class.c (note_name_declared_in_class): Make declaration changes meaning a pedwarn.
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24
25 /* High-level class interface. */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "tree.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "target.h"
38 #include "convert.h"
39 #include "cgraph.h"
40 #include "tree-dump.h"
41
42 /* The number of nested classes being processed. If we are not in the
43 scope of any class, this is zero. */
44
45 int current_class_depth;
46
47 /* In order to deal with nested classes, we keep a stack of classes.
48 The topmost entry is the innermost class, and is the entry at index
49 CURRENT_CLASS_DEPTH */
50
51 typedef struct class_stack_node {
52 /* The name of the class. */
53 tree name;
54
55 /* The _TYPE node for the class. */
56 tree type;
57
58 /* The access specifier pending for new declarations in the scope of
59 this class. */
60 tree access;
61
62 /* If were defining TYPE, the names used in this class. */
63 splay_tree names_used;
64
65 /* Nonzero if this class is no longer open, because of a call to
66 push_to_top_level. */
67 size_t hidden;
68 }* class_stack_node_t;
69
70 typedef struct vtbl_init_data_s
71 {
72 /* The base for which we're building initializers. */
73 tree binfo;
74 /* The type of the most-derived type. */
75 tree derived;
76 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
77 unless ctor_vtbl_p is true. */
78 tree rtti_binfo;
79 /* The negative-index vtable initializers built up so far. These
80 are in order from least negative index to most negative index. */
81 tree inits;
82 /* The last (i.e., most negative) entry in INITS. */
83 tree* last_init;
84 /* The binfo for the virtual base for which we're building
85 vcall offset initializers. */
86 tree vbase;
87 /* The functions in vbase for which we have already provided vcall
88 offsets. */
89 VEC(tree,gc) *fns;
90 /* The vtable index of the next vcall or vbase offset. */
91 tree index;
92 /* Nonzero if we are building the initializer for the primary
93 vtable. */
94 int primary_vtbl_p;
95 /* Nonzero if we are building the initializer for a construction
96 vtable. */
97 int ctor_vtbl_p;
98 /* True when adding vcall offset entries to the vtable. False when
99 merely computing the indices. */
100 bool generate_vcall_entries;
101 } vtbl_init_data;
102
103 /* The type of a function passed to walk_subobject_offsets. */
104 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
105
106 /* The stack itself. This is a dynamically resized array. The
107 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
108 static int current_class_stack_size;
109 static class_stack_node_t current_class_stack;
110
111 /* The size of the largest empty class seen in this translation unit. */
112 static GTY (()) tree sizeof_biggest_empty_class;
113
114 /* An array of all local classes present in this translation unit, in
115 declaration order. */
116 VEC(tree,gc) *local_classes;
117
118 static tree get_vfield_name (tree);
119 static void finish_struct_anon (tree);
120 static tree get_vtable_name (tree);
121 static tree get_basefndecls (tree, tree);
122 static int build_primary_vtable (tree, tree);
123 static int build_secondary_vtable (tree);
124 static void finish_vtbls (tree);
125 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
126 static void finish_struct_bits (tree);
127 static int alter_access (tree, tree, tree);
128 static void handle_using_decl (tree, tree);
129 static tree dfs_modify_vtables (tree, void *);
130 static tree modify_all_vtables (tree, tree);
131 static void determine_primary_bases (tree);
132 static void finish_struct_methods (tree);
133 static void maybe_warn_about_overly_private_class (tree);
134 static int method_name_cmp (const void *, const void *);
135 static int resort_method_name_cmp (const void *, const void *);
136 static void add_implicitly_declared_members (tree, int, int);
137 static tree fixed_type_or_null (tree, int *, int *);
138 static tree build_simple_base_path (tree expr, tree binfo);
139 static tree build_vtbl_ref_1 (tree, tree);
140 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
141 static int count_fields (tree);
142 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
143 static void check_bitfield_decl (tree);
144 static void check_field_decl (tree, tree, int *, int *, int *);
145 static void check_field_decls (tree, tree *, int *, int *);
146 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
147 static void build_base_fields (record_layout_info, splay_tree, tree *);
148 static void check_methods (tree);
149 static void remove_zero_width_bit_fields (tree);
150 static void check_bases (tree, int *, int *);
151 static void check_bases_and_members (tree);
152 static tree create_vtable_ptr (tree, tree *);
153 static void include_empty_classes (record_layout_info);
154 static void layout_class_type (tree, tree *);
155 static void fixup_pending_inline (tree);
156 static void fixup_inline_methods (tree);
157 static void propagate_binfo_offsets (tree, tree);
158 static void layout_virtual_bases (record_layout_info, splay_tree);
159 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
160 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
161 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
162 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
163 static void add_vcall_offset (tree, tree, vtbl_init_data *);
164 static void layout_vtable_decl (tree, int);
165 static tree dfs_find_final_overrider_pre (tree, void *);
166 static tree dfs_find_final_overrider_post (tree, void *);
167 static tree find_final_overrider (tree, tree, tree);
168 static int make_new_vtable (tree, tree);
169 static tree get_primary_binfo (tree);
170 static int maybe_indent_hierarchy (FILE *, int, int);
171 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
172 static void dump_class_hierarchy (tree);
173 static void dump_class_hierarchy_1 (FILE *, int, tree);
174 static void dump_array (FILE *, tree);
175 static void dump_vtable (tree, tree, tree);
176 static void dump_vtt (tree, tree);
177 static void dump_thunk (FILE *, int, tree);
178 static tree build_vtable (tree, tree, tree);
179 static void initialize_vtable (tree, tree);
180 static void layout_nonempty_base_or_field (record_layout_info,
181 tree, tree, splay_tree);
182 static tree end_of_class (tree, int);
183 static bool layout_empty_base (tree, tree, splay_tree);
184 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
185 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
186 tree);
187 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
188 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
189 static void clone_constructors_and_destructors (tree);
190 static tree build_clone (tree, tree);
191 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
192 static void build_ctor_vtbl_group (tree, tree);
193 static void build_vtt (tree);
194 static tree binfo_ctor_vtable (tree);
195 static tree *build_vtt_inits (tree, tree, tree *, tree *);
196 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
197 static tree dfs_fixup_binfo_vtbls (tree, void *);
198 static int record_subobject_offset (tree, tree, splay_tree);
199 static int check_subobject_offset (tree, tree, splay_tree);
200 static int walk_subobject_offsets (tree, subobject_offset_fn,
201 tree, splay_tree, tree, int);
202 static void record_subobject_offsets (tree, tree, splay_tree, bool);
203 static int layout_conflict_p (tree, tree, splay_tree, int);
204 static int splay_tree_compare_integer_csts (splay_tree_key k1,
205 splay_tree_key k2);
206 static void warn_about_ambiguous_bases (tree);
207 static bool type_requires_array_cookie (tree);
208 static bool contains_empty_class_p (tree);
209 static bool base_derived_from (tree, tree);
210 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
211 static tree end_of_base (tree);
212 static tree get_vcall_index (tree, tree);
213
214 /* Variables shared between class.c and call.c. */
215
216 #ifdef GATHER_STATISTICS
217 int n_vtables = 0;
218 int n_vtable_entries = 0;
219 int n_vtable_searches = 0;
220 int n_vtable_elems = 0;
221 int n_convert_harshness = 0;
222 int n_compute_conversion_costs = 0;
223 int n_inner_fields_searched = 0;
224 #endif
225
226 /* Convert to or from a base subobject. EXPR is an expression of type
227 `A' or `A*', an expression of type `B' or `B*' is returned. To
228 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
229 the B base instance within A. To convert base A to derived B, CODE
230 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
231 In this latter case, A must not be a morally virtual base of B.
232 NONNULL is true if EXPR is known to be non-NULL (this is only
233 needed when EXPR is of pointer type). CV qualifiers are preserved
234 from EXPR. */
235
236 tree
237 build_base_path (enum tree_code code,
238 tree expr,
239 tree binfo,
240 int nonnull)
241 {
242 tree v_binfo = NULL_TREE;
243 tree d_binfo = NULL_TREE;
244 tree probe;
245 tree offset;
246 tree target_type;
247 tree null_test = NULL;
248 tree ptr_target_type;
249 int fixed_type_p;
250 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
251 bool has_empty = false;
252 bool virtual_access;
253
254 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
255 return error_mark_node;
256
257 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
258 {
259 d_binfo = probe;
260 if (is_empty_class (BINFO_TYPE (probe)))
261 has_empty = true;
262 if (!v_binfo && BINFO_VIRTUAL_P (probe))
263 v_binfo = probe;
264 }
265
266 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
267 if (want_pointer)
268 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
269
270 gcc_assert ((code == MINUS_EXPR
271 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
272 || (code == PLUS_EXPR
273 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
274
275 if (binfo == d_binfo)
276 /* Nothing to do. */
277 return expr;
278
279 if (code == MINUS_EXPR && v_binfo)
280 {
281 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
282 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
283 return error_mark_node;
284 }
285
286 if (!want_pointer)
287 /* This must happen before the call to save_expr. */
288 expr = build_unary_op (ADDR_EXPR, expr, 0);
289
290 offset = BINFO_OFFSET (binfo);
291 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
292 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
293
294 /* Do we need to look in the vtable for the real offset? */
295 virtual_access = (v_binfo && fixed_type_p <= 0);
296
297 /* Do we need to check for a null pointer? */
298 if (want_pointer && !nonnull)
299 {
300 /* If we know the conversion will not actually change the value
301 of EXPR, then we can avoid testing the expression for NULL.
302 We have to avoid generating a COMPONENT_REF for a base class
303 field, because other parts of the compiler know that such
304 expressions are always non-NULL. */
305 if (!virtual_access && integer_zerop (offset))
306 return build_nop (build_pointer_type (target_type), expr);
307 null_test = error_mark_node;
308 }
309
310 /* Protect against multiple evaluation if necessary. */
311 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
312 expr = save_expr (expr);
313
314 /* Now that we've saved expr, build the real null test. */
315 if (null_test)
316 {
317 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
318 null_test = fold_build2 (NE_EXPR, boolean_type_node,
319 expr, zero);
320 }
321
322 /* If this is a simple base reference, express it as a COMPONENT_REF. */
323 if (code == PLUS_EXPR && !virtual_access
324 /* We don't build base fields for empty bases, and they aren't very
325 interesting to the optimizers anyway. */
326 && !has_empty)
327 {
328 expr = build_indirect_ref (expr, NULL);
329 expr = build_simple_base_path (expr, binfo);
330 if (want_pointer)
331 expr = build_address (expr);
332 target_type = TREE_TYPE (expr);
333 goto out;
334 }
335
336 if (virtual_access)
337 {
338 /* Going via virtual base V_BINFO. We need the static offset
339 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
340 V_BINFO. That offset is an entry in D_BINFO's vtable. */
341 tree v_offset;
342
343 if (fixed_type_p < 0 && in_base_initializer)
344 {
345 /* In a base member initializer, we cannot rely on the
346 vtable being set up. We have to indirect via the
347 vtt_parm. */
348 tree t;
349
350 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
351 t = build_pointer_type (t);
352 v_offset = convert (t, current_vtt_parm);
353 v_offset = build_indirect_ref (v_offset, NULL);
354 }
355 else
356 v_offset = build_vfield_ref (build_indirect_ref (expr, NULL),
357 TREE_TYPE (TREE_TYPE (expr)));
358
359 v_offset = build2 (PLUS_EXPR, TREE_TYPE (v_offset),
360 v_offset, BINFO_VPTR_FIELD (v_binfo));
361 v_offset = build1 (NOP_EXPR,
362 build_pointer_type (ptrdiff_type_node),
363 v_offset);
364 v_offset = build_indirect_ref (v_offset, NULL);
365 TREE_CONSTANT (v_offset) = 1;
366 TREE_INVARIANT (v_offset) = 1;
367
368 offset = convert_to_integer (ptrdiff_type_node,
369 size_diffop (offset,
370 BINFO_OFFSET (v_binfo)));
371
372 if (!integer_zerop (offset))
373 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
374
375 if (fixed_type_p < 0)
376 /* Negative fixed_type_p means this is a constructor or destructor;
377 virtual base layout is fixed in in-charge [cd]tors, but not in
378 base [cd]tors. */
379 offset = build3 (COND_EXPR, ptrdiff_type_node,
380 build2 (EQ_EXPR, boolean_type_node,
381 current_in_charge_parm, integer_zero_node),
382 v_offset,
383 convert_to_integer (ptrdiff_type_node,
384 BINFO_OFFSET (binfo)));
385 else
386 offset = v_offset;
387 }
388
389 target_type = cp_build_qualified_type
390 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
391 ptr_target_type = build_pointer_type (target_type);
392 if (want_pointer)
393 target_type = ptr_target_type;
394
395 expr = build1 (NOP_EXPR, ptr_target_type, expr);
396
397 if (!integer_zerop (offset))
398 expr = build2 (code, ptr_target_type, expr, offset);
399 else
400 null_test = NULL;
401
402 if (!want_pointer)
403 expr = build_indirect_ref (expr, NULL);
404
405 out:
406 if (null_test)
407 expr = fold_build3 (COND_EXPR, target_type, null_test, expr,
408 fold_build1 (NOP_EXPR, target_type,
409 integer_zero_node));
410
411 return expr;
412 }
413
414 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
415 Perform a derived-to-base conversion by recursively building up a
416 sequence of COMPONENT_REFs to the appropriate base fields. */
417
418 static tree
419 build_simple_base_path (tree expr, tree binfo)
420 {
421 tree type = BINFO_TYPE (binfo);
422 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
423 tree field;
424
425 if (d_binfo == NULL_TREE)
426 {
427 tree temp;
428
429 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
430
431 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
432 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
433 an lvalue in the front end; only _DECLs and _REFs are lvalues
434 in the back end. */
435 temp = unary_complex_lvalue (ADDR_EXPR, expr);
436 if (temp)
437 expr = build_indirect_ref (temp, NULL);
438
439 return expr;
440 }
441
442 /* Recurse. */
443 expr = build_simple_base_path (expr, d_binfo);
444
445 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
446 field; field = TREE_CHAIN (field))
447 /* Is this the base field created by build_base_field? */
448 if (TREE_CODE (field) == FIELD_DECL
449 && DECL_FIELD_IS_BASE (field)
450 && TREE_TYPE (field) == type)
451 {
452 /* We don't use build_class_member_access_expr here, as that
453 has unnecessary checks, and more importantly results in
454 recursive calls to dfs_walk_once. */
455 int type_quals = cp_type_quals (TREE_TYPE (expr));
456
457 expr = build3 (COMPONENT_REF,
458 cp_build_qualified_type (type, type_quals),
459 expr, field, NULL_TREE);
460 expr = fold_if_not_in_template (expr);
461
462 /* Mark the expression const or volatile, as appropriate.
463 Even though we've dealt with the type above, we still have
464 to mark the expression itself. */
465 if (type_quals & TYPE_QUAL_CONST)
466 TREE_READONLY (expr) = 1;
467 if (type_quals & TYPE_QUAL_VOLATILE)
468 TREE_THIS_VOLATILE (expr) = 1;
469
470 return expr;
471 }
472
473 /* Didn't find the base field?!? */
474 gcc_unreachable ();
475 }
476
477 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
478 type is a class type or a pointer to a class type. In the former
479 case, TYPE is also a class type; in the latter it is another
480 pointer type. If CHECK_ACCESS is true, an error message is emitted
481 if TYPE is inaccessible. If OBJECT has pointer type, the value is
482 assumed to be non-NULL. */
483
484 tree
485 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
486 {
487 tree binfo;
488 tree object_type;
489
490 if (TYPE_PTR_P (TREE_TYPE (object)))
491 {
492 object_type = TREE_TYPE (TREE_TYPE (object));
493 type = TREE_TYPE (type);
494 }
495 else
496 object_type = TREE_TYPE (object);
497
498 binfo = lookup_base (object_type, type,
499 check_access ? ba_check : ba_unique,
500 NULL);
501 if (!binfo || binfo == error_mark_node)
502 return error_mark_node;
503
504 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
505 }
506
507 /* EXPR is an expression with unqualified class type. BASE is a base
508 binfo of that class type. Returns EXPR, converted to the BASE
509 type. This function assumes that EXPR is the most derived class;
510 therefore virtual bases can be found at their static offsets. */
511
512 tree
513 convert_to_base_statically (tree expr, tree base)
514 {
515 tree expr_type;
516
517 expr_type = TREE_TYPE (expr);
518 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
519 {
520 tree pointer_type;
521
522 pointer_type = build_pointer_type (expr_type);
523 expr = build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1);
524 if (!integer_zerop (BINFO_OFFSET (base)))
525 expr = build2 (PLUS_EXPR, pointer_type, expr,
526 build_nop (pointer_type, BINFO_OFFSET (base)));
527 expr = build_nop (build_pointer_type (BINFO_TYPE (base)), expr);
528 expr = build1 (INDIRECT_REF, BINFO_TYPE (base), expr);
529 }
530
531 return expr;
532 }
533
534 \f
535 tree
536 build_vfield_ref (tree datum, tree type)
537 {
538 tree vfield, vcontext;
539
540 if (datum == error_mark_node)
541 return error_mark_node;
542
543 /* First, convert to the requested type. */
544 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
545 datum = convert_to_base (datum, type, /*check_access=*/false,
546 /*nonnull=*/true);
547
548 /* Second, the requested type may not be the owner of its own vptr.
549 If not, convert to the base class that owns it. We cannot use
550 convert_to_base here, because VCONTEXT may appear more than once
551 in the inheritance hierarchy of TYPE, and thus direct conversion
552 between the types may be ambiguous. Following the path back up
553 one step at a time via primary bases avoids the problem. */
554 vfield = TYPE_VFIELD (type);
555 vcontext = DECL_CONTEXT (vfield);
556 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
557 {
558 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
559 type = TREE_TYPE (datum);
560 }
561
562 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
563 }
564
565 /* Given an object INSTANCE, return an expression which yields the
566 vtable element corresponding to INDEX. There are many special
567 cases for INSTANCE which we take care of here, mainly to avoid
568 creating extra tree nodes when we don't have to. */
569
570 static tree
571 build_vtbl_ref_1 (tree instance, tree idx)
572 {
573 tree aref;
574 tree vtbl = NULL_TREE;
575
576 /* Try to figure out what a reference refers to, and
577 access its virtual function table directly. */
578
579 int cdtorp = 0;
580 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
581
582 tree basetype = non_reference (TREE_TYPE (instance));
583
584 if (fixed_type && !cdtorp)
585 {
586 tree binfo = lookup_base (fixed_type, basetype,
587 ba_unique | ba_quiet, NULL);
588 if (binfo)
589 vtbl = unshare_expr (BINFO_VTABLE (binfo));
590 }
591
592 if (!vtbl)
593 vtbl = build_vfield_ref (instance, basetype);
594
595 assemble_external (vtbl);
596
597 aref = build_array_ref (vtbl, idx);
598 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
599 TREE_INVARIANT (aref) = TREE_CONSTANT (aref);
600
601 return aref;
602 }
603
604 tree
605 build_vtbl_ref (tree instance, tree idx)
606 {
607 tree aref = build_vtbl_ref_1 (instance, idx);
608
609 return aref;
610 }
611
612 /* Given a stable object pointer INSTANCE_PTR, return an expression which
613 yields a function pointer corresponding to vtable element INDEX. */
614
615 tree
616 build_vfn_ref (tree instance_ptr, tree idx)
617 {
618 tree aref;
619
620 aref = build_vtbl_ref_1 (build_indirect_ref (instance_ptr, 0), idx);
621
622 /* When using function descriptors, the address of the
623 vtable entry is treated as a function pointer. */
624 if (TARGET_VTABLE_USES_DESCRIPTORS)
625 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
626 build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1));
627
628 /* Remember this as a method reference, for later devirtualization. */
629 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
630
631 return aref;
632 }
633
634 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
635 for the given TYPE. */
636
637 static tree
638 get_vtable_name (tree type)
639 {
640 return mangle_vtbl_for_type (type);
641 }
642
643 /* DECL is an entity associated with TYPE, like a virtual table or an
644 implicitly generated constructor. Determine whether or not DECL
645 should have external or internal linkage at the object file
646 level. This routine does not deal with COMDAT linkage and other
647 similar complexities; it simply sets TREE_PUBLIC if it possible for
648 entities in other translation units to contain copies of DECL, in
649 the abstract. */
650
651 void
652 set_linkage_according_to_type (tree type, tree decl)
653 {
654 /* If TYPE involves a local class in a function with internal
655 linkage, then DECL should have internal linkage too. Other local
656 classes have no linkage -- but if their containing functions
657 have external linkage, it makes sense for DECL to have external
658 linkage too. That will allow template definitions to be merged,
659 for example. */
660 if (no_linkage_check (type, /*relaxed_p=*/true))
661 {
662 TREE_PUBLIC (decl) = 0;
663 DECL_INTERFACE_KNOWN (decl) = 1;
664 }
665 else
666 TREE_PUBLIC (decl) = 1;
667 }
668
669 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
670 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
671 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
672
673 static tree
674 build_vtable (tree class_type, tree name, tree vtable_type)
675 {
676 tree decl;
677
678 decl = build_lang_decl (VAR_DECL, name, vtable_type);
679 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
680 now to avoid confusion in mangle_decl. */
681 SET_DECL_ASSEMBLER_NAME (decl, name);
682 DECL_CONTEXT (decl) = class_type;
683 DECL_ARTIFICIAL (decl) = 1;
684 TREE_STATIC (decl) = 1;
685 TREE_READONLY (decl) = 1;
686 DECL_VIRTUAL_P (decl) = 1;
687 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
688 DECL_VTABLE_OR_VTT_P (decl) = 1;
689 /* At one time the vtable info was grabbed 2 words at a time. This
690 fails on sparc unless you have 8-byte alignment. (tiemann) */
691 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
692 DECL_ALIGN (decl));
693 set_linkage_according_to_type (class_type, decl);
694 /* The vtable has not been defined -- yet. */
695 DECL_EXTERNAL (decl) = 1;
696 DECL_NOT_REALLY_EXTERN (decl) = 1;
697
698 /* Mark the VAR_DECL node representing the vtable itself as a
699 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
700 is rather important that such things be ignored because any
701 effort to actually generate DWARF for them will run into
702 trouble when/if we encounter code like:
703
704 #pragma interface
705 struct S { virtual void member (); };
706
707 because the artificial declaration of the vtable itself (as
708 manufactured by the g++ front end) will say that the vtable is
709 a static member of `S' but only *after* the debug output for
710 the definition of `S' has already been output. This causes
711 grief because the DWARF entry for the definition of the vtable
712 will try to refer back to an earlier *declaration* of the
713 vtable as a static member of `S' and there won't be one. We
714 might be able to arrange to have the "vtable static member"
715 attached to the member list for `S' before the debug info for
716 `S' get written (which would solve the problem) but that would
717 require more intrusive changes to the g++ front end. */
718 DECL_IGNORED_P (decl) = 1;
719
720 return decl;
721 }
722
723 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
724 or even complete. If this does not exist, create it. If COMPLETE is
725 nonzero, then complete the definition of it -- that will render it
726 impossible to actually build the vtable, but is useful to get at those
727 which are known to exist in the runtime. */
728
729 tree
730 get_vtable_decl (tree type, int complete)
731 {
732 tree decl;
733
734 if (CLASSTYPE_VTABLES (type))
735 return CLASSTYPE_VTABLES (type);
736
737 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
738 CLASSTYPE_VTABLES (type) = decl;
739
740 if (complete)
741 {
742 DECL_EXTERNAL (decl) = 1;
743 finish_decl (decl, NULL_TREE, NULL_TREE);
744 }
745
746 return decl;
747 }
748
749 /* Build the primary virtual function table for TYPE. If BINFO is
750 non-NULL, build the vtable starting with the initial approximation
751 that it is the same as the one which is the head of the association
752 list. Returns a nonzero value if a new vtable is actually
753 created. */
754
755 static int
756 build_primary_vtable (tree binfo, tree type)
757 {
758 tree decl;
759 tree virtuals;
760
761 decl = get_vtable_decl (type, /*complete=*/0);
762
763 if (binfo)
764 {
765 if (BINFO_NEW_VTABLE_MARKED (binfo))
766 /* We have already created a vtable for this base, so there's
767 no need to do it again. */
768 return 0;
769
770 virtuals = copy_list (BINFO_VIRTUALS (binfo));
771 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
772 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
773 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
774 }
775 else
776 {
777 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
778 virtuals = NULL_TREE;
779 }
780
781 #ifdef GATHER_STATISTICS
782 n_vtables += 1;
783 n_vtable_elems += list_length (virtuals);
784 #endif
785
786 /* Initialize the association list for this type, based
787 on our first approximation. */
788 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
789 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
790 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
791 return 1;
792 }
793
794 /* Give BINFO a new virtual function table which is initialized
795 with a skeleton-copy of its original initialization. The only
796 entry that changes is the `delta' entry, so we can really
797 share a lot of structure.
798
799 FOR_TYPE is the most derived type which caused this table to
800 be needed.
801
802 Returns nonzero if we haven't met BINFO before.
803
804 The order in which vtables are built (by calling this function) for
805 an object must remain the same, otherwise a binary incompatibility
806 can result. */
807
808 static int
809 build_secondary_vtable (tree binfo)
810 {
811 if (BINFO_NEW_VTABLE_MARKED (binfo))
812 /* We already created a vtable for this base. There's no need to
813 do it again. */
814 return 0;
815
816 /* Remember that we've created a vtable for this BINFO, so that we
817 don't try to do so again. */
818 SET_BINFO_NEW_VTABLE_MARKED (binfo);
819
820 /* Make fresh virtual list, so we can smash it later. */
821 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
822
823 /* Secondary vtables are laid out as part of the same structure as
824 the primary vtable. */
825 BINFO_VTABLE (binfo) = NULL_TREE;
826 return 1;
827 }
828
829 /* Create a new vtable for BINFO which is the hierarchy dominated by
830 T. Return nonzero if we actually created a new vtable. */
831
832 static int
833 make_new_vtable (tree t, tree binfo)
834 {
835 if (binfo == TYPE_BINFO (t))
836 /* In this case, it is *type*'s vtable we are modifying. We start
837 with the approximation that its vtable is that of the
838 immediate base class. */
839 return build_primary_vtable (binfo, t);
840 else
841 /* This is our very own copy of `basetype' to play with. Later,
842 we will fill in all the virtual functions that override the
843 virtual functions in these base classes which are not defined
844 by the current type. */
845 return build_secondary_vtable (binfo);
846 }
847
848 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
849 (which is in the hierarchy dominated by T) list FNDECL as its
850 BV_FN. DELTA is the required constant adjustment from the `this'
851 pointer where the vtable entry appears to the `this' required when
852 the function is actually called. */
853
854 static void
855 modify_vtable_entry (tree t,
856 tree binfo,
857 tree fndecl,
858 tree delta,
859 tree *virtuals)
860 {
861 tree v;
862
863 v = *virtuals;
864
865 if (fndecl != BV_FN (v)
866 || !tree_int_cst_equal (delta, BV_DELTA (v)))
867 {
868 /* We need a new vtable for BINFO. */
869 if (make_new_vtable (t, binfo))
870 {
871 /* If we really did make a new vtable, we also made a copy
872 of the BINFO_VIRTUALS list. Now, we have to find the
873 corresponding entry in that list. */
874 *virtuals = BINFO_VIRTUALS (binfo);
875 while (BV_FN (*virtuals) != BV_FN (v))
876 *virtuals = TREE_CHAIN (*virtuals);
877 v = *virtuals;
878 }
879
880 BV_DELTA (v) = delta;
881 BV_VCALL_INDEX (v) = NULL_TREE;
882 BV_FN (v) = fndecl;
883 }
884 }
885
886 \f
887 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
888 the USING_DECL naming METHOD. Returns true if the method could be
889 added to the method vec. */
890
891 bool
892 add_method (tree type, tree method, tree using_decl)
893 {
894 unsigned slot;
895 tree overload;
896 bool template_conv_p = false;
897 bool conv_p;
898 VEC(tree,gc) *method_vec;
899 bool complete_p;
900 bool insert_p = false;
901 tree current_fns;
902 tree fns;
903
904 if (method == error_mark_node)
905 return false;
906
907 complete_p = COMPLETE_TYPE_P (type);
908 conv_p = DECL_CONV_FN_P (method);
909 if (conv_p)
910 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
911 && DECL_TEMPLATE_CONV_FN_P (method));
912
913 method_vec = CLASSTYPE_METHOD_VEC (type);
914 if (!method_vec)
915 {
916 /* Make a new method vector. We start with 8 entries. We must
917 allocate at least two (for constructors and destructors), and
918 we're going to end up with an assignment operator at some
919 point as well. */
920 method_vec = VEC_alloc (tree, gc, 8);
921 /* Create slots for constructors and destructors. */
922 VEC_quick_push (tree, method_vec, NULL_TREE);
923 VEC_quick_push (tree, method_vec, NULL_TREE);
924 CLASSTYPE_METHOD_VEC (type) = method_vec;
925 }
926
927 /* Maintain TYPE_HAS_CONSTRUCTOR, etc. */
928 grok_special_member_properties (method);
929
930 /* Constructors and destructors go in special slots. */
931 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
932 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
933 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
934 {
935 slot = CLASSTYPE_DESTRUCTOR_SLOT;
936
937 if (TYPE_FOR_JAVA (type))
938 {
939 if (!DECL_ARTIFICIAL (method))
940 error ("Java class %qT cannot have a destructor", type);
941 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
942 error ("Java class %qT cannot have an implicit non-trivial "
943 "destructor",
944 type);
945 }
946 }
947 else
948 {
949 tree m;
950
951 insert_p = true;
952 /* See if we already have an entry with this name. */
953 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
954 VEC_iterate (tree, method_vec, slot, m);
955 ++slot)
956 {
957 m = OVL_CURRENT (m);
958 if (template_conv_p)
959 {
960 if (TREE_CODE (m) == TEMPLATE_DECL
961 && DECL_TEMPLATE_CONV_FN_P (m))
962 insert_p = false;
963 break;
964 }
965 if (conv_p && !DECL_CONV_FN_P (m))
966 break;
967 if (DECL_NAME (m) == DECL_NAME (method))
968 {
969 insert_p = false;
970 break;
971 }
972 if (complete_p
973 && !DECL_CONV_FN_P (m)
974 && DECL_NAME (m) > DECL_NAME (method))
975 break;
976 }
977 }
978 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
979
980 /* Check to see if we've already got this method. */
981 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
982 {
983 tree fn = OVL_CURRENT (fns);
984 tree fn_type;
985 tree method_type;
986 tree parms1;
987 tree parms2;
988
989 if (TREE_CODE (fn) != TREE_CODE (method))
990 continue;
991
992 /* [over.load] Member function declarations with the
993 same name and the same parameter types cannot be
994 overloaded if any of them is a static member
995 function declaration.
996
997 [namespace.udecl] When a using-declaration brings names
998 from a base class into a derived class scope, member
999 functions in the derived class override and/or hide member
1000 functions with the same name and parameter types in a base
1001 class (rather than conflicting). */
1002 fn_type = TREE_TYPE (fn);
1003 method_type = TREE_TYPE (method);
1004 parms1 = TYPE_ARG_TYPES (fn_type);
1005 parms2 = TYPE_ARG_TYPES (method_type);
1006
1007 /* Compare the quals on the 'this' parm. Don't compare
1008 the whole types, as used functions are treated as
1009 coming from the using class in overload resolution. */
1010 if (! DECL_STATIC_FUNCTION_P (fn)
1011 && ! DECL_STATIC_FUNCTION_P (method)
1012 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1013 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1014 continue;
1015
1016 /* For templates, the return type and template parameters
1017 must be identical. */
1018 if (TREE_CODE (fn) == TEMPLATE_DECL
1019 && (!same_type_p (TREE_TYPE (fn_type),
1020 TREE_TYPE (method_type))
1021 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1022 DECL_TEMPLATE_PARMS (method))))
1023 continue;
1024
1025 if (! DECL_STATIC_FUNCTION_P (fn))
1026 parms1 = TREE_CHAIN (parms1);
1027 if (! DECL_STATIC_FUNCTION_P (method))
1028 parms2 = TREE_CHAIN (parms2);
1029
1030 if (compparms (parms1, parms2)
1031 && (!DECL_CONV_FN_P (fn)
1032 || same_type_p (TREE_TYPE (fn_type),
1033 TREE_TYPE (method_type))))
1034 {
1035 if (using_decl)
1036 {
1037 if (DECL_CONTEXT (fn) == type)
1038 /* Defer to the local function. */
1039 return false;
1040 if (DECL_CONTEXT (fn) == DECL_CONTEXT (method))
1041 error ("repeated using declaration %q+D", using_decl);
1042 else
1043 error ("using declaration %q+D conflicts with a previous using declaration",
1044 using_decl);
1045 }
1046 else
1047 {
1048 error ("%q+#D cannot be overloaded", method);
1049 error ("with %q+#D", fn);
1050 }
1051
1052 /* We don't call duplicate_decls here to merge the
1053 declarations because that will confuse things if the
1054 methods have inline definitions. In particular, we
1055 will crash while processing the definitions. */
1056 return false;
1057 }
1058 }
1059
1060 /* A class should never have more than one destructor. */
1061 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1062 return false;
1063
1064 /* Add the new binding. */
1065 overload = build_overload (method, current_fns);
1066
1067 if (conv_p)
1068 TYPE_HAS_CONVERSION (type) = 1;
1069 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1070 push_class_level_binding (DECL_NAME (method), overload);
1071
1072 if (insert_p)
1073 {
1074 bool reallocated;
1075
1076 /* We only expect to add few methods in the COMPLETE_P case, so
1077 just make room for one more method in that case. */
1078 if (complete_p)
1079 reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
1080 else
1081 reallocated = VEC_reserve (tree, gc, method_vec, 1);
1082 if (reallocated)
1083 CLASSTYPE_METHOD_VEC (type) = method_vec;
1084 if (slot == VEC_length (tree, method_vec))
1085 VEC_quick_push (tree, method_vec, overload);
1086 else
1087 VEC_quick_insert (tree, method_vec, slot, overload);
1088 }
1089 else
1090 /* Replace the current slot. */
1091 VEC_replace (tree, method_vec, slot, overload);
1092 return true;
1093 }
1094
1095 /* Subroutines of finish_struct. */
1096
1097 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1098 legit, otherwise return 0. */
1099
1100 static int
1101 alter_access (tree t, tree fdecl, tree access)
1102 {
1103 tree elem;
1104
1105 if (!DECL_LANG_SPECIFIC (fdecl))
1106 retrofit_lang_decl (fdecl);
1107
1108 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1109
1110 elem = purpose_member (t, DECL_ACCESS (fdecl));
1111 if (elem)
1112 {
1113 if (TREE_VALUE (elem) != access)
1114 {
1115 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1116 error ("conflicting access specifications for method"
1117 " %q+D, ignored", TREE_TYPE (fdecl));
1118 else
1119 error ("conflicting access specifications for field %qE, ignored",
1120 DECL_NAME (fdecl));
1121 }
1122 else
1123 {
1124 /* They're changing the access to the same thing they changed
1125 it to before. That's OK. */
1126 ;
1127 }
1128 }
1129 else
1130 {
1131 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
1132 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1133 return 1;
1134 }
1135 return 0;
1136 }
1137
1138 /* Process the USING_DECL, which is a member of T. */
1139
1140 static void
1141 handle_using_decl (tree using_decl, tree t)
1142 {
1143 tree decl = USING_DECL_DECLS (using_decl);
1144 tree name = DECL_NAME (using_decl);
1145 tree access
1146 = TREE_PRIVATE (using_decl) ? access_private_node
1147 : TREE_PROTECTED (using_decl) ? access_protected_node
1148 : access_public_node;
1149 tree flist = NULL_TREE;
1150 tree old_value;
1151
1152 gcc_assert (!processing_template_decl && decl);
1153
1154 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1155 if (old_value)
1156 {
1157 if (is_overloaded_fn (old_value))
1158 old_value = OVL_CURRENT (old_value);
1159
1160 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1161 /* OK */;
1162 else
1163 old_value = NULL_TREE;
1164 }
1165
1166 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1167
1168 if (is_overloaded_fn (decl))
1169 flist = decl;
1170
1171 if (! old_value)
1172 ;
1173 else if (is_overloaded_fn (old_value))
1174 {
1175 if (flist)
1176 /* It's OK to use functions from a base when there are functions with
1177 the same name already present in the current class. */;
1178 else
1179 {
1180 error ("%q+D invalid in %q#T", using_decl, t);
1181 error (" because of local method %q+#D with same name",
1182 OVL_CURRENT (old_value));
1183 return;
1184 }
1185 }
1186 else if (!DECL_ARTIFICIAL (old_value))
1187 {
1188 error ("%q+D invalid in %q#T", using_decl, t);
1189 error (" because of local member %q+#D with same name", old_value);
1190 return;
1191 }
1192
1193 /* Make type T see field decl FDECL with access ACCESS. */
1194 if (flist)
1195 for (; flist; flist = OVL_NEXT (flist))
1196 {
1197 add_method (t, OVL_CURRENT (flist), using_decl);
1198 alter_access (t, OVL_CURRENT (flist), access);
1199 }
1200 else
1201 alter_access (t, decl, access);
1202 }
1203 \f
1204 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1205 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1206 properties of the bases. */
1207
1208 static void
1209 check_bases (tree t,
1210 int* cant_have_const_ctor_p,
1211 int* no_const_asn_ref_p)
1212 {
1213 int i;
1214 int seen_non_virtual_nearly_empty_base_p;
1215 tree base_binfo;
1216 tree binfo;
1217
1218 seen_non_virtual_nearly_empty_base_p = 0;
1219
1220 for (binfo = TYPE_BINFO (t), i = 0;
1221 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1222 {
1223 tree basetype = TREE_TYPE (base_binfo);
1224
1225 gcc_assert (COMPLETE_TYPE_P (basetype));
1226
1227 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1228 here because the case of virtual functions but non-virtual
1229 dtor is handled in finish_struct_1. */
1230 if (!TYPE_POLYMORPHIC_P (basetype))
1231 warning (OPT_Weffc__,
1232 "base class %q#T has a non-virtual destructor", basetype);
1233
1234 /* If the base class doesn't have copy constructors or
1235 assignment operators that take const references, then the
1236 derived class cannot have such a member automatically
1237 generated. */
1238 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1239 *cant_have_const_ctor_p = 1;
1240 if (TYPE_HAS_ASSIGN_REF (basetype)
1241 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1242 *no_const_asn_ref_p = 1;
1243
1244 if (BINFO_VIRTUAL_P (base_binfo))
1245 /* A virtual base does not effect nearly emptiness. */
1246 ;
1247 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1248 {
1249 if (seen_non_virtual_nearly_empty_base_p)
1250 /* And if there is more than one nearly empty base, then the
1251 derived class is not nearly empty either. */
1252 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1253 else
1254 /* Remember we've seen one. */
1255 seen_non_virtual_nearly_empty_base_p = 1;
1256 }
1257 else if (!is_empty_class (basetype))
1258 /* If the base class is not empty or nearly empty, then this
1259 class cannot be nearly empty. */
1260 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1261
1262 /* A lot of properties from the bases also apply to the derived
1263 class. */
1264 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1265 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1266 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1267 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1268 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1269 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1270 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1271 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1272 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1273 }
1274 }
1275
1276 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1277 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1278 that have had a nearly-empty virtual primary base stolen by some
1279 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1280 T. */
1281
1282 static void
1283 determine_primary_bases (tree t)
1284 {
1285 unsigned i;
1286 tree primary = NULL_TREE;
1287 tree type_binfo = TYPE_BINFO (t);
1288 tree base_binfo;
1289
1290 /* Determine the primary bases of our bases. */
1291 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1292 base_binfo = TREE_CHAIN (base_binfo))
1293 {
1294 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1295
1296 /* See if we're the non-virtual primary of our inheritance
1297 chain. */
1298 if (!BINFO_VIRTUAL_P (base_binfo))
1299 {
1300 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1301 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1302
1303 if (parent_primary
1304 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1305 BINFO_TYPE (parent_primary)))
1306 /* We are the primary binfo. */
1307 BINFO_PRIMARY_P (base_binfo) = 1;
1308 }
1309 /* Determine if we have a virtual primary base, and mark it so.
1310 */
1311 if (primary && BINFO_VIRTUAL_P (primary))
1312 {
1313 tree this_primary = copied_binfo (primary, base_binfo);
1314
1315 if (BINFO_PRIMARY_P (this_primary))
1316 /* Someone already claimed this base. */
1317 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1318 else
1319 {
1320 tree delta;
1321
1322 BINFO_PRIMARY_P (this_primary) = 1;
1323 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1324
1325 /* A virtual binfo might have been copied from within
1326 another hierarchy. As we're about to use it as a
1327 primary base, make sure the offsets match. */
1328 delta = size_diffop (convert (ssizetype,
1329 BINFO_OFFSET (base_binfo)),
1330 convert (ssizetype,
1331 BINFO_OFFSET (this_primary)));
1332
1333 propagate_binfo_offsets (this_primary, delta);
1334 }
1335 }
1336 }
1337
1338 /* First look for a dynamic direct non-virtual base. */
1339 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1340 {
1341 tree basetype = BINFO_TYPE (base_binfo);
1342
1343 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1344 {
1345 primary = base_binfo;
1346 goto found;
1347 }
1348 }
1349
1350 /* A "nearly-empty" virtual base class can be the primary base
1351 class, if no non-virtual polymorphic base can be found. Look for
1352 a nearly-empty virtual dynamic base that is not already a primary
1353 base of something in the hierarchy. If there is no such base,
1354 just pick the first nearly-empty virtual base. */
1355
1356 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1357 base_binfo = TREE_CHAIN (base_binfo))
1358 if (BINFO_VIRTUAL_P (base_binfo)
1359 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1360 {
1361 if (!BINFO_PRIMARY_P (base_binfo))
1362 {
1363 /* Found one that is not primary. */
1364 primary = base_binfo;
1365 goto found;
1366 }
1367 else if (!primary)
1368 /* Remember the first candidate. */
1369 primary = base_binfo;
1370 }
1371
1372 found:
1373 /* If we've got a primary base, use it. */
1374 if (primary)
1375 {
1376 tree basetype = BINFO_TYPE (primary);
1377
1378 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1379 if (BINFO_PRIMARY_P (primary))
1380 /* We are stealing a primary base. */
1381 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1382 BINFO_PRIMARY_P (primary) = 1;
1383 if (BINFO_VIRTUAL_P (primary))
1384 {
1385 tree delta;
1386
1387 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1388 /* A virtual binfo might have been copied from within
1389 another hierarchy. As we're about to use it as a primary
1390 base, make sure the offsets match. */
1391 delta = size_diffop (ssize_int (0),
1392 convert (ssizetype, BINFO_OFFSET (primary)));
1393
1394 propagate_binfo_offsets (primary, delta);
1395 }
1396
1397 primary = TYPE_BINFO (basetype);
1398
1399 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1400 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1401 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1402 }
1403 }
1404 \f
1405 /* Set memoizing fields and bits of T (and its variants) for later
1406 use. */
1407
1408 static void
1409 finish_struct_bits (tree t)
1410 {
1411 tree variants;
1412
1413 /* Fix up variants (if any). */
1414 for (variants = TYPE_NEXT_VARIANT (t);
1415 variants;
1416 variants = TYPE_NEXT_VARIANT (variants))
1417 {
1418 /* These fields are in the _TYPE part of the node, not in
1419 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1420 TYPE_HAS_CONSTRUCTOR (variants) = TYPE_HAS_CONSTRUCTOR (t);
1421 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1422 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1423 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1424
1425 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1426
1427 TYPE_BINFO (variants) = TYPE_BINFO (t);
1428
1429 /* Copy whatever these are holding today. */
1430 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1431 TYPE_METHODS (variants) = TYPE_METHODS (t);
1432 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1433 }
1434
1435 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1436 /* For a class w/o baseclasses, 'finish_struct' has set
1437 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1438 Similarly for a class whose base classes do not have vtables.
1439 When neither of these is true, we might have removed abstract
1440 virtuals (by providing a definition), added some (by declaring
1441 new ones), or redeclared ones from a base class. We need to
1442 recalculate what's really an abstract virtual at this point (by
1443 looking in the vtables). */
1444 get_pure_virtuals (t);
1445
1446 /* If this type has a copy constructor or a destructor, force its
1447 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1448 nonzero. This will cause it to be passed by invisible reference
1449 and prevent it from being returned in a register. */
1450 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1451 {
1452 tree variants;
1453 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1454 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1455 {
1456 TYPE_MODE (variants) = BLKmode;
1457 TREE_ADDRESSABLE (variants) = 1;
1458 }
1459 }
1460 }
1461
1462 /* Issue warnings about T having private constructors, but no friends,
1463 and so forth.
1464
1465 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1466 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1467 non-private static member functions. */
1468
1469 static void
1470 maybe_warn_about_overly_private_class (tree t)
1471 {
1472 int has_member_fn = 0;
1473 int has_nonprivate_method = 0;
1474 tree fn;
1475
1476 if (!warn_ctor_dtor_privacy
1477 /* If the class has friends, those entities might create and
1478 access instances, so we should not warn. */
1479 || (CLASSTYPE_FRIEND_CLASSES (t)
1480 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1481 /* We will have warned when the template was declared; there's
1482 no need to warn on every instantiation. */
1483 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1484 /* There's no reason to even consider warning about this
1485 class. */
1486 return;
1487
1488 /* We only issue one warning, if more than one applies, because
1489 otherwise, on code like:
1490
1491 class A {
1492 // Oops - forgot `public:'
1493 A();
1494 A(const A&);
1495 ~A();
1496 };
1497
1498 we warn several times about essentially the same problem. */
1499
1500 /* Check to see if all (non-constructor, non-destructor) member
1501 functions are private. (Since there are no friends or
1502 non-private statics, we can't ever call any of the private member
1503 functions.) */
1504 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1505 /* We're not interested in compiler-generated methods; they don't
1506 provide any way to call private members. */
1507 if (!DECL_ARTIFICIAL (fn))
1508 {
1509 if (!TREE_PRIVATE (fn))
1510 {
1511 if (DECL_STATIC_FUNCTION_P (fn))
1512 /* A non-private static member function is just like a
1513 friend; it can create and invoke private member
1514 functions, and be accessed without a class
1515 instance. */
1516 return;
1517
1518 has_nonprivate_method = 1;
1519 /* Keep searching for a static member function. */
1520 }
1521 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1522 has_member_fn = 1;
1523 }
1524
1525 if (!has_nonprivate_method && has_member_fn)
1526 {
1527 /* There are no non-private methods, and there's at least one
1528 private member function that isn't a constructor or
1529 destructor. (If all the private members are
1530 constructors/destructors we want to use the code below that
1531 issues error messages specifically referring to
1532 constructors/destructors.) */
1533 unsigned i;
1534 tree binfo = TYPE_BINFO (t);
1535
1536 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1537 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1538 {
1539 has_nonprivate_method = 1;
1540 break;
1541 }
1542 if (!has_nonprivate_method)
1543 {
1544 warning (OPT_Wctor_dtor_privacy,
1545 "all member functions in class %qT are private", t);
1546 return;
1547 }
1548 }
1549
1550 /* Even if some of the member functions are non-private, the class
1551 won't be useful for much if all the constructors or destructors
1552 are private: such an object can never be created or destroyed. */
1553 fn = CLASSTYPE_DESTRUCTORS (t);
1554 if (fn && TREE_PRIVATE (fn))
1555 {
1556 warning (OPT_Wctor_dtor_privacy,
1557 "%q#T only defines a private destructor and has no friends",
1558 t);
1559 return;
1560 }
1561
1562 if (TYPE_HAS_CONSTRUCTOR (t)
1563 /* Implicitly generated constructors are always public. */
1564 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1565 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1566 {
1567 int nonprivate_ctor = 0;
1568
1569 /* If a non-template class does not define a copy
1570 constructor, one is defined for it, enabling it to avoid
1571 this warning. For a template class, this does not
1572 happen, and so we would normally get a warning on:
1573
1574 template <class T> class C { private: C(); };
1575
1576 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1577 complete non-template or fully instantiated classes have this
1578 flag set. */
1579 if (!TYPE_HAS_INIT_REF (t))
1580 nonprivate_ctor = 1;
1581 else
1582 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1583 {
1584 tree ctor = OVL_CURRENT (fn);
1585 /* Ideally, we wouldn't count copy constructors (or, in
1586 fact, any constructor that takes an argument of the
1587 class type as a parameter) because such things cannot
1588 be used to construct an instance of the class unless
1589 you already have one. But, for now at least, we're
1590 more generous. */
1591 if (! TREE_PRIVATE (ctor))
1592 {
1593 nonprivate_ctor = 1;
1594 break;
1595 }
1596 }
1597
1598 if (nonprivate_ctor == 0)
1599 {
1600 warning (OPT_Wctor_dtor_privacy,
1601 "%q#T only defines private constructors and has no friends",
1602 t);
1603 return;
1604 }
1605 }
1606 }
1607
1608 static struct {
1609 gt_pointer_operator new_value;
1610 void *cookie;
1611 } resort_data;
1612
1613 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1614
1615 static int
1616 method_name_cmp (const void* m1_p, const void* m2_p)
1617 {
1618 const tree *const m1 = (const tree *) m1_p;
1619 const tree *const m2 = (const tree *) m2_p;
1620
1621 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1622 return 0;
1623 if (*m1 == NULL_TREE)
1624 return -1;
1625 if (*m2 == NULL_TREE)
1626 return 1;
1627 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1628 return -1;
1629 return 1;
1630 }
1631
1632 /* This routine compares two fields like method_name_cmp but using the
1633 pointer operator in resort_field_decl_data. */
1634
1635 static int
1636 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1637 {
1638 const tree *const m1 = (const tree *) m1_p;
1639 const tree *const m2 = (const tree *) m2_p;
1640 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1641 return 0;
1642 if (*m1 == NULL_TREE)
1643 return -1;
1644 if (*m2 == NULL_TREE)
1645 return 1;
1646 {
1647 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1648 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1649 resort_data.new_value (&d1, resort_data.cookie);
1650 resort_data.new_value (&d2, resort_data.cookie);
1651 if (d1 < d2)
1652 return -1;
1653 }
1654 return 1;
1655 }
1656
1657 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1658
1659 void
1660 resort_type_method_vec (void* obj,
1661 void* orig_obj ATTRIBUTE_UNUSED ,
1662 gt_pointer_operator new_value,
1663 void* cookie)
1664 {
1665 VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
1666 int len = VEC_length (tree, method_vec);
1667 size_t slot;
1668 tree fn;
1669
1670 /* The type conversion ops have to live at the front of the vec, so we
1671 can't sort them. */
1672 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1673 VEC_iterate (tree, method_vec, slot, fn);
1674 ++slot)
1675 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1676 break;
1677
1678 if (len - slot > 1)
1679 {
1680 resort_data.new_value = new_value;
1681 resort_data.cookie = cookie;
1682 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1683 resort_method_name_cmp);
1684 }
1685 }
1686
1687 /* Warn about duplicate methods in fn_fields.
1688
1689 Sort methods that are not special (i.e., constructors, destructors,
1690 and type conversion operators) so that we can find them faster in
1691 search. */
1692
1693 static void
1694 finish_struct_methods (tree t)
1695 {
1696 tree fn_fields;
1697 VEC(tree,gc) *method_vec;
1698 int slot, len;
1699
1700 method_vec = CLASSTYPE_METHOD_VEC (t);
1701 if (!method_vec)
1702 return;
1703
1704 len = VEC_length (tree, method_vec);
1705
1706 /* Clear DECL_IN_AGGR_P for all functions. */
1707 for (fn_fields = TYPE_METHODS (t); fn_fields;
1708 fn_fields = TREE_CHAIN (fn_fields))
1709 DECL_IN_AGGR_P (fn_fields) = 0;
1710
1711 /* Issue warnings about private constructors and such. If there are
1712 no methods, then some public defaults are generated. */
1713 maybe_warn_about_overly_private_class (t);
1714
1715 /* The type conversion ops have to live at the front of the vec, so we
1716 can't sort them. */
1717 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1718 VEC_iterate (tree, method_vec, slot, fn_fields);
1719 ++slot)
1720 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1721 break;
1722 if (len - slot > 1)
1723 qsort (VEC_address (tree, method_vec) + slot,
1724 len-slot, sizeof (tree), method_name_cmp);
1725 }
1726
1727 /* Make BINFO's vtable have N entries, including RTTI entries,
1728 vbase and vcall offsets, etc. Set its type and call the back end
1729 to lay it out. */
1730
1731 static void
1732 layout_vtable_decl (tree binfo, int n)
1733 {
1734 tree atype;
1735 tree vtable;
1736
1737 atype = build_cplus_array_type (vtable_entry_type,
1738 build_index_type (size_int (n - 1)));
1739 layout_type (atype);
1740
1741 /* We may have to grow the vtable. */
1742 vtable = get_vtbl_decl_for_binfo (binfo);
1743 if (!same_type_p (TREE_TYPE (vtable), atype))
1744 {
1745 TREE_TYPE (vtable) = atype;
1746 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1747 layout_decl (vtable, 0);
1748 }
1749 }
1750
1751 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1752 have the same signature. */
1753
1754 int
1755 same_signature_p (tree fndecl, tree base_fndecl)
1756 {
1757 /* One destructor overrides another if they are the same kind of
1758 destructor. */
1759 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1760 && special_function_p (base_fndecl) == special_function_p (fndecl))
1761 return 1;
1762 /* But a non-destructor never overrides a destructor, nor vice
1763 versa, nor do different kinds of destructors override
1764 one-another. For example, a complete object destructor does not
1765 override a deleting destructor. */
1766 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1767 return 0;
1768
1769 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1770 || (DECL_CONV_FN_P (fndecl)
1771 && DECL_CONV_FN_P (base_fndecl)
1772 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1773 DECL_CONV_FN_TYPE (base_fndecl))))
1774 {
1775 tree types, base_types;
1776 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1777 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1778 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1779 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1780 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1781 return 1;
1782 }
1783 return 0;
1784 }
1785
1786 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1787 subobject. */
1788
1789 static bool
1790 base_derived_from (tree derived, tree base)
1791 {
1792 tree probe;
1793
1794 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1795 {
1796 if (probe == derived)
1797 return true;
1798 else if (BINFO_VIRTUAL_P (probe))
1799 /* If we meet a virtual base, we can't follow the inheritance
1800 any more. See if the complete type of DERIVED contains
1801 such a virtual base. */
1802 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1803 != NULL_TREE);
1804 }
1805 return false;
1806 }
1807
1808 typedef struct find_final_overrider_data_s {
1809 /* The function for which we are trying to find a final overrider. */
1810 tree fn;
1811 /* The base class in which the function was declared. */
1812 tree declaring_base;
1813 /* The candidate overriders. */
1814 tree candidates;
1815 /* Path to most derived. */
1816 VEC(tree,heap) *path;
1817 } find_final_overrider_data;
1818
1819 /* Add the overrider along the current path to FFOD->CANDIDATES.
1820 Returns true if an overrider was found; false otherwise. */
1821
1822 static bool
1823 dfs_find_final_overrider_1 (tree binfo,
1824 find_final_overrider_data *ffod,
1825 unsigned depth)
1826 {
1827 tree method;
1828
1829 /* If BINFO is not the most derived type, try a more derived class.
1830 A definition there will overrider a definition here. */
1831 if (depth)
1832 {
1833 depth--;
1834 if (dfs_find_final_overrider_1
1835 (VEC_index (tree, ffod->path, depth), ffod, depth))
1836 return true;
1837 }
1838
1839 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1840 if (method)
1841 {
1842 tree *candidate = &ffod->candidates;
1843
1844 /* Remove any candidates overridden by this new function. */
1845 while (*candidate)
1846 {
1847 /* If *CANDIDATE overrides METHOD, then METHOD
1848 cannot override anything else on the list. */
1849 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1850 return true;
1851 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1852 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1853 *candidate = TREE_CHAIN (*candidate);
1854 else
1855 candidate = &TREE_CHAIN (*candidate);
1856 }
1857
1858 /* Add the new function. */
1859 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1860 return true;
1861 }
1862
1863 return false;
1864 }
1865
1866 /* Called from find_final_overrider via dfs_walk. */
1867
1868 static tree
1869 dfs_find_final_overrider_pre (tree binfo, void *data)
1870 {
1871 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1872
1873 if (binfo == ffod->declaring_base)
1874 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1875 VEC_safe_push (tree, heap, ffod->path, binfo);
1876
1877 return NULL_TREE;
1878 }
1879
1880 static tree
1881 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1882 {
1883 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1884 VEC_pop (tree, ffod->path);
1885
1886 return NULL_TREE;
1887 }
1888
1889 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1890 FN and whose TREE_VALUE is the binfo for the base where the
1891 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1892 DERIVED) is the base object in which FN is declared. */
1893
1894 static tree
1895 find_final_overrider (tree derived, tree binfo, tree fn)
1896 {
1897 find_final_overrider_data ffod;
1898
1899 /* Getting this right is a little tricky. This is valid:
1900
1901 struct S { virtual void f (); };
1902 struct T { virtual void f (); };
1903 struct U : public S, public T { };
1904
1905 even though calling `f' in `U' is ambiguous. But,
1906
1907 struct R { virtual void f(); };
1908 struct S : virtual public R { virtual void f (); };
1909 struct T : virtual public R { virtual void f (); };
1910 struct U : public S, public T { };
1911
1912 is not -- there's no way to decide whether to put `S::f' or
1913 `T::f' in the vtable for `R'.
1914
1915 The solution is to look at all paths to BINFO. If we find
1916 different overriders along any two, then there is a problem. */
1917 if (DECL_THUNK_P (fn))
1918 fn = THUNK_TARGET (fn);
1919
1920 /* Determine the depth of the hierarchy. */
1921 ffod.fn = fn;
1922 ffod.declaring_base = binfo;
1923 ffod.candidates = NULL_TREE;
1924 ffod.path = VEC_alloc (tree, heap, 30);
1925
1926 dfs_walk_all (derived, dfs_find_final_overrider_pre,
1927 dfs_find_final_overrider_post, &ffod);
1928
1929 VEC_free (tree, heap, ffod.path);
1930
1931 /* If there was no winner, issue an error message. */
1932 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
1933 return error_mark_node;
1934
1935 return ffod.candidates;
1936 }
1937
1938 /* Return the index of the vcall offset for FN when TYPE is used as a
1939 virtual base. */
1940
1941 static tree
1942 get_vcall_index (tree fn, tree type)
1943 {
1944 VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
1945 tree_pair_p p;
1946 unsigned ix;
1947
1948 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
1949 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
1950 || same_signature_p (fn, p->purpose))
1951 return p->value;
1952
1953 /* There should always be an appropriate index. */
1954 gcc_unreachable ();
1955 }
1956
1957 /* Update an entry in the vtable for BINFO, which is in the hierarchy
1958 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
1959 corresponding position in the BINFO_VIRTUALS list. */
1960
1961 static void
1962 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
1963 unsigned ix)
1964 {
1965 tree b;
1966 tree overrider;
1967 tree delta;
1968 tree virtual_base;
1969 tree first_defn;
1970 tree overrider_fn, overrider_target;
1971 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
1972 tree over_return, base_return;
1973 bool lost = false;
1974
1975 /* Find the nearest primary base (possibly binfo itself) which defines
1976 this function; this is the class the caller will convert to when
1977 calling FN through BINFO. */
1978 for (b = binfo; ; b = get_primary_binfo (b))
1979 {
1980 gcc_assert (b);
1981 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
1982 break;
1983
1984 /* The nearest definition is from a lost primary. */
1985 if (BINFO_LOST_PRIMARY_P (b))
1986 lost = true;
1987 }
1988 first_defn = b;
1989
1990 /* Find the final overrider. */
1991 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
1992 if (overrider == error_mark_node)
1993 {
1994 error ("no unique final overrider for %qD in %qT", target_fn, t);
1995 return;
1996 }
1997 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
1998
1999 /* Check for adjusting covariant return types. */
2000 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2001 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2002
2003 if (POINTER_TYPE_P (over_return)
2004 && TREE_CODE (over_return) == TREE_CODE (base_return)
2005 && CLASS_TYPE_P (TREE_TYPE (over_return))
2006 && CLASS_TYPE_P (TREE_TYPE (base_return))
2007 /* If the overrider is invalid, don't even try. */
2008 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2009 {
2010 /* If FN is a covariant thunk, we must figure out the adjustment
2011 to the final base FN was converting to. As OVERRIDER_TARGET might
2012 also be converting to the return type of FN, we have to
2013 combine the two conversions here. */
2014 tree fixed_offset, virtual_offset;
2015
2016 over_return = TREE_TYPE (over_return);
2017 base_return = TREE_TYPE (base_return);
2018
2019 if (DECL_THUNK_P (fn))
2020 {
2021 gcc_assert (DECL_RESULT_THUNK_P (fn));
2022 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2023 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2024 }
2025 else
2026 fixed_offset = virtual_offset = NULL_TREE;
2027
2028 if (virtual_offset)
2029 /* Find the equivalent binfo within the return type of the
2030 overriding function. We will want the vbase offset from
2031 there. */
2032 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2033 over_return);
2034 else if (!same_type_ignoring_top_level_qualifiers_p
2035 (over_return, base_return))
2036 {
2037 /* There was no existing virtual thunk (which takes
2038 precedence). So find the binfo of the base function's
2039 return type within the overriding function's return type.
2040 We cannot call lookup base here, because we're inside a
2041 dfs_walk, and will therefore clobber the BINFO_MARKED
2042 flags. Fortunately we know the covariancy is valid (it
2043 has already been checked), so we can just iterate along
2044 the binfos, which have been chained in inheritance graph
2045 order. Of course it is lame that we have to repeat the
2046 search here anyway -- we should really be caching pieces
2047 of the vtable and avoiding this repeated work. */
2048 tree thunk_binfo, base_binfo;
2049
2050 /* Find the base binfo within the overriding function's
2051 return type. We will always find a thunk_binfo, except
2052 when the covariancy is invalid (which we will have
2053 already diagnosed). */
2054 for (base_binfo = TYPE_BINFO (base_return),
2055 thunk_binfo = TYPE_BINFO (over_return);
2056 thunk_binfo;
2057 thunk_binfo = TREE_CHAIN (thunk_binfo))
2058 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2059 BINFO_TYPE (base_binfo)))
2060 break;
2061
2062 /* See if virtual inheritance is involved. */
2063 for (virtual_offset = thunk_binfo;
2064 virtual_offset;
2065 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2066 if (BINFO_VIRTUAL_P (virtual_offset))
2067 break;
2068
2069 if (virtual_offset
2070 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2071 {
2072 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2073
2074 if (virtual_offset)
2075 {
2076 /* We convert via virtual base. Adjust the fixed
2077 offset to be from there. */
2078 offset = size_diffop
2079 (offset, convert
2080 (ssizetype, BINFO_OFFSET (virtual_offset)));
2081 }
2082 if (fixed_offset)
2083 /* There was an existing fixed offset, this must be
2084 from the base just converted to, and the base the
2085 FN was thunking to. */
2086 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2087 else
2088 fixed_offset = offset;
2089 }
2090 }
2091
2092 if (fixed_offset || virtual_offset)
2093 /* Replace the overriding function with a covariant thunk. We
2094 will emit the overriding function in its own slot as
2095 well. */
2096 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2097 fixed_offset, virtual_offset);
2098 }
2099 else
2100 gcc_assert (!DECL_THUNK_P (fn));
2101
2102 /* Assume that we will produce a thunk that convert all the way to
2103 the final overrider, and not to an intermediate virtual base. */
2104 virtual_base = NULL_TREE;
2105
2106 /* See if we can convert to an intermediate virtual base first, and then
2107 use the vcall offset located there to finish the conversion. */
2108 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2109 {
2110 /* If we find the final overrider, then we can stop
2111 walking. */
2112 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2113 BINFO_TYPE (TREE_VALUE (overrider))))
2114 break;
2115
2116 /* If we find a virtual base, and we haven't yet found the
2117 overrider, then there is a virtual base between the
2118 declaring base (first_defn) and the final overrider. */
2119 if (BINFO_VIRTUAL_P (b))
2120 {
2121 virtual_base = b;
2122 break;
2123 }
2124 }
2125
2126 if (overrider_fn != overrider_target && !virtual_base)
2127 {
2128 /* The ABI specifies that a covariant thunk includes a mangling
2129 for a this pointer adjustment. This-adjusting thunks that
2130 override a function from a virtual base have a vcall
2131 adjustment. When the virtual base in question is a primary
2132 virtual base, we know the adjustments are zero, (and in the
2133 non-covariant case, we would not use the thunk).
2134 Unfortunately we didn't notice this could happen, when
2135 designing the ABI and so never mandated that such a covariant
2136 thunk should be emitted. Because we must use the ABI mandated
2137 name, we must continue searching from the binfo where we
2138 found the most recent definition of the function, towards the
2139 primary binfo which first introduced the function into the
2140 vtable. If that enters a virtual base, we must use a vcall
2141 this-adjusting thunk. Bleah! */
2142 tree probe = first_defn;
2143
2144 while ((probe = get_primary_binfo (probe))
2145 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2146 if (BINFO_VIRTUAL_P (probe))
2147 virtual_base = probe;
2148
2149 if (virtual_base)
2150 /* Even if we find a virtual base, the correct delta is
2151 between the overrider and the binfo we're building a vtable
2152 for. */
2153 goto virtual_covariant;
2154 }
2155
2156 /* Compute the constant adjustment to the `this' pointer. The
2157 `this' pointer, when this function is called, will point at BINFO
2158 (or one of its primary bases, which are at the same offset). */
2159 if (virtual_base)
2160 /* The `this' pointer needs to be adjusted from the declaration to
2161 the nearest virtual base. */
2162 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2163 convert (ssizetype, BINFO_OFFSET (first_defn)));
2164 else if (lost)
2165 /* If the nearest definition is in a lost primary, we don't need an
2166 entry in our vtable. Except possibly in a constructor vtable,
2167 if we happen to get our primary back. In that case, the offset
2168 will be zero, as it will be a primary base. */
2169 delta = size_zero_node;
2170 else
2171 /* The `this' pointer needs to be adjusted from pointing to
2172 BINFO to pointing at the base where the final overrider
2173 appears. */
2174 virtual_covariant:
2175 delta = size_diffop (convert (ssizetype,
2176 BINFO_OFFSET (TREE_VALUE (overrider))),
2177 convert (ssizetype, BINFO_OFFSET (binfo)));
2178
2179 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2180
2181 if (virtual_base)
2182 BV_VCALL_INDEX (*virtuals)
2183 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2184 else
2185 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2186 }
2187
2188 /* Called from modify_all_vtables via dfs_walk. */
2189
2190 static tree
2191 dfs_modify_vtables (tree binfo, void* data)
2192 {
2193 tree t = (tree) data;
2194 tree virtuals;
2195 tree old_virtuals;
2196 unsigned ix;
2197
2198 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2199 /* A base without a vtable needs no modification, and its bases
2200 are uninteresting. */
2201 return dfs_skip_bases;
2202
2203 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2204 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2205 /* Don't do the primary vtable, if it's new. */
2206 return NULL_TREE;
2207
2208 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2209 /* There's no need to modify the vtable for a non-virtual primary
2210 base; we're not going to use that vtable anyhow. We do still
2211 need to do this for virtual primary bases, as they could become
2212 non-primary in a construction vtable. */
2213 return NULL_TREE;
2214
2215 make_new_vtable (t, binfo);
2216
2217 /* Now, go through each of the virtual functions in the virtual
2218 function table for BINFO. Find the final overrider, and update
2219 the BINFO_VIRTUALS list appropriately. */
2220 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2221 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2222 virtuals;
2223 ix++, virtuals = TREE_CHAIN (virtuals),
2224 old_virtuals = TREE_CHAIN (old_virtuals))
2225 update_vtable_entry_for_fn (t,
2226 binfo,
2227 BV_FN (old_virtuals),
2228 &virtuals, ix);
2229
2230 return NULL_TREE;
2231 }
2232
2233 /* Update all of the primary and secondary vtables for T. Create new
2234 vtables as required, and initialize their RTTI information. Each
2235 of the functions in VIRTUALS is declared in T and may override a
2236 virtual function from a base class; find and modify the appropriate
2237 entries to point to the overriding functions. Returns a list, in
2238 declaration order, of the virtual functions that are declared in T,
2239 but do not appear in the primary base class vtable, and which
2240 should therefore be appended to the end of the vtable for T. */
2241
2242 static tree
2243 modify_all_vtables (tree t, tree virtuals)
2244 {
2245 tree binfo = TYPE_BINFO (t);
2246 tree *fnsp;
2247
2248 /* Update all of the vtables. */
2249 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2250
2251 /* Add virtual functions not already in our primary vtable. These
2252 will be both those introduced by this class, and those overridden
2253 from secondary bases. It does not include virtuals merely
2254 inherited from secondary bases. */
2255 for (fnsp = &virtuals; *fnsp; )
2256 {
2257 tree fn = TREE_VALUE (*fnsp);
2258
2259 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2260 || DECL_VINDEX (fn) == error_mark_node)
2261 {
2262 /* We don't need to adjust the `this' pointer when
2263 calling this function. */
2264 BV_DELTA (*fnsp) = integer_zero_node;
2265 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2266
2267 /* This is a function not already in our vtable. Keep it. */
2268 fnsp = &TREE_CHAIN (*fnsp);
2269 }
2270 else
2271 /* We've already got an entry for this function. Skip it. */
2272 *fnsp = TREE_CHAIN (*fnsp);
2273 }
2274
2275 return virtuals;
2276 }
2277
2278 /* Get the base virtual function declarations in T that have the
2279 indicated NAME. */
2280
2281 static tree
2282 get_basefndecls (tree name, tree t)
2283 {
2284 tree methods;
2285 tree base_fndecls = NULL_TREE;
2286 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2287 int i;
2288
2289 /* Find virtual functions in T with the indicated NAME. */
2290 i = lookup_fnfields_1 (t, name);
2291 if (i != -1)
2292 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2293 methods;
2294 methods = OVL_NEXT (methods))
2295 {
2296 tree method = OVL_CURRENT (methods);
2297
2298 if (TREE_CODE (method) == FUNCTION_DECL
2299 && DECL_VINDEX (method))
2300 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2301 }
2302
2303 if (base_fndecls)
2304 return base_fndecls;
2305
2306 for (i = 0; i < n_baseclasses; i++)
2307 {
2308 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2309 base_fndecls = chainon (get_basefndecls (name, basetype),
2310 base_fndecls);
2311 }
2312
2313 return base_fndecls;
2314 }
2315
2316 /* If this declaration supersedes the declaration of
2317 a method declared virtual in the base class, then
2318 mark this field as being virtual as well. */
2319
2320 void
2321 check_for_override (tree decl, tree ctype)
2322 {
2323 if (TREE_CODE (decl) == TEMPLATE_DECL)
2324 /* In [temp.mem] we have:
2325
2326 A specialization of a member function template does not
2327 override a virtual function from a base class. */
2328 return;
2329 if ((DECL_DESTRUCTOR_P (decl)
2330 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2331 || DECL_CONV_FN_P (decl))
2332 && look_for_overrides (ctype, decl)
2333 && !DECL_STATIC_FUNCTION_P (decl))
2334 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2335 the error_mark_node so that we know it is an overriding
2336 function. */
2337 DECL_VINDEX (decl) = decl;
2338
2339 if (DECL_VIRTUAL_P (decl))
2340 {
2341 if (!DECL_VINDEX (decl))
2342 DECL_VINDEX (decl) = error_mark_node;
2343 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2344 if (DECL_DLLIMPORT_P (decl))
2345 {
2346 /* When we handled the dllimport attribute we may not have known
2347 that this function is virtual We can't use dllimport
2348 semantics for a virtual method because we need to initialize
2349 the vtable entry with a constant address. */
2350 DECL_DLLIMPORT_P (decl) = 0;
2351 DECL_ATTRIBUTES (decl)
2352 = remove_attribute ("dllimport", DECL_ATTRIBUTES (decl));
2353 }
2354 }
2355 }
2356
2357 /* Warn about hidden virtual functions that are not overridden in t.
2358 We know that constructors and destructors don't apply. */
2359
2360 static void
2361 warn_hidden (tree t)
2362 {
2363 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
2364 tree fns;
2365 size_t i;
2366
2367 /* We go through each separately named virtual function. */
2368 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2369 VEC_iterate (tree, method_vec, i, fns);
2370 ++i)
2371 {
2372 tree fn;
2373 tree name;
2374 tree fndecl;
2375 tree base_fndecls;
2376 tree base_binfo;
2377 tree binfo;
2378 int j;
2379
2380 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2381 have the same name. Figure out what name that is. */
2382 name = DECL_NAME (OVL_CURRENT (fns));
2383 /* There are no possibly hidden functions yet. */
2384 base_fndecls = NULL_TREE;
2385 /* Iterate through all of the base classes looking for possibly
2386 hidden functions. */
2387 for (binfo = TYPE_BINFO (t), j = 0;
2388 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2389 {
2390 tree basetype = BINFO_TYPE (base_binfo);
2391 base_fndecls = chainon (get_basefndecls (name, basetype),
2392 base_fndecls);
2393 }
2394
2395 /* If there are no functions to hide, continue. */
2396 if (!base_fndecls)
2397 continue;
2398
2399 /* Remove any overridden functions. */
2400 for (fn = fns; fn; fn = OVL_NEXT (fn))
2401 {
2402 fndecl = OVL_CURRENT (fn);
2403 if (DECL_VINDEX (fndecl))
2404 {
2405 tree *prev = &base_fndecls;
2406
2407 while (*prev)
2408 /* If the method from the base class has the same
2409 signature as the method from the derived class, it
2410 has been overridden. */
2411 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2412 *prev = TREE_CHAIN (*prev);
2413 else
2414 prev = &TREE_CHAIN (*prev);
2415 }
2416 }
2417
2418 /* Now give a warning for all base functions without overriders,
2419 as they are hidden. */
2420 while (base_fndecls)
2421 {
2422 /* Here we know it is a hider, and no overrider exists. */
2423 warning (0, "%q+D was hidden", TREE_VALUE (base_fndecls));
2424 warning (0, " by %q+D", fns);
2425 base_fndecls = TREE_CHAIN (base_fndecls);
2426 }
2427 }
2428 }
2429
2430 /* Check for things that are invalid. There are probably plenty of other
2431 things we should check for also. */
2432
2433 static void
2434 finish_struct_anon (tree t)
2435 {
2436 tree field;
2437
2438 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2439 {
2440 if (TREE_STATIC (field))
2441 continue;
2442 if (TREE_CODE (field) != FIELD_DECL)
2443 continue;
2444
2445 if (DECL_NAME (field) == NULL_TREE
2446 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2447 {
2448 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2449 for (; elt; elt = TREE_CHAIN (elt))
2450 {
2451 /* We're generally only interested in entities the user
2452 declared, but we also find nested classes by noticing
2453 the TYPE_DECL that we create implicitly. You're
2454 allowed to put one anonymous union inside another,
2455 though, so we explicitly tolerate that. We use
2456 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2457 we also allow unnamed types used for defining fields. */
2458 if (DECL_ARTIFICIAL (elt)
2459 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2460 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2461 continue;
2462
2463 if (TREE_CODE (elt) != FIELD_DECL)
2464 {
2465 pedwarn ("%q+#D invalid; an anonymous union can "
2466 "only have non-static data members", elt);
2467 continue;
2468 }
2469
2470 if (TREE_PRIVATE (elt))
2471 pedwarn ("private member %q+#D in anonymous union", elt);
2472 else if (TREE_PROTECTED (elt))
2473 pedwarn ("protected member %q+#D in anonymous union", elt);
2474
2475 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2476 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2477 }
2478 }
2479 }
2480 }
2481
2482 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2483 will be used later during class template instantiation.
2484 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2485 a non-static member data (FIELD_DECL), a member function
2486 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2487 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2488 When FRIEND_P is nonzero, T is either a friend class
2489 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2490 (FUNCTION_DECL, TEMPLATE_DECL). */
2491
2492 void
2493 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2494 {
2495 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2496 if (CLASSTYPE_TEMPLATE_INFO (type))
2497 CLASSTYPE_DECL_LIST (type)
2498 = tree_cons (friend_p ? NULL_TREE : type,
2499 t, CLASSTYPE_DECL_LIST (type));
2500 }
2501
2502 /* Create default constructors, assignment operators, and so forth for
2503 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2504 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2505 the class cannot have a default constructor, copy constructor
2506 taking a const reference argument, or an assignment operator taking
2507 a const reference, respectively. */
2508
2509 static void
2510 add_implicitly_declared_members (tree t,
2511 int cant_have_const_cctor,
2512 int cant_have_const_assignment)
2513 {
2514 /* Destructor. */
2515 if (!CLASSTYPE_DESTRUCTORS (t))
2516 {
2517 /* In general, we create destructors lazily. */
2518 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2519 /* However, if the implicit destructor is non-trivial
2520 destructor, we sometimes have to create it at this point. */
2521 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2522 {
2523 bool lazy_p = true;
2524
2525 if (TYPE_FOR_JAVA (t))
2526 /* If this a Java class, any non-trivial destructor is
2527 invalid, even if compiler-generated. Therefore, if the
2528 destructor is non-trivial we create it now. */
2529 lazy_p = false;
2530 else
2531 {
2532 tree binfo;
2533 tree base_binfo;
2534 int ix;
2535
2536 /* If the implicit destructor will be virtual, then we must
2537 generate it now because (unfortunately) we do not
2538 generate virtual tables lazily. */
2539 binfo = TYPE_BINFO (t);
2540 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2541 {
2542 tree base_type;
2543 tree dtor;
2544
2545 base_type = BINFO_TYPE (base_binfo);
2546 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2547 if (dtor && DECL_VIRTUAL_P (dtor))
2548 {
2549 lazy_p = false;
2550 break;
2551 }
2552 }
2553 }
2554
2555 /* If we can't get away with being lazy, generate the destructor
2556 now. */
2557 if (!lazy_p)
2558 lazily_declare_fn (sfk_destructor, t);
2559 }
2560 }
2561
2562 /* Default constructor. */
2563 if (! TYPE_HAS_CONSTRUCTOR (t))
2564 {
2565 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2566 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2567 }
2568
2569 /* Copy constructor. */
2570 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2571 {
2572 TYPE_HAS_INIT_REF (t) = 1;
2573 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2574 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2575 TYPE_HAS_CONSTRUCTOR (t) = 1;
2576 }
2577
2578 /* If there is no assignment operator, one will be created if and
2579 when it is needed. For now, just record whether or not the type
2580 of the parameter to the assignment operator will be a const or
2581 non-const reference. */
2582 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2583 {
2584 TYPE_HAS_ASSIGN_REF (t) = 1;
2585 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2586 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2587 }
2588 }
2589
2590 /* Subroutine of finish_struct_1. Recursively count the number of fields
2591 in TYPE, including anonymous union members. */
2592
2593 static int
2594 count_fields (tree fields)
2595 {
2596 tree x;
2597 int n_fields = 0;
2598 for (x = fields; x; x = TREE_CHAIN (x))
2599 {
2600 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2601 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2602 else
2603 n_fields += 1;
2604 }
2605 return n_fields;
2606 }
2607
2608 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2609 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2610
2611 static int
2612 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2613 {
2614 tree x;
2615 for (x = fields; x; x = TREE_CHAIN (x))
2616 {
2617 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2618 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2619 else
2620 field_vec->elts[idx++] = x;
2621 }
2622 return idx;
2623 }
2624
2625 /* FIELD is a bit-field. We are finishing the processing for its
2626 enclosing type. Issue any appropriate messages and set appropriate
2627 flags. */
2628
2629 static void
2630 check_bitfield_decl (tree field)
2631 {
2632 tree type = TREE_TYPE (field);
2633 tree w;
2634
2635 /* Extract the declared width of the bitfield, which has been
2636 temporarily stashed in DECL_INITIAL. */
2637 w = DECL_INITIAL (field);
2638 gcc_assert (w != NULL_TREE);
2639 /* Remove the bit-field width indicator so that the rest of the
2640 compiler does not treat that value as an initializer. */
2641 DECL_INITIAL (field) = NULL_TREE;
2642
2643 /* Detect invalid bit-field type. */
2644 if (!INTEGRAL_TYPE_P (type))
2645 {
2646 error ("bit-field %q+#D with non-integral type", field);
2647 TREE_TYPE (field) = error_mark_node;
2648 w = error_mark_node;
2649 }
2650 else
2651 {
2652 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2653 STRIP_NOPS (w);
2654
2655 /* detect invalid field size. */
2656 w = integral_constant_value (w);
2657
2658 if (TREE_CODE (w) != INTEGER_CST)
2659 {
2660 error ("bit-field %q+D width not an integer constant", field);
2661 w = error_mark_node;
2662 }
2663 else if (tree_int_cst_sgn (w) < 0)
2664 {
2665 error ("negative width in bit-field %q+D", field);
2666 w = error_mark_node;
2667 }
2668 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2669 {
2670 error ("zero width for bit-field %q+D", field);
2671 w = error_mark_node;
2672 }
2673 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2674 && TREE_CODE (type) != ENUMERAL_TYPE
2675 && TREE_CODE (type) != BOOLEAN_TYPE)
2676 warning (0, "width of %q+D exceeds its type", field);
2677 else if (TREE_CODE (type) == ENUMERAL_TYPE
2678 && (0 > compare_tree_int (w,
2679 min_precision (TYPE_MIN_VALUE (type),
2680 TYPE_UNSIGNED (type)))
2681 || 0 > compare_tree_int (w,
2682 min_precision
2683 (TYPE_MAX_VALUE (type),
2684 TYPE_UNSIGNED (type)))))
2685 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
2686 }
2687
2688 if (w != error_mark_node)
2689 {
2690 DECL_SIZE (field) = convert (bitsizetype, w);
2691 DECL_BIT_FIELD (field) = 1;
2692 }
2693 else
2694 {
2695 /* Non-bit-fields are aligned for their type. */
2696 DECL_BIT_FIELD (field) = 0;
2697 CLEAR_DECL_C_BIT_FIELD (field);
2698 }
2699 }
2700
2701 /* FIELD is a non bit-field. We are finishing the processing for its
2702 enclosing type T. Issue any appropriate messages and set appropriate
2703 flags. */
2704
2705 static void
2706 check_field_decl (tree field,
2707 tree t,
2708 int* cant_have_const_ctor,
2709 int* no_const_asn_ref,
2710 int* any_default_members)
2711 {
2712 tree type = strip_array_types (TREE_TYPE (field));
2713
2714 /* An anonymous union cannot contain any fields which would change
2715 the settings of CANT_HAVE_CONST_CTOR and friends. */
2716 if (ANON_UNION_TYPE_P (type))
2717 ;
2718 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2719 structs. So, we recurse through their fields here. */
2720 else if (ANON_AGGR_TYPE_P (type))
2721 {
2722 tree fields;
2723
2724 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2725 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2726 check_field_decl (fields, t, cant_have_const_ctor,
2727 no_const_asn_ref, any_default_members);
2728 }
2729 /* Check members with class type for constructors, destructors,
2730 etc. */
2731 else if (CLASS_TYPE_P (type))
2732 {
2733 /* Never let anything with uninheritable virtuals
2734 make it through without complaint. */
2735 abstract_virtuals_error (field, type);
2736
2737 if (TREE_CODE (t) == UNION_TYPE)
2738 {
2739 if (TYPE_NEEDS_CONSTRUCTING (type))
2740 error ("member %q+#D with constructor not allowed in union",
2741 field);
2742 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2743 error ("member %q+#D with destructor not allowed in union", field);
2744 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2745 error ("member %q+#D with copy assignment operator not allowed in union",
2746 field);
2747 }
2748 else
2749 {
2750 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2751 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2752 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2753 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2754 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2755 }
2756
2757 if (!TYPE_HAS_CONST_INIT_REF (type))
2758 *cant_have_const_ctor = 1;
2759
2760 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2761 *no_const_asn_ref = 1;
2762 }
2763 if (DECL_INITIAL (field) != NULL_TREE)
2764 {
2765 /* `build_class_init_list' does not recognize
2766 non-FIELD_DECLs. */
2767 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2768 error ("multiple fields in union %qT initialized", t);
2769 *any_default_members = 1;
2770 }
2771 }
2772
2773 /* Check the data members (both static and non-static), class-scoped
2774 typedefs, etc., appearing in the declaration of T. Issue
2775 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2776 declaration order) of access declarations; each TREE_VALUE in this
2777 list is a USING_DECL.
2778
2779 In addition, set the following flags:
2780
2781 EMPTY_P
2782 The class is empty, i.e., contains no non-static data members.
2783
2784 CANT_HAVE_CONST_CTOR_P
2785 This class cannot have an implicitly generated copy constructor
2786 taking a const reference.
2787
2788 CANT_HAVE_CONST_ASN_REF
2789 This class cannot have an implicitly generated assignment
2790 operator taking a const reference.
2791
2792 All of these flags should be initialized before calling this
2793 function.
2794
2795 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2796 fields can be added by adding to this chain. */
2797
2798 static void
2799 check_field_decls (tree t, tree *access_decls,
2800 int *cant_have_const_ctor_p,
2801 int *no_const_asn_ref_p)
2802 {
2803 tree *field;
2804 tree *next;
2805 bool has_pointers;
2806 int any_default_members;
2807 int cant_pack = 0;
2808
2809 /* Assume there are no access declarations. */
2810 *access_decls = NULL_TREE;
2811 /* Assume this class has no pointer members. */
2812 has_pointers = false;
2813 /* Assume none of the members of this class have default
2814 initializations. */
2815 any_default_members = 0;
2816
2817 for (field = &TYPE_FIELDS (t); *field; field = next)
2818 {
2819 tree x = *field;
2820 tree type = TREE_TYPE (x);
2821
2822 next = &TREE_CHAIN (x);
2823
2824 if (TREE_CODE (x) == USING_DECL)
2825 {
2826 /* Prune the access declaration from the list of fields. */
2827 *field = TREE_CHAIN (x);
2828
2829 /* Save the access declarations for our caller. */
2830 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2831
2832 /* Since we've reset *FIELD there's no reason to skip to the
2833 next field. */
2834 next = field;
2835 continue;
2836 }
2837
2838 if (TREE_CODE (x) == TYPE_DECL
2839 || TREE_CODE (x) == TEMPLATE_DECL)
2840 continue;
2841
2842 /* If we've gotten this far, it's a data member, possibly static,
2843 or an enumerator. */
2844 DECL_CONTEXT (x) = t;
2845
2846 /* When this goes into scope, it will be a non-local reference. */
2847 DECL_NONLOCAL (x) = 1;
2848
2849 if (TREE_CODE (t) == UNION_TYPE)
2850 {
2851 /* [class.union]
2852
2853 If a union contains a static data member, or a member of
2854 reference type, the program is ill-formed. */
2855 if (TREE_CODE (x) == VAR_DECL)
2856 {
2857 error ("%q+D may not be static because it is a member of a union", x);
2858 continue;
2859 }
2860 if (TREE_CODE (type) == REFERENCE_TYPE)
2861 {
2862 error ("%q+D may not have reference type %qT because"
2863 " it is a member of a union",
2864 x, type);
2865 continue;
2866 }
2867 }
2868
2869 /* Perform error checking that did not get done in
2870 grokdeclarator. */
2871 if (TREE_CODE (type) == FUNCTION_TYPE)
2872 {
2873 error ("field %q+D invalidly declared function type", x);
2874 type = build_pointer_type (type);
2875 TREE_TYPE (x) = type;
2876 }
2877 else if (TREE_CODE (type) == METHOD_TYPE)
2878 {
2879 error ("field %q+D invalidly declared method type", x);
2880 type = build_pointer_type (type);
2881 TREE_TYPE (x) = type;
2882 }
2883
2884 if (type == error_mark_node)
2885 continue;
2886
2887 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
2888 continue;
2889
2890 /* Now it can only be a FIELD_DECL. */
2891
2892 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
2893 CLASSTYPE_NON_AGGREGATE (t) = 1;
2894
2895 /* If this is of reference type, check if it needs an init.
2896 Also do a little ANSI jig if necessary. */
2897 if (TREE_CODE (type) == REFERENCE_TYPE)
2898 {
2899 CLASSTYPE_NON_POD_P (t) = 1;
2900 if (DECL_INITIAL (x) == NULL_TREE)
2901 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2902
2903 /* ARM $12.6.2: [A member initializer list] (or, for an
2904 aggregate, initialization by a brace-enclosed list) is the
2905 only way to initialize nonstatic const and reference
2906 members. */
2907 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2908
2909 if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
2910 && extra_warnings)
2911 warning (OPT_Wextra, "non-static reference %q+#D in class without a constructor", x);
2912 }
2913
2914 type = strip_array_types (type);
2915
2916 if (TYPE_PACKED (t))
2917 {
2918 if (!pod_type_p (type) && !TYPE_PACKED (type))
2919 {
2920 warning
2921 (0,
2922 "ignoring packed attribute because of unpacked non-POD field %q+#D",
2923 x);
2924 cant_pack = 1;
2925 }
2926 else if (TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
2927 DECL_PACKED (x) = 1;
2928 }
2929
2930 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2931 /* We don't treat zero-width bitfields as making a class
2932 non-empty. */
2933 ;
2934 else
2935 {
2936 /* The class is non-empty. */
2937 CLASSTYPE_EMPTY_P (t) = 0;
2938 /* The class is not even nearly empty. */
2939 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
2940 /* If one of the data members contains an empty class,
2941 so does T. */
2942 if (CLASS_TYPE_P (type)
2943 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
2944 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
2945 }
2946
2947 /* This is used by -Weffc++ (see below). Warn only for pointers
2948 to members which might hold dynamic memory. So do not warn
2949 for pointers to functions or pointers to members. */
2950 if (TYPE_PTR_P (type)
2951 && !TYPE_PTRFN_P (type)
2952 && !TYPE_PTR_TO_MEMBER_P (type))
2953 has_pointers = true;
2954
2955 if (CLASS_TYPE_P (type))
2956 {
2957 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
2958 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2959 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
2960 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
2961 }
2962
2963 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
2964 CLASSTYPE_HAS_MUTABLE (t) = 1;
2965
2966 if (! pod_type_p (type))
2967 /* DR 148 now allows pointers to members (which are POD themselves),
2968 to be allowed in POD structs. */
2969 CLASSTYPE_NON_POD_P (t) = 1;
2970
2971 if (! zero_init_p (type))
2972 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
2973
2974 /* If any field is const, the structure type is pseudo-const. */
2975 if (CP_TYPE_CONST_P (type))
2976 {
2977 C_TYPE_FIELDS_READONLY (t) = 1;
2978 if (DECL_INITIAL (x) == NULL_TREE)
2979 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
2980
2981 /* ARM $12.6.2: [A member initializer list] (or, for an
2982 aggregate, initialization by a brace-enclosed list) is the
2983 only way to initialize nonstatic const and reference
2984 members. */
2985 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2986
2987 if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
2988 && extra_warnings)
2989 warning (OPT_Wextra, "non-static const member %q+#D in class without a constructor", x);
2990 }
2991 /* A field that is pseudo-const makes the structure likewise. */
2992 else if (CLASS_TYPE_P (type))
2993 {
2994 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
2995 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
2996 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
2997 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
2998 }
2999
3000 /* Core issue 80: A nonstatic data member is required to have a
3001 different name from the class iff the class has a
3002 user-defined constructor. */
3003 if (constructor_name_p (DECL_NAME (x), t) && TYPE_HAS_CONSTRUCTOR (t))
3004 pedwarn ("field %q+#D with same name as class", x);
3005
3006 /* We set DECL_C_BIT_FIELD in grokbitfield.
3007 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3008 if (DECL_C_BIT_FIELD (x))
3009 check_bitfield_decl (x);
3010 else
3011 check_field_decl (x, t,
3012 cant_have_const_ctor_p,
3013 no_const_asn_ref_p,
3014 &any_default_members);
3015 }
3016
3017 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3018 it should also define a copy constructor and an assignment operator to
3019 implement the correct copy semantic (deep vs shallow, etc.). As it is
3020 not feasible to check whether the constructors do allocate dynamic memory
3021 and store it within members, we approximate the warning like this:
3022
3023 -- Warn only if there are members which are pointers
3024 -- Warn only if there is a non-trivial constructor (otherwise,
3025 there cannot be memory allocated).
3026 -- Warn only if there is a non-trivial destructor. We assume that the
3027 user at least implemented the cleanup correctly, and a destructor
3028 is needed to free dynamic memory.
3029
3030 This seems enough for practical purposes. */
3031 if (warn_ecpp
3032 && has_pointers
3033 && TYPE_HAS_CONSTRUCTOR (t)
3034 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3035 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3036 {
3037 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3038
3039 if (! TYPE_HAS_INIT_REF (t))
3040 {
3041 warning (OPT_Weffc__,
3042 " but does not override %<%T(const %T&)%>", t, t);
3043 if (!TYPE_HAS_ASSIGN_REF (t))
3044 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3045 }
3046 else if (! TYPE_HAS_ASSIGN_REF (t))
3047 warning (OPT_Weffc__,
3048 " but does not override %<operator=(const %T&)%>", t);
3049 }
3050
3051 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3052 if (cant_pack)
3053 TYPE_PACKED (t) = 0;
3054
3055 /* Check anonymous struct/anonymous union fields. */
3056 finish_struct_anon (t);
3057
3058 /* We've built up the list of access declarations in reverse order.
3059 Fix that now. */
3060 *access_decls = nreverse (*access_decls);
3061 }
3062
3063 /* If TYPE is an empty class type, records its OFFSET in the table of
3064 OFFSETS. */
3065
3066 static int
3067 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3068 {
3069 splay_tree_node n;
3070
3071 if (!is_empty_class (type))
3072 return 0;
3073
3074 /* Record the location of this empty object in OFFSETS. */
3075 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3076 if (!n)
3077 n = splay_tree_insert (offsets,
3078 (splay_tree_key) offset,
3079 (splay_tree_value) NULL_TREE);
3080 n->value = ((splay_tree_value)
3081 tree_cons (NULL_TREE,
3082 type,
3083 (tree) n->value));
3084
3085 return 0;
3086 }
3087
3088 /* Returns nonzero if TYPE is an empty class type and there is
3089 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3090
3091 static int
3092 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3093 {
3094 splay_tree_node n;
3095 tree t;
3096
3097 if (!is_empty_class (type))
3098 return 0;
3099
3100 /* Record the location of this empty object in OFFSETS. */
3101 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3102 if (!n)
3103 return 0;
3104
3105 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3106 if (same_type_p (TREE_VALUE (t), type))
3107 return 1;
3108
3109 return 0;
3110 }
3111
3112 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3113 F for every subobject, passing it the type, offset, and table of
3114 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3115 be traversed.
3116
3117 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3118 than MAX_OFFSET will not be walked.
3119
3120 If F returns a nonzero value, the traversal ceases, and that value
3121 is returned. Otherwise, returns zero. */
3122
3123 static int
3124 walk_subobject_offsets (tree type,
3125 subobject_offset_fn f,
3126 tree offset,
3127 splay_tree offsets,
3128 tree max_offset,
3129 int vbases_p)
3130 {
3131 int r = 0;
3132 tree type_binfo = NULL_TREE;
3133
3134 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3135 stop. */
3136 if (max_offset && INT_CST_LT (max_offset, offset))
3137 return 0;
3138
3139 if (type == error_mark_node)
3140 return 0;
3141
3142 if (!TYPE_P (type))
3143 {
3144 if (abi_version_at_least (2))
3145 type_binfo = type;
3146 type = BINFO_TYPE (type);
3147 }
3148
3149 if (CLASS_TYPE_P (type))
3150 {
3151 tree field;
3152 tree binfo;
3153 int i;
3154
3155 /* Avoid recursing into objects that are not interesting. */
3156 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3157 return 0;
3158
3159 /* Record the location of TYPE. */
3160 r = (*f) (type, offset, offsets);
3161 if (r)
3162 return r;
3163
3164 /* Iterate through the direct base classes of TYPE. */
3165 if (!type_binfo)
3166 type_binfo = TYPE_BINFO (type);
3167 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3168 {
3169 tree binfo_offset;
3170
3171 if (abi_version_at_least (2)
3172 && BINFO_VIRTUAL_P (binfo))
3173 continue;
3174
3175 if (!vbases_p
3176 && BINFO_VIRTUAL_P (binfo)
3177 && !BINFO_PRIMARY_P (binfo))
3178 continue;
3179
3180 if (!abi_version_at_least (2))
3181 binfo_offset = size_binop (PLUS_EXPR,
3182 offset,
3183 BINFO_OFFSET (binfo));
3184 else
3185 {
3186 tree orig_binfo;
3187 /* We cannot rely on BINFO_OFFSET being set for the base
3188 class yet, but the offsets for direct non-virtual
3189 bases can be calculated by going back to the TYPE. */
3190 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3191 binfo_offset = size_binop (PLUS_EXPR,
3192 offset,
3193 BINFO_OFFSET (orig_binfo));
3194 }
3195
3196 r = walk_subobject_offsets (binfo,
3197 f,
3198 binfo_offset,
3199 offsets,
3200 max_offset,
3201 (abi_version_at_least (2)
3202 ? /*vbases_p=*/0 : vbases_p));
3203 if (r)
3204 return r;
3205 }
3206
3207 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3208 {
3209 unsigned ix;
3210 VEC(tree,gc) *vbases;
3211
3212 /* Iterate through the virtual base classes of TYPE. In G++
3213 3.2, we included virtual bases in the direct base class
3214 loop above, which results in incorrect results; the
3215 correct offsets for virtual bases are only known when
3216 working with the most derived type. */
3217 if (vbases_p)
3218 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3219 VEC_iterate (tree, vbases, ix, binfo); ix++)
3220 {
3221 r = walk_subobject_offsets (binfo,
3222 f,
3223 size_binop (PLUS_EXPR,
3224 offset,
3225 BINFO_OFFSET (binfo)),
3226 offsets,
3227 max_offset,
3228 /*vbases_p=*/0);
3229 if (r)
3230 return r;
3231 }
3232 else
3233 {
3234 /* We still have to walk the primary base, if it is
3235 virtual. (If it is non-virtual, then it was walked
3236 above.) */
3237 tree vbase = get_primary_binfo (type_binfo);
3238
3239 if (vbase && BINFO_VIRTUAL_P (vbase)
3240 && BINFO_PRIMARY_P (vbase)
3241 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3242 {
3243 r = (walk_subobject_offsets
3244 (vbase, f, offset,
3245 offsets, max_offset, /*vbases_p=*/0));
3246 if (r)
3247 return r;
3248 }
3249 }
3250 }
3251
3252 /* Iterate through the fields of TYPE. */
3253 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3254 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3255 {
3256 tree field_offset;
3257
3258 if (abi_version_at_least (2))
3259 field_offset = byte_position (field);
3260 else
3261 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3262 field_offset = DECL_FIELD_OFFSET (field);
3263
3264 r = walk_subobject_offsets (TREE_TYPE (field),
3265 f,
3266 size_binop (PLUS_EXPR,
3267 offset,
3268 field_offset),
3269 offsets,
3270 max_offset,
3271 /*vbases_p=*/1);
3272 if (r)
3273 return r;
3274 }
3275 }
3276 else if (TREE_CODE (type) == ARRAY_TYPE)
3277 {
3278 tree element_type = strip_array_types (type);
3279 tree domain = TYPE_DOMAIN (type);
3280 tree index;
3281
3282 /* Avoid recursing into objects that are not interesting. */
3283 if (!CLASS_TYPE_P (element_type)
3284 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3285 return 0;
3286
3287 /* Step through each of the elements in the array. */
3288 for (index = size_zero_node;
3289 /* G++ 3.2 had an off-by-one error here. */
3290 (abi_version_at_least (2)
3291 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3292 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3293 index = size_binop (PLUS_EXPR, index, size_one_node))
3294 {
3295 r = walk_subobject_offsets (TREE_TYPE (type),
3296 f,
3297 offset,
3298 offsets,
3299 max_offset,
3300 /*vbases_p=*/1);
3301 if (r)
3302 return r;
3303 offset = size_binop (PLUS_EXPR, offset,
3304 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3305 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3306 there's no point in iterating through the remaining
3307 elements of the array. */
3308 if (max_offset && INT_CST_LT (max_offset, offset))
3309 break;
3310 }
3311 }
3312
3313 return 0;
3314 }
3315
3316 /* Record all of the empty subobjects of TYPE (either a type or a
3317 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3318 is being placed at OFFSET; otherwise, it is a base class that is
3319 being placed at OFFSET. */
3320
3321 static void
3322 record_subobject_offsets (tree type,
3323 tree offset,
3324 splay_tree offsets,
3325 bool is_data_member)
3326 {
3327 tree max_offset;
3328 /* If recording subobjects for a non-static data member or a
3329 non-empty base class , we do not need to record offsets beyond
3330 the size of the biggest empty class. Additional data members
3331 will go at the end of the class. Additional base classes will go
3332 either at offset zero (if empty, in which case they cannot
3333 overlap with offsets past the size of the biggest empty class) or
3334 at the end of the class.
3335
3336 However, if we are placing an empty base class, then we must record
3337 all offsets, as either the empty class is at offset zero (where
3338 other empty classes might later be placed) or at the end of the
3339 class (where other objects might then be placed, so other empty
3340 subobjects might later overlap). */
3341 if (is_data_member
3342 || !is_empty_class (BINFO_TYPE (type)))
3343 max_offset = sizeof_biggest_empty_class;
3344 else
3345 max_offset = NULL_TREE;
3346 walk_subobject_offsets (type, record_subobject_offset, offset,
3347 offsets, max_offset, is_data_member);
3348 }
3349
3350 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3351 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3352 virtual bases of TYPE are examined. */
3353
3354 static int
3355 layout_conflict_p (tree type,
3356 tree offset,
3357 splay_tree offsets,
3358 int vbases_p)
3359 {
3360 splay_tree_node max_node;
3361
3362 /* Get the node in OFFSETS that indicates the maximum offset where
3363 an empty subobject is located. */
3364 max_node = splay_tree_max (offsets);
3365 /* If there aren't any empty subobjects, then there's no point in
3366 performing this check. */
3367 if (!max_node)
3368 return 0;
3369
3370 return walk_subobject_offsets (type, check_subobject_offset, offset,
3371 offsets, (tree) (max_node->key),
3372 vbases_p);
3373 }
3374
3375 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3376 non-static data member of the type indicated by RLI. BINFO is the
3377 binfo corresponding to the base subobject, OFFSETS maps offsets to
3378 types already located at those offsets. This function determines
3379 the position of the DECL. */
3380
3381 static void
3382 layout_nonempty_base_or_field (record_layout_info rli,
3383 tree decl,
3384 tree binfo,
3385 splay_tree offsets)
3386 {
3387 tree offset = NULL_TREE;
3388 bool field_p;
3389 tree type;
3390
3391 if (binfo)
3392 {
3393 /* For the purposes of determining layout conflicts, we want to
3394 use the class type of BINFO; TREE_TYPE (DECL) will be the
3395 CLASSTYPE_AS_BASE version, which does not contain entries for
3396 zero-sized bases. */
3397 type = TREE_TYPE (binfo);
3398 field_p = false;
3399 }
3400 else
3401 {
3402 type = TREE_TYPE (decl);
3403 field_p = true;
3404 }
3405
3406 /* Try to place the field. It may take more than one try if we have
3407 a hard time placing the field without putting two objects of the
3408 same type at the same address. */
3409 while (1)
3410 {
3411 struct record_layout_info_s old_rli = *rli;
3412
3413 /* Place this field. */
3414 place_field (rli, decl);
3415 offset = byte_position (decl);
3416
3417 /* We have to check to see whether or not there is already
3418 something of the same type at the offset we're about to use.
3419 For example, consider:
3420
3421 struct S {};
3422 struct T : public S { int i; };
3423 struct U : public S, public T {};
3424
3425 Here, we put S at offset zero in U. Then, we can't put T at
3426 offset zero -- its S component would be at the same address
3427 as the S we already allocated. So, we have to skip ahead.
3428 Since all data members, including those whose type is an
3429 empty class, have nonzero size, any overlap can happen only
3430 with a direct or indirect base-class -- it can't happen with
3431 a data member. */
3432 /* In a union, overlap is permitted; all members are placed at
3433 offset zero. */
3434 if (TREE_CODE (rli->t) == UNION_TYPE)
3435 break;
3436 /* G++ 3.2 did not check for overlaps when placing a non-empty
3437 virtual base. */
3438 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3439 break;
3440 if (layout_conflict_p (field_p ? type : binfo, offset,
3441 offsets, field_p))
3442 {
3443 /* Strip off the size allocated to this field. That puts us
3444 at the first place we could have put the field with
3445 proper alignment. */
3446 *rli = old_rli;
3447
3448 /* Bump up by the alignment required for the type. */
3449 rli->bitpos
3450 = size_binop (PLUS_EXPR, rli->bitpos,
3451 bitsize_int (binfo
3452 ? CLASSTYPE_ALIGN (type)
3453 : TYPE_ALIGN (type)));
3454 normalize_rli (rli);
3455 }
3456 else
3457 /* There was no conflict. We're done laying out this field. */
3458 break;
3459 }
3460
3461 /* Now that we know where it will be placed, update its
3462 BINFO_OFFSET. */
3463 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3464 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3465 this point because their BINFO_OFFSET is copied from another
3466 hierarchy. Therefore, we may not need to add the entire
3467 OFFSET. */
3468 propagate_binfo_offsets (binfo,
3469 size_diffop (convert (ssizetype, offset),
3470 convert (ssizetype,
3471 BINFO_OFFSET (binfo))));
3472 }
3473
3474 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3475
3476 static int
3477 empty_base_at_nonzero_offset_p (tree type,
3478 tree offset,
3479 splay_tree offsets ATTRIBUTE_UNUSED)
3480 {
3481 return is_empty_class (type) && !integer_zerop (offset);
3482 }
3483
3484 /* Layout the empty base BINFO. EOC indicates the byte currently just
3485 past the end of the class, and should be correctly aligned for a
3486 class of the type indicated by BINFO; OFFSETS gives the offsets of
3487 the empty bases allocated so far. T is the most derived
3488 type. Return nonzero iff we added it at the end. */
3489
3490 static bool
3491 layout_empty_base (tree binfo, tree eoc, splay_tree offsets)
3492 {
3493 tree alignment;
3494 tree basetype = BINFO_TYPE (binfo);
3495 bool atend = false;
3496
3497 /* This routine should only be used for empty classes. */
3498 gcc_assert (is_empty_class (basetype));
3499 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3500
3501 if (!integer_zerop (BINFO_OFFSET (binfo)))
3502 {
3503 if (abi_version_at_least (2))
3504 propagate_binfo_offsets
3505 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3506 else
3507 warning (OPT_Wabi,
3508 "offset of empty base %qT may not be ABI-compliant and may"
3509 "change in a future version of GCC",
3510 BINFO_TYPE (binfo));
3511 }
3512
3513 /* This is an empty base class. We first try to put it at offset
3514 zero. */
3515 if (layout_conflict_p (binfo,
3516 BINFO_OFFSET (binfo),
3517 offsets,
3518 /*vbases_p=*/0))
3519 {
3520 /* That didn't work. Now, we move forward from the next
3521 available spot in the class. */
3522 atend = true;
3523 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3524 while (1)
3525 {
3526 if (!layout_conflict_p (binfo,
3527 BINFO_OFFSET (binfo),
3528 offsets,
3529 /*vbases_p=*/0))
3530 /* We finally found a spot where there's no overlap. */
3531 break;
3532
3533 /* There's overlap here, too. Bump along to the next spot. */
3534 propagate_binfo_offsets (binfo, alignment);
3535 }
3536 }
3537 return atend;
3538 }
3539
3540 /* Layout the base given by BINFO in the class indicated by RLI.
3541 *BASE_ALIGN is a running maximum of the alignments of
3542 any base class. OFFSETS gives the location of empty base
3543 subobjects. T is the most derived type. Return nonzero if the new
3544 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3545 *NEXT_FIELD, unless BINFO is for an empty base class.
3546
3547 Returns the location at which the next field should be inserted. */
3548
3549 static tree *
3550 build_base_field (record_layout_info rli, tree binfo,
3551 splay_tree offsets, tree *next_field)
3552 {
3553 tree t = rli->t;
3554 tree basetype = BINFO_TYPE (binfo);
3555
3556 if (!COMPLETE_TYPE_P (basetype))
3557 /* This error is now reported in xref_tag, thus giving better
3558 location information. */
3559 return next_field;
3560
3561 /* Place the base class. */
3562 if (!is_empty_class (basetype))
3563 {
3564 tree decl;
3565
3566 /* The containing class is non-empty because it has a non-empty
3567 base class. */
3568 CLASSTYPE_EMPTY_P (t) = 0;
3569
3570 /* Create the FIELD_DECL. */
3571 decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3572 DECL_ARTIFICIAL (decl) = 1;
3573 DECL_IGNORED_P (decl) = 1;
3574 DECL_FIELD_CONTEXT (decl) = t;
3575 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3576 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3577 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3578 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3579 DECL_MODE (decl) = TYPE_MODE (basetype);
3580 DECL_FIELD_IS_BASE (decl) = 1;
3581
3582 /* Try to place the field. It may take more than one try if we
3583 have a hard time placing the field without putting two
3584 objects of the same type at the same address. */
3585 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3586 /* Add the new FIELD_DECL to the list of fields for T. */
3587 TREE_CHAIN (decl) = *next_field;
3588 *next_field = decl;
3589 next_field = &TREE_CHAIN (decl);
3590 }
3591 else
3592 {
3593 tree eoc;
3594 bool atend;
3595
3596 /* On some platforms (ARM), even empty classes will not be
3597 byte-aligned. */
3598 eoc = round_up (rli_size_unit_so_far (rli),
3599 CLASSTYPE_ALIGN_UNIT (basetype));
3600 atend = layout_empty_base (binfo, eoc, offsets);
3601 /* A nearly-empty class "has no proper base class that is empty,
3602 not morally virtual, and at an offset other than zero." */
3603 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3604 {
3605 if (atend)
3606 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3607 /* The check above (used in G++ 3.2) is insufficient because
3608 an empty class placed at offset zero might itself have an
3609 empty base at a nonzero offset. */
3610 else if (walk_subobject_offsets (basetype,
3611 empty_base_at_nonzero_offset_p,
3612 size_zero_node,
3613 /*offsets=*/NULL,
3614 /*max_offset=*/NULL_TREE,
3615 /*vbases_p=*/true))
3616 {
3617 if (abi_version_at_least (2))
3618 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3619 else
3620 warning (OPT_Wabi,
3621 "class %qT will be considered nearly empty in a "
3622 "future version of GCC", t);
3623 }
3624 }
3625
3626 /* We do not create a FIELD_DECL for empty base classes because
3627 it might overlap some other field. We want to be able to
3628 create CONSTRUCTORs for the class by iterating over the
3629 FIELD_DECLs, and the back end does not handle overlapping
3630 FIELD_DECLs. */
3631
3632 /* An empty virtual base causes a class to be non-empty
3633 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3634 here because that was already done when the virtual table
3635 pointer was created. */
3636 }
3637
3638 /* Record the offsets of BINFO and its base subobjects. */
3639 record_subobject_offsets (binfo,
3640 BINFO_OFFSET (binfo),
3641 offsets,
3642 /*is_data_member=*/false);
3643
3644 return next_field;
3645 }
3646
3647 /* Layout all of the non-virtual base classes. Record empty
3648 subobjects in OFFSETS. T is the most derived type. Return nonzero
3649 if the type cannot be nearly empty. The fields created
3650 corresponding to the base classes will be inserted at
3651 *NEXT_FIELD. */
3652
3653 static void
3654 build_base_fields (record_layout_info rli,
3655 splay_tree offsets, tree *next_field)
3656 {
3657 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3658 subobjects. */
3659 tree t = rli->t;
3660 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3661 int i;
3662
3663 /* The primary base class is always allocated first. */
3664 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3665 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3666 offsets, next_field);
3667
3668 /* Now allocate the rest of the bases. */
3669 for (i = 0; i < n_baseclasses; ++i)
3670 {
3671 tree base_binfo;
3672
3673 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3674
3675 /* The primary base was already allocated above, so we don't
3676 need to allocate it again here. */
3677 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3678 continue;
3679
3680 /* Virtual bases are added at the end (a primary virtual base
3681 will have already been added). */
3682 if (BINFO_VIRTUAL_P (base_binfo))
3683 continue;
3684
3685 next_field = build_base_field (rli, base_binfo,
3686 offsets, next_field);
3687 }
3688 }
3689
3690 /* Go through the TYPE_METHODS of T issuing any appropriate
3691 diagnostics, figuring out which methods override which other
3692 methods, and so forth. */
3693
3694 static void
3695 check_methods (tree t)
3696 {
3697 tree x;
3698
3699 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3700 {
3701 check_for_override (x, t);
3702 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3703 error ("initializer specified for non-virtual method %q+D", x);
3704 /* The name of the field is the original field name
3705 Save this in auxiliary field for later overloading. */
3706 if (DECL_VINDEX (x))
3707 {
3708 TYPE_POLYMORPHIC_P (t) = 1;
3709 if (DECL_PURE_VIRTUAL_P (x))
3710 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
3711 }
3712 /* All user-declared destructors are non-trivial. */
3713 if (DECL_DESTRUCTOR_P (x))
3714 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3715 }
3716 }
3717
3718 /* FN is a constructor or destructor. Clone the declaration to create
3719 a specialized in-charge or not-in-charge version, as indicated by
3720 NAME. */
3721
3722 static tree
3723 build_clone (tree fn, tree name)
3724 {
3725 tree parms;
3726 tree clone;
3727
3728 /* Copy the function. */
3729 clone = copy_decl (fn);
3730 /* Remember where this function came from. */
3731 DECL_CLONED_FUNCTION (clone) = fn;
3732 DECL_ABSTRACT_ORIGIN (clone) = fn;
3733 /* Reset the function name. */
3734 DECL_NAME (clone) = name;
3735 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3736 /* There's no pending inline data for this function. */
3737 DECL_PENDING_INLINE_INFO (clone) = NULL;
3738 DECL_PENDING_INLINE_P (clone) = 0;
3739 /* And it hasn't yet been deferred. */
3740 DECL_DEFERRED_FN (clone) = 0;
3741
3742 /* The base-class destructor is not virtual. */
3743 if (name == base_dtor_identifier)
3744 {
3745 DECL_VIRTUAL_P (clone) = 0;
3746 if (TREE_CODE (clone) != TEMPLATE_DECL)
3747 DECL_VINDEX (clone) = NULL_TREE;
3748 }
3749
3750 /* If there was an in-charge parameter, drop it from the function
3751 type. */
3752 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3753 {
3754 tree basetype;
3755 tree parmtypes;
3756 tree exceptions;
3757
3758 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3759 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3760 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3761 /* Skip the `this' parameter. */
3762 parmtypes = TREE_CHAIN (parmtypes);
3763 /* Skip the in-charge parameter. */
3764 parmtypes = TREE_CHAIN (parmtypes);
3765 /* And the VTT parm, in a complete [cd]tor. */
3766 if (DECL_HAS_VTT_PARM_P (fn)
3767 && ! DECL_NEEDS_VTT_PARM_P (clone))
3768 parmtypes = TREE_CHAIN (parmtypes);
3769 /* If this is subobject constructor or destructor, add the vtt
3770 parameter. */
3771 TREE_TYPE (clone)
3772 = build_method_type_directly (basetype,
3773 TREE_TYPE (TREE_TYPE (clone)),
3774 parmtypes);
3775 if (exceptions)
3776 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3777 exceptions);
3778 TREE_TYPE (clone)
3779 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3780 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3781 }
3782
3783 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3784 aren't function parameters; those are the template parameters. */
3785 if (TREE_CODE (clone) != TEMPLATE_DECL)
3786 {
3787 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3788 /* Remove the in-charge parameter. */
3789 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3790 {
3791 TREE_CHAIN (DECL_ARGUMENTS (clone))
3792 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3793 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3794 }
3795 /* And the VTT parm, in a complete [cd]tor. */
3796 if (DECL_HAS_VTT_PARM_P (fn))
3797 {
3798 if (DECL_NEEDS_VTT_PARM_P (clone))
3799 DECL_HAS_VTT_PARM_P (clone) = 1;
3800 else
3801 {
3802 TREE_CHAIN (DECL_ARGUMENTS (clone))
3803 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3804 DECL_HAS_VTT_PARM_P (clone) = 0;
3805 }
3806 }
3807
3808 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3809 {
3810 DECL_CONTEXT (parms) = clone;
3811 cxx_dup_lang_specific_decl (parms);
3812 }
3813 }
3814
3815 /* Create the RTL for this function. */
3816 SET_DECL_RTL (clone, NULL_RTX);
3817 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3818
3819 /* Make it easy to find the CLONE given the FN. */
3820 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3821 TREE_CHAIN (fn) = clone;
3822
3823 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3824 if (TREE_CODE (clone) == TEMPLATE_DECL)
3825 {
3826 tree result;
3827
3828 DECL_TEMPLATE_RESULT (clone)
3829 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3830 result = DECL_TEMPLATE_RESULT (clone);
3831 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3832 DECL_TI_TEMPLATE (result) = clone;
3833 }
3834 else if (pch_file)
3835 note_decl_for_pch (clone);
3836
3837 return clone;
3838 }
3839
3840 /* Produce declarations for all appropriate clones of FN. If
3841 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3842 CLASTYPE_METHOD_VEC as well. */
3843
3844 void
3845 clone_function_decl (tree fn, int update_method_vec_p)
3846 {
3847 tree clone;
3848
3849 /* Avoid inappropriate cloning. */
3850 if (TREE_CHAIN (fn)
3851 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3852 return;
3853
3854 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3855 {
3856 /* For each constructor, we need two variants: an in-charge version
3857 and a not-in-charge version. */
3858 clone = build_clone (fn, complete_ctor_identifier);
3859 if (update_method_vec_p)
3860 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3861 clone = build_clone (fn, base_ctor_identifier);
3862 if (update_method_vec_p)
3863 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3864 }
3865 else
3866 {
3867 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
3868
3869 /* For each destructor, we need three variants: an in-charge
3870 version, a not-in-charge version, and an in-charge deleting
3871 version. We clone the deleting version first because that
3872 means it will go second on the TYPE_METHODS list -- and that
3873 corresponds to the correct layout order in the virtual
3874 function table.
3875
3876 For a non-virtual destructor, we do not build a deleting
3877 destructor. */
3878 if (DECL_VIRTUAL_P (fn))
3879 {
3880 clone = build_clone (fn, deleting_dtor_identifier);
3881 if (update_method_vec_p)
3882 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3883 }
3884 clone = build_clone (fn, complete_dtor_identifier);
3885 if (update_method_vec_p)
3886 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3887 clone = build_clone (fn, base_dtor_identifier);
3888 if (update_method_vec_p)
3889 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3890 }
3891
3892 /* Note that this is an abstract function that is never emitted. */
3893 DECL_ABSTRACT (fn) = 1;
3894 }
3895
3896 /* DECL is an in charge constructor, which is being defined. This will
3897 have had an in class declaration, from whence clones were
3898 declared. An out-of-class definition can specify additional default
3899 arguments. As it is the clones that are involved in overload
3900 resolution, we must propagate the information from the DECL to its
3901 clones. */
3902
3903 void
3904 adjust_clone_args (tree decl)
3905 {
3906 tree clone;
3907
3908 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3909 clone = TREE_CHAIN (clone))
3910 {
3911 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3912 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3913 tree decl_parms, clone_parms;
3914
3915 clone_parms = orig_clone_parms;
3916
3917 /* Skip the 'this' parameter. */
3918 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3919 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3920
3921 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3922 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3923 if (DECL_HAS_VTT_PARM_P (decl))
3924 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3925
3926 clone_parms = orig_clone_parms;
3927 if (DECL_HAS_VTT_PARM_P (clone))
3928 clone_parms = TREE_CHAIN (clone_parms);
3929
3930 for (decl_parms = orig_decl_parms; decl_parms;
3931 decl_parms = TREE_CHAIN (decl_parms),
3932 clone_parms = TREE_CHAIN (clone_parms))
3933 {
3934 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
3935 TREE_TYPE (clone_parms)));
3936
3937 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
3938 {
3939 /* A default parameter has been added. Adjust the
3940 clone's parameters. */
3941 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3942 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3943 tree type;
3944
3945 clone_parms = orig_decl_parms;
3946
3947 if (DECL_HAS_VTT_PARM_P (clone))
3948 {
3949 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
3950 TREE_VALUE (orig_clone_parms),
3951 clone_parms);
3952 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
3953 }
3954 type = build_method_type_directly (basetype,
3955 TREE_TYPE (TREE_TYPE (clone)),
3956 clone_parms);
3957 if (exceptions)
3958 type = build_exception_variant (type, exceptions);
3959 TREE_TYPE (clone) = type;
3960
3961 clone_parms = NULL_TREE;
3962 break;
3963 }
3964 }
3965 gcc_assert (!clone_parms);
3966 }
3967 }
3968
3969 /* For each of the constructors and destructors in T, create an
3970 in-charge and not-in-charge variant. */
3971
3972 static void
3973 clone_constructors_and_destructors (tree t)
3974 {
3975 tree fns;
3976
3977 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
3978 out now. */
3979 if (!CLASSTYPE_METHOD_VEC (t))
3980 return;
3981
3982 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
3983 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
3984 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
3985 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
3986 }
3987
3988 /* Remove all zero-width bit-fields from T. */
3989
3990 static void
3991 remove_zero_width_bit_fields (tree t)
3992 {
3993 tree *fieldsp;
3994
3995 fieldsp = &TYPE_FIELDS (t);
3996 while (*fieldsp)
3997 {
3998 if (TREE_CODE (*fieldsp) == FIELD_DECL
3999 && DECL_C_BIT_FIELD (*fieldsp)
4000 && DECL_INITIAL (*fieldsp))
4001 *fieldsp = TREE_CHAIN (*fieldsp);
4002 else
4003 fieldsp = &TREE_CHAIN (*fieldsp);
4004 }
4005 }
4006
4007 /* Returns TRUE iff we need a cookie when dynamically allocating an
4008 array whose elements have the indicated class TYPE. */
4009
4010 static bool
4011 type_requires_array_cookie (tree type)
4012 {
4013 tree fns;
4014 bool has_two_argument_delete_p = false;
4015
4016 gcc_assert (CLASS_TYPE_P (type));
4017
4018 /* If there's a non-trivial destructor, we need a cookie. In order
4019 to iterate through the array calling the destructor for each
4020 element, we'll have to know how many elements there are. */
4021 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4022 return true;
4023
4024 /* If the usual deallocation function is a two-argument whose second
4025 argument is of type `size_t', then we have to pass the size of
4026 the array to the deallocation function, so we will need to store
4027 a cookie. */
4028 fns = lookup_fnfields (TYPE_BINFO (type),
4029 ansi_opname (VEC_DELETE_EXPR),
4030 /*protect=*/0);
4031 /* If there are no `operator []' members, or the lookup is
4032 ambiguous, then we don't need a cookie. */
4033 if (!fns || fns == error_mark_node)
4034 return false;
4035 /* Loop through all of the functions. */
4036 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4037 {
4038 tree fn;
4039 tree second_parm;
4040
4041 /* Select the current function. */
4042 fn = OVL_CURRENT (fns);
4043 /* See if this function is a one-argument delete function. If
4044 it is, then it will be the usual deallocation function. */
4045 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4046 if (second_parm == void_list_node)
4047 return false;
4048 /* Otherwise, if we have a two-argument function and the second
4049 argument is `size_t', it will be the usual deallocation
4050 function -- unless there is one-argument function, too. */
4051 if (TREE_CHAIN (second_parm) == void_list_node
4052 && same_type_p (TREE_VALUE (second_parm), size_type_node))
4053 has_two_argument_delete_p = true;
4054 }
4055
4056 return has_two_argument_delete_p;
4057 }
4058
4059 /* Check the validity of the bases and members declared in T. Add any
4060 implicitly-generated functions (like copy-constructors and
4061 assignment operators). Compute various flag bits (like
4062 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4063 level: i.e., independently of the ABI in use. */
4064
4065 static void
4066 check_bases_and_members (tree t)
4067 {
4068 /* Nonzero if the implicitly generated copy constructor should take
4069 a non-const reference argument. */
4070 int cant_have_const_ctor;
4071 /* Nonzero if the implicitly generated assignment operator
4072 should take a non-const reference argument. */
4073 int no_const_asn_ref;
4074 tree access_decls;
4075
4076 /* By default, we use const reference arguments and generate default
4077 constructors. */
4078 cant_have_const_ctor = 0;
4079 no_const_asn_ref = 0;
4080
4081 /* Check all the base-classes. */
4082 check_bases (t, &cant_have_const_ctor,
4083 &no_const_asn_ref);
4084
4085 /* Check all the method declarations. */
4086 check_methods (t);
4087
4088 /* Check all the data member declarations. We cannot call
4089 check_field_decls until we have called check_bases check_methods,
4090 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4091 being set appropriately. */
4092 check_field_decls (t, &access_decls,
4093 &cant_have_const_ctor,
4094 &no_const_asn_ref);
4095
4096 /* A nearly-empty class has to be vptr-containing; a nearly empty
4097 class contains just a vptr. */
4098 if (!TYPE_CONTAINS_VPTR_P (t))
4099 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4100
4101 /* Do some bookkeeping that will guide the generation of implicitly
4102 declared member functions. */
4103 TYPE_HAS_COMPLEX_INIT_REF (t)
4104 |= (TYPE_HAS_INIT_REF (t) || TYPE_CONTAINS_VPTR_P (t));
4105 TYPE_NEEDS_CONSTRUCTING (t)
4106 |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
4107 CLASSTYPE_NON_AGGREGATE (t)
4108 |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_POLYMORPHIC_P (t));
4109 CLASSTYPE_NON_POD_P (t)
4110 |= (CLASSTYPE_NON_AGGREGATE (t)
4111 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
4112 || TYPE_HAS_ASSIGN_REF (t));
4113 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
4114 |= TYPE_HAS_ASSIGN_REF (t) || TYPE_CONTAINS_VPTR_P (t);
4115
4116 /* Synthesize any needed methods. */
4117 add_implicitly_declared_members (t,
4118 cant_have_const_ctor,
4119 no_const_asn_ref);
4120
4121 /* Create the in-charge and not-in-charge variants of constructors
4122 and destructors. */
4123 clone_constructors_and_destructors (t);
4124
4125 /* Process the using-declarations. */
4126 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4127 handle_using_decl (TREE_VALUE (access_decls), t);
4128
4129 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4130 finish_struct_methods (t);
4131
4132 /* Figure out whether or not we will need a cookie when dynamically
4133 allocating an array of this type. */
4134 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4135 = type_requires_array_cookie (t);
4136 }
4137
4138 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4139 accordingly. If a new vfield was created (because T doesn't have a
4140 primary base class), then the newly created field is returned. It
4141 is not added to the TYPE_FIELDS list; it is the caller's
4142 responsibility to do that. Accumulate declared virtual functions
4143 on VIRTUALS_P. */
4144
4145 static tree
4146 create_vtable_ptr (tree t, tree* virtuals_p)
4147 {
4148 tree fn;
4149
4150 /* Collect the virtual functions declared in T. */
4151 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4152 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4153 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4154 {
4155 tree new_virtual = make_node (TREE_LIST);
4156
4157 BV_FN (new_virtual) = fn;
4158 BV_DELTA (new_virtual) = integer_zero_node;
4159 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4160
4161 TREE_CHAIN (new_virtual) = *virtuals_p;
4162 *virtuals_p = new_virtual;
4163 }
4164
4165 /* If we couldn't find an appropriate base class, create a new field
4166 here. Even if there weren't any new virtual functions, we might need a
4167 new virtual function table if we're supposed to include vptrs in
4168 all classes that need them. */
4169 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4170 {
4171 /* We build this decl with vtbl_ptr_type_node, which is a
4172 `vtable_entry_type*'. It might seem more precise to use
4173 `vtable_entry_type (*)[N]' where N is the number of virtual
4174 functions. However, that would require the vtable pointer in
4175 base classes to have a different type than the vtable pointer
4176 in derived classes. We could make that happen, but that
4177 still wouldn't solve all the problems. In particular, the
4178 type-based alias analysis code would decide that assignments
4179 to the base class vtable pointer can't alias assignments to
4180 the derived class vtable pointer, since they have different
4181 types. Thus, in a derived class destructor, where the base
4182 class constructor was inlined, we could generate bad code for
4183 setting up the vtable pointer.
4184
4185 Therefore, we use one type for all vtable pointers. We still
4186 use a type-correct type; it's just doesn't indicate the array
4187 bounds. That's better than using `void*' or some such; it's
4188 cleaner, and it let's the alias analysis code know that these
4189 stores cannot alias stores to void*! */
4190 tree field;
4191
4192 field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4193 DECL_VIRTUAL_P (field) = 1;
4194 DECL_ARTIFICIAL (field) = 1;
4195 DECL_FIELD_CONTEXT (field) = t;
4196 DECL_FCONTEXT (field) = t;
4197
4198 TYPE_VFIELD (t) = field;
4199
4200 /* This class is non-empty. */
4201 CLASSTYPE_EMPTY_P (t) = 0;
4202
4203 return field;
4204 }
4205
4206 return NULL_TREE;
4207 }
4208
4209 /* Fixup the inline function given by INFO now that the class is
4210 complete. */
4211
4212 static void
4213 fixup_pending_inline (tree fn)
4214 {
4215 if (DECL_PENDING_INLINE_INFO (fn))
4216 {
4217 tree args = DECL_ARGUMENTS (fn);
4218 while (args)
4219 {
4220 DECL_CONTEXT (args) = fn;
4221 args = TREE_CHAIN (args);
4222 }
4223 }
4224 }
4225
4226 /* Fixup the inline methods and friends in TYPE now that TYPE is
4227 complete. */
4228
4229 static void
4230 fixup_inline_methods (tree type)
4231 {
4232 tree method = TYPE_METHODS (type);
4233 VEC(tree,gc) *friends;
4234 unsigned ix;
4235
4236 if (method && TREE_CODE (method) == TREE_VEC)
4237 {
4238 if (TREE_VEC_ELT (method, 1))
4239 method = TREE_VEC_ELT (method, 1);
4240 else if (TREE_VEC_ELT (method, 0))
4241 method = TREE_VEC_ELT (method, 0);
4242 else
4243 method = TREE_VEC_ELT (method, 2);
4244 }
4245
4246 /* Do inline member functions. */
4247 for (; method; method = TREE_CHAIN (method))
4248 fixup_pending_inline (method);
4249
4250 /* Do friends. */
4251 for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
4252 VEC_iterate (tree, friends, ix, method); ix++)
4253 fixup_pending_inline (method);
4254 CLASSTYPE_INLINE_FRIENDS (type) = NULL;
4255 }
4256
4257 /* Add OFFSET to all base types of BINFO which is a base in the
4258 hierarchy dominated by T.
4259
4260 OFFSET, which is a type offset, is number of bytes. */
4261
4262 static void
4263 propagate_binfo_offsets (tree binfo, tree offset)
4264 {
4265 int i;
4266 tree primary_binfo;
4267 tree base_binfo;
4268
4269 /* Update BINFO's offset. */
4270 BINFO_OFFSET (binfo)
4271 = convert (sizetype,
4272 size_binop (PLUS_EXPR,
4273 convert (ssizetype, BINFO_OFFSET (binfo)),
4274 offset));
4275
4276 /* Find the primary base class. */
4277 primary_binfo = get_primary_binfo (binfo);
4278
4279 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4280 propagate_binfo_offsets (primary_binfo, offset);
4281
4282 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4283 downwards. */
4284 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4285 {
4286 /* Don't do the primary base twice. */
4287 if (base_binfo == primary_binfo)
4288 continue;
4289
4290 if (BINFO_VIRTUAL_P (base_binfo))
4291 continue;
4292
4293 propagate_binfo_offsets (base_binfo, offset);
4294 }
4295 }
4296
4297 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4298 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4299 empty subobjects of T. */
4300
4301 static void
4302 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4303 {
4304 tree vbase;
4305 tree t = rli->t;
4306 bool first_vbase = true;
4307 tree *next_field;
4308
4309 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4310 return;
4311
4312 if (!abi_version_at_least(2))
4313 {
4314 /* In G++ 3.2, we incorrectly rounded the size before laying out
4315 the virtual bases. */
4316 finish_record_layout (rli, /*free_p=*/false);
4317 #ifdef STRUCTURE_SIZE_BOUNDARY
4318 /* Packed structures don't need to have minimum size. */
4319 if (! TYPE_PACKED (t))
4320 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4321 #endif
4322 rli->offset = TYPE_SIZE_UNIT (t);
4323 rli->bitpos = bitsize_zero_node;
4324 rli->record_align = TYPE_ALIGN (t);
4325 }
4326
4327 /* Find the last field. The artificial fields created for virtual
4328 bases will go after the last extant field to date. */
4329 next_field = &TYPE_FIELDS (t);
4330 while (*next_field)
4331 next_field = &TREE_CHAIN (*next_field);
4332
4333 /* Go through the virtual bases, allocating space for each virtual
4334 base that is not already a primary base class. These are
4335 allocated in inheritance graph order. */
4336 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4337 {
4338 if (!BINFO_VIRTUAL_P (vbase))
4339 continue;
4340
4341 if (!BINFO_PRIMARY_P (vbase))
4342 {
4343 tree basetype = TREE_TYPE (vbase);
4344
4345 /* This virtual base is not a primary base of any class in the
4346 hierarchy, so we have to add space for it. */
4347 next_field = build_base_field (rli, vbase,
4348 offsets, next_field);
4349
4350 /* If the first virtual base might have been placed at a
4351 lower address, had we started from CLASSTYPE_SIZE, rather
4352 than TYPE_SIZE, issue a warning. There can be both false
4353 positives and false negatives from this warning in rare
4354 cases; to deal with all the possibilities would probably
4355 require performing both layout algorithms and comparing
4356 the results which is not particularly tractable. */
4357 if (warn_abi
4358 && first_vbase
4359 && (tree_int_cst_lt
4360 (size_binop (CEIL_DIV_EXPR,
4361 round_up (CLASSTYPE_SIZE (t),
4362 CLASSTYPE_ALIGN (basetype)),
4363 bitsize_unit_node),
4364 BINFO_OFFSET (vbase))))
4365 warning (OPT_Wabi,
4366 "offset of virtual base %qT is not ABI-compliant and "
4367 "may change in a future version of GCC",
4368 basetype);
4369
4370 first_vbase = false;
4371 }
4372 }
4373 }
4374
4375 /* Returns the offset of the byte just past the end of the base class
4376 BINFO. */
4377
4378 static tree
4379 end_of_base (tree binfo)
4380 {
4381 tree size;
4382
4383 if (is_empty_class (BINFO_TYPE (binfo)))
4384 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4385 allocate some space for it. It cannot have virtual bases, so
4386 TYPE_SIZE_UNIT is fine. */
4387 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4388 else
4389 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4390
4391 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4392 }
4393
4394 /* Returns the offset of the byte just past the end of the base class
4395 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4396 only non-virtual bases are included. */
4397
4398 static tree
4399 end_of_class (tree t, int include_virtuals_p)
4400 {
4401 tree result = size_zero_node;
4402 VEC(tree,gc) *vbases;
4403 tree binfo;
4404 tree base_binfo;
4405 tree offset;
4406 int i;
4407
4408 for (binfo = TYPE_BINFO (t), i = 0;
4409 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4410 {
4411 if (!include_virtuals_p
4412 && BINFO_VIRTUAL_P (base_binfo)
4413 && (!BINFO_PRIMARY_P (base_binfo)
4414 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4415 continue;
4416
4417 offset = end_of_base (base_binfo);
4418 if (INT_CST_LT_UNSIGNED (result, offset))
4419 result = offset;
4420 }
4421
4422 /* G++ 3.2 did not check indirect virtual bases. */
4423 if (abi_version_at_least (2) && include_virtuals_p)
4424 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4425 VEC_iterate (tree, vbases, i, base_binfo); i++)
4426 {
4427 offset = end_of_base (base_binfo);
4428 if (INT_CST_LT_UNSIGNED (result, offset))
4429 result = offset;
4430 }
4431
4432 return result;
4433 }
4434
4435 /* Warn about bases of T that are inaccessible because they are
4436 ambiguous. For example:
4437
4438 struct S {};
4439 struct T : public S {};
4440 struct U : public S, public T {};
4441
4442 Here, `(S*) new U' is not allowed because there are two `S'
4443 subobjects of U. */
4444
4445 static void
4446 warn_about_ambiguous_bases (tree t)
4447 {
4448 int i;
4449 VEC(tree,gc) *vbases;
4450 tree basetype;
4451 tree binfo;
4452 tree base_binfo;
4453
4454 /* If there are no repeated bases, nothing can be ambiguous. */
4455 if (!CLASSTYPE_REPEATED_BASE_P (t))
4456 return;
4457
4458 /* Check direct bases. */
4459 for (binfo = TYPE_BINFO (t), i = 0;
4460 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4461 {
4462 basetype = BINFO_TYPE (base_binfo);
4463
4464 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4465 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4466 basetype, t);
4467 }
4468
4469 /* Check for ambiguous virtual bases. */
4470 if (extra_warnings)
4471 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4472 VEC_iterate (tree, vbases, i, binfo); i++)
4473 {
4474 basetype = BINFO_TYPE (binfo);
4475
4476 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4477 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
4478 basetype, t);
4479 }
4480 }
4481
4482 /* Compare two INTEGER_CSTs K1 and K2. */
4483
4484 static int
4485 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4486 {
4487 return tree_int_cst_compare ((tree) k1, (tree) k2);
4488 }
4489
4490 /* Increase the size indicated in RLI to account for empty classes
4491 that are "off the end" of the class. */
4492
4493 static void
4494 include_empty_classes (record_layout_info rli)
4495 {
4496 tree eoc;
4497 tree rli_size;
4498
4499 /* It might be the case that we grew the class to allocate a
4500 zero-sized base class. That won't be reflected in RLI, yet,
4501 because we are willing to overlay multiple bases at the same
4502 offset. However, now we need to make sure that RLI is big enough
4503 to reflect the entire class. */
4504 eoc = end_of_class (rli->t,
4505 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4506 rli_size = rli_size_unit_so_far (rli);
4507 if (TREE_CODE (rli_size) == INTEGER_CST
4508 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4509 {
4510 if (!abi_version_at_least (2))
4511 /* In version 1 of the ABI, the size of a class that ends with
4512 a bitfield was not rounded up to a whole multiple of a
4513 byte. Because rli_size_unit_so_far returns only the number
4514 of fully allocated bytes, any extra bits were not included
4515 in the size. */
4516 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4517 else
4518 /* The size should have been rounded to a whole byte. */
4519 gcc_assert (tree_int_cst_equal
4520 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4521 rli->bitpos
4522 = size_binop (PLUS_EXPR,
4523 rli->bitpos,
4524 size_binop (MULT_EXPR,
4525 convert (bitsizetype,
4526 size_binop (MINUS_EXPR,
4527 eoc, rli_size)),
4528 bitsize_int (BITS_PER_UNIT)));
4529 normalize_rli (rli);
4530 }
4531 }
4532
4533 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4534 BINFO_OFFSETs for all of the base-classes. Position the vtable
4535 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4536
4537 static void
4538 layout_class_type (tree t, tree *virtuals_p)
4539 {
4540 tree non_static_data_members;
4541 tree field;
4542 tree vptr;
4543 record_layout_info rli;
4544 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4545 types that appear at that offset. */
4546 splay_tree empty_base_offsets;
4547 /* True if the last field layed out was a bit-field. */
4548 bool last_field_was_bitfield = false;
4549 /* The location at which the next field should be inserted. */
4550 tree *next_field;
4551 /* T, as a base class. */
4552 tree base_t;
4553
4554 /* Keep track of the first non-static data member. */
4555 non_static_data_members = TYPE_FIELDS (t);
4556
4557 /* Start laying out the record. */
4558 rli = start_record_layout (t);
4559
4560 /* Mark all the primary bases in the hierarchy. */
4561 determine_primary_bases (t);
4562
4563 /* Create a pointer to our virtual function table. */
4564 vptr = create_vtable_ptr (t, virtuals_p);
4565
4566 /* The vptr is always the first thing in the class. */
4567 if (vptr)
4568 {
4569 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4570 TYPE_FIELDS (t) = vptr;
4571 next_field = &TREE_CHAIN (vptr);
4572 place_field (rli, vptr);
4573 }
4574 else
4575 next_field = &TYPE_FIELDS (t);
4576
4577 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4578 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4579 NULL, NULL);
4580 build_base_fields (rli, empty_base_offsets, next_field);
4581
4582 /* Layout the non-static data members. */
4583 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4584 {
4585 tree type;
4586 tree padding;
4587
4588 /* We still pass things that aren't non-static data members to
4589 the back end, in case it wants to do something with them. */
4590 if (TREE_CODE (field) != FIELD_DECL)
4591 {
4592 place_field (rli, field);
4593 /* If the static data member has incomplete type, keep track
4594 of it so that it can be completed later. (The handling
4595 of pending statics in finish_record_layout is
4596 insufficient; consider:
4597
4598 struct S1;
4599 struct S2 { static S1 s1; };
4600
4601 At this point, finish_record_layout will be called, but
4602 S1 is still incomplete.) */
4603 if (TREE_CODE (field) == VAR_DECL)
4604 {
4605 maybe_register_incomplete_var (field);
4606 /* The visibility of static data members is determined
4607 at their point of declaration, not their point of
4608 definition. */
4609 determine_visibility (field);
4610 }
4611 continue;
4612 }
4613
4614 type = TREE_TYPE (field);
4615 if (type == error_mark_node)
4616 continue;
4617
4618 padding = NULL_TREE;
4619
4620 /* If this field is a bit-field whose width is greater than its
4621 type, then there are some special rules for allocating
4622 it. */
4623 if (DECL_C_BIT_FIELD (field)
4624 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4625 {
4626 integer_type_kind itk;
4627 tree integer_type;
4628 bool was_unnamed_p = false;
4629 /* We must allocate the bits as if suitably aligned for the
4630 longest integer type that fits in this many bits. type
4631 of the field. Then, we are supposed to use the left over
4632 bits as additional padding. */
4633 for (itk = itk_char; itk != itk_none; ++itk)
4634 if (INT_CST_LT (DECL_SIZE (field),
4635 TYPE_SIZE (integer_types[itk])))
4636 break;
4637
4638 /* ITK now indicates a type that is too large for the
4639 field. We have to back up by one to find the largest
4640 type that fits. */
4641 integer_type = integer_types[itk - 1];
4642
4643 /* Figure out how much additional padding is required. GCC
4644 3.2 always created a padding field, even if it had zero
4645 width. */
4646 if (!abi_version_at_least (2)
4647 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4648 {
4649 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4650 /* In a union, the padding field must have the full width
4651 of the bit-field; all fields start at offset zero. */
4652 padding = DECL_SIZE (field);
4653 else
4654 {
4655 if (TREE_CODE (t) == UNION_TYPE)
4656 warning (OPT_Wabi, "size assigned to %qT may not be "
4657 "ABI-compliant and may change in a future "
4658 "version of GCC",
4659 t);
4660 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4661 TYPE_SIZE (integer_type));
4662 }
4663 }
4664 #ifdef PCC_BITFIELD_TYPE_MATTERS
4665 /* An unnamed bitfield does not normally affect the
4666 alignment of the containing class on a target where
4667 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4668 make any exceptions for unnamed bitfields when the
4669 bitfields are longer than their types. Therefore, we
4670 temporarily give the field a name. */
4671 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4672 {
4673 was_unnamed_p = true;
4674 DECL_NAME (field) = make_anon_name ();
4675 }
4676 #endif
4677 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4678 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4679 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4680 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4681 empty_base_offsets);
4682 if (was_unnamed_p)
4683 DECL_NAME (field) = NULL_TREE;
4684 /* Now that layout has been performed, set the size of the
4685 field to the size of its declared type; the rest of the
4686 field is effectively invisible. */
4687 DECL_SIZE (field) = TYPE_SIZE (type);
4688 /* We must also reset the DECL_MODE of the field. */
4689 if (abi_version_at_least (2))
4690 DECL_MODE (field) = TYPE_MODE (type);
4691 else if (warn_abi
4692 && DECL_MODE (field) != TYPE_MODE (type))
4693 /* Versions of G++ before G++ 3.4 did not reset the
4694 DECL_MODE. */
4695 warning (OPT_Wabi,
4696 "the offset of %qD may not be ABI-compliant and may "
4697 "change in a future version of GCC", field);
4698 }
4699 else
4700 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4701 empty_base_offsets);
4702
4703 /* Remember the location of any empty classes in FIELD. */
4704 if (abi_version_at_least (2))
4705 record_subobject_offsets (TREE_TYPE (field),
4706 byte_position(field),
4707 empty_base_offsets,
4708 /*is_data_member=*/true);
4709
4710 /* If a bit-field does not immediately follow another bit-field,
4711 and yet it starts in the middle of a byte, we have failed to
4712 comply with the ABI. */
4713 if (warn_abi
4714 && DECL_C_BIT_FIELD (field)
4715 /* The TREE_NO_WARNING flag gets set by Objective-C when
4716 laying out an Objective-C class. The ObjC ABI differs
4717 from the C++ ABI, and so we do not want a warning
4718 here. */
4719 && !TREE_NO_WARNING (field)
4720 && !last_field_was_bitfield
4721 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4722 DECL_FIELD_BIT_OFFSET (field),
4723 bitsize_unit_node)))
4724 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
4725 "change in a future version of GCC", field);
4726
4727 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4728 offset of the field. */
4729 if (warn_abi
4730 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4731 byte_position (field))
4732 && contains_empty_class_p (TREE_TYPE (field)))
4733 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
4734 "classes to be placed at different locations in a "
4735 "future version of GCC", field);
4736
4737 /* The middle end uses the type of expressions to determine the
4738 possible range of expression values. In order to optimize
4739 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
4740 must be made aware of the width of "i", via its type.
4741
4742 Because C++ does not have integer types of arbitrary width,
4743 we must (for the purposes of the front end) convert from the
4744 type assigned here to the declared type of the bitfield
4745 whenever a bitfield expression is used as an rvalue.
4746 Similarly, when assigning a value to a bitfield, the value
4747 must be converted to the type given the bitfield here. */
4748 if (DECL_C_BIT_FIELD (field))
4749 {
4750 tree ftype;
4751 unsigned HOST_WIDE_INT width;
4752 ftype = TREE_TYPE (field);
4753 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
4754 if (width != TYPE_PRECISION (ftype))
4755 TREE_TYPE (field)
4756 = c_build_bitfield_integer_type (width,
4757 TYPE_UNSIGNED (ftype));
4758 }
4759
4760 /* If we needed additional padding after this field, add it
4761 now. */
4762 if (padding)
4763 {
4764 tree padding_field;
4765
4766 padding_field = build_decl (FIELD_DECL,
4767 NULL_TREE,
4768 char_type_node);
4769 DECL_BIT_FIELD (padding_field) = 1;
4770 DECL_SIZE (padding_field) = padding;
4771 DECL_CONTEXT (padding_field) = t;
4772 DECL_ARTIFICIAL (padding_field) = 1;
4773 DECL_IGNORED_P (padding_field) = 1;
4774 layout_nonempty_base_or_field (rli, padding_field,
4775 NULL_TREE,
4776 empty_base_offsets);
4777 }
4778
4779 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
4780 }
4781
4782 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
4783 {
4784 /* Make sure that we are on a byte boundary so that the size of
4785 the class without virtual bases will always be a round number
4786 of bytes. */
4787 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
4788 normalize_rli (rli);
4789 }
4790
4791 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
4792 padding. */
4793 if (!abi_version_at_least (2))
4794 include_empty_classes(rli);
4795
4796 /* Delete all zero-width bit-fields from the list of fields. Now
4797 that the type is laid out they are no longer important. */
4798 remove_zero_width_bit_fields (t);
4799
4800 /* Create the version of T used for virtual bases. We do not use
4801 make_aggr_type for this version; this is an artificial type. For
4802 a POD type, we just reuse T. */
4803 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
4804 {
4805 base_t = make_node (TREE_CODE (t));
4806
4807 /* Set the size and alignment for the new type. In G++ 3.2, all
4808 empty classes were considered to have size zero when used as
4809 base classes. */
4810 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
4811 {
4812 TYPE_SIZE (base_t) = bitsize_zero_node;
4813 TYPE_SIZE_UNIT (base_t) = size_zero_node;
4814 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
4815 warning (OPT_Wabi,
4816 "layout of classes derived from empty class %qT "
4817 "may change in a future version of GCC",
4818 t);
4819 }
4820 else
4821 {
4822 tree eoc;
4823
4824 /* If the ABI version is not at least two, and the last
4825 field was a bit-field, RLI may not be on a byte
4826 boundary. In particular, rli_size_unit_so_far might
4827 indicate the last complete byte, while rli_size_so_far
4828 indicates the total number of bits used. Therefore,
4829 rli_size_so_far, rather than rli_size_unit_so_far, is
4830 used to compute TYPE_SIZE_UNIT. */
4831 eoc = end_of_class (t, /*include_virtuals_p=*/0);
4832 TYPE_SIZE_UNIT (base_t)
4833 = size_binop (MAX_EXPR,
4834 convert (sizetype,
4835 size_binop (CEIL_DIV_EXPR,
4836 rli_size_so_far (rli),
4837 bitsize_int (BITS_PER_UNIT))),
4838 eoc);
4839 TYPE_SIZE (base_t)
4840 = size_binop (MAX_EXPR,
4841 rli_size_so_far (rli),
4842 size_binop (MULT_EXPR,
4843 convert (bitsizetype, eoc),
4844 bitsize_int (BITS_PER_UNIT)));
4845 }
4846 TYPE_ALIGN (base_t) = rli->record_align;
4847 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
4848
4849 /* Copy the fields from T. */
4850 next_field = &TYPE_FIELDS (base_t);
4851 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4852 if (TREE_CODE (field) == FIELD_DECL)
4853 {
4854 *next_field = build_decl (FIELD_DECL,
4855 DECL_NAME (field),
4856 TREE_TYPE (field));
4857 DECL_CONTEXT (*next_field) = base_t;
4858 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
4859 DECL_FIELD_BIT_OFFSET (*next_field)
4860 = DECL_FIELD_BIT_OFFSET (field);
4861 DECL_SIZE (*next_field) = DECL_SIZE (field);
4862 DECL_MODE (*next_field) = DECL_MODE (field);
4863 next_field = &TREE_CHAIN (*next_field);
4864 }
4865
4866 /* Record the base version of the type. */
4867 CLASSTYPE_AS_BASE (t) = base_t;
4868 TYPE_CONTEXT (base_t) = t;
4869 }
4870 else
4871 CLASSTYPE_AS_BASE (t) = t;
4872
4873 /* Every empty class contains an empty class. */
4874 if (CLASSTYPE_EMPTY_P (t))
4875 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
4876
4877 /* Set the TYPE_DECL for this type to contain the right
4878 value for DECL_OFFSET, so that we can use it as part
4879 of a COMPONENT_REF for multiple inheritance. */
4880 layout_decl (TYPE_MAIN_DECL (t), 0);
4881
4882 /* Now fix up any virtual base class types that we left lying
4883 around. We must get these done before we try to lay out the
4884 virtual function table. As a side-effect, this will remove the
4885 base subobject fields. */
4886 layout_virtual_bases (rli, empty_base_offsets);
4887
4888 /* Make sure that empty classes are reflected in RLI at this
4889 point. */
4890 include_empty_classes(rli);
4891
4892 /* Make sure not to create any structures with zero size. */
4893 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
4894 place_field (rli,
4895 build_decl (FIELD_DECL, NULL_TREE, char_type_node));
4896
4897 /* Let the back end lay out the type. */
4898 finish_record_layout (rli, /*free_p=*/true);
4899
4900 /* Warn about bases that can't be talked about due to ambiguity. */
4901 warn_about_ambiguous_bases (t);
4902
4903 /* Now that we're done with layout, give the base fields the real types. */
4904 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4905 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
4906 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
4907
4908 /* Clean up. */
4909 splay_tree_delete (empty_base_offsets);
4910
4911 if (CLASSTYPE_EMPTY_P (t)
4912 && tree_int_cst_lt (sizeof_biggest_empty_class,
4913 TYPE_SIZE_UNIT (t)))
4914 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
4915 }
4916
4917 /* Determine the "key method" for the class type indicated by TYPE,
4918 and set CLASSTYPE_KEY_METHOD accordingly. */
4919
4920 void
4921 determine_key_method (tree type)
4922 {
4923 tree method;
4924
4925 if (TYPE_FOR_JAVA (type)
4926 || processing_template_decl
4927 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
4928 || CLASSTYPE_INTERFACE_KNOWN (type))
4929 return;
4930
4931 /* The key method is the first non-pure virtual function that is not
4932 inline at the point of class definition. On some targets the
4933 key function may not be inline; those targets should not call
4934 this function until the end of the translation unit. */
4935 for (method = TYPE_METHODS (type); method != NULL_TREE;
4936 method = TREE_CHAIN (method))
4937 if (DECL_VINDEX (method) != NULL_TREE
4938 && ! DECL_DECLARED_INLINE_P (method)
4939 && ! DECL_PURE_VIRTUAL_P (method))
4940 {
4941 CLASSTYPE_KEY_METHOD (type) = method;
4942 break;
4943 }
4944
4945 return;
4946 }
4947
4948 /* Perform processing required when the definition of T (a class type)
4949 is complete. */
4950
4951 void
4952 finish_struct_1 (tree t)
4953 {
4954 tree x;
4955 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
4956 tree virtuals = NULL_TREE;
4957 int n_fields = 0;
4958
4959 if (COMPLETE_TYPE_P (t))
4960 {
4961 gcc_assert (IS_AGGR_TYPE (t));
4962 error ("redefinition of %q#T", t);
4963 popclass ();
4964 return;
4965 }
4966
4967 /* If this type was previously laid out as a forward reference,
4968 make sure we lay it out again. */
4969 TYPE_SIZE (t) = NULL_TREE;
4970 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
4971
4972 fixup_inline_methods (t);
4973
4974 /* Make assumptions about the class; we'll reset the flags if
4975 necessary. */
4976 CLASSTYPE_EMPTY_P (t) = 1;
4977 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
4978 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
4979
4980 /* Do end-of-class semantic processing: checking the validity of the
4981 bases and members and add implicitly generated methods. */
4982 check_bases_and_members (t);
4983
4984 /* Find the key method. */
4985 if (TYPE_CONTAINS_VPTR_P (t))
4986 {
4987 /* The Itanium C++ ABI permits the key method to be chosen when
4988 the class is defined -- even though the key method so
4989 selected may later turn out to be an inline function. On
4990 some systems (such as ARM Symbian OS) the key method cannot
4991 be determined until the end of the translation unit. On such
4992 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
4993 will cause the class to be added to KEYED_CLASSES. Then, in
4994 finish_file we will determine the key method. */
4995 if (targetm.cxx.key_method_may_be_inline ())
4996 determine_key_method (t);
4997
4998 /* If a polymorphic class has no key method, we may emit the vtable
4999 in every translation unit where the class definition appears. */
5000 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
5001 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
5002 }
5003
5004 /* Layout the class itself. */
5005 layout_class_type (t, &virtuals);
5006 if (CLASSTYPE_AS_BASE (t) != t)
5007 /* We use the base type for trivial assignments, and hence it
5008 needs a mode. */
5009 compute_record_mode (CLASSTYPE_AS_BASE (t));
5010
5011 virtuals = modify_all_vtables (t, nreverse (virtuals));
5012
5013 /* If necessary, create the primary vtable for this class. */
5014 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
5015 {
5016 /* We must enter these virtuals into the table. */
5017 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5018 build_primary_vtable (NULL_TREE, t);
5019 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
5020 /* Here we know enough to change the type of our virtual
5021 function table, but we will wait until later this function. */
5022 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
5023 }
5024
5025 if (TYPE_CONTAINS_VPTR_P (t))
5026 {
5027 int vindex;
5028 tree fn;
5029
5030 if (BINFO_VTABLE (TYPE_BINFO (t)))
5031 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
5032 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5033 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
5034
5035 /* Add entries for virtual functions introduced by this class. */
5036 BINFO_VIRTUALS (TYPE_BINFO (t))
5037 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
5038
5039 /* Set DECL_VINDEX for all functions declared in this class. */
5040 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5041 fn;
5042 fn = TREE_CHAIN (fn),
5043 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5044 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5045 {
5046 tree fndecl = BV_FN (fn);
5047
5048 if (DECL_THUNK_P (fndecl))
5049 /* A thunk. We should never be calling this entry directly
5050 from this vtable -- we'd use the entry for the non
5051 thunk base function. */
5052 DECL_VINDEX (fndecl) = NULL_TREE;
5053 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5054 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
5055 }
5056 }
5057
5058 finish_struct_bits (t);
5059
5060 /* Complete the rtl for any static member objects of the type we're
5061 working on. */
5062 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5063 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5064 && TREE_TYPE (x) != error_mark_node
5065 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5066 DECL_MODE (x) = TYPE_MODE (t);
5067
5068 /* Done with FIELDS...now decide whether to sort these for
5069 faster lookups later.
5070
5071 We use a small number because most searches fail (succeeding
5072 ultimately as the search bores through the inheritance
5073 hierarchy), and we want this failure to occur quickly. */
5074
5075 n_fields = count_fields (TYPE_FIELDS (t));
5076 if (n_fields > 7)
5077 {
5078 struct sorted_fields_type *field_vec = GGC_NEWVAR
5079 (struct sorted_fields_type,
5080 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5081 field_vec->len = n_fields;
5082 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5083 qsort (field_vec->elts, n_fields, sizeof (tree),
5084 field_decl_cmp);
5085 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5086 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5087 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5088 }
5089
5090 /* Complain if one of the field types requires lower visibility. */
5091 constrain_class_visibility (t);
5092
5093 /* Make the rtl for any new vtables we have created, and unmark
5094 the base types we marked. */
5095 finish_vtbls (t);
5096
5097 /* Build the VTT for T. */
5098 build_vtt (t);
5099
5100 /* This warning does not make sense for Java classes, since they
5101 cannot have destructors. */
5102 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5103 {
5104 tree dtor;
5105
5106 dtor = CLASSTYPE_DESTRUCTORS (t);
5107 /* Warn only if the dtor is non-private or the class has
5108 friends. */
5109 if (/* An implicitly declared destructor is always public. And,
5110 if it were virtual, we would have created it by now. */
5111 !dtor
5112 || (!DECL_VINDEX (dtor)
5113 && (!TREE_PRIVATE (dtor)
5114 || CLASSTYPE_FRIEND_CLASSES (t)
5115 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))
5116 warning (0, "%q#T has virtual functions but non-virtual destructor",
5117 t);
5118 }
5119
5120 complete_vars (t);
5121
5122 if (warn_overloaded_virtual)
5123 warn_hidden (t);
5124
5125 /* Class layout, assignment of virtual table slots, etc., is now
5126 complete. Give the back end a chance to tweak the visibility of
5127 the class or perform any other required target modifications. */
5128 targetm.cxx.adjust_class_at_definition (t);
5129
5130 maybe_suppress_debug_info (t);
5131
5132 dump_class_hierarchy (t);
5133
5134 /* Finish debugging output for this type. */
5135 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5136 }
5137
5138 /* When T was built up, the member declarations were added in reverse
5139 order. Rearrange them to declaration order. */
5140
5141 void
5142 unreverse_member_declarations (tree t)
5143 {
5144 tree next;
5145 tree prev;
5146 tree x;
5147
5148 /* The following lists are all in reverse order. Put them in
5149 declaration order now. */
5150 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5151 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5152
5153 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5154 reverse order, so we can't just use nreverse. */
5155 prev = NULL_TREE;
5156 for (x = TYPE_FIELDS (t);
5157 x && TREE_CODE (x) != TYPE_DECL;
5158 x = next)
5159 {
5160 next = TREE_CHAIN (x);
5161 TREE_CHAIN (x) = prev;
5162 prev = x;
5163 }
5164 if (prev)
5165 {
5166 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5167 if (prev)
5168 TYPE_FIELDS (t) = prev;
5169 }
5170 }
5171
5172 tree
5173 finish_struct (tree t, tree attributes)
5174 {
5175 location_t saved_loc = input_location;
5176
5177 /* Now that we've got all the field declarations, reverse everything
5178 as necessary. */
5179 unreverse_member_declarations (t);
5180
5181 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5182
5183 /* Nadger the current location so that diagnostics point to the start of
5184 the struct, not the end. */
5185 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5186
5187 if (processing_template_decl)
5188 {
5189 tree x;
5190
5191 finish_struct_methods (t);
5192 TYPE_SIZE (t) = bitsize_zero_node;
5193 TYPE_SIZE_UNIT (t) = size_zero_node;
5194
5195 /* We need to emit an error message if this type was used as a parameter
5196 and it is an abstract type, even if it is a template. We construct
5197 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5198 account and we call complete_vars with this type, which will check
5199 the PARM_DECLS. Note that while the type is being defined,
5200 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5201 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5202 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5203 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5204 if (DECL_PURE_VIRTUAL_P (x))
5205 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
5206 complete_vars (t);
5207 }
5208 else
5209 finish_struct_1 (t);
5210
5211 input_location = saved_loc;
5212
5213 TYPE_BEING_DEFINED (t) = 0;
5214
5215 if (current_class_type)
5216 popclass ();
5217 else
5218 error ("trying to finish struct, but kicked out due to previous parse errors");
5219
5220 if (processing_template_decl && at_function_scope_p ())
5221 add_stmt (build_min (TAG_DEFN, t));
5222
5223 return t;
5224 }
5225 \f
5226 /* Return the dynamic type of INSTANCE, if known.
5227 Used to determine whether the virtual function table is needed
5228 or not.
5229
5230 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5231 of our knowledge of its type. *NONNULL should be initialized
5232 before this function is called. */
5233
5234 static tree
5235 fixed_type_or_null (tree instance, int* nonnull, int* cdtorp)
5236 {
5237 switch (TREE_CODE (instance))
5238 {
5239 case INDIRECT_REF:
5240 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5241 return NULL_TREE;
5242 else
5243 return fixed_type_or_null (TREE_OPERAND (instance, 0),
5244 nonnull, cdtorp);
5245
5246 case CALL_EXPR:
5247 /* This is a call to a constructor, hence it's never zero. */
5248 if (TREE_HAS_CONSTRUCTOR (instance))
5249 {
5250 if (nonnull)
5251 *nonnull = 1;
5252 return TREE_TYPE (instance);
5253 }
5254 return NULL_TREE;
5255
5256 case SAVE_EXPR:
5257 /* This is a call to a constructor, hence it's never zero. */
5258 if (TREE_HAS_CONSTRUCTOR (instance))
5259 {
5260 if (nonnull)
5261 *nonnull = 1;
5262 return TREE_TYPE (instance);
5263 }
5264 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5265
5266 case PLUS_EXPR:
5267 case MINUS_EXPR:
5268 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5269 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5270 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5271 /* Propagate nonnull. */
5272 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5273 return NULL_TREE;
5274
5275 case NOP_EXPR:
5276 case CONVERT_EXPR:
5277 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5278
5279 case ADDR_EXPR:
5280 instance = TREE_OPERAND (instance, 0);
5281 if (nonnull)
5282 {
5283 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5284 with a real object -- given &p->f, p can still be null. */
5285 tree t = get_base_address (instance);
5286 /* ??? Probably should check DECL_WEAK here. */
5287 if (t && DECL_P (t))
5288 *nonnull = 1;
5289 }
5290 return fixed_type_or_null (instance, nonnull, cdtorp);
5291
5292 case COMPONENT_REF:
5293 /* If this component is really a base class reference, then the field
5294 itself isn't definitive. */
5295 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5296 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5297 return fixed_type_or_null (TREE_OPERAND (instance, 1), nonnull, cdtorp);
5298
5299 case VAR_DECL:
5300 case FIELD_DECL:
5301 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5302 && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance))))
5303 {
5304 if (nonnull)
5305 *nonnull = 1;
5306 return TREE_TYPE (TREE_TYPE (instance));
5307 }
5308 /* fall through... */
5309 case TARGET_EXPR:
5310 case PARM_DECL:
5311 case RESULT_DECL:
5312 if (IS_AGGR_TYPE (TREE_TYPE (instance)))
5313 {
5314 if (nonnull)
5315 *nonnull = 1;
5316 return TREE_TYPE (instance);
5317 }
5318 else if (instance == current_class_ptr)
5319 {
5320 if (nonnull)
5321 *nonnull = 1;
5322
5323 /* if we're in a ctor or dtor, we know our type. */
5324 if (DECL_LANG_SPECIFIC (current_function_decl)
5325 && (DECL_CONSTRUCTOR_P (current_function_decl)
5326 || DECL_DESTRUCTOR_P (current_function_decl)))
5327 {
5328 if (cdtorp)
5329 *cdtorp = 1;
5330 return TREE_TYPE (TREE_TYPE (instance));
5331 }
5332 }
5333 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5334 {
5335 /* Reference variables should be references to objects. */
5336 if (nonnull)
5337 *nonnull = 1;
5338
5339 /* DECL_VAR_MARKED_P is used to prevent recursion; a
5340 variable's initializer may refer to the variable
5341 itself. */
5342 if (TREE_CODE (instance) == VAR_DECL
5343 && DECL_INITIAL (instance)
5344 && !DECL_VAR_MARKED_P (instance))
5345 {
5346 tree type;
5347 DECL_VAR_MARKED_P (instance) = 1;
5348 type = fixed_type_or_null (DECL_INITIAL (instance),
5349 nonnull, cdtorp);
5350 DECL_VAR_MARKED_P (instance) = 0;
5351 return type;
5352 }
5353 }
5354 return NULL_TREE;
5355
5356 default:
5357 return NULL_TREE;
5358 }
5359 }
5360
5361 /* Return nonzero if the dynamic type of INSTANCE is known, and
5362 equivalent to the static type. We also handle the case where
5363 INSTANCE is really a pointer. Return negative if this is a
5364 ctor/dtor. There the dynamic type is known, but this might not be
5365 the most derived base of the original object, and hence virtual
5366 bases may not be layed out according to this type.
5367
5368 Used to determine whether the virtual function table is needed
5369 or not.
5370
5371 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5372 of our knowledge of its type. *NONNULL should be initialized
5373 before this function is called. */
5374
5375 int
5376 resolves_to_fixed_type_p (tree instance, int* nonnull)
5377 {
5378 tree t = TREE_TYPE (instance);
5379 int cdtorp = 0;
5380
5381 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5382 if (fixed == NULL_TREE)
5383 return 0;
5384 if (POINTER_TYPE_P (t))
5385 t = TREE_TYPE (t);
5386 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5387 return 0;
5388 return cdtorp ? -1 : 1;
5389 }
5390
5391 \f
5392 void
5393 init_class_processing (void)
5394 {
5395 current_class_depth = 0;
5396 current_class_stack_size = 10;
5397 current_class_stack
5398 = XNEWVEC (struct class_stack_node, current_class_stack_size);
5399 local_classes = VEC_alloc (tree, gc, 8);
5400 sizeof_biggest_empty_class = size_zero_node;
5401
5402 ridpointers[(int) RID_PUBLIC] = access_public_node;
5403 ridpointers[(int) RID_PRIVATE] = access_private_node;
5404 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5405 }
5406
5407 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5408
5409 static void
5410 restore_class_cache (void)
5411 {
5412 tree type;
5413
5414 /* We are re-entering the same class we just left, so we don't
5415 have to search the whole inheritance matrix to find all the
5416 decls to bind again. Instead, we install the cached
5417 class_shadowed list and walk through it binding names. */
5418 push_binding_level (previous_class_level);
5419 class_binding_level = previous_class_level;
5420 /* Restore IDENTIFIER_TYPE_VALUE. */
5421 for (type = class_binding_level->type_shadowed;
5422 type;
5423 type = TREE_CHAIN (type))
5424 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5425 }
5426
5427 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5428 appropriate for TYPE.
5429
5430 So that we may avoid calls to lookup_name, we cache the _TYPE
5431 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5432
5433 For multiple inheritance, we perform a two-pass depth-first search
5434 of the type lattice. */
5435
5436 void
5437 pushclass (tree type)
5438 {
5439 class_stack_node_t csn;
5440
5441 type = TYPE_MAIN_VARIANT (type);
5442
5443 /* Make sure there is enough room for the new entry on the stack. */
5444 if (current_class_depth + 1 >= current_class_stack_size)
5445 {
5446 current_class_stack_size *= 2;
5447 current_class_stack
5448 = XRESIZEVEC (struct class_stack_node, current_class_stack,
5449 current_class_stack_size);
5450 }
5451
5452 /* Insert a new entry on the class stack. */
5453 csn = current_class_stack + current_class_depth;
5454 csn->name = current_class_name;
5455 csn->type = current_class_type;
5456 csn->access = current_access_specifier;
5457 csn->names_used = 0;
5458 csn->hidden = 0;
5459 current_class_depth++;
5460
5461 /* Now set up the new type. */
5462 current_class_name = TYPE_NAME (type);
5463 if (TREE_CODE (current_class_name) == TYPE_DECL)
5464 current_class_name = DECL_NAME (current_class_name);
5465 current_class_type = type;
5466
5467 /* By default, things in classes are private, while things in
5468 structures or unions are public. */
5469 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5470 ? access_private_node
5471 : access_public_node);
5472
5473 if (previous_class_level
5474 && type != previous_class_level->this_entity
5475 && current_class_depth == 1)
5476 {
5477 /* Forcibly remove any old class remnants. */
5478 invalidate_class_lookup_cache ();
5479 }
5480
5481 if (!previous_class_level
5482 || type != previous_class_level->this_entity
5483 || current_class_depth > 1)
5484 pushlevel_class ();
5485 else
5486 restore_class_cache ();
5487 }
5488
5489 /* When we exit a toplevel class scope, we save its binding level so
5490 that we can restore it quickly. Here, we've entered some other
5491 class, so we must invalidate our cache. */
5492
5493 void
5494 invalidate_class_lookup_cache (void)
5495 {
5496 previous_class_level = NULL;
5497 }
5498
5499 /* Get out of the current class scope. If we were in a class scope
5500 previously, that is the one popped to. */
5501
5502 void
5503 popclass (void)
5504 {
5505 poplevel_class ();
5506
5507 current_class_depth--;
5508 current_class_name = current_class_stack[current_class_depth].name;
5509 current_class_type = current_class_stack[current_class_depth].type;
5510 current_access_specifier = current_class_stack[current_class_depth].access;
5511 if (current_class_stack[current_class_depth].names_used)
5512 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5513 }
5514
5515 /* Mark the top of the class stack as hidden. */
5516
5517 void
5518 push_class_stack (void)
5519 {
5520 if (current_class_depth)
5521 ++current_class_stack[current_class_depth - 1].hidden;
5522 }
5523
5524 /* Mark the top of the class stack as un-hidden. */
5525
5526 void
5527 pop_class_stack (void)
5528 {
5529 if (current_class_depth)
5530 --current_class_stack[current_class_depth - 1].hidden;
5531 }
5532
5533 /* Returns 1 if the class type currently being defined is either T or
5534 a nested type of T. */
5535
5536 bool
5537 currently_open_class (tree t)
5538 {
5539 int i;
5540
5541 /* We start looking from 1 because entry 0 is from global scope,
5542 and has no type. */
5543 for (i = current_class_depth; i > 0; --i)
5544 {
5545 tree c;
5546 if (i == current_class_depth)
5547 c = current_class_type;
5548 else
5549 {
5550 if (current_class_stack[i].hidden)
5551 break;
5552 c = current_class_stack[i].type;
5553 }
5554 if (!c)
5555 continue;
5556 if (same_type_p (c, t))
5557 return true;
5558 }
5559 return false;
5560 }
5561
5562 /* If either current_class_type or one of its enclosing classes are derived
5563 from T, return the appropriate type. Used to determine how we found
5564 something via unqualified lookup. */
5565
5566 tree
5567 currently_open_derived_class (tree t)
5568 {
5569 int i;
5570
5571 /* The bases of a dependent type are unknown. */
5572 if (dependent_type_p (t))
5573 return NULL_TREE;
5574
5575 if (!current_class_type)
5576 return NULL_TREE;
5577
5578 if (DERIVED_FROM_P (t, current_class_type))
5579 return current_class_type;
5580
5581 for (i = current_class_depth - 1; i > 0; --i)
5582 {
5583 if (current_class_stack[i].hidden)
5584 break;
5585 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5586 return current_class_stack[i].type;
5587 }
5588
5589 return NULL_TREE;
5590 }
5591
5592 /* When entering a class scope, all enclosing class scopes' names with
5593 static meaning (static variables, static functions, types and
5594 enumerators) have to be visible. This recursive function calls
5595 pushclass for all enclosing class contexts until global or a local
5596 scope is reached. TYPE is the enclosed class. */
5597
5598 void
5599 push_nested_class (tree type)
5600 {
5601 tree context;
5602
5603 /* A namespace might be passed in error cases, like A::B:C. */
5604 if (type == NULL_TREE
5605 || type == error_mark_node
5606 || TREE_CODE (type) == NAMESPACE_DECL
5607 || ! IS_AGGR_TYPE (type)
5608 || TREE_CODE (type) == TEMPLATE_TYPE_PARM
5609 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM)
5610 return;
5611
5612 context = DECL_CONTEXT (TYPE_MAIN_DECL (type));
5613
5614 if (context && CLASS_TYPE_P (context))
5615 push_nested_class (context);
5616 pushclass (type);
5617 }
5618
5619 /* Undoes a push_nested_class call. */
5620
5621 void
5622 pop_nested_class (void)
5623 {
5624 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5625
5626 popclass ();
5627 if (context && CLASS_TYPE_P (context))
5628 pop_nested_class ();
5629 }
5630
5631 /* Returns the number of extern "LANG" blocks we are nested within. */
5632
5633 int
5634 current_lang_depth (void)
5635 {
5636 return VEC_length (tree, current_lang_base);
5637 }
5638
5639 /* Set global variables CURRENT_LANG_NAME to appropriate value
5640 so that behavior of name-mangling machinery is correct. */
5641
5642 void
5643 push_lang_context (tree name)
5644 {
5645 VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
5646
5647 if (name == lang_name_cplusplus)
5648 {
5649 current_lang_name = name;
5650 }
5651 else if (name == lang_name_java)
5652 {
5653 current_lang_name = name;
5654 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5655 (See record_builtin_java_type in decl.c.) However, that causes
5656 incorrect debug entries if these types are actually used.
5657 So we re-enable debug output after extern "Java". */
5658 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5659 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5660 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5661 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5662 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5663 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5664 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5665 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5666 }
5667 else if (name == lang_name_c)
5668 {
5669 current_lang_name = name;
5670 }
5671 else
5672 error ("language string %<\"%E\"%> not recognized", name);
5673 }
5674
5675 /* Get out of the current language scope. */
5676
5677 void
5678 pop_lang_context (void)
5679 {
5680 current_lang_name = VEC_pop (tree, current_lang_base);
5681 }
5682 \f
5683 /* Type instantiation routines. */
5684
5685 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5686 matches the TARGET_TYPE. If there is no satisfactory match, return
5687 error_mark_node, and issue an error & warning messages under
5688 control of FLAGS. Permit pointers to member function if FLAGS
5689 permits. If TEMPLATE_ONLY, the name of the overloaded function was
5690 a template-id, and EXPLICIT_TARGS are the explicitly provided
5691 template arguments. If OVERLOAD is for one or more member
5692 functions, then ACCESS_PATH is the base path used to reference
5693 those member functions. */
5694
5695 static tree
5696 resolve_address_of_overloaded_function (tree target_type,
5697 tree overload,
5698 tsubst_flags_t flags,
5699 bool template_only,
5700 tree explicit_targs,
5701 tree access_path)
5702 {
5703 /* Here's what the standard says:
5704
5705 [over.over]
5706
5707 If the name is a function template, template argument deduction
5708 is done, and if the argument deduction succeeds, the deduced
5709 arguments are used to generate a single template function, which
5710 is added to the set of overloaded functions considered.
5711
5712 Non-member functions and static member functions match targets of
5713 type "pointer-to-function" or "reference-to-function." Nonstatic
5714 member functions match targets of type "pointer-to-member
5715 function;" the function type of the pointer to member is used to
5716 select the member function from the set of overloaded member
5717 functions. If a nonstatic member function is selected, the
5718 reference to the overloaded function name is required to have the
5719 form of a pointer to member as described in 5.3.1.
5720
5721 If more than one function is selected, any template functions in
5722 the set are eliminated if the set also contains a non-template
5723 function, and any given template function is eliminated if the
5724 set contains a second template function that is more specialized
5725 than the first according to the partial ordering rules 14.5.5.2.
5726 After such eliminations, if any, there shall remain exactly one
5727 selected function. */
5728
5729 int is_ptrmem = 0;
5730 int is_reference = 0;
5731 /* We store the matches in a TREE_LIST rooted here. The functions
5732 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5733 interoperability with most_specialized_instantiation. */
5734 tree matches = NULL_TREE;
5735 tree fn;
5736
5737 /* By the time we get here, we should be seeing only real
5738 pointer-to-member types, not the internal POINTER_TYPE to
5739 METHOD_TYPE representation. */
5740 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
5741 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
5742
5743 gcc_assert (is_overloaded_fn (overload));
5744
5745 /* Check that the TARGET_TYPE is reasonable. */
5746 if (TYPE_PTRFN_P (target_type))
5747 /* This is OK. */;
5748 else if (TYPE_PTRMEMFUNC_P (target_type))
5749 /* This is OK, too. */
5750 is_ptrmem = 1;
5751 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
5752 {
5753 /* This is OK, too. This comes from a conversion to reference
5754 type. */
5755 target_type = build_reference_type (target_type);
5756 is_reference = 1;
5757 }
5758 else
5759 {
5760 if (flags & tf_error)
5761 error ("cannot resolve overloaded function %qD based on"
5762 " conversion to type %qT",
5763 DECL_NAME (OVL_FUNCTION (overload)), target_type);
5764 return error_mark_node;
5765 }
5766
5767 /* If we can find a non-template function that matches, we can just
5768 use it. There's no point in generating template instantiations
5769 if we're just going to throw them out anyhow. But, of course, we
5770 can only do this when we don't *need* a template function. */
5771 if (!template_only)
5772 {
5773 tree fns;
5774
5775 for (fns = overload; fns; fns = OVL_NEXT (fns))
5776 {
5777 tree fn = OVL_CURRENT (fns);
5778 tree fntype;
5779
5780 if (TREE_CODE (fn) == TEMPLATE_DECL)
5781 /* We're not looking for templates just yet. */
5782 continue;
5783
5784 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5785 != is_ptrmem)
5786 /* We're looking for a non-static member, and this isn't
5787 one, or vice versa. */
5788 continue;
5789
5790 /* Ignore functions which haven't been explicitly
5791 declared. */
5792 if (DECL_ANTICIPATED (fn))
5793 continue;
5794
5795 /* See if there's a match. */
5796 fntype = TREE_TYPE (fn);
5797 if (is_ptrmem)
5798 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
5799 else if (!is_reference)
5800 fntype = build_pointer_type (fntype);
5801
5802 if (can_convert_arg (target_type, fntype, fn, LOOKUP_NORMAL))
5803 matches = tree_cons (fn, NULL_TREE, matches);
5804 }
5805 }
5806
5807 /* Now, if we've already got a match (or matches), there's no need
5808 to proceed to the template functions. But, if we don't have a
5809 match we need to look at them, too. */
5810 if (!matches)
5811 {
5812 tree target_fn_type;
5813 tree target_arg_types;
5814 tree target_ret_type;
5815 tree fns;
5816
5817 if (is_ptrmem)
5818 target_fn_type
5819 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
5820 else
5821 target_fn_type = TREE_TYPE (target_type);
5822 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
5823 target_ret_type = TREE_TYPE (target_fn_type);
5824
5825 /* Never do unification on the 'this' parameter. */
5826 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
5827 target_arg_types = TREE_CHAIN (target_arg_types);
5828
5829 for (fns = overload; fns; fns = OVL_NEXT (fns))
5830 {
5831 tree fn = OVL_CURRENT (fns);
5832 tree instantiation;
5833 tree instantiation_type;
5834 tree targs;
5835
5836 if (TREE_CODE (fn) != TEMPLATE_DECL)
5837 /* We're only looking for templates. */
5838 continue;
5839
5840 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5841 != is_ptrmem)
5842 /* We're not looking for a non-static member, and this is
5843 one, or vice versa. */
5844 continue;
5845
5846 /* Try to do argument deduction. */
5847 targs = make_tree_vec (DECL_NTPARMS (fn));
5848 if (fn_type_unification (fn, explicit_targs, targs,
5849 target_arg_types, target_ret_type,
5850 DEDUCE_EXACT, LOOKUP_NORMAL))
5851 /* Argument deduction failed. */
5852 continue;
5853
5854 /* Instantiate the template. */
5855 instantiation = instantiate_template (fn, targs, flags);
5856 if (instantiation == error_mark_node)
5857 /* Instantiation failed. */
5858 continue;
5859
5860 /* See if there's a match. */
5861 instantiation_type = TREE_TYPE (instantiation);
5862 if (is_ptrmem)
5863 instantiation_type =
5864 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
5865 else if (!is_reference)
5866 instantiation_type = build_pointer_type (instantiation_type);
5867 if (can_convert_arg (target_type, instantiation_type, instantiation,
5868 LOOKUP_NORMAL))
5869 matches = tree_cons (instantiation, fn, matches);
5870 }
5871
5872 /* Now, remove all but the most specialized of the matches. */
5873 if (matches)
5874 {
5875 tree match = most_specialized_instantiation (matches);
5876
5877 if (match != error_mark_node)
5878 matches = tree_cons (TREE_PURPOSE (match),
5879 NULL_TREE,
5880 NULL_TREE);
5881 }
5882 }
5883
5884 /* Now we should have exactly one function in MATCHES. */
5885 if (matches == NULL_TREE)
5886 {
5887 /* There were *no* matches. */
5888 if (flags & tf_error)
5889 {
5890 error ("no matches converting function %qD to type %q#T",
5891 DECL_NAME (OVL_FUNCTION (overload)),
5892 target_type);
5893
5894 /* print_candidates expects a chain with the functions in
5895 TREE_VALUE slots, so we cons one up here (we're losing anyway,
5896 so why be clever?). */
5897 for (; overload; overload = OVL_NEXT (overload))
5898 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
5899 matches);
5900
5901 print_candidates (matches);
5902 }
5903 return error_mark_node;
5904 }
5905 else if (TREE_CHAIN (matches))
5906 {
5907 /* There were too many matches. */
5908
5909 if (flags & tf_error)
5910 {
5911 tree match;
5912
5913 error ("converting overloaded function %qD to type %q#T is ambiguous",
5914 DECL_NAME (OVL_FUNCTION (overload)),
5915 target_type);
5916
5917 /* Since print_candidates expects the functions in the
5918 TREE_VALUE slot, we flip them here. */
5919 for (match = matches; match; match = TREE_CHAIN (match))
5920 TREE_VALUE (match) = TREE_PURPOSE (match);
5921
5922 print_candidates (matches);
5923 }
5924
5925 return error_mark_node;
5926 }
5927
5928 /* Good, exactly one match. Now, convert it to the correct type. */
5929 fn = TREE_PURPOSE (matches);
5930
5931 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5932 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
5933 {
5934 static int explained;
5935
5936 if (!(flags & tf_error))
5937 return error_mark_node;
5938
5939 pedwarn ("assuming pointer to member %qD", fn);
5940 if (!explained)
5941 {
5942 pedwarn ("(a pointer to member can only be formed with %<&%E%>)", fn);
5943 explained = 1;
5944 }
5945 }
5946
5947 /* If we're doing overload resolution purely for the purpose of
5948 determining conversion sequences, we should not consider the
5949 function used. If this conversion sequence is selected, the
5950 function will be marked as used at this point. */
5951 if (!(flags & tf_conv))
5952 {
5953 mark_used (fn);
5954 /* We could not check access when this expression was originally
5955 created since we did not know at that time to which function
5956 the expression referred. */
5957 if (DECL_FUNCTION_MEMBER_P (fn))
5958 {
5959 gcc_assert (access_path);
5960 perform_or_defer_access_check (access_path, fn, fn);
5961 }
5962 }
5963
5964 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
5965 return build_unary_op (ADDR_EXPR, fn, 0);
5966 else
5967 {
5968 /* The target must be a REFERENCE_TYPE. Above, build_unary_op
5969 will mark the function as addressed, but here we must do it
5970 explicitly. */
5971 cxx_mark_addressable (fn);
5972
5973 return fn;
5974 }
5975 }
5976
5977 /* This function will instantiate the type of the expression given in
5978 RHS to match the type of LHSTYPE. If errors exist, then return
5979 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
5980 we complain on errors. If we are not complaining, never modify rhs,
5981 as overload resolution wants to try many possible instantiations, in
5982 the hope that at least one will work.
5983
5984 For non-recursive calls, LHSTYPE should be a function, pointer to
5985 function, or a pointer to member function. */
5986
5987 tree
5988 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
5989 {
5990 tsubst_flags_t flags_in = flags;
5991 tree access_path = NULL_TREE;
5992
5993 flags &= ~tf_ptrmem_ok;
5994
5995 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
5996 {
5997 if (flags & tf_error)
5998 error ("not enough type information");
5999 return error_mark_node;
6000 }
6001
6002 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
6003 {
6004 if (same_type_p (lhstype, TREE_TYPE (rhs)))
6005 return rhs;
6006 if (flag_ms_extensions
6007 && TYPE_PTRMEMFUNC_P (lhstype)
6008 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
6009 /* Microsoft allows `A::f' to be resolved to a
6010 pointer-to-member. */
6011 ;
6012 else
6013 {
6014 if (flags & tf_error)
6015 error ("argument of type %qT does not match %qT",
6016 TREE_TYPE (rhs), lhstype);
6017 return error_mark_node;
6018 }
6019 }
6020
6021 if (TREE_CODE (rhs) == BASELINK)
6022 {
6023 access_path = BASELINK_ACCESS_BINFO (rhs);
6024 rhs = BASELINK_FUNCTIONS (rhs);
6025 }
6026
6027 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
6028 deduce any type information. */
6029 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
6030 {
6031 if (flags & tf_error)
6032 error ("not enough type information");
6033 return error_mark_node;
6034 }
6035
6036 /* There only a few kinds of expressions that may have a type
6037 dependent on overload resolution. */
6038 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
6039 || TREE_CODE (rhs) == COMPONENT_REF
6040 || TREE_CODE (rhs) == COMPOUND_EXPR
6041 || really_overloaded_fn (rhs));
6042
6043 /* We don't overwrite rhs if it is an overloaded function.
6044 Copying it would destroy the tree link. */
6045 if (TREE_CODE (rhs) != OVERLOAD)
6046 rhs = copy_node (rhs);
6047
6048 /* This should really only be used when attempting to distinguish
6049 what sort of a pointer to function we have. For now, any
6050 arithmetic operation which is not supported on pointers
6051 is rejected as an error. */
6052
6053 switch (TREE_CODE (rhs))
6054 {
6055 case COMPONENT_REF:
6056 {
6057 tree member = TREE_OPERAND (rhs, 1);
6058
6059 member = instantiate_type (lhstype, member, flags);
6060 if (member != error_mark_node
6061 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
6062 /* Do not lose object's side effects. */
6063 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
6064 TREE_OPERAND (rhs, 0), member);
6065 return member;
6066 }
6067
6068 case OFFSET_REF:
6069 rhs = TREE_OPERAND (rhs, 1);
6070 if (BASELINK_P (rhs))
6071 return instantiate_type (lhstype, rhs, flags_in);
6072
6073 /* This can happen if we are forming a pointer-to-member for a
6074 member template. */
6075 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
6076
6077 /* Fall through. */
6078
6079 case TEMPLATE_ID_EXPR:
6080 {
6081 tree fns = TREE_OPERAND (rhs, 0);
6082 tree args = TREE_OPERAND (rhs, 1);
6083
6084 return
6085 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6086 /*template_only=*/true,
6087 args, access_path);
6088 }
6089
6090 case OVERLOAD:
6091 case FUNCTION_DECL:
6092 return
6093 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6094 /*template_only=*/false,
6095 /*explicit_targs=*/NULL_TREE,
6096 access_path);
6097
6098 case COMPOUND_EXPR:
6099 TREE_OPERAND (rhs, 0)
6100 = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6101 if (TREE_OPERAND (rhs, 0) == error_mark_node)
6102 return error_mark_node;
6103 TREE_OPERAND (rhs, 1)
6104 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6105 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6106 return error_mark_node;
6107
6108 TREE_TYPE (rhs) = lhstype;
6109 return rhs;
6110
6111 case ADDR_EXPR:
6112 {
6113 if (PTRMEM_OK_P (rhs))
6114 flags |= tf_ptrmem_ok;
6115
6116 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6117 }
6118
6119 case ERROR_MARK:
6120 return error_mark_node;
6121
6122 default:
6123 gcc_unreachable ();
6124 }
6125 return error_mark_node;
6126 }
6127 \f
6128 /* Return the name of the virtual function pointer field
6129 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6130 this may have to look back through base types to find the
6131 ultimate field name. (For single inheritance, these could
6132 all be the same name. Who knows for multiple inheritance). */
6133
6134 static tree
6135 get_vfield_name (tree type)
6136 {
6137 tree binfo, base_binfo;
6138 char *buf;
6139
6140 for (binfo = TYPE_BINFO (type);
6141 BINFO_N_BASE_BINFOS (binfo);
6142 binfo = base_binfo)
6143 {
6144 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6145
6146 if (BINFO_VIRTUAL_P (base_binfo)
6147 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6148 break;
6149 }
6150
6151 type = BINFO_TYPE (binfo);
6152 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
6153 + TYPE_NAME_LENGTH (type) + 2);
6154 sprintf (buf, VFIELD_NAME_FORMAT,
6155 IDENTIFIER_POINTER (constructor_name (type)));
6156 return get_identifier (buf);
6157 }
6158
6159 void
6160 print_class_statistics (void)
6161 {
6162 #ifdef GATHER_STATISTICS
6163 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6164 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6165 if (n_vtables)
6166 {
6167 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6168 n_vtables, n_vtable_searches);
6169 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6170 n_vtable_entries, n_vtable_elems);
6171 }
6172 #endif
6173 }
6174
6175 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6176 according to [class]:
6177 The class-name is also inserted
6178 into the scope of the class itself. For purposes of access checking,
6179 the inserted class name is treated as if it were a public member name. */
6180
6181 void
6182 build_self_reference (void)
6183 {
6184 tree name = constructor_name (current_class_type);
6185 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6186 tree saved_cas;
6187
6188 DECL_NONLOCAL (value) = 1;
6189 DECL_CONTEXT (value) = current_class_type;
6190 DECL_ARTIFICIAL (value) = 1;
6191 SET_DECL_SELF_REFERENCE_P (value);
6192
6193 if (processing_template_decl)
6194 value = push_template_decl (value);
6195
6196 saved_cas = current_access_specifier;
6197 current_access_specifier = access_public_node;
6198 finish_member_declaration (value);
6199 current_access_specifier = saved_cas;
6200 }
6201
6202 /* Returns 1 if TYPE contains only padding bytes. */
6203
6204 int
6205 is_empty_class (tree type)
6206 {
6207 if (type == error_mark_node)
6208 return 0;
6209
6210 if (! IS_AGGR_TYPE (type))
6211 return 0;
6212
6213 /* In G++ 3.2, whether or not a class was empty was determined by
6214 looking at its size. */
6215 if (abi_version_at_least (2))
6216 return CLASSTYPE_EMPTY_P (type);
6217 else
6218 return integer_zerop (CLASSTYPE_SIZE (type));
6219 }
6220
6221 /* Returns true if TYPE contains an empty class. */
6222
6223 static bool
6224 contains_empty_class_p (tree type)
6225 {
6226 if (is_empty_class (type))
6227 return true;
6228 if (CLASS_TYPE_P (type))
6229 {
6230 tree field;
6231 tree binfo;
6232 tree base_binfo;
6233 int i;
6234
6235 for (binfo = TYPE_BINFO (type), i = 0;
6236 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6237 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6238 return true;
6239 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6240 if (TREE_CODE (field) == FIELD_DECL
6241 && !DECL_ARTIFICIAL (field)
6242 && is_empty_class (TREE_TYPE (field)))
6243 return true;
6244 }
6245 else if (TREE_CODE (type) == ARRAY_TYPE)
6246 return contains_empty_class_p (TREE_TYPE (type));
6247 return false;
6248 }
6249
6250 /* Note that NAME was looked up while the current class was being
6251 defined and that the result of that lookup was DECL. */
6252
6253 void
6254 maybe_note_name_used_in_class (tree name, tree decl)
6255 {
6256 splay_tree names_used;
6257
6258 /* If we're not defining a class, there's nothing to do. */
6259 if (!(innermost_scope_kind() == sk_class
6260 && TYPE_BEING_DEFINED (current_class_type)))
6261 return;
6262
6263 /* If there's already a binding for this NAME, then we don't have
6264 anything to worry about. */
6265 if (lookup_member (current_class_type, name,
6266 /*protect=*/0, /*want_type=*/false))
6267 return;
6268
6269 if (!current_class_stack[current_class_depth - 1].names_used)
6270 current_class_stack[current_class_depth - 1].names_used
6271 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6272 names_used = current_class_stack[current_class_depth - 1].names_used;
6273
6274 splay_tree_insert (names_used,
6275 (splay_tree_key) name,
6276 (splay_tree_value) decl);
6277 }
6278
6279 /* Note that NAME was declared (as DECL) in the current class. Check
6280 to see that the declaration is valid. */
6281
6282 void
6283 note_name_declared_in_class (tree name, tree decl)
6284 {
6285 splay_tree names_used;
6286 splay_tree_node n;
6287
6288 /* Look to see if we ever used this name. */
6289 names_used
6290 = current_class_stack[current_class_depth - 1].names_used;
6291 if (!names_used)
6292 return;
6293
6294 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6295 if (n)
6296 {
6297 /* [basic.scope.class]
6298
6299 A name N used in a class S shall refer to the same declaration
6300 in its context and when re-evaluated in the completed scope of
6301 S. */
6302 pedwarn ("declaration of %q#D", decl);
6303 pedwarn ("changes meaning of %qD from %q+#D",
6304 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
6305 }
6306 }
6307
6308 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6309 Secondary vtables are merged with primary vtables; this function
6310 will return the VAR_DECL for the primary vtable. */
6311
6312 tree
6313 get_vtbl_decl_for_binfo (tree binfo)
6314 {
6315 tree decl;
6316
6317 decl = BINFO_VTABLE (binfo);
6318 if (decl && TREE_CODE (decl) == PLUS_EXPR)
6319 {
6320 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6321 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6322 }
6323 if (decl)
6324 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6325 return decl;
6326 }
6327
6328
6329 /* Returns the binfo for the primary base of BINFO. If the resulting
6330 BINFO is a virtual base, and it is inherited elsewhere in the
6331 hierarchy, then the returned binfo might not be the primary base of
6332 BINFO in the complete object. Check BINFO_PRIMARY_P or
6333 BINFO_LOST_PRIMARY_P to be sure. */
6334
6335 static tree
6336 get_primary_binfo (tree binfo)
6337 {
6338 tree primary_base;
6339
6340 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6341 if (!primary_base)
6342 return NULL_TREE;
6343
6344 return copied_binfo (primary_base, binfo);
6345 }
6346
6347 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6348
6349 static int
6350 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6351 {
6352 if (!indented_p)
6353 fprintf (stream, "%*s", indent, "");
6354 return 1;
6355 }
6356
6357 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6358 INDENT should be zero when called from the top level; it is
6359 incremented recursively. IGO indicates the next expected BINFO in
6360 inheritance graph ordering. */
6361
6362 static tree
6363 dump_class_hierarchy_r (FILE *stream,
6364 int flags,
6365 tree binfo,
6366 tree igo,
6367 int indent)
6368 {
6369 int indented = 0;
6370 tree base_binfo;
6371 int i;
6372
6373 indented = maybe_indent_hierarchy (stream, indent, 0);
6374 fprintf (stream, "%s (0x%lx) ",
6375 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6376 (unsigned long) binfo);
6377 if (binfo != igo)
6378 {
6379 fprintf (stream, "alternative-path\n");
6380 return igo;
6381 }
6382 igo = TREE_CHAIN (binfo);
6383
6384 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6385 tree_low_cst (BINFO_OFFSET (binfo), 0));
6386 if (is_empty_class (BINFO_TYPE (binfo)))
6387 fprintf (stream, " empty");
6388 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6389 fprintf (stream, " nearly-empty");
6390 if (BINFO_VIRTUAL_P (binfo))
6391 fprintf (stream, " virtual");
6392 fprintf (stream, "\n");
6393
6394 indented = 0;
6395 if (BINFO_PRIMARY_P (binfo))
6396 {
6397 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6398 fprintf (stream, " primary-for %s (0x%lx)",
6399 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6400 TFF_PLAIN_IDENTIFIER),
6401 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6402 }
6403 if (BINFO_LOST_PRIMARY_P (binfo))
6404 {
6405 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6406 fprintf (stream, " lost-primary");
6407 }
6408 if (indented)
6409 fprintf (stream, "\n");
6410
6411 if (!(flags & TDF_SLIM))
6412 {
6413 int indented = 0;
6414
6415 if (BINFO_SUBVTT_INDEX (binfo))
6416 {
6417 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6418 fprintf (stream, " subvttidx=%s",
6419 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6420 TFF_PLAIN_IDENTIFIER));
6421 }
6422 if (BINFO_VPTR_INDEX (binfo))
6423 {
6424 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6425 fprintf (stream, " vptridx=%s",
6426 expr_as_string (BINFO_VPTR_INDEX (binfo),
6427 TFF_PLAIN_IDENTIFIER));
6428 }
6429 if (BINFO_VPTR_FIELD (binfo))
6430 {
6431 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6432 fprintf (stream, " vbaseoffset=%s",
6433 expr_as_string (BINFO_VPTR_FIELD (binfo),
6434 TFF_PLAIN_IDENTIFIER));
6435 }
6436 if (BINFO_VTABLE (binfo))
6437 {
6438 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6439 fprintf (stream, " vptr=%s",
6440 expr_as_string (BINFO_VTABLE (binfo),
6441 TFF_PLAIN_IDENTIFIER));
6442 }
6443
6444 if (indented)
6445 fprintf (stream, "\n");
6446 }
6447
6448 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6449 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6450
6451 return igo;
6452 }
6453
6454 /* Dump the BINFO hierarchy for T. */
6455
6456 static void
6457 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6458 {
6459 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6460 fprintf (stream, " size=%lu align=%lu\n",
6461 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6462 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6463 fprintf (stream, " base size=%lu base align=%lu\n",
6464 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6465 / BITS_PER_UNIT),
6466 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6467 / BITS_PER_UNIT));
6468 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6469 fprintf (stream, "\n");
6470 }
6471
6472 /* Debug interface to hierarchy dumping. */
6473
6474 void
6475 debug_class (tree t)
6476 {
6477 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6478 }
6479
6480 static void
6481 dump_class_hierarchy (tree t)
6482 {
6483 int flags;
6484 FILE *stream = dump_begin (TDI_class, &flags);
6485
6486 if (stream)
6487 {
6488 dump_class_hierarchy_1 (stream, flags, t);
6489 dump_end (TDI_class, stream);
6490 }
6491 }
6492
6493 static void
6494 dump_array (FILE * stream, tree decl)
6495 {
6496 tree value;
6497 unsigned HOST_WIDE_INT ix;
6498 HOST_WIDE_INT elt;
6499 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6500
6501 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6502 / BITS_PER_UNIT);
6503 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6504 fprintf (stream, " %s entries",
6505 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6506 TFF_PLAIN_IDENTIFIER));
6507 fprintf (stream, "\n");
6508
6509 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
6510 ix, value)
6511 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6512 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
6513 }
6514
6515 static void
6516 dump_vtable (tree t, tree binfo, tree vtable)
6517 {
6518 int flags;
6519 FILE *stream = dump_begin (TDI_class, &flags);
6520
6521 if (!stream)
6522 return;
6523
6524 if (!(flags & TDF_SLIM))
6525 {
6526 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6527
6528 fprintf (stream, "%s for %s",
6529 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6530 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6531 if (ctor_vtbl_p)
6532 {
6533 if (!BINFO_VIRTUAL_P (binfo))
6534 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6535 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6536 }
6537 fprintf (stream, "\n");
6538 dump_array (stream, vtable);
6539 fprintf (stream, "\n");
6540 }
6541
6542 dump_end (TDI_class, stream);
6543 }
6544
6545 static void
6546 dump_vtt (tree t, tree vtt)
6547 {
6548 int flags;
6549 FILE *stream = dump_begin (TDI_class, &flags);
6550
6551 if (!stream)
6552 return;
6553
6554 if (!(flags & TDF_SLIM))
6555 {
6556 fprintf (stream, "VTT for %s\n",
6557 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6558 dump_array (stream, vtt);
6559 fprintf (stream, "\n");
6560 }
6561
6562 dump_end (TDI_class, stream);
6563 }
6564
6565 /* Dump a function or thunk and its thunkees. */
6566
6567 static void
6568 dump_thunk (FILE *stream, int indent, tree thunk)
6569 {
6570 static const char spaces[] = " ";
6571 tree name = DECL_NAME (thunk);
6572 tree thunks;
6573
6574 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6575 (void *)thunk,
6576 !DECL_THUNK_P (thunk) ? "function"
6577 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6578 name ? IDENTIFIER_POINTER (name) : "<unset>");
6579 if (DECL_THUNK_P (thunk))
6580 {
6581 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6582 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6583
6584 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6585 if (!virtual_adjust)
6586 /*NOP*/;
6587 else if (DECL_THIS_THUNK_P (thunk))
6588 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6589 tree_low_cst (virtual_adjust, 0));
6590 else
6591 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6592 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6593 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6594 if (THUNK_ALIAS (thunk))
6595 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6596 }
6597 fprintf (stream, "\n");
6598 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6599 dump_thunk (stream, indent + 2, thunks);
6600 }
6601
6602 /* Dump the thunks for FN. */
6603
6604 void
6605 debug_thunks (tree fn)
6606 {
6607 dump_thunk (stderr, 0, fn);
6608 }
6609
6610 /* Virtual function table initialization. */
6611
6612 /* Create all the necessary vtables for T and its base classes. */
6613
6614 static void
6615 finish_vtbls (tree t)
6616 {
6617 tree list;
6618 tree vbase;
6619
6620 /* We lay out the primary and secondary vtables in one contiguous
6621 vtable. The primary vtable is first, followed by the non-virtual
6622 secondary vtables in inheritance graph order. */
6623 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6624 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6625 TYPE_BINFO (t), t, list);
6626
6627 /* Then come the virtual bases, also in inheritance graph order. */
6628 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6629 {
6630 if (!BINFO_VIRTUAL_P (vbase))
6631 continue;
6632 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6633 }
6634
6635 if (BINFO_VTABLE (TYPE_BINFO (t)))
6636 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6637 }
6638
6639 /* Initialize the vtable for BINFO with the INITS. */
6640
6641 static void
6642 initialize_vtable (tree binfo, tree inits)
6643 {
6644 tree decl;
6645
6646 layout_vtable_decl (binfo, list_length (inits));
6647 decl = get_vtbl_decl_for_binfo (binfo);
6648 initialize_artificial_var (decl, inits);
6649 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6650 }
6651
6652 /* Build the VTT (virtual table table) for T.
6653 A class requires a VTT if it has virtual bases.
6654
6655 This holds
6656 1 - primary virtual pointer for complete object T
6657 2 - secondary VTTs for each direct non-virtual base of T which requires a
6658 VTT
6659 3 - secondary virtual pointers for each direct or indirect base of T which
6660 has virtual bases or is reachable via a virtual path from T.
6661 4 - secondary VTTs for each direct or indirect virtual base of T.
6662
6663 Secondary VTTs look like complete object VTTs without part 4. */
6664
6665 static void
6666 build_vtt (tree t)
6667 {
6668 tree inits;
6669 tree type;
6670 tree vtt;
6671 tree index;
6672
6673 /* Build up the initializers for the VTT. */
6674 inits = NULL_TREE;
6675 index = size_zero_node;
6676 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6677
6678 /* If we didn't need a VTT, we're done. */
6679 if (!inits)
6680 return;
6681
6682 /* Figure out the type of the VTT. */
6683 type = build_index_type (size_int (list_length (inits) - 1));
6684 type = build_cplus_array_type (const_ptr_type_node, type);
6685
6686 /* Now, build the VTT object itself. */
6687 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
6688 initialize_artificial_var (vtt, inits);
6689 /* Add the VTT to the vtables list. */
6690 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6691 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6692
6693 dump_vtt (t, vtt);
6694 }
6695
6696 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6697 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6698 and CHAIN the vtable pointer for this binfo after construction is
6699 complete. VALUE can also be another BINFO, in which case we recurse. */
6700
6701 static tree
6702 binfo_ctor_vtable (tree binfo)
6703 {
6704 tree vt;
6705
6706 while (1)
6707 {
6708 vt = BINFO_VTABLE (binfo);
6709 if (TREE_CODE (vt) == TREE_LIST)
6710 vt = TREE_VALUE (vt);
6711 if (TREE_CODE (vt) == TREE_BINFO)
6712 binfo = vt;
6713 else
6714 break;
6715 }
6716
6717 return vt;
6718 }
6719
6720 /* Data for secondary VTT initialization. */
6721 typedef struct secondary_vptr_vtt_init_data_s
6722 {
6723 /* Is this the primary VTT? */
6724 bool top_level_p;
6725
6726 /* Current index into the VTT. */
6727 tree index;
6728
6729 /* TREE_LIST of initializers built up. */
6730 tree inits;
6731
6732 /* The type being constructed by this secondary VTT. */
6733 tree type_being_constructed;
6734 } secondary_vptr_vtt_init_data;
6735
6736 /* Recursively build the VTT-initializer for BINFO (which is in the
6737 hierarchy dominated by T). INITS points to the end of the initializer
6738 list to date. INDEX is the VTT index where the next element will be
6739 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6740 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6741 for virtual bases of T. When it is not so, we build the constructor
6742 vtables for the BINFO-in-T variant. */
6743
6744 static tree *
6745 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
6746 {
6747 int i;
6748 tree b;
6749 tree init;
6750 tree secondary_vptrs;
6751 secondary_vptr_vtt_init_data data;
6752 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
6753
6754 /* We only need VTTs for subobjects with virtual bases. */
6755 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
6756 return inits;
6757
6758 /* We need to use a construction vtable if this is not the primary
6759 VTT. */
6760 if (!top_level_p)
6761 {
6762 build_ctor_vtbl_group (binfo, t);
6763
6764 /* Record the offset in the VTT where this sub-VTT can be found. */
6765 BINFO_SUBVTT_INDEX (binfo) = *index;
6766 }
6767
6768 /* Add the address of the primary vtable for the complete object. */
6769 init = binfo_ctor_vtable (binfo);
6770 *inits = build_tree_list (NULL_TREE, init);
6771 inits = &TREE_CHAIN (*inits);
6772 if (top_level_p)
6773 {
6774 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6775 BINFO_VPTR_INDEX (binfo) = *index;
6776 }
6777 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
6778
6779 /* Recursively add the secondary VTTs for non-virtual bases. */
6780 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
6781 if (!BINFO_VIRTUAL_P (b))
6782 inits = build_vtt_inits (b, t, inits, index);
6783
6784 /* Add secondary virtual pointers for all subobjects of BINFO with
6785 either virtual bases or reachable along a virtual path, except
6786 subobjects that are non-virtual primary bases. */
6787 data.top_level_p = top_level_p;
6788 data.index = *index;
6789 data.inits = NULL;
6790 data.type_being_constructed = BINFO_TYPE (binfo);
6791
6792 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
6793
6794 *index = data.index;
6795
6796 /* The secondary vptrs come back in reverse order. After we reverse
6797 them, and add the INITS, the last init will be the first element
6798 of the chain. */
6799 secondary_vptrs = data.inits;
6800 if (secondary_vptrs)
6801 {
6802 *inits = nreverse (secondary_vptrs);
6803 inits = &TREE_CHAIN (secondary_vptrs);
6804 gcc_assert (*inits == NULL_TREE);
6805 }
6806
6807 if (top_level_p)
6808 /* Add the secondary VTTs for virtual bases in inheritance graph
6809 order. */
6810 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
6811 {
6812 if (!BINFO_VIRTUAL_P (b))
6813 continue;
6814
6815 inits = build_vtt_inits (b, t, inits, index);
6816 }
6817 else
6818 /* Remove the ctor vtables we created. */
6819 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
6820
6821 return inits;
6822 }
6823
6824 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
6825 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
6826
6827 static tree
6828 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
6829 {
6830 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
6831
6832 /* We don't care about bases that don't have vtables. */
6833 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
6834 return dfs_skip_bases;
6835
6836 /* We're only interested in proper subobjects of the type being
6837 constructed. */
6838 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
6839 return NULL_TREE;
6840
6841 /* We're only interested in bases with virtual bases or reachable
6842 via a virtual path from the type being constructed. */
6843 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
6844 || binfo_via_virtual (binfo, data->type_being_constructed)))
6845 return dfs_skip_bases;
6846
6847 /* We're not interested in non-virtual primary bases. */
6848 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
6849 return NULL_TREE;
6850
6851 /* Record the index where this secondary vptr can be found. */
6852 if (data->top_level_p)
6853 {
6854 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6855 BINFO_VPTR_INDEX (binfo) = data->index;
6856
6857 if (BINFO_VIRTUAL_P (binfo))
6858 {
6859 /* It's a primary virtual base, and this is not a
6860 construction vtable. Find the base this is primary of in
6861 the inheritance graph, and use that base's vtable
6862 now. */
6863 while (BINFO_PRIMARY_P (binfo))
6864 binfo = BINFO_INHERITANCE_CHAIN (binfo);
6865 }
6866 }
6867
6868 /* Add the initializer for the secondary vptr itself. */
6869 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
6870
6871 /* Advance the vtt index. */
6872 data->index = size_binop (PLUS_EXPR, data->index,
6873 TYPE_SIZE_UNIT (ptr_type_node));
6874
6875 return NULL_TREE;
6876 }
6877
6878 /* Called from build_vtt_inits via dfs_walk. After building
6879 constructor vtables and generating the sub-vtt from them, we need
6880 to restore the BINFO_VTABLES that were scribbled on. DATA is the
6881 binfo of the base whose sub vtt was generated. */
6882
6883 static tree
6884 dfs_fixup_binfo_vtbls (tree binfo, void* data)
6885 {
6886 tree vtable = BINFO_VTABLE (binfo);
6887
6888 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
6889 /* If this class has no vtable, none of its bases do. */
6890 return dfs_skip_bases;
6891
6892 if (!vtable)
6893 /* This might be a primary base, so have no vtable in this
6894 hierarchy. */
6895 return NULL_TREE;
6896
6897 /* If we scribbled the construction vtable vptr into BINFO, clear it
6898 out now. */
6899 if (TREE_CODE (vtable) == TREE_LIST
6900 && (TREE_PURPOSE (vtable) == (tree) data))
6901 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
6902
6903 return NULL_TREE;
6904 }
6905
6906 /* Build the construction vtable group for BINFO which is in the
6907 hierarchy dominated by T. */
6908
6909 static void
6910 build_ctor_vtbl_group (tree binfo, tree t)
6911 {
6912 tree list;
6913 tree type;
6914 tree vtbl;
6915 tree inits;
6916 tree id;
6917 tree vbase;
6918
6919 /* See if we've already created this construction vtable group. */
6920 id = mangle_ctor_vtbl_for_type (t, binfo);
6921 if (IDENTIFIER_GLOBAL_VALUE (id))
6922 return;
6923
6924 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
6925 /* Build a version of VTBL (with the wrong type) for use in
6926 constructing the addresses of secondary vtables in the
6927 construction vtable group. */
6928 vtbl = build_vtable (t, id, ptr_type_node);
6929 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
6930 list = build_tree_list (vtbl, NULL_TREE);
6931 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
6932 binfo, t, list);
6933
6934 /* Add the vtables for each of our virtual bases using the vbase in T
6935 binfo. */
6936 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
6937 vbase;
6938 vbase = TREE_CHAIN (vbase))
6939 {
6940 tree b;
6941
6942 if (!BINFO_VIRTUAL_P (vbase))
6943 continue;
6944 b = copied_binfo (vbase, binfo);
6945
6946 accumulate_vtbl_inits (b, vbase, binfo, t, list);
6947 }
6948 inits = TREE_VALUE (list);
6949
6950 /* Figure out the type of the construction vtable. */
6951 type = build_index_type (size_int (list_length (inits) - 1));
6952 type = build_cplus_array_type (vtable_entry_type, type);
6953 TREE_TYPE (vtbl) = type;
6954
6955 /* Initialize the construction vtable. */
6956 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
6957 initialize_artificial_var (vtbl, inits);
6958 dump_vtable (t, binfo, vtbl);
6959 }
6960
6961 /* Add the vtbl initializers for BINFO (and its bases other than
6962 non-virtual primaries) to the list of INITS. BINFO is in the
6963 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
6964 the constructor the vtbl inits should be accumulated for. (If this
6965 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
6966 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
6967 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
6968 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
6969 but are not necessarily the same in terms of layout. */
6970
6971 static void
6972 accumulate_vtbl_inits (tree binfo,
6973 tree orig_binfo,
6974 tree rtti_binfo,
6975 tree t,
6976 tree inits)
6977 {
6978 int i;
6979 tree base_binfo;
6980 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
6981
6982 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
6983
6984 /* If it doesn't have a vptr, we don't do anything. */
6985 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
6986 return;
6987
6988 /* If we're building a construction vtable, we're not interested in
6989 subobjects that don't require construction vtables. */
6990 if (ctor_vtbl_p
6991 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
6992 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
6993 return;
6994
6995 /* Build the initializers for the BINFO-in-T vtable. */
6996 TREE_VALUE (inits)
6997 = chainon (TREE_VALUE (inits),
6998 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
6999 rtti_binfo, t, inits));
7000
7001 /* Walk the BINFO and its bases. We walk in preorder so that as we
7002 initialize each vtable we can figure out at what offset the
7003 secondary vtable lies from the primary vtable. We can't use
7004 dfs_walk here because we need to iterate through bases of BINFO
7005 and RTTI_BINFO simultaneously. */
7006 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7007 {
7008 /* Skip virtual bases. */
7009 if (BINFO_VIRTUAL_P (base_binfo))
7010 continue;
7011 accumulate_vtbl_inits (base_binfo,
7012 BINFO_BASE_BINFO (orig_binfo, i),
7013 rtti_binfo, t,
7014 inits);
7015 }
7016 }
7017
7018 /* Called from accumulate_vtbl_inits. Returns the initializers for
7019 the BINFO vtable. */
7020
7021 static tree
7022 dfs_accumulate_vtbl_inits (tree binfo,
7023 tree orig_binfo,
7024 tree rtti_binfo,
7025 tree t,
7026 tree l)
7027 {
7028 tree inits = NULL_TREE;
7029 tree vtbl = NULL_TREE;
7030 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7031
7032 if (ctor_vtbl_p
7033 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7034 {
7035 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7036 primary virtual base. If it is not the same primary in
7037 the hierarchy of T, we'll need to generate a ctor vtable
7038 for it, to place at its location in T. If it is the same
7039 primary, we still need a VTT entry for the vtable, but it
7040 should point to the ctor vtable for the base it is a
7041 primary for within the sub-hierarchy of RTTI_BINFO.
7042
7043 There are three possible cases:
7044
7045 1) We are in the same place.
7046 2) We are a primary base within a lost primary virtual base of
7047 RTTI_BINFO.
7048 3) We are primary to something not a base of RTTI_BINFO. */
7049
7050 tree b;
7051 tree last = NULL_TREE;
7052
7053 /* First, look through the bases we are primary to for RTTI_BINFO
7054 or a virtual base. */
7055 b = binfo;
7056 while (BINFO_PRIMARY_P (b))
7057 {
7058 b = BINFO_INHERITANCE_CHAIN (b);
7059 last = b;
7060 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7061 goto found;
7062 }
7063 /* If we run out of primary links, keep looking down our
7064 inheritance chain; we might be an indirect primary. */
7065 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7066 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7067 break;
7068 found:
7069
7070 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7071 base B and it is a base of RTTI_BINFO, this is case 2. In
7072 either case, we share our vtable with LAST, i.e. the
7073 derived-most base within B of which we are a primary. */
7074 if (b == rtti_binfo
7075 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7076 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7077 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7078 binfo_ctor_vtable after everything's been set up. */
7079 vtbl = last;
7080
7081 /* Otherwise, this is case 3 and we get our own. */
7082 }
7083 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7084 return inits;
7085
7086 if (!vtbl)
7087 {
7088 tree index;
7089 int non_fn_entries;
7090
7091 /* Compute the initializer for this vtable. */
7092 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7093 &non_fn_entries);
7094
7095 /* Figure out the position to which the VPTR should point. */
7096 vtbl = TREE_PURPOSE (l);
7097 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7098 index = size_binop (PLUS_EXPR,
7099 size_int (non_fn_entries),
7100 size_int (list_length (TREE_VALUE (l))));
7101 index = size_binop (MULT_EXPR,
7102 TYPE_SIZE_UNIT (vtable_entry_type),
7103 index);
7104 vtbl = build2 (PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7105 }
7106
7107 if (ctor_vtbl_p)
7108 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7109 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7110 straighten this out. */
7111 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7112 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7113 inits = NULL_TREE;
7114 else
7115 /* For an ordinary vtable, set BINFO_VTABLE. */
7116 BINFO_VTABLE (binfo) = vtbl;
7117
7118 return inits;
7119 }
7120
7121 static GTY(()) tree abort_fndecl_addr;
7122
7123 /* Construct the initializer for BINFO's virtual function table. BINFO
7124 is part of the hierarchy dominated by T. If we're building a
7125 construction vtable, the ORIG_BINFO is the binfo we should use to
7126 find the actual function pointers to put in the vtable - but they
7127 can be overridden on the path to most-derived in the graph that
7128 ORIG_BINFO belongs. Otherwise,
7129 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7130 BINFO that should be indicated by the RTTI information in the
7131 vtable; it will be a base class of T, rather than T itself, if we
7132 are building a construction vtable.
7133
7134 The value returned is a TREE_LIST suitable for wrapping in a
7135 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7136 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7137 number of non-function entries in the vtable.
7138
7139 It might seem that this function should never be called with a
7140 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7141 base is always subsumed by a derived class vtable. However, when
7142 we are building construction vtables, we do build vtables for
7143 primary bases; we need these while the primary base is being
7144 constructed. */
7145
7146 static tree
7147 build_vtbl_initializer (tree binfo,
7148 tree orig_binfo,
7149 tree t,
7150 tree rtti_binfo,
7151 int* non_fn_entries_p)
7152 {
7153 tree v, b;
7154 tree vfun_inits;
7155 vtbl_init_data vid;
7156 unsigned ix;
7157 tree vbinfo;
7158 VEC(tree,gc) *vbases;
7159
7160 /* Initialize VID. */
7161 memset (&vid, 0, sizeof (vid));
7162 vid.binfo = binfo;
7163 vid.derived = t;
7164 vid.rtti_binfo = rtti_binfo;
7165 vid.last_init = &vid.inits;
7166 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7167 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7168 vid.generate_vcall_entries = true;
7169 /* The first vbase or vcall offset is at index -3 in the vtable. */
7170 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7171
7172 /* Add entries to the vtable for RTTI. */
7173 build_rtti_vtbl_entries (binfo, &vid);
7174
7175 /* Create an array for keeping track of the functions we've
7176 processed. When we see multiple functions with the same
7177 signature, we share the vcall offsets. */
7178 vid.fns = VEC_alloc (tree, gc, 32);
7179 /* Add the vcall and vbase offset entries. */
7180 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7181
7182 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7183 build_vbase_offset_vtbl_entries. */
7184 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7185 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7186 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7187
7188 /* If the target requires padding between data entries, add that now. */
7189 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7190 {
7191 tree cur, *prev;
7192
7193 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7194 {
7195 tree add = cur;
7196 int i;
7197
7198 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7199 add = tree_cons (NULL_TREE,
7200 build1 (NOP_EXPR, vtable_entry_type,
7201 null_pointer_node),
7202 add);
7203 *prev = add;
7204 }
7205 }
7206
7207 if (non_fn_entries_p)
7208 *non_fn_entries_p = list_length (vid.inits);
7209
7210 /* Go through all the ordinary virtual functions, building up
7211 initializers. */
7212 vfun_inits = NULL_TREE;
7213 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7214 {
7215 tree delta;
7216 tree vcall_index;
7217 tree fn, fn_original;
7218 tree init = NULL_TREE;
7219
7220 fn = BV_FN (v);
7221 fn_original = fn;
7222 if (DECL_THUNK_P (fn))
7223 {
7224 if (!DECL_NAME (fn))
7225 finish_thunk (fn);
7226 if (THUNK_ALIAS (fn))
7227 {
7228 fn = THUNK_ALIAS (fn);
7229 BV_FN (v) = fn;
7230 }
7231 fn_original = THUNK_TARGET (fn);
7232 }
7233
7234 /* If the only definition of this function signature along our
7235 primary base chain is from a lost primary, this vtable slot will
7236 never be used, so just zero it out. This is important to avoid
7237 requiring extra thunks which cannot be generated with the function.
7238
7239 We first check this in update_vtable_entry_for_fn, so we handle
7240 restored primary bases properly; we also need to do it here so we
7241 zero out unused slots in ctor vtables, rather than filling themff
7242 with erroneous values (though harmless, apart from relocation
7243 costs). */
7244 for (b = binfo; ; b = get_primary_binfo (b))
7245 {
7246 /* We found a defn before a lost primary; go ahead as normal. */
7247 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7248 break;
7249
7250 /* The nearest definition is from a lost primary; clear the
7251 slot. */
7252 if (BINFO_LOST_PRIMARY_P (b))
7253 {
7254 init = size_zero_node;
7255 break;
7256 }
7257 }
7258
7259 if (! init)
7260 {
7261 /* Pull the offset for `this', and the function to call, out of
7262 the list. */
7263 delta = BV_DELTA (v);
7264 vcall_index = BV_VCALL_INDEX (v);
7265
7266 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7267 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7268
7269 /* You can't call an abstract virtual function; it's abstract.
7270 So, we replace these functions with __pure_virtual. */
7271 if (DECL_PURE_VIRTUAL_P (fn_original))
7272 {
7273 fn = abort_fndecl;
7274 if (abort_fndecl_addr == NULL)
7275 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7276 init = abort_fndecl_addr;
7277 }
7278 else
7279 {
7280 if (!integer_zerop (delta) || vcall_index)
7281 {
7282 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7283 if (!DECL_NAME (fn))
7284 finish_thunk (fn);
7285 }
7286 /* Take the address of the function, considering it to be of an
7287 appropriate generic type. */
7288 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7289 }
7290 }
7291
7292 /* And add it to the chain of initializers. */
7293 if (TARGET_VTABLE_USES_DESCRIPTORS)
7294 {
7295 int i;
7296 if (init == size_zero_node)
7297 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7298 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7299 else
7300 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7301 {
7302 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7303 TREE_OPERAND (init, 0),
7304 build_int_cst (NULL_TREE, i));
7305 TREE_CONSTANT (fdesc) = 1;
7306 TREE_INVARIANT (fdesc) = 1;
7307
7308 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7309 }
7310 }
7311 else
7312 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7313 }
7314
7315 /* The initializers for virtual functions were built up in reverse
7316 order; straighten them out now. */
7317 vfun_inits = nreverse (vfun_inits);
7318
7319 /* The negative offset initializers are also in reverse order. */
7320 vid.inits = nreverse (vid.inits);
7321
7322 /* Chain the two together. */
7323 return chainon (vid.inits, vfun_inits);
7324 }
7325
7326 /* Adds to vid->inits the initializers for the vbase and vcall
7327 offsets in BINFO, which is in the hierarchy dominated by T. */
7328
7329 static void
7330 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7331 {
7332 tree b;
7333
7334 /* If this is a derived class, we must first create entries
7335 corresponding to the primary base class. */
7336 b = get_primary_binfo (binfo);
7337 if (b)
7338 build_vcall_and_vbase_vtbl_entries (b, vid);
7339
7340 /* Add the vbase entries for this base. */
7341 build_vbase_offset_vtbl_entries (binfo, vid);
7342 /* Add the vcall entries for this base. */
7343 build_vcall_offset_vtbl_entries (binfo, vid);
7344 }
7345
7346 /* Returns the initializers for the vbase offset entries in the vtable
7347 for BINFO (which is part of the class hierarchy dominated by T), in
7348 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7349 where the next vbase offset will go. */
7350
7351 static void
7352 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7353 {
7354 tree vbase;
7355 tree t;
7356 tree non_primary_binfo;
7357
7358 /* If there are no virtual baseclasses, then there is nothing to
7359 do. */
7360 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7361 return;
7362
7363 t = vid->derived;
7364
7365 /* We might be a primary base class. Go up the inheritance hierarchy
7366 until we find the most derived class of which we are a primary base:
7367 it is the offset of that which we need to use. */
7368 non_primary_binfo = binfo;
7369 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7370 {
7371 tree b;
7372
7373 /* If we have reached a virtual base, then it must be a primary
7374 base (possibly multi-level) of vid->binfo, or we wouldn't
7375 have called build_vcall_and_vbase_vtbl_entries for it. But it
7376 might be a lost primary, so just skip down to vid->binfo. */
7377 if (BINFO_VIRTUAL_P (non_primary_binfo))
7378 {
7379 non_primary_binfo = vid->binfo;
7380 break;
7381 }
7382
7383 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7384 if (get_primary_binfo (b) != non_primary_binfo)
7385 break;
7386 non_primary_binfo = b;
7387 }
7388
7389 /* Go through the virtual bases, adding the offsets. */
7390 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7391 vbase;
7392 vbase = TREE_CHAIN (vbase))
7393 {
7394 tree b;
7395 tree delta;
7396
7397 if (!BINFO_VIRTUAL_P (vbase))
7398 continue;
7399
7400 /* Find the instance of this virtual base in the complete
7401 object. */
7402 b = copied_binfo (vbase, binfo);
7403
7404 /* If we've already got an offset for this virtual base, we
7405 don't need another one. */
7406 if (BINFO_VTABLE_PATH_MARKED (b))
7407 continue;
7408 BINFO_VTABLE_PATH_MARKED (b) = 1;
7409
7410 /* Figure out where we can find this vbase offset. */
7411 delta = size_binop (MULT_EXPR,
7412 vid->index,
7413 convert (ssizetype,
7414 TYPE_SIZE_UNIT (vtable_entry_type)));
7415 if (vid->primary_vtbl_p)
7416 BINFO_VPTR_FIELD (b) = delta;
7417
7418 if (binfo != TYPE_BINFO (t))
7419 /* The vbase offset had better be the same. */
7420 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7421
7422 /* The next vbase will come at a more negative offset. */
7423 vid->index = size_binop (MINUS_EXPR, vid->index,
7424 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7425
7426 /* The initializer is the delta from BINFO to this virtual base.
7427 The vbase offsets go in reverse inheritance-graph order, and
7428 we are walking in inheritance graph order so these end up in
7429 the right order. */
7430 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7431
7432 *vid->last_init
7433 = build_tree_list (NULL_TREE,
7434 fold_build1 (NOP_EXPR,
7435 vtable_entry_type,
7436 delta));
7437 vid->last_init = &TREE_CHAIN (*vid->last_init);
7438 }
7439 }
7440
7441 /* Adds the initializers for the vcall offset entries in the vtable
7442 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7443 to VID->INITS. */
7444
7445 static void
7446 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7447 {
7448 /* We only need these entries if this base is a virtual base. We
7449 compute the indices -- but do not add to the vtable -- when
7450 building the main vtable for a class. */
7451 if (binfo == TYPE_BINFO (vid->derived)
7452 || (BINFO_VIRTUAL_P (binfo)
7453 /* If BINFO is RTTI_BINFO, then (since BINFO does not
7454 correspond to VID->DERIVED), we are building a primary
7455 construction virtual table. Since this is a primary
7456 virtual table, we do not need the vcall offsets for
7457 BINFO. */
7458 && binfo != vid->rtti_binfo))
7459 {
7460 /* We need a vcall offset for each of the virtual functions in this
7461 vtable. For example:
7462
7463 class A { virtual void f (); };
7464 class B1 : virtual public A { virtual void f (); };
7465 class B2 : virtual public A { virtual void f (); };
7466 class C: public B1, public B2 { virtual void f (); };
7467
7468 A C object has a primary base of B1, which has a primary base of A. A
7469 C also has a secondary base of B2, which no longer has a primary base
7470 of A. So the B2-in-C construction vtable needs a secondary vtable for
7471 A, which will adjust the A* to a B2* to call f. We have no way of
7472 knowing what (or even whether) this offset will be when we define B2,
7473 so we store this "vcall offset" in the A sub-vtable and look it up in
7474 a "virtual thunk" for B2::f.
7475
7476 We need entries for all the functions in our primary vtable and
7477 in our non-virtual bases' secondary vtables. */
7478 vid->vbase = binfo;
7479 /* If we are just computing the vcall indices -- but do not need
7480 the actual entries -- not that. */
7481 if (!BINFO_VIRTUAL_P (binfo))
7482 vid->generate_vcall_entries = false;
7483 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7484 add_vcall_offset_vtbl_entries_r (binfo, vid);
7485 }
7486 }
7487
7488 /* Build vcall offsets, starting with those for BINFO. */
7489
7490 static void
7491 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7492 {
7493 int i;
7494 tree primary_binfo;
7495 tree base_binfo;
7496
7497 /* Don't walk into virtual bases -- except, of course, for the
7498 virtual base for which we are building vcall offsets. Any
7499 primary virtual base will have already had its offsets generated
7500 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7501 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7502 return;
7503
7504 /* If BINFO has a primary base, process it first. */
7505 primary_binfo = get_primary_binfo (binfo);
7506 if (primary_binfo)
7507 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7508
7509 /* Add BINFO itself to the list. */
7510 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7511
7512 /* Scan the non-primary bases of BINFO. */
7513 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7514 if (base_binfo != primary_binfo)
7515 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7516 }
7517
7518 /* Called from build_vcall_offset_vtbl_entries_r. */
7519
7520 static void
7521 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7522 {
7523 /* Make entries for the rest of the virtuals. */
7524 if (abi_version_at_least (2))
7525 {
7526 tree orig_fn;
7527
7528 /* The ABI requires that the methods be processed in declaration
7529 order. G++ 3.2 used the order in the vtable. */
7530 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7531 orig_fn;
7532 orig_fn = TREE_CHAIN (orig_fn))
7533 if (DECL_VINDEX (orig_fn))
7534 add_vcall_offset (orig_fn, binfo, vid);
7535 }
7536 else
7537 {
7538 tree derived_virtuals;
7539 tree base_virtuals;
7540 tree orig_virtuals;
7541 /* If BINFO is a primary base, the most derived class which has
7542 BINFO as a primary base; otherwise, just BINFO. */
7543 tree non_primary_binfo;
7544
7545 /* We might be a primary base class. Go up the inheritance hierarchy
7546 until we find the most derived class of which we are a primary base:
7547 it is the BINFO_VIRTUALS there that we need to consider. */
7548 non_primary_binfo = binfo;
7549 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7550 {
7551 tree b;
7552
7553 /* If we have reached a virtual base, then it must be vid->vbase,
7554 because we ignore other virtual bases in
7555 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7556 base (possibly multi-level) of vid->binfo, or we wouldn't
7557 have called build_vcall_and_vbase_vtbl_entries for it. But it
7558 might be a lost primary, so just skip down to vid->binfo. */
7559 if (BINFO_VIRTUAL_P (non_primary_binfo))
7560 {
7561 gcc_assert (non_primary_binfo == vid->vbase);
7562 non_primary_binfo = vid->binfo;
7563 break;
7564 }
7565
7566 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7567 if (get_primary_binfo (b) != non_primary_binfo)
7568 break;
7569 non_primary_binfo = b;
7570 }
7571
7572 if (vid->ctor_vtbl_p)
7573 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7574 where rtti_binfo is the most derived type. */
7575 non_primary_binfo
7576 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7577
7578 for (base_virtuals = BINFO_VIRTUALS (binfo),
7579 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7580 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7581 base_virtuals;
7582 base_virtuals = TREE_CHAIN (base_virtuals),
7583 derived_virtuals = TREE_CHAIN (derived_virtuals),
7584 orig_virtuals = TREE_CHAIN (orig_virtuals))
7585 {
7586 tree orig_fn;
7587
7588 /* Find the declaration that originally caused this function to
7589 be present in BINFO_TYPE (binfo). */
7590 orig_fn = BV_FN (orig_virtuals);
7591
7592 /* When processing BINFO, we only want to generate vcall slots for
7593 function slots introduced in BINFO. So don't try to generate
7594 one if the function isn't even defined in BINFO. */
7595 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7596 continue;
7597
7598 add_vcall_offset (orig_fn, binfo, vid);
7599 }
7600 }
7601 }
7602
7603 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7604
7605 static void
7606 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7607 {
7608 size_t i;
7609 tree vcall_offset;
7610 tree derived_entry;
7611
7612 /* If there is already an entry for a function with the same
7613 signature as FN, then we do not need a second vcall offset.
7614 Check the list of functions already present in the derived
7615 class vtable. */
7616 for (i = 0; VEC_iterate (tree, vid->fns, i, derived_entry); ++i)
7617 {
7618 if (same_signature_p (derived_entry, orig_fn)
7619 /* We only use one vcall offset for virtual destructors,
7620 even though there are two virtual table entries. */
7621 || (DECL_DESTRUCTOR_P (derived_entry)
7622 && DECL_DESTRUCTOR_P (orig_fn)))
7623 return;
7624 }
7625
7626 /* If we are building these vcall offsets as part of building
7627 the vtable for the most derived class, remember the vcall
7628 offset. */
7629 if (vid->binfo == TYPE_BINFO (vid->derived))
7630 {
7631 tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
7632 CLASSTYPE_VCALL_INDICES (vid->derived),
7633 NULL);
7634 elt->purpose = orig_fn;
7635 elt->value = vid->index;
7636 }
7637
7638 /* The next vcall offset will be found at a more negative
7639 offset. */
7640 vid->index = size_binop (MINUS_EXPR, vid->index,
7641 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7642
7643 /* Keep track of this function. */
7644 VEC_safe_push (tree, gc, vid->fns, orig_fn);
7645
7646 if (vid->generate_vcall_entries)
7647 {
7648 tree base;
7649 tree fn;
7650
7651 /* Find the overriding function. */
7652 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7653 if (fn == error_mark_node)
7654 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7655 integer_zero_node);
7656 else
7657 {
7658 base = TREE_VALUE (fn);
7659
7660 /* The vbase we're working on is a primary base of
7661 vid->binfo. But it might be a lost primary, so its
7662 BINFO_OFFSET might be wrong, so we just use the
7663 BINFO_OFFSET from vid->binfo. */
7664 vcall_offset = size_diffop (BINFO_OFFSET (base),
7665 BINFO_OFFSET (vid->binfo));
7666 vcall_offset = fold_build1 (NOP_EXPR, vtable_entry_type,
7667 vcall_offset);
7668 }
7669 /* Add the initializer to the vtable. */
7670 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7671 vid->last_init = &TREE_CHAIN (*vid->last_init);
7672 }
7673 }
7674
7675 /* Return vtbl initializers for the RTTI entries corresponding to the
7676 BINFO's vtable. The RTTI entries should indicate the object given
7677 by VID->rtti_binfo. */
7678
7679 static void
7680 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7681 {
7682 tree b;
7683 tree t;
7684 tree basetype;
7685 tree offset;
7686 tree decl;
7687 tree init;
7688
7689 basetype = BINFO_TYPE (binfo);
7690 t = BINFO_TYPE (vid->rtti_binfo);
7691
7692 /* To find the complete object, we will first convert to our most
7693 primary base, and then add the offset in the vtbl to that value. */
7694 b = binfo;
7695 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
7696 && !BINFO_LOST_PRIMARY_P (b))
7697 {
7698 tree primary_base;
7699
7700 primary_base = get_primary_binfo (b);
7701 gcc_assert (BINFO_PRIMARY_P (primary_base)
7702 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
7703 b = primary_base;
7704 }
7705 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
7706
7707 /* The second entry is the address of the typeinfo object. */
7708 if (flag_rtti)
7709 decl = build_address (get_tinfo_decl (t));
7710 else
7711 decl = integer_zero_node;
7712
7713 /* Convert the declaration to a type that can be stored in the
7714 vtable. */
7715 init = build_nop (vfunc_ptr_type_node, decl);
7716 *vid->last_init = build_tree_list (NULL_TREE, init);
7717 vid->last_init = &TREE_CHAIN (*vid->last_init);
7718
7719 /* Add the offset-to-top entry. It comes earlier in the vtable than
7720 the typeinfo entry. Convert the offset to look like a
7721 function pointer, so that we can put it in the vtable. */
7722 init = build_nop (vfunc_ptr_type_node, offset);
7723 *vid->last_init = build_tree_list (NULL_TREE, init);
7724 vid->last_init = &TREE_CHAIN (*vid->last_init);
7725 }
7726
7727 /* Fold a OBJ_TYPE_REF expression to the address of a function.
7728 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
7729
7730 tree
7731 cp_fold_obj_type_ref (tree ref, tree known_type)
7732 {
7733 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
7734 HOST_WIDE_INT i = 0;
7735 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
7736 tree fndecl;
7737
7738 while (i != index)
7739 {
7740 i += (TARGET_VTABLE_USES_DESCRIPTORS
7741 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
7742 v = TREE_CHAIN (v);
7743 }
7744
7745 fndecl = BV_FN (v);
7746
7747 #ifdef ENABLE_CHECKING
7748 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
7749 DECL_VINDEX (fndecl)));
7750 #endif
7751
7752 cgraph_node (fndecl)->local.vtable_method = true;
7753
7754 return build_address (fndecl);
7755 }
7756
7757 #include "gt-cp-class.h"