then we can stop
2150 walking. */
2151 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2152 BINFO_TYPE (TREE_VALUE (overrider))))
2153 break;
2154
2155 /* If we find a virtual base, and we haven't yet found the
2156 overrider, then there is a virtual base between the
2157 declaring base (first_defn) and the final overrider. */
2158 if (BINFO_VIRTUAL_P (b))
2159 {
2160 virtual_base = b;
2161 break;
2162 }
2163 }
2164
2165 if (overrider_fn != overrider_target && !virtual_base)
2166 {
2167 /* The ABI specifies that a covariant thunk includes a mangling
2168 for a this pointer adjustment. This-adjusting thunks that
2169 override a function from a virtual base have a vcall
2170 adjustment. When the virtual base in question is a primary
2171 virtual base, we know the adjustments are zero, (and in the
2172 non-covariant case, we would not use the thunk).
2173 Unfortunately we didn't notice this could happen, when
2174 designing the ABI and so never mandated that such a covariant
2175 thunk should be emitted. Because we must use the ABI mandated
2176 name, we must continue searching from the binfo where we
2177 found the most recent definition of the function, towards the
2178 primary binfo which first introduced the function into the
2179 vtable. If that enters a virtual base, we must use a vcall
2180 this-adjusting thunk. Bleah! */
2181 tree probe = first_defn;
2182
2183 while ((probe = get_primary_binfo (probe))
2184 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2185 if (BINFO_VIRTUAL_P (probe))
2186 virtual_base = probe;
2187
2188 if (virtual_base)
2189 /* Even if we find a virtual base, the correct delta is
2190 between the overrider and the binfo we're building a vtable
2191 for. */
2192 goto virtual_covariant;
2193 }
2194
2195 /* Compute the constant adjustment to the `this' pointer. The
2196 `this' pointer, when this function is called, will point at BINFO
2197 (or one of its primary bases, which are at the same offset). */
2198 if (virtual_base)
2199 /* The `this' pointer needs to be adjusted from the declaration to
2200 the nearest virtual base. */
2201 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2202 convert (ssizetype, BINFO_OFFSET (first_defn)));
2203 else if (lost)
2204 /* If the nearest definition is in a lost primary, we don't need an
2205 entry in our vtable. Except possibly in a constructor vtable,
2206 if we happen to get our primary back. In that case, the offset
2207 will be zero, as it will be a primary base. */
2208 delta = size_zero_node;
2209 else
2210 /* The `this' pointer needs to be adjusted from pointing to
2211 BINFO to pointing at the base where the final overrider
2212 appears. */
2213 virtual_covariant:
2214 delta = size_diffop (convert (ssizetype,
2215 BINFO_OFFSET (TREE_VALUE (overrider))),
2216 convert (ssizetype, BINFO_OFFSET (binfo)));
2217
2218 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2219
2220 if (virtual_base)
2221 BV_VCALL_INDEX (*virtuals)
2222 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2223 else
2224 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2225 }
2226
2227 /* Called from modify_all_vtables via dfs_walk. */
2228
2229 static tree
2230 dfs_modify_vtables (tree binfo, void* data)
2231 {
2232 tree t = (tree) data;
2233 tree virtuals;
2234 tree old_virtuals;
2235 unsigned ix;
2236
2237 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2238 /* A base without a vtable needs no modification, and its bases
2239 are uninteresting. */
2240 return dfs_skip_bases;
2241
2242 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2243 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2244 /* Don't do the primary vtable, if it's new. */
2245 return NULL_TREE;
2246
2247 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2248 /* There's no need to modify the vtable for a non-virtual primary
2249 base; we're not going to use that vtable anyhow. We do still
2250 need to do this for virtual primary bases, as they could become
2251 non-primary in a construction vtable. */
2252 return NULL_TREE;
2253
2254 make_new_vtable (t, binfo);
2255
2256 /* Now, go through each of the virtual functions in the virtual
2257 function table for BINFO. Find the final overrider, and update
2258 the BINFO_VIRTUALS list appropriately. */
2259 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2260 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2261 virtuals;
2262 ix++, virtuals = TREE_CHAIN (virtuals),
2263 old_virtuals = TREE_CHAIN (old_virtuals))
2264 update_vtable_entry_for_fn (t,
2265 binfo,
2266 BV_FN (old_virtuals),
2267 &virtuals, ix);
2268
2269 return NULL_TREE;
2270 }
2271
2272 /* Update all of the primary and secondary vtables for T. Create new
2273 vtables as required, and initialize their RTTI information. Each
2274 of the functions in VIRTUALS is declared in T and may override a
2275 virtual function from a base class; find and modify the appropriate
2276 entries to point to the overriding functions. Returns a list, in
2277 declaration order, of the virtual functions that are declared in T,
2278 but do not appear in the primary base class vtable, and which
2279 should therefore be appended to the end of the vtable for T. */
2280
2281 static tree
2282 modify_all_vtables (tree t, tree virtuals)
2283 {
2284 tree binfo = TYPE_BINFO (t);
2285 tree *fnsp;
2286
2287 /* Update all of the vtables. */
2288 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2289
2290 /* Add virtual functions not already in our primary vtable. These
2291 will be both those introduced by this class, and those overridden
2292 from secondary bases. It does not include virtuals merely
2293 inherited from secondary bases. */
2294 for (fnsp = &virtuals; *fnsp; )
2295 {
2296 tree fn = TREE_VALUE (*fnsp);
2297
2298 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2299 || DECL_VINDEX (fn) == error_mark_node)
2300 {
2301 /* We don't need to adjust the `this' pointer when
2302 calling this function. */
2303 BV_DELTA (*fnsp) = integer_zero_node;
2304 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2305
2306 /* This is a function not already in our vtable. Keep it. */
2307 fnsp = &TREE_CHAIN (*fnsp);
2308 }
2309 else
2310 /* We've already got an entry for this function. Skip it. */
2311 *fnsp = TREE_CHAIN (*fnsp);
2312 }
2313
2314 return virtuals;
2315 }
2316
2317 /* Get the base virtual function declarations in T that have the
2318 indicated NAME. */
2319
2320 static tree
2321 get_basefndecls (tree name, tree t)
2322 {
2323 tree methods;
2324 tree base_fndecls = NULL_TREE;
2325 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2326 int i;
2327
2328 /* Find virtual functions in T with the indicated NAME. */
2329 i = lookup_fnfields_1 (t, name);
2330 if (i != -1)
2331 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2332 methods;
2333 methods = OVL_NEXT (methods))
2334 {
2335 tree method = OVL_CURRENT (methods);
2336
2337 if (TREE_CODE (method) == FUNCTION_DECL
2338 && DECL_VINDEX (method))
2339 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2340 }
2341
2342 if (base_fndecls)
2343 return base_fndecls;
2344
2345 for (i = 0; i < n_baseclasses; i++)
2346 {
2347 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2348 base_fndecls = chainon (get_basefndecls (name, basetype),
2349 base_fndecls);
2350 }
2351
2352 return base_fndecls;
2353 }
2354
2355 /* If this declaration supersedes the declaration of
2356 a method declared virtual in the base class, then
2357 mark this field as being virtual as well. */
2358
2359 void
2360 check_for_override (tree decl, tree ctype)
2361 {
2362 if (TREE_CODE (decl) == TEMPLATE_DECL)
2363 /* In [temp.mem] we have:
2364
2365 A specialization of a member function template does not
2366 override a virtual function from a base class. */
2367 return;
2368 if ((DECL_DESTRUCTOR_P (decl)
2369 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2370 || DECL_CONV_FN_P (decl))
2371 && look_for_overrides (ctype, decl)
2372 && !DECL_STATIC_FUNCTION_P (decl))
2373 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2374 the error_mark_node so that we know it is an overriding
2375 function. */
2376 DECL_VINDEX (decl) = decl;
2377
2378 if (DECL_VIRTUAL_P (decl))
2379 {
2380 if (!DECL_VINDEX (decl))
2381 DECL_VINDEX (decl) = error_mark_node;
2382 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2383 }
2384 }
2385
2386 /* Warn about hidden virtual functions that are not overridden in t.
2387 We know that constructors and destructors don't apply. */
2388
2389 static void
2390 warn_hidden (tree t)
2391 {
2392 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
2393 tree fns;
2394 size_t i;
2395
2396 /* We go through each separately named virtual function. */
2397 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2398 VEC_iterate (tree, method_vec, i, fns);
2399 ++i)
2400 {
2401 tree fn;
2402 tree name;
2403 tree fndecl;
2404 tree base_fndecls;
2405 tree base_binfo;
2406 tree binfo;
2407 int j;
2408
2409 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2410 have the same name. Figure out what name that is. */
2411 name = DECL_NAME (OVL_CURRENT (fns));
2412 /* There are no possibly hidden functions yet. */
2413 base_fndecls = NULL_TREE;
2414 /* Iterate through all of the base classes looking for possibly
2415 hidden functions. */
2416 for (binfo = TYPE_BINFO (t), j = 0;
2417 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2418 {
2419 tree basetype = BINFO_TYPE (base_binfo);
2420 base_fndecls = chainon (get_basefndecls (name, basetype),
2421 base_fndecls);
2422 }
2423
2424 /* If there are no functions to hide, continue. */
2425 if (!base_fndecls)
2426 continue;
2427
2428 /* Remove any overridden functions. */
2429 for (fn = fns; fn; fn = OVL_NEXT (fn))
2430 {
2431 fndecl = OVL_CURRENT (fn);
2432 if (DECL_VINDEX (fndecl))
2433 {
2434 tree *prev = &base_fndecls;
2435
2436 while (*prev)
2437 /* If the method from the base class has the same
2438 signature as the method from the derived class, it
2439 has been overridden. */
2440 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2441 *prev = TREE_CHAIN (*prev);
2442 else
2443 prev = &TREE_CHAIN (*prev);
2444 }
2445 }
2446
2447 /* Now give a warning for all base functions without overriders,
2448 as they are hidden. */
2449 while (base_fndecls)
2450 {
2451 /* Here we know it is a hider, and no overrider exists. */
2452 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2453 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2454 base_fndecls = TREE_CHAIN (base_fndecls);
2455 }
2456 }
2457 }
2458
2459 /* Check for things that are invalid. There are probably plenty of other
2460 things we should check for also. */
2461
2462 static void
2463 finish_struct_anon (tree t)
2464 {
2465 tree field;
2466
2467 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2468 {
2469 if (TREE_STATIC (field))
2470 continue;
2471 if (TREE_CODE (field) != FIELD_DECL)
2472 continue;
2473
2474 if (DECL_NAME (field) == NULL_TREE
2475 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2476 {
2477 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2478 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2479 for (; elt; elt = TREE_CHAIN (elt))
2480 {
2481 /* We're generally only interested in entities the user
2482 declared, but we also find nested classes by noticing
2483 the TYPE_DECL that we create implicitly. You're
2484 allowed to put one anonymous union inside another,
2485 though, so we explicitly tolerate that. We use
2486 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2487 we also allow unnamed types used for defining fields. */
2488 if (DECL_ARTIFICIAL (elt)
2489 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2490 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2491 continue;
2492
2493 if (TREE_CODE (elt) != FIELD_DECL)
2494 {
2495 if (is_union)
2496 pedwarn ("%q+#D invalid; an anonymous union can "
2497 "only have non-static data members", elt);
2498 else
2499 pedwarn ("%q+#D invalid; an anonymous struct can "
2500 "only have non-static data members", elt);
2501 continue;
2502 }
2503
2504 if (TREE_PRIVATE (elt))
2505 {
2506 if (is_union)
2507 pedwarn ("private member %q+#D in anonymous union", elt);
2508 else
2509 pedwarn ("private member %q+#D in anonymous struct", elt);
2510 }
2511 else if (TREE_PROTECTED (elt))
2512 {
2513 if (is_union)
2514 pedwarn ("protected member %q+#D in anonymous union", elt);
2515 else
2516 pedwarn ("protected member %q+#D in anonymous struct", elt);
2517 }
2518
2519 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2520 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2521 }
2522 }
2523 }
2524 }
2525
2526 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2527 will be used later during class template instantiation.
2528 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2529 a non-static member data (FIELD_DECL), a member function
2530 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2531 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2532 When FRIEND_P is nonzero, T is either a friend class
2533 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2534 (FUNCTION_DECL, TEMPLATE_DECL). */
2535
2536 void
2537 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2538 {
2539 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2540 if (CLASSTYPE_TEMPLATE_INFO (type))
2541 CLASSTYPE_DECL_LIST (type)
2542 = tree_cons (friend_p ? NULL_TREE : type,
2543 t, CLASSTYPE_DECL_LIST (type));
2544 }
2545
2546 /* Create default constructors, assignment operators, and so forth for
2547 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2548 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2549 the class cannot have a default constructor, copy constructor
2550 taking a const reference argument, or an assignment operator taking
2551 a const reference, respectively. */
2552
2553 static void
2554 add_implicitly_declared_members (tree t,
2555 int cant_have_const_cctor,
2556 int cant_have_const_assignment)
2557 {
2558 /* Destructor. */
2559 if (!CLASSTYPE_DESTRUCTORS (t))
2560 {
2561 /* In general, we create destructors lazily. */
2562 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2563 /* However, if the implicit destructor is non-trivial
2564 destructor, we sometimes have to create it at this point. */
2565 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2566 {
2567 bool lazy_p = true;
2568
2569 if (TYPE_FOR_JAVA (t))
2570 /* If this a Java class, any non-trivial destructor is
2571 invalid, even if compiler-generated. Therefore, if the
2572 destructor is non-trivial we create it now. */
2573 lazy_p = false;
2574 else
2575 {
2576 tree binfo;
2577 tree base_binfo;
2578 int ix;
2579
2580 /* If the implicit destructor will be virtual, then we must
2581 generate it now because (unfortunately) we do not
2582 generate virtual tables lazily. */
2583 binfo = TYPE_BINFO (t);
2584 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2585 {
2586 tree base_type;
2587 tree dtor;
2588
2589 base_type = BINFO_TYPE (base_binfo);
2590 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2591 if (dtor && DECL_VIRTUAL_P (dtor))
2592 {
2593 lazy_p = false;
2594 break;
2595 }
2596 }
2597 }
2598
2599 /* If we can't get away with being lazy, generate the destructor
2600 now. */
2601 if (!lazy_p)
2602 lazily_declare_fn (sfk_destructor, t);
2603 }
2604 }
2605
2606 /* [class.ctor]
2607
2608 If there is no user-declared constructor for a class, a default
2609 constructor is implicitly declared. */
2610 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2611 {
2612 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2613 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2614 }
2615
2616 /* [class.ctor]
2617
2618 If a class definition does not explicitly declare a copy
2619 constructor, one is declared implicitly. */
2620 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2621 {
2622 TYPE_HAS_INIT_REF (t) = 1;
2623 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2624 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2625 }
2626
2627 /* If there is no assignment operator, one will be created if and
2628 when it is needed. For now, just record whether or not the type
2629 of the parameter to the assignment operator will be a const or
2630 non-const reference. */
2631 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2632 {
2633 TYPE_HAS_ASSIGN_REF (t) = 1;
2634 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2635 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2636 }
2637 }
2638
2639 /* Subroutine of finish_struct_1. Recursively count the number of fields
2640 in TYPE, including anonymous union members. */
2641
2642 static int
2643 count_fields (tree fields)
2644 {
2645 tree x;
2646 int n_fields = 0;
2647 for (x = fields; x; x = TREE_CHAIN (x))
2648 {
2649 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2650 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2651 else
2652 n_fields += 1;
2653 }
2654 return n_fields;
2655 }
2656
2657 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2658 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2659
2660 static int
2661 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2662 {
2663 tree x;
2664 for (x = fields; x; x = TREE_CHAIN (x))
2665 {
2666 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2667 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2668 else
2669 field_vec->elts[idx++] = x;
2670 }
2671 return idx;
2672 }
2673
2674 /* FIELD is a bit-field. We are finishing the processing for its
2675 enclosing type. Issue any appropriate messages and set appropriate
2676 flags. Returns false if an error has been diagnosed. */
2677
2678 static bool
2679 check_bitfield_decl (tree field)
2680 {
2681 tree type = TREE_TYPE (field);
2682 tree w;
2683
2684 /* Extract the declared width of the bitfield, which has been
2685 temporarily stashed in DECL_INITIAL. */
2686 w = DECL_INITIAL (field);
2687 gcc_assert (w != NULL_TREE);
2688 /* Remove the bit-field width indicator so that the rest of the
2689 compiler does not treat that value as an initializer. */
2690 DECL_INITIAL (field) = NULL_TREE;
2691
2692 /* Detect invalid bit-field type. */
2693 if (!INTEGRAL_TYPE_P (type))
2694 {
2695 error ("bit-field %q+#D with non-integral type", field);
2696 w = error_mark_node;
2697 }
2698 else
2699 {
2700 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2701 STRIP_NOPS (w);
2702
2703 /* detect invalid field size. */
2704 w = integral_constant_value (w);
2705
2706 if (TREE_CODE (w) != INTEGER_CST)
2707 {
2708 error ("bit-field %q+D width not an integer constant", field);
2709 w = error_mark_node;
2710 }
2711 else if (tree_int_cst_sgn (w) < 0)
2712 {
2713 error ("negative width in bit-field %q+D", field);
2714 w = error_mark_node;
2715 }
2716 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2717 {
2718 error ("zero width for bit-field %q+D", field);
2719 w = error_mark_node;
2720 }
2721 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2722 && TREE_CODE (type) != ENUMERAL_TYPE
2723 && TREE_CODE (type) != BOOLEAN_TYPE)
2724 warning (0, "width of %q+D exceeds its type", field);
2725 else if (TREE_CODE (type) == ENUMERAL_TYPE
2726 && (0 > compare_tree_int (w,
2727 min_precision (TYPE_MIN_VALUE (type),
2728 TYPE_UNSIGNED (type)))
2729 || 0 > compare_tree_int (w,
2730 min_precision
2731 (TYPE_MAX_VALUE (type),
2732 TYPE_UNSIGNED (type)))))
2733 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
2734 }
2735
2736 if (w != error_mark_node)
2737 {
2738 DECL_SIZE (field) = convert (bitsizetype, w);
2739 DECL_BIT_FIELD (field) = 1;
2740 return true;
2741 }
2742 else
2743 {
2744 /* Non-bit-fields are aligned for their type. */
2745 DECL_BIT_FIELD (field) = 0;
2746 CLEAR_DECL_C_BIT_FIELD (field);
2747 return false;
2748 }
2749 }
2750
2751 /* FIELD is a non bit-field. We are finishing the processing for its
2752 enclosing type T. Issue any appropriate messages and set appropriate
2753 flags. */
2754
2755 static void
2756 check_field_decl (tree field,
2757 tree t,
2758 int* cant_have_const_ctor,
2759 int* no_const_asn_ref,
2760 int* any_default_members)
2761 {
2762 tree type = strip_array_types (TREE_TYPE (field));
2763
2764 /* An anonymous union cannot contain any fields which would change
2765 the settings of CANT_HAVE_CONST_CTOR and friends. */
2766 if (ANON_UNION_TYPE_P (type))
2767 ;
2768 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2769 structs. So, we recurse through their fields here. */
2770 else if (ANON_AGGR_TYPE_P (type))
2771 {
2772 tree fields;
2773
2774 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2775 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2776 check_field_decl (fields, t, cant_have_const_ctor,
2777 no_const_asn_ref, any_default_members);
2778 }
2779 /* Check members with class type for constructors, destructors,
2780 etc. */
2781 else if (CLASS_TYPE_P (type))
2782 {
2783 /* Never let anything with uninheritable virtuals
2784 make it through without complaint. */
2785 abstract_virtuals_error (field, type);
2786
2787 if (TREE_CODE (t) == UNION_TYPE)
2788 {
2789 if (TYPE_NEEDS_CONSTRUCTING (type))
2790 error ("member %q+#D with constructor not allowed in union",
2791 field);
2792 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2793 error ("member %q+#D with destructor not allowed in union", field);
2794 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2795 error ("member %q+#D with copy assignment operator not allowed in union",
2796 field);
2797 }
2798 else
2799 {
2800 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2801 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2802 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2803 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2804 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2805 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (type);
2806 }
2807
2808 if (!TYPE_HAS_CONST_INIT_REF (type))
2809 *cant_have_const_ctor = 1;
2810
2811 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2812 *no_const_asn_ref = 1;
2813 }
2814 if (DECL_INITIAL (field) != NULL_TREE)
2815 {
2816 /* `build_class_init_list' does not recognize
2817 non-FIELD_DECLs. */
2818 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2819 error ("multiple fields in union %qT initialized", t);
2820 *any_default_members = 1;
2821 }
2822 }
2823
2824 /* Check the data members (both static and non-static), class-scoped
2825 typedefs, etc., appearing in the declaration of T. Issue
2826 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2827 declaration order) of access declarations; each TREE_VALUE in this
2828 list is a USING_DECL.
2829
2830 In addition, set the following flags:
2831
2832 EMPTY_P
2833 The class is empty, i.e., contains no non-static data members.
2834
2835 CANT_HAVE_CONST_CTOR_P
2836 This class cannot have an implicitly generated copy constructor
2837 taking a const reference.
2838
2839 CANT_HAVE_CONST_ASN_REF
2840 This class cannot have an implicitly generated assignment
2841 operator taking a const reference.
2842
2843 All of these flags should be initialized before calling this
2844 function.
2845
2846 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2847 fields can be added by adding to this chain. */
2848
2849 static void
2850 check_field_decls (tree t, tree *access_decls,
2851 int *cant_have_const_ctor_p,
2852 int *no_const_asn_ref_p)
2853 {
2854 tree *field;
2855 tree *next;
2856 bool has_pointers;
2857 int any_default_members;
2858 int cant_pack = 0;
2859
2860 /* Assume there are no access declarations. */
2861 *access_decls = NULL_TREE;
2862 /* Assume this class has no pointer members. */
2863 has_pointers = false;
2864 /* Assume none of the members of this class have default
2865 initializations. */
2866 any_default_members = 0;
2867
2868 for (field = &TYPE_FIELDS (t); *field; field = next)
2869 {
2870 tree x = *field;
2871 tree type = TREE_TYPE (x);
2872
2873 next = &TREE_CHAIN (x);
2874
2875 if (TREE_CODE (x) == USING_DECL)
2876 {
2877 /* Prune the access declaration from the list of fields. */
2878 *field = TREE_CHAIN (x);
2879
2880 /* Save the access declarations for our caller. */
2881 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2882
2883 /* Since we've reset *FIELD there's no reason to skip to the
2884 next field. */
2885 next = field;
2886 continue;
2887 }
2888
2889 if (TREE_CODE (x) == TYPE_DECL
2890 || TREE_CODE (x) == TEMPLATE_DECL)
2891 continue;
2892
2893 /* If we've gotten this far, it's a data member, possibly static,
2894 or an enumerator. */
2895 DECL_CONTEXT (x) = t;
2896
2897 /* When this goes into scope, it will be a non-local reference. */
2898 DECL_NONLOCAL (x) = 1;
2899
2900 if (TREE_CODE (t) == UNION_TYPE)
2901 {
2902 /* [class.union]
2903
2904 If a union contains a static data member, or a member of
2905 reference type, the program is ill-formed. */
2906 if (TREE_CODE (x) == VAR_DECL)
2907 {
2908 error ("%q+D may not be static because it is a member of a union", x);
2909 continue;
2910 }
2911 if (TREE_CODE (type) == REFERENCE_TYPE)
2912 {
2913 error ("%q+D may not have reference type %qT because"
2914 " it is a member of a union",
2915 x, type);
2916 continue;
2917 }
2918 }
2919
2920 /* Perform error checking that did not get done in
2921 grokdeclarator. */
2922 if (TREE_CODE (type) == FUNCTION_TYPE)
2923 {
2924 error ("field %q+D invalidly declared function type", x);
2925 type = build_pointer_type (type);
2926 TREE_TYPE (x) = type;
2927 }
2928 else if (TREE_CODE (type) == METHOD_TYPE)
2929 {
2930 error ("field %q+D invalidly declared method type", x);
2931 type = build_pointer_type (type);
2932 TREE_TYPE (x) = type;
2933 }
2934
2935 if (type == error_mark_node)
2936 continue;
2937
2938 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
2939 continue;
2940
2941 /* Now it can only be a FIELD_DECL. */
2942
2943 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
2944 CLASSTYPE_NON_AGGREGATE (t) = 1;
2945
2946 /* If this is of reference type, check if it needs an init. */
2947 if (TREE_CODE (type) == REFERENCE_TYPE)
2948 {
2949 CLASSTYPE_NON_POD_P (t) = 1;
2950 if (DECL_INITIAL (x) == NULL_TREE)
2951 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2952
2953 /* ARM $12.6.2: [A member initializer list] (or, for an
2954 aggregate, initialization by a brace-enclosed list) is the
2955 only way to initialize nonstatic const and reference
2956 members. */
2957 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2958 }
2959
2960 type = strip_array_types (type);
2961
2962 if (TYPE_PACKED (t))
2963 {
2964 if (!pod_type_p (type) && !TYPE_PACKED (type))
2965 {
2966 warning
2967 (0,
2968 "ignoring packed attribute because of unpacked non-POD field %q+#D",
2969 x);
2970 cant_pack = 1;
2971 }
2972 else if (TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
2973 DECL_PACKED (x) = 1;
2974 }
2975
2976 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2977 /* We don't treat zero-width bitfields as making a class
2978 non-empty. */
2979 ;
2980 else
2981 {
2982 /* The class is non-empty. */
2983 CLASSTYPE_EMPTY_P (t) = 0;
2984 /* The class is not even nearly empty. */
2985 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
2986 /* If one of the data members contains an empty class,
2987 so does T. */
2988 if (CLASS_TYPE_P (type)
2989 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
2990 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
2991 }
2992
2993 /* This is used by -Weffc++ (see below). Warn only for pointers
2994 to members which might hold dynamic memory. So do not warn
2995 for pointers to functions or pointers to members. */
2996 if (TYPE_PTR_P (type)
2997 && !TYPE_PTRFN_P (type)
2998 && !TYPE_PTR_TO_MEMBER_P (type))
2999 has_pointers = true;
3000
3001 if (CLASS_TYPE_P (type))
3002 {
3003 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3004 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3005 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3006 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3007 }
3008
3009 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3010 CLASSTYPE_HAS_MUTABLE (t) = 1;
3011
3012 if (! pod_type_p (type))
3013 /* DR 148 now allows pointers to members (which are POD themselves),
3014 to be allowed in POD structs. */
3015 CLASSTYPE_NON_POD_P (t) = 1;
3016
3017 if (! zero_init_p (type))
3018 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3019
3020 /* If any field is const, the structure type is pseudo-const. */
3021 if (CP_TYPE_CONST_P (type))
3022 {
3023 C_TYPE_FIELDS_READONLY (t) = 1;
3024 if (DECL_INITIAL (x) == NULL_TREE)
3025 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3026
3027 /* ARM $12.6.2: [A member initializer list] (or, for an
3028 aggregate, initialization by a brace-enclosed list) is the
3029 only way to initialize nonstatic const and reference
3030 members. */
3031 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
3032 }
3033 /* A field that is pseudo-const makes the structure likewise. */
3034 else if (CLASS_TYPE_P (type))
3035 {
3036 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3037 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3038 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3039 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3040 }
3041
3042 /* Core issue 80: A nonstatic data member is required to have a
3043 different name from the class iff the class has a
3044 user-defined constructor. */
3045 if (constructor_name_p (DECL_NAME (x), t)
3046 && TYPE_HAS_USER_CONSTRUCTOR (t))
3047 pedwarn ("field %q+#D with same name as class", x);
3048
3049 /* We set DECL_C_BIT_FIELD in grokbitfield.
3050 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3051 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3052 check_field_decl (x, t,
3053 cant_have_const_ctor_p,
3054 no_const_asn_ref_p,
3055 &any_default_members);
3056 }
3057
3058 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3059 it should also define a copy constructor and an assignment operator to
3060 implement the correct copy semantic (deep vs shallow, etc.). As it is
3061 not feasible to check whether the constructors do allocate dynamic memory
3062 and store it within members, we approximate the warning like this:
3063
3064 -- Warn only if there are members which are pointers
3065 -- Warn only if there is a non-trivial constructor (otherwise,
3066 there cannot be memory allocated).
3067 -- Warn only if there is a non-trivial destructor. We assume that the
3068 user at least implemented the cleanup correctly, and a destructor
3069 is needed to free dynamic memory.
3070
3071 This seems enough for practical purposes. */
3072 if (warn_ecpp
3073 && has_pointers
3074 && TYPE_HAS_USER_CONSTRUCTOR (t)
3075 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3076 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3077 {
3078 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3079
3080 if (! TYPE_HAS_INIT_REF (t))
3081 {
3082 warning (OPT_Weffc__,
3083 " but does not override %<%T(const %T&)%>", t, t);
3084 if (!TYPE_HAS_ASSIGN_REF (t))
3085 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3086 }
3087 else if (! TYPE_HAS_ASSIGN_REF (t))
3088 warning (OPT_Weffc__,
3089 " but does not override %<operator=(const %T&)%>", t);
3090 }
3091
3092 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3093 if (cant_pack)
3094 TYPE_PACKED (t) = 0;
3095
3096 /* Check anonymous struct/anonymous union fields. */
3097 finish_struct_anon (t);
3098
3099 /* We've built up the list of access declarations in reverse order.
3100 Fix that now. */
3101 *access_decls = nreverse (*access_decls);
3102 }
3103
3104 /* If TYPE is an empty class type, records its OFFSET in the table of
3105 OFFSETS. */
3106
3107 static int
3108 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3109 {
3110 splay_tree_node n;
3111
3112 if (!is_empty_class (type))
3113 return 0;
3114
3115 /* Record the location of this empty object in OFFSETS. */
3116 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3117 if (!n)
3118 n = splay_tree_insert (offsets,
3119 (splay_tree_key) offset,
3120 (splay_tree_value) NULL_TREE);
3121 n->value = ((splay_tree_value)
3122 tree_cons (NULL_TREE,
3123 type,
3124 (tree) n->value));
3125
3126 return 0;
3127 }
3128
3129 /* Returns nonzero if TYPE is an empty class type and there is
3130 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3131
3132 static int
3133 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3134 {
3135 splay_tree_node n;
3136 tree t;
3137
3138 if (!is_empty_class (type))
3139 return 0;
3140
3141 /* Record the location of this empty object in OFFSETS. */
3142 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3143 if (!n)
3144 return 0;
3145
3146 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3147 if (same_type_p (TREE_VALUE (t), type))
3148 return 1;
3149
3150 return 0;
3151 }
3152
3153 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3154 F for every subobject, passing it the type, offset, and table of
3155 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3156 be traversed.
3157
3158 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3159 than MAX_OFFSET will not be walked.
3160
3161 If F returns a nonzero value, the traversal ceases, and that value
3162 is returned. Otherwise, returns zero. */
3163
3164 static int
3165 walk_subobject_offsets (tree type,
3166 subobject_offset_fn f,
3167 tree offset,
3168 splay_tree offsets,
3169 tree max_offset,
3170 int vbases_p)
3171 {
3172 int r = 0;
3173 tree type_binfo = NULL_TREE;
3174
3175 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3176 stop. */
3177 if (max_offset && INT_CST_LT (max_offset, offset))
3178 return 0;
3179
3180 if (type == error_mark_node)
3181 return 0;
3182
3183 if (!TYPE_P (type))
3184 {
3185 if (abi_version_at_least (2))
3186 type_binfo = type;
3187 type = BINFO_TYPE (type);
3188 }
3189
3190 if (CLASS_TYPE_P (type))
3191 {
3192 tree field;
3193 tree binfo;
3194 int i;
3195
3196 /* Avoid recursing into objects that are not interesting. */
3197 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3198 return 0;
3199
3200 /* Record the location of TYPE. */
3201 r = (*f) (type, offset, offsets);
3202 if (r)
3203 return r;
3204
3205 /* Iterate through the direct base classes of TYPE. */
3206 if (!type_binfo)
3207 type_binfo = TYPE_BINFO (type);
3208 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3209 {
3210 tree binfo_offset;
3211
3212 if (abi_version_at_least (2)
3213 && BINFO_VIRTUAL_P (binfo))
3214 continue;
3215
3216 if (!vbases_p
3217 && BINFO_VIRTUAL_P (binfo)
3218 && !BINFO_PRIMARY_P (binfo))
3219 continue;
3220
3221 if (!abi_version_at_least (2))
3222 binfo_offset = size_binop (PLUS_EXPR,
3223 offset,
3224 BINFO_OFFSET (binfo));
3225 else
3226 {
3227 tree orig_binfo;
3228 /* We cannot rely on BINFO_OFFSET being set for the base
3229 class yet, but the offsets for direct non-virtual
3230 bases can be calculated by going back to the TYPE. */
3231 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3232 binfo_offset = size_binop (PLUS_EXPR,
3233 offset,
3234 BINFO_OFFSET (orig_binfo));
3235 }
3236
3237 r = walk_subobject_offsets (binfo,
3238 f,
3239 binfo_offset,
3240 offsets,
3241 max_offset,
3242 (abi_version_at_least (2)
3243 ? /*vbases_p=*/0 : vbases_p));
3244 if (r)
3245 return r;
3246 }
3247
3248 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3249 {
3250 unsigned ix;
3251 VEC(tree,gc) *vbases;
3252
3253 /* Iterate through the virtual base classes of TYPE. In G++
3254 3.2, we included virtual bases in the direct base class
3255 loop above, which results in incorrect results; the
3256 correct offsets for virtual bases are only known when
3257 working with the most derived type. */
3258 if (vbases_p)
3259 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3260 VEC_iterate (tree, vbases, ix, binfo); ix++)
3261 {
3262 r = walk_subobject_offsets (binfo,
3263 f,
3264 size_binop (PLUS_EXPR,
3265 offset,
3266 BINFO_OFFSET (binfo)),
3267 offsets,
3268 max_offset,
3269 /*vbases_p=*/0);
3270 if (r)
3271 return r;
3272 }
3273 else
3274 {
3275 /* We still have to walk the primary base, if it is
3276 virtual. (If it is non-virtual, then it was walked
3277 above.) */
3278 tree vbase = get_primary_binfo (type_binfo);
3279
3280 if (vbase && BINFO_VIRTUAL_P (vbase)
3281 && BINFO_PRIMARY_P (vbase)
3282 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3283 {
3284 r = (walk_subobject_offsets
3285 (vbase, f, offset,
3286 offsets, max_offset, /*vbases_p=*/0));
3287 if (r)
3288 return r;
3289 }
3290 }
3291 }
3292
3293 /* Iterate through the fields of TYPE. */
3294 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3295 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3296 {
3297 tree field_offset;
3298
3299 if (abi_version_at_least (2))
3300 field_offset = byte_position (field);
3301 else
3302 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3303 field_offset = DECL_FIELD_OFFSET (field);
3304
3305 r = walk_subobject_offsets (TREE_TYPE (field),
3306 f,
3307 size_binop (PLUS_EXPR,
3308 offset,
3309 field_offset),
3310 offsets,
3311 max_offset,
3312 /*vbases_p=*/1);
3313 if (r)
3314 return r;
3315 }
3316 }
3317 else if (TREE_CODE (type) == ARRAY_TYPE)
3318 {
3319 tree element_type = strip_array_types (type);
3320 tree domain = TYPE_DOMAIN (type);
3321 tree index;
3322
3323 /* Avoid recursing into objects that are not interesting. */
3324 if (!CLASS_TYPE_P (element_type)
3325 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3326 return 0;
3327
3328 /* Step through each of the elements in the array. */
3329 for (index = size_zero_node;
3330 /* G++ 3.2 had an off-by-one error here. */
3331 (abi_version_at_least (2)
3332 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3333 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3334 index = size_binop (PLUS_EXPR, index, size_one_node))
3335 {
3336 r = walk_subobject_offsets (TREE_TYPE (type),
3337 f,
3338 offset,
3339 offsets,
3340 max_offset,
3341 /*vbases_p=*/1);
3342 if (r)
3343 return r;
3344 offset = size_binop (PLUS_EXPR, offset,
3345 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3346 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3347 there's no point in iterating through the remaining
3348 elements of the array. */
3349 if (max_offset && INT_CST_LT (max_offset, offset))
3350 break;
3351 }
3352 }
3353
3354 return 0;
3355 }
3356
3357 /* Record all of the empty subobjects of TYPE (either a type or a
3358 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3359 is being placed at OFFSET; otherwise, it is a base class that is
3360 being placed at OFFSET. */
3361
3362 static void
3363 record_subobject_offsets (tree type,
3364 tree offset,
3365 splay_tree offsets,
3366 bool is_data_member)
3367 {
3368 tree max_offset;
3369 /* If recording subobjects for a non-static data member or a
3370 non-empty base class , we do not need to record offsets beyond
3371 the size of the biggest empty class. Additional data members
3372 will go at the end of the class. Additional base classes will go
3373 either at offset zero (if empty, in which case they cannot
3374 overlap with offsets past the size of the biggest empty class) or
3375 at the end of the class.
3376
3377 However, if we are placing an empty base class, then we must record
3378 all offsets, as either the empty class is at offset zero (where
3379 other empty classes might later be placed) or at the end of the
3380 class (where other objects might then be placed, so other empty
3381 subobjects might later overlap). */
3382 if (is_data_member
3383 || !is_empty_class (BINFO_TYPE (type)))
3384 max_offset = sizeof_biggest_empty_class;
3385 else
3386 max_offset = NULL_TREE;
3387 walk_subobject_offsets (type, record_subobject_offset, offset,
3388 offsets, max_offset, is_data_member);
3389 }
3390
3391 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3392 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3393 virtual bases of TYPE are examined. */
3394
3395 static int
3396 layout_conflict_p (tree type,
3397 tree offset,
3398 splay_tree offsets,
3399 int vbases_p)
3400 {
3401 splay_tree_node max_node;
3402
3403 /* Get the node in OFFSETS that indicates the maximum offset where
3404 an empty subobject is located. */
3405 max_node = splay_tree_max (offsets);
3406 /* If there aren't any empty subobjects, then there's no point in
3407 performing this check. */
3408 if (!max_node)
3409 return 0;
3410
3411 return walk_subobject_offsets (type, check_subobject_offset, offset,
3412 offsets, (tree) (max_node->key),
3413 vbases_p);
3414 }
3415
3416 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3417 non-static data member of the type indicated by RLI. BINFO is the
3418 binfo corresponding to the base subobject, OFFSETS maps offsets to
3419 types already located at those offsets. This function determines
3420 the position of the DECL. */
3421
3422 static void
3423 layout_nonempty_base_or_field (record_layout_info rli,
3424 tree decl,
3425 tree binfo,
3426 splay_tree offsets)
3427 {
3428 tree offset = NULL_TREE;
3429 bool field_p;
3430 tree type;
3431
3432 if (binfo)
3433 {
3434 /* For the purposes of determining layout conflicts, we want to
3435 use the class type of BINFO; TREE_TYPE (DECL) will be the
3436 CLASSTYPE_AS_BASE version, which does not contain entries for
3437 zero-sized bases. */
3438 type = TREE_TYPE (binfo);
3439 field_p = false;
3440 }
3441 else
3442 {
3443 type = TREE_TYPE (decl);
3444 field_p = true;
3445 }
3446
3447 /* Try to place the field. It may take more than one try if we have
3448 a hard time placing the field without putting two objects of the
3449 same type at the same address. */
3450 while (1)
3451 {
3452 struct record_layout_info_s old_rli = *rli;
3453
3454 /* Place this field. */
3455 place_field (rli, decl);
3456 offset = byte_position (decl);
3457
3458 /* We have to check to see whether or not there is already
3459 something of the same type at the offset we're about to use.
3460 For example, consider:
3461
3462 struct S {};
3463 struct T : public S { int i; };
3464 struct U : public S, public T {};
3465
3466 Here, we put S at offset zero in U. Then, we can't put T at
3467 offset zero -- its S component would be at the same address
3468 as the S we already allocated. So, we have to skip ahead.
3469 Since all data members, including those whose type is an
3470 empty class, have nonzero size, any overlap can happen only
3471 with a direct or indirect base-class -- it can't happen with
3472 a data member. */
3473 /* In a union, overlap is permitted; all members are placed at
3474 offset zero. */
3475 if (TREE_CODE (rli->t) == UNION_TYPE)
3476 break;
3477 /* G++ 3.2 did not check for overlaps when placing a non-empty
3478 virtual base. */
3479 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3480 break;
3481 if (layout_conflict_p (field_p ? type : binfo, offset,
3482 offsets, field_p))
3483 {
3484 /* Strip off the size allocated to this field. That puts us
3485 at the first place we could have put the field with
3486 proper alignment. */
3487 *rli = old_rli;
3488
3489 /* Bump up by the alignment required for the type. */
3490 rli->bitpos
3491 = size_binop (PLUS_EXPR, rli->bitpos,
3492 bitsize_int (binfo
3493 ? CLASSTYPE_ALIGN (type)
3494 : TYPE_ALIGN (type)));
3495 normalize_rli (rli);
3496 }
3497 else
3498 /* There was no conflict. We're done laying out this field. */
3499 break;
3500 }
3501
3502 /* Now that we know where it will be placed, update its
3503 BINFO_OFFSET. */
3504 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3505 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3506 this point because their BINFO_OFFSET is copied from another
3507 hierarchy. Therefore, we may not need to add the entire
3508 OFFSET. */
3509 propagate_binfo_offsets (binfo,
3510 size_diffop (convert (ssizetype, offset),
3511 convert (ssizetype,
3512 BINFO_OFFSET (binfo))));
3513 }
3514
3515 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3516
3517 static int
3518 empty_base_at_nonzero_offset_p (tree type,
3519 tree offset,
3520 splay_tree offsets ATTRIBUTE_UNUSED)
3521 {
3522 return is_empty_class (type) && !integer_zerop (offset);
3523 }
3524
3525 /* Layout the empty base BINFO. EOC indicates the byte currently just
3526 past the end of the class, and should be correctly aligned for a
3527 class of the type indicated by BINFO; OFFSETS gives the offsets of
3528 the empty bases allocated so far. T is the most derived
3529 type. Return nonzero iff we added it at the end. */
3530
3531 static bool
3532 layout_empty_base (record_layout_info rli, tree binfo,
3533 tree eoc, splay_tree offsets)
3534 {
3535 tree alignment;
3536 tree basetype = BINFO_TYPE (binfo);
3537 bool atend = false;
3538
3539 /* This routine should only be used for empty classes. */
3540 gcc_assert (is_empty_class (basetype));
3541 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3542
3543 if (!integer_zerop (BINFO_OFFSET (binfo)))
3544 {
3545 if (abi_version_at_least (2))
3546 propagate_binfo_offsets
3547 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3548 else
3549 warning (OPT_Wabi,
3550 "offset of empty base %qT may not be ABI-compliant and may"
3551 "change in a future version of GCC",
3552 BINFO_TYPE (binfo));
3553 }
3554
3555 /* This is an empty base class. We first try to put it at offset
3556 zero. */
3557 if (layout_conflict_p (binfo,
3558 BINFO_OFFSET (binfo),
3559 offsets,
3560 /*vbases_p=*/0))
3561 {
3562 /* That didn't work. Now, we move forward from the next
3563 available spot in the class. */
3564 atend = true;
3565 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3566 while (1)
3567 {
3568 if (!layout_conflict_p (binfo,
3569 BINFO_OFFSET (binfo),
3570 offsets,
3571 /*vbases_p=*/0))
3572 /* We finally found a spot where there's no overlap. */
3573 break;
3574
3575 /* There's overlap here, too. Bump along to the next spot. */
3576 propagate_binfo_offsets (binfo, alignment);
3577 }
3578 }
3579
3580 if (CLASSTYPE_USER_ALIGN (basetype))
3581 {
3582 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
3583 if (warn_packed)
3584 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
3585 TYPE_USER_ALIGN (rli->t) = 1;
3586 }
3587
3588 return atend;
3589 }
3590
3591 /* Layout the base given by BINFO in the class indicated by RLI.
3592 *BASE_ALIGN is a running maximum of the alignments of
3593 any base class. OFFSETS gives the location of empty base
3594 subobjects. T is the most derived type. Return nonzero if the new
3595 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3596 *NEXT_FIELD, unless BINFO is for an empty base class.
3597
3598 Returns the location at which the next field should be inserted. */
3599
3600 static tree *
3601 build_base_field (record_layout_info rli, tree binfo,
3602 splay_tree offsets, tree *next_field)
3603 {
3604 tree t = rli->t;
3605 tree basetype = BINFO_TYPE (binfo);
3606
3607 if (!COMPLETE_TYPE_P (basetype))
3608 /* This error is now reported in xref_tag, thus giving better
3609 location information. */
3610 return next_field;
3611
3612 /* Place the base class. */
3613 if (!is_empty_class (basetype))
3614 {
3615 tree decl;
3616
3617 /* The containing class is non-empty because it has a non-empty
3618 base class. */
3619 CLASSTYPE_EMPTY_P (t) = 0;
3620
3621 /* Create the FIELD_DECL. */
3622 decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3623 DECL_ARTIFICIAL (decl) = 1;
3624 DECL_IGNORED_P (decl) = 1;
3625 DECL_FIELD_CONTEXT (decl) = t;
3626 if (CLASSTYPE_AS_BASE (basetype))
3627 {
3628 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3629 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3630 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3631 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3632 DECL_MODE (decl) = TYPE_MODE (basetype);
3633 DECL_FIELD_IS_BASE (decl) = 1;
3634
3635 /* Try to place the field. It may take more than one try if we
3636 have a hard time placing the field without putting two
3637 objects of the same type at the same address. */
3638 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3639 /* Add the new FIELD_DECL to the list of fields for T. */
3640 TREE_CHAIN (decl) = *next_field;
3641 *next_field = decl;
3642 next_field = &TREE_CHAIN (decl);
3643 }
3644 }
3645 else
3646 {
3647 tree eoc;
3648 bool atend;
3649
3650 /* On some platforms (ARM), even empty classes will not be
3651 byte-aligned. */
3652 eoc = round_up (rli_size_unit_so_far (rli),
3653 CLASSTYPE_ALIGN_UNIT (basetype));
3654 atend = layout_empty_base (rli, binfo, eoc, offsets);
3655 /* A nearly-empty class "has no proper base class that is empty,
3656 not morally virtual, and at an offset other than zero." */
3657 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3658 {
3659 if (atend)
3660 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3661 /* The check above (used in G++ 3.2) is insufficient because
3662 an empty class placed at offset zero might itself have an
3663 empty base at a nonzero offset. */
3664 else if (walk_subobject_offsets (basetype,
3665 empty_base_at_nonzero_offset_p,
3666 size_zero_node,
3667 /*offsets=*/NULL,
3668 /*max_offset=*/NULL_TREE,
3669 /*vbases_p=*/true))
3670 {
3671 if (abi_version_at_least (2))
3672 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3673 else
3674 warning (OPT_Wabi,
3675 "class %qT will be considered nearly empty in a "
3676 "future version of GCC", t);
3677 }
3678 }
3679
3680 /* We do not create a FIELD_DECL for empty base classes because
3681 it might overlap some other field. We want to be able to
3682 create CONSTRUCTORs for the class by iterating over the
3683 FIELD_DECLs, and the back end does not handle overlapping
3684 FIELD_DECLs. */
3685
3686 /* An empty virtual base causes a class to be non-empty
3687 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3688 here because that was already done when the virtual table
3689 pointer was created. */
3690 }
3691
3692 /* Record the offsets of BINFO and its base subobjects. */
3693 record_subobject_offsets (binfo,
3694 BINFO_OFFSET (binfo),
3695 offsets,
3696 /*is_data_member=*/false);
3697
3698 return next_field;
3699 }
3700
3701 /* Layout all of the non-virtual base classes. Record empty
3702 subobjects in OFFSETS. T is the most derived type. Return nonzero
3703 if the type cannot be nearly empty. The fields created
3704 corresponding to the base classes will be inserted at
3705 *NEXT_FIELD. */
3706
3707 static void
3708 build_base_fields (record_layout_info rli,
3709 splay_tree offsets, tree *next_field)
3710 {
3711 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3712 subobjects. */
3713 tree t = rli->t;
3714 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3715 int i;
3716
3717 /* The primary base class is always allocated first. */
3718 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3719 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3720 offsets, next_field);
3721
3722 /* Now allocate the rest of the bases. */
3723 for (i = 0; i < n_baseclasses; ++i)
3724 {
3725 tree base_binfo;
3726
3727 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3728
3729 /* The primary base was already allocated above, so we don't
3730 need to allocate it again here. */
3731 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3732 continue;
3733
3734 /* Virtual bases are added at the end (a primary virtual base
3735 will have already been added). */
3736 if (BINFO_VIRTUAL_P (base_binfo))
3737 continue;
3738
3739 next_field = build_base_field (rli, base_binfo,
3740 offsets, next_field);
3741 }
3742 }
3743
3744 /* Go through the TYPE_METHODS of T issuing any appropriate
3745 diagnostics, figuring out which methods override which other
3746 methods, and so forth. */
3747
3748 static void
3749 check_methods (tree t)
3750 {
3751 tree x;
3752
3753 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3754 {
3755 check_for_override (x, t);
3756 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3757 error ("initializer specified for non-virtual method %q+D", x);
3758 /* The name of the field is the original field name
3759 Save this in auxiliary field for later overloading. */
3760 if (DECL_VINDEX (x))
3761 {
3762 TYPE_POLYMORPHIC_P (t) = 1;
3763 if (DECL_PURE_VIRTUAL_P (x))
3764 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
3765 }
3766 /* All user-declared destructors are non-trivial. */
3767 if (DECL_DESTRUCTOR_P (x))
3768 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3769 }
3770 }
3771
3772 /* FN is a constructor or destructor. Clone the declaration to create
3773 a specialized in-charge or not-in-charge version, as indicated by
3774 NAME. */
3775
3776 static tree
3777 build_clone (tree fn, tree name)
3778 {
3779 tree parms;
3780 tree clone;
3781
3782 /* Copy the function. */
3783 clone = copy_decl (fn);
3784 /* Remember where this function came from. */
3785 DECL_CLONED_FUNCTION (clone) = fn;
3786 DECL_ABSTRACT_ORIGIN (clone) = fn;
3787 /* Reset the function name. */
3788 DECL_NAME (clone) = name;
3789 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3790 /* There's no pending inline data for this function. */
3791 DECL_PENDING_INLINE_INFO (clone) = NULL;
3792 DECL_PENDING_INLINE_P (clone) = 0;
3793 /* And it hasn't yet been deferred. */
3794 DECL_DEFERRED_FN (clone) = 0;
3795
3796 /* The base-class destructor is not virtual. */
3797 if (name == base_dtor_identifier)
3798 {
3799 DECL_VIRTUAL_P (clone) = 0;
3800 if (TREE_CODE (clone) != TEMPLATE_DECL)
3801 DECL_VINDEX (clone) = NULL_TREE;
3802 }
3803
3804 /* If there was an in-charge parameter, drop it from the function
3805 type. */
3806 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3807 {
3808 tree basetype;
3809 tree parmtypes;
3810 tree exceptions;
3811
3812 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3813 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3814 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3815 /* Skip the `this' parameter. */
3816 parmtypes = TREE_CHAIN (parmtypes);
3817 /* Skip the in-charge parameter. */
3818 parmtypes = TREE_CHAIN (parmtypes);
3819 /* And the VTT parm, in a complete [cd]tor. */
3820 if (DECL_HAS_VTT_PARM_P (fn)
3821 && ! DECL_NEEDS_VTT_PARM_P (clone))
3822 parmtypes = TREE_CHAIN (parmtypes);
3823 /* If this is subobject constructor or destructor, add the vtt
3824 parameter. */
3825 TREE_TYPE (clone)
3826 = build_method_type_directly (basetype,
3827 TREE_TYPE (TREE_TYPE (clone)),
3828 parmtypes);
3829 if (exceptions)
3830 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3831 exceptions);
3832 TREE_TYPE (clone)
3833 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3834 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3835 }
3836
3837 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3838 aren't function parameters; those are the template parameters. */
3839 if (TREE_CODE (clone) != TEMPLATE_DECL)
3840 {
3841 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3842 /* Remove the in-charge parameter. */
3843 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3844 {
3845 TREE_CHAIN (DECL_ARGUMENTS (clone))
3846 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3847 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3848 }
3849 /* And the VTT parm, in a complete [cd]tor. */
3850 if (DECL_HAS_VTT_PARM_P (fn))
3851 {
3852 if (DECL_NEEDS_VTT_PARM_P (clone))
3853 DECL_HAS_VTT_PARM_P (clone) = 1;
3854 else
3855 {
3856 TREE_CHAIN (DECL_ARGUMENTS (clone))
3857 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3858 DECL_HAS_VTT_PARM_P (clone) = 0;
3859 }
3860 }
3861
3862 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3863 {
3864 DECL_CONTEXT (parms) = clone;
3865 cxx_dup_lang_specific_decl (parms);
3866 }
3867 }
3868
3869 /* Create the RTL for this function. */
3870 SET_DECL_RTL (clone, NULL_RTX);
3871 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3872
3873 /* Make it easy to find the CLONE given the FN. */
3874 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3875 TREE_CHAIN (fn) = clone;
3876
3877 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3878 if (TREE_CODE (clone) == TEMPLATE_DECL)
3879 {
3880 tree result;
3881
3882 DECL_TEMPLATE_RESULT (clone)
3883 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3884 result = DECL_TEMPLATE_RESULT (clone);
3885 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3886 DECL_TI_TEMPLATE (result) = clone;
3887 }
3888 else if (pch_file)
3889 note_decl_for_pch (clone);
3890
3891 return clone;
3892 }
3893
3894 /* Produce declarations for all appropriate clones of FN. If
3895 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3896 CLASTYPE_METHOD_VEC as well. */
3897
3898 void
3899 clone_function_decl (tree fn, int update_method_vec_p)
3900 {
3901 tree clone;
3902
3903 /* Avoid inappropriate cloning. */
3904 if (TREE_CHAIN (fn)
3905 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3906 return;
3907
3908 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3909 {
3910 /* For each constructor, we need two variants: an in-charge version
3911 and a not-in-charge version. */
3912 clone = build_clone (fn, complete_ctor_identifier);
3913 if (update_method_vec_p)
3914 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3915 clone = build_clone (fn, base_ctor_identifier);
3916 if (update_method_vec_p)
3917 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3918 }
3919 else
3920 {
3921 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
3922
3923 /* For each destructor, we need three variants: an in-charge
3924 version, a not-in-charge version, and an in-charge deleting
3925 version. We clone the deleting version first because that
3926 means it will go second on the TYPE_METHODS list -- and that
3927 corresponds to the correct layout order in the virtual
3928 function table.
3929
3930 For a non-virtual destructor, we do not build a deleting
3931 destructor. */
3932 if (DECL_VIRTUAL_P (fn))
3933 {
3934 clone = build_clone (fn, deleting_dtor_identifier);
3935 if (update_method_vec_p)
3936 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3937 }
3938 clone = build_clone (fn, complete_dtor_identifier);
3939 if (update_method_vec_p)
3940 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3941 clone = build_clone (fn, base_dtor_identifier);
3942 if (update_method_vec_p)
3943 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3944 }
3945
3946 /* Note that this is an abstract function that is never emitted. */
3947 DECL_ABSTRACT (fn) = 1;
3948 }
3949
3950 /* DECL is an in charge constructor, which is being defined. This will
3951 have had an in class declaration, from whence clones were
3952 declared. An out-of-class definition can specify additional default
3953 arguments. As it is the clones that are involved in overload
3954 resolution, we must propagate the information from the DECL to its
3955 clones. */
3956
3957 void
3958 adjust_clone_args (tree decl)
3959 {
3960 tree clone;
3961
3962 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3963 clone = TREE_CHAIN (clone))
3964 {
3965 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3966 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3967 tree decl_parms, clone_parms;
3968
3969 clone_parms = orig_clone_parms;
3970
3971 /* Skip the 'this' parameter. */
3972 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3973 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3974
3975 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3976 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3977 if (DECL_HAS_VTT_PARM_P (decl))
3978 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3979
3980 clone_parms = orig_clone_parms;
3981 if (DECL_HAS_VTT_PARM_P (clone))
3982 clone_parms = TREE_CHAIN (clone_parms);
3983
3984 for (decl_parms = orig_decl_parms; decl_parms;
3985 decl_parms = TREE_CHAIN (decl_parms),
3986 clone_parms = TREE_CHAIN (clone_parms))
3987 {
3988 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
3989 TREE_TYPE (clone_parms)));
3990
3991 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
3992 {
3993 /* A default parameter has been added. Adjust the
3994 clone's parameters. */
3995 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3996 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3997 tree type;
3998
3999 clone_parms = orig_decl_parms;
4000
4001 if (DECL_HAS_VTT_PARM_P (clone))
4002 {
4003 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4004 TREE_VALUE (orig_clone_parms),
4005 clone_parms);
4006 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4007 }
4008 type = build_method_type_directly (basetype,
4009 TREE_TYPE (TREE_TYPE (clone)),
4010 clone_parms);
4011 if (exceptions)
4012 type = build_exception_variant (type, exceptions);
4013 TREE_TYPE (clone) = type;
4014
4015 clone_parms = NULL_TREE;
4016 break;
4017 }
4018 }
4019 gcc_assert (!clone_parms);
4020 }
4021 }
4022
4023 /* For each of the constructors and destructors in T, create an
4024 in-charge and not-in-charge variant. */
4025
4026 static void
4027 clone_constructors_and_destructors (tree t)
4028 {
4029 tree fns;
4030
4031 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4032 out now. */
4033 if (!CLASSTYPE_METHOD_VEC (t))
4034 return;
4035
4036 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4037 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4038 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4039 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4040 }
4041
4042 /* Remove all zero-width bit-fields from T. */
4043
4044 static void
4045 remove_zero_width_bit_fields (tree t)
4046 {
4047 tree *fieldsp;
4048
4049 fieldsp = &TYPE_FIELDS (t);
4050 while (*fieldsp)
4051 {
4052 if (TREE_CODE (*fieldsp) == FIELD_DECL
4053 && DECL_C_BIT_FIELD (*fieldsp)
4054 && DECL_INITIAL (*fieldsp))
4055 *fieldsp = TREE_CHAIN (*fieldsp);
4056 else
4057 fieldsp = &TREE_CHAIN (*fieldsp);
4058 }
4059 }
4060
4061 /* Returns TRUE iff we need a cookie when dynamically allocating an
4062 array whose elements have the indicated class TYPE. */
4063
4064 static bool
4065 type_requires_array_cookie (tree type)
4066 {
4067 tree fns;
4068 bool has_two_argument_delete_p = false;
4069
4070 gcc_assert (CLASS_TYPE_P (type));
4071
4072 /* If there's a non-trivial destructor, we need a cookie. In order
4073 to iterate through the array calling the destructor for each
4074 element, we'll have to know how many elements there are. */
4075 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4076 return true;
4077
4078 /* If the usual deallocation function is a two-argument whose second
4079 argument is of type `size_t', then we have to pass the size of
4080 the array to the deallocation function, so we will need to store
4081 a cookie. */
4082 fns = lookup_fnfields (TYPE_BINFO (type),
4083 ansi_opname (VEC_DELETE_EXPR),
4084 /*protect=*/0);
4085 /* If there are no `operator []' members, or the lookup is
4086 ambiguous, then we don't need a cookie. */
4087 if (!fns || fns == error_mark_node)
4088 return false;
4089 /* Loop through all of the functions. */
4090 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4091 {
4092 tree fn;
4093 tree second_parm;
4094
4095 /* Select the current function. */
4096 fn = OVL_CURRENT (fns);
4097 /* See if this function is a one-argument delete function. If
4098 it is, then it will be the usual deallocation function. */
4099 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4100 if (second_parm == void_list_node)
4101 return false;
4102 /* Otherwise, if we have a two-argument function and the second
4103 argument is `size_t', it will be the usual deallocation
4104 function -- unless there is one-argument function, too. */
4105 if (TREE_CHAIN (second_parm) == void_list_node
4106 && same_type_p (TREE_VALUE (second_parm), size_type_node))
4107 has_two_argument_delete_p = true;
4108 }
4109
4110 return has_two_argument_delete_p;
4111 }
4112
4113 /* Check the validity of the bases and members declared in T. Add any
4114 implicitly-generated functions (like copy-constructors and
4115 assignment operators). Compute various flag bits (like
4116 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4117 level: i.e., independently of the ABI in use. */
4118
4119 static void
4120 check_bases_and_members (tree t)
4121 {
4122 /* Nonzero if the implicitly generated copy constructor should take
4123 a non-const reference argument. */
4124 int cant_have_const_ctor;
4125 /* Nonzero if the implicitly generated assignment operator
4126 should take a non-const reference argument. */
4127 int no_const_asn_ref;
4128 tree access_decls;
4129
4130 /* By default, we use const reference arguments and generate default
4131 constructors. */
4132 cant_have_const_ctor = 0;
4133 no_const_asn_ref = 0;
4134
4135 /* Check all the base-classes. */
4136 check_bases (t, &cant_have_const_ctor,
4137 &no_const_asn_ref);
4138
4139 /* Check all the method declarations. */
4140 check_methods (t);
4141
4142 /* Check all the data member declarations. We cannot call
4143 check_field_decls until we have called check_bases check_methods,
4144 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4145 being set appropriately. */
4146 check_field_decls (t, &access_decls,
4147 &cant_have_const_ctor,
4148 &no_const_asn_ref);
4149
4150 /* A nearly-empty class has to be vptr-containing; a nearly empty
4151 class contains just a vptr. */
4152 if (!TYPE_CONTAINS_VPTR_P (t))
4153 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4154
4155 /* Do some bookkeeping that will guide the generation of implicitly
4156 declared member functions. */
4157 TYPE_HAS_COMPLEX_INIT_REF (t)
4158 |= (TYPE_HAS_INIT_REF (t) || TYPE_CONTAINS_VPTR_P (t));
4159 /* We need to call a constructor for this class if it has a
4160 user-declared constructor, or if the default constructor is going
4161 to initialize the vptr. (This is not an if-and-only-if;
4162 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
4163 themselves need constructing.) */
4164 TYPE_NEEDS_CONSTRUCTING (t)
4165 |= (TYPE_HAS_USER_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
4166 /* [dcl.init.aggr]
4167
4168 An aggregate is an arry or a class with no user-declared
4169 constructors ... and no virtual functions.
4170
4171 Again, other conditions for being an aggregate are checked
4172 elsewhere. */
4173 CLASSTYPE_NON_AGGREGATE (t)
4174 |= (TYPE_HAS_USER_CONSTRUCTOR (t) || TYPE_POLYMORPHIC_P (t));
4175 CLASSTYPE_NON_POD_P (t)
4176 |= (CLASSTYPE_NON_AGGREGATE (t)
4177 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
4178 || TYPE_HAS_ASSIGN_REF (t));
4179 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
4180 |= TYPE_HAS_ASSIGN_REF (t) || TYPE_CONTAINS_VPTR_P (t);
4181 TYPE_HAS_COMPLEX_DFLT (t)
4182 |= (TYPE_HAS_DEFAULT_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
4183
4184 /* If the class has no user-declared constructor, but does have
4185 non-static const or reference data members that can never be
4186 initialized, issue a warning. */
4187 if (extra_warnings
4188 /* Classes with user-declared constructors are presumed to
4189 initialize these members. */
4190 && !TYPE_HAS_USER_CONSTRUCTOR (t)
4191 /* Aggregates can be initialized with brace-enclosed
4192 initializers. */
4193 && CLASSTYPE_NON_AGGREGATE (t))
4194 {
4195 tree field;
4196
4197 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4198 {
4199 tree type;
4200
4201 if (TREE_CODE (field) != FIELD_DECL)
4202 continue;
4203
4204 type = TREE_TYPE (field);
4205 if (TREE_CODE (type) == REFERENCE_TYPE)
4206 warning (OPT_Wextra, "non-static reference %q+#D in class "
4207 "without a constructor", field);
4208 else if (CP_TYPE_CONST_P (type)
4209 && (!CLASS_TYPE_P (type)
4210 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
4211 warning (OPT_Wextra, "non-static const member %q+#D in class "
4212 "without a constructor", field);
4213 }
4214 }
4215
4216 /* Synthesize any needed methods. */
4217 add_implicitly_declared_members (t,
4218 cant_have_const_ctor,
4219 no_const_asn_ref);
4220
4221 /* Create the in-charge and not-in-charge variants of constructors
4222 and destructors. */
4223 clone_constructors_and_destructors (t);
4224
4225 /* Process the using-declarations. */
4226 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4227 handle_using_decl (TREE_VALUE (access_decls), t);
4228
4229 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4230 finish_struct_methods (t);
4231
4232 /* Figure out whether or not we will need a cookie when dynamically
4233 allocating an array of this type. */
4234 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4235 = type_requires_array_cookie (t);
4236 }
4237
4238 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4239 accordingly. If a new vfield was created (because T doesn't have a
4240 primary base class), then the newly created field is returned. It
4241 is not added to the TYPE_FIELDS list; it is the caller's
4242 responsibility to do that. Accumulate declared virtual functions
4243 on VIRTUALS_P. */
4244
4245 static tree
4246 create_vtable_ptr (tree t, tree* virtuals_p)
4247 {
4248 tree fn;
4249
4250 /* Collect the virtual functions declared in T. */
4251 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4252 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4253 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4254 {
4255 tree new_virtual = make_node (TREE_LIST);
4256
4257 BV_FN (new_virtual) = fn;
4258 BV_DELTA (new_virtual) = integer_zero_node;
4259 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4260
4261 TREE_CHAIN (new_virtual) = *virtuals_p;
4262 *virtuals_p = new_virtual;
4263 }
4264
4265 /* If we couldn't find an appropriate base class, create a new field
4266 here. Even if there weren't any new virtual functions, we might need a
4267 new virtual function table if we're supposed to include vptrs in
4268 all classes that need them. */
4269 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4270 {
4271 /* We build this decl with vtbl_ptr_type_node, which is a
4272 `vtable_entry_type*'. It might seem more precise to use
4273 `vtable_entry_type (*)[N]' where N is the number of virtual
4274 functions. However, that would require the vtable pointer in
4275 base classes to have a different type than the vtable pointer
4276 in derived classes. We could make that happen, but that
4277 still wouldn't solve all the problems. In particular, the
4278 type-based alias analysis code would decide that assignments
4279 to the base class vtable pointer can't alias assignments to
4280 the derived class vtable pointer, since they have different
4281 types. Thus, in a derived class destructor, where the base
4282 class constructor was inlined, we could generate bad code for
4283 setting up the vtable pointer.
4284
4285 Therefore, we use one type for all vtable pointers. We still
4286 use a type-correct type; it's just doesn't indicate the array
4287 bounds. That's better than using `void*' or some such; it's
4288 cleaner, and it let's the alias analysis code know that these
4289 stores cannot alias stores to void*! */
4290 tree field;
4291
4292 field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4293 DECL_VIRTUAL_P (field) = 1;
4294 DECL_ARTIFICIAL (field) = 1;
4295 DECL_FIELD_CONTEXT (field) = t;
4296 DECL_FCONTEXT (field) = t;
4297
4298 TYPE_VFIELD (t) = field;
4299
4300 /* This class is non-empty. */
4301 CLASSTYPE_EMPTY_P (t) = 0;
4302
4303 return field;
4304 }
4305
4306 return NULL_TREE;
4307 }
4308
4309 /* Fixup the inline function given by INFO now that the class is
4310 complete. */
4311
4312 static void
4313 fixup_pending_inline (tree fn)
4314 {
4315 if (DECL_PENDING_INLINE_INFO (fn))
4316 {
4317 tree args = DECL_ARGUMENTS (fn);
4318 while (args)
4319 {
4320 DECL_CONTEXT (args) = fn;
4321 args = TREE_CHAIN (args);
4322 }
4323 }
4324 }
4325
4326 /* Fixup the inline methods and friends in TYPE now that TYPE is
4327 complete. */
4328
4329 static void
4330 fixup_inline_methods (tree type)
4331 {
4332 tree method = TYPE_METHODS (type);
4333 VEC(tree,gc) *friends;
4334 unsigned ix;
4335
4336 if (method && TREE_CODE (method) == TREE_VEC)
4337 {
4338 if (TREE_VEC_ELT (method, 1))
4339 method = TREE_VEC_ELT (method, 1);
4340 else if (TREE_VEC_ELT (method, 0))
4341 method = TREE_VEC_ELT (method, 0);
4342 else
4343 method = TREE_VEC_ELT (method, 2);
4344 }
4345
4346 /* Do inline member functions. */
4347 for (; method; method = TREE_CHAIN (method))
4348 fixup_pending_inline (method);
4349
4350 /* Do friends. */
4351 for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
4352 VEC_iterate (tree, friends, ix, method); ix++)
4353 fixup_pending_inline (method);
4354 CLASSTYPE_INLINE_FRIENDS (type) = NULL;
4355 }
4356
4357 /* Add OFFSET to all base types of BINFO which is a base in the
4358 hierarchy dominated by T.
4359
4360 OFFSET, which is a type offset, is number of bytes. */
4361
4362 static void
4363 propagate_binfo_offsets (tree binfo, tree offset)
4364 {
4365 int i;
4366 tree primary_binfo;
4367 tree base_binfo;
4368
4369 /* Update BINFO's offset. */
4370 BINFO_OFFSET (binfo)
4371 = convert (sizetype,
4372 size_binop (PLUS_EXPR,
4373 convert (ssizetype, BINFO_OFFSET (binfo)),
4374 offset));
4375
4376 /* Find the primary base class. */
4377 primary_binfo = get_primary_binfo (binfo);
4378
4379 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4380 propagate_binfo_offsets (primary_binfo, offset);
4381
4382 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4383 downwards. */
4384 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4385 {
4386 /* Don't do the primary base twice. */
4387 if (base_binfo == primary_binfo)
4388 continue;
4389
4390 if (BINFO_VIRTUAL_P (base_binfo))
4391 continue;
4392
4393 propagate_binfo_offsets (base_binfo, offset);
4394 }
4395 }
4396
4397 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4398 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4399 empty subobjects of T. */
4400
4401 static void
4402 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4403 {
4404 tree vbase;
4405 tree t = rli->t;
4406 bool first_vbase = true;
4407 tree *next_field;
4408
4409 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4410 return;
4411
4412 if (!abi_version_at_least(2))
4413 {
4414 /* In G++ 3.2, we incorrectly rounded the size before laying out
4415 the virtual bases. */
4416 finish_record_layout (rli, /*free_p=*/false);
4417 #ifdef STRUCTURE_SIZE_BOUNDARY
4418 /* Packed structures don't need to have minimum size. */
4419 if (! TYPE_PACKED (t))
4420 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4421 #endif
4422 rli->offset = TYPE_SIZE_UNIT (t);
4423 rli->bitpos = bitsize_zero_node;
4424 rli->record_align = TYPE_ALIGN (t);
4425 }
4426
4427 /* Find the last field. The artificial fields created for virtual
4428 bases will go after the last extant field to date. */
4429 next_field = &TYPE_FIELDS (t);
4430 while (*next_field)
4431 next_field = &TREE_CHAIN (*next_field);
4432
4433 /* Go through the virtual bases, allocating space for each virtual
4434 base that is not already a primary base class. These are
4435 allocated in inheritance graph order. */
4436 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4437 {
4438 if (!BINFO_VIRTUAL_P (vbase))
4439 continue;
4440
4441 if (!BINFO_PRIMARY_P (vbase))
4442 {
4443 tree basetype = TREE_TYPE (vbase);
4444
4445 /* This virtual base is not a primary base of any class in the
4446 hierarchy, so we have to add space for it. */
4447 next_field = build_base_field (rli, vbase,
4448 offsets, next_field);
4449
4450 /* If the first virtual base might have been placed at a
4451 lower address, had we started from CLASSTYPE_SIZE, rather
4452 than TYPE_SIZE, issue a warning. There can be both false
4453 positives and false negatives from this warning in rare
4454 cases; to deal with all the possibilities would probably
4455 require performing both layout algorithms and comparing
4456 the results which is not particularly tractable. */
4457 if (warn_abi
4458 && first_vbase
4459 && (tree_int_cst_lt
4460 (size_binop (CEIL_DIV_EXPR,
4461 round_up (CLASSTYPE_SIZE (t),
4462 CLASSTYPE_ALIGN (basetype)),
4463 bitsize_unit_node),
4464 BINFO_OFFSET (vbase))))
4465 warning (OPT_Wabi,
4466 "offset of virtual base %qT is not ABI-compliant and "
4467 "may change in a future version of GCC",
4468 basetype);
4469
4470 first_vbase = false;
4471 }
4472 }
4473 }
4474
4475 /* Returns the offset of the byte just past the end of the base class
4476 BINFO. */
4477
4478 static tree
4479 end_of_base (tree binfo)
4480 {
4481 tree size;
4482
4483 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
4484 size = TYPE_SIZE_UNIT (char_type_node);
4485 else if (is_empty_class (BINFO_TYPE (binfo)))
4486 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4487 allocate some space for it. It cannot have virtual bases, so
4488 TYPE_SIZE_UNIT is fine. */
4489 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4490 else
4491 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4492
4493 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4494 }
4495
4496 /* Returns the offset of the byte just past the end of the base class
4497 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4498 only non-virtual bases are included. */
4499
4500 static tree
4501 end_of_class (tree t, int include_virtuals_p)
4502 {
4503 tree result = size_zero_node;
4504 VEC(tree,gc) *vbases;
4505 tree binfo;
4506 tree base_binfo;
4507 tree offset;
4508 int i;
4509
4510 for (binfo = TYPE_BINFO (t), i = 0;
4511 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4512 {
4513 if (!include_virtuals_p
4514 && BINFO_VIRTUAL_P (base_binfo)
4515 && (!BINFO_PRIMARY_P (base_binfo)
4516 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4517 continue;
4518
4519 offset = end_of_base (base_binfo);
4520 if (INT_CST_LT_UNSIGNED (result, offset))
4521 result = offset;
4522 }
4523
4524 /* G++ 3.2 did not check indirect virtual bases. */
4525 if (abi_version_at_least (2) && include_virtuals_p)
4526 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4527 VEC_iterate (tree, vbases, i, base_binfo); i++)
4528 {
4529 offset = end_of_base (base_binfo);
4530 if (INT_CST_LT_UNSIGNED (result, offset))
4531 result = offset;
4532 }
4533
4534 return result;
4535 }
4536
4537 /* Warn about bases of T that are inaccessible because they are
4538 ambiguous. For example:
4539
4540 struct S {};
4541 struct T : public S {};
4542 struct U : public S, public T {};
4543
4544 Here, `(S*) new U' is not allowed because there are two `S'
4545 subobjects of U. */
4546
4547 static void
4548 warn_about_ambiguous_bases (tree t)
4549 {
4550 int i;
4551 VEC(tree,gc) *vbases;
4552 tree basetype;
4553 tree binfo;
4554 tree base_binfo;
4555
4556 /* If there are no repeated bases, nothing can be ambiguous. */
4557 if (!CLASSTYPE_REPEATED_BASE_P (t))
4558 return;
4559
4560 /* Check direct bases. */
4561 for (binfo = TYPE_BINFO (t), i = 0;
4562 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4563 {
4564 basetype = BINFO_TYPE (base_binfo);
4565
4566 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4567 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4568 basetype, t);
4569 }
4570
4571 /* Check for ambiguous virtual bases. */
4572 if (extra_warnings)
4573 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4574 VEC_iterate (tree, vbases, i, binfo); i++)
4575 {
4576 basetype = BINFO_TYPE (binfo);
4577
4578 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4579 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
4580 basetype, t);
4581 }
4582 }
4583
4584 /* Compare two INTEGER_CSTs K1 and K2. */
4585
4586 static int
4587 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4588 {
4589 return tree_int_cst_compare ((tree) k1, (tree) k2);
4590 }
4591
4592 /* Increase the size indicated in RLI to account for empty classes
4593 that are "off the end" of the class. */
4594
4595 static void
4596 include_empty_classes (record_layout_info rli)
4597 {
4598 tree eoc;
4599 tree rli_size;
4600
4601 /* It might be the case that we grew the class to allocate a
4602 zero-sized base class. That won't be reflected in RLI, yet,
4603 because we are willing to overlay multiple bases at the same
4604 offset. However, now we need to make sure that RLI is big enough
4605 to reflect the entire class. */
4606 eoc = end_of_class (rli->t,
4607 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4608 rli_size = rli_size_unit_so_far (rli);
4609 if (TREE_CODE (rli_size) == INTEGER_CST
4610 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4611 {
4612 if (!abi_version_at_least (2))
4613 /* In version 1 of the ABI, the size of a class that ends with
4614 a bitfield was not rounded up to a whole multiple of a
4615 byte. Because rli_size_unit_so_far returns only the number
4616 of fully allocated bytes, any extra bits were not included
4617 in the size. */
4618 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4619 else
4620 /* The size should have been rounded to a whole byte. */
4621 gcc_assert (tree_int_cst_equal
4622 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4623 rli->bitpos
4624 = size_binop (PLUS_EXPR,
4625 rli->bitpos,
4626 size_binop (MULT_EXPR,
4627 convert (bitsizetype,
4628 size_binop (MINUS_EXPR,
4629 eoc, rli_size)),
4630 bitsize_int (BITS_PER_UNIT)));
4631 normalize_rli (rli);
4632 }
4633 }
4634
4635 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4636 BINFO_OFFSETs for all of the base-classes. Position the vtable
4637 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4638
4639 static void
4640 layout_class_type (tree t, tree *virtuals_p)
4641 {
4642 tree non_static_data_members;
4643 tree field;
4644 tree vptr;
4645 record_layout_info rli;
4646 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4647 types that appear at that offset. */
4648 splay_tree empty_base_offsets;
4649 /* True if the last field layed out was a bit-field. */
4650 bool last_field_was_bitfield = false;
4651 /* The location at which the next field should be inserted. */
4652 tree *next_field;
4653 /* T, as a base class. */
4654 tree base_t;
4655
4656 /* Keep track of the first non-static data member. */
4657 non_static_data_members = TYPE_FIELDS (t);
4658
4659 /* Start laying out the record. */
4660 rli = start_record_layout (t);
4661
4662 /* Mark all the primary bases in the hierarchy. */
4663 determine_primary_bases (t);
4664
4665 /* Create a pointer to our virtual function table. */
4666 vptr = create_vtable_ptr (t, virtuals_p);
4667
4668 /* The vptr is always the first thing in the class. */
4669 if (vptr)
4670 {
4671 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4672 TYPE_FIELDS (t) = vptr;
4673 next_field = &TREE_CHAIN (vptr);
4674 place_field (rli, vptr);
4675 }
4676 else
4677 next_field = &TYPE_FIELDS (t);
4678
4679 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4680 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4681 NULL, NULL);
4682 build_base_fields (rli, empty_base_offsets, next_field);
4683
4684 /* Layout the non-static data members. */
4685 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4686 {
4687 tree type;
4688 tree padding;
4689
4690 /* We still pass things that aren't non-static data members to
4691 the back end, in case it wants to do something with them. */
4692 if (TREE_CODE (field) != FIELD_DECL)
4693 {
4694 place_field (rli, field);
4695 /* If the static data member has incomplete type, keep track
4696 of it so that it can be completed later. (The handling
4697 of pending statics in finish_record_layout is
4698 insufficient; consider:
4699
4700 struct S1;
4701 struct S2 { static S1 s1; };
4702
4703 At this point, finish_record_layout will be called, but
4704 S1 is still incomplete.) */
4705 if (TREE_CODE (field) == VAR_DECL)
4706 {
4707 maybe_register_incomplete_var (field);
4708 /* The visibility of static data members is determined
4709 at their point of declaration, not their point of
4710 definition. */
4711 determine_visibility (field);
4712 }
4713 continue;
4714 }
4715
4716 type = TREE_TYPE (field);
4717 if (type == error_mark_node)
4718 continue;
4719
4720 padding = NULL_TREE;
4721
4722 /* If this field is a bit-field whose width is greater than its
4723 type, then there are some special rules for allocating
4724 it. */
4725 if (DECL_C_BIT_FIELD (field)
4726 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4727 {
4728 integer_type_kind itk;
4729 tree integer_type;
4730 bool was_unnamed_p = false;
4731 /* We must allocate the bits as if suitably aligned for the
4732 longest integer type that fits in this many bits. type
4733 of the field. Then, we are supposed to use the left over
4734 bits as additional padding. */
4735 for (itk = itk_char; itk != itk_none; ++itk)
4736 if (INT_CST_LT (DECL_SIZE (field),
4737 TYPE_SIZE (integer_types[itk])))
4738 break;
4739
4740 /* ITK now indicates a type that is too large for the
4741 field. We have to back up by one to find the largest
4742 type that fits. */
4743 integer_type = integer_types[itk - 1];
4744
4745 /* Figure out how much additional padding is required. GCC
4746 3.2 always created a padding field, even if it had zero
4747 width. */
4748 if (!abi_version_at_least (2)
4749 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4750 {
4751 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4752 /* In a union, the padding field must have the full width
4753 of the bit-field; all fields start at offset zero. */
4754 padding = DECL_SIZE (field);
4755 else
4756 {
4757 if (TREE_CODE (t) == UNION_TYPE)
4758 warning (OPT_Wabi, "size assigned to %qT may not be "
4759 "ABI-compliant and may change in a future "
4760 "version of GCC",
4761 t);
4762 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4763 TYPE_SIZE (integer_type));
4764 }
4765 }
4766 #ifdef PCC_BITFIELD_TYPE_MATTERS
4767 /* An unnamed bitfield does not normally affect the
4768 alignment of the containing class on a target where
4769 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4770 make any exceptions for unnamed bitfields when the
4771 bitfields are longer than their types. Therefore, we
4772 temporarily give the field a name. */
4773 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4774 {
4775 was_unnamed_p = true;
4776 DECL_NAME (field) = make_anon_name ();
4777 }
4778 #endif
4779 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4780 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4781 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4782 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4783 empty_base_offsets);
4784 if (was_unnamed_p)
4785 DECL_NAME (field) = NULL_TREE;
4786 /* Now that layout has been performed, set the size of the
4787 field to the size of its declared type; the rest of the
4788 field is effectively invisible. */
4789 DECL_SIZE (field) = TYPE_SIZE (type);
4790 /* We must also reset the DECL_MODE of the field. */
4791 if (abi_version_at_least (2))
4792 DECL_MODE (field) = TYPE_MODE (type);
4793 else if (warn_abi
4794 && DECL_MODE (field) != TYPE_MODE (type))
4795 /* Versions of G++ before G++ 3.4 did not reset the
4796 DECL_MODE. */
4797 warning (OPT_Wabi,
4798 "the offset of %qD may not be ABI-compliant and may "
4799 "change in a future version of GCC", field);
4800 }
4801 else
4802 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4803 empty_base_offsets);
4804
4805 /* Remember the location of any empty classes in FIELD. */
4806 if (abi_version_at_least (2))
4807 record_subobject_offsets (TREE_TYPE (field),
4808 byte_position(field),
4809 empty_base_offsets,
4810 /*is_data_member=*/true);
4811
4812 /* If a bit-field does not immediately follow another bit-field,
4813 and yet it starts in the middle of a byte, we have failed to
4814 comply with the ABI. */
4815 if (warn_abi
4816 && DECL_C_BIT_FIELD (field)
4817 /* The TREE_NO_WARNING flag gets set by Objective-C when
4818 laying out an Objective-C class. The ObjC ABI differs
4819 from the C++ ABI, and so we do not want a warning
4820 here. */
4821 && !TREE_NO_WARNING (field)
4822 && !last_field_was_bitfield
4823 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4824 DECL_FIELD_BIT_OFFSET (field),
4825 bitsize_unit_node)))
4826 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
4827 "change in a future version of GCC", field);
4828
4829 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4830 offset of the field. */
4831 if (warn_abi
4832 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4833 byte_position (field))
4834 && contains_empty_class_p (TREE_TYPE (field)))
4835 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
4836 "classes to be placed at different locations in a "
4837 "future version of GCC", field);
4838
4839 /* The middle end uses the type of expressions to determine the
4840 possible range of expression values. In order to optimize
4841 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
4842 must be made aware of the width of "i", via its type.
4843
4844 Because C++ does not have integer types of arbitrary width,
4845 we must (for the purposes of the front end) convert from the
4846 type assigned here to the declared type of the bitfield
4847 whenever a bitfield expression is used as an rvalue.
4848 Similarly, when assigning a value to a bitfield, the value
4849 must be converted to the type given the bitfield here. */
4850 if (DECL_C_BIT_FIELD (field))
4851 {
4852 unsigned HOST_WIDE_INT width;
4853 tree ftype = TREE_TYPE (field);
4854 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
4855 if (width != TYPE_PRECISION (ftype))
4856 {
4857 TREE_TYPE (field)
4858 = c_build_bitfield_integer_type (width,
4859 TYPE_UNSIGNED (ftype));
4860 TREE_TYPE (field)
4861 = cp_build_qualified_type (TREE_TYPE (field),
4862 TYPE_QUALS (ftype));
4863 }
4864 }
4865
4866 /* If we needed additional padding after this field, add it
4867 now. */
4868 if (padding)
4869 {
4870 tree padding_field;
4871
4872 padding_field = build_decl (FIELD_DECL,
4873 NULL_TREE,
4874 char_type_node);
4875 DECL_BIT_FIELD (padding_field) = 1;
4876 DECL_SIZE (padding_field) = padding;
4877 DECL_CONTEXT (padding_field) = t;
4878 DECL_ARTIFICIAL (padding_field) = 1;
4879 DECL_IGNORED_P (padding_field) = 1;
4880 layout_nonempty_base_or_field (rli, padding_field,
4881 NULL_TREE,
4882 empty_base_offsets);
4883 }
4884
4885 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
4886 }
4887
4888 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
4889 {
4890 /* Make sure that we are on a byte boundary so that the size of
4891 the class without virtual bases will always be a round number
4892 of bytes. */
4893 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
4894 normalize_rli (rli);
4895 }
4896
4897 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
4898 padding. */
4899 if (!abi_version_at_least (2))
4900 include_empty_classes(rli);
4901
4902 /* Delete all zero-width bit-fields from the list of fields. Now
4903 that the type is laid out they are no longer important. */
4904 remove_zero_width_bit_fields (t);
4905
4906 /* Create the version of T used for virtual bases. We do not use
4907 make_aggr_type for this version; this is an artificial type. For
4908 a POD type, we just reuse T. */
4909 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
4910 {
4911 base_t = make_node (TREE_CODE (t));
4912
4913 /* Set the size and alignment for the new type. In G++ 3.2, all
4914 empty classes were considered to have size zero when used as
4915 base classes. */
4916 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
4917 {
4918 TYPE_SIZE (base_t) = bitsize_zero_node;
4919 TYPE_SIZE_UNIT (base_t) = size_zero_node;
4920 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
4921 warning (OPT_Wabi,
4922 "layout of classes derived from empty class %qT "
4923 "may change in a future version of GCC",
4924 t);
4925 }
4926 else
4927 {
4928 tree eoc;
4929
4930 /* If the ABI version is not at least two, and the last
4931 field was a bit-field, RLI may not be on a byte
4932 boundary. In particular, rli_size_unit_so_far might
4933 indicate the last complete byte, while rli_size_so_far
4934 indicates the total number of bits used. Therefore,
4935 rli_size_so_far, rather than rli_size_unit_so_far, is
4936 used to compute TYPE_SIZE_UNIT. */
4937 eoc = end_of_class (t, /*include_virtuals_p=*/0);
4938 TYPE_SIZE_UNIT (base_t)
4939 = size_binop (MAX_EXPR,
4940 convert (sizetype,
4941 size_binop (CEIL_DIV_EXPR,
4942 rli_size_so_far (rli),
4943 bitsize_int (BITS_PER_UNIT))),
4944 eoc);
4945 TYPE_SIZE (base_t)
4946 = size_binop (MAX_EXPR,
4947 rli_size_so_far (rli),
4948 size_binop (MULT_EXPR,
4949 convert (bitsizetype, eoc),
4950 bitsize_int (BITS_PER_UNIT)));
4951 }
4952 TYPE_ALIGN (base_t) = rli->record_align;
4953 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
4954
4955 /* Copy the fields from T. */
4956 next_field = &TYPE_FIELDS (base_t);
4957 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4958 if (TREE_CODE (field) == FIELD_DECL)
4959 {
4960 *next_field = build_decl (FIELD_DECL,
4961 DECL_NAME (field),
4962 TREE_TYPE (field));
4963 DECL_CONTEXT (*next_field) = base_t;
4964 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
4965 DECL_FIELD_BIT_OFFSET (*next_field)
4966 = DECL_FIELD_BIT_OFFSET (field);
4967 DECL_SIZE (*next_field) = DECL_SIZE (field);
4968 DECL_MODE (*next_field) = DECL_MODE (field);
4969 next_field = &TREE_CHAIN (*next_field);
4970 }
4971
4972 /* Record the base version of the type. */
4973 CLASSTYPE_AS_BASE (t) = base_t;
4974 TYPE_CONTEXT (base_t) = t;
4975 }
4976 else
4977 CLASSTYPE_AS_BASE (t) = t;
4978
4979 /* Every empty class contains an empty class. */
4980 if (CLASSTYPE_EMPTY_P (t))
4981 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
4982
4983 /* Set the TYPE_DECL for this type to contain the right
4984 value for DECL_OFFSET, so that we can use it as part
4985 of a COMPONENT_REF for multiple inheritance. */
4986 layout_decl (TYPE_MAIN_DECL (t), 0);
4987
4988 /* Now fix up any virtual base class types that we left lying
4989 around. We must get these done before we try to lay out the
4990 virtual function table. As a side-effect, this will remove the
4991 base subobject fields. */
4992 layout_virtual_bases (rli, empty_base_offsets);
4993
4994 /* Make sure that empty classes are reflected in RLI at this
4995 point. */
4996 include_empty_classes(rli);
4997
4998 /* Make sure not to create any structures with zero size. */
4999 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
5000 place_field (rli,
5001 build_decl (FIELD_DECL, NULL_TREE, char_type_node));
5002
5003 /* Let the back end lay out the type. */
5004 finish_record_layout (rli, /*free_p=*/true);
5005
5006 /* Warn about bases that can't be talked about due to ambiguity. */
5007 warn_about_ambiguous_bases (t);
5008
5009 /* Now that we're done with layout, give the base fields the real types. */
5010 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5011 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
5012 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
5013
5014 /* Clean up. */
5015 splay_tree_delete (empty_base_offsets);
5016
5017 if (CLASSTYPE_EMPTY_P (t)
5018 && tree_int_cst_lt (sizeof_biggest_empty_class,
5019 TYPE_SIZE_UNIT (t)))
5020 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
5021 }
5022
5023 /* Determine the "key method" for the class type indicated by TYPE,
5024 and set CLASSTYPE_KEY_METHOD accordingly. */
5025
5026 void
5027 determine_key_method (tree type)
5028 {
5029 tree method;
5030
5031 if (TYPE_FOR_JAVA (type)
5032 || processing_template_decl
5033 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
5034 || CLASSTYPE_INTERFACE_KNOWN (type))
5035 return;
5036
5037 /* The key method is the first non-pure virtual function that is not
5038 inline at the point of class definition. On some targets the
5039 key function may not be inline; those targets should not call
5040 this function until the end of the translation unit. */
5041 for (method = TYPE_METHODS (type); method != NULL_TREE;
5042 method = TREE_CHAIN (method))
5043 if (DECL_VINDEX (method) != NULL_TREE
5044 && ! DECL_DECLARED_INLINE_P (method)
5045 && ! DECL_PURE_VIRTUAL_P (method))
5046 {
5047 CLASSTYPE_KEY_METHOD (type) = method;
5048 break;
5049 }
5050
5051 return;
5052 }
5053
5054 /* Perform processing required when the definition of T (a class type)
5055 is complete. */
5056
5057 void
5058 finish_struct_1 (tree t)
5059 {
5060 tree x;
5061 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
5062 tree virtuals = NULL_TREE;
5063 int n_fields = 0;
5064
5065 if (COMPLETE_TYPE_P (t))
5066 {
5067 gcc_assert (IS_AGGR_TYPE (t));
5068 error ("redefinition of %q#T", t);
5069 popclass ();
5070 return;
5071 }
5072
5073 /* If this type was previously laid out as a forward reference,
5074 make sure we lay it out again. */
5075 TYPE_SIZE (t) = NULL_TREE;
5076 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
5077
5078 fixup_inline_methods (t);
5079
5080 /* Make assumptions about the class; we'll reset the flags if
5081 necessary. */
5082 CLASSTYPE_EMPTY_P (t) = 1;
5083 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
5084 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
5085
5086 /* Do end-of-class semantic processing: checking the validity of the
5087 bases and members and add implicitly generated methods. */
5088 check_bases_and_members (t);
5089
5090 /* Find the key method. */
5091 if (TYPE_CONTAINS_VPTR_P (t))
5092 {
5093 /* The Itanium C++ ABI permits the key method to be chosen when
5094 the class is defined -- even though the key method so
5095 selected may later turn out to be an inline function. On
5096 some systems (such as ARM Symbian OS) the key method cannot
5097 be determined until the end of the translation unit. On such
5098 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
5099 will cause the class to be added to KEYED_CLASSES. Then, in
5100 finish_file we will determine the key method. */
5101 if (targetm.cxx.key_method_may_be_inline ())
5102 determine_key_method (t);
5103
5104 /* If a polymorphic class has no key method, we may emit the vtable
5105 in every translation unit where the class definition appears. */
5106 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
5107 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
5108 }
5109
5110 /* Layout the class itself. */
5111 layout_class_type (t, &virtuals);
5112 if (CLASSTYPE_AS_BASE (t) != t)
5113 /* We use the base type for trivial assignments, and hence it
5114 needs a mode. */
5115 compute_record_mode (CLASSTYPE_AS_BASE (t));
5116
5117 virtuals = modify_all_vtables (t, nreverse (virtuals));
5118
5119 /* If necessary, create the primary vtable for this class. */
5120 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
5121 {
5122 /* We must enter these virtuals into the table. */
5123 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5124 build_primary_vtable (NULL_TREE, t);
5125 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
5126 /* Here we know enough to change the type of our virtual
5127 function table, but we will wait until later this function. */
5128 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
5129 }
5130
5131 if (TYPE_CONTAINS_VPTR_P (t))
5132 {
5133 int vindex;
5134 tree fn;
5135
5136 if (BINFO_VTABLE (TYPE_BINFO (t)))
5137 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
5138 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5139 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
5140
5141 /* Add entries for virtual functions introduced by this class. */
5142 BINFO_VIRTUALS (TYPE_BINFO (t))
5143 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
5144
5145 /* Set DECL_VINDEX for all functions declared in this class. */
5146 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5147 fn;
5148 fn = TREE_CHAIN (fn),
5149 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5150 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5151 {
5152 tree fndecl = BV_FN (fn);
5153
5154 if (DECL_THUNK_P (fndecl))
5155 /* A thunk. We should never be calling this entry directly
5156 from this vtable -- we'd use the entry for the non
5157 thunk base function. */
5158 DECL_VINDEX (fndecl) = NULL_TREE;
5159 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5160 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
5161 }
5162 }
5163
5164 finish_struct_bits (t);
5165
5166 /* Complete the rtl for any static member objects of the type we're
5167 working on. */
5168 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5169 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5170 && TREE_TYPE (x) != error_mark_node
5171 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5172 DECL_MODE (x) = TYPE_MODE (t);
5173
5174 /* Done with FIELDS...now decide whether to sort these for
5175 faster lookups later.
5176
5177 We use a small number because most searches fail (succeeding
5178 ultimately as the search bores through the inheritance
5179 hierarchy), and we want this failure to occur quickly. */
5180
5181 n_fields = count_fields (TYPE_FIELDS (t));
5182 if (n_fields > 7)
5183 {
5184 struct sorted_fields_type *field_vec = GGC_NEWVAR
5185 (struct sorted_fields_type,
5186 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5187 field_vec->len = n_fields;
5188 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5189 qsort (field_vec->elts, n_fields, sizeof (tree),
5190 field_decl_cmp);
5191 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5192 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5193 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5194 }
5195
5196 /* Complain if one of the field types requires lower visibility. */
5197 constrain_class_visibility (t);
5198
5199 /* Make the rtl for any new vtables we have created, and unmark
5200 the base types we marked. */
5201 finish_vtbls (t);
5202
5203 /* Build the VTT for T. */
5204 build_vtt (t);
5205
5206 /* This warning does not make sense for Java classes, since they
5207 cannot have destructors. */
5208 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5209 {
5210 tree dtor;
5211
5212 dtor = CLASSTYPE_DESTRUCTORS (t);
5213 if (/* An implicitly declared destructor is always public. And,
5214 if it were virtual, we would have created it by now. */
5215 !dtor
5216 || (!DECL_VINDEX (dtor)
5217 && (/* public non-virtual */
5218 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
5219 || (/* non-public non-virtual with friends */
5220 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
5221 && (CLASSTYPE_FRIEND_CLASSES (t)
5222 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
5223 warning (OPT_Wnon_virtual_dtor,
5224 "%q#T has virtual functions and accessible"
5225 " non-virtual destructor", t);
5226 }
5227
5228 complete_vars (t);
5229
5230 if (warn_overloaded_virtual)
5231 warn_hidden (t);
5232
5233 /* Class layout, assignment of virtual table slots, etc., is now
5234 complete. Give the back end a chance to tweak the visibility of
5235 the class or perform any other required target modifications. */
5236 targetm.cxx.adjust_class_at_definition (t);
5237
5238 maybe_suppress_debug_info (t);
5239
5240 dump_class_hierarchy (t);
5241
5242 /* Finish debugging output for this type. */
5243 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5244 }
5245
5246 /* When T was built up, the member declarations were added in reverse
5247 order. Rearrange them to declaration order. */
5248
5249 void
5250 unreverse_member_declarations (tree t)
5251 {
5252 tree next;
5253 tree prev;
5254 tree x;
5255
5256 /* The following lists are all in reverse order. Put them in
5257 declaration order now. */
5258 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5259 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5260
5261 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5262 reverse order, so we can't just use nreverse. */
5263 prev = NULL_TREE;
5264 for (x = TYPE_FIELDS (t);
5265 x && TREE_CODE (x) != TYPE_DECL;
5266 x = next)
5267 {
5268 next = TREE_CHAIN (x);
5269 TREE_CHAIN (x) = prev;
5270 prev = x;
5271 }
5272 if (prev)
5273 {
5274 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5275 if (prev)
5276 TYPE_FIELDS (t) = prev;
5277 }
5278 }
5279
5280 tree
5281 finish_struct (tree t, tree attributes)
5282 {
5283 location_t saved_loc = input_location;
5284
5285 /* Now that we've got all the field declarations, reverse everything
5286 as necessary. */
5287 unreverse_member_declarations (t);
5288
5289 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5290
5291 /* Nadger the current location so that diagnostics point to the start of
5292 the struct, not the end. */
5293 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5294
5295 if (processing_template_decl)
5296 {
5297 tree x;
5298
5299 finish_struct_methods (t);
5300 TYPE_SIZE (t) = bitsize_zero_node;
5301 TYPE_SIZE_UNIT (t) = size_zero_node;
5302
5303 /* We need to emit an error message if this type was used as a parameter
5304 and it is an abstract type, even if it is a template. We construct
5305 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5306 account and we call complete_vars with this type, which will check
5307 the PARM_DECLS. Note that while the type is being defined,
5308 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5309 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5310 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5311 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5312 if (DECL_PURE_VIRTUAL_P (x))
5313 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
5314 complete_vars (t);
5315 }
5316 else
5317 finish_struct_1 (t);
5318
5319 input_location = saved_loc;
5320
5321 TYPE_BEING_DEFINED (t) = 0;
5322
5323 if (current_class_type)
5324 popclass ();
5325 else
5326 error ("trying to finish struct, but kicked out due to previous parse errors");
5327
5328 if (processing_template_decl && at_function_scope_p ())
5329 add_stmt (build_min (TAG_DEFN, t));
5330
5331 return t;
5332 }
5333 \f
5334 /* Return the dynamic type of INSTANCE, if known.
5335 Used to determine whether the virtual function table is needed
5336 or not.
5337
5338 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5339 of our knowledge of its type. *NONNULL should be initialized
5340 before this function is called. */
5341
5342 static tree
5343 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
5344 {
5345 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
5346
5347 switch (TREE_CODE (instance))
5348 {
5349 case INDIRECT_REF:
5350 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5351 return NULL_TREE;
5352 else
5353 return RECUR (TREE_OPERAND (instance, 0));
5354
5355 case CALL_EXPR:
5356 /* This is a call to a constructor, hence it's never zero. */
5357 if (TREE_HAS_CONSTRUCTOR (instance))
5358 {
5359 if (nonnull)
5360 *nonnull = 1;
5361 return TREE_TYPE (instance);
5362 }
5363 return NULL_TREE;
5364
5365 case SAVE_EXPR:
5366 /* This is a call to a constructor, hence it's never zero. */
5367 if (TREE_HAS_CONSTRUCTOR (instance))
5368 {
5369 if (nonnull)
5370 *nonnull = 1;
5371 return TREE_TYPE (instance);
5372 }
5373 return RECUR (TREE_OPERAND (instance, 0));
5374
5375 case POINTER_PLUS_EXPR:
5376 case PLUS_EXPR:
5377 case MINUS_EXPR:
5378 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5379 return RECUR (TREE_OPERAND (instance, 0));
5380 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5381 /* Propagate nonnull. */
5382 return RECUR (TREE_OPERAND (instance, 0));
5383
5384 return NULL_TREE;
5385
5386 case NOP_EXPR:
5387 case CONVERT_EXPR:
5388 return RECUR (TREE_OPERAND (instance, 0));
5389
5390 case ADDR_EXPR:
5391 instance = TREE_OPERAND (instance, 0);
5392 if (nonnull)
5393 {
5394 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5395 with a real object -- given &p->f, p can still be null. */
5396 tree t = get_base_address (instance);
5397 /* ??? Probably should check DECL_WEAK here. */
5398 if (t && DECL_P (t))
5399 *nonnull = 1;
5400 }
5401 return RECUR (instance);
5402
5403 case COMPONENT_REF:
5404 /* If this component is really a base class reference, then the field
5405 itself isn't definitive. */
5406 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5407 return RECUR (TREE_OPERAND (instance, 0));
5408 return RECUR (TREE_OPERAND (instance, 1));
5409
5410 case VAR_DECL:
5411 case FIELD_DECL:
5412 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5413 && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance))))
5414 {
5415 if (nonnull)
5416 *nonnull = 1;
5417 return TREE_TYPE (TREE_TYPE (instance));
5418 }
5419 /* fall through... */
5420 case TARGET_EXPR:
5421 case PARM_DECL:
5422 case RESULT_DECL:
5423 if (IS_AGGR_TYPE (TREE_TYPE (instance)))
5424 {
5425 if (nonnull)
5426 *nonnull = 1;
5427 return TREE_TYPE (instance);
5428 }
5429 else if (instance == current_class_ptr)
5430 {
5431 if (nonnull)
5432 *nonnull = 1;
5433
5434 /* if we're in a ctor or dtor, we know our type. */
5435 if (DECL_LANG_SPECIFIC (current_function_decl)
5436 && (DECL_CONSTRUCTOR_P (current_function_decl)
5437 || DECL_DESTRUCTOR_P (current_function_decl)))
5438 {
5439 if (cdtorp)
5440 *cdtorp = 1;
5441 return TREE_TYPE (TREE_TYPE (instance));
5442 }
5443 }
5444 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5445 {
5446 /* We only need one hash table because it is always left empty. */
5447 static htab_t ht;
5448 if (!ht)
5449 ht = htab_create (37,
5450 htab_hash_pointer,
5451 htab_eq_pointer,
5452 /*htab_del=*/NULL);
5453
5454 /* Reference variables should be references to objects. */
5455 if (nonnull)
5456 *nonnull = 1;
5457
5458 /* Enter the INSTANCE in a table to prevent recursion; a
5459 variable's initializer may refer to the variable
5460 itself. */
5461 if (TREE_CODE (instance) == VAR_DECL
5462 && DECL_INITIAL (instance)
5463 && !htab_find (ht, instance))
5464 {
5465 tree type;
5466 void **slot;
5467
5468 slot = htab_find_slot (ht, instance, INSERT);
5469 *slot = instance;
5470 type = RECUR (DECL_INITIAL (instance));
5471 htab_remove_elt (ht, instance);
5472
5473 return type;
5474 }
5475 }
5476 return NULL_TREE;
5477
5478 default:
5479 return NULL_TREE;
5480 }
5481 #undef RECUR
5482 }
5483
5484 /* Return nonzero if the dynamic type of INSTANCE is known, and
5485 equivalent to the static type. We also handle the case where
5486 INSTANCE is really a pointer. Return negative if this is a
5487 ctor/dtor. There the dynamic type is known, but this might not be
5488 the most derived base of the original object, and hence virtual
5489 bases may not be layed out according to this type.
5490
5491 Used to determine whether the virtual function table is needed
5492 or not.
5493
5494 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5495 of our knowledge of its type. *NONNULL should be initialized
5496 before this function is called. */
5497
5498 int
5499 resolves_to_fixed_type_p (tree instance, int* nonnull)
5500 {
5501 tree t = TREE_TYPE (instance);
5502 int cdtorp = 0;
5503 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5504 if (fixed == NULL_TREE)
5505 return 0;
5506 if (POINTER_TYPE_P (t))
5507 t = TREE_TYPE (t);
5508 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5509 return 0;
5510 return cdtorp ? -1 : 1;
5511 }
5512
5513 \f
5514 void
5515 init_class_processing (void)
5516 {
5517 current_class_depth = 0;
5518 current_class_stack_size = 10;
5519 current_class_stack
5520 = XNEWVEC (struct class_stack_node, current_class_stack_size);
5521 local_classes = VEC_alloc (tree, gc, 8);
5522 sizeof_biggest_empty_class = size_zero_node;
5523
5524 ridpointers[(int) RID_PUBLIC] = access_public_node;
5525 ridpointers[(int) RID_PRIVATE] = access_private_node;
5526 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5527 }
5528
5529 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5530
5531 static void
5532 restore_class_cache (void)
5533 {
5534 tree type;
5535
5536 /* We are re-entering the same class we just left, so we don't
5537 have to search the whole inheritance matrix to find all the
5538 decls to bind again. Instead, we install the cached
5539 class_shadowed list and walk through it binding names. */
5540 push_binding_level (previous_class_level);
5541 class_binding_level = previous_class_level;
5542 /* Restore IDENTIFIER_TYPE_VALUE. */
5543 for (type = class_binding_level->type_shadowed;
5544 type;
5545 type = TREE_CHAIN (type))
5546 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5547 }
5548
5549 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5550 appropriate for TYPE.
5551
5552 So that we may avoid calls to lookup_name, we cache the _TYPE
5553 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5554
5555 For multiple inheritance, we perform a two-pass depth-first search
5556 of the type lattice. */
5557
5558 void
5559 pushclass (tree type)
5560 {
5561 class_stack_node_t csn;
5562
5563 type = TYPE_MAIN_VARIANT (type);
5564
5565 /* Make sure there is enough room for the new entry on the stack. */
5566 if (current_class_depth + 1 >= current_class_stack_size)
5567 {
5568 current_class_stack_size *= 2;
5569 current_class_stack
5570 = XRESIZEVEC (struct class_stack_node, current_class_stack,
5571 current_class_stack_size);
5572 }
5573
5574 /* Insert a new entry on the class stack. */
5575 csn = current_class_stack + current_class_depth;
5576 csn->name = current_class_name;
5577 csn->type = current_class_type;
5578 csn->access = current_access_specifier;
5579 csn->names_used = 0;
5580 csn->hidden = 0;
5581 current_class_depth++;
5582
5583 /* Now set up the new type. */
5584 current_class_name = TYPE_NAME (type);
5585 if (TREE_CODE (current_class_name) == TYPE_DECL)
5586 current_class_name = DECL_NAME (current_class_name);
5587 current_class_type = type;
5588
5589 /* By default, things in classes are private, while things in
5590 structures or unions are public. */
5591 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5592 ? access_private_node
5593 : access_public_node);
5594
5595 if (previous_class_level
5596 && type != previous_class_level->this_entity
5597 && current_class_depth == 1)
5598 {
5599 /* Forcibly remove any old class remnants. */
5600 invalidate_class_lookup_cache ();
5601 }
5602
5603 if (!previous_class_level
5604 || type != previous_class_level->this_entity
5605 || current_class_depth > 1)
5606 pushlevel_class ();
5607 else
5608 restore_class_cache ();
5609 }
5610
5611 /* When we exit a toplevel class scope, we save its binding level so
5612 that we can restore it quickly. Here, we've entered some other
5613 class, so we must invalidate our cache. */
5614
5615 void
5616 invalidate_class_lookup_cache (void)
5617 {
5618 previous_class_level = NULL;
5619 }
5620
5621 /* Get out of the current class scope. If we were in a class scope
5622 previously, that is the one popped to. */
5623
5624 void
5625 popclass (void)
5626 {
5627 poplevel_class ();
5628
5629 current_class_depth--;
5630 current_class_name = current_class_stack[current_class_depth].name;
5631 current_class_type = current_class_stack[current_class_depth].type;
5632 current_access_specifier = current_class_stack[current_class_depth].access;
5633 if (current_class_stack[current_class_depth].names_used)
5634 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5635 }
5636
5637 /* Mark the top of the class stack as hidden. */
5638
5639 void
5640 push_class_stack (void)
5641 {
5642 if (current_class_depth)
5643 ++current_class_stack[current_class_depth - 1].hidden;
5644 }
5645
5646 /* Mark the top of the class stack as un-hidden. */
5647
5648 void
5649 pop_class_stack (void)
5650 {
5651 if (current_class_depth)
5652 --current_class_stack[current_class_depth - 1].hidden;
5653 }
5654
5655 /* Returns 1 if the class type currently being defined is either T or
5656 a nested type of T. */
5657
5658 bool
5659 currently_open_class (tree t)
5660 {
5661 int i;
5662
5663 /* We start looking from 1 because entry 0 is from global scope,
5664 and has no type. */
5665 for (i = current_class_depth; i > 0; --i)
5666 {
5667 tree c;
5668 if (i == current_class_depth)
5669 c = current_class_type;
5670 else
5671 {
5672 if (current_class_stack[i].hidden)
5673 break;
5674 c = current_class_stack[i].type;
5675 }
5676 if (!c)
5677 continue;
5678 if (same_type_p (c, t))
5679 return true;
5680 }
5681 return false;
5682 }
5683
5684 /* If either current_class_type or one of its enclosing classes are derived
5685 from T, return the appropriate type. Used to determine how we found
5686 something via unqualified lookup. */
5687
5688 tree
5689 currently_open_derived_class (tree t)
5690 {
5691 int i;
5692
5693 /* The bases of a dependent type are unknown. */
5694 if (dependent_type_p (t))
5695 return NULL_TREE;
5696
5697 if (!current_class_type)
5698 return NULL_TREE;
5699
5700 if (DERIVED_FROM_P (t, current_class_type))
5701 return current_class_type;
5702
5703 for (i = current_class_depth - 1; i > 0; --i)
5704 {
5705 if (current_class_stack[i].hidden)
5706 break;
5707 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5708 return current_class_stack[i].type;
5709 }
5710
5711 return NULL_TREE;
5712 }
5713
5714 /* When entering a class scope, all enclosing class scopes' names with
5715 static meaning (static variables, static functions, types and
5716 enumerators) have to be visible. This recursive function calls
5717 pushclass for all enclosing class contexts until global or a local
5718 scope is reached. TYPE is the enclosed class. */
5719
5720 void
5721 push_nested_class (tree type)
5722 {
5723 /* A namespace might be passed in error cases, like A::B:C. */
5724 if (type == NULL_TREE
5725 || !CLASS_TYPE_P (type))
5726 return;
5727
5728 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
5729
5730 pushclass (type);
5731 }
5732
5733 /* Undoes a push_nested_class call. */
5734
5735 void
5736 pop_nested_class (void)
5737 {
5738 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5739
5740 popclass ();
5741 if (context && CLASS_TYPE_P (context))
5742 pop_nested_class ();
5743 }
5744
5745 /* Returns the number of extern "LANG" blocks we are nested within. */
5746
5747 int
5748 current_lang_depth (void)
5749 {
5750 return VEC_length (tree, current_lang_base);
5751 }
5752
5753 /* Set global variables CURRENT_LANG_NAME to appropriate value
5754 so that behavior of name-mangling machinery is correct. */
5755
5756 void
5757 push_lang_context (tree name)
5758 {
5759 VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
5760
5761 if (name == lang_name_cplusplus)
5762 {
5763 current_lang_name = name;
5764 }
5765 else if (name == lang_name_java)
5766 {
5767 current_lang_name = name;
5768 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5769 (See record_builtin_java_type in decl.c.) However, that causes
5770 incorrect debug entries if these types are actually used.
5771 So we re-enable debug output after extern "Java". */
5772 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5773 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5774 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5775 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5776 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5777 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5778 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5779 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5780 }
5781 else if (name == lang_name_c)
5782 {
5783 current_lang_name = name;
5784 }
5785 else
5786 error ("language string %<\"%E\"%> not recognized", name);
5787 }
5788
5789 /* Get out of the current language scope. */
5790
5791 void
5792 pop_lang_context (void)
5793 {
5794 current_lang_name = VEC_pop (tree, current_lang_base);
5795 }
5796 \f
5797 /* Type instantiation routines. */
5798
5799 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5800 matches the TARGET_TYPE. If there is no satisfactory match, return
5801 error_mark_node, and issue an error & warning messages under
5802 control of FLAGS. Permit pointers to member function if FLAGS
5803 permits. If TEMPLATE_ONLY, the name of the overloaded function was
5804 a template-id, and EXPLICIT_TARGS are the explicitly provided
5805 template arguments. If OVERLOAD is for one or more member
5806 functions, then ACCESS_PATH is the base path used to reference
5807 those member functions. */
5808
5809 static tree
5810 resolve_address_of_overloaded_function (tree target_type,
5811 tree overload,
5812 tsubst_flags_t flags,
5813 bool template_only,
5814 tree explicit_targs,
5815 tree access_path)
5816 {
5817 /* Here's what the standard says:
5818
5819 [over.over]
5820
5821 If the name is a function template, template argument deduction
5822 is done, and if the argument deduction succeeds, the deduced
5823 arguments are used to generate a single template function, which
5824 is added to the set of overloaded functions considered.
5825
5826 Non-member functions and static member functions match targets of
5827 type "pointer-to-function" or "reference-to-function." Nonstatic
5828 member functions match targets of type "pointer-to-member
5829 function;" the function type of the pointer to member is used to
5830 select the member function from the set of overloaded member
5831 functions. If a nonstatic member function is selected, the
5832 reference to the overloaded function name is required to have the
5833 form of a pointer to member as described in 5.3.1.
5834
5835 If more than one function is selected, any template functions in
5836 the set are eliminated if the set also contains a non-template
5837 function, and any given template function is eliminated if the
5838 set contains a second template function that is more specialized
5839 than the first according to the partial ordering rules 14.5.5.2.
5840 After such eliminations, if any, there shall remain exactly one
5841 selected function. */
5842
5843 int is_ptrmem = 0;
5844 int is_reference = 0;
5845 /* We store the matches in a TREE_LIST rooted here. The functions
5846 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5847 interoperability with most_specialized_instantiation. */
5848 tree matches = NULL_TREE;
5849 tree fn;
5850
5851 /* By the time we get here, we should be seeing only real
5852 pointer-to-member types, not the internal POINTER_TYPE to
5853 METHOD_TYPE representation. */
5854 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
5855 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
5856
5857 gcc_assert (is_overloaded_fn (overload));
5858
5859 /* Check that the TARGET_TYPE is reasonable. */
5860 if (TYPE_PTRFN_P (target_type))
5861 /* This is OK. */;
5862 else if (TYPE_PTRMEMFUNC_P (target_type))
5863 /* This is OK, too. */
5864 is_ptrmem = 1;
5865 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
5866 {
5867 /* This is OK, too. This comes from a conversion to reference
5868 type. */
5869 target_type = build_reference_type (target_type);
5870 is_reference = 1;
5871 }
5872 else
5873 {
5874 if (flags & tf_error)
5875 error ("cannot resolve overloaded function %qD based on"
5876 " conversion to type %qT",
5877 DECL_NAME (OVL_FUNCTION (overload)), target_type);
5878 return error_mark_node;
5879 }
5880
5881 /* If we can find a non-template function that matches, we can just
5882 use it. There's no point in generating template instantiations
5883 if we're just going to throw them out anyhow. But, of course, we
5884 can only do this when we don't *need* a template function. */
5885 if (!template_only)
5886 {
5887 tree fns;
5888
5889 for (fns = overload; fns; fns = OVL_NEXT (fns))
5890 {
5891 tree fn = OVL_CURRENT (fns);
5892 tree fntype;
5893
5894 if (TREE_CODE (fn) == TEMPLATE_DECL)
5895 /* We're not looking for templates just yet. */
5896 continue;
5897
5898 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5899 != is_ptrmem)
5900 /* We're looking for a non-static member, and this isn't
5901 one, or vice versa. */
5902 continue;
5903
5904 /* Ignore functions which haven't been explicitly
5905 declared. */
5906 if (DECL_ANTICIPATED (fn))
5907 continue;
5908
5909 /* See if there's a match. */
5910 fntype = TREE_TYPE (fn);
5911 if (is_ptrmem)
5912 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
5913 else if (!is_reference)
5914 fntype = build_pointer_type (fntype);
5915
5916 if (can_convert_arg (target_type, fntype, fn, LOOKUP_NORMAL))
5917 matches = tree_cons (fn, NULL_TREE, matches);
5918 }
5919 }
5920
5921 /* Now, if we've already got a match (or matches), there's no need
5922 to proceed to the template functions. But, if we don't have a
5923 match we need to look at them, too. */
5924 if (!matches)
5925 {
5926 tree target_fn_type;
5927 tree target_arg_types;
5928 tree target_ret_type;
5929 tree fns;
5930
5931 if (is_ptrmem)
5932 target_fn_type
5933 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
5934 else
5935 target_fn_type = TREE_TYPE (target_type);
5936 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
5937 target_ret_type = TREE_TYPE (target_fn_type);
5938
5939 /* Never do unification on the 'this' parameter. */
5940 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
5941 target_arg_types = TREE_CHAIN (target_arg_types);
5942
5943 for (fns = overload; fns; fns = OVL_NEXT (fns))
5944 {
5945 tree fn = OVL_CURRENT (fns);
5946 tree instantiation;
5947 tree instantiation_type;
5948 tree targs;
5949
5950 if (TREE_CODE (fn) != TEMPLATE_DECL)
5951 /* We're only looking for templates. */
5952 continue;
5953
5954 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5955 != is_ptrmem)
5956 /* We're not looking for a non-static member, and this is
5957 one, or vice versa. */
5958 continue;
5959
5960 /* Try to do argument deduction. */
5961 targs = make_tree_vec (DECL_NTPARMS (fn));
5962 if (fn_type_unification (fn, explicit_targs, targs,
5963 target_arg_types, target_ret_type,
5964 DEDUCE_EXACT, LOOKUP_NORMAL))
5965 /* Argument deduction failed. */
5966 continue;
5967
5968 /* Instantiate the template. */
5969 instantiation = instantiate_template (fn, targs, flags);
5970 if (instantiation == error_mark_node)
5971 /* Instantiation failed. */
5972 continue;
5973
5974 /* See if there's a match. */
5975 instantiation_type = TREE_TYPE (instantiation);
5976 if (is_ptrmem)
5977 instantiation_type =
5978 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
5979 else if (!is_reference)
5980 instantiation_type = build_pointer_type (instantiation_type);
5981 if (can_convert_arg (target_type, instantiation_type, instantiation,
5982 LOOKUP_NORMAL))
5983 matches = tree_cons (instantiation, fn, matches);
5984 }
5985
5986 /* Now, remove all but the most specialized of the matches. */
5987 if (matches)
5988 {
5989 tree match = most_specialized_instantiation (matches);
5990
5991 if (match != error_mark_node)
5992 matches = tree_cons (TREE_PURPOSE (match),
5993 NULL_TREE,
5994 NULL_TREE);
5995 }
5996 }
5997
5998 /* Now we should have exactly one function in MATCHES. */
5999 if (matches == NULL_TREE)
6000 {
6001 /* There were *no* matches. */
6002 if (flags & tf_error)
6003 {
6004 error ("no matches converting function %qD to type %q#T",
6005 DECL_NAME (OVL_FUNCTION (overload)),
6006 target_type);
6007
6008 /* print_candidates expects a chain with the functions in
6009 TREE_VALUE slots, so we cons one up here (we're losing anyway,
6010 so why be clever?). */
6011 for (; overload; overload = OVL_NEXT (overload))
6012 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
6013 matches);
6014
6015 print_candidates (matches);
6016 }
6017 return error_mark_node;
6018 }
6019 else if (TREE_CHAIN (matches))
6020 {
6021 /* There were too many matches. */
6022
6023 if (flags & tf_error)
6024 {
6025 tree match;
6026
6027 error ("converting overloaded function %qD to type %q#T is ambiguous",
6028 DECL_NAME (OVL_FUNCTION (overload)),
6029 target_type);
6030
6031 /* Since print_candidates expects the functions in the
6032 TREE_VALUE slot, we flip them here. */
6033 for (match = matches; match; match = TREE_CHAIN (match))
6034 TREE_VALUE (match) = TREE_PURPOSE (match);
6035
6036 print_candidates (matches);
6037 }
6038
6039 return error_mark_node;
6040 }
6041
6042 /* Good, exactly one match. Now, convert it to the correct type. */
6043 fn = TREE_PURPOSE (matches);
6044
6045 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
6046 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
6047 {
6048 static int explained;
6049
6050 if (!(flags & tf_error))
6051 return error_mark_node;
6052
6053 pedwarn ("assuming pointer to member %qD", fn);
6054 if (!explained)
6055 {
6056 pedwarn ("(a pointer to member can only be formed with %<&%E%>)", fn);
6057 explained = 1;
6058 }
6059 }
6060
6061 /* If we're doing overload resolution purely for the purpose of
6062 determining conversion sequences, we should not consider the
6063 function used. If this conversion sequence is selected, the
6064 function will be marked as used at this point. */
6065 if (!(flags & tf_conv))
6066 {
6067 mark_used (fn);
6068 /* We could not check access when this expression was originally
6069 created since we did not know at that time to which function
6070 the expression referred. */
6071 if (DECL_FUNCTION_MEMBER_P (fn))
6072 {
6073 gcc_assert (access_path);
6074 perform_or_defer_access_check (access_path, fn, fn);
6075 }
6076 }
6077
6078 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
6079 return build_unary_op (ADDR_EXPR, fn, 0);
6080 else
6081 {
6082 /* The target must be a REFERENCE_TYPE. Above, build_unary_op
6083 will mark the function as addressed, but here we must do it
6084 explicitly. */
6085 cxx_mark_addressable (fn);
6086
6087 return fn;
6088 }
6089 }
6090
6091 /* This function will instantiate the type of the expression given in
6092 RHS to match the type of LHSTYPE. If errors exist, then return
6093 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
6094 we complain on errors. If we are not complaining, never modify rhs,
6095 as overload resolution wants to try many possible instantiations, in
6096 the hope that at least one will work.
6097
6098 For non-recursive calls, LHSTYPE should be a function, pointer to
6099 function, or a pointer to member function. */
6100
6101 tree
6102 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
6103 {
6104 tsubst_flags_t flags_in = flags;
6105 tree access_path = NULL_TREE;
6106
6107 flags &= ~tf_ptrmem_ok;
6108
6109 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
6110 {
6111 if (flags & tf_error)
6112 error ("not enough type information");
6113 return error_mark_node;
6114 }
6115
6116 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
6117 {
6118 if (same_type_p (lhstype, TREE_TYPE (rhs)))
6119 return rhs;
6120 if (flag_ms_extensions
6121 && TYPE_PTRMEMFUNC_P (lhstype)
6122 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
6123 /* Microsoft allows `A::f' to be resolved to a
6124 pointer-to-member. */
6125 ;
6126 else
6127 {
6128 if (flags & tf_error)
6129 error ("argument of type %qT does not match %qT",
6130 TREE_TYPE (rhs), lhstype);
6131 return error_mark_node;
6132 }
6133 }
6134
6135 if (TREE_CODE (rhs) == BASELINK)
6136 {
6137 access_path = BASELINK_ACCESS_BINFO (rhs);
6138 rhs = BASELINK_FUNCTIONS (rhs);
6139 }
6140
6141 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
6142 deduce any type information. */
6143 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
6144 {
6145 if (flags & tf_error)
6146 error ("not enough type information");
6147 return error_mark_node;
6148 }
6149
6150 /* There only a few kinds of expressions that may have a type
6151 dependent on overload resolution. */
6152 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
6153 || TREE_CODE (rhs) == COMPONENT_REF
6154 || TREE_CODE (rhs) == COMPOUND_EXPR
6155 || really_overloaded_fn (rhs));
6156
6157 /* We don't overwrite rhs if it is an overloaded function.
6158 Copying it would destroy the tree link. */
6159 if (TREE_CODE (rhs) != OVERLOAD)
6160 rhs = copy_node (rhs);
6161
6162 /* This should really only be used when attempting to distinguish
6163 what sort of a pointer to function we have. For now, any
6164 arithmetic operation which is not supported on pointers
6165 is rejected as an error. */
6166
6167 switch (TREE_CODE (rhs))
6168 {
6169 case COMPONENT_REF:
6170 {
6171 tree member = TREE_OPERAND (rhs, 1);
6172
6173 member = instantiate_type (lhstype, member, flags);
6174 if (member != error_mark_node
6175 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
6176 /* Do not lose object's side effects. */
6177 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
6178 TREE_OPERAND (rhs, 0), member);
6179 return member;
6180 }
6181
6182 case OFFSET_REF:
6183 rhs = TREE_OPERAND (rhs, 1);
6184 if (BASELINK_P (rhs))
6185 return instantiate_type (lhstype, rhs, flags_in);
6186
6187 /* This can happen if we are forming a pointer-to-member for a
6188 member template. */
6189 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
6190
6191 /* Fall through. */
6192
6193 case TEMPLATE_ID_EXPR:
6194 {
6195 tree fns = TREE_OPERAND (rhs, 0);
6196 tree args = TREE_OPERAND (rhs, 1);
6197
6198 return
6199 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6200 /*template_only=*/true,
6201 args, access_path);
6202 }
6203
6204 case OVERLOAD:
6205 case FUNCTION_DECL:
6206 return
6207 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6208 /*template_only=*/false,
6209 /*explicit_targs=*/NULL_TREE,
6210 access_path);
6211
6212 case COMPOUND_EXPR:
6213 TREE_OPERAND (rhs, 0)
6214 = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6215 if (TREE_OPERAND (rhs, 0) == error_mark_node)
6216 return error_mark_node;
6217 TREE_OPERAND (rhs, 1)
6218 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6219 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6220 return error_mark_node;
6221
6222 TREE_TYPE (rhs) = lhstype;
6223 return rhs;
6224
6225 case ADDR_EXPR:
6226 {
6227 if (PTRMEM_OK_P (rhs))
6228 flags |= tf_ptrmem_ok;
6229
6230 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6231 }
6232
6233 case ERROR_MARK:
6234 return error_mark_node;
6235
6236 default:
6237 gcc_unreachable ();
6238 }
6239 return error_mark_node;
6240 }
6241 \f
6242 /* Return the name of the virtual function pointer field
6243 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6244 this may have to look back through base types to find the
6245 ultimate field name. (For single inheritance, these could
6246 all be the same name. Who knows for multiple inheritance). */
6247
6248 static tree
6249 get_vfield_name (tree type)
6250 {
6251 tree binfo, base_binfo;
6252 char *buf;
6253
6254 for (binfo = TYPE_BINFO (type);
6255 BINFO_N_BASE_BINFOS (binfo);
6256 binfo = base_binfo)
6257 {
6258 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6259
6260 if (BINFO_VIRTUAL_P (base_binfo)
6261 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6262 break;
6263 }
6264
6265 type = BINFO_TYPE (binfo);
6266 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
6267 + TYPE_NAME_LENGTH (type) + 2);
6268 sprintf (buf, VFIELD_NAME_FORMAT,
6269 IDENTIFIER_POINTER (constructor_name (type)));
6270 return get_identifier (buf);
6271 }
6272
6273 void
6274 print_class_statistics (void)
6275 {
6276 #ifdef GATHER_STATISTICS
6277 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6278 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6279 if (n_vtables)
6280 {
6281 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6282 n_vtables, n_vtable_searches);
6283 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6284 n_vtable_entries, n_vtable_elems);
6285 }
6286 #endif
6287 }
6288
6289 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6290 according to [class]:
6291 The class-name is also inserted
6292 into the scope of the class itself. For purposes of access checking,
6293 the inserted class name is treated as if it were a public member name. */
6294
6295 void
6296 build_self_reference (void)
6297 {
6298 tree name = constructor_name (current_class_type);
6299 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6300 tree saved_cas;
6301
6302 DECL_NONLOCAL (value) = 1;
6303 DECL_CONTEXT (value) = current_class_type;
6304 DECL_ARTIFICIAL (value) = 1;
6305 SET_DECL_SELF_REFERENCE_P (value);
6306
6307 if (processing_template_decl)
6308 value = push_template_decl (value);
6309
6310 saved_cas = current_access_specifier;
6311 current_access_specifier = access_public_node;
6312 finish_member_declaration (value);
6313 current_access_specifier = saved_cas;
6314 }
6315
6316 /* Returns 1 if TYPE contains only padding bytes. */
6317
6318 int
6319 is_empty_class (tree type)
6320 {
6321 if (type == error_mark_node)
6322 return 0;
6323
6324 if (! IS_AGGR_TYPE (type))
6325 return 0;
6326
6327 /* In G++ 3.2, whether or not a class was empty was determined by
6328 looking at its size. */
6329 if (abi_version_at_least (2))
6330 return CLASSTYPE_EMPTY_P (type);
6331 else
6332 return integer_zerop (CLASSTYPE_SIZE (type));
6333 }
6334
6335 /* Returns true if TYPE contains an empty class. */
6336
6337 static bool
6338 contains_empty_class_p (tree type)
6339 {
6340 if (is_empty_class (type))
6341 return true;
6342 if (CLASS_TYPE_P (type))
6343 {
6344 tree field;
6345 tree binfo;
6346 tree base_binfo;
6347 int i;
6348
6349 for (binfo = TYPE_BINFO (type), i = 0;
6350 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6351 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6352 return true;
6353 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6354 if (TREE_CODE (field) == FIELD_DECL
6355 && !DECL_ARTIFICIAL (field)
6356 && is_empty_class (TREE_TYPE (field)))
6357 return true;
6358 }
6359 else if (TREE_CODE (type) == ARRAY_TYPE)
6360 return contains_empty_class_p (TREE_TYPE (type));
6361 return false;
6362 }
6363
6364 /* Note that NAME was looked up while the current class was being
6365 defined and that the result of that lookup was DECL. */
6366
6367 void
6368 maybe_note_name_used_in_class (tree name, tree decl)
6369 {
6370 splay_tree names_used;
6371
6372 /* If we're not defining a class, there's nothing to do. */
6373 if (!(innermost_scope_kind() == sk_class
6374 && TYPE_BEING_DEFINED (current_class_type)))
6375 return;
6376
6377 /* If there's already a binding for this NAME, then we don't have
6378 anything to worry about. */
6379 if (lookup_member (current_class_type, name,
6380 /*protect=*/0, /*want_type=*/false))
6381 return;
6382
6383 if (!current_class_stack[current_class_depth - 1].names_used)
6384 current_class_stack[current_class_depth - 1].names_used
6385 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6386 names_used = current_class_stack[current_class_depth - 1].names_used;
6387
6388 splay_tree_insert (names_used,
6389 (splay_tree_key) name,
6390 (splay_tree_value) decl);
6391 }
6392
6393 /* Note that NAME was declared (as DECL) in the current class. Check
6394 to see that the declaration is valid. */
6395
6396 void
6397 note_name_declared_in_class (tree name, tree decl)
6398 {
6399 splay_tree names_used;
6400 splay_tree_node n;
6401
6402 /* Look to see if we ever used this name. */
6403 names_used
6404 = current_class_stack[current_class_depth - 1].names_used;
6405 if (!names_used)
6406 return;
6407
6408 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6409 if (n)
6410 {
6411 /* [basic.scope.class]
6412
6413 A name N used in a class S shall refer to the same declaration
6414 in its context and when re-evaluated in the completed scope of
6415 S. */
6416 pedwarn ("declaration of %q#D", decl);
6417 pedwarn ("changes meaning of %qD from %q+#D",
6418 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
6419 }
6420 }
6421
6422 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6423 Secondary vtables are merged with primary vtables; this function
6424 will return the VAR_DECL for the primary vtable. */
6425
6426 tree
6427 get_vtbl_decl_for_binfo (tree binfo)
6428 {
6429 tree decl;
6430
6431 decl = BINFO_VTABLE (binfo);
6432 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
6433 {
6434 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6435 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6436 }
6437 if (decl)
6438 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6439 return decl;
6440 }
6441
6442
6443 /* Returns the binfo for the primary base of BINFO. If the resulting
6444 BINFO is a virtual base, and it is inherited elsewhere in the
6445 hierarchy, then the returned binfo might not be the primary base of
6446 BINFO in the complete object. Check BINFO_PRIMARY_P or
6447 BINFO_LOST_PRIMARY_P to be sure. */
6448
6449 static tree
6450 get_primary_binfo (tree binfo)
6451 {
6452 tree primary_base;
6453
6454 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6455 if (!primary_base)
6456 return NULL_TREE;
6457
6458 return copied_binfo (primary_base, binfo);
6459 }
6460
6461 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6462
6463 static int
6464 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6465 {
6466 if (!indented_p)
6467 fprintf (stream, "%*s", indent, "");
6468 return 1;
6469 }
6470
6471 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6472 INDENT should be zero when called from the top level; it is
6473 incremented recursively. IGO indicates the next expected BINFO in
6474 inheritance graph ordering. */
6475
6476 static tree
6477 dump_class_hierarchy_r (FILE *stream,
6478 int flags,
6479 tree binfo,
6480 tree igo,
6481 int indent)
6482 {
6483 int indented = 0;
6484 tree base_binfo;
6485 int i;
6486
6487 indented = maybe_indent_hierarchy (stream, indent, 0);
6488 fprintf (stream, "%s (0x%lx) ",
6489 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6490 (unsigned long) binfo);
6491 if (binfo != igo)
6492 {
6493 fprintf (stream, "alternative-path\n");
6494 return igo;
6495 }
6496 igo = TREE_CHAIN (binfo);
6497
6498 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6499 tree_low_cst (BINFO_OFFSET (binfo), 0));
6500 if (is_empty_class (BINFO_TYPE (binfo)))
6501 fprintf (stream, " empty");
6502 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6503 fprintf (stream, " nearly-empty");
6504 if (BINFO_VIRTUAL_P (binfo))
6505 fprintf (stream, " virtual");
6506 fprintf (stream, "\n");
6507
6508 indented = 0;
6509 if (BINFO_PRIMARY_P (binfo))
6510 {
6511 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6512 fprintf (stream, " primary-for %s (0x%lx)",
6513 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6514 TFF_PLAIN_IDENTIFIER),
6515 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6516 }
6517 if (BINFO_LOST_PRIMARY_P (binfo))
6518 {
6519 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6520 fprintf (stream, " lost-primary");
6521 }
6522 if (indented)
6523 fprintf (stream, "\n");
6524
6525 if (!(flags & TDF_SLIM))
6526 {
6527 int indented = 0;
6528
6529 if (BINFO_SUBVTT_INDEX (binfo))
6530 {
6531 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6532 fprintf (stream, " subvttidx=%s",
6533 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6534 TFF_PLAIN_IDENTIFIER));
6535 }
6536 if (BINFO_VPTR_INDEX (binfo))
6537 {
6538 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6539 fprintf (stream, " vptridx=%s",
6540 expr_as_string (BINFO_VPTR_INDEX (binfo),
6541 TFF_PLAIN_IDENTIFIER));
6542 }
6543 if (BINFO_VPTR_FIELD (binfo))
6544 {
6545 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6546 fprintf (stream, " vbaseoffset=%s",
6547 expr_as_string (BINFO_VPTR_FIELD (binfo),
6548 TFF_PLAIN_IDENTIFIER));
6549 }
6550 if (BINFO_VTABLE (binfo))
6551 {
6552 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6553 fprintf (stream, " vptr=%s",
6554 expr_as_string (BINFO_VTABLE (binfo),
6555 TFF_PLAIN_IDENTIFIER));
6556 }
6557
6558 if (indented)
6559 fprintf (stream, "\n");
6560 }
6561
6562 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6563 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6564
6565 return igo;
6566 }
6567
6568 /* Dump the BINFO hierarchy for T. */
6569
6570 static void
6571 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6572 {
6573 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6574 fprintf (stream, " size=%lu align=%lu\n",
6575 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6576 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6577 fprintf (stream, " base size=%lu base align=%lu\n",
6578 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6579 / BITS_PER_UNIT),
6580 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6581 / BITS_PER_UNIT));
6582 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6583 fprintf (stream, "\n");
6584 }
6585
6586 /* Debug interface to hierarchy dumping. */
6587
6588 void
6589 debug_class (tree t)
6590 {
6591 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6592 }
6593
6594 static void
6595 dump_class_hierarchy (tree t)
6596 {
6597 int flags;
6598 FILE *stream = dump_begin (TDI_class, &flags);
6599
6600 if (stream)
6601 {
6602 dump_class_hierarchy_1 (stream, flags, t);
6603 dump_end (TDI_class, stream);
6604 }
6605 }
6606
6607 static void
6608 dump_array (FILE * stream, tree decl)
6609 {
6610 tree value;
6611 unsigned HOST_WIDE_INT ix;
6612 HOST_WIDE_INT elt;
6613 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6614
6615 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6616 / BITS_PER_UNIT);
6617 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6618 fprintf (stream, " %s entries",
6619 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6620 TFF_PLAIN_IDENTIFIER));
6621 fprintf (stream, "\n");
6622
6623 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
6624 ix, value)
6625 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6626 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
6627 }
6628
6629 static void
6630 dump_vtable (tree t, tree binfo, tree vtable)
6631 {
6632 int flags;
6633 FILE *stream = dump_begin (TDI_class, &flags);
6634
6635 if (!stream)
6636 return;
6637
6638 if (!(flags & TDF_SLIM))
6639 {
6640 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6641
6642 fprintf (stream, "%s for %s",
6643 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6644 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6645 if (ctor_vtbl_p)
6646 {
6647 if (!BINFO_VIRTUAL_P (binfo))
6648 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6649 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6650 }
6651 fprintf (stream, "\n");
6652 dump_array (stream, vtable);
6653 fprintf (stream, "\n");
6654 }
6655
6656 dump_end (TDI_class, stream);
6657 }
6658
6659 static void
6660 dump_vtt (tree t, tree vtt)
6661 {
6662 int flags;
6663 FILE *stream = dump_begin (TDI_class, &flags);
6664
6665 if (!stream)
6666 return;
6667
6668 if (!(flags & TDF_SLIM))
6669 {
6670 fprintf (stream, "VTT for %s\n",
6671 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6672 dump_array (stream, vtt);
6673 fprintf (stream, "\n");
6674 }
6675
6676 dump_end (TDI_class, stream);
6677 }
6678
6679 /* Dump a function or thunk and its thunkees. */
6680
6681 static void
6682 dump_thunk (FILE *stream, int indent, tree thunk)
6683 {
6684 static const char spaces[] = " ";
6685 tree name = DECL_NAME (thunk);
6686 tree thunks;
6687
6688 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6689 (void *)thunk,
6690 !DECL_THUNK_P (thunk) ? "function"
6691 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6692 name ? IDENTIFIER_POINTER (name) : "<unset>");
6693 if (DECL_THUNK_P (thunk))
6694 {
6695 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6696 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6697
6698 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6699 if (!virtual_adjust)
6700 /*NOP*/;
6701 else if (DECL_THIS_THUNK_P (thunk))
6702 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6703 tree_low_cst (virtual_adjust, 0));
6704 else
6705 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6706 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6707 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6708 if (THUNK_ALIAS (thunk))
6709 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6710 }
6711 fprintf (stream, "\n");
6712 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6713 dump_thunk (stream, indent + 2, thunks);
6714 }
6715
6716 /* Dump the thunks for FN. */
6717
6718 void
6719 debug_thunks (tree fn)
6720 {
6721 dump_thunk (stderr, 0, fn);
6722 }
6723
6724 /* Virtual function table initialization. */
6725
6726 /* Create all the necessary vtables for T and its base classes. */
6727
6728 static void
6729 finish_vtbls (tree t)
6730 {
6731 tree list;
6732 tree vbase;
6733
6734 /* We lay out the primary and secondary vtables in one contiguous
6735 vtable. The primary vtable is first, followed by the non-virtual
6736 secondary vtables in inheritance graph order. */
6737 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6738 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6739 TYPE_BINFO (t), t, list);
6740
6741 /* Then come the virtual bases, also in inheritance graph order. */
6742 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6743 {
6744 if (!BINFO_VIRTUAL_P (vbase))
6745 continue;
6746 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6747 }
6748
6749 if (BINFO_VTABLE (TYPE_BINFO (t)))
6750 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6751 }
6752
6753 /* Initialize the vtable for BINFO with the INITS. */
6754
6755 static void
6756 initialize_vtable (tree binfo, tree inits)
6757 {
6758 tree decl;
6759
6760 layout_vtable_decl (binfo, list_length (inits));
6761 decl = get_vtbl_decl_for_binfo (binfo);
6762 initialize_artificial_var (decl, inits);
6763 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6764 }
6765
6766 /* Build the VTT (virtual table table) for T.
6767 A class requires a VTT if it has virtual bases.
6768
6769 This holds
6770 1 - primary virtual pointer for complete object T
6771 2 - secondary VTTs for each direct non-virtual base of T which requires a
6772 VTT
6773 3 - secondary virtual pointers for each direct or indirect base of T which
6774 has virtual bases or is reachable via a virtual path from T.
6775 4 - secondary VTTs for each direct or indirect virtual base of T.
6776
6777 Secondary VTTs look like complete object VTTs without part 4. */
6778
6779 static void
6780 build_vtt (tree t)
6781 {
6782 tree inits;
6783 tree type;
6784 tree vtt;
6785 tree index;
6786
6787 /* Build up the initializers for the VTT. */
6788 inits = NULL_TREE;
6789 index = size_zero_node;
6790 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6791
6792 /* If we didn't need a VTT, we're done. */
6793 if (!inits)
6794 return;
6795
6796 /* Figure out the type of the VTT. */
6797 type = build_index_type (size_int (list_length (inits) - 1));
6798 type = build_cplus_array_type (const_ptr_type_node, type);
6799
6800 /* Now, build the VTT object itself. */
6801 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
6802 initialize_artificial_var (vtt, inits);
6803 /* Add the VTT to the vtables list. */
6804 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6805 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6806
6807 dump_vtt (t, vtt);
6808 }
6809
6810 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6811 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6812 and CHAIN the vtable pointer for this binfo after construction is
6813 complete. VALUE can also be another BINFO, in which case we recurse. */
6814
6815 static tree
6816 binfo_ctor_vtable (tree binfo)
6817 {
6818 tree vt;
6819
6820 while (1)
6821 {
6822 vt = BINFO_VTABLE (binfo);
6823 if (TREE_CODE (vt) == TREE_LIST)
6824 vt = TREE_VALUE (vt);
6825 if (TREE_CODE (vt) == TREE_BINFO)
6826 binfo = vt;
6827 else
6828 break;
6829 }
6830
6831 return vt;
6832 }
6833
6834 /* Data for secondary VTT initialization. */
6835 typedef struct secondary_vptr_vtt_init_data_s
6836 {
6837 /* Is this the primary VTT? */
6838 bool top_level_p;
6839
6840 /* Current index into the VTT. */
6841 tree index;
6842
6843 /* TREE_LIST of initializers built up. */
6844 tree inits;
6845
6846 /* The type being constructed by this secondary VTT. */
6847 tree type_being_constructed;
6848 } secondary_vptr_vtt_init_data;
6849
6850 /* Recursively build the VTT-initializer for BINFO (which is in the
6851 hierarchy dominated by T). INITS points to the end of the initializer
6852 list to date. INDEX is the VTT index where the next element will be
6853 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6854 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6855 for virtual bases of T. When it is not so, we build the constructor
6856 vtables for the BINFO-in-T variant. */
6857
6858 static tree *
6859 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
6860 {
6861 int i;
6862 tree b;
6863 tree init;
6864 tree secondary_vptrs;
6865 secondary_vptr_vtt_init_data data;
6866 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
6867
6868 /* We only need VTTs for subobjects with virtual bases. */
6869 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
6870 return inits;
6871
6872 /* We need to use a construction vtable if this is not the primary
6873 VTT. */
6874 if (!top_level_p)
6875 {
6876 build_ctor_vtbl_group (binfo, t);
6877
6878 /* Record the offset in the VTT where this sub-VTT can be found. */
6879 BINFO_SUBVTT_INDEX (binfo) = *index;
6880 }
6881
6882 /* Add the address of the primary vtable for the complete object. */
6883 init = binfo_ctor_vtable (binfo);
6884 *inits = build_tree_list (NULL_TREE, init);
6885 inits = &TREE_CHAIN (*inits);
6886 if (top_level_p)
6887 {
6888 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6889 BINFO_VPTR_INDEX (binfo) = *index;
6890 }
6891 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
6892
6893 /* Recursively add the secondary VTTs for non-virtual bases. */
6894 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
6895 if (!BINFO_VIRTUAL_P (b))
6896 inits = build_vtt_inits (b, t, inits, index);
6897
6898 /* Add secondary virtual pointers for all subobjects of BINFO with
6899 either virtual bases or reachable along a virtual path, except
6900 subobjects that are non-virtual primary bases. */
6901 data.top_level_p = top_level_p;
6902 data.index = *index;
6903 data.inits = NULL;
6904 data.type_being_constructed = BINFO_TYPE (binfo);
6905
6906 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
6907
6908 *index = data.index;
6909
6910 /* The secondary vptrs come back in reverse order. After we reverse
6911 them, and add the INITS, the last init will be the first element
6912 of the chain. */
6913 secondary_vptrs = data.inits;
6914 if (secondary_vptrs)
6915 {
6916 *inits = nreverse (secondary_vptrs);
6917 inits = &TREE_CHAIN (secondary_vptrs);
6918 gcc_assert (*inits == NULL_TREE);
6919 }
6920
6921 if (top_level_p)
6922 /* Add the secondary VTTs for virtual bases in inheritance graph
6923 order. */
6924 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
6925 {
6926 if (!BINFO_VIRTUAL_P (b))
6927 continue;
6928
6929 inits = build_vtt_inits (b, t, inits, index);
6930 }
6931 else
6932 /* Remove the ctor vtables we created. */
6933 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
6934
6935 return inits;
6936 }
6937
6938 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
6939 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
6940
6941 static tree
6942 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
6943 {
6944 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
6945
6946 /* We don't care about bases that don't have vtables. */
6947 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
6948 return dfs_skip_bases;
6949
6950 /* We're only interested in proper subobjects of the type being
6951 constructed. */
6952 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
6953 return NULL_TREE;
6954
6955 /* We're only interested in bases with virtual bases or reachable
6956 via a virtual path from the type being constructed. */
6957 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
6958 || binfo_via_virtual (binfo, data->type_being_constructed)))
6959 return dfs_skip_bases;
6960
6961 /* We're not interested in non-virtual primary bases. */
6962 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
6963 return NULL_TREE;
6964
6965 /* Record the index where this secondary vptr can be found. */
6966 if (data->top_level_p)
6967 {
6968 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6969 BINFO_VPTR_INDEX (binfo) = data->index;
6970
6971 if (BINFO_VIRTUAL_P (binfo))
6972 {
6973 /* It's a primary virtual base, and this is not a
6974 construction vtable. Find the base this is primary of in
6975 the inheritance graph, and use that base's vtable
6976 now. */
6977 while (BINFO_PRIMARY_P (binfo))
6978 binfo = BINFO_INHERITANCE_CHAIN (binfo);
6979 }
6980 }
6981
6982 /* Add the initializer for the secondary vptr itself. */
6983 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
6984
6985 /* Advance the vtt index. */
6986 data->index = size_binop (PLUS_EXPR, data->index,
6987 TYPE_SIZE_UNIT (ptr_type_node));
6988
6989 return NULL_TREE;
6990 }
6991
6992 /* Called from build_vtt_inits via dfs_walk. After building
6993 constructor vtables and generating the sub-vtt from them, we need
6994 to restore the BINFO_VTABLES that were scribbled on. DATA is the
6995 binfo of the base whose sub vtt was generated. */
6996
6997 static tree
6998 dfs_fixup_binfo_vtbls (tree binfo, void* data)
6999 {
7000 tree vtable = BINFO_VTABLE (binfo);
7001
7002 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7003 /* If this class has no vtable, none of its bases do. */
7004 return dfs_skip_bases;
7005
7006 if (!vtable)
7007 /* This might be a primary base, so have no vtable in this
7008 hierarchy. */
7009 return NULL_TREE;
7010
7011 /* If we scribbled the construction vtable vptr into BINFO, clear it
7012 out now. */
7013 if (TREE_CODE (vtable) == TREE_LIST
7014 && (TREE_PURPOSE (vtable) == (tree) data))
7015 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
7016
7017 return NULL_TREE;
7018 }
7019
7020 /* Build the construction vtable group for BINFO which is in the
7021 hierarchy dominated by T. */
7022
7023 static void
7024 build_ctor_vtbl_group (tree binfo, tree t)
7025 {
7026 tree list;
7027 tree type;
7028 tree vtbl;
7029 tree inits;
7030 tree id;
7031 tree vbase;
7032
7033 /* See if we've already created this construction vtable group. */
7034 id = mangle_ctor_vtbl_for_type (t, binfo);
7035 if (IDENTIFIER_GLOBAL_VALUE (id))
7036 return;
7037
7038 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
7039 /* Build a version of VTBL (with the wrong type) for use in
7040 constructing the addresses of secondary vtables in the
7041 construction vtable group. */
7042 vtbl = build_vtable (t, id, ptr_type_node);
7043 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
7044 list = build_tree_list (vtbl, NULL_TREE);
7045 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
7046 binfo, t, list);
7047
7048 /* Add the vtables for each of our virtual bases using the vbase in T
7049 binfo. */
7050 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7051 vbase;
7052 vbase = TREE_CHAIN (vbase))
7053 {
7054 tree b;
7055
7056 if (!BINFO_VIRTUAL_P (vbase))
7057 continue;
7058 b = copied_binfo (vbase, binfo);
7059
7060 accumulate_vtbl_inits (b, vbase, binfo, t, list);
7061 }
7062 inits = TREE_VALUE (list);
7063
7064 /* Figure out the type of the construction vtable. */
7065 type = build_index_type (size_int (list_length (inits) - 1));
7066 type = build_cplus_array_type (vtable_entry_type, type);
7067 layout_type (type);
7068 TREE_TYPE (vtbl) = type;
7069 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
7070 layout_decl (vtbl, 0);
7071
7072 /* Initialize the construction vtable. */
7073 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
7074 initialize_artificial_var (vtbl, inits);
7075 dump_vtable (t, binfo, vtbl);
7076 }
7077
7078 /* Add the vtbl initializers for BINFO (and its bases other than
7079 non-virtual primaries) to the list of INITS. BINFO is in the
7080 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
7081 the constructor the vtbl inits should be accumulated for. (If this
7082 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
7083 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
7084 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
7085 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
7086 but are not necessarily the same in terms of layout. */
7087
7088 static void
7089 accumulate_vtbl_inits (tree binfo,
7090 tree orig_binfo,
7091 tree rtti_binfo,
7092 tree t,
7093 tree inits)
7094 {
7095 int i;
7096 tree base_binfo;
7097 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7098
7099 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
7100
7101 /* If it doesn't have a vptr, we don't do anything. */
7102 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7103 return;
7104
7105 /* If we're building a construction vtable, we're not interested in
7106 subobjects that don't require construction vtables. */
7107 if (ctor_vtbl_p
7108 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7109 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
7110 return;
7111
7112 /* Build the initializers for the BINFO-in-T vtable. */
7113 TREE_VALUE (inits)
7114 = chainon (TREE_VALUE (inits),
7115 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
7116 rtti_binfo, t, inits));
7117
7118 /* Walk the BINFO and its bases. We walk in preorder so that as we
7119 initialize each vtable we can figure out at what offset the
7120 secondary vtable lies from the primary vtable. We can't use
7121 dfs_walk here because we need to iterate through bases of BINFO
7122 and RTTI_BINFO simultaneously. */
7123 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7124 {
7125 /* Skip virtual bases. */
7126 if (BINFO_VIRTUAL_P (base_binfo))
7127 continue;
7128 accumulate_vtbl_inits (base_binfo,
7129 BINFO_BASE_BINFO (orig_binfo, i),
7130 rtti_binfo, t,
7131 inits);
7132 }
7133 }
7134
7135 /* Called from accumulate_vtbl_inits. Returns the initializers for
7136 the BINFO vtable. */
7137
7138 static tree
7139 dfs_accumulate_vtbl_inits (tree binfo,
7140 tree orig_binfo,
7141 tree rtti_binfo,
7142 tree t,
7143 tree l)
7144 {
7145 tree inits = NULL_TREE;
7146 tree vtbl = NULL_TREE;
7147 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7148
7149 if (ctor_vtbl_p
7150 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7151 {
7152 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7153 primary virtual base. If it is not the same primary in
7154 the hierarchy of T, we'll need to generate a ctor vtable
7155 for it, to place at its location in T. If it is the same
7156 primary, we still need a VTT entry for the vtable, but it
7157 should point to the ctor vtable for the base it is a
7158 primary for within the sub-hierarchy of RTTI_BINFO.
7159
7160 There are three possible cases:
7161
7162 1) We are in the same place.
7163 2) We are a primary base within a lost primary virtual base of
7164 RTTI_BINFO.
7165 3) We are primary to something not a base of RTTI_BINFO. */
7166
7167 tree b;
7168 tree last = NULL_TREE;
7169
7170 /* First, look through the bases we are primary to for RTTI_BINFO
7171 or a virtual base. */
7172 b = binfo;
7173 while (BINFO_PRIMARY_P (b))
7174 {
7175 b = BINFO_INHERITANCE_CHAIN (b);
7176 last = b;
7177 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7178 goto found;
7179 }
7180 /* If we run out of primary links, keep looking down our
7181 inheritance chain; we might be an indirect primary. */
7182 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7183 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7184 break;
7185 found:
7186
7187 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7188 base B and it is a base of RTTI_BINFO, this is case 2. In
7189 either case, we share our vtable with LAST, i.e. the
7190 derived-most base within B of which we are a primary. */
7191 if (b == rtti_binfo
7192 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7193 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7194 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7195 binfo_ctor_vtable after everything's been set up. */
7196 vtbl = last;
7197
7198 /* Otherwise, this is case 3 and we get our own. */
7199 }
7200 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7201 return inits;
7202
7203 if (!vtbl)
7204 {
7205 tree index;
7206 int non_fn_entries;
7207
7208 /* Compute the initializer for this vtable. */
7209 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7210 &non_fn_entries);
7211
7212 /* Figure out the position to which the VPTR should point. */
7213 vtbl = TREE_PURPOSE (l);
7214 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7215 index = size_binop (PLUS_EXPR,
7216 size_int (non_fn_entries),
7217 size_int (list_length (TREE_VALUE (l))));
7218 index = size_binop (MULT_EXPR,
7219 TYPE_SIZE_UNIT (vtable_entry_type),
7220 index);
7221 vtbl = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7222 }
7223
7224 if (ctor_vtbl_p)
7225 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7226 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7227 straighten this out. */
7228 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7229 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7230 inits = NULL_TREE;
7231 else
7232 /* For an ordinary vtable, set BINFO_VTABLE. */
7233 BINFO_VTABLE (binfo) = vtbl;
7234
7235 return inits;
7236 }
7237
7238 static GTY(()) tree abort_fndecl_addr;
7239
7240 /* Construct the initializer for BINFO's virtual function table. BINFO
7241 is part of the hierarchy dominated by T. If we're building a
7242 construction vtable, the ORIG_BINFO is the binfo we should use to
7243 find the actual function pointers to put in the vtable - but they
7244 can be overridden on the path to most-derived in the graph that
7245 ORIG_BINFO belongs. Otherwise,
7246 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7247 BINFO that should be indicated by the RTTI information in the
7248 vtable; it will be a base class of T, rather than T itself, if we
7249 are building a construction vtable.
7250
7251 The value returned is a TREE_LIST suitable for wrapping in a
7252 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7253 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7254 number of non-function entries in the vtable.
7255
7256 It might seem that this function should never be called with a
7257 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7258 base is always subsumed by a derived class vtable. However, when
7259 we are building construction vtables, we do build vtables for
7260 primary bases; we need these while the primary base is being
7261 constructed. */
7262
7263 static tree
7264 build_vtbl_initializer (tree binfo,
7265 tree orig_binfo,
7266 tree t,
7267 tree rtti_binfo,
7268 int* non_fn_entries_p)
7269 {
7270 tree v, b;
7271 tree vfun_inits;
7272 vtbl_init_data vid;
7273 unsigned ix;
7274 tree vbinfo;
7275 VEC(tree,gc) *vbases;
7276
7277 /* Initialize VID. */
7278 memset (&vid, 0, sizeof (vid));
7279 vid.binfo = binfo;
7280 vid.derived = t;
7281 vid.rtti_binfo = rtti_binfo;
7282 vid.last_init = &vid.inits;
7283 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7284 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7285 vid.generate_vcall_entries = true;
7286 /* The first vbase or vcall offset is at index -3 in the vtable. */
7287 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7288
7289 /* Add entries to the vtable for RTTI. */
7290 build_rtti_vtbl_entries (binfo, &vid);
7291
7292 /* Create an array for keeping track of the functions we've
7293 processed. When we see multiple functions with the same
7294 signature, we share the vcall offsets. */
7295 vid.fns = VEC_alloc (tree, gc, 32);
7296 /* Add the vcall and vbase offset entries. */
7297 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7298
7299 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7300 build_vbase_offset_vtbl_entries. */
7301 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7302 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7303 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7304
7305 /* If the target requires padding between data entries, add that now. */
7306 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7307 {
7308 tree cur, *prev;
7309
7310 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7311 {
7312 tree add = cur;
7313 int i;
7314
7315 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7316 add = tree_cons (NULL_TREE,
7317 build1 (NOP_EXPR, vtable_entry_type,
7318 null_pointer_node),
7319 add);
7320 *prev = add;
7321 }
7322 }
7323
7324 if (non_fn_entries_p)
7325 *non_fn_entries_p = list_length (vid.inits);
7326
7327 /* Go through all the ordinary virtual functions, building up
7328 initializers. */
7329 vfun_inits = NULL_TREE;
7330 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7331 {
7332 tree delta;
7333 tree vcall_index;
7334 tree fn, fn_original;
7335 tree init = NULL_TREE;
7336
7337 fn = BV_FN (v);
7338 fn_original = fn;
7339 if (DECL_THUNK_P (fn))
7340 {
7341 if (!DECL_NAME (fn))
7342 finish_thunk (fn);
7343 if (THUNK_ALIAS (fn))
7344 {
7345 fn = THUNK_ALIAS (fn);
7346 BV_FN (v) = fn;
7347 }
7348 fn_original = THUNK_TARGET (fn);
7349 }
7350
7351 /* If the only definition of this function signature along our
7352 primary base chain is from a lost primary, this vtable slot will
7353 never be used, so just zero it out. This is important to avoid
7354 requiring extra thunks which cannot be generated with the function.
7355
7356 We first check this in update_vtable_entry_for_fn, so we handle
7357 restored primary bases properly; we also need to do it here so we
7358 zero out unused slots in ctor vtables, rather than filling themff
7359 with erroneous values (though harmless, apart from relocation
7360 costs). */
7361 for (b = binfo; ; b = get_primary_binfo (b))
7362 {
7363 /* We found a defn before a lost primary; go ahead as normal. */
7364 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7365 break;
7366
7367 /* The nearest definition is from a lost primary; clear the
7368 slot. */
7369 if (BINFO_LOST_PRIMARY_P (b))
7370 {
7371 init = size_zero_node;
7372 break;
7373 }
7374 }
7375
7376 if (! init)
7377 {
7378 /* Pull the offset for `this', and the function to call, out of
7379 the list. */
7380 delta = BV_DELTA (v);
7381 vcall_index = BV_VCALL_INDEX (v);
7382
7383 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7384 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7385
7386 /* You can't call an abstract virtual function; it's abstract.
7387 So, we replace these functions with __pure_virtual. */
7388 if (DECL_PURE_VIRTUAL_P (fn_original))
7389 {
7390 fn = abort_fndecl;
7391 if (abort_fndecl_addr == NULL)
7392 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7393 init = abort_fndecl_addr;
7394 }
7395 else
7396 {
7397 if (!integer_zerop (delta) || vcall_index)
7398 {
7399 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7400 if (!DECL_NAME (fn))
7401 finish_thunk (fn);
7402 }
7403 /* Take the address of the function, considering it to be of an
7404 appropriate generic type. */
7405 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7406 }
7407 }
7408
7409 /* And add it to the chain of initializers. */
7410 if (TARGET_VTABLE_USES_DESCRIPTORS)
7411 {
7412 int i;
7413 if (init == size_zero_node)
7414 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7415 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7416 else
7417 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7418 {
7419 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7420 TREE_OPERAND (init, 0),
7421 build_int_cst (NULL_TREE, i));
7422 TREE_CONSTANT (fdesc) = 1;
7423 TREE_INVARIANT (fdesc) = 1;
7424
7425 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7426 }
7427 }
7428 else
7429 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7430 }
7431
7432 /* The initializers for virtual functions were built up in reverse
7433 order; straighten them out now. */
7434 vfun_inits = nreverse (vfun_inits);
7435
7436 /* The negative offset initializers are also in reverse order. */
7437 vid.inits = nreverse (vid.inits);
7438
7439 /* Chain the two together. */
7440 return chainon (vid.inits, vfun_inits);
7441 }
7442
7443 /* Adds to vid->inits the initializers for the vbase and vcall
7444 offsets in BINFO, which is in the hierarchy dominated by T. */
7445
7446 static void
7447 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7448 {
7449 tree b;
7450
7451 /* If this is a derived class, we must first create entries
7452 corresponding to the primary base class. */
7453 b = get_primary_binfo (binfo);
7454 if (b)
7455 build_vcall_and_vbase_vtbl_entries (b, vid);
7456
7457 /* Add the vbase entries for this base. */
7458 build_vbase_offset_vtbl_entries (binfo, vid);
7459 /* Add the vcall entries for this base. */
7460 build_vcall_offset_vtbl_entries (binfo, vid);
7461 }
7462
7463 /* Returns the initializers for the vbase offset entries in the vtable
7464 for BINFO (which is part of the class hierarchy dominated by T), in
7465 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7466 where the next vbase offset will go. */
7467
7468 static void
7469 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7470 {
7471 tree vbase;
7472 tree t;
7473 tree non_primary_binfo;
7474
7475 /* If there are no virtual baseclasses, then there is nothing to
7476 do. */
7477 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7478 return;
7479
7480 t = vid->derived;
7481
7482 /* We might be a primary base class. Go up the inheritance hierarchy
7483 until we find the most derived class of which we are a primary base:
7484 it is the offset of that which we need to use. */
7485 non_primary_binfo = binfo;
7486 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7487 {
7488 tree b;
7489
7490 /* If we have reached a virtual base, then it must be a primary
7491 base (possibly multi-level) of vid->binfo, or we wouldn't
7492 have called build_vcall_and_vbase_vtbl_entries for it. But it
7493 might be a lost primary, so just skip down to vid->binfo. */
7494 if (BINFO_VIRTUAL_P (non_primary_binfo))
7495 {
7496 non_primary_binfo = vid->binfo;
7497 break;
7498 }
7499
7500 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7501 if (get_primary_binfo (b) != non_primary_binfo)
7502 break;
7503 non_primary_binfo = b;
7504 }
7505
7506 /* Go through the virtual bases, adding the offsets. */
7507 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7508 vbase;
7509 vbase = TREE_CHAIN (vbase))
7510 {
7511 tree b;
7512 tree delta;
7513
7514 if (!BINFO_VIRTUAL_P (vbase))
7515 continue;
7516
7517 /* Find the instance of this virtual base in the complete
7518 object. */
7519 b = copied_binfo (vbase, binfo);
7520
7521 /* If we've already got an offset for this virtual base, we
7522 don't need another one. */
7523 if (BINFO_VTABLE_PATH_MARKED (b))
7524 continue;
7525 BINFO_VTABLE_PATH_MARKED (b) = 1;
7526
7527 /* Figure out where we can find this vbase offset. */
7528 delta = size_binop (MULT_EXPR,
7529 vid->index,
7530 convert (ssizetype,
7531 TYPE_SIZE_UNIT (vtable_entry_type)));
7532 if (vid->primary_vtbl_p)
7533 BINFO_VPTR_FIELD (b) = delta;
7534
7535 if (binfo != TYPE_BINFO (t))
7536 /* The vbase offset had better be the same. */
7537 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7538
7539 /* The next vbase will come at a more negative offset. */
7540 vid->index = size_binop (MINUS_EXPR, vid->index,
7541 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7542
7543 /* The initializer is the delta from BINFO to this virtual base.
7544 The vbase offsets go in reverse inheritance-graph order, and
7545 we are walking in inheritance graph order so these end up in
7546 the right order. */
7547 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7548
7549 *vid->last_init
7550 = build_tree_list (NULL_TREE,
7551 fold_build1 (NOP_EXPR,
7552 vtable_entry_type,
7553 delta));
7554 vid->last_init = &TREE_CHAIN (*vid->last_init);
7555 }
7556 }
7557
7558 /* Adds the initializers for the vcall offset entries in the vtable
7559 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7560 to VID->INITS. */
7561
7562 static void
7563 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7564 {
7565 /* We only need these entries if this base is a virtual base. We
7566 compute the indices -- but do not add to the vtable -- when
7567 building the main vtable for a class. */
7568 if (binfo == TYPE_BINFO (vid->derived)
7569 || (BINFO_VIRTUAL_P (binfo)
7570 /* If BINFO is RTTI_BINFO, then (since BINFO does not
7571 correspond to VID->DERIVED), we are building a primary
7572 construction virtual table. Since this is a primary
7573 virtual table, we do not need the vcall offsets for
7574 BINFO. */
7575 && binfo != vid->rtti_binfo))
7576 {
7577 /* We need a vcall offset for each of the virtual functions in this
7578 vtable. For example:
7579
7580 class A { virtual void f (); };
7581 class B1 : virtual public A { virtual void f (); };
7582 class B2 : virtual public A { virtual void f (); };
7583 class C: public B1, public B2 { virtual void f (); };
7584
7585 A C object has a primary base of B1, which has a primary base of A. A
7586 C also has a secondary base of B2, which no longer has a primary base
7587 of A. So the B2-in-C construction vtable needs a secondary vtable for
7588 A, which will adjust the A* to a B2* to call f. We have no way of
7589 knowing what (or even whether) this offset will be when we define B2,
7590 so we store this "vcall offset" in the A sub-vtable and look it up in
7591 a "virtual thunk" for B2::f.
7592
7593 We need entries for all the functions in our primary vtable and
7594 in our non-virtual bases' secondary vtables. */
7595 vid->vbase = binfo;
7596 /* If we are just computing the vcall indices -- but do not need
7597 the actual entries -- not that. */
7598 if (!BINFO_VIRTUAL_P (binfo))
7599 vid->generate_vcall_entries = false;
7600 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7601 add_vcall_offset_vtbl_entries_r (binfo, vid);
7602 }
7603 }
7604
7605 /* Build vcall offsets, starting with those for BINFO. */
7606
7607 static void
7608 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7609 {
7610 int i;
7611 tree primary_binfo;
7612 tree base_binfo;
7613
7614 /* Don't walk into virtual bases -- except, of course, for the
7615 virtual base for which we are building vcall offsets. Any
7616 primary virtual base will have already had its offsets generated
7617 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7618 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7619 return;
7620
7621 /* If BINFO has a primary base, process it first. */
7622 primary_binfo = get_primary_binfo (binfo);
7623 if (primary_binfo)
7624 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7625
7626 /* Add BINFO itself to the list. */
7627 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7628
7629 /* Scan the non-primary bases of BINFO. */
7630 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7631 if (base_binfo != primary_binfo)
7632 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7633 }
7634
7635 /* Called from build_vcall_offset_vtbl_entries_r. */
7636
7637 static void
7638 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7639 {
7640 /* Make entries for the rest of the virtuals. */
7641 if (abi_version_at_least (2))
7642 {
7643 tree orig_fn;
7644
7645 /* The ABI requires that the methods be processed in declaration
7646 order. G++ 3.2 used the order in the vtable. */
7647 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7648 orig_fn;
7649 orig_fn = TREE_CHAIN (orig_fn))
7650 if (DECL_VINDEX (orig_fn))
7651 add_vcall_offset (orig_fn, binfo, vid);
7652 }
7653 else
7654 {
7655 tree derived_virtuals;
7656 tree base_virtuals;
7657 tree orig_virtuals;
7658 /* If BINFO is a primary base, the most derived class which has
7659 BINFO as a primary base; otherwise, just BINFO. */
7660 tree non_primary_binfo;
7661
7662 /* We might be a primary base class. Go up the inheritance hierarchy
7663 until we find the most derived class of which we are a primary base:
7664 it is the BINFO_VIRTUALS there that we need to consider. */
7665 non_primary_binfo = binfo;
7666 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7667 {
7668 tree b;
7669
7670 /* If we have reached a virtual base, then it must be vid->vbase,
7671 because we ignore other virtual bases in
7672 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7673 base (possibly multi-level) of vid->binfo, or we wouldn't
7674 have called build_vcall_and_vbase_vtbl_entries for it. But it
7675 might be a lost primary, so just skip down to vid->binfo. */
7676 if (BINFO_VIRTUAL_P (non_primary_binfo))
7677 {
7678 gcc_assert (non_primary_binfo == vid->vbase);
7679 non_primary_binfo = vid->binfo;
7680 break;
7681 }
7682
7683 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7684 if (get_primary_binfo (b) != non_primary_binfo)
7685 break;
7686 non_primary_binfo = b;
7687 }
7688
7689 if (vid->ctor_vtbl_p)
7690 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7691 where rtti_binfo is the most derived type. */
7692 non_primary_binfo
7693 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7694
7695 for (base_virtuals = BINFO_VIRTUALS (binfo),
7696 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7697 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7698 base_virtuals;
7699 base_virtuals = TREE_CHAIN (base_virtuals),
7700 derived_virtuals = TREE_CHAIN (derived_virtuals),
7701 orig_virtuals = TREE_CHAIN (orig_virtuals))
7702 {
7703 tree orig_fn;
7704
7705 /* Find the declaration that originally caused this function to
7706 be present in BINFO_TYPE (binfo). */
7707 orig_fn = BV_FN (orig_virtuals);
7708
7709 /* When processing BINFO, we only want to generate vcall slots for
7710 function slots introduced in BINFO. So don't try to generate
7711 one if the function isn't even defined in BINFO. */
7712 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7713 continue;
7714
7715 add_vcall_offset (orig_fn, binfo, vid);
7716 }
7717 }
7718 }
7719
7720 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7721
7722 static void
7723 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7724 {
7725 size_t i;
7726 tree vcall_offset;
7727 tree derived_entry;
7728
7729 /* If there is already an entry for a function with the same
7730 signature as FN, then we do not need a second vcall offset.
7731 Check the list of functions already present in the derived
7732 class vtable. */
7733 for (i = 0; VEC_iterate (tree, vid->fns, i, derived_entry); ++i)
7734 {
7735 if (same_signature_p (derived_entry, orig_fn)
7736 /* We only use one vcall offset for virtual destructors,
7737 even though there are two virtual table entries. */
7738 || (DECL_DESTRUCTOR_P (derived_entry)
7739 && DECL_DESTRUCTOR_P (orig_fn)))
7740 return;
7741 }
7742
7743 /* If we are building these vcall offsets as part of building
7744 the vtable for the most derived class, remember the vcall
7745 offset. */
7746 if (vid->binfo == TYPE_BINFO (vid->derived))
7747 {
7748 tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
7749 CLASSTYPE_VCALL_INDICES (vid->derived),
7750 NULL);
7751 elt->purpose = orig_fn;
7752 elt->value = vid->index;
7753 }
7754
7755 /* The next vcall offset will be found at a more negative
7756 offset. */
7757 vid->index = size_binop (MINUS_EXPR, vid->index,
7758 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7759
7760 /* Keep track of this function. */
7761 VEC_safe_push (tree, gc, vid->fns, orig_fn);
7762
7763 if (vid->generate_vcall_entries)
7764 {
7765 tree base;
7766 tree fn;
7767
7768 /* Find the overriding function. */
7769 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7770 if (fn == error_mark_node)
7771 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7772 integer_zero_node);
7773 else
7774 {
7775 base = TREE_VALUE (fn);
7776
7777 /* The vbase we're working on is a primary base of
7778 vid->binfo. But it might be a lost primary, so its
7779 BINFO_OFFSET might be wrong, so we just use the
7780 BINFO_OFFSET from vid->binfo. */
7781 vcall_offset = size_diffop (BINFO_OFFSET (base),
7782 BINFO_OFFSET (vid->binfo));
7783 vcall_offset = fold_build1 (NOP_EXPR, vtable_entry_type,
7784 vcall_offset);
7785 }
7786 /* Add the initializer to the vtable. */
7787 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7788 vid->last_init = &TREE_CHAIN (*vid->last_init);
7789 }
7790 }
7791
7792 /* Return vtbl initializers for the RTTI entries corresponding to the
7793 BINFO's vtable. The RTTI entries should indicate the object given
7794 by VID->rtti_binfo. */
7795
7796 static void
7797 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7798 {
7799 tree b;
7800 tree t;
7801 tree basetype;
7802 tree offset;
7803 tree decl;
7804 tree init;
7805
7806 basetype = BINFO_TYPE (binfo);
7807 t = BINFO_TYPE (vid->rtti_binfo);
7808
7809 /* To find the complete object, we will first convert to our most
7810 primary base, and then add the offset in the vtbl to that value. */
7811 b = binfo;
7812 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
7813 && !BINFO_LOST_PRIMARY_P (b))
7814 {
7815 tree primary_base;
7816
7817 primary_base = get_primary_binfo (b);
7818 gcc_assert (BINFO_PRIMARY_P (primary_base)
7819 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
7820 b = primary_base;
7821 }
7822 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
7823
7824 /* The second entry is the address of the typeinfo object. */
7825 if (flag_rtti)
7826 decl = build_address (get_tinfo_decl (t));
7827 else
7828 decl = integer_zero_node;
7829
7830 /* Convert the declaration to a type that can be stored in the
7831 vtable. */
7832 init = build_nop (vfunc_ptr_type_node, decl);
7833 *vid->last_init = build_tree_list (NULL_TREE, init);
7834 vid->last_init = &TREE_CHAIN (*vid->last_init);
7835
7836 /* Add the offset-to-top entry. It comes earlier in the vtable than
7837 the typeinfo entry. Convert the offset to look like a
7838 function pointer, so that we can put it in the vtable. */
7839 init = build_nop (vfunc_ptr_type_node, offset);
7840 *vid->last_init = build_tree_list (NULL_TREE, init);
7841 vid->last_init = &TREE_CHAIN (*vid->last_init);
7842 }
7843
7844 /* Fold a OBJ_TYPE_REF expression to the address of a function.
7845 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
7846
7847 tree
7848 cp_fold_obj_type_ref (tree ref, tree known_type)
7849 {
7850 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
7851 HOST_WIDE_INT i = 0;
7852 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
7853 tree fndecl;
7854
7855 while (i != index)
7856 {
7857 i += (TARGET_VTABLE_USES_DESCRIPTORS
7858 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
7859 v = TREE_CHAIN (v);
7860 }
7861
7862 fndecl = BV_FN (v);
7863
7864 #ifdef ENABLE_CHECKING
7865 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
7866 DECL_VINDEX (fndecl)));
7867 #endif
7868
7869 cgraph_node (fndecl)->local.vtable_method = true;
7870
7871 return build_address (fndecl);
7872 }
7873
7874 #include "gt-cp-class.h"