re PR c++/56358 ([C++11] Erroneous interaction of typedef and inherited constructor...
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "cp-tree.h"
30 #include "flags.h"
31 #include "toplev.h"
32 #include "target.h"
33 #include "convert.h"
34 #include "cgraph.h"
35 #include "dumpfile.h"
36 #include "splay-tree.h"
37 #include "pointer-set.h"
38 #include "hash-table.h"
39
40 /* The number of nested classes being processed. If we are not in the
41 scope of any class, this is zero. */
42
43 int current_class_depth;
44
45 /* In order to deal with nested classes, we keep a stack of classes.
46 The topmost entry is the innermost class, and is the entry at index
47 CURRENT_CLASS_DEPTH */
48
49 typedef struct class_stack_node {
50 /* The name of the class. */
51 tree name;
52
53 /* The _TYPE node for the class. */
54 tree type;
55
56 /* The access specifier pending for new declarations in the scope of
57 this class. */
58 tree access;
59
60 /* If were defining TYPE, the names used in this class. */
61 splay_tree names_used;
62
63 /* Nonzero if this class is no longer open, because of a call to
64 push_to_top_level. */
65 size_t hidden;
66 }* class_stack_node_t;
67
68 typedef struct vtbl_init_data_s
69 {
70 /* The base for which we're building initializers. */
71 tree binfo;
72 /* The type of the most-derived type. */
73 tree derived;
74 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
75 unless ctor_vtbl_p is true. */
76 tree rtti_binfo;
77 /* The negative-index vtable initializers built up so far. These
78 are in order from least negative index to most negative index. */
79 vec<constructor_elt, va_gc> *inits;
80 /* The binfo for the virtual base for which we're building
81 vcall offset initializers. */
82 tree vbase;
83 /* The functions in vbase for which we have already provided vcall
84 offsets. */
85 vec<tree, va_gc> *fns;
86 /* The vtable index of the next vcall or vbase offset. */
87 tree index;
88 /* Nonzero if we are building the initializer for the primary
89 vtable. */
90 int primary_vtbl_p;
91 /* Nonzero if we are building the initializer for a construction
92 vtable. */
93 int ctor_vtbl_p;
94 /* True when adding vcall offset entries to the vtable. False when
95 merely computing the indices. */
96 bool generate_vcall_entries;
97 } vtbl_init_data;
98
99 /* The type of a function passed to walk_subobject_offsets. */
100 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
101
102 /* The stack itself. This is a dynamically resized array. The
103 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
104 static int current_class_stack_size;
105 static class_stack_node_t current_class_stack;
106
107 /* The size of the largest empty class seen in this translation unit. */
108 static GTY (()) tree sizeof_biggest_empty_class;
109
110 /* An array of all local classes present in this translation unit, in
111 declaration order. */
112 vec<tree, va_gc> *local_classes;
113
114 static tree get_vfield_name (tree);
115 static void finish_struct_anon (tree);
116 static tree get_vtable_name (tree);
117 static tree get_basefndecls (tree, tree);
118 static int build_primary_vtable (tree, tree);
119 static int build_secondary_vtable (tree);
120 static void finish_vtbls (tree);
121 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
122 static void finish_struct_bits (tree);
123 static int alter_access (tree, tree, tree);
124 static void handle_using_decl (tree, tree);
125 static tree dfs_modify_vtables (tree, void *);
126 static tree modify_all_vtables (tree, tree);
127 static void determine_primary_bases (tree);
128 static void finish_struct_methods (tree);
129 static void maybe_warn_about_overly_private_class (tree);
130 static int method_name_cmp (const void *, const void *);
131 static int resort_method_name_cmp (const void *, const void *);
132 static void add_implicitly_declared_members (tree, tree*, int, int);
133 static tree fixed_type_or_null (tree, int *, int *);
134 static tree build_simple_base_path (tree expr, tree binfo);
135 static tree build_vtbl_ref_1 (tree, tree);
136 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
137 vec<constructor_elt, va_gc> **);
138 static int count_fields (tree);
139 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
140 static void insert_into_classtype_sorted_fields (tree, tree, int);
141 static bool check_bitfield_decl (tree);
142 static void check_field_decl (tree, tree, int *, int *, int *);
143 static void check_field_decls (tree, tree *, int *, int *);
144 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
145 static void build_base_fields (record_layout_info, splay_tree, tree *);
146 static void check_methods (tree);
147 static void remove_zero_width_bit_fields (tree);
148 static void check_bases (tree, int *, int *);
149 static void check_bases_and_members (tree);
150 static tree create_vtable_ptr (tree, tree *);
151 static void include_empty_classes (record_layout_info);
152 static void layout_class_type (tree, tree *);
153 static void propagate_binfo_offsets (tree, tree);
154 static void layout_virtual_bases (record_layout_info, splay_tree);
155 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
156 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
157 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
158 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset (tree, tree, vtbl_init_data *);
160 static void layout_vtable_decl (tree, int);
161 static tree dfs_find_final_overrider_pre (tree, void *);
162 static tree dfs_find_final_overrider_post (tree, void *);
163 static tree find_final_overrider (tree, tree, tree);
164 static int make_new_vtable (tree, tree);
165 static tree get_primary_binfo (tree);
166 static int maybe_indent_hierarchy (FILE *, int, int);
167 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
168 static void dump_class_hierarchy (tree);
169 static void dump_class_hierarchy_1 (FILE *, int, tree);
170 static void dump_array (FILE *, tree);
171 static void dump_vtable (tree, tree, tree);
172 static void dump_vtt (tree, tree);
173 static void dump_thunk (FILE *, int, tree);
174 static tree build_vtable (tree, tree, tree);
175 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
176 static void layout_nonempty_base_or_field (record_layout_info,
177 tree, tree, splay_tree);
178 static tree end_of_class (tree, int);
179 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
180 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
181 vec<constructor_elt, va_gc> **);
182 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
183 vec<constructor_elt, va_gc> **);
184 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
185 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
186 static void clone_constructors_and_destructors (tree);
187 static tree build_clone (tree, tree);
188 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
189 static void build_ctor_vtbl_group (tree, tree);
190 static void build_vtt (tree);
191 static tree binfo_ctor_vtable (tree);
192 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
193 tree *);
194 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
195 static tree dfs_fixup_binfo_vtbls (tree, void *);
196 static int record_subobject_offset (tree, tree, splay_tree);
197 static int check_subobject_offset (tree, tree, splay_tree);
198 static int walk_subobject_offsets (tree, subobject_offset_fn,
199 tree, splay_tree, tree, int);
200 static void record_subobject_offsets (tree, tree, splay_tree, bool);
201 static int layout_conflict_p (tree, tree, splay_tree, int);
202 static int splay_tree_compare_integer_csts (splay_tree_key k1,
203 splay_tree_key k2);
204 static void warn_about_ambiguous_bases (tree);
205 static bool type_requires_array_cookie (tree);
206 static bool contains_empty_class_p (tree);
207 static bool base_derived_from (tree, tree);
208 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
209 static tree end_of_base (tree);
210 static tree get_vcall_index (tree, tree);
211
212 /* Variables shared between class.c and call.c. */
213
214 int n_vtables = 0;
215 int n_vtable_entries = 0;
216 int n_vtable_searches = 0;
217 int n_vtable_elems = 0;
218 int n_convert_harshness = 0;
219 int n_compute_conversion_costs = 0;
220 int n_inner_fields_searched = 0;
221
222 /* Convert to or from a base subobject. EXPR is an expression of type
223 `A' or `A*', an expression of type `B' or `B*' is returned. To
224 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
225 the B base instance within A. To convert base A to derived B, CODE
226 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
227 In this latter case, A must not be a morally virtual base of B.
228 NONNULL is true if EXPR is known to be non-NULL (this is only
229 needed when EXPR is of pointer type). CV qualifiers are preserved
230 from EXPR. */
231
232 tree
233 build_base_path (enum tree_code code,
234 tree expr,
235 tree binfo,
236 int nonnull,
237 tsubst_flags_t complain)
238 {
239 tree v_binfo = NULL_TREE;
240 tree d_binfo = NULL_TREE;
241 tree probe;
242 tree offset;
243 tree target_type;
244 tree null_test = NULL;
245 tree ptr_target_type;
246 int fixed_type_p;
247 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
248 bool has_empty = false;
249 bool virtual_access;
250
251 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
252 return error_mark_node;
253
254 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
255 {
256 d_binfo = probe;
257 if (is_empty_class (BINFO_TYPE (probe)))
258 has_empty = true;
259 if (!v_binfo && BINFO_VIRTUAL_P (probe))
260 v_binfo = probe;
261 }
262
263 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
264 if (want_pointer)
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
266
267 if (code == PLUS_EXPR
268 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
269 {
270 /* This can happen when adjust_result_of_qualified_name_lookup can't
271 find a unique base binfo in a call to a member function. We
272 couldn't give the diagnostic then since we might have been calling
273 a static member function, so we do it now. */
274 if (complain & tf_error)
275 {
276 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
277 ba_unique, NULL, complain);
278 gcc_assert (base == error_mark_node);
279 }
280 return error_mark_node;
281 }
282
283 gcc_assert ((code == MINUS_EXPR
284 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
285 || code == PLUS_EXPR);
286
287 if (binfo == d_binfo)
288 /* Nothing to do. */
289 return expr;
290
291 if (code == MINUS_EXPR && v_binfo)
292 {
293 if (complain & tf_error)
294 error ("cannot convert from base %qT to derived type %qT via "
295 "virtual base %qT", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
296 BINFO_TYPE (v_binfo));
297 return error_mark_node;
298 }
299
300 if (!want_pointer)
301 /* This must happen before the call to save_expr. */
302 expr = cp_build_addr_expr (expr, complain);
303 else
304 expr = mark_rvalue_use (expr);
305
306 offset = BINFO_OFFSET (binfo);
307 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
308 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
309 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
310 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
311 expression returned matches the input. */
312 target_type = cp_build_qualified_type
313 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
314 ptr_target_type = build_pointer_type (target_type);
315
316 /* Do we need to look in the vtable for the real offset? */
317 virtual_access = (v_binfo && fixed_type_p <= 0);
318
319 /* Don't bother with the calculations inside sizeof; they'll ICE if the
320 source type is incomplete and the pointer value doesn't matter. In a
321 template (even in fold_non_dependent_expr), we don't have vtables set
322 up properly yet, and the value doesn't matter there either; we're just
323 interested in the result of overload resolution. */
324 if (cp_unevaluated_operand != 0
325 || in_template_function ())
326 {
327 expr = build_nop (ptr_target_type, expr);
328 if (!want_pointer)
329 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
330 return expr;
331 }
332
333 /* If we're in an NSDMI, we don't have the full constructor context yet
334 that we need for converting to a virtual base, so just build a stub
335 CONVERT_EXPR and expand it later in bot_replace. */
336 if (virtual_access && fixed_type_p < 0
337 && current_scope () != current_function_decl)
338 {
339 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
340 CONVERT_EXPR_VBASE_PATH (expr) = true;
341 if (!want_pointer)
342 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
343 return expr;
344 }
345
346 /* Do we need to check for a null pointer? */
347 if (want_pointer && !nonnull)
348 {
349 /* If we know the conversion will not actually change the value
350 of EXPR, then we can avoid testing the expression for NULL.
351 We have to avoid generating a COMPONENT_REF for a base class
352 field, because other parts of the compiler know that such
353 expressions are always non-NULL. */
354 if (!virtual_access && integer_zerop (offset))
355 return build_nop (ptr_target_type, expr);
356 null_test = error_mark_node;
357 }
358
359 /* Protect against multiple evaluation if necessary. */
360 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
361 expr = save_expr (expr);
362
363 /* Now that we've saved expr, build the real null test. */
364 if (null_test)
365 {
366 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
367 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
368 expr, zero);
369 }
370
371 /* If this is a simple base reference, express it as a COMPONENT_REF. */
372 if (code == PLUS_EXPR && !virtual_access
373 /* We don't build base fields for empty bases, and they aren't very
374 interesting to the optimizers anyway. */
375 && !has_empty)
376 {
377 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
378 expr = build_simple_base_path (expr, binfo);
379 if (want_pointer)
380 expr = build_address (expr);
381 target_type = TREE_TYPE (expr);
382 goto out;
383 }
384
385 if (virtual_access)
386 {
387 /* Going via virtual base V_BINFO. We need the static offset
388 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
389 V_BINFO. That offset is an entry in D_BINFO's vtable. */
390 tree v_offset;
391
392 if (fixed_type_p < 0 && in_base_initializer)
393 {
394 /* In a base member initializer, we cannot rely on the
395 vtable being set up. We have to indirect via the
396 vtt_parm. */
397 tree t;
398
399 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
400 t = build_pointer_type (t);
401 v_offset = convert (t, current_vtt_parm);
402 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
403 }
404 else
405 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
406 complain),
407 TREE_TYPE (TREE_TYPE (expr)));
408
409 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
410 v_offset = build1 (NOP_EXPR,
411 build_pointer_type (ptrdiff_type_node),
412 v_offset);
413 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
414 TREE_CONSTANT (v_offset) = 1;
415
416 offset = convert_to_integer (ptrdiff_type_node,
417 size_diffop_loc (input_location, offset,
418 BINFO_OFFSET (v_binfo)));
419
420 if (!integer_zerop (offset))
421 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
422
423 if (fixed_type_p < 0)
424 /* Negative fixed_type_p means this is a constructor or destructor;
425 virtual base layout is fixed in in-charge [cd]tors, but not in
426 base [cd]tors. */
427 offset = build3 (COND_EXPR, ptrdiff_type_node,
428 build2 (EQ_EXPR, boolean_type_node,
429 current_in_charge_parm, integer_zero_node),
430 v_offset,
431 convert_to_integer (ptrdiff_type_node,
432 BINFO_OFFSET (binfo)));
433 else
434 offset = v_offset;
435 }
436
437 if (want_pointer)
438 target_type = ptr_target_type;
439
440 expr = build1 (NOP_EXPR, ptr_target_type, expr);
441
442 if (!integer_zerop (offset))
443 {
444 offset = fold_convert (sizetype, offset);
445 if (code == MINUS_EXPR)
446 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
447 expr = fold_build_pointer_plus (expr, offset);
448 }
449 else
450 null_test = NULL;
451
452 if (!want_pointer)
453 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
454
455 out:
456 if (null_test)
457 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
458 build_zero_cst (target_type));
459
460 return expr;
461 }
462
463 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
464 Perform a derived-to-base conversion by recursively building up a
465 sequence of COMPONENT_REFs to the appropriate base fields. */
466
467 static tree
468 build_simple_base_path (tree expr, tree binfo)
469 {
470 tree type = BINFO_TYPE (binfo);
471 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
472 tree field;
473
474 if (d_binfo == NULL_TREE)
475 {
476 tree temp;
477
478 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
479
480 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
481 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
482 an lvalue in the front end; only _DECLs and _REFs are lvalues
483 in the back end. */
484 temp = unary_complex_lvalue (ADDR_EXPR, expr);
485 if (temp)
486 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
487
488 return expr;
489 }
490
491 /* Recurse. */
492 expr = build_simple_base_path (expr, d_binfo);
493
494 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
495 field; field = DECL_CHAIN (field))
496 /* Is this the base field created by build_base_field? */
497 if (TREE_CODE (field) == FIELD_DECL
498 && DECL_FIELD_IS_BASE (field)
499 && TREE_TYPE (field) == type
500 /* If we're looking for a field in the most-derived class,
501 also check the field offset; we can have two base fields
502 of the same type if one is an indirect virtual base and one
503 is a direct non-virtual base. */
504 && (BINFO_INHERITANCE_CHAIN (d_binfo)
505 || tree_int_cst_equal (byte_position (field),
506 BINFO_OFFSET (binfo))))
507 {
508 /* We don't use build_class_member_access_expr here, as that
509 has unnecessary checks, and more importantly results in
510 recursive calls to dfs_walk_once. */
511 int type_quals = cp_type_quals (TREE_TYPE (expr));
512
513 expr = build3 (COMPONENT_REF,
514 cp_build_qualified_type (type, type_quals),
515 expr, field, NULL_TREE);
516 expr = fold_if_not_in_template (expr);
517
518 /* Mark the expression const or volatile, as appropriate.
519 Even though we've dealt with the type above, we still have
520 to mark the expression itself. */
521 if (type_quals & TYPE_QUAL_CONST)
522 TREE_READONLY (expr) = 1;
523 if (type_quals & TYPE_QUAL_VOLATILE)
524 TREE_THIS_VOLATILE (expr) = 1;
525
526 return expr;
527 }
528
529 /* Didn't find the base field?!? */
530 gcc_unreachable ();
531 }
532
533 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
534 type is a class type or a pointer to a class type. In the former
535 case, TYPE is also a class type; in the latter it is another
536 pointer type. If CHECK_ACCESS is true, an error message is emitted
537 if TYPE is inaccessible. If OBJECT has pointer type, the value is
538 assumed to be non-NULL. */
539
540 tree
541 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
542 tsubst_flags_t complain)
543 {
544 tree binfo;
545 tree object_type;
546
547 if (TYPE_PTR_P (TREE_TYPE (object)))
548 {
549 object_type = TREE_TYPE (TREE_TYPE (object));
550 type = TREE_TYPE (type);
551 }
552 else
553 object_type = TREE_TYPE (object);
554
555 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
556 NULL, complain);
557 if (!binfo || binfo == error_mark_node)
558 return error_mark_node;
559
560 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
561 }
562
563 /* EXPR is an expression with unqualified class type. BASE is a base
564 binfo of that class type. Returns EXPR, converted to the BASE
565 type. This function assumes that EXPR is the most derived class;
566 therefore virtual bases can be found at their static offsets. */
567
568 tree
569 convert_to_base_statically (tree expr, tree base)
570 {
571 tree expr_type;
572
573 expr_type = TREE_TYPE (expr);
574 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
575 {
576 /* If this is a non-empty base, use a COMPONENT_REF. */
577 if (!is_empty_class (BINFO_TYPE (base)))
578 return build_simple_base_path (expr, base);
579
580 /* We use fold_build2 and fold_convert below to simplify the trees
581 provided to the optimizers. It is not safe to call these functions
582 when processing a template because they do not handle C++-specific
583 trees. */
584 gcc_assert (!processing_template_decl);
585 expr = cp_build_addr_expr (expr, tf_warning_or_error);
586 if (!integer_zerop (BINFO_OFFSET (base)))
587 expr = fold_build_pointer_plus_loc (input_location,
588 expr, BINFO_OFFSET (base));
589 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
590 expr = build_fold_indirect_ref_loc (input_location, expr);
591 }
592
593 return expr;
594 }
595
596 \f
597 tree
598 build_vfield_ref (tree datum, tree type)
599 {
600 tree vfield, vcontext;
601
602 if (datum == error_mark_node)
603 return error_mark_node;
604
605 /* First, convert to the requested type. */
606 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
607 datum = convert_to_base (datum, type, /*check_access=*/false,
608 /*nonnull=*/true, tf_warning_or_error);
609
610 /* Second, the requested type may not be the owner of its own vptr.
611 If not, convert to the base class that owns it. We cannot use
612 convert_to_base here, because VCONTEXT may appear more than once
613 in the inheritance hierarchy of TYPE, and thus direct conversion
614 between the types may be ambiguous. Following the path back up
615 one step at a time via primary bases avoids the problem. */
616 vfield = TYPE_VFIELD (type);
617 vcontext = DECL_CONTEXT (vfield);
618 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
619 {
620 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
621 type = TREE_TYPE (datum);
622 }
623
624 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
625 }
626
627 /* Given an object INSTANCE, return an expression which yields the
628 vtable element corresponding to INDEX. There are many special
629 cases for INSTANCE which we take care of here, mainly to avoid
630 creating extra tree nodes when we don't have to. */
631
632 static tree
633 build_vtbl_ref_1 (tree instance, tree idx)
634 {
635 tree aref;
636 tree vtbl = NULL_TREE;
637
638 /* Try to figure out what a reference refers to, and
639 access its virtual function table directly. */
640
641 int cdtorp = 0;
642 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
643
644 tree basetype = non_reference (TREE_TYPE (instance));
645
646 if (fixed_type && !cdtorp)
647 {
648 tree binfo = lookup_base (fixed_type, basetype,
649 ba_unique, NULL, tf_none);
650 if (binfo && binfo != error_mark_node)
651 vtbl = unshare_expr (BINFO_VTABLE (binfo));
652 }
653
654 if (!vtbl)
655 vtbl = build_vfield_ref (instance, basetype);
656
657 aref = build_array_ref (input_location, vtbl, idx);
658 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
659
660 return aref;
661 }
662
663 tree
664 build_vtbl_ref (tree instance, tree idx)
665 {
666 tree aref = build_vtbl_ref_1 (instance, idx);
667
668 return aref;
669 }
670
671 /* Given a stable object pointer INSTANCE_PTR, return an expression which
672 yields a function pointer corresponding to vtable element INDEX. */
673
674 tree
675 build_vfn_ref (tree instance_ptr, tree idx)
676 {
677 tree aref;
678
679 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
680 tf_warning_or_error),
681 idx);
682
683 /* When using function descriptors, the address of the
684 vtable entry is treated as a function pointer. */
685 if (TARGET_VTABLE_USES_DESCRIPTORS)
686 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
687 cp_build_addr_expr (aref, tf_warning_or_error));
688
689 /* Remember this as a method reference, for later devirtualization. */
690 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
691
692 return aref;
693 }
694
695 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
696 for the given TYPE. */
697
698 static tree
699 get_vtable_name (tree type)
700 {
701 return mangle_vtbl_for_type (type);
702 }
703
704 /* DECL is an entity associated with TYPE, like a virtual table or an
705 implicitly generated constructor. Determine whether or not DECL
706 should have external or internal linkage at the object file
707 level. This routine does not deal with COMDAT linkage and other
708 similar complexities; it simply sets TREE_PUBLIC if it possible for
709 entities in other translation units to contain copies of DECL, in
710 the abstract. */
711
712 void
713 set_linkage_according_to_type (tree /*type*/, tree decl)
714 {
715 TREE_PUBLIC (decl) = 1;
716 determine_visibility (decl);
717 }
718
719 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
720 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
721 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
722
723 static tree
724 build_vtable (tree class_type, tree name, tree vtable_type)
725 {
726 tree decl;
727
728 decl = build_lang_decl (VAR_DECL, name, vtable_type);
729 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
730 now to avoid confusion in mangle_decl. */
731 SET_DECL_ASSEMBLER_NAME (decl, name);
732 DECL_CONTEXT (decl) = class_type;
733 DECL_ARTIFICIAL (decl) = 1;
734 TREE_STATIC (decl) = 1;
735 TREE_READONLY (decl) = 1;
736 DECL_VIRTUAL_P (decl) = 1;
737 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
738 DECL_VTABLE_OR_VTT_P (decl) = 1;
739 /* At one time the vtable info was grabbed 2 words at a time. This
740 fails on sparc unless you have 8-byte alignment. (tiemann) */
741 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
742 DECL_ALIGN (decl));
743 set_linkage_according_to_type (class_type, decl);
744 /* The vtable has not been defined -- yet. */
745 DECL_EXTERNAL (decl) = 1;
746 DECL_NOT_REALLY_EXTERN (decl) = 1;
747
748 /* Mark the VAR_DECL node representing the vtable itself as a
749 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
750 is rather important that such things be ignored because any
751 effort to actually generate DWARF for them will run into
752 trouble when/if we encounter code like:
753
754 #pragma interface
755 struct S { virtual void member (); };
756
757 because the artificial declaration of the vtable itself (as
758 manufactured by the g++ front end) will say that the vtable is
759 a static member of `S' but only *after* the debug output for
760 the definition of `S' has already been output. This causes
761 grief because the DWARF entry for the definition of the vtable
762 will try to refer back to an earlier *declaration* of the
763 vtable as a static member of `S' and there won't be one. We
764 might be able to arrange to have the "vtable static member"
765 attached to the member list for `S' before the debug info for
766 `S' get written (which would solve the problem) but that would
767 require more intrusive changes to the g++ front end. */
768 DECL_IGNORED_P (decl) = 1;
769
770 return decl;
771 }
772
773 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
774 or even complete. If this does not exist, create it. If COMPLETE is
775 nonzero, then complete the definition of it -- that will render it
776 impossible to actually build the vtable, but is useful to get at those
777 which are known to exist in the runtime. */
778
779 tree
780 get_vtable_decl (tree type, int complete)
781 {
782 tree decl;
783
784 if (CLASSTYPE_VTABLES (type))
785 return CLASSTYPE_VTABLES (type);
786
787 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
788 CLASSTYPE_VTABLES (type) = decl;
789
790 if (complete)
791 {
792 DECL_EXTERNAL (decl) = 1;
793 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
794 }
795
796 return decl;
797 }
798
799 /* Build the primary virtual function table for TYPE. If BINFO is
800 non-NULL, build the vtable starting with the initial approximation
801 that it is the same as the one which is the head of the association
802 list. Returns a nonzero value if a new vtable is actually
803 created. */
804
805 static int
806 build_primary_vtable (tree binfo, tree type)
807 {
808 tree decl;
809 tree virtuals;
810
811 decl = get_vtable_decl (type, /*complete=*/0);
812
813 if (binfo)
814 {
815 if (BINFO_NEW_VTABLE_MARKED (binfo))
816 /* We have already created a vtable for this base, so there's
817 no need to do it again. */
818 return 0;
819
820 virtuals = copy_list (BINFO_VIRTUALS (binfo));
821 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
822 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
823 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
824 }
825 else
826 {
827 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
828 virtuals = NULL_TREE;
829 }
830
831 if (GATHER_STATISTICS)
832 {
833 n_vtables += 1;
834 n_vtable_elems += list_length (virtuals);
835 }
836
837 /* Initialize the association list for this type, based
838 on our first approximation. */
839 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
840 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
841 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
842 return 1;
843 }
844
845 /* Give BINFO a new virtual function table which is initialized
846 with a skeleton-copy of its original initialization. The only
847 entry that changes is the `delta' entry, so we can really
848 share a lot of structure.
849
850 FOR_TYPE is the most derived type which caused this table to
851 be needed.
852
853 Returns nonzero if we haven't met BINFO before.
854
855 The order in which vtables are built (by calling this function) for
856 an object must remain the same, otherwise a binary incompatibility
857 can result. */
858
859 static int
860 build_secondary_vtable (tree binfo)
861 {
862 if (BINFO_NEW_VTABLE_MARKED (binfo))
863 /* We already created a vtable for this base. There's no need to
864 do it again. */
865 return 0;
866
867 /* Remember that we've created a vtable for this BINFO, so that we
868 don't try to do so again. */
869 SET_BINFO_NEW_VTABLE_MARKED (binfo);
870
871 /* Make fresh virtual list, so we can smash it later. */
872 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
873
874 /* Secondary vtables are laid out as part of the same structure as
875 the primary vtable. */
876 BINFO_VTABLE (binfo) = NULL_TREE;
877 return 1;
878 }
879
880 /* Create a new vtable for BINFO which is the hierarchy dominated by
881 T. Return nonzero if we actually created a new vtable. */
882
883 static int
884 make_new_vtable (tree t, tree binfo)
885 {
886 if (binfo == TYPE_BINFO (t))
887 /* In this case, it is *type*'s vtable we are modifying. We start
888 with the approximation that its vtable is that of the
889 immediate base class. */
890 return build_primary_vtable (binfo, t);
891 else
892 /* This is our very own copy of `basetype' to play with. Later,
893 we will fill in all the virtual functions that override the
894 virtual functions in these base classes which are not defined
895 by the current type. */
896 return build_secondary_vtable (binfo);
897 }
898
899 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
900 (which is in the hierarchy dominated by T) list FNDECL as its
901 BV_FN. DELTA is the required constant adjustment from the `this'
902 pointer where the vtable entry appears to the `this' required when
903 the function is actually called. */
904
905 static void
906 modify_vtable_entry (tree t,
907 tree binfo,
908 tree fndecl,
909 tree delta,
910 tree *virtuals)
911 {
912 tree v;
913
914 v = *virtuals;
915
916 if (fndecl != BV_FN (v)
917 || !tree_int_cst_equal (delta, BV_DELTA (v)))
918 {
919 /* We need a new vtable for BINFO. */
920 if (make_new_vtable (t, binfo))
921 {
922 /* If we really did make a new vtable, we also made a copy
923 of the BINFO_VIRTUALS list. Now, we have to find the
924 corresponding entry in that list. */
925 *virtuals = BINFO_VIRTUALS (binfo);
926 while (BV_FN (*virtuals) != BV_FN (v))
927 *virtuals = TREE_CHAIN (*virtuals);
928 v = *virtuals;
929 }
930
931 BV_DELTA (v) = delta;
932 BV_VCALL_INDEX (v) = NULL_TREE;
933 BV_FN (v) = fndecl;
934 }
935 }
936
937 \f
938 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
939 the USING_DECL naming METHOD. Returns true if the method could be
940 added to the method vec. */
941
942 bool
943 add_method (tree type, tree method, tree using_decl)
944 {
945 unsigned slot;
946 tree overload;
947 bool template_conv_p = false;
948 bool conv_p;
949 vec<tree, va_gc> *method_vec;
950 bool complete_p;
951 bool insert_p = false;
952 tree current_fns;
953 tree fns;
954
955 if (method == error_mark_node)
956 return false;
957
958 complete_p = COMPLETE_TYPE_P (type);
959 conv_p = DECL_CONV_FN_P (method);
960 if (conv_p)
961 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
962 && DECL_TEMPLATE_CONV_FN_P (method));
963
964 method_vec = CLASSTYPE_METHOD_VEC (type);
965 if (!method_vec)
966 {
967 /* Make a new method vector. We start with 8 entries. We must
968 allocate at least two (for constructors and destructors), and
969 we're going to end up with an assignment operator at some
970 point as well. */
971 vec_alloc (method_vec, 8);
972 /* Create slots for constructors and destructors. */
973 method_vec->quick_push (NULL_TREE);
974 method_vec->quick_push (NULL_TREE);
975 CLASSTYPE_METHOD_VEC (type) = method_vec;
976 }
977
978 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
979 grok_special_member_properties (method);
980
981 /* Constructors and destructors go in special slots. */
982 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
983 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
984 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
985 {
986 slot = CLASSTYPE_DESTRUCTOR_SLOT;
987
988 if (TYPE_FOR_JAVA (type))
989 {
990 if (!DECL_ARTIFICIAL (method))
991 error ("Java class %qT cannot have a destructor", type);
992 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
993 error ("Java class %qT cannot have an implicit non-trivial "
994 "destructor",
995 type);
996 }
997 }
998 else
999 {
1000 tree m;
1001
1002 insert_p = true;
1003 /* See if we already have an entry with this name. */
1004 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1005 vec_safe_iterate (method_vec, slot, &m);
1006 ++slot)
1007 {
1008 m = OVL_CURRENT (m);
1009 if (template_conv_p)
1010 {
1011 if (TREE_CODE (m) == TEMPLATE_DECL
1012 && DECL_TEMPLATE_CONV_FN_P (m))
1013 insert_p = false;
1014 break;
1015 }
1016 if (conv_p && !DECL_CONV_FN_P (m))
1017 break;
1018 if (DECL_NAME (m) == DECL_NAME (method))
1019 {
1020 insert_p = false;
1021 break;
1022 }
1023 if (complete_p
1024 && !DECL_CONV_FN_P (m)
1025 && DECL_NAME (m) > DECL_NAME (method))
1026 break;
1027 }
1028 }
1029 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1030
1031 /* Check to see if we've already got this method. */
1032 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1033 {
1034 tree fn = OVL_CURRENT (fns);
1035 tree fn_type;
1036 tree method_type;
1037 tree parms1;
1038 tree parms2;
1039
1040 if (TREE_CODE (fn) != TREE_CODE (method))
1041 continue;
1042
1043 /* [over.load] Member function declarations with the
1044 same name and the same parameter types cannot be
1045 overloaded if any of them is a static member
1046 function declaration.
1047
1048 [namespace.udecl] When a using-declaration brings names
1049 from a base class into a derived class scope, member
1050 functions in the derived class override and/or hide member
1051 functions with the same name and parameter types in a base
1052 class (rather than conflicting). */
1053 fn_type = TREE_TYPE (fn);
1054 method_type = TREE_TYPE (method);
1055 parms1 = TYPE_ARG_TYPES (fn_type);
1056 parms2 = TYPE_ARG_TYPES (method_type);
1057
1058 /* Compare the quals on the 'this' parm. Don't compare
1059 the whole types, as used functions are treated as
1060 coming from the using class in overload resolution. */
1061 if (! DECL_STATIC_FUNCTION_P (fn)
1062 && ! DECL_STATIC_FUNCTION_P (method)
1063 && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
1064 && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
1065 && (cp_type_quals (TREE_TYPE (TREE_VALUE (parms1)))
1066 != cp_type_quals (TREE_TYPE (TREE_VALUE (parms2)))))
1067 continue;
1068
1069 /* For templates, the return type and template parameters
1070 must be identical. */
1071 if (TREE_CODE (fn) == TEMPLATE_DECL
1072 && (!same_type_p (TREE_TYPE (fn_type),
1073 TREE_TYPE (method_type))
1074 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1075 DECL_TEMPLATE_PARMS (method))))
1076 continue;
1077
1078 if (! DECL_STATIC_FUNCTION_P (fn))
1079 parms1 = TREE_CHAIN (parms1);
1080 if (! DECL_STATIC_FUNCTION_P (method))
1081 parms2 = TREE_CHAIN (parms2);
1082
1083 if (compparms (parms1, parms2)
1084 && (!DECL_CONV_FN_P (fn)
1085 || same_type_p (TREE_TYPE (fn_type),
1086 TREE_TYPE (method_type))))
1087 {
1088 /* For function versions, their parms and types match
1089 but they are not duplicates. Record function versions
1090 as and when they are found. extern "C" functions are
1091 not treated as versions. */
1092 if (TREE_CODE (fn) == FUNCTION_DECL
1093 && TREE_CODE (method) == FUNCTION_DECL
1094 && !DECL_EXTERN_C_P (fn)
1095 && !DECL_EXTERN_C_P (method)
1096 && targetm.target_option.function_versions (fn, method))
1097 {
1098 /* Mark functions as versions if necessary. Modify the mangled
1099 decl name if necessary. */
1100 if (!DECL_FUNCTION_VERSIONED (fn))
1101 {
1102 DECL_FUNCTION_VERSIONED (fn) = 1;
1103 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1104 mangle_decl (fn);
1105 }
1106 if (!DECL_FUNCTION_VERSIONED (method))
1107 {
1108 DECL_FUNCTION_VERSIONED (method) = 1;
1109 if (DECL_ASSEMBLER_NAME_SET_P (method))
1110 mangle_decl (method);
1111 }
1112 record_function_versions (fn, method);
1113 continue;
1114 }
1115 if (DECL_INHERITED_CTOR_BASE (method))
1116 {
1117 if (DECL_INHERITED_CTOR_BASE (fn))
1118 {
1119 error_at (DECL_SOURCE_LOCATION (method),
1120 "%q#D inherited from %qT", method,
1121 DECL_INHERITED_CTOR_BASE (method));
1122 error_at (DECL_SOURCE_LOCATION (fn),
1123 "conflicts with version inherited from %qT",
1124 DECL_INHERITED_CTOR_BASE (fn));
1125 }
1126 /* Otherwise defer to the other function. */
1127 return false;
1128 }
1129 if (using_decl)
1130 {
1131 if (DECL_CONTEXT (fn) == type)
1132 /* Defer to the local function. */
1133 return false;
1134 }
1135 else
1136 {
1137 error ("%q+#D cannot be overloaded", method);
1138 error ("with %q+#D", fn);
1139 }
1140
1141 /* We don't call duplicate_decls here to merge the
1142 declarations because that will confuse things if the
1143 methods have inline definitions. In particular, we
1144 will crash while processing the definitions. */
1145 return false;
1146 }
1147 }
1148
1149 /* A class should never have more than one destructor. */
1150 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1151 return false;
1152
1153 /* Add the new binding. */
1154 if (using_decl)
1155 {
1156 overload = ovl_cons (method, current_fns);
1157 OVL_USED (overload) = true;
1158 }
1159 else
1160 overload = build_overload (method, current_fns);
1161
1162 if (conv_p)
1163 TYPE_HAS_CONVERSION (type) = 1;
1164 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1165 push_class_level_binding (DECL_NAME (method), overload);
1166
1167 if (insert_p)
1168 {
1169 bool reallocated;
1170
1171 /* We only expect to add few methods in the COMPLETE_P case, so
1172 just make room for one more method in that case. */
1173 if (complete_p)
1174 reallocated = vec_safe_reserve_exact (method_vec, 1);
1175 else
1176 reallocated = vec_safe_reserve (method_vec, 1);
1177 if (reallocated)
1178 CLASSTYPE_METHOD_VEC (type) = method_vec;
1179 if (slot == method_vec->length ())
1180 method_vec->quick_push (overload);
1181 else
1182 method_vec->quick_insert (slot, overload);
1183 }
1184 else
1185 /* Replace the current slot. */
1186 (*method_vec)[slot] = overload;
1187 return true;
1188 }
1189
1190 /* Subroutines of finish_struct. */
1191
1192 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1193 legit, otherwise return 0. */
1194
1195 static int
1196 alter_access (tree t, tree fdecl, tree access)
1197 {
1198 tree elem;
1199
1200 if (!DECL_LANG_SPECIFIC (fdecl))
1201 retrofit_lang_decl (fdecl);
1202
1203 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1204
1205 elem = purpose_member (t, DECL_ACCESS (fdecl));
1206 if (elem)
1207 {
1208 if (TREE_VALUE (elem) != access)
1209 {
1210 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1211 error ("conflicting access specifications for method"
1212 " %q+D, ignored", TREE_TYPE (fdecl));
1213 else
1214 error ("conflicting access specifications for field %qE, ignored",
1215 DECL_NAME (fdecl));
1216 }
1217 else
1218 {
1219 /* They're changing the access to the same thing they changed
1220 it to before. That's OK. */
1221 ;
1222 }
1223 }
1224 else
1225 {
1226 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1227 tf_warning_or_error);
1228 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1229 return 1;
1230 }
1231 return 0;
1232 }
1233
1234 /* Process the USING_DECL, which is a member of T. */
1235
1236 static void
1237 handle_using_decl (tree using_decl, tree t)
1238 {
1239 tree decl = USING_DECL_DECLS (using_decl);
1240 tree name = DECL_NAME (using_decl);
1241 tree access
1242 = TREE_PRIVATE (using_decl) ? access_private_node
1243 : TREE_PROTECTED (using_decl) ? access_protected_node
1244 : access_public_node;
1245 tree flist = NULL_TREE;
1246 tree old_value;
1247
1248 gcc_assert (!processing_template_decl && decl);
1249
1250 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1251 tf_warning_or_error);
1252 if (old_value)
1253 {
1254 if (is_overloaded_fn (old_value))
1255 old_value = OVL_CURRENT (old_value);
1256
1257 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1258 /* OK */;
1259 else
1260 old_value = NULL_TREE;
1261 }
1262
1263 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1264
1265 if (is_overloaded_fn (decl))
1266 flist = decl;
1267
1268 if (! old_value)
1269 ;
1270 else if (is_overloaded_fn (old_value))
1271 {
1272 if (flist)
1273 /* It's OK to use functions from a base when there are functions with
1274 the same name already present in the current class. */;
1275 else
1276 {
1277 error ("%q+D invalid in %q#T", using_decl, t);
1278 error (" because of local method %q+#D with same name",
1279 OVL_CURRENT (old_value));
1280 return;
1281 }
1282 }
1283 else if (!DECL_ARTIFICIAL (old_value))
1284 {
1285 error ("%q+D invalid in %q#T", using_decl, t);
1286 error (" because of local member %q+#D with same name", old_value);
1287 return;
1288 }
1289
1290 /* Make type T see field decl FDECL with access ACCESS. */
1291 if (flist)
1292 for (; flist; flist = OVL_NEXT (flist))
1293 {
1294 add_method (t, OVL_CURRENT (flist), using_decl);
1295 alter_access (t, OVL_CURRENT (flist), access);
1296 }
1297 else
1298 alter_access (t, decl, access);
1299 }
1300 \f
1301 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1302 types with abi tags, add the corresponding identifiers to the VEC in
1303 *DATA and set IDENTIFIER_MARKED. */
1304
1305 struct abi_tag_data
1306 {
1307 tree t;
1308 tree subob;
1309 };
1310
1311 static tree
1312 find_abi_tags_r (tree *tp, int */*walk_subtrees*/, void *data)
1313 {
1314 if (!TAGGED_TYPE_P (*tp))
1315 return NULL_TREE;
1316
1317 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1318 {
1319 struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1320 for (tree list = TREE_VALUE (attributes); list;
1321 list = TREE_CHAIN (list))
1322 {
1323 tree tag = TREE_VALUE (list);
1324 tree id = get_identifier (TREE_STRING_POINTER (tag));
1325 if (!IDENTIFIER_MARKED (id))
1326 {
1327 if (TYPE_P (p->subob))
1328 {
1329 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1330 "that base %qT has", p->t, tag, p->subob);
1331 inform (location_of (p->subob), "%qT declared here",
1332 p->subob);
1333 }
1334 else
1335 {
1336 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1337 "that %qT (used in the type of %qD) has",
1338 p->t, tag, *tp, p->subob);
1339 inform (location_of (p->subob), "%qD declared here",
1340 p->subob);
1341 inform (location_of (*tp), "%qT declared here", *tp);
1342 }
1343 }
1344 }
1345 }
1346 return NULL_TREE;
1347 }
1348
1349 /* Check that class T has all the abi tags that subobject SUBOB has, or
1350 warn if not. */
1351
1352 static void
1353 check_abi_tags (tree t, tree subob)
1354 {
1355 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1356 if (attributes)
1357 {
1358 for (tree list = TREE_VALUE (attributes); list;
1359 list = TREE_CHAIN (list))
1360 {
1361 tree tag = TREE_VALUE (list);
1362 tree id = get_identifier (TREE_STRING_POINTER (tag));
1363 IDENTIFIER_MARKED (id) = true;
1364 }
1365 }
1366
1367 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1368 struct abi_tag_data data = { t, subob };
1369
1370 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1371
1372 if (attributes)
1373 {
1374 for (tree list = TREE_VALUE (attributes); list;
1375 list = TREE_CHAIN (list))
1376 {
1377 tree tag = TREE_VALUE (list);
1378 tree id = get_identifier (TREE_STRING_POINTER (tag));
1379 IDENTIFIER_MARKED (id) = false;
1380 }
1381 }
1382 }
1383
1384 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1385 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1386 properties of the bases. */
1387
1388 static void
1389 check_bases (tree t,
1390 int* cant_have_const_ctor_p,
1391 int* no_const_asn_ref_p)
1392 {
1393 int i;
1394 bool seen_non_virtual_nearly_empty_base_p = 0;
1395 int seen_tm_mask = 0;
1396 tree base_binfo;
1397 tree binfo;
1398 tree field = NULL_TREE;
1399
1400 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1401 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1402 if (TREE_CODE (field) == FIELD_DECL)
1403 break;
1404
1405 for (binfo = TYPE_BINFO (t), i = 0;
1406 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1407 {
1408 tree basetype = TREE_TYPE (base_binfo);
1409
1410 gcc_assert (COMPLETE_TYPE_P (basetype));
1411
1412 if (CLASSTYPE_FINAL (basetype))
1413 error ("cannot derive from %<final%> base %qT in derived type %qT",
1414 basetype, t);
1415
1416 /* If any base class is non-literal, so is the derived class. */
1417 if (!CLASSTYPE_LITERAL_P (basetype))
1418 CLASSTYPE_LITERAL_P (t) = false;
1419
1420 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1421 here because the case of virtual functions but non-virtual
1422 dtor is handled in finish_struct_1. */
1423 if (!TYPE_POLYMORPHIC_P (basetype))
1424 warning (OPT_Weffc__,
1425 "base class %q#T has a non-virtual destructor", basetype);
1426
1427 /* If the base class doesn't have copy constructors or
1428 assignment operators that take const references, then the
1429 derived class cannot have such a member automatically
1430 generated. */
1431 if (TYPE_HAS_COPY_CTOR (basetype)
1432 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1433 *cant_have_const_ctor_p = 1;
1434 if (TYPE_HAS_COPY_ASSIGN (basetype)
1435 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1436 *no_const_asn_ref_p = 1;
1437
1438 if (BINFO_VIRTUAL_P (base_binfo))
1439 /* A virtual base does not effect nearly emptiness. */
1440 ;
1441 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1442 {
1443 if (seen_non_virtual_nearly_empty_base_p)
1444 /* And if there is more than one nearly empty base, then the
1445 derived class is not nearly empty either. */
1446 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1447 else
1448 /* Remember we've seen one. */
1449 seen_non_virtual_nearly_empty_base_p = 1;
1450 }
1451 else if (!is_empty_class (basetype))
1452 /* If the base class is not empty or nearly empty, then this
1453 class cannot be nearly empty. */
1454 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1455
1456 /* A lot of properties from the bases also apply to the derived
1457 class. */
1458 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1459 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1460 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1461 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1462 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1463 || !TYPE_HAS_COPY_ASSIGN (basetype));
1464 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1465 || !TYPE_HAS_COPY_CTOR (basetype));
1466 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1467 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1468 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1469 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1470 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1471 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1472 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1473 || TYPE_HAS_COMPLEX_DFLT (basetype));
1474
1475 /* A standard-layout class is a class that:
1476 ...
1477 * has no non-standard-layout base classes, */
1478 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1479 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1480 {
1481 tree basefield;
1482 /* ...has no base classes of the same type as the first non-static
1483 data member... */
1484 if (field && DECL_CONTEXT (field) == t
1485 && (same_type_ignoring_top_level_qualifiers_p
1486 (TREE_TYPE (field), basetype)))
1487 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1488 else
1489 /* ...either has no non-static data members in the most-derived
1490 class and at most one base class with non-static data
1491 members, or has no base classes with non-static data
1492 members */
1493 for (basefield = TYPE_FIELDS (basetype); basefield;
1494 basefield = DECL_CHAIN (basefield))
1495 if (TREE_CODE (basefield) == FIELD_DECL)
1496 {
1497 if (field)
1498 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1499 else
1500 field = basefield;
1501 break;
1502 }
1503 }
1504
1505 /* Don't bother collecting tm attributes if transactional memory
1506 support is not enabled. */
1507 if (flag_tm)
1508 {
1509 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1510 if (tm_attr)
1511 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1512 }
1513
1514 check_abi_tags (t, basetype);
1515 }
1516
1517 /* If one of the base classes had TM attributes, and the current class
1518 doesn't define its own, then the current class inherits one. */
1519 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1520 {
1521 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1522 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1523 }
1524 }
1525
1526 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1527 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1528 that have had a nearly-empty virtual primary base stolen by some
1529 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1530 T. */
1531
1532 static void
1533 determine_primary_bases (tree t)
1534 {
1535 unsigned i;
1536 tree primary = NULL_TREE;
1537 tree type_binfo = TYPE_BINFO (t);
1538 tree base_binfo;
1539
1540 /* Determine the primary bases of our bases. */
1541 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1542 base_binfo = TREE_CHAIN (base_binfo))
1543 {
1544 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1545
1546 /* See if we're the non-virtual primary of our inheritance
1547 chain. */
1548 if (!BINFO_VIRTUAL_P (base_binfo))
1549 {
1550 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1551 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1552
1553 if (parent_primary
1554 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1555 BINFO_TYPE (parent_primary)))
1556 /* We are the primary binfo. */
1557 BINFO_PRIMARY_P (base_binfo) = 1;
1558 }
1559 /* Determine if we have a virtual primary base, and mark it so.
1560 */
1561 if (primary && BINFO_VIRTUAL_P (primary))
1562 {
1563 tree this_primary = copied_binfo (primary, base_binfo);
1564
1565 if (BINFO_PRIMARY_P (this_primary))
1566 /* Someone already claimed this base. */
1567 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1568 else
1569 {
1570 tree delta;
1571
1572 BINFO_PRIMARY_P (this_primary) = 1;
1573 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1574
1575 /* A virtual binfo might have been copied from within
1576 another hierarchy. As we're about to use it as a
1577 primary base, make sure the offsets match. */
1578 delta = size_diffop_loc (input_location,
1579 convert (ssizetype,
1580 BINFO_OFFSET (base_binfo)),
1581 convert (ssizetype,
1582 BINFO_OFFSET (this_primary)));
1583
1584 propagate_binfo_offsets (this_primary, delta);
1585 }
1586 }
1587 }
1588
1589 /* First look for a dynamic direct non-virtual base. */
1590 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1591 {
1592 tree basetype = BINFO_TYPE (base_binfo);
1593
1594 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1595 {
1596 primary = base_binfo;
1597 goto found;
1598 }
1599 }
1600
1601 /* A "nearly-empty" virtual base class can be the primary base
1602 class, if no non-virtual polymorphic base can be found. Look for
1603 a nearly-empty virtual dynamic base that is not already a primary
1604 base of something in the hierarchy. If there is no such base,
1605 just pick the first nearly-empty virtual base. */
1606
1607 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1608 base_binfo = TREE_CHAIN (base_binfo))
1609 if (BINFO_VIRTUAL_P (base_binfo)
1610 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1611 {
1612 if (!BINFO_PRIMARY_P (base_binfo))
1613 {
1614 /* Found one that is not primary. */
1615 primary = base_binfo;
1616 goto found;
1617 }
1618 else if (!primary)
1619 /* Remember the first candidate. */
1620 primary = base_binfo;
1621 }
1622
1623 found:
1624 /* If we've got a primary base, use it. */
1625 if (primary)
1626 {
1627 tree basetype = BINFO_TYPE (primary);
1628
1629 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1630 if (BINFO_PRIMARY_P (primary))
1631 /* We are stealing a primary base. */
1632 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1633 BINFO_PRIMARY_P (primary) = 1;
1634 if (BINFO_VIRTUAL_P (primary))
1635 {
1636 tree delta;
1637
1638 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1639 /* A virtual binfo might have been copied from within
1640 another hierarchy. As we're about to use it as a primary
1641 base, make sure the offsets match. */
1642 delta = size_diffop_loc (input_location, ssize_int (0),
1643 convert (ssizetype, BINFO_OFFSET (primary)));
1644
1645 propagate_binfo_offsets (primary, delta);
1646 }
1647
1648 primary = TYPE_BINFO (basetype);
1649
1650 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1651 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1652 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1653 }
1654 }
1655
1656 /* Update the variant types of T. */
1657
1658 void
1659 fixup_type_variants (tree t)
1660 {
1661 tree variants;
1662
1663 if (!t)
1664 return;
1665
1666 for (variants = TYPE_NEXT_VARIANT (t);
1667 variants;
1668 variants = TYPE_NEXT_VARIANT (variants))
1669 {
1670 /* These fields are in the _TYPE part of the node, not in
1671 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1672 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1673 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1674 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1675 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1676
1677 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1678
1679 TYPE_BINFO (variants) = TYPE_BINFO (t);
1680
1681 /* Copy whatever these are holding today. */
1682 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1683 TYPE_METHODS (variants) = TYPE_METHODS (t);
1684 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1685 }
1686 }
1687
1688 /* Early variant fixups: we apply attributes at the beginning of the class
1689 definition, and we need to fix up any variants that have already been
1690 made via elaborated-type-specifier so that check_qualified_type works. */
1691
1692 void
1693 fixup_attribute_variants (tree t)
1694 {
1695 tree variants;
1696
1697 if (!t)
1698 return;
1699
1700 for (variants = TYPE_NEXT_VARIANT (t);
1701 variants;
1702 variants = TYPE_NEXT_VARIANT (variants))
1703 {
1704 /* These are the two fields that check_qualified_type looks at and
1705 are affected by attributes. */
1706 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1707 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1708 }
1709 }
1710 \f
1711 /* Set memoizing fields and bits of T (and its variants) for later
1712 use. */
1713
1714 static void
1715 finish_struct_bits (tree t)
1716 {
1717 /* Fix up variants (if any). */
1718 fixup_type_variants (t);
1719
1720 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1721 /* For a class w/o baseclasses, 'finish_struct' has set
1722 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1723 Similarly for a class whose base classes do not have vtables.
1724 When neither of these is true, we might have removed abstract
1725 virtuals (by providing a definition), added some (by declaring
1726 new ones), or redeclared ones from a base class. We need to
1727 recalculate what's really an abstract virtual at this point (by
1728 looking in the vtables). */
1729 get_pure_virtuals (t);
1730
1731 /* If this type has a copy constructor or a destructor, force its
1732 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1733 nonzero. This will cause it to be passed by invisible reference
1734 and prevent it from being returned in a register. */
1735 if (type_has_nontrivial_copy_init (t)
1736 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1737 {
1738 tree variants;
1739 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1740 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1741 {
1742 SET_TYPE_MODE (variants, BLKmode);
1743 TREE_ADDRESSABLE (variants) = 1;
1744 }
1745 }
1746 }
1747
1748 /* Issue warnings about T having private constructors, but no friends,
1749 and so forth.
1750
1751 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1752 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1753 non-private static member functions. */
1754
1755 static void
1756 maybe_warn_about_overly_private_class (tree t)
1757 {
1758 int has_member_fn = 0;
1759 int has_nonprivate_method = 0;
1760 tree fn;
1761
1762 if (!warn_ctor_dtor_privacy
1763 /* If the class has friends, those entities might create and
1764 access instances, so we should not warn. */
1765 || (CLASSTYPE_FRIEND_CLASSES (t)
1766 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1767 /* We will have warned when the template was declared; there's
1768 no need to warn on every instantiation. */
1769 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1770 /* There's no reason to even consider warning about this
1771 class. */
1772 return;
1773
1774 /* We only issue one warning, if more than one applies, because
1775 otherwise, on code like:
1776
1777 class A {
1778 // Oops - forgot `public:'
1779 A();
1780 A(const A&);
1781 ~A();
1782 };
1783
1784 we warn several times about essentially the same problem. */
1785
1786 /* Check to see if all (non-constructor, non-destructor) member
1787 functions are private. (Since there are no friends or
1788 non-private statics, we can't ever call any of the private member
1789 functions.) */
1790 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1791 /* We're not interested in compiler-generated methods; they don't
1792 provide any way to call private members. */
1793 if (!DECL_ARTIFICIAL (fn))
1794 {
1795 if (!TREE_PRIVATE (fn))
1796 {
1797 if (DECL_STATIC_FUNCTION_P (fn))
1798 /* A non-private static member function is just like a
1799 friend; it can create and invoke private member
1800 functions, and be accessed without a class
1801 instance. */
1802 return;
1803
1804 has_nonprivate_method = 1;
1805 /* Keep searching for a static member function. */
1806 }
1807 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1808 has_member_fn = 1;
1809 }
1810
1811 if (!has_nonprivate_method && has_member_fn)
1812 {
1813 /* There are no non-private methods, and there's at least one
1814 private member function that isn't a constructor or
1815 destructor. (If all the private members are
1816 constructors/destructors we want to use the code below that
1817 issues error messages specifically referring to
1818 constructors/destructors.) */
1819 unsigned i;
1820 tree binfo = TYPE_BINFO (t);
1821
1822 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1823 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1824 {
1825 has_nonprivate_method = 1;
1826 break;
1827 }
1828 if (!has_nonprivate_method)
1829 {
1830 warning (OPT_Wctor_dtor_privacy,
1831 "all member functions in class %qT are private", t);
1832 return;
1833 }
1834 }
1835
1836 /* Even if some of the member functions are non-private, the class
1837 won't be useful for much if all the constructors or destructors
1838 are private: such an object can never be created or destroyed. */
1839 fn = CLASSTYPE_DESTRUCTORS (t);
1840 if (fn && TREE_PRIVATE (fn))
1841 {
1842 warning (OPT_Wctor_dtor_privacy,
1843 "%q#T only defines a private destructor and has no friends",
1844 t);
1845 return;
1846 }
1847
1848 /* Warn about classes that have private constructors and no friends. */
1849 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1850 /* Implicitly generated constructors are always public. */
1851 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1852 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1853 {
1854 int nonprivate_ctor = 0;
1855
1856 /* If a non-template class does not define a copy
1857 constructor, one is defined for it, enabling it to avoid
1858 this warning. For a template class, this does not
1859 happen, and so we would normally get a warning on:
1860
1861 template <class T> class C { private: C(); };
1862
1863 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1864 complete non-template or fully instantiated classes have this
1865 flag set. */
1866 if (!TYPE_HAS_COPY_CTOR (t))
1867 nonprivate_ctor = 1;
1868 else
1869 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1870 {
1871 tree ctor = OVL_CURRENT (fn);
1872 /* Ideally, we wouldn't count copy constructors (or, in
1873 fact, any constructor that takes an argument of the
1874 class type as a parameter) because such things cannot
1875 be used to construct an instance of the class unless
1876 you already have one. But, for now at least, we're
1877 more generous. */
1878 if (! TREE_PRIVATE (ctor))
1879 {
1880 nonprivate_ctor = 1;
1881 break;
1882 }
1883 }
1884
1885 if (nonprivate_ctor == 0)
1886 {
1887 warning (OPT_Wctor_dtor_privacy,
1888 "%q#T only defines private constructors and has no friends",
1889 t);
1890 return;
1891 }
1892 }
1893 }
1894
1895 static struct {
1896 gt_pointer_operator new_value;
1897 void *cookie;
1898 } resort_data;
1899
1900 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1901
1902 static int
1903 method_name_cmp (const void* m1_p, const void* m2_p)
1904 {
1905 const tree *const m1 = (const tree *) m1_p;
1906 const tree *const m2 = (const tree *) m2_p;
1907
1908 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1909 return 0;
1910 if (*m1 == NULL_TREE)
1911 return -1;
1912 if (*m2 == NULL_TREE)
1913 return 1;
1914 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1915 return -1;
1916 return 1;
1917 }
1918
1919 /* This routine compares two fields like method_name_cmp but using the
1920 pointer operator in resort_field_decl_data. */
1921
1922 static int
1923 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1924 {
1925 const tree *const m1 = (const tree *) m1_p;
1926 const tree *const m2 = (const tree *) m2_p;
1927 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1928 return 0;
1929 if (*m1 == NULL_TREE)
1930 return -1;
1931 if (*m2 == NULL_TREE)
1932 return 1;
1933 {
1934 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1935 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1936 resort_data.new_value (&d1, resort_data.cookie);
1937 resort_data.new_value (&d2, resort_data.cookie);
1938 if (d1 < d2)
1939 return -1;
1940 }
1941 return 1;
1942 }
1943
1944 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1945
1946 void
1947 resort_type_method_vec (void* obj,
1948 void* /*orig_obj*/,
1949 gt_pointer_operator new_value,
1950 void* cookie)
1951 {
1952 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
1953 int len = vec_safe_length (method_vec);
1954 size_t slot;
1955 tree fn;
1956
1957 /* The type conversion ops have to live at the front of the vec, so we
1958 can't sort them. */
1959 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1960 vec_safe_iterate (method_vec, slot, &fn);
1961 ++slot)
1962 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1963 break;
1964
1965 if (len - slot > 1)
1966 {
1967 resort_data.new_value = new_value;
1968 resort_data.cookie = cookie;
1969 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
1970 resort_method_name_cmp);
1971 }
1972 }
1973
1974 /* Warn about duplicate methods in fn_fields.
1975
1976 Sort methods that are not special (i.e., constructors, destructors,
1977 and type conversion operators) so that we can find them faster in
1978 search. */
1979
1980 static void
1981 finish_struct_methods (tree t)
1982 {
1983 tree fn_fields;
1984 vec<tree, va_gc> *method_vec;
1985 int slot, len;
1986
1987 method_vec = CLASSTYPE_METHOD_VEC (t);
1988 if (!method_vec)
1989 return;
1990
1991 len = method_vec->length ();
1992
1993 /* Clear DECL_IN_AGGR_P for all functions. */
1994 for (fn_fields = TYPE_METHODS (t); fn_fields;
1995 fn_fields = DECL_CHAIN (fn_fields))
1996 DECL_IN_AGGR_P (fn_fields) = 0;
1997
1998 /* Issue warnings about private constructors and such. If there are
1999 no methods, then some public defaults are generated. */
2000 maybe_warn_about_overly_private_class (t);
2001
2002 /* The type conversion ops have to live at the front of the vec, so we
2003 can't sort them. */
2004 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2005 method_vec->iterate (slot, &fn_fields);
2006 ++slot)
2007 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2008 break;
2009 if (len - slot > 1)
2010 qsort (method_vec->address () + slot,
2011 len-slot, sizeof (tree), method_name_cmp);
2012 }
2013
2014 /* Make BINFO's vtable have N entries, including RTTI entries,
2015 vbase and vcall offsets, etc. Set its type and call the back end
2016 to lay it out. */
2017
2018 static void
2019 layout_vtable_decl (tree binfo, int n)
2020 {
2021 tree atype;
2022 tree vtable;
2023
2024 atype = build_array_of_n_type (vtable_entry_type, n);
2025 layout_type (atype);
2026
2027 /* We may have to grow the vtable. */
2028 vtable = get_vtbl_decl_for_binfo (binfo);
2029 if (!same_type_p (TREE_TYPE (vtable), atype))
2030 {
2031 TREE_TYPE (vtable) = atype;
2032 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2033 layout_decl (vtable, 0);
2034 }
2035 }
2036
2037 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2038 have the same signature. */
2039
2040 int
2041 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2042 {
2043 /* One destructor overrides another if they are the same kind of
2044 destructor. */
2045 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2046 && special_function_p (base_fndecl) == special_function_p (fndecl))
2047 return 1;
2048 /* But a non-destructor never overrides a destructor, nor vice
2049 versa, nor do different kinds of destructors override
2050 one-another. For example, a complete object destructor does not
2051 override a deleting destructor. */
2052 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2053 return 0;
2054
2055 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2056 || (DECL_CONV_FN_P (fndecl)
2057 && DECL_CONV_FN_P (base_fndecl)
2058 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2059 DECL_CONV_FN_TYPE (base_fndecl))))
2060 {
2061 tree types, base_types;
2062 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2063 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
2064 if ((cp_type_quals (TREE_TYPE (TREE_VALUE (base_types)))
2065 == cp_type_quals (TREE_TYPE (TREE_VALUE (types))))
2066 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
2067 return 1;
2068 }
2069 return 0;
2070 }
2071
2072 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2073 subobject. */
2074
2075 static bool
2076 base_derived_from (tree derived, tree base)
2077 {
2078 tree probe;
2079
2080 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2081 {
2082 if (probe == derived)
2083 return true;
2084 else if (BINFO_VIRTUAL_P (probe))
2085 /* If we meet a virtual base, we can't follow the inheritance
2086 any more. See if the complete type of DERIVED contains
2087 such a virtual base. */
2088 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2089 != NULL_TREE);
2090 }
2091 return false;
2092 }
2093
2094 typedef struct find_final_overrider_data_s {
2095 /* The function for which we are trying to find a final overrider. */
2096 tree fn;
2097 /* The base class in which the function was declared. */
2098 tree declaring_base;
2099 /* The candidate overriders. */
2100 tree candidates;
2101 /* Path to most derived. */
2102 vec<tree> path;
2103 } find_final_overrider_data;
2104
2105 /* Add the overrider along the current path to FFOD->CANDIDATES.
2106 Returns true if an overrider was found; false otherwise. */
2107
2108 static bool
2109 dfs_find_final_overrider_1 (tree binfo,
2110 find_final_overrider_data *ffod,
2111 unsigned depth)
2112 {
2113 tree method;
2114
2115 /* If BINFO is not the most derived type, try a more derived class.
2116 A definition there will overrider a definition here. */
2117 if (depth)
2118 {
2119 depth--;
2120 if (dfs_find_final_overrider_1
2121 (ffod->path[depth], ffod, depth))
2122 return true;
2123 }
2124
2125 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2126 if (method)
2127 {
2128 tree *candidate = &ffod->candidates;
2129
2130 /* Remove any candidates overridden by this new function. */
2131 while (*candidate)
2132 {
2133 /* If *CANDIDATE overrides METHOD, then METHOD
2134 cannot override anything else on the list. */
2135 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2136 return true;
2137 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2138 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2139 *candidate = TREE_CHAIN (*candidate);
2140 else
2141 candidate = &TREE_CHAIN (*candidate);
2142 }
2143
2144 /* Add the new function. */
2145 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2146 return true;
2147 }
2148
2149 return false;
2150 }
2151
2152 /* Called from find_final_overrider via dfs_walk. */
2153
2154 static tree
2155 dfs_find_final_overrider_pre (tree binfo, void *data)
2156 {
2157 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2158
2159 if (binfo == ffod->declaring_base)
2160 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2161 ffod->path.safe_push (binfo);
2162
2163 return NULL_TREE;
2164 }
2165
2166 static tree
2167 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2168 {
2169 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2170 ffod->path.pop ();
2171
2172 return NULL_TREE;
2173 }
2174
2175 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2176 FN and whose TREE_VALUE is the binfo for the base where the
2177 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2178 DERIVED) is the base object in which FN is declared. */
2179
2180 static tree
2181 find_final_overrider (tree derived, tree binfo, tree fn)
2182 {
2183 find_final_overrider_data ffod;
2184
2185 /* Getting this right is a little tricky. This is valid:
2186
2187 struct S { virtual void f (); };
2188 struct T { virtual void f (); };
2189 struct U : public S, public T { };
2190
2191 even though calling `f' in `U' is ambiguous. But,
2192
2193 struct R { virtual void f(); };
2194 struct S : virtual public R { virtual void f (); };
2195 struct T : virtual public R { virtual void f (); };
2196 struct U : public S, public T { };
2197
2198 is not -- there's no way to decide whether to put `S::f' or
2199 `T::f' in the vtable for `R'.
2200
2201 The solution is to look at all paths to BINFO. If we find
2202 different overriders along any two, then there is a problem. */
2203 if (DECL_THUNK_P (fn))
2204 fn = THUNK_TARGET (fn);
2205
2206 /* Determine the depth of the hierarchy. */
2207 ffod.fn = fn;
2208 ffod.declaring_base = binfo;
2209 ffod.candidates = NULL_TREE;
2210 ffod.path.create (30);
2211
2212 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2213 dfs_find_final_overrider_post, &ffod);
2214
2215 ffod.path.release ();
2216
2217 /* If there was no winner, issue an error message. */
2218 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2219 return error_mark_node;
2220
2221 return ffod.candidates;
2222 }
2223
2224 /* Return the index of the vcall offset for FN when TYPE is used as a
2225 virtual base. */
2226
2227 static tree
2228 get_vcall_index (tree fn, tree type)
2229 {
2230 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2231 tree_pair_p p;
2232 unsigned ix;
2233
2234 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2235 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2236 || same_signature_p (fn, p->purpose))
2237 return p->value;
2238
2239 /* There should always be an appropriate index. */
2240 gcc_unreachable ();
2241 }
2242
2243 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2244 dominated by T. FN is the old function; VIRTUALS points to the
2245 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2246 of that entry in the list. */
2247
2248 static void
2249 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2250 unsigned ix)
2251 {
2252 tree b;
2253 tree overrider;
2254 tree delta;
2255 tree virtual_base;
2256 tree first_defn;
2257 tree overrider_fn, overrider_target;
2258 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2259 tree over_return, base_return;
2260 bool lost = false;
2261
2262 /* Find the nearest primary base (possibly binfo itself) which defines
2263 this function; this is the class the caller will convert to when
2264 calling FN through BINFO. */
2265 for (b = binfo; ; b = get_primary_binfo (b))
2266 {
2267 gcc_assert (b);
2268 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2269 break;
2270
2271 /* The nearest definition is from a lost primary. */
2272 if (BINFO_LOST_PRIMARY_P (b))
2273 lost = true;
2274 }
2275 first_defn = b;
2276
2277 /* Find the final overrider. */
2278 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2279 if (overrider == error_mark_node)
2280 {
2281 error ("no unique final overrider for %qD in %qT", target_fn, t);
2282 return;
2283 }
2284 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2285
2286 /* Check for adjusting covariant return types. */
2287 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2288 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2289
2290 if (POINTER_TYPE_P (over_return)
2291 && TREE_CODE (over_return) == TREE_CODE (base_return)
2292 && CLASS_TYPE_P (TREE_TYPE (over_return))
2293 && CLASS_TYPE_P (TREE_TYPE (base_return))
2294 /* If the overrider is invalid, don't even try. */
2295 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2296 {
2297 /* If FN is a covariant thunk, we must figure out the adjustment
2298 to the final base FN was converting to. As OVERRIDER_TARGET might
2299 also be converting to the return type of FN, we have to
2300 combine the two conversions here. */
2301 tree fixed_offset, virtual_offset;
2302
2303 over_return = TREE_TYPE (over_return);
2304 base_return = TREE_TYPE (base_return);
2305
2306 if (DECL_THUNK_P (fn))
2307 {
2308 gcc_assert (DECL_RESULT_THUNK_P (fn));
2309 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2310 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2311 }
2312 else
2313 fixed_offset = virtual_offset = NULL_TREE;
2314
2315 if (virtual_offset)
2316 /* Find the equivalent binfo within the return type of the
2317 overriding function. We will want the vbase offset from
2318 there. */
2319 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2320 over_return);
2321 else if (!same_type_ignoring_top_level_qualifiers_p
2322 (over_return, base_return))
2323 {
2324 /* There was no existing virtual thunk (which takes
2325 precedence). So find the binfo of the base function's
2326 return type within the overriding function's return type.
2327 We cannot call lookup base here, because we're inside a
2328 dfs_walk, and will therefore clobber the BINFO_MARKED
2329 flags. Fortunately we know the covariancy is valid (it
2330 has already been checked), so we can just iterate along
2331 the binfos, which have been chained in inheritance graph
2332 order. Of course it is lame that we have to repeat the
2333 search here anyway -- we should really be caching pieces
2334 of the vtable and avoiding this repeated work. */
2335 tree thunk_binfo, base_binfo;
2336
2337 /* Find the base binfo within the overriding function's
2338 return type. We will always find a thunk_binfo, except
2339 when the covariancy is invalid (which we will have
2340 already diagnosed). */
2341 for (base_binfo = TYPE_BINFO (base_return),
2342 thunk_binfo = TYPE_BINFO (over_return);
2343 thunk_binfo;
2344 thunk_binfo = TREE_CHAIN (thunk_binfo))
2345 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2346 BINFO_TYPE (base_binfo)))
2347 break;
2348
2349 /* See if virtual inheritance is involved. */
2350 for (virtual_offset = thunk_binfo;
2351 virtual_offset;
2352 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2353 if (BINFO_VIRTUAL_P (virtual_offset))
2354 break;
2355
2356 if (virtual_offset
2357 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2358 {
2359 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2360
2361 if (virtual_offset)
2362 {
2363 /* We convert via virtual base. Adjust the fixed
2364 offset to be from there. */
2365 offset =
2366 size_diffop (offset,
2367 convert (ssizetype,
2368 BINFO_OFFSET (virtual_offset)));
2369 }
2370 if (fixed_offset)
2371 /* There was an existing fixed offset, this must be
2372 from the base just converted to, and the base the
2373 FN was thunking to. */
2374 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2375 else
2376 fixed_offset = offset;
2377 }
2378 }
2379
2380 if (fixed_offset || virtual_offset)
2381 /* Replace the overriding function with a covariant thunk. We
2382 will emit the overriding function in its own slot as
2383 well. */
2384 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2385 fixed_offset, virtual_offset);
2386 }
2387 else
2388 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2389 !DECL_THUNK_P (fn));
2390
2391 /* If we need a covariant thunk, then we may need to adjust first_defn.
2392 The ABI specifies that the thunks emitted with a function are
2393 determined by which bases the function overrides, so we need to be
2394 sure that we're using a thunk for some overridden base; even if we
2395 know that the necessary this adjustment is zero, there may not be an
2396 appropriate zero-this-adjusment thunk for us to use since thunks for
2397 overriding virtual bases always use the vcall offset.
2398
2399 Furthermore, just choosing any base that overrides this function isn't
2400 quite right, as this slot won't be used for calls through a type that
2401 puts a covariant thunk here. Calling the function through such a type
2402 will use a different slot, and that slot is the one that determines
2403 the thunk emitted for that base.
2404
2405 So, keep looking until we find the base that we're really overriding
2406 in this slot: the nearest primary base that doesn't use a covariant
2407 thunk in this slot. */
2408 if (overrider_target != overrider_fn)
2409 {
2410 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2411 /* We already know that the overrider needs a covariant thunk. */
2412 b = get_primary_binfo (b);
2413 for (; ; b = get_primary_binfo (b))
2414 {
2415 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2416 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2417 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2418 break;
2419 if (BINFO_LOST_PRIMARY_P (b))
2420 lost = true;
2421 }
2422 first_defn = b;
2423 }
2424
2425 /* Assume that we will produce a thunk that convert all the way to
2426 the final overrider, and not to an intermediate virtual base. */
2427 virtual_base = NULL_TREE;
2428
2429 /* See if we can convert to an intermediate virtual base first, and then
2430 use the vcall offset located there to finish the conversion. */
2431 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2432 {
2433 /* If we find the final overrider, then we can stop
2434 walking. */
2435 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2436 BINFO_TYPE (TREE_VALUE (overrider))))
2437 break;
2438
2439 /* If we find a virtual base, and we haven't yet found the
2440 overrider, then there is a virtual base between the
2441 declaring base (first_defn) and the final overrider. */
2442 if (BINFO_VIRTUAL_P (b))
2443 {
2444 virtual_base = b;
2445 break;
2446 }
2447 }
2448
2449 /* Compute the constant adjustment to the `this' pointer. The
2450 `this' pointer, when this function is called, will point at BINFO
2451 (or one of its primary bases, which are at the same offset). */
2452 if (virtual_base)
2453 /* The `this' pointer needs to be adjusted from the declaration to
2454 the nearest virtual base. */
2455 delta = size_diffop_loc (input_location,
2456 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2457 convert (ssizetype, BINFO_OFFSET (first_defn)));
2458 else if (lost)
2459 /* If the nearest definition is in a lost primary, we don't need an
2460 entry in our vtable. Except possibly in a constructor vtable,
2461 if we happen to get our primary back. In that case, the offset
2462 will be zero, as it will be a primary base. */
2463 delta = size_zero_node;
2464 else
2465 /* The `this' pointer needs to be adjusted from pointing to
2466 BINFO to pointing at the base where the final overrider
2467 appears. */
2468 delta = size_diffop_loc (input_location,
2469 convert (ssizetype,
2470 BINFO_OFFSET (TREE_VALUE (overrider))),
2471 convert (ssizetype, BINFO_OFFSET (binfo)));
2472
2473 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2474
2475 if (virtual_base)
2476 BV_VCALL_INDEX (*virtuals)
2477 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2478 else
2479 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2480
2481 BV_LOST_PRIMARY (*virtuals) = lost;
2482 }
2483
2484 /* Called from modify_all_vtables via dfs_walk. */
2485
2486 static tree
2487 dfs_modify_vtables (tree binfo, void* data)
2488 {
2489 tree t = (tree) data;
2490 tree virtuals;
2491 tree old_virtuals;
2492 unsigned ix;
2493
2494 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2495 /* A base without a vtable needs no modification, and its bases
2496 are uninteresting. */
2497 return dfs_skip_bases;
2498
2499 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2500 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2501 /* Don't do the primary vtable, if it's new. */
2502 return NULL_TREE;
2503
2504 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2505 /* There's no need to modify the vtable for a non-virtual primary
2506 base; we're not going to use that vtable anyhow. We do still
2507 need to do this for virtual primary bases, as they could become
2508 non-primary in a construction vtable. */
2509 return NULL_TREE;
2510
2511 make_new_vtable (t, binfo);
2512
2513 /* Now, go through each of the virtual functions in the virtual
2514 function table for BINFO. Find the final overrider, and update
2515 the BINFO_VIRTUALS list appropriately. */
2516 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2517 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2518 virtuals;
2519 ix++, virtuals = TREE_CHAIN (virtuals),
2520 old_virtuals = TREE_CHAIN (old_virtuals))
2521 update_vtable_entry_for_fn (t,
2522 binfo,
2523 BV_FN (old_virtuals),
2524 &virtuals, ix);
2525
2526 return NULL_TREE;
2527 }
2528
2529 /* Update all of the primary and secondary vtables for T. Create new
2530 vtables as required, and initialize their RTTI information. Each
2531 of the functions in VIRTUALS is declared in T and may override a
2532 virtual function from a base class; find and modify the appropriate
2533 entries to point to the overriding functions. Returns a list, in
2534 declaration order, of the virtual functions that are declared in T,
2535 but do not appear in the primary base class vtable, and which
2536 should therefore be appended to the end of the vtable for T. */
2537
2538 static tree
2539 modify_all_vtables (tree t, tree virtuals)
2540 {
2541 tree binfo = TYPE_BINFO (t);
2542 tree *fnsp;
2543
2544 /* Update all of the vtables. */
2545 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2546
2547 /* Add virtual functions not already in our primary vtable. These
2548 will be both those introduced by this class, and those overridden
2549 from secondary bases. It does not include virtuals merely
2550 inherited from secondary bases. */
2551 for (fnsp = &virtuals; *fnsp; )
2552 {
2553 tree fn = TREE_VALUE (*fnsp);
2554
2555 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2556 || DECL_VINDEX (fn) == error_mark_node)
2557 {
2558 /* We don't need to adjust the `this' pointer when
2559 calling this function. */
2560 BV_DELTA (*fnsp) = integer_zero_node;
2561 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2562
2563 /* This is a function not already in our vtable. Keep it. */
2564 fnsp = &TREE_CHAIN (*fnsp);
2565 }
2566 else
2567 /* We've already got an entry for this function. Skip it. */
2568 *fnsp = TREE_CHAIN (*fnsp);
2569 }
2570
2571 return virtuals;
2572 }
2573
2574 /* Get the base virtual function declarations in T that have the
2575 indicated NAME. */
2576
2577 static tree
2578 get_basefndecls (tree name, tree t)
2579 {
2580 tree methods;
2581 tree base_fndecls = NULL_TREE;
2582 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2583 int i;
2584
2585 /* Find virtual functions in T with the indicated NAME. */
2586 i = lookup_fnfields_1 (t, name);
2587 if (i != -1)
2588 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2589 methods;
2590 methods = OVL_NEXT (methods))
2591 {
2592 tree method = OVL_CURRENT (methods);
2593
2594 if (TREE_CODE (method) == FUNCTION_DECL
2595 && DECL_VINDEX (method))
2596 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2597 }
2598
2599 if (base_fndecls)
2600 return base_fndecls;
2601
2602 for (i = 0; i < n_baseclasses; i++)
2603 {
2604 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2605 base_fndecls = chainon (get_basefndecls (name, basetype),
2606 base_fndecls);
2607 }
2608
2609 return base_fndecls;
2610 }
2611
2612 /* If this declaration supersedes the declaration of
2613 a method declared virtual in the base class, then
2614 mark this field as being virtual as well. */
2615
2616 void
2617 check_for_override (tree decl, tree ctype)
2618 {
2619 bool overrides_found = false;
2620 if (TREE_CODE (decl) == TEMPLATE_DECL)
2621 /* In [temp.mem] we have:
2622
2623 A specialization of a member function template does not
2624 override a virtual function from a base class. */
2625 return;
2626 if ((DECL_DESTRUCTOR_P (decl)
2627 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2628 || DECL_CONV_FN_P (decl))
2629 && look_for_overrides (ctype, decl)
2630 && !DECL_STATIC_FUNCTION_P (decl))
2631 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2632 the error_mark_node so that we know it is an overriding
2633 function. */
2634 {
2635 DECL_VINDEX (decl) = decl;
2636 overrides_found = true;
2637 }
2638
2639 if (DECL_VIRTUAL_P (decl))
2640 {
2641 if (!DECL_VINDEX (decl))
2642 DECL_VINDEX (decl) = error_mark_node;
2643 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2644 if (DECL_DESTRUCTOR_P (decl))
2645 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2646 }
2647 else if (DECL_FINAL_P (decl))
2648 error ("%q+#D marked final, but is not virtual", decl);
2649 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2650 error ("%q+#D marked override, but does not override", decl);
2651 }
2652
2653 /* Warn about hidden virtual functions that are not overridden in t.
2654 We know that constructors and destructors don't apply. */
2655
2656 static void
2657 warn_hidden (tree t)
2658 {
2659 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2660 tree fns;
2661 size_t i;
2662
2663 /* We go through each separately named virtual function. */
2664 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2665 vec_safe_iterate (method_vec, i, &fns);
2666 ++i)
2667 {
2668 tree fn;
2669 tree name;
2670 tree fndecl;
2671 tree base_fndecls;
2672 tree base_binfo;
2673 tree binfo;
2674 int j;
2675
2676 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2677 have the same name. Figure out what name that is. */
2678 name = DECL_NAME (OVL_CURRENT (fns));
2679 /* There are no possibly hidden functions yet. */
2680 base_fndecls = NULL_TREE;
2681 /* Iterate through all of the base classes looking for possibly
2682 hidden functions. */
2683 for (binfo = TYPE_BINFO (t), j = 0;
2684 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2685 {
2686 tree basetype = BINFO_TYPE (base_binfo);
2687 base_fndecls = chainon (get_basefndecls (name, basetype),
2688 base_fndecls);
2689 }
2690
2691 /* If there are no functions to hide, continue. */
2692 if (!base_fndecls)
2693 continue;
2694
2695 /* Remove any overridden functions. */
2696 for (fn = fns; fn; fn = OVL_NEXT (fn))
2697 {
2698 fndecl = OVL_CURRENT (fn);
2699 if (DECL_VINDEX (fndecl))
2700 {
2701 tree *prev = &base_fndecls;
2702
2703 while (*prev)
2704 /* If the method from the base class has the same
2705 signature as the method from the derived class, it
2706 has been overridden. */
2707 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2708 *prev = TREE_CHAIN (*prev);
2709 else
2710 prev = &TREE_CHAIN (*prev);
2711 }
2712 }
2713
2714 /* Now give a warning for all base functions without overriders,
2715 as they are hidden. */
2716 while (base_fndecls)
2717 {
2718 /* Here we know it is a hider, and no overrider exists. */
2719 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2720 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2721 base_fndecls = TREE_CHAIN (base_fndecls);
2722 }
2723 }
2724 }
2725
2726 /* Check for things that are invalid. There are probably plenty of other
2727 things we should check for also. */
2728
2729 static void
2730 finish_struct_anon (tree t)
2731 {
2732 tree field;
2733
2734 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2735 {
2736 if (TREE_STATIC (field))
2737 continue;
2738 if (TREE_CODE (field) != FIELD_DECL)
2739 continue;
2740
2741 if (DECL_NAME (field) == NULL_TREE
2742 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2743 {
2744 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2745 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2746 for (; elt; elt = DECL_CHAIN (elt))
2747 {
2748 /* We're generally only interested in entities the user
2749 declared, but we also find nested classes by noticing
2750 the TYPE_DECL that we create implicitly. You're
2751 allowed to put one anonymous union inside another,
2752 though, so we explicitly tolerate that. We use
2753 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2754 we also allow unnamed types used for defining fields. */
2755 if (DECL_ARTIFICIAL (elt)
2756 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2757 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2758 continue;
2759
2760 if (TREE_CODE (elt) != FIELD_DECL)
2761 {
2762 if (is_union)
2763 permerror (input_location, "%q+#D invalid; an anonymous union can "
2764 "only have non-static data members", elt);
2765 else
2766 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2767 "only have non-static data members", elt);
2768 continue;
2769 }
2770
2771 if (TREE_PRIVATE (elt))
2772 {
2773 if (is_union)
2774 permerror (input_location, "private member %q+#D in anonymous union", elt);
2775 else
2776 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2777 }
2778 else if (TREE_PROTECTED (elt))
2779 {
2780 if (is_union)
2781 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2782 else
2783 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2784 }
2785
2786 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2787 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2788 }
2789 }
2790 }
2791 }
2792
2793 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2794 will be used later during class template instantiation.
2795 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2796 a non-static member data (FIELD_DECL), a member function
2797 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2798 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2799 When FRIEND_P is nonzero, T is either a friend class
2800 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2801 (FUNCTION_DECL, TEMPLATE_DECL). */
2802
2803 void
2804 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2805 {
2806 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2807 if (CLASSTYPE_TEMPLATE_INFO (type))
2808 CLASSTYPE_DECL_LIST (type)
2809 = tree_cons (friend_p ? NULL_TREE : type,
2810 t, CLASSTYPE_DECL_LIST (type));
2811 }
2812
2813 /* This function is called from declare_virt_assop_and_dtor via
2814 dfs_walk_all.
2815
2816 DATA is a type that direcly or indirectly inherits the base
2817 represented by BINFO. If BINFO contains a virtual assignment [copy
2818 assignment or move assigment] operator or a virtual constructor,
2819 declare that function in DATA if it hasn't been already declared. */
2820
2821 static tree
2822 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2823 {
2824 tree bv, fn, t = (tree)data;
2825 tree opname = ansi_assopname (NOP_EXPR);
2826
2827 gcc_assert (t && CLASS_TYPE_P (t));
2828 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2829
2830 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2831 /* A base without a vtable needs no modification, and its bases
2832 are uninteresting. */
2833 return dfs_skip_bases;
2834
2835 if (BINFO_PRIMARY_P (binfo))
2836 /* If this is a primary base, then we have already looked at the
2837 virtual functions of its vtable. */
2838 return NULL_TREE;
2839
2840 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
2841 {
2842 fn = BV_FN (bv);
2843
2844 if (DECL_NAME (fn) == opname)
2845 {
2846 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
2847 lazily_declare_fn (sfk_copy_assignment, t);
2848 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
2849 lazily_declare_fn (sfk_move_assignment, t);
2850 }
2851 else if (DECL_DESTRUCTOR_P (fn)
2852 && CLASSTYPE_LAZY_DESTRUCTOR (t))
2853 lazily_declare_fn (sfk_destructor, t);
2854 }
2855
2856 return NULL_TREE;
2857 }
2858
2859 /* If the class type T has a direct or indirect base that contains a
2860 virtual assignment operator or a virtual destructor, declare that
2861 function in T if it hasn't been already declared. */
2862
2863 static void
2864 declare_virt_assop_and_dtor (tree t)
2865 {
2866 if (!(TYPE_POLYMORPHIC_P (t)
2867 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
2868 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
2869 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
2870 return;
2871
2872 dfs_walk_all (TYPE_BINFO (t),
2873 dfs_declare_virt_assop_and_dtor,
2874 NULL, t);
2875 }
2876
2877 /* Declare the inheriting constructor for class T inherited from base
2878 constructor CTOR with the parameter array PARMS of size NPARMS. */
2879
2880 static void
2881 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
2882 {
2883 /* We don't declare an inheriting ctor that would be a default,
2884 copy or move ctor for derived or base. */
2885 if (nparms == 0)
2886 return;
2887 if (nparms == 1
2888 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
2889 {
2890 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
2891 if (parm == t || parm == DECL_CONTEXT (ctor))
2892 return;
2893 }
2894
2895 tree parmlist = void_list_node;
2896 for (int i = nparms - 1; i >= 0; i--)
2897 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
2898 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
2899 t, false, ctor, parmlist);
2900 if (add_method (t, fn, NULL_TREE))
2901 {
2902 DECL_CHAIN (fn) = TYPE_METHODS (t);
2903 TYPE_METHODS (t) = fn;
2904 }
2905 }
2906
2907 /* Declare all the inheriting constructors for class T inherited from base
2908 constructor CTOR. */
2909
2910 static void
2911 one_inherited_ctor (tree ctor, tree t)
2912 {
2913 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
2914
2915 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
2916 int i = 0;
2917 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
2918 {
2919 if (TREE_PURPOSE (parms))
2920 one_inheriting_sig (t, ctor, new_parms, i);
2921 new_parms[i++] = TREE_VALUE (parms);
2922 }
2923 one_inheriting_sig (t, ctor, new_parms, i);
2924 if (parms == NULL_TREE)
2925 {
2926 warning (OPT_Winherited_variadic_ctor,
2927 "the ellipsis in %qD is not inherited", ctor);
2928 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
2929 }
2930 }
2931
2932 /* Create default constructors, assignment operators, and so forth for
2933 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2934 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2935 the class cannot have a default constructor, copy constructor
2936 taking a const reference argument, or an assignment operator taking
2937 a const reference, respectively. */
2938
2939 static void
2940 add_implicitly_declared_members (tree t, tree* access_decls,
2941 int cant_have_const_cctor,
2942 int cant_have_const_assignment)
2943 {
2944 bool move_ok = false;
2945
2946 if (cxx_dialect >= cxx0x && !CLASSTYPE_DESTRUCTORS (t)
2947 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
2948 && !type_has_move_constructor (t) && !type_has_move_assign (t))
2949 move_ok = true;
2950
2951 /* Destructor. */
2952 if (!CLASSTYPE_DESTRUCTORS (t))
2953 {
2954 /* In general, we create destructors lazily. */
2955 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2956
2957 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2958 && TYPE_FOR_JAVA (t))
2959 /* But if this is a Java class, any non-trivial destructor is
2960 invalid, even if compiler-generated. Therefore, if the
2961 destructor is non-trivial we create it now. */
2962 lazily_declare_fn (sfk_destructor, t);
2963 }
2964
2965 /* [class.ctor]
2966
2967 If there is no user-declared constructor for a class, a default
2968 constructor is implicitly declared. */
2969 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2970 {
2971 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2972 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2973 if (cxx_dialect >= cxx0x)
2974 TYPE_HAS_CONSTEXPR_CTOR (t)
2975 /* This might force the declaration. */
2976 = type_has_constexpr_default_constructor (t);
2977 }
2978
2979 /* [class.ctor]
2980
2981 If a class definition does not explicitly declare a copy
2982 constructor, one is declared implicitly. */
2983 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
2984 {
2985 TYPE_HAS_COPY_CTOR (t) = 1;
2986 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
2987 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2988 if (move_ok)
2989 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
2990 }
2991
2992 /* If there is no assignment operator, one will be created if and
2993 when it is needed. For now, just record whether or not the type
2994 of the parameter to the assignment operator will be a const or
2995 non-const reference. */
2996 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
2997 {
2998 TYPE_HAS_COPY_ASSIGN (t) = 1;
2999 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3000 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3001 if (move_ok)
3002 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3003 }
3004
3005 /* We can't be lazy about declaring functions that might override
3006 a virtual function from a base class. */
3007 declare_virt_assop_and_dtor (t);
3008
3009 while (*access_decls)
3010 {
3011 tree using_decl = TREE_VALUE (*access_decls);
3012 tree decl = USING_DECL_DECLS (using_decl);
3013 if (DECL_NAME (using_decl) == ctor_identifier)
3014 {
3015 /* declare, then remove the decl */
3016 tree ctor_list = decl;
3017 location_t loc = input_location;
3018 input_location = DECL_SOURCE_LOCATION (using_decl);
3019 if (ctor_list)
3020 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3021 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3022 *access_decls = TREE_CHAIN (*access_decls);
3023 input_location = loc;
3024 }
3025 else
3026 access_decls = &TREE_CHAIN (*access_decls);
3027 }
3028 }
3029
3030 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3031 count the number of fields in TYPE, including anonymous union
3032 members. */
3033
3034 static int
3035 count_fields (tree fields)
3036 {
3037 tree x;
3038 int n_fields = 0;
3039 for (x = fields; x; x = DECL_CHAIN (x))
3040 {
3041 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3042 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3043 else
3044 n_fields += 1;
3045 }
3046 return n_fields;
3047 }
3048
3049 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3050 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3051 elts, starting at offset IDX. */
3052
3053 static int
3054 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3055 {
3056 tree x;
3057 for (x = fields; x; x = DECL_CHAIN (x))
3058 {
3059 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3060 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3061 else
3062 field_vec->elts[idx++] = x;
3063 }
3064 return idx;
3065 }
3066
3067 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3068 starting at offset IDX. */
3069
3070 static int
3071 add_enum_fields_to_record_type (tree enumtype,
3072 struct sorted_fields_type *field_vec,
3073 int idx)
3074 {
3075 tree values;
3076 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3077 field_vec->elts[idx++] = TREE_VALUE (values);
3078 return idx;
3079 }
3080
3081 /* FIELD is a bit-field. We are finishing the processing for its
3082 enclosing type. Issue any appropriate messages and set appropriate
3083 flags. Returns false if an error has been diagnosed. */
3084
3085 static bool
3086 check_bitfield_decl (tree field)
3087 {
3088 tree type = TREE_TYPE (field);
3089 tree w;
3090
3091 /* Extract the declared width of the bitfield, which has been
3092 temporarily stashed in DECL_INITIAL. */
3093 w = DECL_INITIAL (field);
3094 gcc_assert (w != NULL_TREE);
3095 /* Remove the bit-field width indicator so that the rest of the
3096 compiler does not treat that value as an initializer. */
3097 DECL_INITIAL (field) = NULL_TREE;
3098
3099 /* Detect invalid bit-field type. */
3100 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3101 {
3102 error ("bit-field %q+#D with non-integral type", field);
3103 w = error_mark_node;
3104 }
3105 else
3106 {
3107 location_t loc = input_location;
3108 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3109 STRIP_NOPS (w);
3110
3111 /* detect invalid field size. */
3112 input_location = DECL_SOURCE_LOCATION (field);
3113 w = cxx_constant_value (w);
3114 input_location = loc;
3115
3116 if (TREE_CODE (w) != INTEGER_CST)
3117 {
3118 error ("bit-field %q+D width not an integer constant", field);
3119 w = error_mark_node;
3120 }
3121 else if (tree_int_cst_sgn (w) < 0)
3122 {
3123 error ("negative width in bit-field %q+D", field);
3124 w = error_mark_node;
3125 }
3126 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3127 {
3128 error ("zero width for bit-field %q+D", field);
3129 w = error_mark_node;
3130 }
3131 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
3132 && TREE_CODE (type) != ENUMERAL_TYPE
3133 && TREE_CODE (type) != BOOLEAN_TYPE)
3134 warning (0, "width of %q+D exceeds its type", field);
3135 else if (TREE_CODE (type) == ENUMERAL_TYPE
3136 && (0 > (compare_tree_int
3137 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3138 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3139 }
3140
3141 if (w != error_mark_node)
3142 {
3143 DECL_SIZE (field) = convert (bitsizetype, w);
3144 DECL_BIT_FIELD (field) = 1;
3145 return true;
3146 }
3147 else
3148 {
3149 /* Non-bit-fields are aligned for their type. */
3150 DECL_BIT_FIELD (field) = 0;
3151 CLEAR_DECL_C_BIT_FIELD (field);
3152 return false;
3153 }
3154 }
3155
3156 /* FIELD is a non bit-field. We are finishing the processing for its
3157 enclosing type T. Issue any appropriate messages and set appropriate
3158 flags. */
3159
3160 static void
3161 check_field_decl (tree field,
3162 tree t,
3163 int* cant_have_const_ctor,
3164 int* no_const_asn_ref,
3165 int* any_default_members)
3166 {
3167 tree type = strip_array_types (TREE_TYPE (field));
3168
3169 /* In C++98 an anonymous union cannot contain any fields which would change
3170 the settings of CANT_HAVE_CONST_CTOR and friends. */
3171 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx0x)
3172 ;
3173 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3174 structs. So, we recurse through their fields here. */
3175 else if (ANON_AGGR_TYPE_P (type))
3176 {
3177 tree fields;
3178
3179 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3180 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3181 check_field_decl (fields, t, cant_have_const_ctor,
3182 no_const_asn_ref, any_default_members);
3183 }
3184 /* Check members with class type for constructors, destructors,
3185 etc. */
3186 else if (CLASS_TYPE_P (type))
3187 {
3188 /* Never let anything with uninheritable virtuals
3189 make it through without complaint. */
3190 abstract_virtuals_error (field, type);
3191
3192 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx0x)
3193 {
3194 static bool warned;
3195 int oldcount = errorcount;
3196 if (TYPE_NEEDS_CONSTRUCTING (type))
3197 error ("member %q+#D with constructor not allowed in union",
3198 field);
3199 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3200 error ("member %q+#D with destructor not allowed in union", field);
3201 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3202 error ("member %q+#D with copy assignment operator not allowed in union",
3203 field);
3204 if (!warned && errorcount > oldcount)
3205 {
3206 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3207 "only available with -std=c++11 or -std=gnu++11");
3208 warned = true;
3209 }
3210 }
3211 else
3212 {
3213 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3214 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3215 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3216 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3217 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3218 || !TYPE_HAS_COPY_ASSIGN (type));
3219 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3220 || !TYPE_HAS_COPY_CTOR (type));
3221 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3222 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3223 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3224 || TYPE_HAS_COMPLEX_DFLT (type));
3225 }
3226
3227 if (TYPE_HAS_COPY_CTOR (type)
3228 && !TYPE_HAS_CONST_COPY_CTOR (type))
3229 *cant_have_const_ctor = 1;
3230
3231 if (TYPE_HAS_COPY_ASSIGN (type)
3232 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3233 *no_const_asn_ref = 1;
3234 }
3235
3236 check_abi_tags (t, field);
3237
3238 if (DECL_INITIAL (field) != NULL_TREE)
3239 {
3240 /* `build_class_init_list' does not recognize
3241 non-FIELD_DECLs. */
3242 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3243 error ("multiple fields in union %qT initialized", t);
3244 *any_default_members = 1;
3245 }
3246 }
3247
3248 /* Check the data members (both static and non-static), class-scoped
3249 typedefs, etc., appearing in the declaration of T. Issue
3250 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3251 declaration order) of access declarations; each TREE_VALUE in this
3252 list is a USING_DECL.
3253
3254 In addition, set the following flags:
3255
3256 EMPTY_P
3257 The class is empty, i.e., contains no non-static data members.
3258
3259 CANT_HAVE_CONST_CTOR_P
3260 This class cannot have an implicitly generated copy constructor
3261 taking a const reference.
3262
3263 CANT_HAVE_CONST_ASN_REF
3264 This class cannot have an implicitly generated assignment
3265 operator taking a const reference.
3266
3267 All of these flags should be initialized before calling this
3268 function.
3269
3270 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3271 fields can be added by adding to this chain. */
3272
3273 static void
3274 check_field_decls (tree t, tree *access_decls,
3275 int *cant_have_const_ctor_p,
3276 int *no_const_asn_ref_p)
3277 {
3278 tree *field;
3279 tree *next;
3280 bool has_pointers;
3281 int any_default_members;
3282 int cant_pack = 0;
3283 int field_access = -1;
3284
3285 /* Assume there are no access declarations. */
3286 *access_decls = NULL_TREE;
3287 /* Assume this class has no pointer members. */
3288 has_pointers = false;
3289 /* Assume none of the members of this class have default
3290 initializations. */
3291 any_default_members = 0;
3292
3293 for (field = &TYPE_FIELDS (t); *field; field = next)
3294 {
3295 tree x = *field;
3296 tree type = TREE_TYPE (x);
3297 int this_field_access;
3298
3299 next = &DECL_CHAIN (x);
3300
3301 if (TREE_CODE (x) == USING_DECL)
3302 {
3303 /* Save the access declarations for our caller. */
3304 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3305 continue;
3306 }
3307
3308 if (TREE_CODE (x) == TYPE_DECL
3309 || TREE_CODE (x) == TEMPLATE_DECL)
3310 continue;
3311
3312 /* If we've gotten this far, it's a data member, possibly static,
3313 or an enumerator. */
3314 if (TREE_CODE (x) != CONST_DECL)
3315 DECL_CONTEXT (x) = t;
3316
3317 /* When this goes into scope, it will be a non-local reference. */
3318 DECL_NONLOCAL (x) = 1;
3319
3320 if (TREE_CODE (t) == UNION_TYPE)
3321 {
3322 /* [class.union]
3323
3324 If a union contains a static data member, or a member of
3325 reference type, the program is ill-formed. */
3326 if (TREE_CODE (x) == VAR_DECL)
3327 {
3328 error ("%q+D may not be static because it is a member of a union", x);
3329 continue;
3330 }
3331 if (TREE_CODE (type) == REFERENCE_TYPE)
3332 {
3333 error ("%q+D may not have reference type %qT because"
3334 " it is a member of a union",
3335 x, type);
3336 continue;
3337 }
3338 }
3339
3340 /* Perform error checking that did not get done in
3341 grokdeclarator. */
3342 if (TREE_CODE (type) == FUNCTION_TYPE)
3343 {
3344 error ("field %q+D invalidly declared function type", x);
3345 type = build_pointer_type (type);
3346 TREE_TYPE (x) = type;
3347 }
3348 else if (TREE_CODE (type) == METHOD_TYPE)
3349 {
3350 error ("field %q+D invalidly declared method type", x);
3351 type = build_pointer_type (type);
3352 TREE_TYPE (x) = type;
3353 }
3354
3355 if (type == error_mark_node)
3356 continue;
3357
3358 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
3359 continue;
3360
3361 /* Now it can only be a FIELD_DECL. */
3362
3363 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3364 CLASSTYPE_NON_AGGREGATE (t) = 1;
3365
3366 /* If at least one non-static data member is non-literal, the whole
3367 class becomes non-literal. Note: if the type is incomplete we
3368 will complain later on. */
3369 if (COMPLETE_TYPE_P (type) && !literal_type_p (type))
3370 CLASSTYPE_LITERAL_P (t) = false;
3371
3372 /* A standard-layout class is a class that:
3373 ...
3374 has the same access control (Clause 11) for all non-static data members,
3375 ... */
3376 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3377 if (field_access == -1)
3378 field_access = this_field_access;
3379 else if (this_field_access != field_access)
3380 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3381
3382 /* If this is of reference type, check if it needs an init. */
3383 if (TREE_CODE (type) == REFERENCE_TYPE)
3384 {
3385 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3386 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3387 if (DECL_INITIAL (x) == NULL_TREE)
3388 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3389
3390 /* ARM $12.6.2: [A member initializer list] (or, for an
3391 aggregate, initialization by a brace-enclosed list) is the
3392 only way to initialize nonstatic const and reference
3393 members. */
3394 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3395 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3396 }
3397
3398 type = strip_array_types (type);
3399
3400 if (TYPE_PACKED (t))
3401 {
3402 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3403 {
3404 warning
3405 (0,
3406 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3407 x);
3408 cant_pack = 1;
3409 }
3410 else if (DECL_C_BIT_FIELD (x)
3411 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3412 DECL_PACKED (x) = 1;
3413 }
3414
3415 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3416 /* We don't treat zero-width bitfields as making a class
3417 non-empty. */
3418 ;
3419 else
3420 {
3421 /* The class is non-empty. */
3422 CLASSTYPE_EMPTY_P (t) = 0;
3423 /* The class is not even nearly empty. */
3424 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3425 /* If one of the data members contains an empty class,
3426 so does T. */
3427 if (CLASS_TYPE_P (type)
3428 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3429 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3430 }
3431
3432 /* This is used by -Weffc++ (see below). Warn only for pointers
3433 to members which might hold dynamic memory. So do not warn
3434 for pointers to functions or pointers to members. */
3435 if (TYPE_PTR_P (type)
3436 && !TYPE_PTRFN_P (type))
3437 has_pointers = true;
3438
3439 if (CLASS_TYPE_P (type))
3440 {
3441 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3442 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3443 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3444 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3445 }
3446
3447 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3448 CLASSTYPE_HAS_MUTABLE (t) = 1;
3449
3450 if (! layout_pod_type_p (type))
3451 /* DR 148 now allows pointers to members (which are POD themselves),
3452 to be allowed in POD structs. */
3453 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3454
3455 if (!std_layout_type_p (type))
3456 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3457
3458 if (! zero_init_p (type))
3459 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3460
3461 /* We set DECL_C_BIT_FIELD in grokbitfield.
3462 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3463 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3464 check_field_decl (x, t,
3465 cant_have_const_ctor_p,
3466 no_const_asn_ref_p,
3467 &any_default_members);
3468
3469 /* Now that we've removed bit-field widths from DECL_INITIAL,
3470 anything left in DECL_INITIAL is an NSDMI that makes the class
3471 non-aggregate. */
3472 if (DECL_INITIAL (x))
3473 CLASSTYPE_NON_AGGREGATE (t) = true;
3474
3475 /* If any field is const, the structure type is pseudo-const. */
3476 if (CP_TYPE_CONST_P (type))
3477 {
3478 C_TYPE_FIELDS_READONLY (t) = 1;
3479 if (DECL_INITIAL (x) == NULL_TREE)
3480 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3481
3482 /* ARM $12.6.2: [A member initializer list] (or, for an
3483 aggregate, initialization by a brace-enclosed list) is the
3484 only way to initialize nonstatic const and reference
3485 members. */
3486 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3487 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3488 }
3489 /* A field that is pseudo-const makes the structure likewise. */
3490 else if (CLASS_TYPE_P (type))
3491 {
3492 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3493 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3494 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3495 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3496 }
3497
3498 /* Core issue 80: A nonstatic data member is required to have a
3499 different name from the class iff the class has a
3500 user-declared constructor. */
3501 if (constructor_name_p (DECL_NAME (x), t)
3502 && TYPE_HAS_USER_CONSTRUCTOR (t))
3503 permerror (input_location, "field %q+#D with same name as class", x);
3504 }
3505
3506 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3507 it should also define a copy constructor and an assignment operator to
3508 implement the correct copy semantic (deep vs shallow, etc.). As it is
3509 not feasible to check whether the constructors do allocate dynamic memory
3510 and store it within members, we approximate the warning like this:
3511
3512 -- Warn only if there are members which are pointers
3513 -- Warn only if there is a non-trivial constructor (otherwise,
3514 there cannot be memory allocated).
3515 -- Warn only if there is a non-trivial destructor. We assume that the
3516 user at least implemented the cleanup correctly, and a destructor
3517 is needed to free dynamic memory.
3518
3519 This seems enough for practical purposes. */
3520 if (warn_ecpp
3521 && has_pointers
3522 && TYPE_HAS_USER_CONSTRUCTOR (t)
3523 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3524 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3525 {
3526 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3527
3528 if (! TYPE_HAS_COPY_CTOR (t))
3529 {
3530 warning (OPT_Weffc__,
3531 " but does not override %<%T(const %T&)%>", t, t);
3532 if (!TYPE_HAS_COPY_ASSIGN (t))
3533 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3534 }
3535 else if (! TYPE_HAS_COPY_ASSIGN (t))
3536 warning (OPT_Weffc__,
3537 " but does not override %<operator=(const %T&)%>", t);
3538 }
3539
3540 /* Non-static data member initializers make the default constructor
3541 non-trivial. */
3542 if (any_default_members)
3543 {
3544 TYPE_NEEDS_CONSTRUCTING (t) = true;
3545 TYPE_HAS_COMPLEX_DFLT (t) = true;
3546 }
3547
3548 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3549 if (cant_pack)
3550 TYPE_PACKED (t) = 0;
3551
3552 /* Check anonymous struct/anonymous union fields. */
3553 finish_struct_anon (t);
3554
3555 /* We've built up the list of access declarations in reverse order.
3556 Fix that now. */
3557 *access_decls = nreverse (*access_decls);
3558 }
3559
3560 /* If TYPE is an empty class type, records its OFFSET in the table of
3561 OFFSETS. */
3562
3563 static int
3564 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3565 {
3566 splay_tree_node n;
3567
3568 if (!is_empty_class (type))
3569 return 0;
3570
3571 /* Record the location of this empty object in OFFSETS. */
3572 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3573 if (!n)
3574 n = splay_tree_insert (offsets,
3575 (splay_tree_key) offset,
3576 (splay_tree_value) NULL_TREE);
3577 n->value = ((splay_tree_value)
3578 tree_cons (NULL_TREE,
3579 type,
3580 (tree) n->value));
3581
3582 return 0;
3583 }
3584
3585 /* Returns nonzero if TYPE is an empty class type and there is
3586 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3587
3588 static int
3589 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3590 {
3591 splay_tree_node n;
3592 tree t;
3593
3594 if (!is_empty_class (type))
3595 return 0;
3596
3597 /* Record the location of this empty object in OFFSETS. */
3598 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3599 if (!n)
3600 return 0;
3601
3602 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3603 if (same_type_p (TREE_VALUE (t), type))
3604 return 1;
3605
3606 return 0;
3607 }
3608
3609 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3610 F for every subobject, passing it the type, offset, and table of
3611 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3612 be traversed.
3613
3614 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3615 than MAX_OFFSET will not be walked.
3616
3617 If F returns a nonzero value, the traversal ceases, and that value
3618 is returned. Otherwise, returns zero. */
3619
3620 static int
3621 walk_subobject_offsets (tree type,
3622 subobject_offset_fn f,
3623 tree offset,
3624 splay_tree offsets,
3625 tree max_offset,
3626 int vbases_p)
3627 {
3628 int r = 0;
3629 tree type_binfo = NULL_TREE;
3630
3631 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3632 stop. */
3633 if (max_offset && INT_CST_LT (max_offset, offset))
3634 return 0;
3635
3636 if (type == error_mark_node)
3637 return 0;
3638
3639 if (!TYPE_P (type))
3640 {
3641 if (abi_version_at_least (2))
3642 type_binfo = type;
3643 type = BINFO_TYPE (type);
3644 }
3645
3646 if (CLASS_TYPE_P (type))
3647 {
3648 tree field;
3649 tree binfo;
3650 int i;
3651
3652 /* Avoid recursing into objects that are not interesting. */
3653 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3654 return 0;
3655
3656 /* Record the location of TYPE. */
3657 r = (*f) (type, offset, offsets);
3658 if (r)
3659 return r;
3660
3661 /* Iterate through the direct base classes of TYPE. */
3662 if (!type_binfo)
3663 type_binfo = TYPE_BINFO (type);
3664 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3665 {
3666 tree binfo_offset;
3667
3668 if (abi_version_at_least (2)
3669 && BINFO_VIRTUAL_P (binfo))
3670 continue;
3671
3672 if (!vbases_p
3673 && BINFO_VIRTUAL_P (binfo)
3674 && !BINFO_PRIMARY_P (binfo))
3675 continue;
3676
3677 if (!abi_version_at_least (2))
3678 binfo_offset = size_binop (PLUS_EXPR,
3679 offset,
3680 BINFO_OFFSET (binfo));
3681 else
3682 {
3683 tree orig_binfo;
3684 /* We cannot rely on BINFO_OFFSET being set for the base
3685 class yet, but the offsets for direct non-virtual
3686 bases can be calculated by going back to the TYPE. */
3687 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3688 binfo_offset = size_binop (PLUS_EXPR,
3689 offset,
3690 BINFO_OFFSET (orig_binfo));
3691 }
3692
3693 r = walk_subobject_offsets (binfo,
3694 f,
3695 binfo_offset,
3696 offsets,
3697 max_offset,
3698 (abi_version_at_least (2)
3699 ? /*vbases_p=*/0 : vbases_p));
3700 if (r)
3701 return r;
3702 }
3703
3704 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3705 {
3706 unsigned ix;
3707 vec<tree, va_gc> *vbases;
3708
3709 /* Iterate through the virtual base classes of TYPE. In G++
3710 3.2, we included virtual bases in the direct base class
3711 loop above, which results in incorrect results; the
3712 correct offsets for virtual bases are only known when
3713 working with the most derived type. */
3714 if (vbases_p)
3715 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3716 vec_safe_iterate (vbases, ix, &binfo); ix++)
3717 {
3718 r = walk_subobject_offsets (binfo,
3719 f,
3720 size_binop (PLUS_EXPR,
3721 offset,
3722 BINFO_OFFSET (binfo)),
3723 offsets,
3724 max_offset,
3725 /*vbases_p=*/0);
3726 if (r)
3727 return r;
3728 }
3729 else
3730 {
3731 /* We still have to walk the primary base, if it is
3732 virtual. (If it is non-virtual, then it was walked
3733 above.) */
3734 tree vbase = get_primary_binfo (type_binfo);
3735
3736 if (vbase && BINFO_VIRTUAL_P (vbase)
3737 && BINFO_PRIMARY_P (vbase)
3738 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3739 {
3740 r = (walk_subobject_offsets
3741 (vbase, f, offset,
3742 offsets, max_offset, /*vbases_p=*/0));
3743 if (r)
3744 return r;
3745 }
3746 }
3747 }
3748
3749 /* Iterate through the fields of TYPE. */
3750 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3751 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3752 {
3753 tree field_offset;
3754
3755 if (abi_version_at_least (2))
3756 field_offset = byte_position (field);
3757 else
3758 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3759 field_offset = DECL_FIELD_OFFSET (field);
3760
3761 r = walk_subobject_offsets (TREE_TYPE (field),
3762 f,
3763 size_binop (PLUS_EXPR,
3764 offset,
3765 field_offset),
3766 offsets,
3767 max_offset,
3768 /*vbases_p=*/1);
3769 if (r)
3770 return r;
3771 }
3772 }
3773 else if (TREE_CODE (type) == ARRAY_TYPE)
3774 {
3775 tree element_type = strip_array_types (type);
3776 tree domain = TYPE_DOMAIN (type);
3777 tree index;
3778
3779 /* Avoid recursing into objects that are not interesting. */
3780 if (!CLASS_TYPE_P (element_type)
3781 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3782 return 0;
3783
3784 /* Step through each of the elements in the array. */
3785 for (index = size_zero_node;
3786 /* G++ 3.2 had an off-by-one error here. */
3787 (abi_version_at_least (2)
3788 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3789 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3790 index = size_binop (PLUS_EXPR, index, size_one_node))
3791 {
3792 r = walk_subobject_offsets (TREE_TYPE (type),
3793 f,
3794 offset,
3795 offsets,
3796 max_offset,
3797 /*vbases_p=*/1);
3798 if (r)
3799 return r;
3800 offset = size_binop (PLUS_EXPR, offset,
3801 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3802 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3803 there's no point in iterating through the remaining
3804 elements of the array. */
3805 if (max_offset && INT_CST_LT (max_offset, offset))
3806 break;
3807 }
3808 }
3809
3810 return 0;
3811 }
3812
3813 /* Record all of the empty subobjects of TYPE (either a type or a
3814 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3815 is being placed at OFFSET; otherwise, it is a base class that is
3816 being placed at OFFSET. */
3817
3818 static void
3819 record_subobject_offsets (tree type,
3820 tree offset,
3821 splay_tree offsets,
3822 bool is_data_member)
3823 {
3824 tree max_offset;
3825 /* If recording subobjects for a non-static data member or a
3826 non-empty base class , we do not need to record offsets beyond
3827 the size of the biggest empty class. Additional data members
3828 will go at the end of the class. Additional base classes will go
3829 either at offset zero (if empty, in which case they cannot
3830 overlap with offsets past the size of the biggest empty class) or
3831 at the end of the class.
3832
3833 However, if we are placing an empty base class, then we must record
3834 all offsets, as either the empty class is at offset zero (where
3835 other empty classes might later be placed) or at the end of the
3836 class (where other objects might then be placed, so other empty
3837 subobjects might later overlap). */
3838 if (is_data_member
3839 || !is_empty_class (BINFO_TYPE (type)))
3840 max_offset = sizeof_biggest_empty_class;
3841 else
3842 max_offset = NULL_TREE;
3843 walk_subobject_offsets (type, record_subobject_offset, offset,
3844 offsets, max_offset, is_data_member);
3845 }
3846
3847 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3848 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3849 virtual bases of TYPE are examined. */
3850
3851 static int
3852 layout_conflict_p (tree type,
3853 tree offset,
3854 splay_tree offsets,
3855 int vbases_p)
3856 {
3857 splay_tree_node max_node;
3858
3859 /* Get the node in OFFSETS that indicates the maximum offset where
3860 an empty subobject is located. */
3861 max_node = splay_tree_max (offsets);
3862 /* If there aren't any empty subobjects, then there's no point in
3863 performing this check. */
3864 if (!max_node)
3865 return 0;
3866
3867 return walk_subobject_offsets (type, check_subobject_offset, offset,
3868 offsets, (tree) (max_node->key),
3869 vbases_p);
3870 }
3871
3872 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3873 non-static data member of the type indicated by RLI. BINFO is the
3874 binfo corresponding to the base subobject, OFFSETS maps offsets to
3875 types already located at those offsets. This function determines
3876 the position of the DECL. */
3877
3878 static void
3879 layout_nonempty_base_or_field (record_layout_info rli,
3880 tree decl,
3881 tree binfo,
3882 splay_tree offsets)
3883 {
3884 tree offset = NULL_TREE;
3885 bool field_p;
3886 tree type;
3887
3888 if (binfo)
3889 {
3890 /* For the purposes of determining layout conflicts, we want to
3891 use the class type of BINFO; TREE_TYPE (DECL) will be the
3892 CLASSTYPE_AS_BASE version, which does not contain entries for
3893 zero-sized bases. */
3894 type = TREE_TYPE (binfo);
3895 field_p = false;
3896 }
3897 else
3898 {
3899 type = TREE_TYPE (decl);
3900 field_p = true;
3901 }
3902
3903 /* Try to place the field. It may take more than one try if we have
3904 a hard time placing the field without putting two objects of the
3905 same type at the same address. */
3906 while (1)
3907 {
3908 struct record_layout_info_s old_rli = *rli;
3909
3910 /* Place this field. */
3911 place_field (rli, decl);
3912 offset = byte_position (decl);
3913
3914 /* We have to check to see whether or not there is already
3915 something of the same type at the offset we're about to use.
3916 For example, consider:
3917
3918 struct S {};
3919 struct T : public S { int i; };
3920 struct U : public S, public T {};
3921
3922 Here, we put S at offset zero in U. Then, we can't put T at
3923 offset zero -- its S component would be at the same address
3924 as the S we already allocated. So, we have to skip ahead.
3925 Since all data members, including those whose type is an
3926 empty class, have nonzero size, any overlap can happen only
3927 with a direct or indirect base-class -- it can't happen with
3928 a data member. */
3929 /* In a union, overlap is permitted; all members are placed at
3930 offset zero. */
3931 if (TREE_CODE (rli->t) == UNION_TYPE)
3932 break;
3933 /* G++ 3.2 did not check for overlaps when placing a non-empty
3934 virtual base. */
3935 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3936 break;
3937 if (layout_conflict_p (field_p ? type : binfo, offset,
3938 offsets, field_p))
3939 {
3940 /* Strip off the size allocated to this field. That puts us
3941 at the first place we could have put the field with
3942 proper alignment. */
3943 *rli = old_rli;
3944
3945 /* Bump up by the alignment required for the type. */
3946 rli->bitpos
3947 = size_binop (PLUS_EXPR, rli->bitpos,
3948 bitsize_int (binfo
3949 ? CLASSTYPE_ALIGN (type)
3950 : TYPE_ALIGN (type)));
3951 normalize_rli (rli);
3952 }
3953 else
3954 /* There was no conflict. We're done laying out this field. */
3955 break;
3956 }
3957
3958 /* Now that we know where it will be placed, update its
3959 BINFO_OFFSET. */
3960 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3961 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3962 this point because their BINFO_OFFSET is copied from another
3963 hierarchy. Therefore, we may not need to add the entire
3964 OFFSET. */
3965 propagate_binfo_offsets (binfo,
3966 size_diffop_loc (input_location,
3967 convert (ssizetype, offset),
3968 convert (ssizetype,
3969 BINFO_OFFSET (binfo))));
3970 }
3971
3972 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3973
3974 static int
3975 empty_base_at_nonzero_offset_p (tree type,
3976 tree offset,
3977 splay_tree /*offsets*/)
3978 {
3979 return is_empty_class (type) && !integer_zerop (offset);
3980 }
3981
3982 /* Layout the empty base BINFO. EOC indicates the byte currently just
3983 past the end of the class, and should be correctly aligned for a
3984 class of the type indicated by BINFO; OFFSETS gives the offsets of
3985 the empty bases allocated so far. T is the most derived
3986 type. Return nonzero iff we added it at the end. */
3987
3988 static bool
3989 layout_empty_base (record_layout_info rli, tree binfo,
3990 tree eoc, splay_tree offsets)
3991 {
3992 tree alignment;
3993 tree basetype = BINFO_TYPE (binfo);
3994 bool atend = false;
3995
3996 /* This routine should only be used for empty classes. */
3997 gcc_assert (is_empty_class (basetype));
3998 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3999
4000 if (!integer_zerop (BINFO_OFFSET (binfo)))
4001 {
4002 if (abi_version_at_least (2))
4003 propagate_binfo_offsets
4004 (binfo, size_diffop_loc (input_location,
4005 size_zero_node, BINFO_OFFSET (binfo)));
4006 else
4007 warning (OPT_Wabi,
4008 "offset of empty base %qT may not be ABI-compliant and may"
4009 "change in a future version of GCC",
4010 BINFO_TYPE (binfo));
4011 }
4012
4013 /* This is an empty base class. We first try to put it at offset
4014 zero. */
4015 if (layout_conflict_p (binfo,
4016 BINFO_OFFSET (binfo),
4017 offsets,
4018 /*vbases_p=*/0))
4019 {
4020 /* That didn't work. Now, we move forward from the next
4021 available spot in the class. */
4022 atend = true;
4023 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4024 while (1)
4025 {
4026 if (!layout_conflict_p (binfo,
4027 BINFO_OFFSET (binfo),
4028 offsets,
4029 /*vbases_p=*/0))
4030 /* We finally found a spot where there's no overlap. */
4031 break;
4032
4033 /* There's overlap here, too. Bump along to the next spot. */
4034 propagate_binfo_offsets (binfo, alignment);
4035 }
4036 }
4037
4038 if (CLASSTYPE_USER_ALIGN (basetype))
4039 {
4040 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4041 if (warn_packed)
4042 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4043 TYPE_USER_ALIGN (rli->t) = 1;
4044 }
4045
4046 return atend;
4047 }
4048
4049 /* Layout the base given by BINFO in the class indicated by RLI.
4050 *BASE_ALIGN is a running maximum of the alignments of
4051 any base class. OFFSETS gives the location of empty base
4052 subobjects. T is the most derived type. Return nonzero if the new
4053 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4054 *NEXT_FIELD, unless BINFO is for an empty base class.
4055
4056 Returns the location at which the next field should be inserted. */
4057
4058 static tree *
4059 build_base_field (record_layout_info rli, tree binfo,
4060 splay_tree offsets, tree *next_field)
4061 {
4062 tree t = rli->t;
4063 tree basetype = BINFO_TYPE (binfo);
4064
4065 if (!COMPLETE_TYPE_P (basetype))
4066 /* This error is now reported in xref_tag, thus giving better
4067 location information. */
4068 return next_field;
4069
4070 /* Place the base class. */
4071 if (!is_empty_class (basetype))
4072 {
4073 tree decl;
4074
4075 /* The containing class is non-empty because it has a non-empty
4076 base class. */
4077 CLASSTYPE_EMPTY_P (t) = 0;
4078
4079 /* Create the FIELD_DECL. */
4080 decl = build_decl (input_location,
4081 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4082 DECL_ARTIFICIAL (decl) = 1;
4083 DECL_IGNORED_P (decl) = 1;
4084 DECL_FIELD_CONTEXT (decl) = t;
4085 if (CLASSTYPE_AS_BASE (basetype))
4086 {
4087 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4088 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4089 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4090 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4091 DECL_MODE (decl) = TYPE_MODE (basetype);
4092 DECL_FIELD_IS_BASE (decl) = 1;
4093
4094 /* Try to place the field. It may take more than one try if we
4095 have a hard time placing the field without putting two
4096 objects of the same type at the same address. */
4097 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4098 /* Add the new FIELD_DECL to the list of fields for T. */
4099 DECL_CHAIN (decl) = *next_field;
4100 *next_field = decl;
4101 next_field = &DECL_CHAIN (decl);
4102 }
4103 }
4104 else
4105 {
4106 tree eoc;
4107 bool atend;
4108
4109 /* On some platforms (ARM), even empty classes will not be
4110 byte-aligned. */
4111 eoc = round_up_loc (input_location,
4112 rli_size_unit_so_far (rli),
4113 CLASSTYPE_ALIGN_UNIT (basetype));
4114 atend = layout_empty_base (rli, binfo, eoc, offsets);
4115 /* A nearly-empty class "has no proper base class that is empty,
4116 not morally virtual, and at an offset other than zero." */
4117 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4118 {
4119 if (atend)
4120 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4121 /* The check above (used in G++ 3.2) is insufficient because
4122 an empty class placed at offset zero might itself have an
4123 empty base at a nonzero offset. */
4124 else if (walk_subobject_offsets (basetype,
4125 empty_base_at_nonzero_offset_p,
4126 size_zero_node,
4127 /*offsets=*/NULL,
4128 /*max_offset=*/NULL_TREE,
4129 /*vbases_p=*/true))
4130 {
4131 if (abi_version_at_least (2))
4132 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4133 else
4134 warning (OPT_Wabi,
4135 "class %qT will be considered nearly empty in a "
4136 "future version of GCC", t);
4137 }
4138 }
4139
4140 /* We do not create a FIELD_DECL for empty base classes because
4141 it might overlap some other field. We want to be able to
4142 create CONSTRUCTORs for the class by iterating over the
4143 FIELD_DECLs, and the back end does not handle overlapping
4144 FIELD_DECLs. */
4145
4146 /* An empty virtual base causes a class to be non-empty
4147 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4148 here because that was already done when the virtual table
4149 pointer was created. */
4150 }
4151
4152 /* Record the offsets of BINFO and its base subobjects. */
4153 record_subobject_offsets (binfo,
4154 BINFO_OFFSET (binfo),
4155 offsets,
4156 /*is_data_member=*/false);
4157
4158 return next_field;
4159 }
4160
4161 /* Layout all of the non-virtual base classes. Record empty
4162 subobjects in OFFSETS. T is the most derived type. Return nonzero
4163 if the type cannot be nearly empty. The fields created
4164 corresponding to the base classes will be inserted at
4165 *NEXT_FIELD. */
4166
4167 static void
4168 build_base_fields (record_layout_info rli,
4169 splay_tree offsets, tree *next_field)
4170 {
4171 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4172 subobjects. */
4173 tree t = rli->t;
4174 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4175 int i;
4176
4177 /* The primary base class is always allocated first. */
4178 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4179 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4180 offsets, next_field);
4181
4182 /* Now allocate the rest of the bases. */
4183 for (i = 0; i < n_baseclasses; ++i)
4184 {
4185 tree base_binfo;
4186
4187 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4188
4189 /* The primary base was already allocated above, so we don't
4190 need to allocate it again here. */
4191 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4192 continue;
4193
4194 /* Virtual bases are added at the end (a primary virtual base
4195 will have already been added). */
4196 if (BINFO_VIRTUAL_P (base_binfo))
4197 continue;
4198
4199 next_field = build_base_field (rli, base_binfo,
4200 offsets, next_field);
4201 }
4202 }
4203
4204 /* Go through the TYPE_METHODS of T issuing any appropriate
4205 diagnostics, figuring out which methods override which other
4206 methods, and so forth. */
4207
4208 static void
4209 check_methods (tree t)
4210 {
4211 tree x;
4212
4213 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4214 {
4215 check_for_override (x, t);
4216 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
4217 error ("initializer specified for non-virtual method %q+D", x);
4218 /* The name of the field is the original field name
4219 Save this in auxiliary field for later overloading. */
4220 if (DECL_VINDEX (x))
4221 {
4222 TYPE_POLYMORPHIC_P (t) = 1;
4223 if (DECL_PURE_VIRTUAL_P (x))
4224 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4225 }
4226 /* All user-provided destructors are non-trivial.
4227 Constructors and assignment ops are handled in
4228 grok_special_member_properties. */
4229 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4230 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4231 }
4232 }
4233
4234 /* FN is a constructor or destructor. Clone the declaration to create
4235 a specialized in-charge or not-in-charge version, as indicated by
4236 NAME. */
4237
4238 static tree
4239 build_clone (tree fn, tree name)
4240 {
4241 tree parms;
4242 tree clone;
4243
4244 /* Copy the function. */
4245 clone = copy_decl (fn);
4246 /* Reset the function name. */
4247 DECL_NAME (clone) = name;
4248 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4249 /* Remember where this function came from. */
4250 DECL_ABSTRACT_ORIGIN (clone) = fn;
4251 /* Make it easy to find the CLONE given the FN. */
4252 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4253 DECL_CHAIN (fn) = clone;
4254
4255 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4256 if (TREE_CODE (clone) == TEMPLATE_DECL)
4257 {
4258 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4259 DECL_TEMPLATE_RESULT (clone) = result;
4260 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4261 DECL_TI_TEMPLATE (result) = clone;
4262 TREE_TYPE (clone) = TREE_TYPE (result);
4263 return clone;
4264 }
4265
4266 DECL_CLONED_FUNCTION (clone) = fn;
4267 /* There's no pending inline data for this function. */
4268 DECL_PENDING_INLINE_INFO (clone) = NULL;
4269 DECL_PENDING_INLINE_P (clone) = 0;
4270
4271 /* The base-class destructor is not virtual. */
4272 if (name == base_dtor_identifier)
4273 {
4274 DECL_VIRTUAL_P (clone) = 0;
4275 if (TREE_CODE (clone) != TEMPLATE_DECL)
4276 DECL_VINDEX (clone) = NULL_TREE;
4277 }
4278
4279 /* If there was an in-charge parameter, drop it from the function
4280 type. */
4281 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4282 {
4283 tree basetype;
4284 tree parmtypes;
4285 tree exceptions;
4286
4287 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4288 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4289 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4290 /* Skip the `this' parameter. */
4291 parmtypes = TREE_CHAIN (parmtypes);
4292 /* Skip the in-charge parameter. */
4293 parmtypes = TREE_CHAIN (parmtypes);
4294 /* And the VTT parm, in a complete [cd]tor. */
4295 if (DECL_HAS_VTT_PARM_P (fn)
4296 && ! DECL_NEEDS_VTT_PARM_P (clone))
4297 parmtypes = TREE_CHAIN (parmtypes);
4298 /* If this is subobject constructor or destructor, add the vtt
4299 parameter. */
4300 TREE_TYPE (clone)
4301 = build_method_type_directly (basetype,
4302 TREE_TYPE (TREE_TYPE (clone)),
4303 parmtypes);
4304 if (exceptions)
4305 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4306 exceptions);
4307 TREE_TYPE (clone)
4308 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4309 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4310 }
4311
4312 /* Copy the function parameters. */
4313 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4314 /* Remove the in-charge parameter. */
4315 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4316 {
4317 DECL_CHAIN (DECL_ARGUMENTS (clone))
4318 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4319 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4320 }
4321 /* And the VTT parm, in a complete [cd]tor. */
4322 if (DECL_HAS_VTT_PARM_P (fn))
4323 {
4324 if (DECL_NEEDS_VTT_PARM_P (clone))
4325 DECL_HAS_VTT_PARM_P (clone) = 1;
4326 else
4327 {
4328 DECL_CHAIN (DECL_ARGUMENTS (clone))
4329 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4330 DECL_HAS_VTT_PARM_P (clone) = 0;
4331 }
4332 }
4333
4334 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4335 {
4336 DECL_CONTEXT (parms) = clone;
4337 cxx_dup_lang_specific_decl (parms);
4338 }
4339
4340 /* Create the RTL for this function. */
4341 SET_DECL_RTL (clone, NULL);
4342 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4343
4344 if (pch_file)
4345 note_decl_for_pch (clone);
4346
4347 return clone;
4348 }
4349
4350 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4351 not invoke this function directly.
4352
4353 For a non-thunk function, returns the address of the slot for storing
4354 the function it is a clone of. Otherwise returns NULL_TREE.
4355
4356 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4357 cloned_function is unset. This is to support the separate
4358 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4359 on a template makes sense, but not the former. */
4360
4361 tree *
4362 decl_cloned_function_p (const_tree decl, bool just_testing)
4363 {
4364 tree *ptr;
4365 if (just_testing)
4366 decl = STRIP_TEMPLATE (decl);
4367
4368 if (TREE_CODE (decl) != FUNCTION_DECL
4369 || !DECL_LANG_SPECIFIC (decl)
4370 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4371 {
4372 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4373 if (!just_testing)
4374 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4375 else
4376 #endif
4377 return NULL;
4378 }
4379
4380 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4381 if (just_testing && *ptr == NULL_TREE)
4382 return NULL;
4383 else
4384 return ptr;
4385 }
4386
4387 /* Produce declarations for all appropriate clones of FN. If
4388 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4389 CLASTYPE_METHOD_VEC as well. */
4390
4391 void
4392 clone_function_decl (tree fn, int update_method_vec_p)
4393 {
4394 tree clone;
4395
4396 /* Avoid inappropriate cloning. */
4397 if (DECL_CHAIN (fn)
4398 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4399 return;
4400
4401 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4402 {
4403 /* For each constructor, we need two variants: an in-charge version
4404 and a not-in-charge version. */
4405 clone = build_clone (fn, complete_ctor_identifier);
4406 if (update_method_vec_p)
4407 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4408 clone = build_clone (fn, base_ctor_identifier);
4409 if (update_method_vec_p)
4410 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4411 }
4412 else
4413 {
4414 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4415
4416 /* For each destructor, we need three variants: an in-charge
4417 version, a not-in-charge version, and an in-charge deleting
4418 version. We clone the deleting version first because that
4419 means it will go second on the TYPE_METHODS list -- and that
4420 corresponds to the correct layout order in the virtual
4421 function table.
4422
4423 For a non-virtual destructor, we do not build a deleting
4424 destructor. */
4425 if (DECL_VIRTUAL_P (fn))
4426 {
4427 clone = build_clone (fn, deleting_dtor_identifier);
4428 if (update_method_vec_p)
4429 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4430 }
4431 clone = build_clone (fn, complete_dtor_identifier);
4432 if (update_method_vec_p)
4433 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4434 clone = build_clone (fn, base_dtor_identifier);
4435 if (update_method_vec_p)
4436 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4437 }
4438
4439 /* Note that this is an abstract function that is never emitted. */
4440 DECL_ABSTRACT (fn) = 1;
4441 }
4442
4443 /* DECL is an in charge constructor, which is being defined. This will
4444 have had an in class declaration, from whence clones were
4445 declared. An out-of-class definition can specify additional default
4446 arguments. As it is the clones that are involved in overload
4447 resolution, we must propagate the information from the DECL to its
4448 clones. */
4449
4450 void
4451 adjust_clone_args (tree decl)
4452 {
4453 tree clone;
4454
4455 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4456 clone = DECL_CHAIN (clone))
4457 {
4458 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4459 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4460 tree decl_parms, clone_parms;
4461
4462 clone_parms = orig_clone_parms;
4463
4464 /* Skip the 'this' parameter. */
4465 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4466 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4467
4468 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4469 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4470 if (DECL_HAS_VTT_PARM_P (decl))
4471 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4472
4473 clone_parms = orig_clone_parms;
4474 if (DECL_HAS_VTT_PARM_P (clone))
4475 clone_parms = TREE_CHAIN (clone_parms);
4476
4477 for (decl_parms = orig_decl_parms; decl_parms;
4478 decl_parms = TREE_CHAIN (decl_parms),
4479 clone_parms = TREE_CHAIN (clone_parms))
4480 {
4481 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4482 TREE_TYPE (clone_parms)));
4483
4484 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4485 {
4486 /* A default parameter has been added. Adjust the
4487 clone's parameters. */
4488 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4489 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4490 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4491 tree type;
4492
4493 clone_parms = orig_decl_parms;
4494
4495 if (DECL_HAS_VTT_PARM_P (clone))
4496 {
4497 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4498 TREE_VALUE (orig_clone_parms),
4499 clone_parms);
4500 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4501 }
4502 type = build_method_type_directly (basetype,
4503 TREE_TYPE (TREE_TYPE (clone)),
4504 clone_parms);
4505 if (exceptions)
4506 type = build_exception_variant (type, exceptions);
4507 if (attrs)
4508 type = cp_build_type_attribute_variant (type, attrs);
4509 TREE_TYPE (clone) = type;
4510
4511 clone_parms = NULL_TREE;
4512 break;
4513 }
4514 }
4515 gcc_assert (!clone_parms);
4516 }
4517 }
4518
4519 /* For each of the constructors and destructors in T, create an
4520 in-charge and not-in-charge variant. */
4521
4522 static void
4523 clone_constructors_and_destructors (tree t)
4524 {
4525 tree fns;
4526
4527 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4528 out now. */
4529 if (!CLASSTYPE_METHOD_VEC (t))
4530 return;
4531
4532 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4533 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4534 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4535 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4536 }
4537
4538 /* Deduce noexcept for a destructor DTOR. */
4539
4540 void
4541 deduce_noexcept_on_destructor (tree dtor)
4542 {
4543 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4544 {
4545 tree ctx = DECL_CONTEXT (dtor);
4546 tree implicit_fn = implicitly_declare_fn (sfk_destructor, ctx,
4547 /*const_p=*/false,
4548 NULL, NULL);
4549 tree eh_spec = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (implicit_fn));
4550 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4551 }
4552 }
4553
4554 /* For each destructor in T, deduce noexcept:
4555
4556 12.4/3: A declaration of a destructor that does not have an
4557 exception-specification is implicitly considered to have the
4558 same exception-specification as an implicit declaration (15.4). */
4559
4560 static void
4561 deduce_noexcept_on_destructors (tree t)
4562 {
4563 tree fns;
4564
4565 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4566 out now. */
4567 if (!CLASSTYPE_METHOD_VEC (t))
4568 return;
4569
4570 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4571 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4572 }
4573
4574 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4575 of TYPE for virtual functions which FNDECL overrides. Return a
4576 mask of the tm attributes found therein. */
4577
4578 static int
4579 look_for_tm_attr_overrides (tree type, tree fndecl)
4580 {
4581 tree binfo = TYPE_BINFO (type);
4582 tree base_binfo;
4583 int ix, found = 0;
4584
4585 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4586 {
4587 tree o, basetype = BINFO_TYPE (base_binfo);
4588
4589 if (!TYPE_POLYMORPHIC_P (basetype))
4590 continue;
4591
4592 o = look_for_overrides_here (basetype, fndecl);
4593 if (o)
4594 found |= tm_attr_to_mask (find_tm_attribute
4595 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4596 else
4597 found |= look_for_tm_attr_overrides (basetype, fndecl);
4598 }
4599
4600 return found;
4601 }
4602
4603 /* Subroutine of set_method_tm_attributes. Handle the checks and
4604 inheritance for one virtual method FNDECL. */
4605
4606 static void
4607 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4608 {
4609 tree tm_attr;
4610 int found, have;
4611
4612 found = look_for_tm_attr_overrides (type, fndecl);
4613
4614 /* If FNDECL doesn't actually override anything (i.e. T is the
4615 class that first declares FNDECL virtual), then we're done. */
4616 if (found == 0)
4617 return;
4618
4619 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4620 have = tm_attr_to_mask (tm_attr);
4621
4622 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4623 tm_pure must match exactly, otherwise no weakening of
4624 tm_safe > tm_callable > nothing. */
4625 /* ??? The tm_pure attribute didn't make the transition to the
4626 multivendor language spec. */
4627 if (have == TM_ATTR_PURE)
4628 {
4629 if (found != TM_ATTR_PURE)
4630 {
4631 found &= -found;
4632 goto err_override;
4633 }
4634 }
4635 /* If the overridden function is tm_pure, then FNDECL must be. */
4636 else if (found == TM_ATTR_PURE && tm_attr)
4637 goto err_override;
4638 /* Look for base class combinations that cannot be satisfied. */
4639 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4640 {
4641 found &= ~TM_ATTR_PURE;
4642 found &= -found;
4643 error_at (DECL_SOURCE_LOCATION (fndecl),
4644 "method overrides both %<transaction_pure%> and %qE methods",
4645 tm_mask_to_attr (found));
4646 }
4647 /* If FNDECL did not declare an attribute, then inherit the most
4648 restrictive one. */
4649 else if (tm_attr == NULL)
4650 {
4651 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4652 }
4653 /* Otherwise validate that we're not weaker than a function
4654 that is being overridden. */
4655 else
4656 {
4657 found &= -found;
4658 if (found <= TM_ATTR_CALLABLE && have > found)
4659 goto err_override;
4660 }
4661 return;
4662
4663 err_override:
4664 error_at (DECL_SOURCE_LOCATION (fndecl),
4665 "method declared %qE overriding %qE method",
4666 tm_attr, tm_mask_to_attr (found));
4667 }
4668
4669 /* For each of the methods in T, propagate a class-level tm attribute. */
4670
4671 static void
4672 set_method_tm_attributes (tree t)
4673 {
4674 tree class_tm_attr, fndecl;
4675
4676 /* Don't bother collecting tm attributes if transactional memory
4677 support is not enabled. */
4678 if (!flag_tm)
4679 return;
4680
4681 /* Process virtual methods first, as they inherit directly from the
4682 base virtual function and also require validation of new attributes. */
4683 if (TYPE_CONTAINS_VPTR_P (t))
4684 {
4685 tree vchain;
4686 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4687 vchain = TREE_CHAIN (vchain))
4688 {
4689 fndecl = BV_FN (vchain);
4690 if (DECL_THUNK_P (fndecl))
4691 fndecl = THUNK_TARGET (fndecl);
4692 set_one_vmethod_tm_attributes (t, fndecl);
4693 }
4694 }
4695
4696 /* If the class doesn't have an attribute, nothing more to do. */
4697 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4698 if (class_tm_attr == NULL)
4699 return;
4700
4701 /* Any method that does not yet have a tm attribute inherits
4702 the one from the class. */
4703 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4704 {
4705 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4706 apply_tm_attr (fndecl, class_tm_attr);
4707 }
4708 }
4709
4710 /* Returns true iff class T has a user-defined constructor other than
4711 the default constructor. */
4712
4713 bool
4714 type_has_user_nondefault_constructor (tree t)
4715 {
4716 tree fns;
4717
4718 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4719 return false;
4720
4721 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4722 {
4723 tree fn = OVL_CURRENT (fns);
4724 if (!DECL_ARTIFICIAL (fn)
4725 && (TREE_CODE (fn) == TEMPLATE_DECL
4726 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4727 != NULL_TREE)))
4728 return true;
4729 }
4730
4731 return false;
4732 }
4733
4734 /* Returns the defaulted constructor if T has one. Otherwise, returns
4735 NULL_TREE. */
4736
4737 tree
4738 in_class_defaulted_default_constructor (tree t)
4739 {
4740 tree fns, args;
4741
4742 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4743 return NULL_TREE;
4744
4745 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4746 {
4747 tree fn = OVL_CURRENT (fns);
4748
4749 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4750 {
4751 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4752 while (args && TREE_PURPOSE (args))
4753 args = TREE_CHAIN (args);
4754 if (!args || args == void_list_node)
4755 return fn;
4756 }
4757 }
4758
4759 return NULL_TREE;
4760 }
4761
4762 /* Returns true iff FN is a user-provided function, i.e. user-declared
4763 and not defaulted at its first declaration; or explicit, private,
4764 protected, or non-const. */
4765
4766 bool
4767 user_provided_p (tree fn)
4768 {
4769 if (TREE_CODE (fn) == TEMPLATE_DECL)
4770 return true;
4771 else
4772 return (!DECL_ARTIFICIAL (fn)
4773 && !DECL_DEFAULTED_IN_CLASS_P (fn));
4774 }
4775
4776 /* Returns true iff class T has a user-provided constructor. */
4777
4778 bool
4779 type_has_user_provided_constructor (tree t)
4780 {
4781 tree fns;
4782
4783 if (!CLASS_TYPE_P (t))
4784 return false;
4785
4786 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4787 return false;
4788
4789 /* This can happen in error cases; avoid crashing. */
4790 if (!CLASSTYPE_METHOD_VEC (t))
4791 return false;
4792
4793 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4794 if (user_provided_p (OVL_CURRENT (fns)))
4795 return true;
4796
4797 return false;
4798 }
4799
4800 /* Returns true iff class T has a user-provided default constructor. */
4801
4802 bool
4803 type_has_user_provided_default_constructor (tree t)
4804 {
4805 tree fns;
4806
4807 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4808 return false;
4809
4810 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4811 {
4812 tree fn = OVL_CURRENT (fns);
4813 if (TREE_CODE (fn) == FUNCTION_DECL
4814 && user_provided_p (fn)
4815 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4816 return true;
4817 }
4818
4819 return false;
4820 }
4821
4822 /* If default-initialization leaves part of TYPE uninitialized, returns
4823 a DECL for the field or TYPE itself (DR 253). */
4824
4825 tree
4826 default_init_uninitialized_part (tree type)
4827 {
4828 tree t, r, binfo;
4829 int i;
4830
4831 type = strip_array_types (type);
4832 if (!CLASS_TYPE_P (type))
4833 return type;
4834 if (type_has_user_provided_default_constructor (type))
4835 return NULL_TREE;
4836 for (binfo = TYPE_BINFO (type), i = 0;
4837 BINFO_BASE_ITERATE (binfo, i, t); ++i)
4838 {
4839 r = default_init_uninitialized_part (BINFO_TYPE (t));
4840 if (r)
4841 return r;
4842 }
4843 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
4844 if (TREE_CODE (t) == FIELD_DECL
4845 && !DECL_ARTIFICIAL (t)
4846 && !DECL_INITIAL (t))
4847 {
4848 r = default_init_uninitialized_part (TREE_TYPE (t));
4849 if (r)
4850 return DECL_P (r) ? r : t;
4851 }
4852
4853 return NULL_TREE;
4854 }
4855
4856 /* Returns true iff for class T, a trivial synthesized default constructor
4857 would be constexpr. */
4858
4859 bool
4860 trivial_default_constructor_is_constexpr (tree t)
4861 {
4862 /* A defaulted trivial default constructor is constexpr
4863 if there is nothing to initialize. */
4864 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
4865 return is_really_empty_class (t);
4866 }
4867
4868 /* Returns true iff class T has a constexpr default constructor. */
4869
4870 bool
4871 type_has_constexpr_default_constructor (tree t)
4872 {
4873 tree fns;
4874
4875 if (!CLASS_TYPE_P (t))
4876 {
4877 /* The caller should have stripped an enclosing array. */
4878 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
4879 return false;
4880 }
4881 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
4882 {
4883 if (!TYPE_HAS_COMPLEX_DFLT (t))
4884 return trivial_default_constructor_is_constexpr (t);
4885 /* Non-trivial, we need to check subobject constructors. */
4886 lazily_declare_fn (sfk_constructor, t);
4887 }
4888 fns = locate_ctor (t);
4889 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
4890 }
4891
4892 /* Returns true iff class TYPE has a virtual destructor. */
4893
4894 bool
4895 type_has_virtual_destructor (tree type)
4896 {
4897 tree dtor;
4898
4899 if (!CLASS_TYPE_P (type))
4900 return false;
4901
4902 gcc_assert (COMPLETE_TYPE_P (type));
4903 dtor = CLASSTYPE_DESTRUCTORS (type);
4904 return (dtor && DECL_VIRTUAL_P (dtor));
4905 }
4906
4907 /* Returns true iff class T has a move constructor. */
4908
4909 bool
4910 type_has_move_constructor (tree t)
4911 {
4912 tree fns;
4913
4914 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
4915 {
4916 gcc_assert (COMPLETE_TYPE_P (t));
4917 lazily_declare_fn (sfk_move_constructor, t);
4918 }
4919
4920 if (!CLASSTYPE_METHOD_VEC (t))
4921 return false;
4922
4923 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4924 if (move_fn_p (OVL_CURRENT (fns)))
4925 return true;
4926
4927 return false;
4928 }
4929
4930 /* Returns true iff class T has a move assignment operator. */
4931
4932 bool
4933 type_has_move_assign (tree t)
4934 {
4935 tree fns;
4936
4937 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
4938 {
4939 gcc_assert (COMPLETE_TYPE_P (t));
4940 lazily_declare_fn (sfk_move_assignment, t);
4941 }
4942
4943 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
4944 fns; fns = OVL_NEXT (fns))
4945 if (move_fn_p (OVL_CURRENT (fns)))
4946 return true;
4947
4948 return false;
4949 }
4950
4951 /* Returns true iff class T has a move constructor that was explicitly
4952 declared in the class body. Note that this is different from
4953 "user-provided", which doesn't include functions that are defaulted in
4954 the class. */
4955
4956 bool
4957 type_has_user_declared_move_constructor (tree t)
4958 {
4959 tree fns;
4960
4961 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
4962 return false;
4963
4964 if (!CLASSTYPE_METHOD_VEC (t))
4965 return false;
4966
4967 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4968 {
4969 tree fn = OVL_CURRENT (fns);
4970 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
4971 return true;
4972 }
4973
4974 return false;
4975 }
4976
4977 /* Returns true iff class T has a move assignment operator that was
4978 explicitly declared in the class body. */
4979
4980 bool
4981 type_has_user_declared_move_assign (tree t)
4982 {
4983 tree fns;
4984
4985 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
4986 return false;
4987
4988 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
4989 fns; fns = OVL_NEXT (fns))
4990 {
4991 tree fn = OVL_CURRENT (fns);
4992 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
4993 return true;
4994 }
4995
4996 return false;
4997 }
4998
4999 /* Nonzero if we need to build up a constructor call when initializing an
5000 object of this class, either because it has a user-provided constructor
5001 or because it doesn't have a default constructor (so we need to give an
5002 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5003 what you care about is whether or not an object can be produced by a
5004 constructor (e.g. so we don't set TREE_READONLY on const variables of
5005 such type); use this function when what you care about is whether or not
5006 to try to call a constructor to create an object. The latter case is
5007 the former plus some cases of constructors that cannot be called. */
5008
5009 bool
5010 type_build_ctor_call (tree t)
5011 {
5012 tree inner;
5013 if (TYPE_NEEDS_CONSTRUCTING (t))
5014 return true;
5015 inner = strip_array_types (t);
5016 return (CLASS_TYPE_P (inner) && !TYPE_HAS_DEFAULT_CONSTRUCTOR (inner)
5017 && !ANON_AGGR_TYPE_P (inner));
5018 }
5019
5020 /* Remove all zero-width bit-fields from T. */
5021
5022 static void
5023 remove_zero_width_bit_fields (tree t)
5024 {
5025 tree *fieldsp;
5026
5027 fieldsp = &TYPE_FIELDS (t);
5028 while (*fieldsp)
5029 {
5030 if (TREE_CODE (*fieldsp) == FIELD_DECL
5031 && DECL_C_BIT_FIELD (*fieldsp)
5032 /* We should not be confused by the fact that grokbitfield
5033 temporarily sets the width of the bit field into
5034 DECL_INITIAL (*fieldsp).
5035 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5036 to that width. */
5037 && integer_zerop (DECL_SIZE (*fieldsp)))
5038 *fieldsp = DECL_CHAIN (*fieldsp);
5039 else
5040 fieldsp = &DECL_CHAIN (*fieldsp);
5041 }
5042 }
5043
5044 /* Returns TRUE iff we need a cookie when dynamically allocating an
5045 array whose elements have the indicated class TYPE. */
5046
5047 static bool
5048 type_requires_array_cookie (tree type)
5049 {
5050 tree fns;
5051 bool has_two_argument_delete_p = false;
5052
5053 gcc_assert (CLASS_TYPE_P (type));
5054
5055 /* If there's a non-trivial destructor, we need a cookie. In order
5056 to iterate through the array calling the destructor for each
5057 element, we'll have to know how many elements there are. */
5058 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5059 return true;
5060
5061 /* If the usual deallocation function is a two-argument whose second
5062 argument is of type `size_t', then we have to pass the size of
5063 the array to the deallocation function, so we will need to store
5064 a cookie. */
5065 fns = lookup_fnfields (TYPE_BINFO (type),
5066 ansi_opname (VEC_DELETE_EXPR),
5067 /*protect=*/0);
5068 /* If there are no `operator []' members, or the lookup is
5069 ambiguous, then we don't need a cookie. */
5070 if (!fns || fns == error_mark_node)
5071 return false;
5072 /* Loop through all of the functions. */
5073 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5074 {
5075 tree fn;
5076 tree second_parm;
5077
5078 /* Select the current function. */
5079 fn = OVL_CURRENT (fns);
5080 /* See if this function is a one-argument delete function. If
5081 it is, then it will be the usual deallocation function. */
5082 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5083 if (second_parm == void_list_node)
5084 return false;
5085 /* Do not consider this function if its second argument is an
5086 ellipsis. */
5087 if (!second_parm)
5088 continue;
5089 /* Otherwise, if we have a two-argument function and the second
5090 argument is `size_t', it will be the usual deallocation
5091 function -- unless there is one-argument function, too. */
5092 if (TREE_CHAIN (second_parm) == void_list_node
5093 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5094 has_two_argument_delete_p = true;
5095 }
5096
5097 return has_two_argument_delete_p;
5098 }
5099
5100 /* Finish computing the `literal type' property of class type T.
5101
5102 At this point, we have already processed base classes and
5103 non-static data members. We need to check whether the copy
5104 constructor is trivial, the destructor is trivial, and there
5105 is a trivial default constructor or at least one constexpr
5106 constructor other than the copy constructor. */
5107
5108 static void
5109 finalize_literal_type_property (tree t)
5110 {
5111 tree fn;
5112
5113 if (cxx_dialect < cxx0x
5114 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5115 CLASSTYPE_LITERAL_P (t) = false;
5116 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5117 && CLASSTYPE_NON_AGGREGATE (t)
5118 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5119 CLASSTYPE_LITERAL_P (t) = false;
5120
5121 if (!CLASSTYPE_LITERAL_P (t))
5122 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5123 if (DECL_DECLARED_CONSTEXPR_P (fn)
5124 && TREE_CODE (fn) != TEMPLATE_DECL
5125 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5126 && !DECL_CONSTRUCTOR_P (fn))
5127 {
5128 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5129 if (!DECL_GENERATED_P (fn))
5130 {
5131 error ("enclosing class of constexpr non-static member "
5132 "function %q+#D is not a literal type", fn);
5133 explain_non_literal_class (t);
5134 }
5135 }
5136 }
5137
5138 /* T is a non-literal type used in a context which requires a constant
5139 expression. Explain why it isn't literal. */
5140
5141 void
5142 explain_non_literal_class (tree t)
5143 {
5144 static struct pointer_set_t *diagnosed;
5145
5146 if (!CLASS_TYPE_P (t))
5147 return;
5148 t = TYPE_MAIN_VARIANT (t);
5149
5150 if (diagnosed == NULL)
5151 diagnosed = pointer_set_create ();
5152 if (pointer_set_insert (diagnosed, t) != 0)
5153 /* Already explained. */
5154 return;
5155
5156 inform (0, "%q+T is not literal because:", t);
5157 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5158 inform (0, " %q+T has a non-trivial destructor", t);
5159 else if (CLASSTYPE_NON_AGGREGATE (t)
5160 && !TYPE_HAS_TRIVIAL_DFLT (t)
5161 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5162 {
5163 inform (0, " %q+T is not an aggregate, does not have a trivial "
5164 "default constructor, and has no constexpr constructor that "
5165 "is not a copy or move constructor", t);
5166 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5167 && !type_has_user_provided_default_constructor (t))
5168 {
5169 /* Note that we can't simply call locate_ctor because when the
5170 constructor is deleted it just returns NULL_TREE. */
5171 tree fns;
5172 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5173 {
5174 tree fn = OVL_CURRENT (fns);
5175 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5176
5177 parms = skip_artificial_parms_for (fn, parms);
5178
5179 if (sufficient_parms_p (parms))
5180 {
5181 if (DECL_DELETED_FN (fn))
5182 maybe_explain_implicit_delete (fn);
5183 else
5184 explain_invalid_constexpr_fn (fn);
5185 break;
5186 }
5187 }
5188 }
5189 }
5190 else
5191 {
5192 tree binfo, base_binfo, field; int i;
5193 for (binfo = TYPE_BINFO (t), i = 0;
5194 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5195 {
5196 tree basetype = TREE_TYPE (base_binfo);
5197 if (!CLASSTYPE_LITERAL_P (basetype))
5198 {
5199 inform (0, " base class %qT of %q+T is non-literal",
5200 basetype, t);
5201 explain_non_literal_class (basetype);
5202 return;
5203 }
5204 }
5205 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5206 {
5207 tree ftype;
5208 if (TREE_CODE (field) != FIELD_DECL)
5209 continue;
5210 ftype = TREE_TYPE (field);
5211 if (!literal_type_p (ftype))
5212 {
5213 inform (0, " non-static data member %q+D has "
5214 "non-literal type", field);
5215 if (CLASS_TYPE_P (ftype))
5216 explain_non_literal_class (ftype);
5217 }
5218 }
5219 }
5220 }
5221
5222 /* Check the validity of the bases and members declared in T. Add any
5223 implicitly-generated functions (like copy-constructors and
5224 assignment operators). Compute various flag bits (like
5225 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5226 level: i.e., independently of the ABI in use. */
5227
5228 static void
5229 check_bases_and_members (tree t)
5230 {
5231 /* Nonzero if the implicitly generated copy constructor should take
5232 a non-const reference argument. */
5233 int cant_have_const_ctor;
5234 /* Nonzero if the implicitly generated assignment operator
5235 should take a non-const reference argument. */
5236 int no_const_asn_ref;
5237 tree access_decls;
5238 bool saved_complex_asn_ref;
5239 bool saved_nontrivial_dtor;
5240 tree fn;
5241
5242 /* By default, we use const reference arguments and generate default
5243 constructors. */
5244 cant_have_const_ctor = 0;
5245 no_const_asn_ref = 0;
5246
5247 /* Check all the base-classes. */
5248 check_bases (t, &cant_have_const_ctor,
5249 &no_const_asn_ref);
5250
5251 /* Deduce noexcept on destructors. This needs to happen after we've set
5252 triviality flags appropriately for our bases. */
5253 if (cxx_dialect >= cxx0x)
5254 deduce_noexcept_on_destructors (t);
5255
5256 /* Check all the method declarations. */
5257 check_methods (t);
5258
5259 /* Save the initial values of these flags which only indicate whether
5260 or not the class has user-provided functions. As we analyze the
5261 bases and members we can set these flags for other reasons. */
5262 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5263 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5264
5265 /* Check all the data member declarations. We cannot call
5266 check_field_decls until we have called check_bases check_methods,
5267 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5268 being set appropriately. */
5269 check_field_decls (t, &access_decls,
5270 &cant_have_const_ctor,
5271 &no_const_asn_ref);
5272
5273 /* A nearly-empty class has to be vptr-containing; a nearly empty
5274 class contains just a vptr. */
5275 if (!TYPE_CONTAINS_VPTR_P (t))
5276 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5277
5278 /* Do some bookkeeping that will guide the generation of implicitly
5279 declared member functions. */
5280 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5281 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5282 /* We need to call a constructor for this class if it has a
5283 user-provided constructor, or if the default constructor is going
5284 to initialize the vptr. (This is not an if-and-only-if;
5285 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5286 themselves need constructing.) */
5287 TYPE_NEEDS_CONSTRUCTING (t)
5288 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5289 /* [dcl.init.aggr]
5290
5291 An aggregate is an array or a class with no user-provided
5292 constructors ... and no virtual functions.
5293
5294 Again, other conditions for being an aggregate are checked
5295 elsewhere. */
5296 CLASSTYPE_NON_AGGREGATE (t)
5297 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5298 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5299 retain the old definition internally for ABI reasons. */
5300 CLASSTYPE_NON_LAYOUT_POD_P (t)
5301 |= (CLASSTYPE_NON_AGGREGATE (t)
5302 || saved_nontrivial_dtor || saved_complex_asn_ref);
5303 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5304 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5305 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5306 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5307
5308 /* If the class has no user-declared constructor, but does have
5309 non-static const or reference data members that can never be
5310 initialized, issue a warning. */
5311 if (warn_uninitialized
5312 /* Classes with user-declared constructors are presumed to
5313 initialize these members. */
5314 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5315 /* Aggregates can be initialized with brace-enclosed
5316 initializers. */
5317 && CLASSTYPE_NON_AGGREGATE (t))
5318 {
5319 tree field;
5320
5321 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5322 {
5323 tree type;
5324
5325 if (TREE_CODE (field) != FIELD_DECL
5326 || DECL_INITIAL (field) != NULL_TREE)
5327 continue;
5328
5329 type = TREE_TYPE (field);
5330 if (TREE_CODE (type) == REFERENCE_TYPE)
5331 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5332 "in class without a constructor", field);
5333 else if (CP_TYPE_CONST_P (type)
5334 && (!CLASS_TYPE_P (type)
5335 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5336 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5337 "in class without a constructor", field);
5338 }
5339 }
5340
5341 /* Synthesize any needed methods. */
5342 add_implicitly_declared_members (t, &access_decls,
5343 cant_have_const_ctor,
5344 no_const_asn_ref);
5345
5346 /* Check defaulted declarations here so we have cant_have_const_ctor
5347 and don't need to worry about clones. */
5348 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5349 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5350 {
5351 int copy = copy_fn_p (fn);
5352 if (copy > 0)
5353 {
5354 bool imp_const_p
5355 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5356 : !no_const_asn_ref);
5357 bool fn_const_p = (copy == 2);
5358
5359 if (fn_const_p && !imp_const_p)
5360 /* If the function is defaulted outside the class, we just
5361 give the synthesis error. */
5362 error ("%q+D declared to take const reference, but implicit "
5363 "declaration would take non-const", fn);
5364 }
5365 defaulted_late_check (fn);
5366 }
5367
5368 if (LAMBDA_TYPE_P (t))
5369 {
5370 /* "The closure type associated with a lambda-expression has a deleted
5371 default constructor and a deleted copy assignment operator." */
5372 TYPE_NEEDS_CONSTRUCTING (t) = 1;
5373 TYPE_HAS_COMPLEX_DFLT (t) = 1;
5374 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
5375 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
5376
5377 /* "This class type is not an aggregate." */
5378 CLASSTYPE_NON_AGGREGATE (t) = 1;
5379 }
5380
5381 /* Compute the 'literal type' property before we
5382 do anything with non-static member functions. */
5383 finalize_literal_type_property (t);
5384
5385 /* Create the in-charge and not-in-charge variants of constructors
5386 and destructors. */
5387 clone_constructors_and_destructors (t);
5388
5389 /* Process the using-declarations. */
5390 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5391 handle_using_decl (TREE_VALUE (access_decls), t);
5392
5393 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5394 finish_struct_methods (t);
5395
5396 /* Figure out whether or not we will need a cookie when dynamically
5397 allocating an array of this type. */
5398 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5399 = type_requires_array_cookie (t);
5400 }
5401
5402 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5403 accordingly. If a new vfield was created (because T doesn't have a
5404 primary base class), then the newly created field is returned. It
5405 is not added to the TYPE_FIELDS list; it is the caller's
5406 responsibility to do that. Accumulate declared virtual functions
5407 on VIRTUALS_P. */
5408
5409 static tree
5410 create_vtable_ptr (tree t, tree* virtuals_p)
5411 {
5412 tree fn;
5413
5414 /* Collect the virtual functions declared in T. */
5415 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5416 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5417 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5418 {
5419 tree new_virtual = make_node (TREE_LIST);
5420
5421 BV_FN (new_virtual) = fn;
5422 BV_DELTA (new_virtual) = integer_zero_node;
5423 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5424
5425 TREE_CHAIN (new_virtual) = *virtuals_p;
5426 *virtuals_p = new_virtual;
5427 }
5428
5429 /* If we couldn't find an appropriate base class, create a new field
5430 here. Even if there weren't any new virtual functions, we might need a
5431 new virtual function table if we're supposed to include vptrs in
5432 all classes that need them. */
5433 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5434 {
5435 /* We build this decl with vtbl_ptr_type_node, which is a
5436 `vtable_entry_type*'. It might seem more precise to use
5437 `vtable_entry_type (*)[N]' where N is the number of virtual
5438 functions. However, that would require the vtable pointer in
5439 base classes to have a different type than the vtable pointer
5440 in derived classes. We could make that happen, but that
5441 still wouldn't solve all the problems. In particular, the
5442 type-based alias analysis code would decide that assignments
5443 to the base class vtable pointer can't alias assignments to
5444 the derived class vtable pointer, since they have different
5445 types. Thus, in a derived class destructor, where the base
5446 class constructor was inlined, we could generate bad code for
5447 setting up the vtable pointer.
5448
5449 Therefore, we use one type for all vtable pointers. We still
5450 use a type-correct type; it's just doesn't indicate the array
5451 bounds. That's better than using `void*' or some such; it's
5452 cleaner, and it let's the alias analysis code know that these
5453 stores cannot alias stores to void*! */
5454 tree field;
5455
5456 field = build_decl (input_location,
5457 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5458 DECL_VIRTUAL_P (field) = 1;
5459 DECL_ARTIFICIAL (field) = 1;
5460 DECL_FIELD_CONTEXT (field) = t;
5461 DECL_FCONTEXT (field) = t;
5462 if (TYPE_PACKED (t))
5463 DECL_PACKED (field) = 1;
5464
5465 TYPE_VFIELD (t) = field;
5466
5467 /* This class is non-empty. */
5468 CLASSTYPE_EMPTY_P (t) = 0;
5469
5470 return field;
5471 }
5472
5473 return NULL_TREE;
5474 }
5475
5476 /* Add OFFSET to all base types of BINFO which is a base in the
5477 hierarchy dominated by T.
5478
5479 OFFSET, which is a type offset, is number of bytes. */
5480
5481 static void
5482 propagate_binfo_offsets (tree binfo, tree offset)
5483 {
5484 int i;
5485 tree primary_binfo;
5486 tree base_binfo;
5487
5488 /* Update BINFO's offset. */
5489 BINFO_OFFSET (binfo)
5490 = convert (sizetype,
5491 size_binop (PLUS_EXPR,
5492 convert (ssizetype, BINFO_OFFSET (binfo)),
5493 offset));
5494
5495 /* Find the primary base class. */
5496 primary_binfo = get_primary_binfo (binfo);
5497
5498 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5499 propagate_binfo_offsets (primary_binfo, offset);
5500
5501 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5502 downwards. */
5503 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5504 {
5505 /* Don't do the primary base twice. */
5506 if (base_binfo == primary_binfo)
5507 continue;
5508
5509 if (BINFO_VIRTUAL_P (base_binfo))
5510 continue;
5511
5512 propagate_binfo_offsets (base_binfo, offset);
5513 }
5514 }
5515
5516 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5517 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5518 empty subobjects of T. */
5519
5520 static void
5521 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5522 {
5523 tree vbase;
5524 tree t = rli->t;
5525 bool first_vbase = true;
5526 tree *next_field;
5527
5528 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5529 return;
5530
5531 if (!abi_version_at_least(2))
5532 {
5533 /* In G++ 3.2, we incorrectly rounded the size before laying out
5534 the virtual bases. */
5535 finish_record_layout (rli, /*free_p=*/false);
5536 #ifdef STRUCTURE_SIZE_BOUNDARY
5537 /* Packed structures don't need to have minimum size. */
5538 if (! TYPE_PACKED (t))
5539 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
5540 #endif
5541 rli->offset = TYPE_SIZE_UNIT (t);
5542 rli->bitpos = bitsize_zero_node;
5543 rli->record_align = TYPE_ALIGN (t);
5544 }
5545
5546 /* Find the last field. The artificial fields created for virtual
5547 bases will go after the last extant field to date. */
5548 next_field = &TYPE_FIELDS (t);
5549 while (*next_field)
5550 next_field = &DECL_CHAIN (*next_field);
5551
5552 /* Go through the virtual bases, allocating space for each virtual
5553 base that is not already a primary base class. These are
5554 allocated in inheritance graph order. */
5555 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5556 {
5557 if (!BINFO_VIRTUAL_P (vbase))
5558 continue;
5559
5560 if (!BINFO_PRIMARY_P (vbase))
5561 {
5562 tree basetype = TREE_TYPE (vbase);
5563
5564 /* This virtual base is not a primary base of any class in the
5565 hierarchy, so we have to add space for it. */
5566 next_field = build_base_field (rli, vbase,
5567 offsets, next_field);
5568
5569 /* If the first virtual base might have been placed at a
5570 lower address, had we started from CLASSTYPE_SIZE, rather
5571 than TYPE_SIZE, issue a warning. There can be both false
5572 positives and false negatives from this warning in rare
5573 cases; to deal with all the possibilities would probably
5574 require performing both layout algorithms and comparing
5575 the results which is not particularly tractable. */
5576 if (warn_abi
5577 && first_vbase
5578 && (tree_int_cst_lt
5579 (size_binop (CEIL_DIV_EXPR,
5580 round_up_loc (input_location,
5581 CLASSTYPE_SIZE (t),
5582 CLASSTYPE_ALIGN (basetype)),
5583 bitsize_unit_node),
5584 BINFO_OFFSET (vbase))))
5585 warning (OPT_Wabi,
5586 "offset of virtual base %qT is not ABI-compliant and "
5587 "may change in a future version of GCC",
5588 basetype);
5589
5590 first_vbase = false;
5591 }
5592 }
5593 }
5594
5595 /* Returns the offset of the byte just past the end of the base class
5596 BINFO. */
5597
5598 static tree
5599 end_of_base (tree binfo)
5600 {
5601 tree size;
5602
5603 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5604 size = TYPE_SIZE_UNIT (char_type_node);
5605 else if (is_empty_class (BINFO_TYPE (binfo)))
5606 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5607 allocate some space for it. It cannot have virtual bases, so
5608 TYPE_SIZE_UNIT is fine. */
5609 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5610 else
5611 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5612
5613 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5614 }
5615
5616 /* Returns the offset of the byte just past the end of the base class
5617 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5618 only non-virtual bases are included. */
5619
5620 static tree
5621 end_of_class (tree t, int include_virtuals_p)
5622 {
5623 tree result = size_zero_node;
5624 vec<tree, va_gc> *vbases;
5625 tree binfo;
5626 tree base_binfo;
5627 tree offset;
5628 int i;
5629
5630 for (binfo = TYPE_BINFO (t), i = 0;
5631 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5632 {
5633 if (!include_virtuals_p
5634 && BINFO_VIRTUAL_P (base_binfo)
5635 && (!BINFO_PRIMARY_P (base_binfo)
5636 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5637 continue;
5638
5639 offset = end_of_base (base_binfo);
5640 if (INT_CST_LT_UNSIGNED (result, offset))
5641 result = offset;
5642 }
5643
5644 /* G++ 3.2 did not check indirect virtual bases. */
5645 if (abi_version_at_least (2) && include_virtuals_p)
5646 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5647 vec_safe_iterate (vbases, i, &base_binfo); i++)
5648 {
5649 offset = end_of_base (base_binfo);
5650 if (INT_CST_LT_UNSIGNED (result, offset))
5651 result = offset;
5652 }
5653
5654 return result;
5655 }
5656
5657 /* Warn about bases of T that are inaccessible because they are
5658 ambiguous. For example:
5659
5660 struct S {};
5661 struct T : public S {};
5662 struct U : public S, public T {};
5663
5664 Here, `(S*) new U' is not allowed because there are two `S'
5665 subobjects of U. */
5666
5667 static void
5668 warn_about_ambiguous_bases (tree t)
5669 {
5670 int i;
5671 vec<tree, va_gc> *vbases;
5672 tree basetype;
5673 tree binfo;
5674 tree base_binfo;
5675
5676 /* If there are no repeated bases, nothing can be ambiguous. */
5677 if (!CLASSTYPE_REPEATED_BASE_P (t))
5678 return;
5679
5680 /* Check direct bases. */
5681 for (binfo = TYPE_BINFO (t), i = 0;
5682 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5683 {
5684 basetype = BINFO_TYPE (base_binfo);
5685
5686 if (!uniquely_derived_from_p (basetype, t))
5687 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5688 basetype, t);
5689 }
5690
5691 /* Check for ambiguous virtual bases. */
5692 if (extra_warnings)
5693 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5694 vec_safe_iterate (vbases, i, &binfo); i++)
5695 {
5696 basetype = BINFO_TYPE (binfo);
5697
5698 if (!uniquely_derived_from_p (basetype, t))
5699 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5700 "to ambiguity", basetype, t);
5701 }
5702 }
5703
5704 /* Compare two INTEGER_CSTs K1 and K2. */
5705
5706 static int
5707 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5708 {
5709 return tree_int_cst_compare ((tree) k1, (tree) k2);
5710 }
5711
5712 /* Increase the size indicated in RLI to account for empty classes
5713 that are "off the end" of the class. */
5714
5715 static void
5716 include_empty_classes (record_layout_info rli)
5717 {
5718 tree eoc;
5719 tree rli_size;
5720
5721 /* It might be the case that we grew the class to allocate a
5722 zero-sized base class. That won't be reflected in RLI, yet,
5723 because we are willing to overlay multiple bases at the same
5724 offset. However, now we need to make sure that RLI is big enough
5725 to reflect the entire class. */
5726 eoc = end_of_class (rli->t,
5727 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5728 rli_size = rli_size_unit_so_far (rli);
5729 if (TREE_CODE (rli_size) == INTEGER_CST
5730 && INT_CST_LT_UNSIGNED (rli_size, eoc))
5731 {
5732 if (!abi_version_at_least (2))
5733 /* In version 1 of the ABI, the size of a class that ends with
5734 a bitfield was not rounded up to a whole multiple of a
5735 byte. Because rli_size_unit_so_far returns only the number
5736 of fully allocated bytes, any extra bits were not included
5737 in the size. */
5738 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
5739 else
5740 /* The size should have been rounded to a whole byte. */
5741 gcc_assert (tree_int_cst_equal
5742 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5743 rli->bitpos
5744 = size_binop (PLUS_EXPR,
5745 rli->bitpos,
5746 size_binop (MULT_EXPR,
5747 convert (bitsizetype,
5748 size_binop (MINUS_EXPR,
5749 eoc, rli_size)),
5750 bitsize_int (BITS_PER_UNIT)));
5751 normalize_rli (rli);
5752 }
5753 }
5754
5755 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5756 BINFO_OFFSETs for all of the base-classes. Position the vtable
5757 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5758
5759 static void
5760 layout_class_type (tree t, tree *virtuals_p)
5761 {
5762 tree non_static_data_members;
5763 tree field;
5764 tree vptr;
5765 record_layout_info rli;
5766 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
5767 types that appear at that offset. */
5768 splay_tree empty_base_offsets;
5769 /* True if the last field layed out was a bit-field. */
5770 bool last_field_was_bitfield = false;
5771 /* The location at which the next field should be inserted. */
5772 tree *next_field;
5773 /* T, as a base class. */
5774 tree base_t;
5775
5776 /* Keep track of the first non-static data member. */
5777 non_static_data_members = TYPE_FIELDS (t);
5778
5779 /* Start laying out the record. */
5780 rli = start_record_layout (t);
5781
5782 /* Mark all the primary bases in the hierarchy. */
5783 determine_primary_bases (t);
5784
5785 /* Create a pointer to our virtual function table. */
5786 vptr = create_vtable_ptr (t, virtuals_p);
5787
5788 /* The vptr is always the first thing in the class. */
5789 if (vptr)
5790 {
5791 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
5792 TYPE_FIELDS (t) = vptr;
5793 next_field = &DECL_CHAIN (vptr);
5794 place_field (rli, vptr);
5795 }
5796 else
5797 next_field = &TYPE_FIELDS (t);
5798
5799 /* Build FIELD_DECLs for all of the non-virtual base-types. */
5800 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5801 NULL, NULL);
5802 build_base_fields (rli, empty_base_offsets, next_field);
5803
5804 /* Layout the non-static data members. */
5805 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
5806 {
5807 tree type;
5808 tree padding;
5809
5810 /* We still pass things that aren't non-static data members to
5811 the back end, in case it wants to do something with them. */
5812 if (TREE_CODE (field) != FIELD_DECL)
5813 {
5814 place_field (rli, field);
5815 /* If the static data member has incomplete type, keep track
5816 of it so that it can be completed later. (The handling
5817 of pending statics in finish_record_layout is
5818 insufficient; consider:
5819
5820 struct S1;
5821 struct S2 { static S1 s1; };
5822
5823 At this point, finish_record_layout will be called, but
5824 S1 is still incomplete.) */
5825 if (TREE_CODE (field) == VAR_DECL)
5826 {
5827 maybe_register_incomplete_var (field);
5828 /* The visibility of static data members is determined
5829 at their point of declaration, not their point of
5830 definition. */
5831 determine_visibility (field);
5832 }
5833 continue;
5834 }
5835
5836 type = TREE_TYPE (field);
5837 if (type == error_mark_node)
5838 continue;
5839
5840 padding = NULL_TREE;
5841
5842 /* If this field is a bit-field whose width is greater than its
5843 type, then there are some special rules for allocating
5844 it. */
5845 if (DECL_C_BIT_FIELD (field)
5846 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
5847 {
5848 unsigned int itk;
5849 tree integer_type;
5850 bool was_unnamed_p = false;
5851 /* We must allocate the bits as if suitably aligned for the
5852 longest integer type that fits in this many bits. type
5853 of the field. Then, we are supposed to use the left over
5854 bits as additional padding. */
5855 for (itk = itk_char; itk != itk_none; ++itk)
5856 if (integer_types[itk] != NULL_TREE
5857 && (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE),
5858 TYPE_SIZE (integer_types[itk]))
5859 || INT_CST_LT (DECL_SIZE (field),
5860 TYPE_SIZE (integer_types[itk]))))
5861 break;
5862
5863 /* ITK now indicates a type that is too large for the
5864 field. We have to back up by one to find the largest
5865 type that fits. */
5866 do
5867 {
5868 --itk;
5869 integer_type = integer_types[itk];
5870 } while (itk > 0 && integer_type == NULL_TREE);
5871
5872 /* Figure out how much additional padding is required. GCC
5873 3.2 always created a padding field, even if it had zero
5874 width. */
5875 if (!abi_version_at_least (2)
5876 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
5877 {
5878 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
5879 /* In a union, the padding field must have the full width
5880 of the bit-field; all fields start at offset zero. */
5881 padding = DECL_SIZE (field);
5882 else
5883 {
5884 if (TREE_CODE (t) == UNION_TYPE)
5885 warning (OPT_Wabi, "size assigned to %qT may not be "
5886 "ABI-compliant and may change in a future "
5887 "version of GCC",
5888 t);
5889 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
5890 TYPE_SIZE (integer_type));
5891 }
5892 }
5893 #ifdef PCC_BITFIELD_TYPE_MATTERS
5894 /* An unnamed bitfield does not normally affect the
5895 alignment of the containing class on a target where
5896 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
5897 make any exceptions for unnamed bitfields when the
5898 bitfields are longer than their types. Therefore, we
5899 temporarily give the field a name. */
5900 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
5901 {
5902 was_unnamed_p = true;
5903 DECL_NAME (field) = make_anon_name ();
5904 }
5905 #endif
5906 DECL_SIZE (field) = TYPE_SIZE (integer_type);
5907 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
5908 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
5909 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5910 empty_base_offsets);
5911 if (was_unnamed_p)
5912 DECL_NAME (field) = NULL_TREE;
5913 /* Now that layout has been performed, set the size of the
5914 field to the size of its declared type; the rest of the
5915 field is effectively invisible. */
5916 DECL_SIZE (field) = TYPE_SIZE (type);
5917 /* We must also reset the DECL_MODE of the field. */
5918 if (abi_version_at_least (2))
5919 DECL_MODE (field) = TYPE_MODE (type);
5920 else if (warn_abi
5921 && DECL_MODE (field) != TYPE_MODE (type))
5922 /* Versions of G++ before G++ 3.4 did not reset the
5923 DECL_MODE. */
5924 warning (OPT_Wabi,
5925 "the offset of %qD may not be ABI-compliant and may "
5926 "change in a future version of GCC", field);
5927 }
5928 else
5929 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5930 empty_base_offsets);
5931
5932 /* Remember the location of any empty classes in FIELD. */
5933 if (abi_version_at_least (2))
5934 record_subobject_offsets (TREE_TYPE (field),
5935 byte_position(field),
5936 empty_base_offsets,
5937 /*is_data_member=*/true);
5938
5939 /* If a bit-field does not immediately follow another bit-field,
5940 and yet it starts in the middle of a byte, we have failed to
5941 comply with the ABI. */
5942 if (warn_abi
5943 && DECL_C_BIT_FIELD (field)
5944 /* The TREE_NO_WARNING flag gets set by Objective-C when
5945 laying out an Objective-C class. The ObjC ABI differs
5946 from the C++ ABI, and so we do not want a warning
5947 here. */
5948 && !TREE_NO_WARNING (field)
5949 && !last_field_was_bitfield
5950 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
5951 DECL_FIELD_BIT_OFFSET (field),
5952 bitsize_unit_node)))
5953 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
5954 "change in a future version of GCC", field);
5955
5956 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
5957 offset of the field. */
5958 if (warn_abi
5959 && !abi_version_at_least (2)
5960 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
5961 byte_position (field))
5962 && contains_empty_class_p (TREE_TYPE (field)))
5963 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
5964 "classes to be placed at different locations in a "
5965 "future version of GCC", field);
5966
5967 /* The middle end uses the type of expressions to determine the
5968 possible range of expression values. In order to optimize
5969 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
5970 must be made aware of the width of "i", via its type.
5971
5972 Because C++ does not have integer types of arbitrary width,
5973 we must (for the purposes of the front end) convert from the
5974 type assigned here to the declared type of the bitfield
5975 whenever a bitfield expression is used as an rvalue.
5976 Similarly, when assigning a value to a bitfield, the value
5977 must be converted to the type given the bitfield here. */
5978 if (DECL_C_BIT_FIELD (field))
5979 {
5980 unsigned HOST_WIDE_INT width;
5981 tree ftype = TREE_TYPE (field);
5982 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
5983 if (width != TYPE_PRECISION (ftype))
5984 {
5985 TREE_TYPE (field)
5986 = c_build_bitfield_integer_type (width,
5987 TYPE_UNSIGNED (ftype));
5988 TREE_TYPE (field)
5989 = cp_build_qualified_type (TREE_TYPE (field),
5990 cp_type_quals (ftype));
5991 }
5992 }
5993
5994 /* If we needed additional padding after this field, add it
5995 now. */
5996 if (padding)
5997 {
5998 tree padding_field;
5999
6000 padding_field = build_decl (input_location,
6001 FIELD_DECL,
6002 NULL_TREE,
6003 char_type_node);
6004 DECL_BIT_FIELD (padding_field) = 1;
6005 DECL_SIZE (padding_field) = padding;
6006 DECL_CONTEXT (padding_field) = t;
6007 DECL_ARTIFICIAL (padding_field) = 1;
6008 DECL_IGNORED_P (padding_field) = 1;
6009 layout_nonempty_base_or_field (rli, padding_field,
6010 NULL_TREE,
6011 empty_base_offsets);
6012 }
6013
6014 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6015 }
6016
6017 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
6018 {
6019 /* Make sure that we are on a byte boundary so that the size of
6020 the class without virtual bases will always be a round number
6021 of bytes. */
6022 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6023 normalize_rli (rli);
6024 }
6025
6026 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
6027 padding. */
6028 if (!abi_version_at_least (2))
6029 include_empty_classes(rli);
6030
6031 /* Delete all zero-width bit-fields from the list of fields. Now
6032 that the type is laid out they are no longer important. */
6033 remove_zero_width_bit_fields (t);
6034
6035 /* Create the version of T used for virtual bases. We do not use
6036 make_class_type for this version; this is an artificial type. For
6037 a POD type, we just reuse T. */
6038 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6039 {
6040 base_t = make_node (TREE_CODE (t));
6041
6042 /* Set the size and alignment for the new type. In G++ 3.2, all
6043 empty classes were considered to have size zero when used as
6044 base classes. */
6045 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
6046 {
6047 TYPE_SIZE (base_t) = bitsize_zero_node;
6048 TYPE_SIZE_UNIT (base_t) = size_zero_node;
6049 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
6050 warning (OPT_Wabi,
6051 "layout of classes derived from empty class %qT "
6052 "may change in a future version of GCC",
6053 t);
6054 }
6055 else
6056 {
6057 tree eoc;
6058
6059 /* If the ABI version is not at least two, and the last
6060 field was a bit-field, RLI may not be on a byte
6061 boundary. In particular, rli_size_unit_so_far might
6062 indicate the last complete byte, while rli_size_so_far
6063 indicates the total number of bits used. Therefore,
6064 rli_size_so_far, rather than rli_size_unit_so_far, is
6065 used to compute TYPE_SIZE_UNIT. */
6066 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6067 TYPE_SIZE_UNIT (base_t)
6068 = size_binop (MAX_EXPR,
6069 convert (sizetype,
6070 size_binop (CEIL_DIV_EXPR,
6071 rli_size_so_far (rli),
6072 bitsize_int (BITS_PER_UNIT))),
6073 eoc);
6074 TYPE_SIZE (base_t)
6075 = size_binop (MAX_EXPR,
6076 rli_size_so_far (rli),
6077 size_binop (MULT_EXPR,
6078 convert (bitsizetype, eoc),
6079 bitsize_int (BITS_PER_UNIT)));
6080 }
6081 TYPE_ALIGN (base_t) = rli->record_align;
6082 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6083
6084 /* Copy the fields from T. */
6085 next_field = &TYPE_FIELDS (base_t);
6086 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6087 if (TREE_CODE (field) == FIELD_DECL)
6088 {
6089 *next_field = build_decl (input_location,
6090 FIELD_DECL,
6091 DECL_NAME (field),
6092 TREE_TYPE (field));
6093 DECL_CONTEXT (*next_field) = base_t;
6094 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6095 DECL_FIELD_BIT_OFFSET (*next_field)
6096 = DECL_FIELD_BIT_OFFSET (field);
6097 DECL_SIZE (*next_field) = DECL_SIZE (field);
6098 DECL_MODE (*next_field) = DECL_MODE (field);
6099 next_field = &DECL_CHAIN (*next_field);
6100 }
6101
6102 /* Record the base version of the type. */
6103 CLASSTYPE_AS_BASE (t) = base_t;
6104 TYPE_CONTEXT (base_t) = t;
6105 }
6106 else
6107 CLASSTYPE_AS_BASE (t) = t;
6108
6109 /* Every empty class contains an empty class. */
6110 if (CLASSTYPE_EMPTY_P (t))
6111 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6112
6113 /* Set the TYPE_DECL for this type to contain the right
6114 value for DECL_OFFSET, so that we can use it as part
6115 of a COMPONENT_REF for multiple inheritance. */
6116 layout_decl (TYPE_MAIN_DECL (t), 0);
6117
6118 /* Now fix up any virtual base class types that we left lying
6119 around. We must get these done before we try to lay out the
6120 virtual function table. As a side-effect, this will remove the
6121 base subobject fields. */
6122 layout_virtual_bases (rli, empty_base_offsets);
6123
6124 /* Make sure that empty classes are reflected in RLI at this
6125 point. */
6126 include_empty_classes(rli);
6127
6128 /* Make sure not to create any structures with zero size. */
6129 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6130 place_field (rli,
6131 build_decl (input_location,
6132 FIELD_DECL, NULL_TREE, char_type_node));
6133
6134 /* If this is a non-POD, declaring it packed makes a difference to how it
6135 can be used as a field; don't let finalize_record_size undo it. */
6136 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6137 rli->packed_maybe_necessary = true;
6138
6139 /* Let the back end lay out the type. */
6140 finish_record_layout (rli, /*free_p=*/true);
6141
6142 /* Warn about bases that can't be talked about due to ambiguity. */
6143 warn_about_ambiguous_bases (t);
6144
6145 /* Now that we're done with layout, give the base fields the real types. */
6146 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6147 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6148 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6149
6150 /* Clean up. */
6151 splay_tree_delete (empty_base_offsets);
6152
6153 if (CLASSTYPE_EMPTY_P (t)
6154 && tree_int_cst_lt (sizeof_biggest_empty_class,
6155 TYPE_SIZE_UNIT (t)))
6156 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6157 }
6158
6159 /* Determine the "key method" for the class type indicated by TYPE,
6160 and set CLASSTYPE_KEY_METHOD accordingly. */
6161
6162 void
6163 determine_key_method (tree type)
6164 {
6165 tree method;
6166
6167 if (TYPE_FOR_JAVA (type)
6168 || processing_template_decl
6169 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6170 || CLASSTYPE_INTERFACE_KNOWN (type))
6171 return;
6172
6173 /* The key method is the first non-pure virtual function that is not
6174 inline at the point of class definition. On some targets the
6175 key function may not be inline; those targets should not call
6176 this function until the end of the translation unit. */
6177 for (method = TYPE_METHODS (type); method != NULL_TREE;
6178 method = DECL_CHAIN (method))
6179 if (DECL_VINDEX (method) != NULL_TREE
6180 && ! DECL_DECLARED_INLINE_P (method)
6181 && ! DECL_PURE_VIRTUAL_P (method))
6182 {
6183 CLASSTYPE_KEY_METHOD (type) = method;
6184 break;
6185 }
6186
6187 return;
6188 }
6189
6190
6191 /* Allocate and return an instance of struct sorted_fields_type with
6192 N fields. */
6193
6194 static struct sorted_fields_type *
6195 sorted_fields_type_new (int n)
6196 {
6197 struct sorted_fields_type *sft;
6198 sft = ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type)
6199 + n * sizeof (tree));
6200 sft->len = n;
6201
6202 return sft;
6203 }
6204
6205
6206 /* Perform processing required when the definition of T (a class type)
6207 is complete. */
6208
6209 void
6210 finish_struct_1 (tree t)
6211 {
6212 tree x;
6213 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6214 tree virtuals = NULL_TREE;
6215
6216 if (COMPLETE_TYPE_P (t))
6217 {
6218 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6219 error ("redefinition of %q#T", t);
6220 popclass ();
6221 return;
6222 }
6223
6224 /* If this type was previously laid out as a forward reference,
6225 make sure we lay it out again. */
6226 TYPE_SIZE (t) = NULL_TREE;
6227 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6228
6229 /* Make assumptions about the class; we'll reset the flags if
6230 necessary. */
6231 CLASSTYPE_EMPTY_P (t) = 1;
6232 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6233 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6234 CLASSTYPE_LITERAL_P (t) = true;
6235
6236 /* Do end-of-class semantic processing: checking the validity of the
6237 bases and members and add implicitly generated methods. */
6238 check_bases_and_members (t);
6239
6240 /* Find the key method. */
6241 if (TYPE_CONTAINS_VPTR_P (t))
6242 {
6243 /* The Itanium C++ ABI permits the key method to be chosen when
6244 the class is defined -- even though the key method so
6245 selected may later turn out to be an inline function. On
6246 some systems (such as ARM Symbian OS) the key method cannot
6247 be determined until the end of the translation unit. On such
6248 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6249 will cause the class to be added to KEYED_CLASSES. Then, in
6250 finish_file we will determine the key method. */
6251 if (targetm.cxx.key_method_may_be_inline ())
6252 determine_key_method (t);
6253
6254 /* If a polymorphic class has no key method, we may emit the vtable
6255 in every translation unit where the class definition appears. */
6256 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6257 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6258 }
6259
6260 /* Layout the class itself. */
6261 layout_class_type (t, &virtuals);
6262 if (CLASSTYPE_AS_BASE (t) != t)
6263 /* We use the base type for trivial assignments, and hence it
6264 needs a mode. */
6265 compute_record_mode (CLASSTYPE_AS_BASE (t));
6266
6267 virtuals = modify_all_vtables (t, nreverse (virtuals));
6268
6269 /* If necessary, create the primary vtable for this class. */
6270 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6271 {
6272 /* We must enter these virtuals into the table. */
6273 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6274 build_primary_vtable (NULL_TREE, t);
6275 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6276 /* Here we know enough to change the type of our virtual
6277 function table, but we will wait until later this function. */
6278 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6279
6280 /* If we're warning about ABI tags, check the types of the new
6281 virtual functions. */
6282 if (warn_abi_tag)
6283 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6284 check_abi_tags (t, TREE_VALUE (v));
6285 }
6286
6287 if (TYPE_CONTAINS_VPTR_P (t))
6288 {
6289 int vindex;
6290 tree fn;
6291
6292 if (BINFO_VTABLE (TYPE_BINFO (t)))
6293 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6294 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6295 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6296
6297 /* Add entries for virtual functions introduced by this class. */
6298 BINFO_VIRTUALS (TYPE_BINFO (t))
6299 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6300
6301 /* Set DECL_VINDEX for all functions declared in this class. */
6302 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6303 fn;
6304 fn = TREE_CHAIN (fn),
6305 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6306 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6307 {
6308 tree fndecl = BV_FN (fn);
6309
6310 if (DECL_THUNK_P (fndecl))
6311 /* A thunk. We should never be calling this entry directly
6312 from this vtable -- we'd use the entry for the non
6313 thunk base function. */
6314 DECL_VINDEX (fndecl) = NULL_TREE;
6315 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6316 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6317 }
6318 }
6319
6320 finish_struct_bits (t);
6321 set_method_tm_attributes (t);
6322
6323 /* Complete the rtl for any static member objects of the type we're
6324 working on. */
6325 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6326 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
6327 && TREE_TYPE (x) != error_mark_node
6328 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6329 DECL_MODE (x) = TYPE_MODE (t);
6330
6331 /* Done with FIELDS...now decide whether to sort these for
6332 faster lookups later.
6333
6334 We use a small number because most searches fail (succeeding
6335 ultimately as the search bores through the inheritance
6336 hierarchy), and we want this failure to occur quickly. */
6337
6338 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6339
6340 /* Complain if one of the field types requires lower visibility. */
6341 constrain_class_visibility (t);
6342
6343 /* Make the rtl for any new vtables we have created, and unmark
6344 the base types we marked. */
6345 finish_vtbls (t);
6346
6347 /* Build the VTT for T. */
6348 build_vtt (t);
6349
6350 /* This warning does not make sense for Java classes, since they
6351 cannot have destructors. */
6352 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
6353 {
6354 tree dtor;
6355
6356 dtor = CLASSTYPE_DESTRUCTORS (t);
6357 if (/* An implicitly declared destructor is always public. And,
6358 if it were virtual, we would have created it by now. */
6359 !dtor
6360 || (!DECL_VINDEX (dtor)
6361 && (/* public non-virtual */
6362 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
6363 || (/* non-public non-virtual with friends */
6364 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
6365 && (CLASSTYPE_FRIEND_CLASSES (t)
6366 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
6367 warning (OPT_Wnon_virtual_dtor,
6368 "%q#T has virtual functions and accessible"
6369 " non-virtual destructor", t);
6370 }
6371
6372 complete_vars (t);
6373
6374 if (warn_overloaded_virtual)
6375 warn_hidden (t);
6376
6377 /* Class layout, assignment of virtual table slots, etc., is now
6378 complete. Give the back end a chance to tweak the visibility of
6379 the class or perform any other required target modifications. */
6380 targetm.cxx.adjust_class_at_definition (t);
6381
6382 maybe_suppress_debug_info (t);
6383
6384 dump_class_hierarchy (t);
6385
6386 /* Finish debugging output for this type. */
6387 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6388
6389 if (TYPE_TRANSPARENT_AGGR (t))
6390 {
6391 tree field = first_field (t);
6392 if (field == NULL_TREE || error_operand_p (field))
6393 {
6394 error ("type transparent %q#T does not have any fields", t);
6395 TYPE_TRANSPARENT_AGGR (t) = 0;
6396 }
6397 else if (DECL_ARTIFICIAL (field))
6398 {
6399 if (DECL_FIELD_IS_BASE (field))
6400 error ("type transparent class %qT has base classes", t);
6401 else
6402 {
6403 gcc_checking_assert (DECL_VIRTUAL_P (field));
6404 error ("type transparent class %qT has virtual functions", t);
6405 }
6406 TYPE_TRANSPARENT_AGGR (t) = 0;
6407 }
6408 else if (TYPE_MODE (t) != DECL_MODE (field))
6409 {
6410 error ("type transparent %q#T cannot be made transparent because "
6411 "the type of the first field has a different ABI from the "
6412 "class overall", t);
6413 TYPE_TRANSPARENT_AGGR (t) = 0;
6414 }
6415 }
6416 }
6417
6418 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6419 equal to THRESHOLD or greater than THRESHOLD. */
6420
6421 static void
6422 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6423 {
6424 int n_fields = count_fields (fields);
6425 if (n_fields >= threshold)
6426 {
6427 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6428 add_fields_to_record_type (fields, field_vec, 0);
6429 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6430 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6431 }
6432 }
6433
6434 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6435
6436 void
6437 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6438 {
6439 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6440 if (sorted_fields)
6441 {
6442 int i;
6443 int n_fields
6444 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6445 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6446
6447 for (i = 0; i < sorted_fields->len; ++i)
6448 field_vec->elts[i] = sorted_fields->elts[i];
6449
6450 add_enum_fields_to_record_type (enumtype, field_vec,
6451 sorted_fields->len);
6452 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6453 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6454 }
6455 }
6456
6457 /* When T was built up, the member declarations were added in reverse
6458 order. Rearrange them to declaration order. */
6459
6460 void
6461 unreverse_member_declarations (tree t)
6462 {
6463 tree next;
6464 tree prev;
6465 tree x;
6466
6467 /* The following lists are all in reverse order. Put them in
6468 declaration order now. */
6469 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6470 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6471
6472 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6473 reverse order, so we can't just use nreverse. */
6474 prev = NULL_TREE;
6475 for (x = TYPE_FIELDS (t);
6476 x && TREE_CODE (x) != TYPE_DECL;
6477 x = next)
6478 {
6479 next = DECL_CHAIN (x);
6480 DECL_CHAIN (x) = prev;
6481 prev = x;
6482 }
6483 if (prev)
6484 {
6485 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6486 if (prev)
6487 TYPE_FIELDS (t) = prev;
6488 }
6489 }
6490
6491 tree
6492 finish_struct (tree t, tree attributes)
6493 {
6494 location_t saved_loc = input_location;
6495
6496 /* Now that we've got all the field declarations, reverse everything
6497 as necessary. */
6498 unreverse_member_declarations (t);
6499
6500 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6501
6502 /* Nadger the current location so that diagnostics point to the start of
6503 the struct, not the end. */
6504 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6505
6506 if (processing_template_decl)
6507 {
6508 tree x;
6509
6510 finish_struct_methods (t);
6511 TYPE_SIZE (t) = bitsize_zero_node;
6512 TYPE_SIZE_UNIT (t) = size_zero_node;
6513
6514 /* We need to emit an error message if this type was used as a parameter
6515 and it is an abstract type, even if it is a template. We construct
6516 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6517 account and we call complete_vars with this type, which will check
6518 the PARM_DECLS. Note that while the type is being defined,
6519 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6520 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6521 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6522 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6523 if (DECL_PURE_VIRTUAL_P (x))
6524 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6525 complete_vars (t);
6526 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6527 an enclosing scope is a template class, so that this function be
6528 found by lookup_fnfields_1 when the using declaration is not
6529 instantiated yet. */
6530 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6531 if (TREE_CODE (x) == USING_DECL)
6532 {
6533 tree fn = strip_using_decl (x);
6534 if (is_overloaded_fn (fn))
6535 for (; fn; fn = OVL_NEXT (fn))
6536 add_method (t, OVL_CURRENT (fn), x);
6537 }
6538
6539 /* Remember current #pragma pack value. */
6540 TYPE_PRECISION (t) = maximum_field_alignment;
6541
6542 /* Fix up any variants we've already built. */
6543 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6544 {
6545 TYPE_SIZE (x) = TYPE_SIZE (t);
6546 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6547 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6548 TYPE_METHODS (x) = TYPE_METHODS (t);
6549 }
6550 }
6551 else
6552 finish_struct_1 (t);
6553
6554 input_location = saved_loc;
6555
6556 TYPE_BEING_DEFINED (t) = 0;
6557
6558 if (current_class_type)
6559 popclass ();
6560 else
6561 error ("trying to finish struct, but kicked out due to previous parse errors");
6562
6563 if (processing_template_decl && at_function_scope_p ()
6564 /* Lambdas are defined by the LAMBDA_EXPR. */
6565 && !LAMBDA_TYPE_P (t))
6566 add_stmt (build_min (TAG_DEFN, t));
6567
6568 return t;
6569 }
6570 \f
6571 /* Hash table to avoid endless recursion when handling references. */
6572 static hash_table <pointer_hash <tree_node> > fixed_type_or_null_ref_ht;
6573
6574 /* Return the dynamic type of INSTANCE, if known.
6575 Used to determine whether the virtual function table is needed
6576 or not.
6577
6578 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6579 of our knowledge of its type. *NONNULL should be initialized
6580 before this function is called. */
6581
6582 static tree
6583 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6584 {
6585 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6586
6587 switch (TREE_CODE (instance))
6588 {
6589 case INDIRECT_REF:
6590 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6591 return NULL_TREE;
6592 else
6593 return RECUR (TREE_OPERAND (instance, 0));
6594
6595 case CALL_EXPR:
6596 /* This is a call to a constructor, hence it's never zero. */
6597 if (TREE_HAS_CONSTRUCTOR (instance))
6598 {
6599 if (nonnull)
6600 *nonnull = 1;
6601 return TREE_TYPE (instance);
6602 }
6603 return NULL_TREE;
6604
6605 case SAVE_EXPR:
6606 /* This is a call to a constructor, hence it's never zero. */
6607 if (TREE_HAS_CONSTRUCTOR (instance))
6608 {
6609 if (nonnull)
6610 *nonnull = 1;
6611 return TREE_TYPE (instance);
6612 }
6613 return RECUR (TREE_OPERAND (instance, 0));
6614
6615 case POINTER_PLUS_EXPR:
6616 case PLUS_EXPR:
6617 case MINUS_EXPR:
6618 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6619 return RECUR (TREE_OPERAND (instance, 0));
6620 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6621 /* Propagate nonnull. */
6622 return RECUR (TREE_OPERAND (instance, 0));
6623
6624 return NULL_TREE;
6625
6626 CASE_CONVERT:
6627 return RECUR (TREE_OPERAND (instance, 0));
6628
6629 case ADDR_EXPR:
6630 instance = TREE_OPERAND (instance, 0);
6631 if (nonnull)
6632 {
6633 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6634 with a real object -- given &p->f, p can still be null. */
6635 tree t = get_base_address (instance);
6636 /* ??? Probably should check DECL_WEAK here. */
6637 if (t && DECL_P (t))
6638 *nonnull = 1;
6639 }
6640 return RECUR (instance);
6641
6642 case COMPONENT_REF:
6643 /* If this component is really a base class reference, then the field
6644 itself isn't definitive. */
6645 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6646 return RECUR (TREE_OPERAND (instance, 0));
6647 return RECUR (TREE_OPERAND (instance, 1));
6648
6649 case VAR_DECL:
6650 case FIELD_DECL:
6651 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6652 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6653 {
6654 if (nonnull)
6655 *nonnull = 1;
6656 return TREE_TYPE (TREE_TYPE (instance));
6657 }
6658 /* fall through... */
6659 case TARGET_EXPR:
6660 case PARM_DECL:
6661 case RESULT_DECL:
6662 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6663 {
6664 if (nonnull)
6665 *nonnull = 1;
6666 return TREE_TYPE (instance);
6667 }
6668 else if (instance == current_class_ptr)
6669 {
6670 if (nonnull)
6671 *nonnull = 1;
6672
6673 /* if we're in a ctor or dtor, we know our type. If
6674 current_class_ptr is set but we aren't in a function, we're in
6675 an NSDMI (and therefore a constructor). */
6676 if (current_scope () != current_function_decl
6677 || (DECL_LANG_SPECIFIC (current_function_decl)
6678 && (DECL_CONSTRUCTOR_P (current_function_decl)
6679 || DECL_DESTRUCTOR_P (current_function_decl))))
6680 {
6681 if (cdtorp)
6682 *cdtorp = 1;
6683 return TREE_TYPE (TREE_TYPE (instance));
6684 }
6685 }
6686 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6687 {
6688 /* We only need one hash table because it is always left empty. */
6689 if (!fixed_type_or_null_ref_ht.is_created ())
6690 fixed_type_or_null_ref_ht.create (37);
6691
6692 /* Reference variables should be references to objects. */
6693 if (nonnull)
6694 *nonnull = 1;
6695
6696 /* Enter the INSTANCE in a table to prevent recursion; a
6697 variable's initializer may refer to the variable
6698 itself. */
6699 if (TREE_CODE (instance) == VAR_DECL
6700 && DECL_INITIAL (instance)
6701 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6702 && !fixed_type_or_null_ref_ht.find (instance))
6703 {
6704 tree type;
6705 tree_node **slot;
6706
6707 slot = fixed_type_or_null_ref_ht.find_slot (instance, INSERT);
6708 *slot = instance;
6709 type = RECUR (DECL_INITIAL (instance));
6710 fixed_type_or_null_ref_ht.remove_elt (instance);
6711
6712 return type;
6713 }
6714 }
6715 return NULL_TREE;
6716
6717 default:
6718 return NULL_TREE;
6719 }
6720 #undef RECUR
6721 }
6722
6723 /* Return nonzero if the dynamic type of INSTANCE is known, and
6724 equivalent to the static type. We also handle the case where
6725 INSTANCE is really a pointer. Return negative if this is a
6726 ctor/dtor. There the dynamic type is known, but this might not be
6727 the most derived base of the original object, and hence virtual
6728 bases may not be layed out according to this type.
6729
6730 Used to determine whether the virtual function table is needed
6731 or not.
6732
6733 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6734 of our knowledge of its type. *NONNULL should be initialized
6735 before this function is called. */
6736
6737 int
6738 resolves_to_fixed_type_p (tree instance, int* nonnull)
6739 {
6740 tree t = TREE_TYPE (instance);
6741 int cdtorp = 0;
6742 tree fixed;
6743
6744 /* processing_template_decl can be false in a template if we're in
6745 fold_non_dependent_expr, but we still want to suppress this check. */
6746 if (in_template_function ())
6747 {
6748 /* In a template we only care about the type of the result. */
6749 if (nonnull)
6750 *nonnull = true;
6751 return true;
6752 }
6753
6754 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6755 if (fixed == NULL_TREE)
6756 return 0;
6757 if (POINTER_TYPE_P (t))
6758 t = TREE_TYPE (t);
6759 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6760 return 0;
6761 return cdtorp ? -1 : 1;
6762 }
6763
6764 \f
6765 void
6766 init_class_processing (void)
6767 {
6768 current_class_depth = 0;
6769 current_class_stack_size = 10;
6770 current_class_stack
6771 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6772 vec_alloc (local_classes, 8);
6773 sizeof_biggest_empty_class = size_zero_node;
6774
6775 ridpointers[(int) RID_PUBLIC] = access_public_node;
6776 ridpointers[(int) RID_PRIVATE] = access_private_node;
6777 ridpointers[(int) RID_PROTECTED] = access_protected_node;
6778 }
6779
6780 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
6781
6782 static void
6783 restore_class_cache (void)
6784 {
6785 tree type;
6786
6787 /* We are re-entering the same class we just left, so we don't
6788 have to search the whole inheritance matrix to find all the
6789 decls to bind again. Instead, we install the cached
6790 class_shadowed list and walk through it binding names. */
6791 push_binding_level (previous_class_level);
6792 class_binding_level = previous_class_level;
6793 /* Restore IDENTIFIER_TYPE_VALUE. */
6794 for (type = class_binding_level->type_shadowed;
6795 type;
6796 type = TREE_CHAIN (type))
6797 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
6798 }
6799
6800 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
6801 appropriate for TYPE.
6802
6803 So that we may avoid calls to lookup_name, we cache the _TYPE
6804 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
6805
6806 For multiple inheritance, we perform a two-pass depth-first search
6807 of the type lattice. */
6808
6809 void
6810 pushclass (tree type)
6811 {
6812 class_stack_node_t csn;
6813
6814 type = TYPE_MAIN_VARIANT (type);
6815
6816 /* Make sure there is enough room for the new entry on the stack. */
6817 if (current_class_depth + 1 >= current_class_stack_size)
6818 {
6819 current_class_stack_size *= 2;
6820 current_class_stack
6821 = XRESIZEVEC (struct class_stack_node, current_class_stack,
6822 current_class_stack_size);
6823 }
6824
6825 /* Insert a new entry on the class stack. */
6826 csn = current_class_stack + current_class_depth;
6827 csn->name = current_class_name;
6828 csn->type = current_class_type;
6829 csn->access = current_access_specifier;
6830 csn->names_used = 0;
6831 csn->hidden = 0;
6832 current_class_depth++;
6833
6834 /* Now set up the new type. */
6835 current_class_name = TYPE_NAME (type);
6836 if (TREE_CODE (current_class_name) == TYPE_DECL)
6837 current_class_name = DECL_NAME (current_class_name);
6838 current_class_type = type;
6839
6840 /* By default, things in classes are private, while things in
6841 structures or unions are public. */
6842 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
6843 ? access_private_node
6844 : access_public_node);
6845
6846 if (previous_class_level
6847 && type != previous_class_level->this_entity
6848 && current_class_depth == 1)
6849 {
6850 /* Forcibly remove any old class remnants. */
6851 invalidate_class_lookup_cache ();
6852 }
6853
6854 if (!previous_class_level
6855 || type != previous_class_level->this_entity
6856 || current_class_depth > 1)
6857 pushlevel_class ();
6858 else
6859 restore_class_cache ();
6860 }
6861
6862 /* When we exit a toplevel class scope, we save its binding level so
6863 that we can restore it quickly. Here, we've entered some other
6864 class, so we must invalidate our cache. */
6865
6866 void
6867 invalidate_class_lookup_cache (void)
6868 {
6869 previous_class_level = NULL;
6870 }
6871
6872 /* Get out of the current class scope. If we were in a class scope
6873 previously, that is the one popped to. */
6874
6875 void
6876 popclass (void)
6877 {
6878 poplevel_class ();
6879
6880 current_class_depth--;
6881 current_class_name = current_class_stack[current_class_depth].name;
6882 current_class_type = current_class_stack[current_class_depth].type;
6883 current_access_specifier = current_class_stack[current_class_depth].access;
6884 if (current_class_stack[current_class_depth].names_used)
6885 splay_tree_delete (current_class_stack[current_class_depth].names_used);
6886 }
6887
6888 /* Mark the top of the class stack as hidden. */
6889
6890 void
6891 push_class_stack (void)
6892 {
6893 if (current_class_depth)
6894 ++current_class_stack[current_class_depth - 1].hidden;
6895 }
6896
6897 /* Mark the top of the class stack as un-hidden. */
6898
6899 void
6900 pop_class_stack (void)
6901 {
6902 if (current_class_depth)
6903 --current_class_stack[current_class_depth - 1].hidden;
6904 }
6905
6906 /* Returns 1 if the class type currently being defined is either T or
6907 a nested type of T. */
6908
6909 bool
6910 currently_open_class (tree t)
6911 {
6912 int i;
6913
6914 if (!CLASS_TYPE_P (t))
6915 return false;
6916
6917 t = TYPE_MAIN_VARIANT (t);
6918
6919 /* We start looking from 1 because entry 0 is from global scope,
6920 and has no type. */
6921 for (i = current_class_depth; i > 0; --i)
6922 {
6923 tree c;
6924 if (i == current_class_depth)
6925 c = current_class_type;
6926 else
6927 {
6928 if (current_class_stack[i].hidden)
6929 break;
6930 c = current_class_stack[i].type;
6931 }
6932 if (!c)
6933 continue;
6934 if (same_type_p (c, t))
6935 return true;
6936 }
6937 return false;
6938 }
6939
6940 /* If either current_class_type or one of its enclosing classes are derived
6941 from T, return the appropriate type. Used to determine how we found
6942 something via unqualified lookup. */
6943
6944 tree
6945 currently_open_derived_class (tree t)
6946 {
6947 int i;
6948
6949 /* The bases of a dependent type are unknown. */
6950 if (dependent_type_p (t))
6951 return NULL_TREE;
6952
6953 if (!current_class_type)
6954 return NULL_TREE;
6955
6956 if (DERIVED_FROM_P (t, current_class_type))
6957 return current_class_type;
6958
6959 for (i = current_class_depth - 1; i > 0; --i)
6960 {
6961 if (current_class_stack[i].hidden)
6962 break;
6963 if (DERIVED_FROM_P (t, current_class_stack[i].type))
6964 return current_class_stack[i].type;
6965 }
6966
6967 return NULL_TREE;
6968 }
6969
6970 /* Returns the innermost class type which is not a lambda closure type. */
6971
6972 tree
6973 current_nonlambda_class_type (void)
6974 {
6975 int i;
6976
6977 /* We start looking from 1 because entry 0 is from global scope,
6978 and has no type. */
6979 for (i = current_class_depth; i > 0; --i)
6980 {
6981 tree c;
6982 if (i == current_class_depth)
6983 c = current_class_type;
6984 else
6985 {
6986 if (current_class_stack[i].hidden)
6987 break;
6988 c = current_class_stack[i].type;
6989 }
6990 if (!c)
6991 continue;
6992 if (!LAMBDA_TYPE_P (c))
6993 return c;
6994 }
6995 return NULL_TREE;
6996 }
6997
6998 /* When entering a class scope, all enclosing class scopes' names with
6999 static meaning (static variables, static functions, types and
7000 enumerators) have to be visible. This recursive function calls
7001 pushclass for all enclosing class contexts until global or a local
7002 scope is reached. TYPE is the enclosed class. */
7003
7004 void
7005 push_nested_class (tree type)
7006 {
7007 /* A namespace might be passed in error cases, like A::B:C. */
7008 if (type == NULL_TREE
7009 || !CLASS_TYPE_P (type))
7010 return;
7011
7012 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7013
7014 pushclass (type);
7015 }
7016
7017 /* Undoes a push_nested_class call. */
7018
7019 void
7020 pop_nested_class (void)
7021 {
7022 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7023
7024 popclass ();
7025 if (context && CLASS_TYPE_P (context))
7026 pop_nested_class ();
7027 }
7028
7029 /* Returns the number of extern "LANG" blocks we are nested within. */
7030
7031 int
7032 current_lang_depth (void)
7033 {
7034 return vec_safe_length (current_lang_base);
7035 }
7036
7037 /* Set global variables CURRENT_LANG_NAME to appropriate value
7038 so that behavior of name-mangling machinery is correct. */
7039
7040 void
7041 push_lang_context (tree name)
7042 {
7043 vec_safe_push (current_lang_base, current_lang_name);
7044
7045 if (name == lang_name_cplusplus)
7046 {
7047 current_lang_name = name;
7048 }
7049 else if (name == lang_name_java)
7050 {
7051 current_lang_name = name;
7052 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7053 (See record_builtin_java_type in decl.c.) However, that causes
7054 incorrect debug entries if these types are actually used.
7055 So we re-enable debug output after extern "Java". */
7056 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7057 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7058 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7059 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7060 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7061 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7062 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7063 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7064 }
7065 else if (name == lang_name_c)
7066 {
7067 current_lang_name = name;
7068 }
7069 else
7070 error ("language string %<\"%E\"%> not recognized", name);
7071 }
7072
7073 /* Get out of the current language scope. */
7074
7075 void
7076 pop_lang_context (void)
7077 {
7078 current_lang_name = current_lang_base->pop ();
7079 }
7080 \f
7081 /* Type instantiation routines. */
7082
7083 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7084 matches the TARGET_TYPE. If there is no satisfactory match, return
7085 error_mark_node, and issue an error & warning messages under
7086 control of FLAGS. Permit pointers to member function if FLAGS
7087 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7088 a template-id, and EXPLICIT_TARGS are the explicitly provided
7089 template arguments.
7090
7091 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7092 is the base path used to reference those member functions. If
7093 the address is resolved to a member function, access checks will be
7094 performed and errors issued if appropriate. */
7095
7096 static tree
7097 resolve_address_of_overloaded_function (tree target_type,
7098 tree overload,
7099 tsubst_flags_t flags,
7100 bool template_only,
7101 tree explicit_targs,
7102 tree access_path)
7103 {
7104 /* Here's what the standard says:
7105
7106 [over.over]
7107
7108 If the name is a function template, template argument deduction
7109 is done, and if the argument deduction succeeds, the deduced
7110 arguments are used to generate a single template function, which
7111 is added to the set of overloaded functions considered.
7112
7113 Non-member functions and static member functions match targets of
7114 type "pointer-to-function" or "reference-to-function." Nonstatic
7115 member functions match targets of type "pointer-to-member
7116 function;" the function type of the pointer to member is used to
7117 select the member function from the set of overloaded member
7118 functions. If a nonstatic member function is selected, the
7119 reference to the overloaded function name is required to have the
7120 form of a pointer to member as described in 5.3.1.
7121
7122 If more than one function is selected, any template functions in
7123 the set are eliminated if the set also contains a non-template
7124 function, and any given template function is eliminated if the
7125 set contains a second template function that is more specialized
7126 than the first according to the partial ordering rules 14.5.5.2.
7127 After such eliminations, if any, there shall remain exactly one
7128 selected function. */
7129
7130 int is_ptrmem = 0;
7131 /* We store the matches in a TREE_LIST rooted here. The functions
7132 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7133 interoperability with most_specialized_instantiation. */
7134 tree matches = NULL_TREE;
7135 tree fn;
7136 tree target_fn_type;
7137
7138 /* By the time we get here, we should be seeing only real
7139 pointer-to-member types, not the internal POINTER_TYPE to
7140 METHOD_TYPE representation. */
7141 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
7142 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7143
7144 gcc_assert (is_overloaded_fn (overload));
7145
7146 /* Check that the TARGET_TYPE is reasonable. */
7147 if (TYPE_PTRFN_P (target_type))
7148 /* This is OK. */;
7149 else if (TYPE_PTRMEMFUNC_P (target_type))
7150 /* This is OK, too. */
7151 is_ptrmem = 1;
7152 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7153 /* This is OK, too. This comes from a conversion to reference
7154 type. */
7155 target_type = build_reference_type (target_type);
7156 else
7157 {
7158 if (flags & tf_error)
7159 error ("cannot resolve overloaded function %qD based on"
7160 " conversion to type %qT",
7161 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7162 return error_mark_node;
7163 }
7164
7165 /* Non-member functions and static member functions match targets of type
7166 "pointer-to-function" or "reference-to-function." Nonstatic member
7167 functions match targets of type "pointer-to-member-function;" the
7168 function type of the pointer to member is used to select the member
7169 function from the set of overloaded member functions.
7170
7171 So figure out the FUNCTION_TYPE that we want to match against. */
7172 target_fn_type = static_fn_type (target_type);
7173
7174 /* If we can find a non-template function that matches, we can just
7175 use it. There's no point in generating template instantiations
7176 if we're just going to throw them out anyhow. But, of course, we
7177 can only do this when we don't *need* a template function. */
7178 if (!template_only)
7179 {
7180 tree fns;
7181
7182 for (fns = overload; fns; fns = OVL_NEXT (fns))
7183 {
7184 tree fn = OVL_CURRENT (fns);
7185
7186 if (TREE_CODE (fn) == TEMPLATE_DECL)
7187 /* We're not looking for templates just yet. */
7188 continue;
7189
7190 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7191 != is_ptrmem)
7192 /* We're looking for a non-static member, and this isn't
7193 one, or vice versa. */
7194 continue;
7195
7196 /* Ignore functions which haven't been explicitly
7197 declared. */
7198 if (DECL_ANTICIPATED (fn))
7199 continue;
7200
7201 /* See if there's a match. */
7202 if (same_type_p (target_fn_type, static_fn_type (fn)))
7203 matches = tree_cons (fn, NULL_TREE, matches);
7204 }
7205 }
7206
7207 /* Now, if we've already got a match (or matches), there's no need
7208 to proceed to the template functions. But, if we don't have a
7209 match we need to look at them, too. */
7210 if (!matches)
7211 {
7212 tree target_arg_types;
7213 tree target_ret_type;
7214 tree fns;
7215 tree *args;
7216 unsigned int nargs, ia;
7217 tree arg;
7218
7219 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7220 target_ret_type = TREE_TYPE (target_fn_type);
7221
7222 nargs = list_length (target_arg_types);
7223 args = XALLOCAVEC (tree, nargs);
7224 for (arg = target_arg_types, ia = 0;
7225 arg != NULL_TREE && arg != void_list_node;
7226 arg = TREE_CHAIN (arg), ++ia)
7227 args[ia] = TREE_VALUE (arg);
7228 nargs = ia;
7229
7230 for (fns = overload; fns; fns = OVL_NEXT (fns))
7231 {
7232 tree fn = OVL_CURRENT (fns);
7233 tree instantiation;
7234 tree targs;
7235
7236 if (TREE_CODE (fn) != TEMPLATE_DECL)
7237 /* We're only looking for templates. */
7238 continue;
7239
7240 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7241 != is_ptrmem)
7242 /* We're not looking for a non-static member, and this is
7243 one, or vice versa. */
7244 continue;
7245
7246 /* Try to do argument deduction. */
7247 targs = make_tree_vec (DECL_NTPARMS (fn));
7248 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7249 nargs, target_ret_type,
7250 DEDUCE_EXACT, LOOKUP_NORMAL,
7251 false);
7252 if (instantiation == error_mark_node)
7253 /* Instantiation failed. */
7254 continue;
7255
7256 /* See if there's a match. */
7257 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7258 matches = tree_cons (instantiation, fn, matches);
7259 }
7260
7261 /* Now, remove all but the most specialized of the matches. */
7262 if (matches)
7263 {
7264 tree match = most_specialized_instantiation (matches);
7265
7266 if (match != error_mark_node)
7267 matches = tree_cons (TREE_PURPOSE (match),
7268 NULL_TREE,
7269 NULL_TREE);
7270 }
7271 }
7272
7273 /* Now we should have exactly one function in MATCHES. */
7274 if (matches == NULL_TREE)
7275 {
7276 /* There were *no* matches. */
7277 if (flags & tf_error)
7278 {
7279 error ("no matches converting function %qD to type %q#T",
7280 DECL_NAME (OVL_CURRENT (overload)),
7281 target_type);
7282
7283 print_candidates (overload);
7284 }
7285 return error_mark_node;
7286 }
7287 else if (TREE_CHAIN (matches))
7288 {
7289 /* There were too many matches. First check if they're all
7290 the same function. */
7291 tree match = NULL_TREE;
7292
7293 fn = TREE_PURPOSE (matches);
7294
7295 /* For multi-versioned functions, more than one match is just fine and
7296 decls_match will return false as they are different. */
7297 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7298 if (!decls_match (fn, TREE_PURPOSE (match))
7299 && !targetm.target_option.function_versions
7300 (fn, TREE_PURPOSE (match)))
7301 break;
7302
7303 if (match)
7304 {
7305 if (flags & tf_error)
7306 {
7307 error ("converting overloaded function %qD to type %q#T is ambiguous",
7308 DECL_NAME (OVL_FUNCTION (overload)),
7309 target_type);
7310
7311 /* Since print_candidates expects the functions in the
7312 TREE_VALUE slot, we flip them here. */
7313 for (match = matches; match; match = TREE_CHAIN (match))
7314 TREE_VALUE (match) = TREE_PURPOSE (match);
7315
7316 print_candidates (matches);
7317 }
7318
7319 return error_mark_node;
7320 }
7321 }
7322
7323 /* Good, exactly one match. Now, convert it to the correct type. */
7324 fn = TREE_PURPOSE (matches);
7325
7326 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7327 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7328 {
7329 static int explained;
7330
7331 if (!(flags & tf_error))
7332 return error_mark_node;
7333
7334 permerror (input_location, "assuming pointer to member %qD", fn);
7335 if (!explained)
7336 {
7337 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7338 explained = 1;
7339 }
7340 }
7341
7342 /* If a pointer to a function that is multi-versioned is requested, the
7343 pointer to the dispatcher function is returned instead. This works
7344 well because indirectly calling the function will dispatch the right
7345 function version at run-time. */
7346 if (DECL_FUNCTION_VERSIONED (fn))
7347 {
7348 fn = get_function_version_dispatcher (fn);
7349 if (fn == NULL)
7350 return error_mark_node;
7351 /* Mark all the versions corresponding to the dispatcher as used. */
7352 if (!(flags & tf_conv))
7353 mark_versions_used (fn);
7354 }
7355
7356 /* If we're doing overload resolution purely for the purpose of
7357 determining conversion sequences, we should not consider the
7358 function used. If this conversion sequence is selected, the
7359 function will be marked as used at this point. */
7360 if (!(flags & tf_conv))
7361 {
7362 /* Make =delete work with SFINAE. */
7363 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7364 return error_mark_node;
7365
7366 mark_used (fn);
7367 }
7368
7369 /* We could not check access to member functions when this
7370 expression was originally created since we did not know at that
7371 time to which function the expression referred. */
7372 if (DECL_FUNCTION_MEMBER_P (fn))
7373 {
7374 gcc_assert (access_path);
7375 perform_or_defer_access_check (access_path, fn, fn, flags);
7376 }
7377
7378 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7379 return cp_build_addr_expr (fn, flags);
7380 else
7381 {
7382 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7383 will mark the function as addressed, but here we must do it
7384 explicitly. */
7385 cxx_mark_addressable (fn);
7386
7387 return fn;
7388 }
7389 }
7390
7391 /* This function will instantiate the type of the expression given in
7392 RHS to match the type of LHSTYPE. If errors exist, then return
7393 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7394 we complain on errors. If we are not complaining, never modify rhs,
7395 as overload resolution wants to try many possible instantiations, in
7396 the hope that at least one will work.
7397
7398 For non-recursive calls, LHSTYPE should be a function, pointer to
7399 function, or a pointer to member function. */
7400
7401 tree
7402 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7403 {
7404 tsubst_flags_t flags_in = flags;
7405 tree access_path = NULL_TREE;
7406
7407 flags &= ~tf_ptrmem_ok;
7408
7409 if (lhstype == unknown_type_node)
7410 {
7411 if (flags & tf_error)
7412 error ("not enough type information");
7413 return error_mark_node;
7414 }
7415
7416 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7417 {
7418 if (same_type_p (lhstype, TREE_TYPE (rhs)))
7419 return rhs;
7420 if (flag_ms_extensions
7421 && TYPE_PTRMEMFUNC_P (lhstype)
7422 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7423 /* Microsoft allows `A::f' to be resolved to a
7424 pointer-to-member. */
7425 ;
7426 else
7427 {
7428 if (flags & tf_error)
7429 error ("cannot convert %qE from type %qT to type %qT",
7430 rhs, TREE_TYPE (rhs), lhstype);
7431 return error_mark_node;
7432 }
7433 }
7434
7435 if (BASELINK_P (rhs))
7436 {
7437 access_path = BASELINK_ACCESS_BINFO (rhs);
7438 rhs = BASELINK_FUNCTIONS (rhs);
7439 }
7440
7441 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7442 deduce any type information. */
7443 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7444 {
7445 if (flags & tf_error)
7446 error ("not enough type information");
7447 return error_mark_node;
7448 }
7449
7450 /* There only a few kinds of expressions that may have a type
7451 dependent on overload resolution. */
7452 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7453 || TREE_CODE (rhs) == COMPONENT_REF
7454 || really_overloaded_fn (rhs)
7455 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7456
7457 /* This should really only be used when attempting to distinguish
7458 what sort of a pointer to function we have. For now, any
7459 arithmetic operation which is not supported on pointers
7460 is rejected as an error. */
7461
7462 switch (TREE_CODE (rhs))
7463 {
7464 case COMPONENT_REF:
7465 {
7466 tree member = TREE_OPERAND (rhs, 1);
7467
7468 member = instantiate_type (lhstype, member, flags);
7469 if (member != error_mark_node
7470 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7471 /* Do not lose object's side effects. */
7472 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7473 TREE_OPERAND (rhs, 0), member);
7474 return member;
7475 }
7476
7477 case OFFSET_REF:
7478 rhs = TREE_OPERAND (rhs, 1);
7479 if (BASELINK_P (rhs))
7480 return instantiate_type (lhstype, rhs, flags_in);
7481
7482 /* This can happen if we are forming a pointer-to-member for a
7483 member template. */
7484 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7485
7486 /* Fall through. */
7487
7488 case TEMPLATE_ID_EXPR:
7489 {
7490 tree fns = TREE_OPERAND (rhs, 0);
7491 tree args = TREE_OPERAND (rhs, 1);
7492
7493 return
7494 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7495 /*template_only=*/true,
7496 args, access_path);
7497 }
7498
7499 case OVERLOAD:
7500 case FUNCTION_DECL:
7501 return
7502 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7503 /*template_only=*/false,
7504 /*explicit_targs=*/NULL_TREE,
7505 access_path);
7506
7507 case ADDR_EXPR:
7508 {
7509 if (PTRMEM_OK_P (rhs))
7510 flags |= tf_ptrmem_ok;
7511
7512 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7513 }
7514
7515 case ERROR_MARK:
7516 return error_mark_node;
7517
7518 default:
7519 gcc_unreachable ();
7520 }
7521 return error_mark_node;
7522 }
7523 \f
7524 /* Return the name of the virtual function pointer field
7525 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7526 this may have to look back through base types to find the
7527 ultimate field name. (For single inheritance, these could
7528 all be the same name. Who knows for multiple inheritance). */
7529
7530 static tree
7531 get_vfield_name (tree type)
7532 {
7533 tree binfo, base_binfo;
7534 char *buf;
7535
7536 for (binfo = TYPE_BINFO (type);
7537 BINFO_N_BASE_BINFOS (binfo);
7538 binfo = base_binfo)
7539 {
7540 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7541
7542 if (BINFO_VIRTUAL_P (base_binfo)
7543 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7544 break;
7545 }
7546
7547 type = BINFO_TYPE (binfo);
7548 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7549 + TYPE_NAME_LENGTH (type) + 2);
7550 sprintf (buf, VFIELD_NAME_FORMAT,
7551 IDENTIFIER_POINTER (constructor_name (type)));
7552 return get_identifier (buf);
7553 }
7554
7555 void
7556 print_class_statistics (void)
7557 {
7558 if (! GATHER_STATISTICS)
7559 return;
7560
7561 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7562 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7563 if (n_vtables)
7564 {
7565 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7566 n_vtables, n_vtable_searches);
7567 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7568 n_vtable_entries, n_vtable_elems);
7569 }
7570 }
7571
7572 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7573 according to [class]:
7574 The class-name is also inserted
7575 into the scope of the class itself. For purposes of access checking,
7576 the inserted class name is treated as if it were a public member name. */
7577
7578 void
7579 build_self_reference (void)
7580 {
7581 tree name = constructor_name (current_class_type);
7582 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7583 tree saved_cas;
7584
7585 DECL_NONLOCAL (value) = 1;
7586 DECL_CONTEXT (value) = current_class_type;
7587 DECL_ARTIFICIAL (value) = 1;
7588 SET_DECL_SELF_REFERENCE_P (value);
7589 set_underlying_type (value);
7590
7591 if (processing_template_decl)
7592 value = push_template_decl (value);
7593
7594 saved_cas = current_access_specifier;
7595 current_access_specifier = access_public_node;
7596 finish_member_declaration (value);
7597 current_access_specifier = saved_cas;
7598 }
7599
7600 /* Returns 1 if TYPE contains only padding bytes. */
7601
7602 int
7603 is_empty_class (tree type)
7604 {
7605 if (type == error_mark_node)
7606 return 0;
7607
7608 if (! CLASS_TYPE_P (type))
7609 return 0;
7610
7611 /* In G++ 3.2, whether or not a class was empty was determined by
7612 looking at its size. */
7613 if (abi_version_at_least (2))
7614 return CLASSTYPE_EMPTY_P (type);
7615 else
7616 return integer_zerop (CLASSTYPE_SIZE (type));
7617 }
7618
7619 /* Returns true if TYPE contains an empty class. */
7620
7621 static bool
7622 contains_empty_class_p (tree type)
7623 {
7624 if (is_empty_class (type))
7625 return true;
7626 if (CLASS_TYPE_P (type))
7627 {
7628 tree field;
7629 tree binfo;
7630 tree base_binfo;
7631 int i;
7632
7633 for (binfo = TYPE_BINFO (type), i = 0;
7634 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7635 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
7636 return true;
7637 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
7638 if (TREE_CODE (field) == FIELD_DECL
7639 && !DECL_ARTIFICIAL (field)
7640 && is_empty_class (TREE_TYPE (field)))
7641 return true;
7642 }
7643 else if (TREE_CODE (type) == ARRAY_TYPE)
7644 return contains_empty_class_p (TREE_TYPE (type));
7645 return false;
7646 }
7647
7648 /* Returns true if TYPE contains no actual data, just various
7649 possible combinations of empty classes and possibly a vptr. */
7650
7651 bool
7652 is_really_empty_class (tree type)
7653 {
7654 if (CLASS_TYPE_P (type))
7655 {
7656 tree field;
7657 tree binfo;
7658 tree base_binfo;
7659 int i;
7660
7661 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7662 out, but we'd like to be able to check this before then. */
7663 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7664 return true;
7665
7666 for (binfo = TYPE_BINFO (type), i = 0;
7667 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7668 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7669 return false;
7670 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7671 if (TREE_CODE (field) == FIELD_DECL
7672 && !DECL_ARTIFICIAL (field)
7673 && !is_really_empty_class (TREE_TYPE (field)))
7674 return false;
7675 return true;
7676 }
7677 else if (TREE_CODE (type) == ARRAY_TYPE)
7678 return is_really_empty_class (TREE_TYPE (type));
7679 return false;
7680 }
7681
7682 /* Note that NAME was looked up while the current class was being
7683 defined and that the result of that lookup was DECL. */
7684
7685 void
7686 maybe_note_name_used_in_class (tree name, tree decl)
7687 {
7688 splay_tree names_used;
7689
7690 /* If we're not defining a class, there's nothing to do. */
7691 if (!(innermost_scope_kind() == sk_class
7692 && TYPE_BEING_DEFINED (current_class_type)
7693 && !LAMBDA_TYPE_P (current_class_type)))
7694 return;
7695
7696 /* If there's already a binding for this NAME, then we don't have
7697 anything to worry about. */
7698 if (lookup_member (current_class_type, name,
7699 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7700 return;
7701
7702 if (!current_class_stack[current_class_depth - 1].names_used)
7703 current_class_stack[current_class_depth - 1].names_used
7704 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7705 names_used = current_class_stack[current_class_depth - 1].names_used;
7706
7707 splay_tree_insert (names_used,
7708 (splay_tree_key) name,
7709 (splay_tree_value) decl);
7710 }
7711
7712 /* Note that NAME was declared (as DECL) in the current class. Check
7713 to see that the declaration is valid. */
7714
7715 void
7716 note_name_declared_in_class (tree name, tree decl)
7717 {
7718 splay_tree names_used;
7719 splay_tree_node n;
7720
7721 /* Look to see if we ever used this name. */
7722 names_used
7723 = current_class_stack[current_class_depth - 1].names_used;
7724 if (!names_used)
7725 return;
7726 /* The C language allows members to be declared with a type of the same
7727 name, and the C++ standard says this diagnostic is not required. So
7728 allow it in extern "C" blocks unless predantic is specified.
7729 Allow it in all cases if -ms-extensions is specified. */
7730 if ((!pedantic && current_lang_name == lang_name_c)
7731 || flag_ms_extensions)
7732 return;
7733 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7734 if (n)
7735 {
7736 /* [basic.scope.class]
7737
7738 A name N used in a class S shall refer to the same declaration
7739 in its context and when re-evaluated in the completed scope of
7740 S. */
7741 permerror (input_location, "declaration of %q#D", decl);
7742 permerror (input_location, "changes meaning of %qD from %q+#D",
7743 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7744 }
7745 }
7746
7747 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7748 Secondary vtables are merged with primary vtables; this function
7749 will return the VAR_DECL for the primary vtable. */
7750
7751 tree
7752 get_vtbl_decl_for_binfo (tree binfo)
7753 {
7754 tree decl;
7755
7756 decl = BINFO_VTABLE (binfo);
7757 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7758 {
7759 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7760 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7761 }
7762 if (decl)
7763 gcc_assert (TREE_CODE (decl) == VAR_DECL);
7764 return decl;
7765 }
7766
7767
7768 /* Returns the binfo for the primary base of BINFO. If the resulting
7769 BINFO is a virtual base, and it is inherited elsewhere in the
7770 hierarchy, then the returned binfo might not be the primary base of
7771 BINFO in the complete object. Check BINFO_PRIMARY_P or
7772 BINFO_LOST_PRIMARY_P to be sure. */
7773
7774 static tree
7775 get_primary_binfo (tree binfo)
7776 {
7777 tree primary_base;
7778
7779 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
7780 if (!primary_base)
7781 return NULL_TREE;
7782
7783 return copied_binfo (primary_base, binfo);
7784 }
7785
7786 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
7787
7788 static int
7789 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
7790 {
7791 if (!indented_p)
7792 fprintf (stream, "%*s", indent, "");
7793 return 1;
7794 }
7795
7796 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
7797 INDENT should be zero when called from the top level; it is
7798 incremented recursively. IGO indicates the next expected BINFO in
7799 inheritance graph ordering. */
7800
7801 static tree
7802 dump_class_hierarchy_r (FILE *stream,
7803 int flags,
7804 tree binfo,
7805 tree igo,
7806 int indent)
7807 {
7808 int indented = 0;
7809 tree base_binfo;
7810 int i;
7811
7812 indented = maybe_indent_hierarchy (stream, indent, 0);
7813 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
7814 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
7815 (HOST_WIDE_INT) (uintptr_t) binfo);
7816 if (binfo != igo)
7817 {
7818 fprintf (stream, "alternative-path\n");
7819 return igo;
7820 }
7821 igo = TREE_CHAIN (binfo);
7822
7823 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
7824 tree_low_cst (BINFO_OFFSET (binfo), 0));
7825 if (is_empty_class (BINFO_TYPE (binfo)))
7826 fprintf (stream, " empty");
7827 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
7828 fprintf (stream, " nearly-empty");
7829 if (BINFO_VIRTUAL_P (binfo))
7830 fprintf (stream, " virtual");
7831 fprintf (stream, "\n");
7832
7833 indented = 0;
7834 if (BINFO_PRIMARY_P (binfo))
7835 {
7836 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7837 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
7838 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
7839 TFF_PLAIN_IDENTIFIER),
7840 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
7841 }
7842 if (BINFO_LOST_PRIMARY_P (binfo))
7843 {
7844 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7845 fprintf (stream, " lost-primary");
7846 }
7847 if (indented)
7848 fprintf (stream, "\n");
7849
7850 if (!(flags & TDF_SLIM))
7851 {
7852 int indented = 0;
7853
7854 if (BINFO_SUBVTT_INDEX (binfo))
7855 {
7856 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7857 fprintf (stream, " subvttidx=%s",
7858 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
7859 TFF_PLAIN_IDENTIFIER));
7860 }
7861 if (BINFO_VPTR_INDEX (binfo))
7862 {
7863 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7864 fprintf (stream, " vptridx=%s",
7865 expr_as_string (BINFO_VPTR_INDEX (binfo),
7866 TFF_PLAIN_IDENTIFIER));
7867 }
7868 if (BINFO_VPTR_FIELD (binfo))
7869 {
7870 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7871 fprintf (stream, " vbaseoffset=%s",
7872 expr_as_string (BINFO_VPTR_FIELD (binfo),
7873 TFF_PLAIN_IDENTIFIER));
7874 }
7875 if (BINFO_VTABLE (binfo))
7876 {
7877 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7878 fprintf (stream, " vptr=%s",
7879 expr_as_string (BINFO_VTABLE (binfo),
7880 TFF_PLAIN_IDENTIFIER));
7881 }
7882
7883 if (indented)
7884 fprintf (stream, "\n");
7885 }
7886
7887 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
7888 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
7889
7890 return igo;
7891 }
7892
7893 /* Dump the BINFO hierarchy for T. */
7894
7895 static void
7896 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
7897 {
7898 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
7899 fprintf (stream, " size=%lu align=%lu\n",
7900 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
7901 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
7902 fprintf (stream, " base size=%lu base align=%lu\n",
7903 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
7904 / BITS_PER_UNIT),
7905 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
7906 / BITS_PER_UNIT));
7907 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
7908 fprintf (stream, "\n");
7909 }
7910
7911 /* Debug interface to hierarchy dumping. */
7912
7913 void
7914 debug_class (tree t)
7915 {
7916 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
7917 }
7918
7919 static void
7920 dump_class_hierarchy (tree t)
7921 {
7922 int flags;
7923 FILE *stream = dump_begin (TDI_class, &flags);
7924
7925 if (stream)
7926 {
7927 dump_class_hierarchy_1 (stream, flags, t);
7928 dump_end (TDI_class, stream);
7929 }
7930 }
7931
7932 static void
7933 dump_array (FILE * stream, tree decl)
7934 {
7935 tree value;
7936 unsigned HOST_WIDE_INT ix;
7937 HOST_WIDE_INT elt;
7938 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
7939
7940 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
7941 / BITS_PER_UNIT);
7942 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
7943 fprintf (stream, " %s entries",
7944 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
7945 TFF_PLAIN_IDENTIFIER));
7946 fprintf (stream, "\n");
7947
7948 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
7949 ix, value)
7950 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
7951 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
7952 }
7953
7954 static void
7955 dump_vtable (tree t, tree binfo, tree vtable)
7956 {
7957 int flags;
7958 FILE *stream = dump_begin (TDI_class, &flags);
7959
7960 if (!stream)
7961 return;
7962
7963 if (!(flags & TDF_SLIM))
7964 {
7965 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
7966
7967 fprintf (stream, "%s for %s",
7968 ctor_vtbl_p ? "Construction vtable" : "Vtable",
7969 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
7970 if (ctor_vtbl_p)
7971 {
7972 if (!BINFO_VIRTUAL_P (binfo))
7973 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
7974 (HOST_WIDE_INT) (uintptr_t) binfo);
7975 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
7976 }
7977 fprintf (stream, "\n");
7978 dump_array (stream, vtable);
7979 fprintf (stream, "\n");
7980 }
7981
7982 dump_end (TDI_class, stream);
7983 }
7984
7985 static void
7986 dump_vtt (tree t, tree vtt)
7987 {
7988 int flags;
7989 FILE *stream = dump_begin (TDI_class, &flags);
7990
7991 if (!stream)
7992 return;
7993
7994 if (!(flags & TDF_SLIM))
7995 {
7996 fprintf (stream, "VTT for %s\n",
7997 type_as_string (t, TFF_PLAIN_IDENTIFIER));
7998 dump_array (stream, vtt);
7999 fprintf (stream, "\n");
8000 }
8001
8002 dump_end (TDI_class, stream);
8003 }
8004
8005 /* Dump a function or thunk and its thunkees. */
8006
8007 static void
8008 dump_thunk (FILE *stream, int indent, tree thunk)
8009 {
8010 static const char spaces[] = " ";
8011 tree name = DECL_NAME (thunk);
8012 tree thunks;
8013
8014 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8015 (void *)thunk,
8016 !DECL_THUNK_P (thunk) ? "function"
8017 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8018 name ? IDENTIFIER_POINTER (name) : "<unset>");
8019 if (DECL_THUNK_P (thunk))
8020 {
8021 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8022 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8023
8024 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8025 if (!virtual_adjust)
8026 /*NOP*/;
8027 else if (DECL_THIS_THUNK_P (thunk))
8028 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8029 tree_low_cst (virtual_adjust, 0));
8030 else
8031 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8032 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
8033 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8034 if (THUNK_ALIAS (thunk))
8035 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8036 }
8037 fprintf (stream, "\n");
8038 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8039 dump_thunk (stream, indent + 2, thunks);
8040 }
8041
8042 /* Dump the thunks for FN. */
8043
8044 void
8045 debug_thunks (tree fn)
8046 {
8047 dump_thunk (stderr, 0, fn);
8048 }
8049
8050 /* Virtual function table initialization. */
8051
8052 /* Create all the necessary vtables for T and its base classes. */
8053
8054 static void
8055 finish_vtbls (tree t)
8056 {
8057 tree vbase;
8058 vec<constructor_elt, va_gc> *v = NULL;
8059 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8060
8061 /* We lay out the primary and secondary vtables in one contiguous
8062 vtable. The primary vtable is first, followed by the non-virtual
8063 secondary vtables in inheritance graph order. */
8064 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8065 vtable, t, &v);
8066
8067 /* Then come the virtual bases, also in inheritance graph order. */
8068 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8069 {
8070 if (!BINFO_VIRTUAL_P (vbase))
8071 continue;
8072 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8073 }
8074
8075 if (BINFO_VTABLE (TYPE_BINFO (t)))
8076 initialize_vtable (TYPE_BINFO (t), v);
8077 }
8078
8079 /* Initialize the vtable for BINFO with the INITS. */
8080
8081 static void
8082 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8083 {
8084 tree decl;
8085
8086 layout_vtable_decl (binfo, vec_safe_length (inits));
8087 decl = get_vtbl_decl_for_binfo (binfo);
8088 initialize_artificial_var (decl, inits);
8089 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8090 }
8091
8092 /* Build the VTT (virtual table table) for T.
8093 A class requires a VTT if it has virtual bases.
8094
8095 This holds
8096 1 - primary virtual pointer for complete object T
8097 2 - secondary VTTs for each direct non-virtual base of T which requires a
8098 VTT
8099 3 - secondary virtual pointers for each direct or indirect base of T which
8100 has virtual bases or is reachable via a virtual path from T.
8101 4 - secondary VTTs for each direct or indirect virtual base of T.
8102
8103 Secondary VTTs look like complete object VTTs without part 4. */
8104
8105 static void
8106 build_vtt (tree t)
8107 {
8108 tree type;
8109 tree vtt;
8110 tree index;
8111 vec<constructor_elt, va_gc> *inits;
8112
8113 /* Build up the initializers for the VTT. */
8114 inits = NULL;
8115 index = size_zero_node;
8116 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8117
8118 /* If we didn't need a VTT, we're done. */
8119 if (!inits)
8120 return;
8121
8122 /* Figure out the type of the VTT. */
8123 type = build_array_of_n_type (const_ptr_type_node,
8124 inits->length ());
8125
8126 /* Now, build the VTT object itself. */
8127 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8128 initialize_artificial_var (vtt, inits);
8129 /* Add the VTT to the vtables list. */
8130 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8131 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8132
8133 dump_vtt (t, vtt);
8134 }
8135
8136 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8137 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8138 and CHAIN the vtable pointer for this binfo after construction is
8139 complete. VALUE can also be another BINFO, in which case we recurse. */
8140
8141 static tree
8142 binfo_ctor_vtable (tree binfo)
8143 {
8144 tree vt;
8145
8146 while (1)
8147 {
8148 vt = BINFO_VTABLE (binfo);
8149 if (TREE_CODE (vt) == TREE_LIST)
8150 vt = TREE_VALUE (vt);
8151 if (TREE_CODE (vt) == TREE_BINFO)
8152 binfo = vt;
8153 else
8154 break;
8155 }
8156
8157 return vt;
8158 }
8159
8160 /* Data for secondary VTT initialization. */
8161 typedef struct secondary_vptr_vtt_init_data_s
8162 {
8163 /* Is this the primary VTT? */
8164 bool top_level_p;
8165
8166 /* Current index into the VTT. */
8167 tree index;
8168
8169 /* Vector of initializers built up. */
8170 vec<constructor_elt, va_gc> *inits;
8171
8172 /* The type being constructed by this secondary VTT. */
8173 tree type_being_constructed;
8174 } secondary_vptr_vtt_init_data;
8175
8176 /* Recursively build the VTT-initializer for BINFO (which is in the
8177 hierarchy dominated by T). INITS points to the end of the initializer
8178 list to date. INDEX is the VTT index where the next element will be
8179 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8180 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8181 for virtual bases of T. When it is not so, we build the constructor
8182 vtables for the BINFO-in-T variant. */
8183
8184 static void
8185 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8186 tree *index)
8187 {
8188 int i;
8189 tree b;
8190 tree init;
8191 secondary_vptr_vtt_init_data data;
8192 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8193
8194 /* We only need VTTs for subobjects with virtual bases. */
8195 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8196 return;
8197
8198 /* We need to use a construction vtable if this is not the primary
8199 VTT. */
8200 if (!top_level_p)
8201 {
8202 build_ctor_vtbl_group (binfo, t);
8203
8204 /* Record the offset in the VTT where this sub-VTT can be found. */
8205 BINFO_SUBVTT_INDEX (binfo) = *index;
8206 }
8207
8208 /* Add the address of the primary vtable for the complete object. */
8209 init = binfo_ctor_vtable (binfo);
8210 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8211 if (top_level_p)
8212 {
8213 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8214 BINFO_VPTR_INDEX (binfo) = *index;
8215 }
8216 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8217
8218 /* Recursively add the secondary VTTs for non-virtual bases. */
8219 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8220 if (!BINFO_VIRTUAL_P (b))
8221 build_vtt_inits (b, t, inits, index);
8222
8223 /* Add secondary virtual pointers for all subobjects of BINFO with
8224 either virtual bases or reachable along a virtual path, except
8225 subobjects that are non-virtual primary bases. */
8226 data.top_level_p = top_level_p;
8227 data.index = *index;
8228 data.inits = *inits;
8229 data.type_being_constructed = BINFO_TYPE (binfo);
8230
8231 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8232
8233 *index = data.index;
8234
8235 /* data.inits might have grown as we added secondary virtual pointers.
8236 Make sure our caller knows about the new vector. */
8237 *inits = data.inits;
8238
8239 if (top_level_p)
8240 /* Add the secondary VTTs for virtual bases in inheritance graph
8241 order. */
8242 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8243 {
8244 if (!BINFO_VIRTUAL_P (b))
8245 continue;
8246
8247 build_vtt_inits (b, t, inits, index);
8248 }
8249 else
8250 /* Remove the ctor vtables we created. */
8251 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8252 }
8253
8254 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8255 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8256
8257 static tree
8258 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8259 {
8260 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8261
8262 /* We don't care about bases that don't have vtables. */
8263 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8264 return dfs_skip_bases;
8265
8266 /* We're only interested in proper subobjects of the type being
8267 constructed. */
8268 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8269 return NULL_TREE;
8270
8271 /* We're only interested in bases with virtual bases or reachable
8272 via a virtual path from the type being constructed. */
8273 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8274 || binfo_via_virtual (binfo, data->type_being_constructed)))
8275 return dfs_skip_bases;
8276
8277 /* We're not interested in non-virtual primary bases. */
8278 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8279 return NULL_TREE;
8280
8281 /* Record the index where this secondary vptr can be found. */
8282 if (data->top_level_p)
8283 {
8284 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8285 BINFO_VPTR_INDEX (binfo) = data->index;
8286
8287 if (BINFO_VIRTUAL_P (binfo))
8288 {
8289 /* It's a primary virtual base, and this is not a
8290 construction vtable. Find the base this is primary of in
8291 the inheritance graph, and use that base's vtable
8292 now. */
8293 while (BINFO_PRIMARY_P (binfo))
8294 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8295 }
8296 }
8297
8298 /* Add the initializer for the secondary vptr itself. */
8299 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8300
8301 /* Advance the vtt index. */
8302 data->index = size_binop (PLUS_EXPR, data->index,
8303 TYPE_SIZE_UNIT (ptr_type_node));
8304
8305 return NULL_TREE;
8306 }
8307
8308 /* Called from build_vtt_inits via dfs_walk. After building
8309 constructor vtables and generating the sub-vtt from them, we need
8310 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8311 binfo of the base whose sub vtt was generated. */
8312
8313 static tree
8314 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8315 {
8316 tree vtable = BINFO_VTABLE (binfo);
8317
8318 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8319 /* If this class has no vtable, none of its bases do. */
8320 return dfs_skip_bases;
8321
8322 if (!vtable)
8323 /* This might be a primary base, so have no vtable in this
8324 hierarchy. */
8325 return NULL_TREE;
8326
8327 /* If we scribbled the construction vtable vptr into BINFO, clear it
8328 out now. */
8329 if (TREE_CODE (vtable) == TREE_LIST
8330 && (TREE_PURPOSE (vtable) == (tree) data))
8331 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8332
8333 return NULL_TREE;
8334 }
8335
8336 /* Build the construction vtable group for BINFO which is in the
8337 hierarchy dominated by T. */
8338
8339 static void
8340 build_ctor_vtbl_group (tree binfo, tree t)
8341 {
8342 tree type;
8343 tree vtbl;
8344 tree id;
8345 tree vbase;
8346 vec<constructor_elt, va_gc> *v;
8347
8348 /* See if we've already created this construction vtable group. */
8349 id = mangle_ctor_vtbl_for_type (t, binfo);
8350 if (IDENTIFIER_GLOBAL_VALUE (id))
8351 return;
8352
8353 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8354 /* Build a version of VTBL (with the wrong type) for use in
8355 constructing the addresses of secondary vtables in the
8356 construction vtable group. */
8357 vtbl = build_vtable (t, id, ptr_type_node);
8358 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8359 /* Don't export construction vtables from shared libraries. Even on
8360 targets that don't support hidden visibility, this tells
8361 can_refer_decl_in_current_unit_p not to assume that it's safe to
8362 access from a different compilation unit (bz 54314). */
8363 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8364 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8365
8366 v = NULL;
8367 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8368 binfo, vtbl, t, &v);
8369
8370 /* Add the vtables for each of our virtual bases using the vbase in T
8371 binfo. */
8372 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8373 vbase;
8374 vbase = TREE_CHAIN (vbase))
8375 {
8376 tree b;
8377
8378 if (!BINFO_VIRTUAL_P (vbase))
8379 continue;
8380 b = copied_binfo (vbase, binfo);
8381
8382 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8383 }
8384
8385 /* Figure out the type of the construction vtable. */
8386 type = build_array_of_n_type (vtable_entry_type, v->length ());
8387 layout_type (type);
8388 TREE_TYPE (vtbl) = type;
8389 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8390 layout_decl (vtbl, 0);
8391
8392 /* Initialize the construction vtable. */
8393 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8394 initialize_artificial_var (vtbl, v);
8395 dump_vtable (t, binfo, vtbl);
8396 }
8397
8398 /* Add the vtbl initializers for BINFO (and its bases other than
8399 non-virtual primaries) to the list of INITS. BINFO is in the
8400 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8401 the constructor the vtbl inits should be accumulated for. (If this
8402 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8403 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8404 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8405 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8406 but are not necessarily the same in terms of layout. */
8407
8408 static void
8409 accumulate_vtbl_inits (tree binfo,
8410 tree orig_binfo,
8411 tree rtti_binfo,
8412 tree vtbl,
8413 tree t,
8414 vec<constructor_elt, va_gc> **inits)
8415 {
8416 int i;
8417 tree base_binfo;
8418 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8419
8420 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8421
8422 /* If it doesn't have a vptr, we don't do anything. */
8423 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8424 return;
8425
8426 /* If we're building a construction vtable, we're not interested in
8427 subobjects that don't require construction vtables. */
8428 if (ctor_vtbl_p
8429 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8430 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8431 return;
8432
8433 /* Build the initializers for the BINFO-in-T vtable. */
8434 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8435
8436 /* Walk the BINFO and its bases. We walk in preorder so that as we
8437 initialize each vtable we can figure out at what offset the
8438 secondary vtable lies from the primary vtable. We can't use
8439 dfs_walk here because we need to iterate through bases of BINFO
8440 and RTTI_BINFO simultaneously. */
8441 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8442 {
8443 /* Skip virtual bases. */
8444 if (BINFO_VIRTUAL_P (base_binfo))
8445 continue;
8446 accumulate_vtbl_inits (base_binfo,
8447 BINFO_BASE_BINFO (orig_binfo, i),
8448 rtti_binfo, vtbl, t,
8449 inits);
8450 }
8451 }
8452
8453 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8454 BINFO vtable to L. */
8455
8456 static void
8457 dfs_accumulate_vtbl_inits (tree binfo,
8458 tree orig_binfo,
8459 tree rtti_binfo,
8460 tree orig_vtbl,
8461 tree t,
8462 vec<constructor_elt, va_gc> **l)
8463 {
8464 tree vtbl = NULL_TREE;
8465 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8466 int n_inits;
8467
8468 if (ctor_vtbl_p
8469 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8470 {
8471 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8472 primary virtual base. If it is not the same primary in
8473 the hierarchy of T, we'll need to generate a ctor vtable
8474 for it, to place at its location in T. If it is the same
8475 primary, we still need a VTT entry for the vtable, but it
8476 should point to the ctor vtable for the base it is a
8477 primary for within the sub-hierarchy of RTTI_BINFO.
8478
8479 There are three possible cases:
8480
8481 1) We are in the same place.
8482 2) We are a primary base within a lost primary virtual base of
8483 RTTI_BINFO.
8484 3) We are primary to something not a base of RTTI_BINFO. */
8485
8486 tree b;
8487 tree last = NULL_TREE;
8488
8489 /* First, look through the bases we are primary to for RTTI_BINFO
8490 or a virtual base. */
8491 b = binfo;
8492 while (BINFO_PRIMARY_P (b))
8493 {
8494 b = BINFO_INHERITANCE_CHAIN (b);
8495 last = b;
8496 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8497 goto found;
8498 }
8499 /* If we run out of primary links, keep looking down our
8500 inheritance chain; we might be an indirect primary. */
8501 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8502 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8503 break;
8504 found:
8505
8506 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8507 base B and it is a base of RTTI_BINFO, this is case 2. In
8508 either case, we share our vtable with LAST, i.e. the
8509 derived-most base within B of which we are a primary. */
8510 if (b == rtti_binfo
8511 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8512 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8513 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8514 binfo_ctor_vtable after everything's been set up. */
8515 vtbl = last;
8516
8517 /* Otherwise, this is case 3 and we get our own. */
8518 }
8519 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8520 return;
8521
8522 n_inits = vec_safe_length (*l);
8523
8524 if (!vtbl)
8525 {
8526 tree index;
8527 int non_fn_entries;
8528
8529 /* Add the initializer for this vtable. */
8530 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8531 &non_fn_entries, l);
8532
8533 /* Figure out the position to which the VPTR should point. */
8534 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8535 index = size_binop (MULT_EXPR,
8536 TYPE_SIZE_UNIT (vtable_entry_type),
8537 size_int (non_fn_entries + n_inits));
8538 vtbl = fold_build_pointer_plus (vtbl, index);
8539 }
8540
8541 if (ctor_vtbl_p)
8542 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8543 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8544 straighten this out. */
8545 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8546 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8547 /* Throw away any unneeded intializers. */
8548 (*l)->truncate (n_inits);
8549 else
8550 /* For an ordinary vtable, set BINFO_VTABLE. */
8551 BINFO_VTABLE (binfo) = vtbl;
8552 }
8553
8554 static GTY(()) tree abort_fndecl_addr;
8555
8556 /* Construct the initializer for BINFO's virtual function table. BINFO
8557 is part of the hierarchy dominated by T. If we're building a
8558 construction vtable, the ORIG_BINFO is the binfo we should use to
8559 find the actual function pointers to put in the vtable - but they
8560 can be overridden on the path to most-derived in the graph that
8561 ORIG_BINFO belongs. Otherwise,
8562 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8563 BINFO that should be indicated by the RTTI information in the
8564 vtable; it will be a base class of T, rather than T itself, if we
8565 are building a construction vtable.
8566
8567 The value returned is a TREE_LIST suitable for wrapping in a
8568 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8569 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8570 number of non-function entries in the vtable.
8571
8572 It might seem that this function should never be called with a
8573 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8574 base is always subsumed by a derived class vtable. However, when
8575 we are building construction vtables, we do build vtables for
8576 primary bases; we need these while the primary base is being
8577 constructed. */
8578
8579 static void
8580 build_vtbl_initializer (tree binfo,
8581 tree orig_binfo,
8582 tree t,
8583 tree rtti_binfo,
8584 int* non_fn_entries_p,
8585 vec<constructor_elt, va_gc> **inits)
8586 {
8587 tree v;
8588 vtbl_init_data vid;
8589 unsigned ix, jx;
8590 tree vbinfo;
8591 vec<tree, va_gc> *vbases;
8592 constructor_elt *e;
8593
8594 /* Initialize VID. */
8595 memset (&vid, 0, sizeof (vid));
8596 vid.binfo = binfo;
8597 vid.derived = t;
8598 vid.rtti_binfo = rtti_binfo;
8599 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8600 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8601 vid.generate_vcall_entries = true;
8602 /* The first vbase or vcall offset is at index -3 in the vtable. */
8603 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8604
8605 /* Add entries to the vtable for RTTI. */
8606 build_rtti_vtbl_entries (binfo, &vid);
8607
8608 /* Create an array for keeping track of the functions we've
8609 processed. When we see multiple functions with the same
8610 signature, we share the vcall offsets. */
8611 vec_alloc (vid.fns, 32);
8612 /* Add the vcall and vbase offset entries. */
8613 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8614
8615 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8616 build_vbase_offset_vtbl_entries. */
8617 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8618 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8619 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8620
8621 /* If the target requires padding between data entries, add that now. */
8622 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8623 {
8624 int n_entries = vec_safe_length (vid.inits);
8625
8626 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8627
8628 /* Move data entries into their new positions and add padding
8629 after the new positions. Iterate backwards so we don't
8630 overwrite entries that we would need to process later. */
8631 for (ix = n_entries - 1;
8632 vid.inits->iterate (ix, &e);
8633 ix--)
8634 {
8635 int j;
8636 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8637 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8638
8639 (*vid.inits)[new_position] = *e;
8640
8641 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8642 {
8643 constructor_elt *f = &(*vid.inits)[new_position - j];
8644 f->index = NULL_TREE;
8645 f->value = build1 (NOP_EXPR, vtable_entry_type,
8646 null_pointer_node);
8647 }
8648 }
8649 }
8650
8651 if (non_fn_entries_p)
8652 *non_fn_entries_p = vec_safe_length (vid.inits);
8653
8654 /* The initializers for virtual functions were built up in reverse
8655 order. Straighten them out and add them to the running list in one
8656 step. */
8657 jx = vec_safe_length (*inits);
8658 vec_safe_grow (*inits, jx + vid.inits->length ());
8659
8660 for (ix = vid.inits->length () - 1;
8661 vid.inits->iterate (ix, &e);
8662 ix--, jx++)
8663 (**inits)[jx] = *e;
8664
8665 /* Go through all the ordinary virtual functions, building up
8666 initializers. */
8667 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8668 {
8669 tree delta;
8670 tree vcall_index;
8671 tree fn, fn_original;
8672 tree init = NULL_TREE;
8673
8674 fn = BV_FN (v);
8675 fn_original = fn;
8676 if (DECL_THUNK_P (fn))
8677 {
8678 if (!DECL_NAME (fn))
8679 finish_thunk (fn);
8680 if (THUNK_ALIAS (fn))
8681 {
8682 fn = THUNK_ALIAS (fn);
8683 BV_FN (v) = fn;
8684 }
8685 fn_original = THUNK_TARGET (fn);
8686 }
8687
8688 /* If the only definition of this function signature along our
8689 primary base chain is from a lost primary, this vtable slot will
8690 never be used, so just zero it out. This is important to avoid
8691 requiring extra thunks which cannot be generated with the function.
8692
8693 We first check this in update_vtable_entry_for_fn, so we handle
8694 restored primary bases properly; we also need to do it here so we
8695 zero out unused slots in ctor vtables, rather than filling them
8696 with erroneous values (though harmless, apart from relocation
8697 costs). */
8698 if (BV_LOST_PRIMARY (v))
8699 init = size_zero_node;
8700
8701 if (! init)
8702 {
8703 /* Pull the offset for `this', and the function to call, out of
8704 the list. */
8705 delta = BV_DELTA (v);
8706 vcall_index = BV_VCALL_INDEX (v);
8707
8708 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8709 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8710
8711 /* You can't call an abstract virtual function; it's abstract.
8712 So, we replace these functions with __pure_virtual. */
8713 if (DECL_PURE_VIRTUAL_P (fn_original))
8714 {
8715 fn = abort_fndecl;
8716 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8717 {
8718 if (abort_fndecl_addr == NULL)
8719 abort_fndecl_addr
8720 = fold_convert (vfunc_ptr_type_node,
8721 build_fold_addr_expr (fn));
8722 init = abort_fndecl_addr;
8723 }
8724 }
8725 /* Likewise for deleted virtuals. */
8726 else if (DECL_DELETED_FN (fn_original))
8727 {
8728 fn = get_identifier ("__cxa_deleted_virtual");
8729 if (!get_global_value_if_present (fn, &fn))
8730 fn = push_library_fn (fn, (build_function_type_list
8731 (void_type_node, NULL_TREE)),
8732 NULL_TREE);
8733 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8734 init = fold_convert (vfunc_ptr_type_node,
8735 build_fold_addr_expr (fn));
8736 }
8737 else
8738 {
8739 if (!integer_zerop (delta) || vcall_index)
8740 {
8741 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8742 if (!DECL_NAME (fn))
8743 finish_thunk (fn);
8744 }
8745 /* Take the address of the function, considering it to be of an
8746 appropriate generic type. */
8747 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8748 init = fold_convert (vfunc_ptr_type_node,
8749 build_fold_addr_expr (fn));
8750 }
8751 }
8752
8753 /* And add it to the chain of initializers. */
8754 if (TARGET_VTABLE_USES_DESCRIPTORS)
8755 {
8756 int i;
8757 if (init == size_zero_node)
8758 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8759 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8760 else
8761 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8762 {
8763 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
8764 fn, build_int_cst (NULL_TREE, i));
8765 TREE_CONSTANT (fdesc) = 1;
8766
8767 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
8768 }
8769 }
8770 else
8771 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8772 }
8773 }
8774
8775 /* Adds to vid->inits the initializers for the vbase and vcall
8776 offsets in BINFO, which is in the hierarchy dominated by T. */
8777
8778 static void
8779 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
8780 {
8781 tree b;
8782
8783 /* If this is a derived class, we must first create entries
8784 corresponding to the primary base class. */
8785 b = get_primary_binfo (binfo);
8786 if (b)
8787 build_vcall_and_vbase_vtbl_entries (b, vid);
8788
8789 /* Add the vbase entries for this base. */
8790 build_vbase_offset_vtbl_entries (binfo, vid);
8791 /* Add the vcall entries for this base. */
8792 build_vcall_offset_vtbl_entries (binfo, vid);
8793 }
8794
8795 /* Returns the initializers for the vbase offset entries in the vtable
8796 for BINFO (which is part of the class hierarchy dominated by T), in
8797 reverse order. VBASE_OFFSET_INDEX gives the vtable index
8798 where the next vbase offset will go. */
8799
8800 static void
8801 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8802 {
8803 tree vbase;
8804 tree t;
8805 tree non_primary_binfo;
8806
8807 /* If there are no virtual baseclasses, then there is nothing to
8808 do. */
8809 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8810 return;
8811
8812 t = vid->derived;
8813
8814 /* We might be a primary base class. Go up the inheritance hierarchy
8815 until we find the most derived class of which we are a primary base:
8816 it is the offset of that which we need to use. */
8817 non_primary_binfo = binfo;
8818 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
8819 {
8820 tree b;
8821
8822 /* If we have reached a virtual base, then it must be a primary
8823 base (possibly multi-level) of vid->binfo, or we wouldn't
8824 have called build_vcall_and_vbase_vtbl_entries for it. But it
8825 might be a lost primary, so just skip down to vid->binfo. */
8826 if (BINFO_VIRTUAL_P (non_primary_binfo))
8827 {
8828 non_primary_binfo = vid->binfo;
8829 break;
8830 }
8831
8832 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
8833 if (get_primary_binfo (b) != non_primary_binfo)
8834 break;
8835 non_primary_binfo = b;
8836 }
8837
8838 /* Go through the virtual bases, adding the offsets. */
8839 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8840 vbase;
8841 vbase = TREE_CHAIN (vbase))
8842 {
8843 tree b;
8844 tree delta;
8845
8846 if (!BINFO_VIRTUAL_P (vbase))
8847 continue;
8848
8849 /* Find the instance of this virtual base in the complete
8850 object. */
8851 b = copied_binfo (vbase, binfo);
8852
8853 /* If we've already got an offset for this virtual base, we
8854 don't need another one. */
8855 if (BINFO_VTABLE_PATH_MARKED (b))
8856 continue;
8857 BINFO_VTABLE_PATH_MARKED (b) = 1;
8858
8859 /* Figure out where we can find this vbase offset. */
8860 delta = size_binop (MULT_EXPR,
8861 vid->index,
8862 convert (ssizetype,
8863 TYPE_SIZE_UNIT (vtable_entry_type)));
8864 if (vid->primary_vtbl_p)
8865 BINFO_VPTR_FIELD (b) = delta;
8866
8867 if (binfo != TYPE_BINFO (t))
8868 /* The vbase offset had better be the same. */
8869 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
8870
8871 /* The next vbase will come at a more negative offset. */
8872 vid->index = size_binop (MINUS_EXPR, vid->index,
8873 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
8874
8875 /* The initializer is the delta from BINFO to this virtual base.
8876 The vbase offsets go in reverse inheritance-graph order, and
8877 we are walking in inheritance graph order so these end up in
8878 the right order. */
8879 delta = size_diffop_loc (input_location,
8880 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
8881
8882 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
8883 fold_build1_loc (input_location, NOP_EXPR,
8884 vtable_entry_type, delta));
8885 }
8886 }
8887
8888 /* Adds the initializers for the vcall offset entries in the vtable
8889 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
8890 to VID->INITS. */
8891
8892 static void
8893 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8894 {
8895 /* We only need these entries if this base is a virtual base. We
8896 compute the indices -- but do not add to the vtable -- when
8897 building the main vtable for a class. */
8898 if (binfo == TYPE_BINFO (vid->derived)
8899 || (BINFO_VIRTUAL_P (binfo)
8900 /* If BINFO is RTTI_BINFO, then (since BINFO does not
8901 correspond to VID->DERIVED), we are building a primary
8902 construction virtual table. Since this is a primary
8903 virtual table, we do not need the vcall offsets for
8904 BINFO. */
8905 && binfo != vid->rtti_binfo))
8906 {
8907 /* We need a vcall offset for each of the virtual functions in this
8908 vtable. For example:
8909
8910 class A { virtual void f (); };
8911 class B1 : virtual public A { virtual void f (); };
8912 class B2 : virtual public A { virtual void f (); };
8913 class C: public B1, public B2 { virtual void f (); };
8914
8915 A C object has a primary base of B1, which has a primary base of A. A
8916 C also has a secondary base of B2, which no longer has a primary base
8917 of A. So the B2-in-C construction vtable needs a secondary vtable for
8918 A, which will adjust the A* to a B2* to call f. We have no way of
8919 knowing what (or even whether) this offset will be when we define B2,
8920 so we store this "vcall offset" in the A sub-vtable and look it up in
8921 a "virtual thunk" for B2::f.
8922
8923 We need entries for all the functions in our primary vtable and
8924 in our non-virtual bases' secondary vtables. */
8925 vid->vbase = binfo;
8926 /* If we are just computing the vcall indices -- but do not need
8927 the actual entries -- not that. */
8928 if (!BINFO_VIRTUAL_P (binfo))
8929 vid->generate_vcall_entries = false;
8930 /* Now, walk through the non-virtual bases, adding vcall offsets. */
8931 add_vcall_offset_vtbl_entries_r (binfo, vid);
8932 }
8933 }
8934
8935 /* Build vcall offsets, starting with those for BINFO. */
8936
8937 static void
8938 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
8939 {
8940 int i;
8941 tree primary_binfo;
8942 tree base_binfo;
8943
8944 /* Don't walk into virtual bases -- except, of course, for the
8945 virtual base for which we are building vcall offsets. Any
8946 primary virtual base will have already had its offsets generated
8947 through the recursion in build_vcall_and_vbase_vtbl_entries. */
8948 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
8949 return;
8950
8951 /* If BINFO has a primary base, process it first. */
8952 primary_binfo = get_primary_binfo (binfo);
8953 if (primary_binfo)
8954 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
8955
8956 /* Add BINFO itself to the list. */
8957 add_vcall_offset_vtbl_entries_1 (binfo, vid);
8958
8959 /* Scan the non-primary bases of BINFO. */
8960 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8961 if (base_binfo != primary_binfo)
8962 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
8963 }
8964
8965 /* Called from build_vcall_offset_vtbl_entries_r. */
8966
8967 static void
8968 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
8969 {
8970 /* Make entries for the rest of the virtuals. */
8971 if (abi_version_at_least (2))
8972 {
8973 tree orig_fn;
8974
8975 /* The ABI requires that the methods be processed in declaration
8976 order. G++ 3.2 used the order in the vtable. */
8977 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
8978 orig_fn;
8979 orig_fn = DECL_CHAIN (orig_fn))
8980 if (DECL_VINDEX (orig_fn))
8981 add_vcall_offset (orig_fn, binfo, vid);
8982 }
8983 else
8984 {
8985 tree derived_virtuals;
8986 tree base_virtuals;
8987 tree orig_virtuals;
8988 /* If BINFO is a primary base, the most derived class which has
8989 BINFO as a primary base; otherwise, just BINFO. */
8990 tree non_primary_binfo;
8991
8992 /* We might be a primary base class. Go up the inheritance hierarchy
8993 until we find the most derived class of which we are a primary base:
8994 it is the BINFO_VIRTUALS there that we need to consider. */
8995 non_primary_binfo = binfo;
8996 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
8997 {
8998 tree b;
8999
9000 /* If we have reached a virtual base, then it must be vid->vbase,
9001 because we ignore other virtual bases in
9002 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
9003 base (possibly multi-level) of vid->binfo, or we wouldn't
9004 have called build_vcall_and_vbase_vtbl_entries for it. But it
9005 might be a lost primary, so just skip down to vid->binfo. */
9006 if (BINFO_VIRTUAL_P (non_primary_binfo))
9007 {
9008 gcc_assert (non_primary_binfo == vid->vbase);
9009 non_primary_binfo = vid->binfo;
9010 break;
9011 }
9012
9013 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9014 if (get_primary_binfo (b) != non_primary_binfo)
9015 break;
9016 non_primary_binfo = b;
9017 }
9018
9019 if (vid->ctor_vtbl_p)
9020 /* For a ctor vtable we need the equivalent binfo within the hierarchy
9021 where rtti_binfo is the most derived type. */
9022 non_primary_binfo
9023 = original_binfo (non_primary_binfo, vid->rtti_binfo);
9024
9025 for (base_virtuals = BINFO_VIRTUALS (binfo),
9026 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
9027 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
9028 base_virtuals;
9029 base_virtuals = TREE_CHAIN (base_virtuals),
9030 derived_virtuals = TREE_CHAIN (derived_virtuals),
9031 orig_virtuals = TREE_CHAIN (orig_virtuals))
9032 {
9033 tree orig_fn;
9034
9035 /* Find the declaration that originally caused this function to
9036 be present in BINFO_TYPE (binfo). */
9037 orig_fn = BV_FN (orig_virtuals);
9038
9039 /* When processing BINFO, we only want to generate vcall slots for
9040 function slots introduced in BINFO. So don't try to generate
9041 one if the function isn't even defined in BINFO. */
9042 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
9043 continue;
9044
9045 add_vcall_offset (orig_fn, binfo, vid);
9046 }
9047 }
9048 }
9049
9050 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9051
9052 static void
9053 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9054 {
9055 size_t i;
9056 tree vcall_offset;
9057 tree derived_entry;
9058
9059 /* If there is already an entry for a function with the same
9060 signature as FN, then we do not need a second vcall offset.
9061 Check the list of functions already present in the derived
9062 class vtable. */
9063 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9064 {
9065 if (same_signature_p (derived_entry, orig_fn)
9066 /* We only use one vcall offset for virtual destructors,
9067 even though there are two virtual table entries. */
9068 || (DECL_DESTRUCTOR_P (derived_entry)
9069 && DECL_DESTRUCTOR_P (orig_fn)))
9070 return;
9071 }
9072
9073 /* If we are building these vcall offsets as part of building
9074 the vtable for the most derived class, remember the vcall
9075 offset. */
9076 if (vid->binfo == TYPE_BINFO (vid->derived))
9077 {
9078 tree_pair_s elt = {orig_fn, vid->index};
9079 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9080 }
9081
9082 /* The next vcall offset will be found at a more negative
9083 offset. */
9084 vid->index = size_binop (MINUS_EXPR, vid->index,
9085 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9086
9087 /* Keep track of this function. */
9088 vec_safe_push (vid->fns, orig_fn);
9089
9090 if (vid->generate_vcall_entries)
9091 {
9092 tree base;
9093 tree fn;
9094
9095 /* Find the overriding function. */
9096 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9097 if (fn == error_mark_node)
9098 vcall_offset = build_zero_cst (vtable_entry_type);
9099 else
9100 {
9101 base = TREE_VALUE (fn);
9102
9103 /* The vbase we're working on is a primary base of
9104 vid->binfo. But it might be a lost primary, so its
9105 BINFO_OFFSET might be wrong, so we just use the
9106 BINFO_OFFSET from vid->binfo. */
9107 vcall_offset = size_diffop_loc (input_location,
9108 BINFO_OFFSET (base),
9109 BINFO_OFFSET (vid->binfo));
9110 vcall_offset = fold_build1_loc (input_location,
9111 NOP_EXPR, vtable_entry_type,
9112 vcall_offset);
9113 }
9114 /* Add the initializer to the vtable. */
9115 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9116 }
9117 }
9118
9119 /* Return vtbl initializers for the RTTI entries corresponding to the
9120 BINFO's vtable. The RTTI entries should indicate the object given
9121 by VID->rtti_binfo. */
9122
9123 static void
9124 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9125 {
9126 tree b;
9127 tree t;
9128 tree offset;
9129 tree decl;
9130 tree init;
9131
9132 t = BINFO_TYPE (vid->rtti_binfo);
9133
9134 /* To find the complete object, we will first convert to our most
9135 primary base, and then add the offset in the vtbl to that value. */
9136 b = binfo;
9137 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9138 && !BINFO_LOST_PRIMARY_P (b))
9139 {
9140 tree primary_base;
9141
9142 primary_base = get_primary_binfo (b);
9143 gcc_assert (BINFO_PRIMARY_P (primary_base)
9144 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9145 b = primary_base;
9146 }
9147 offset = size_diffop_loc (input_location,
9148 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9149
9150 /* The second entry is the address of the typeinfo object. */
9151 if (flag_rtti)
9152 decl = build_address (get_tinfo_decl (t));
9153 else
9154 decl = integer_zero_node;
9155
9156 /* Convert the declaration to a type that can be stored in the
9157 vtable. */
9158 init = build_nop (vfunc_ptr_type_node, decl);
9159 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9160
9161 /* Add the offset-to-top entry. It comes earlier in the vtable than
9162 the typeinfo entry. Convert the offset to look like a
9163 function pointer, so that we can put it in the vtable. */
9164 init = build_nop (vfunc_ptr_type_node, offset);
9165 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9166 }
9167
9168 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9169 accessibility. */
9170
9171 bool
9172 uniquely_derived_from_p (tree parent, tree type)
9173 {
9174 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9175 return base && base != error_mark_node;
9176 }
9177
9178 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9179
9180 bool
9181 publicly_uniquely_derived_p (tree parent, tree type)
9182 {
9183 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9184 NULL, tf_none);
9185 return base && base != error_mark_node;
9186 }
9187
9188 #include "gt-cp-class.h"