Implement N2439 (ref-qualifiers for 'this')
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "cp-tree.h"
30 #include "flags.h"
31 #include "toplev.h"
32 #include "target.h"
33 #include "convert.h"
34 #include "cgraph.h"
35 #include "dumpfile.h"
36 #include "splay-tree.h"
37 #include "pointer-set.h"
38 #include "hash-table.h"
39
40 /* The number of nested classes being processed. If we are not in the
41 scope of any class, this is zero. */
42
43 int current_class_depth;
44
45 /* In order to deal with nested classes, we keep a stack of classes.
46 The topmost entry is the innermost class, and is the entry at index
47 CURRENT_CLASS_DEPTH */
48
49 typedef struct class_stack_node {
50 /* The name of the class. */
51 tree name;
52
53 /* The _TYPE node for the class. */
54 tree type;
55
56 /* The access specifier pending for new declarations in the scope of
57 this class. */
58 tree access;
59
60 /* If were defining TYPE, the names used in this class. */
61 splay_tree names_used;
62
63 /* Nonzero if this class is no longer open, because of a call to
64 push_to_top_level. */
65 size_t hidden;
66 }* class_stack_node_t;
67
68 typedef struct vtbl_init_data_s
69 {
70 /* The base for which we're building initializers. */
71 tree binfo;
72 /* The type of the most-derived type. */
73 tree derived;
74 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
75 unless ctor_vtbl_p is true. */
76 tree rtti_binfo;
77 /* The negative-index vtable initializers built up so far. These
78 are in order from least negative index to most negative index. */
79 vec<constructor_elt, va_gc> *inits;
80 /* The binfo for the virtual base for which we're building
81 vcall offset initializers. */
82 tree vbase;
83 /* The functions in vbase for which we have already provided vcall
84 offsets. */
85 vec<tree, va_gc> *fns;
86 /* The vtable index of the next vcall or vbase offset. */
87 tree index;
88 /* Nonzero if we are building the initializer for the primary
89 vtable. */
90 int primary_vtbl_p;
91 /* Nonzero if we are building the initializer for a construction
92 vtable. */
93 int ctor_vtbl_p;
94 /* True when adding vcall offset entries to the vtable. False when
95 merely computing the indices. */
96 bool generate_vcall_entries;
97 } vtbl_init_data;
98
99 /* The type of a function passed to walk_subobject_offsets. */
100 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
101
102 /* The stack itself. This is a dynamically resized array. The
103 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
104 static int current_class_stack_size;
105 static class_stack_node_t current_class_stack;
106
107 /* The size of the largest empty class seen in this translation unit. */
108 static GTY (()) tree sizeof_biggest_empty_class;
109
110 /* An array of all local classes present in this translation unit, in
111 declaration order. */
112 vec<tree, va_gc> *local_classes;
113
114 static tree get_vfield_name (tree);
115 static void finish_struct_anon (tree);
116 static tree get_vtable_name (tree);
117 static tree get_basefndecls (tree, tree);
118 static int build_primary_vtable (tree, tree);
119 static int build_secondary_vtable (tree);
120 static void finish_vtbls (tree);
121 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
122 static void finish_struct_bits (tree);
123 static int alter_access (tree, tree, tree);
124 static void handle_using_decl (tree, tree);
125 static tree dfs_modify_vtables (tree, void *);
126 static tree modify_all_vtables (tree, tree);
127 static void determine_primary_bases (tree);
128 static void finish_struct_methods (tree);
129 static void maybe_warn_about_overly_private_class (tree);
130 static int method_name_cmp (const void *, const void *);
131 static int resort_method_name_cmp (const void *, const void *);
132 static void add_implicitly_declared_members (tree, tree*, int, int);
133 static tree fixed_type_or_null (tree, int *, int *);
134 static tree build_simple_base_path (tree expr, tree binfo);
135 static tree build_vtbl_ref_1 (tree, tree);
136 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
137 vec<constructor_elt, va_gc> **);
138 static int count_fields (tree);
139 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
140 static void insert_into_classtype_sorted_fields (tree, tree, int);
141 static bool check_bitfield_decl (tree);
142 static void check_field_decl (tree, tree, int *, int *, int *);
143 static void check_field_decls (tree, tree *, int *, int *);
144 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
145 static void build_base_fields (record_layout_info, splay_tree, tree *);
146 static void check_methods (tree);
147 static void remove_zero_width_bit_fields (tree);
148 static void check_bases (tree, int *, int *);
149 static void check_bases_and_members (tree);
150 static tree create_vtable_ptr (tree, tree *);
151 static void include_empty_classes (record_layout_info);
152 static void layout_class_type (tree, tree *);
153 static void propagate_binfo_offsets (tree, tree);
154 static void layout_virtual_bases (record_layout_info, splay_tree);
155 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
156 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
157 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
158 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset (tree, tree, vtbl_init_data *);
160 static void layout_vtable_decl (tree, int);
161 static tree dfs_find_final_overrider_pre (tree, void *);
162 static tree dfs_find_final_overrider_post (tree, void *);
163 static tree find_final_overrider (tree, tree, tree);
164 static int make_new_vtable (tree, tree);
165 static tree get_primary_binfo (tree);
166 static int maybe_indent_hierarchy (FILE *, int, int);
167 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
168 static void dump_class_hierarchy (tree);
169 static void dump_class_hierarchy_1 (FILE *, int, tree);
170 static void dump_array (FILE *, tree);
171 static void dump_vtable (tree, tree, tree);
172 static void dump_vtt (tree, tree);
173 static void dump_thunk (FILE *, int, tree);
174 static tree build_vtable (tree, tree, tree);
175 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
176 static void layout_nonempty_base_or_field (record_layout_info,
177 tree, tree, splay_tree);
178 static tree end_of_class (tree, int);
179 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
180 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
181 vec<constructor_elt, va_gc> **);
182 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
183 vec<constructor_elt, va_gc> **);
184 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
185 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
186 static void clone_constructors_and_destructors (tree);
187 static tree build_clone (tree, tree);
188 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
189 static void build_ctor_vtbl_group (tree, tree);
190 static void build_vtt (tree);
191 static tree binfo_ctor_vtable (tree);
192 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
193 tree *);
194 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
195 static tree dfs_fixup_binfo_vtbls (tree, void *);
196 static int record_subobject_offset (tree, tree, splay_tree);
197 static int check_subobject_offset (tree, tree, splay_tree);
198 static int walk_subobject_offsets (tree, subobject_offset_fn,
199 tree, splay_tree, tree, int);
200 static void record_subobject_offsets (tree, tree, splay_tree, bool);
201 static int layout_conflict_p (tree, tree, splay_tree, int);
202 static int splay_tree_compare_integer_csts (splay_tree_key k1,
203 splay_tree_key k2);
204 static void warn_about_ambiguous_bases (tree);
205 static bool type_requires_array_cookie (tree);
206 static bool contains_empty_class_p (tree);
207 static bool base_derived_from (tree, tree);
208 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
209 static tree end_of_base (tree);
210 static tree get_vcall_index (tree, tree);
211
212 /* Variables shared between class.c and call.c. */
213
214 int n_vtables = 0;
215 int n_vtable_entries = 0;
216 int n_vtable_searches = 0;
217 int n_vtable_elems = 0;
218 int n_convert_harshness = 0;
219 int n_compute_conversion_costs = 0;
220 int n_inner_fields_searched = 0;
221
222 /* Convert to or from a base subobject. EXPR is an expression of type
223 `A' or `A*', an expression of type `B' or `B*' is returned. To
224 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
225 the B base instance within A. To convert base A to derived B, CODE
226 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
227 In this latter case, A must not be a morally virtual base of B.
228 NONNULL is true if EXPR is known to be non-NULL (this is only
229 needed when EXPR is of pointer type). CV qualifiers are preserved
230 from EXPR. */
231
232 tree
233 build_base_path (enum tree_code code,
234 tree expr,
235 tree binfo,
236 int nonnull,
237 tsubst_flags_t complain)
238 {
239 tree v_binfo = NULL_TREE;
240 tree d_binfo = NULL_TREE;
241 tree probe;
242 tree offset;
243 tree target_type;
244 tree null_test = NULL;
245 tree ptr_target_type;
246 int fixed_type_p;
247 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
248 bool has_empty = false;
249 bool virtual_access;
250
251 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
252 return error_mark_node;
253
254 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
255 {
256 d_binfo = probe;
257 if (is_empty_class (BINFO_TYPE (probe)))
258 has_empty = true;
259 if (!v_binfo && BINFO_VIRTUAL_P (probe))
260 v_binfo = probe;
261 }
262
263 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
264 if (want_pointer)
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
266
267 if (code == PLUS_EXPR
268 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
269 {
270 /* This can happen when adjust_result_of_qualified_name_lookup can't
271 find a unique base binfo in a call to a member function. We
272 couldn't give the diagnostic then since we might have been calling
273 a static member function, so we do it now. */
274 if (complain & tf_error)
275 {
276 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
277 ba_unique, NULL, complain);
278 gcc_assert (base == error_mark_node);
279 }
280 return error_mark_node;
281 }
282
283 gcc_assert ((code == MINUS_EXPR
284 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
285 || code == PLUS_EXPR);
286
287 if (binfo == d_binfo)
288 /* Nothing to do. */
289 return expr;
290
291 if (code == MINUS_EXPR && v_binfo)
292 {
293 if (complain & tf_error)
294 error ("cannot convert from base %qT to derived type %qT via "
295 "virtual base %qT", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
296 BINFO_TYPE (v_binfo));
297 return error_mark_node;
298 }
299
300 if (!want_pointer)
301 /* This must happen before the call to save_expr. */
302 expr = cp_build_addr_expr (expr, complain);
303 else
304 expr = mark_rvalue_use (expr);
305
306 offset = BINFO_OFFSET (binfo);
307 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
308 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
309 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
310 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
311 expression returned matches the input. */
312 target_type = cp_build_qualified_type
313 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
314 ptr_target_type = build_pointer_type (target_type);
315
316 /* Do we need to look in the vtable for the real offset? */
317 virtual_access = (v_binfo && fixed_type_p <= 0);
318
319 /* Don't bother with the calculations inside sizeof; they'll ICE if the
320 source type is incomplete and the pointer value doesn't matter. In a
321 template (even in fold_non_dependent_expr), we don't have vtables set
322 up properly yet, and the value doesn't matter there either; we're just
323 interested in the result of overload resolution. */
324 if (cp_unevaluated_operand != 0
325 || in_template_function ())
326 {
327 expr = build_nop (ptr_target_type, expr);
328 if (!want_pointer)
329 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
330 return expr;
331 }
332
333 /* If we're in an NSDMI, we don't have the full constructor context yet
334 that we need for converting to a virtual base, so just build a stub
335 CONVERT_EXPR and expand it later in bot_replace. */
336 if (virtual_access && fixed_type_p < 0
337 && current_scope () != current_function_decl)
338 {
339 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
340 CONVERT_EXPR_VBASE_PATH (expr) = true;
341 if (!want_pointer)
342 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
343 return expr;
344 }
345
346 /* Do we need to check for a null pointer? */
347 if (want_pointer && !nonnull)
348 {
349 /* If we know the conversion will not actually change the value
350 of EXPR, then we can avoid testing the expression for NULL.
351 We have to avoid generating a COMPONENT_REF for a base class
352 field, because other parts of the compiler know that such
353 expressions are always non-NULL. */
354 if (!virtual_access && integer_zerop (offset))
355 return build_nop (ptr_target_type, expr);
356 null_test = error_mark_node;
357 }
358
359 /* Protect against multiple evaluation if necessary. */
360 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
361 expr = save_expr (expr);
362
363 /* Now that we've saved expr, build the real null test. */
364 if (null_test)
365 {
366 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
367 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
368 expr, zero);
369 }
370
371 /* If this is a simple base reference, express it as a COMPONENT_REF. */
372 if (code == PLUS_EXPR && !virtual_access
373 /* We don't build base fields for empty bases, and they aren't very
374 interesting to the optimizers anyway. */
375 && !has_empty)
376 {
377 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
378 expr = build_simple_base_path (expr, binfo);
379 if (want_pointer)
380 expr = build_address (expr);
381 target_type = TREE_TYPE (expr);
382 goto out;
383 }
384
385 if (virtual_access)
386 {
387 /* Going via virtual base V_BINFO. We need the static offset
388 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
389 V_BINFO. That offset is an entry in D_BINFO's vtable. */
390 tree v_offset;
391
392 if (fixed_type_p < 0 && in_base_initializer)
393 {
394 /* In a base member initializer, we cannot rely on the
395 vtable being set up. We have to indirect via the
396 vtt_parm. */
397 tree t;
398
399 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
400 t = build_pointer_type (t);
401 v_offset = convert (t, current_vtt_parm);
402 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
403 }
404 else
405 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
406 complain),
407 TREE_TYPE (TREE_TYPE (expr)));
408
409 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
410 v_offset = build1 (NOP_EXPR,
411 build_pointer_type (ptrdiff_type_node),
412 v_offset);
413 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
414 TREE_CONSTANT (v_offset) = 1;
415
416 offset = convert_to_integer (ptrdiff_type_node,
417 size_diffop_loc (input_location, offset,
418 BINFO_OFFSET (v_binfo)));
419
420 if (!integer_zerop (offset))
421 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
422
423 if (fixed_type_p < 0)
424 /* Negative fixed_type_p means this is a constructor or destructor;
425 virtual base layout is fixed in in-charge [cd]tors, but not in
426 base [cd]tors. */
427 offset = build3 (COND_EXPR, ptrdiff_type_node,
428 build2 (EQ_EXPR, boolean_type_node,
429 current_in_charge_parm, integer_zero_node),
430 v_offset,
431 convert_to_integer (ptrdiff_type_node,
432 BINFO_OFFSET (binfo)));
433 else
434 offset = v_offset;
435 }
436
437 if (want_pointer)
438 target_type = ptr_target_type;
439
440 expr = build1 (NOP_EXPR, ptr_target_type, expr);
441
442 if (!integer_zerop (offset))
443 {
444 offset = fold_convert (sizetype, offset);
445 if (code == MINUS_EXPR)
446 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
447 expr = fold_build_pointer_plus (expr, offset);
448 }
449 else
450 null_test = NULL;
451
452 if (!want_pointer)
453 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
454
455 out:
456 if (null_test)
457 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
458 build_zero_cst (target_type));
459
460 return expr;
461 }
462
463 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
464 Perform a derived-to-base conversion by recursively building up a
465 sequence of COMPONENT_REFs to the appropriate base fields. */
466
467 static tree
468 build_simple_base_path (tree expr, tree binfo)
469 {
470 tree type = BINFO_TYPE (binfo);
471 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
472 tree field;
473
474 if (d_binfo == NULL_TREE)
475 {
476 tree temp;
477
478 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
479
480 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
481 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
482 an lvalue in the front end; only _DECLs and _REFs are lvalues
483 in the back end. */
484 temp = unary_complex_lvalue (ADDR_EXPR, expr);
485 if (temp)
486 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
487
488 return expr;
489 }
490
491 /* Recurse. */
492 expr = build_simple_base_path (expr, d_binfo);
493
494 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
495 field; field = DECL_CHAIN (field))
496 /* Is this the base field created by build_base_field? */
497 if (TREE_CODE (field) == FIELD_DECL
498 && DECL_FIELD_IS_BASE (field)
499 && TREE_TYPE (field) == type
500 /* If we're looking for a field in the most-derived class,
501 also check the field offset; we can have two base fields
502 of the same type if one is an indirect virtual base and one
503 is a direct non-virtual base. */
504 && (BINFO_INHERITANCE_CHAIN (d_binfo)
505 || tree_int_cst_equal (byte_position (field),
506 BINFO_OFFSET (binfo))))
507 {
508 /* We don't use build_class_member_access_expr here, as that
509 has unnecessary checks, and more importantly results in
510 recursive calls to dfs_walk_once. */
511 int type_quals = cp_type_quals (TREE_TYPE (expr));
512
513 expr = build3 (COMPONENT_REF,
514 cp_build_qualified_type (type, type_quals),
515 expr, field, NULL_TREE);
516 expr = fold_if_not_in_template (expr);
517
518 /* Mark the expression const or volatile, as appropriate.
519 Even though we've dealt with the type above, we still have
520 to mark the expression itself. */
521 if (type_quals & TYPE_QUAL_CONST)
522 TREE_READONLY (expr) = 1;
523 if (type_quals & TYPE_QUAL_VOLATILE)
524 TREE_THIS_VOLATILE (expr) = 1;
525
526 return expr;
527 }
528
529 /* Didn't find the base field?!? */
530 gcc_unreachable ();
531 }
532
533 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
534 type is a class type or a pointer to a class type. In the former
535 case, TYPE is also a class type; in the latter it is another
536 pointer type. If CHECK_ACCESS is true, an error message is emitted
537 if TYPE is inaccessible. If OBJECT has pointer type, the value is
538 assumed to be non-NULL. */
539
540 tree
541 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
542 tsubst_flags_t complain)
543 {
544 tree binfo;
545 tree object_type;
546
547 if (TYPE_PTR_P (TREE_TYPE (object)))
548 {
549 object_type = TREE_TYPE (TREE_TYPE (object));
550 type = TREE_TYPE (type);
551 }
552 else
553 object_type = TREE_TYPE (object);
554
555 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
556 NULL, complain);
557 if (!binfo || binfo == error_mark_node)
558 return error_mark_node;
559
560 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
561 }
562
563 /* EXPR is an expression with unqualified class type. BASE is a base
564 binfo of that class type. Returns EXPR, converted to the BASE
565 type. This function assumes that EXPR is the most derived class;
566 therefore virtual bases can be found at their static offsets. */
567
568 tree
569 convert_to_base_statically (tree expr, tree base)
570 {
571 tree expr_type;
572
573 expr_type = TREE_TYPE (expr);
574 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
575 {
576 /* If this is a non-empty base, use a COMPONENT_REF. */
577 if (!is_empty_class (BINFO_TYPE (base)))
578 return build_simple_base_path (expr, base);
579
580 /* We use fold_build2 and fold_convert below to simplify the trees
581 provided to the optimizers. It is not safe to call these functions
582 when processing a template because they do not handle C++-specific
583 trees. */
584 gcc_assert (!processing_template_decl);
585 expr = cp_build_addr_expr (expr, tf_warning_or_error);
586 if (!integer_zerop (BINFO_OFFSET (base)))
587 expr = fold_build_pointer_plus_loc (input_location,
588 expr, BINFO_OFFSET (base));
589 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
590 expr = build_fold_indirect_ref_loc (input_location, expr);
591 }
592
593 return expr;
594 }
595
596 \f
597 tree
598 build_vfield_ref (tree datum, tree type)
599 {
600 tree vfield, vcontext;
601
602 if (datum == error_mark_node)
603 return error_mark_node;
604
605 /* First, convert to the requested type. */
606 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
607 datum = convert_to_base (datum, type, /*check_access=*/false,
608 /*nonnull=*/true, tf_warning_or_error);
609
610 /* Second, the requested type may not be the owner of its own vptr.
611 If not, convert to the base class that owns it. We cannot use
612 convert_to_base here, because VCONTEXT may appear more than once
613 in the inheritance hierarchy of TYPE, and thus direct conversion
614 between the types may be ambiguous. Following the path back up
615 one step at a time via primary bases avoids the problem. */
616 vfield = TYPE_VFIELD (type);
617 vcontext = DECL_CONTEXT (vfield);
618 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
619 {
620 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
621 type = TREE_TYPE (datum);
622 }
623
624 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
625 }
626
627 /* Given an object INSTANCE, return an expression which yields the
628 vtable element corresponding to INDEX. There are many special
629 cases for INSTANCE which we take care of here, mainly to avoid
630 creating extra tree nodes when we don't have to. */
631
632 static tree
633 build_vtbl_ref_1 (tree instance, tree idx)
634 {
635 tree aref;
636 tree vtbl = NULL_TREE;
637
638 /* Try to figure out what a reference refers to, and
639 access its virtual function table directly. */
640
641 int cdtorp = 0;
642 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
643
644 tree basetype = non_reference (TREE_TYPE (instance));
645
646 if (fixed_type && !cdtorp)
647 {
648 tree binfo = lookup_base (fixed_type, basetype,
649 ba_unique, NULL, tf_none);
650 if (binfo && binfo != error_mark_node)
651 vtbl = unshare_expr (BINFO_VTABLE (binfo));
652 }
653
654 if (!vtbl)
655 vtbl = build_vfield_ref (instance, basetype);
656
657 aref = build_array_ref (input_location, vtbl, idx);
658 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
659
660 return aref;
661 }
662
663 tree
664 build_vtbl_ref (tree instance, tree idx)
665 {
666 tree aref = build_vtbl_ref_1 (instance, idx);
667
668 return aref;
669 }
670
671 /* Given a stable object pointer INSTANCE_PTR, return an expression which
672 yields a function pointer corresponding to vtable element INDEX. */
673
674 tree
675 build_vfn_ref (tree instance_ptr, tree idx)
676 {
677 tree aref;
678
679 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
680 tf_warning_or_error),
681 idx);
682
683 /* When using function descriptors, the address of the
684 vtable entry is treated as a function pointer. */
685 if (TARGET_VTABLE_USES_DESCRIPTORS)
686 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
687 cp_build_addr_expr (aref, tf_warning_or_error));
688
689 /* Remember this as a method reference, for later devirtualization. */
690 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
691
692 return aref;
693 }
694
695 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
696 for the given TYPE. */
697
698 static tree
699 get_vtable_name (tree type)
700 {
701 return mangle_vtbl_for_type (type);
702 }
703
704 /* DECL is an entity associated with TYPE, like a virtual table or an
705 implicitly generated constructor. Determine whether or not DECL
706 should have external or internal linkage at the object file
707 level. This routine does not deal with COMDAT linkage and other
708 similar complexities; it simply sets TREE_PUBLIC if it possible for
709 entities in other translation units to contain copies of DECL, in
710 the abstract. */
711
712 void
713 set_linkage_according_to_type (tree /*type*/, tree decl)
714 {
715 TREE_PUBLIC (decl) = 1;
716 determine_visibility (decl);
717 }
718
719 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
720 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
721 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
722
723 static tree
724 build_vtable (tree class_type, tree name, tree vtable_type)
725 {
726 tree decl;
727
728 decl = build_lang_decl (VAR_DECL, name, vtable_type);
729 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
730 now to avoid confusion in mangle_decl. */
731 SET_DECL_ASSEMBLER_NAME (decl, name);
732 DECL_CONTEXT (decl) = class_type;
733 DECL_ARTIFICIAL (decl) = 1;
734 TREE_STATIC (decl) = 1;
735 TREE_READONLY (decl) = 1;
736 DECL_VIRTUAL_P (decl) = 1;
737 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
738 DECL_VTABLE_OR_VTT_P (decl) = 1;
739 /* At one time the vtable info was grabbed 2 words at a time. This
740 fails on sparc unless you have 8-byte alignment. (tiemann) */
741 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
742 DECL_ALIGN (decl));
743 set_linkage_according_to_type (class_type, decl);
744 /* The vtable has not been defined -- yet. */
745 DECL_EXTERNAL (decl) = 1;
746 DECL_NOT_REALLY_EXTERN (decl) = 1;
747
748 /* Mark the VAR_DECL node representing the vtable itself as a
749 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
750 is rather important that such things be ignored because any
751 effort to actually generate DWARF for them will run into
752 trouble when/if we encounter code like:
753
754 #pragma interface
755 struct S { virtual void member (); };
756
757 because the artificial declaration of the vtable itself (as
758 manufactured by the g++ front end) will say that the vtable is
759 a static member of `S' but only *after* the debug output for
760 the definition of `S' has already been output. This causes
761 grief because the DWARF entry for the definition of the vtable
762 will try to refer back to an earlier *declaration* of the
763 vtable as a static member of `S' and there won't be one. We
764 might be able to arrange to have the "vtable static member"
765 attached to the member list for `S' before the debug info for
766 `S' get written (which would solve the problem) but that would
767 require more intrusive changes to the g++ front end. */
768 DECL_IGNORED_P (decl) = 1;
769
770 return decl;
771 }
772
773 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
774 or even complete. If this does not exist, create it. If COMPLETE is
775 nonzero, then complete the definition of it -- that will render it
776 impossible to actually build the vtable, but is useful to get at those
777 which are known to exist in the runtime. */
778
779 tree
780 get_vtable_decl (tree type, int complete)
781 {
782 tree decl;
783
784 if (CLASSTYPE_VTABLES (type))
785 return CLASSTYPE_VTABLES (type);
786
787 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
788 CLASSTYPE_VTABLES (type) = decl;
789
790 if (complete)
791 {
792 DECL_EXTERNAL (decl) = 1;
793 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
794 }
795
796 return decl;
797 }
798
799 /* Build the primary virtual function table for TYPE. If BINFO is
800 non-NULL, build the vtable starting with the initial approximation
801 that it is the same as the one which is the head of the association
802 list. Returns a nonzero value if a new vtable is actually
803 created. */
804
805 static int
806 build_primary_vtable (tree binfo, tree type)
807 {
808 tree decl;
809 tree virtuals;
810
811 decl = get_vtable_decl (type, /*complete=*/0);
812
813 if (binfo)
814 {
815 if (BINFO_NEW_VTABLE_MARKED (binfo))
816 /* We have already created a vtable for this base, so there's
817 no need to do it again. */
818 return 0;
819
820 virtuals = copy_list (BINFO_VIRTUALS (binfo));
821 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
822 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
823 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
824 }
825 else
826 {
827 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
828 virtuals = NULL_TREE;
829 }
830
831 if (GATHER_STATISTICS)
832 {
833 n_vtables += 1;
834 n_vtable_elems += list_length (virtuals);
835 }
836
837 /* Initialize the association list for this type, based
838 on our first approximation. */
839 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
840 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
841 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
842 return 1;
843 }
844
845 /* Give BINFO a new virtual function table which is initialized
846 with a skeleton-copy of its original initialization. The only
847 entry that changes is the `delta' entry, so we can really
848 share a lot of structure.
849
850 FOR_TYPE is the most derived type which caused this table to
851 be needed.
852
853 Returns nonzero if we haven't met BINFO before.
854
855 The order in which vtables are built (by calling this function) for
856 an object must remain the same, otherwise a binary incompatibility
857 can result. */
858
859 static int
860 build_secondary_vtable (tree binfo)
861 {
862 if (BINFO_NEW_VTABLE_MARKED (binfo))
863 /* We already created a vtable for this base. There's no need to
864 do it again. */
865 return 0;
866
867 /* Remember that we've created a vtable for this BINFO, so that we
868 don't try to do so again. */
869 SET_BINFO_NEW_VTABLE_MARKED (binfo);
870
871 /* Make fresh virtual list, so we can smash it later. */
872 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
873
874 /* Secondary vtables are laid out as part of the same structure as
875 the primary vtable. */
876 BINFO_VTABLE (binfo) = NULL_TREE;
877 return 1;
878 }
879
880 /* Create a new vtable for BINFO which is the hierarchy dominated by
881 T. Return nonzero if we actually created a new vtable. */
882
883 static int
884 make_new_vtable (tree t, tree binfo)
885 {
886 if (binfo == TYPE_BINFO (t))
887 /* In this case, it is *type*'s vtable we are modifying. We start
888 with the approximation that its vtable is that of the
889 immediate base class. */
890 return build_primary_vtable (binfo, t);
891 else
892 /* This is our very own copy of `basetype' to play with. Later,
893 we will fill in all the virtual functions that override the
894 virtual functions in these base classes which are not defined
895 by the current type. */
896 return build_secondary_vtable (binfo);
897 }
898
899 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
900 (which is in the hierarchy dominated by T) list FNDECL as its
901 BV_FN. DELTA is the required constant adjustment from the `this'
902 pointer where the vtable entry appears to the `this' required when
903 the function is actually called. */
904
905 static void
906 modify_vtable_entry (tree t,
907 tree binfo,
908 tree fndecl,
909 tree delta,
910 tree *virtuals)
911 {
912 tree v;
913
914 v = *virtuals;
915
916 if (fndecl != BV_FN (v)
917 || !tree_int_cst_equal (delta, BV_DELTA (v)))
918 {
919 /* We need a new vtable for BINFO. */
920 if (make_new_vtable (t, binfo))
921 {
922 /* If we really did make a new vtable, we also made a copy
923 of the BINFO_VIRTUALS list. Now, we have to find the
924 corresponding entry in that list. */
925 *virtuals = BINFO_VIRTUALS (binfo);
926 while (BV_FN (*virtuals) != BV_FN (v))
927 *virtuals = TREE_CHAIN (*virtuals);
928 v = *virtuals;
929 }
930
931 BV_DELTA (v) = delta;
932 BV_VCALL_INDEX (v) = NULL_TREE;
933 BV_FN (v) = fndecl;
934 }
935 }
936
937 \f
938 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
939 the USING_DECL naming METHOD. Returns true if the method could be
940 added to the method vec. */
941
942 bool
943 add_method (tree type, tree method, tree using_decl)
944 {
945 unsigned slot;
946 tree overload;
947 bool template_conv_p = false;
948 bool conv_p;
949 vec<tree, va_gc> *method_vec;
950 bool complete_p;
951 bool insert_p = false;
952 tree current_fns;
953 tree fns;
954
955 if (method == error_mark_node)
956 return false;
957
958 complete_p = COMPLETE_TYPE_P (type);
959 conv_p = DECL_CONV_FN_P (method);
960 if (conv_p)
961 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
962 && DECL_TEMPLATE_CONV_FN_P (method));
963
964 method_vec = CLASSTYPE_METHOD_VEC (type);
965 if (!method_vec)
966 {
967 /* Make a new method vector. We start with 8 entries. We must
968 allocate at least two (for constructors and destructors), and
969 we're going to end up with an assignment operator at some
970 point as well. */
971 vec_alloc (method_vec, 8);
972 /* Create slots for constructors and destructors. */
973 method_vec->quick_push (NULL_TREE);
974 method_vec->quick_push (NULL_TREE);
975 CLASSTYPE_METHOD_VEC (type) = method_vec;
976 }
977
978 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
979 grok_special_member_properties (method);
980
981 /* Constructors and destructors go in special slots. */
982 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
983 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
984 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
985 {
986 slot = CLASSTYPE_DESTRUCTOR_SLOT;
987
988 if (TYPE_FOR_JAVA (type))
989 {
990 if (!DECL_ARTIFICIAL (method))
991 error ("Java class %qT cannot have a destructor", type);
992 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
993 error ("Java class %qT cannot have an implicit non-trivial "
994 "destructor",
995 type);
996 }
997 }
998 else
999 {
1000 tree m;
1001
1002 insert_p = true;
1003 /* See if we already have an entry with this name. */
1004 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1005 vec_safe_iterate (method_vec, slot, &m);
1006 ++slot)
1007 {
1008 m = OVL_CURRENT (m);
1009 if (template_conv_p)
1010 {
1011 if (TREE_CODE (m) == TEMPLATE_DECL
1012 && DECL_TEMPLATE_CONV_FN_P (m))
1013 insert_p = false;
1014 break;
1015 }
1016 if (conv_p && !DECL_CONV_FN_P (m))
1017 break;
1018 if (DECL_NAME (m) == DECL_NAME (method))
1019 {
1020 insert_p = false;
1021 break;
1022 }
1023 if (complete_p
1024 && !DECL_CONV_FN_P (m)
1025 && DECL_NAME (m) > DECL_NAME (method))
1026 break;
1027 }
1028 }
1029 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1030
1031 /* Check to see if we've already got this method. */
1032 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1033 {
1034 tree fn = OVL_CURRENT (fns);
1035 tree fn_type;
1036 tree method_type;
1037 tree parms1;
1038 tree parms2;
1039
1040 if (TREE_CODE (fn) != TREE_CODE (method))
1041 continue;
1042
1043 /* [over.load] Member function declarations with the
1044 same name and the same parameter types cannot be
1045 overloaded if any of them is a static member
1046 function declaration.
1047
1048 [over.load] Member function declarations with the same name and
1049 the same parameter-type-list as well as member function template
1050 declarations with the same name, the same parameter-type-list, and
1051 the same template parameter lists cannot be overloaded if any of
1052 them, but not all, have a ref-qualifier.
1053
1054 [namespace.udecl] When a using-declaration brings names
1055 from a base class into a derived class scope, member
1056 functions in the derived class override and/or hide member
1057 functions with the same name and parameter types in a base
1058 class (rather than conflicting). */
1059 fn_type = TREE_TYPE (fn);
1060 method_type = TREE_TYPE (method);
1061 parms1 = TYPE_ARG_TYPES (fn_type);
1062 parms2 = TYPE_ARG_TYPES (method_type);
1063
1064 /* Compare the quals on the 'this' parm. Don't compare
1065 the whole types, as used functions are treated as
1066 coming from the using class in overload resolution. */
1067 if (! DECL_STATIC_FUNCTION_P (fn)
1068 && ! DECL_STATIC_FUNCTION_P (method)
1069 /* Either both or neither need to be ref-qualified for
1070 differing quals to allow overloading. */
1071 && (FUNCTION_REF_QUALIFIED (fn_type)
1072 == FUNCTION_REF_QUALIFIED (method_type))
1073 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1074 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1075 continue;
1076
1077 /* For templates, the return type and template parameters
1078 must be identical. */
1079 if (TREE_CODE (fn) == TEMPLATE_DECL
1080 && (!same_type_p (TREE_TYPE (fn_type),
1081 TREE_TYPE (method_type))
1082 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1083 DECL_TEMPLATE_PARMS (method))))
1084 continue;
1085
1086 if (! DECL_STATIC_FUNCTION_P (fn))
1087 parms1 = TREE_CHAIN (parms1);
1088 if (! DECL_STATIC_FUNCTION_P (method))
1089 parms2 = TREE_CHAIN (parms2);
1090
1091 if (compparms (parms1, parms2)
1092 && (!DECL_CONV_FN_P (fn)
1093 || same_type_p (TREE_TYPE (fn_type),
1094 TREE_TYPE (method_type))))
1095 {
1096 /* For function versions, their parms and types match
1097 but they are not duplicates. Record function versions
1098 as and when they are found. extern "C" functions are
1099 not treated as versions. */
1100 if (TREE_CODE (fn) == FUNCTION_DECL
1101 && TREE_CODE (method) == FUNCTION_DECL
1102 && !DECL_EXTERN_C_P (fn)
1103 && !DECL_EXTERN_C_P (method)
1104 && targetm.target_option.function_versions (fn, method))
1105 {
1106 /* Mark functions as versions if necessary. Modify the mangled
1107 decl name if necessary. */
1108 if (!DECL_FUNCTION_VERSIONED (fn))
1109 {
1110 DECL_FUNCTION_VERSIONED (fn) = 1;
1111 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1112 mangle_decl (fn);
1113 }
1114 if (!DECL_FUNCTION_VERSIONED (method))
1115 {
1116 DECL_FUNCTION_VERSIONED (method) = 1;
1117 if (DECL_ASSEMBLER_NAME_SET_P (method))
1118 mangle_decl (method);
1119 }
1120 record_function_versions (fn, method);
1121 continue;
1122 }
1123 if (DECL_INHERITED_CTOR_BASE (method))
1124 {
1125 if (DECL_INHERITED_CTOR_BASE (fn))
1126 {
1127 error_at (DECL_SOURCE_LOCATION (method),
1128 "%q#D inherited from %qT", method,
1129 DECL_INHERITED_CTOR_BASE (method));
1130 error_at (DECL_SOURCE_LOCATION (fn),
1131 "conflicts with version inherited from %qT",
1132 DECL_INHERITED_CTOR_BASE (fn));
1133 }
1134 /* Otherwise defer to the other function. */
1135 return false;
1136 }
1137 if (using_decl)
1138 {
1139 if (DECL_CONTEXT (fn) == type)
1140 /* Defer to the local function. */
1141 return false;
1142 }
1143 else
1144 {
1145 error ("%q+#D cannot be overloaded", method);
1146 error ("with %q+#D", fn);
1147 }
1148
1149 /* We don't call duplicate_decls here to merge the
1150 declarations because that will confuse things if the
1151 methods have inline definitions. In particular, we
1152 will crash while processing the definitions. */
1153 return false;
1154 }
1155 }
1156
1157 /* A class should never have more than one destructor. */
1158 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1159 return false;
1160
1161 /* Add the new binding. */
1162 if (using_decl)
1163 {
1164 overload = ovl_cons (method, current_fns);
1165 OVL_USED (overload) = true;
1166 }
1167 else
1168 overload = build_overload (method, current_fns);
1169
1170 if (conv_p)
1171 TYPE_HAS_CONVERSION (type) = 1;
1172 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1173 push_class_level_binding (DECL_NAME (method), overload);
1174
1175 if (insert_p)
1176 {
1177 bool reallocated;
1178
1179 /* We only expect to add few methods in the COMPLETE_P case, so
1180 just make room for one more method in that case. */
1181 if (complete_p)
1182 reallocated = vec_safe_reserve_exact (method_vec, 1);
1183 else
1184 reallocated = vec_safe_reserve (method_vec, 1);
1185 if (reallocated)
1186 CLASSTYPE_METHOD_VEC (type) = method_vec;
1187 if (slot == method_vec->length ())
1188 method_vec->quick_push (overload);
1189 else
1190 method_vec->quick_insert (slot, overload);
1191 }
1192 else
1193 /* Replace the current slot. */
1194 (*method_vec)[slot] = overload;
1195 return true;
1196 }
1197
1198 /* Subroutines of finish_struct. */
1199
1200 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1201 legit, otherwise return 0. */
1202
1203 static int
1204 alter_access (tree t, tree fdecl, tree access)
1205 {
1206 tree elem;
1207
1208 if (!DECL_LANG_SPECIFIC (fdecl))
1209 retrofit_lang_decl (fdecl);
1210
1211 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1212
1213 elem = purpose_member (t, DECL_ACCESS (fdecl));
1214 if (elem)
1215 {
1216 if (TREE_VALUE (elem) != access)
1217 {
1218 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1219 error ("conflicting access specifications for method"
1220 " %q+D, ignored", TREE_TYPE (fdecl));
1221 else
1222 error ("conflicting access specifications for field %qE, ignored",
1223 DECL_NAME (fdecl));
1224 }
1225 else
1226 {
1227 /* They're changing the access to the same thing they changed
1228 it to before. That's OK. */
1229 ;
1230 }
1231 }
1232 else
1233 {
1234 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1235 tf_warning_or_error);
1236 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1237 return 1;
1238 }
1239 return 0;
1240 }
1241
1242 /* Process the USING_DECL, which is a member of T. */
1243
1244 static void
1245 handle_using_decl (tree using_decl, tree t)
1246 {
1247 tree decl = USING_DECL_DECLS (using_decl);
1248 tree name = DECL_NAME (using_decl);
1249 tree access
1250 = TREE_PRIVATE (using_decl) ? access_private_node
1251 : TREE_PROTECTED (using_decl) ? access_protected_node
1252 : access_public_node;
1253 tree flist = NULL_TREE;
1254 tree old_value;
1255
1256 gcc_assert (!processing_template_decl && decl);
1257
1258 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1259 tf_warning_or_error);
1260 if (old_value)
1261 {
1262 if (is_overloaded_fn (old_value))
1263 old_value = OVL_CURRENT (old_value);
1264
1265 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1266 /* OK */;
1267 else
1268 old_value = NULL_TREE;
1269 }
1270
1271 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1272
1273 if (is_overloaded_fn (decl))
1274 flist = decl;
1275
1276 if (! old_value)
1277 ;
1278 else if (is_overloaded_fn (old_value))
1279 {
1280 if (flist)
1281 /* It's OK to use functions from a base when there are functions with
1282 the same name already present in the current class. */;
1283 else
1284 {
1285 error ("%q+D invalid in %q#T", using_decl, t);
1286 error (" because of local method %q+#D with same name",
1287 OVL_CURRENT (old_value));
1288 return;
1289 }
1290 }
1291 else if (!DECL_ARTIFICIAL (old_value))
1292 {
1293 error ("%q+D invalid in %q#T", using_decl, t);
1294 error (" because of local member %q+#D with same name", old_value);
1295 return;
1296 }
1297
1298 /* Make type T see field decl FDECL with access ACCESS. */
1299 if (flist)
1300 for (; flist; flist = OVL_NEXT (flist))
1301 {
1302 add_method (t, OVL_CURRENT (flist), using_decl);
1303 alter_access (t, OVL_CURRENT (flist), access);
1304 }
1305 else
1306 alter_access (t, decl, access);
1307 }
1308 \f
1309 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1310 types with abi tags, add the corresponding identifiers to the VEC in
1311 *DATA and set IDENTIFIER_MARKED. */
1312
1313 struct abi_tag_data
1314 {
1315 tree t;
1316 tree subob;
1317 };
1318
1319 static tree
1320 find_abi_tags_r (tree *tp, int */*walk_subtrees*/, void *data)
1321 {
1322 if (!TAGGED_TYPE_P (*tp))
1323 return NULL_TREE;
1324
1325 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1326 {
1327 struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1328 for (tree list = TREE_VALUE (attributes); list;
1329 list = TREE_CHAIN (list))
1330 {
1331 tree tag = TREE_VALUE (list);
1332 tree id = get_identifier (TREE_STRING_POINTER (tag));
1333 if (!IDENTIFIER_MARKED (id))
1334 {
1335 if (TYPE_P (p->subob))
1336 {
1337 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1338 "that base %qT has", p->t, tag, p->subob);
1339 inform (location_of (p->subob), "%qT declared here",
1340 p->subob);
1341 }
1342 else
1343 {
1344 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1345 "that %qT (used in the type of %qD) has",
1346 p->t, tag, *tp, p->subob);
1347 inform (location_of (p->subob), "%qD declared here",
1348 p->subob);
1349 inform (location_of (*tp), "%qT declared here", *tp);
1350 }
1351 }
1352 }
1353 }
1354 return NULL_TREE;
1355 }
1356
1357 /* Check that class T has all the abi tags that subobject SUBOB has, or
1358 warn if not. */
1359
1360 static void
1361 check_abi_tags (tree t, tree subob)
1362 {
1363 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1364 if (attributes)
1365 {
1366 for (tree list = TREE_VALUE (attributes); list;
1367 list = TREE_CHAIN (list))
1368 {
1369 tree tag = TREE_VALUE (list);
1370 tree id = get_identifier (TREE_STRING_POINTER (tag));
1371 IDENTIFIER_MARKED (id) = true;
1372 }
1373 }
1374
1375 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1376 struct abi_tag_data data = { t, subob };
1377
1378 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1379
1380 if (attributes)
1381 {
1382 for (tree list = TREE_VALUE (attributes); list;
1383 list = TREE_CHAIN (list))
1384 {
1385 tree tag = TREE_VALUE (list);
1386 tree id = get_identifier (TREE_STRING_POINTER (tag));
1387 IDENTIFIER_MARKED (id) = false;
1388 }
1389 }
1390 }
1391
1392 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1393 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1394 properties of the bases. */
1395
1396 static void
1397 check_bases (tree t,
1398 int* cant_have_const_ctor_p,
1399 int* no_const_asn_ref_p)
1400 {
1401 int i;
1402 bool seen_non_virtual_nearly_empty_base_p = 0;
1403 int seen_tm_mask = 0;
1404 tree base_binfo;
1405 tree binfo;
1406 tree field = NULL_TREE;
1407
1408 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1409 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1410 if (TREE_CODE (field) == FIELD_DECL)
1411 break;
1412
1413 for (binfo = TYPE_BINFO (t), i = 0;
1414 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1415 {
1416 tree basetype = TREE_TYPE (base_binfo);
1417
1418 gcc_assert (COMPLETE_TYPE_P (basetype));
1419
1420 if (CLASSTYPE_FINAL (basetype))
1421 error ("cannot derive from %<final%> base %qT in derived type %qT",
1422 basetype, t);
1423
1424 /* If any base class is non-literal, so is the derived class. */
1425 if (!CLASSTYPE_LITERAL_P (basetype))
1426 CLASSTYPE_LITERAL_P (t) = false;
1427
1428 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1429 here because the case of virtual functions but non-virtual
1430 dtor is handled in finish_struct_1. */
1431 if (!TYPE_POLYMORPHIC_P (basetype))
1432 warning (OPT_Weffc__,
1433 "base class %q#T has a non-virtual destructor", basetype);
1434
1435 /* If the base class doesn't have copy constructors or
1436 assignment operators that take const references, then the
1437 derived class cannot have such a member automatically
1438 generated. */
1439 if (TYPE_HAS_COPY_CTOR (basetype)
1440 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1441 *cant_have_const_ctor_p = 1;
1442 if (TYPE_HAS_COPY_ASSIGN (basetype)
1443 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1444 *no_const_asn_ref_p = 1;
1445
1446 if (BINFO_VIRTUAL_P (base_binfo))
1447 /* A virtual base does not effect nearly emptiness. */
1448 ;
1449 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1450 {
1451 if (seen_non_virtual_nearly_empty_base_p)
1452 /* And if there is more than one nearly empty base, then the
1453 derived class is not nearly empty either. */
1454 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1455 else
1456 /* Remember we've seen one. */
1457 seen_non_virtual_nearly_empty_base_p = 1;
1458 }
1459 else if (!is_empty_class (basetype))
1460 /* If the base class is not empty or nearly empty, then this
1461 class cannot be nearly empty. */
1462 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1463
1464 /* A lot of properties from the bases also apply to the derived
1465 class. */
1466 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1467 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1468 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1469 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1470 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1471 || !TYPE_HAS_COPY_ASSIGN (basetype));
1472 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1473 || !TYPE_HAS_COPY_CTOR (basetype));
1474 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1475 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1476 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1477 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1478 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1479 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1480 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1481 || TYPE_HAS_COMPLEX_DFLT (basetype));
1482
1483 /* A standard-layout class is a class that:
1484 ...
1485 * has no non-standard-layout base classes, */
1486 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1487 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1488 {
1489 tree basefield;
1490 /* ...has no base classes of the same type as the first non-static
1491 data member... */
1492 if (field && DECL_CONTEXT (field) == t
1493 && (same_type_ignoring_top_level_qualifiers_p
1494 (TREE_TYPE (field), basetype)))
1495 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1496 else
1497 /* ...either has no non-static data members in the most-derived
1498 class and at most one base class with non-static data
1499 members, or has no base classes with non-static data
1500 members */
1501 for (basefield = TYPE_FIELDS (basetype); basefield;
1502 basefield = DECL_CHAIN (basefield))
1503 if (TREE_CODE (basefield) == FIELD_DECL)
1504 {
1505 if (field)
1506 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1507 else
1508 field = basefield;
1509 break;
1510 }
1511 }
1512
1513 /* Don't bother collecting tm attributes if transactional memory
1514 support is not enabled. */
1515 if (flag_tm)
1516 {
1517 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1518 if (tm_attr)
1519 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1520 }
1521
1522 check_abi_tags (t, basetype);
1523 }
1524
1525 /* If one of the base classes had TM attributes, and the current class
1526 doesn't define its own, then the current class inherits one. */
1527 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1528 {
1529 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1530 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1531 }
1532 }
1533
1534 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1535 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1536 that have had a nearly-empty virtual primary base stolen by some
1537 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1538 T. */
1539
1540 static void
1541 determine_primary_bases (tree t)
1542 {
1543 unsigned i;
1544 tree primary = NULL_TREE;
1545 tree type_binfo = TYPE_BINFO (t);
1546 tree base_binfo;
1547
1548 /* Determine the primary bases of our bases. */
1549 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1550 base_binfo = TREE_CHAIN (base_binfo))
1551 {
1552 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1553
1554 /* See if we're the non-virtual primary of our inheritance
1555 chain. */
1556 if (!BINFO_VIRTUAL_P (base_binfo))
1557 {
1558 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1559 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1560
1561 if (parent_primary
1562 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1563 BINFO_TYPE (parent_primary)))
1564 /* We are the primary binfo. */
1565 BINFO_PRIMARY_P (base_binfo) = 1;
1566 }
1567 /* Determine if we have a virtual primary base, and mark it so.
1568 */
1569 if (primary && BINFO_VIRTUAL_P (primary))
1570 {
1571 tree this_primary = copied_binfo (primary, base_binfo);
1572
1573 if (BINFO_PRIMARY_P (this_primary))
1574 /* Someone already claimed this base. */
1575 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1576 else
1577 {
1578 tree delta;
1579
1580 BINFO_PRIMARY_P (this_primary) = 1;
1581 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1582
1583 /* A virtual binfo might have been copied from within
1584 another hierarchy. As we're about to use it as a
1585 primary base, make sure the offsets match. */
1586 delta = size_diffop_loc (input_location,
1587 convert (ssizetype,
1588 BINFO_OFFSET (base_binfo)),
1589 convert (ssizetype,
1590 BINFO_OFFSET (this_primary)));
1591
1592 propagate_binfo_offsets (this_primary, delta);
1593 }
1594 }
1595 }
1596
1597 /* First look for a dynamic direct non-virtual base. */
1598 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1599 {
1600 tree basetype = BINFO_TYPE (base_binfo);
1601
1602 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1603 {
1604 primary = base_binfo;
1605 goto found;
1606 }
1607 }
1608
1609 /* A "nearly-empty" virtual base class can be the primary base
1610 class, if no non-virtual polymorphic base can be found. Look for
1611 a nearly-empty virtual dynamic base that is not already a primary
1612 base of something in the hierarchy. If there is no such base,
1613 just pick the first nearly-empty virtual base. */
1614
1615 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1616 base_binfo = TREE_CHAIN (base_binfo))
1617 if (BINFO_VIRTUAL_P (base_binfo)
1618 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1619 {
1620 if (!BINFO_PRIMARY_P (base_binfo))
1621 {
1622 /* Found one that is not primary. */
1623 primary = base_binfo;
1624 goto found;
1625 }
1626 else if (!primary)
1627 /* Remember the first candidate. */
1628 primary = base_binfo;
1629 }
1630
1631 found:
1632 /* If we've got a primary base, use it. */
1633 if (primary)
1634 {
1635 tree basetype = BINFO_TYPE (primary);
1636
1637 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1638 if (BINFO_PRIMARY_P (primary))
1639 /* We are stealing a primary base. */
1640 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1641 BINFO_PRIMARY_P (primary) = 1;
1642 if (BINFO_VIRTUAL_P (primary))
1643 {
1644 tree delta;
1645
1646 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1647 /* A virtual binfo might have been copied from within
1648 another hierarchy. As we're about to use it as a primary
1649 base, make sure the offsets match. */
1650 delta = size_diffop_loc (input_location, ssize_int (0),
1651 convert (ssizetype, BINFO_OFFSET (primary)));
1652
1653 propagate_binfo_offsets (primary, delta);
1654 }
1655
1656 primary = TYPE_BINFO (basetype);
1657
1658 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1659 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1660 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1661 }
1662 }
1663
1664 /* Update the variant types of T. */
1665
1666 void
1667 fixup_type_variants (tree t)
1668 {
1669 tree variants;
1670
1671 if (!t)
1672 return;
1673
1674 for (variants = TYPE_NEXT_VARIANT (t);
1675 variants;
1676 variants = TYPE_NEXT_VARIANT (variants))
1677 {
1678 /* These fields are in the _TYPE part of the node, not in
1679 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1680 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1681 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1682 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1683 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1684
1685 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1686
1687 TYPE_BINFO (variants) = TYPE_BINFO (t);
1688
1689 /* Copy whatever these are holding today. */
1690 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1691 TYPE_METHODS (variants) = TYPE_METHODS (t);
1692 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1693 }
1694 }
1695
1696 /* Early variant fixups: we apply attributes at the beginning of the class
1697 definition, and we need to fix up any variants that have already been
1698 made via elaborated-type-specifier so that check_qualified_type works. */
1699
1700 void
1701 fixup_attribute_variants (tree t)
1702 {
1703 tree variants;
1704
1705 if (!t)
1706 return;
1707
1708 for (variants = TYPE_NEXT_VARIANT (t);
1709 variants;
1710 variants = TYPE_NEXT_VARIANT (variants))
1711 {
1712 /* These are the two fields that check_qualified_type looks at and
1713 are affected by attributes. */
1714 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1715 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1716 }
1717 }
1718 \f
1719 /* Set memoizing fields and bits of T (and its variants) for later
1720 use. */
1721
1722 static void
1723 finish_struct_bits (tree t)
1724 {
1725 /* Fix up variants (if any). */
1726 fixup_type_variants (t);
1727
1728 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1729 /* For a class w/o baseclasses, 'finish_struct' has set
1730 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1731 Similarly for a class whose base classes do not have vtables.
1732 When neither of these is true, we might have removed abstract
1733 virtuals (by providing a definition), added some (by declaring
1734 new ones), or redeclared ones from a base class. We need to
1735 recalculate what's really an abstract virtual at this point (by
1736 looking in the vtables). */
1737 get_pure_virtuals (t);
1738
1739 /* If this type has a copy constructor or a destructor, force its
1740 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1741 nonzero. This will cause it to be passed by invisible reference
1742 and prevent it from being returned in a register. */
1743 if (type_has_nontrivial_copy_init (t)
1744 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1745 {
1746 tree variants;
1747 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1748 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1749 {
1750 SET_TYPE_MODE (variants, BLKmode);
1751 TREE_ADDRESSABLE (variants) = 1;
1752 }
1753 }
1754 }
1755
1756 /* Issue warnings about T having private constructors, but no friends,
1757 and so forth.
1758
1759 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1760 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1761 non-private static member functions. */
1762
1763 static void
1764 maybe_warn_about_overly_private_class (tree t)
1765 {
1766 int has_member_fn = 0;
1767 int has_nonprivate_method = 0;
1768 tree fn;
1769
1770 if (!warn_ctor_dtor_privacy
1771 /* If the class has friends, those entities might create and
1772 access instances, so we should not warn. */
1773 || (CLASSTYPE_FRIEND_CLASSES (t)
1774 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1775 /* We will have warned when the template was declared; there's
1776 no need to warn on every instantiation. */
1777 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1778 /* There's no reason to even consider warning about this
1779 class. */
1780 return;
1781
1782 /* We only issue one warning, if more than one applies, because
1783 otherwise, on code like:
1784
1785 class A {
1786 // Oops - forgot `public:'
1787 A();
1788 A(const A&);
1789 ~A();
1790 };
1791
1792 we warn several times about essentially the same problem. */
1793
1794 /* Check to see if all (non-constructor, non-destructor) member
1795 functions are private. (Since there are no friends or
1796 non-private statics, we can't ever call any of the private member
1797 functions.) */
1798 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1799 /* We're not interested in compiler-generated methods; they don't
1800 provide any way to call private members. */
1801 if (!DECL_ARTIFICIAL (fn))
1802 {
1803 if (!TREE_PRIVATE (fn))
1804 {
1805 if (DECL_STATIC_FUNCTION_P (fn))
1806 /* A non-private static member function is just like a
1807 friend; it can create and invoke private member
1808 functions, and be accessed without a class
1809 instance. */
1810 return;
1811
1812 has_nonprivate_method = 1;
1813 /* Keep searching for a static member function. */
1814 }
1815 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1816 has_member_fn = 1;
1817 }
1818
1819 if (!has_nonprivate_method && has_member_fn)
1820 {
1821 /* There are no non-private methods, and there's at least one
1822 private member function that isn't a constructor or
1823 destructor. (If all the private members are
1824 constructors/destructors we want to use the code below that
1825 issues error messages specifically referring to
1826 constructors/destructors.) */
1827 unsigned i;
1828 tree binfo = TYPE_BINFO (t);
1829
1830 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1831 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1832 {
1833 has_nonprivate_method = 1;
1834 break;
1835 }
1836 if (!has_nonprivate_method)
1837 {
1838 warning (OPT_Wctor_dtor_privacy,
1839 "all member functions in class %qT are private", t);
1840 return;
1841 }
1842 }
1843
1844 /* Even if some of the member functions are non-private, the class
1845 won't be useful for much if all the constructors or destructors
1846 are private: such an object can never be created or destroyed. */
1847 fn = CLASSTYPE_DESTRUCTORS (t);
1848 if (fn && TREE_PRIVATE (fn))
1849 {
1850 warning (OPT_Wctor_dtor_privacy,
1851 "%q#T only defines a private destructor and has no friends",
1852 t);
1853 return;
1854 }
1855
1856 /* Warn about classes that have private constructors and no friends. */
1857 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1858 /* Implicitly generated constructors are always public. */
1859 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1860 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1861 {
1862 int nonprivate_ctor = 0;
1863
1864 /* If a non-template class does not define a copy
1865 constructor, one is defined for it, enabling it to avoid
1866 this warning. For a template class, this does not
1867 happen, and so we would normally get a warning on:
1868
1869 template <class T> class C { private: C(); };
1870
1871 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1872 complete non-template or fully instantiated classes have this
1873 flag set. */
1874 if (!TYPE_HAS_COPY_CTOR (t))
1875 nonprivate_ctor = 1;
1876 else
1877 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1878 {
1879 tree ctor = OVL_CURRENT (fn);
1880 /* Ideally, we wouldn't count copy constructors (or, in
1881 fact, any constructor that takes an argument of the
1882 class type as a parameter) because such things cannot
1883 be used to construct an instance of the class unless
1884 you already have one. But, for now at least, we're
1885 more generous. */
1886 if (! TREE_PRIVATE (ctor))
1887 {
1888 nonprivate_ctor = 1;
1889 break;
1890 }
1891 }
1892
1893 if (nonprivate_ctor == 0)
1894 {
1895 warning (OPT_Wctor_dtor_privacy,
1896 "%q#T only defines private constructors and has no friends",
1897 t);
1898 return;
1899 }
1900 }
1901 }
1902
1903 static struct {
1904 gt_pointer_operator new_value;
1905 void *cookie;
1906 } resort_data;
1907
1908 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1909
1910 static int
1911 method_name_cmp (const void* m1_p, const void* m2_p)
1912 {
1913 const tree *const m1 = (const tree *) m1_p;
1914 const tree *const m2 = (const tree *) m2_p;
1915
1916 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1917 return 0;
1918 if (*m1 == NULL_TREE)
1919 return -1;
1920 if (*m2 == NULL_TREE)
1921 return 1;
1922 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1923 return -1;
1924 return 1;
1925 }
1926
1927 /* This routine compares two fields like method_name_cmp but using the
1928 pointer operator in resort_field_decl_data. */
1929
1930 static int
1931 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1932 {
1933 const tree *const m1 = (const tree *) m1_p;
1934 const tree *const m2 = (const tree *) m2_p;
1935 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1936 return 0;
1937 if (*m1 == NULL_TREE)
1938 return -1;
1939 if (*m2 == NULL_TREE)
1940 return 1;
1941 {
1942 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1943 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1944 resort_data.new_value (&d1, resort_data.cookie);
1945 resort_data.new_value (&d2, resort_data.cookie);
1946 if (d1 < d2)
1947 return -1;
1948 }
1949 return 1;
1950 }
1951
1952 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1953
1954 void
1955 resort_type_method_vec (void* obj,
1956 void* /*orig_obj*/,
1957 gt_pointer_operator new_value,
1958 void* cookie)
1959 {
1960 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
1961 int len = vec_safe_length (method_vec);
1962 size_t slot;
1963 tree fn;
1964
1965 /* The type conversion ops have to live at the front of the vec, so we
1966 can't sort them. */
1967 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1968 vec_safe_iterate (method_vec, slot, &fn);
1969 ++slot)
1970 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1971 break;
1972
1973 if (len - slot > 1)
1974 {
1975 resort_data.new_value = new_value;
1976 resort_data.cookie = cookie;
1977 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
1978 resort_method_name_cmp);
1979 }
1980 }
1981
1982 /* Warn about duplicate methods in fn_fields.
1983
1984 Sort methods that are not special (i.e., constructors, destructors,
1985 and type conversion operators) so that we can find them faster in
1986 search. */
1987
1988 static void
1989 finish_struct_methods (tree t)
1990 {
1991 tree fn_fields;
1992 vec<tree, va_gc> *method_vec;
1993 int slot, len;
1994
1995 method_vec = CLASSTYPE_METHOD_VEC (t);
1996 if (!method_vec)
1997 return;
1998
1999 len = method_vec->length ();
2000
2001 /* Clear DECL_IN_AGGR_P for all functions. */
2002 for (fn_fields = TYPE_METHODS (t); fn_fields;
2003 fn_fields = DECL_CHAIN (fn_fields))
2004 DECL_IN_AGGR_P (fn_fields) = 0;
2005
2006 /* Issue warnings about private constructors and such. If there are
2007 no methods, then some public defaults are generated. */
2008 maybe_warn_about_overly_private_class (t);
2009
2010 /* The type conversion ops have to live at the front of the vec, so we
2011 can't sort them. */
2012 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2013 method_vec->iterate (slot, &fn_fields);
2014 ++slot)
2015 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2016 break;
2017 if (len - slot > 1)
2018 qsort (method_vec->address () + slot,
2019 len-slot, sizeof (tree), method_name_cmp);
2020 }
2021
2022 /* Make BINFO's vtable have N entries, including RTTI entries,
2023 vbase and vcall offsets, etc. Set its type and call the back end
2024 to lay it out. */
2025
2026 static void
2027 layout_vtable_decl (tree binfo, int n)
2028 {
2029 tree atype;
2030 tree vtable;
2031
2032 atype = build_array_of_n_type (vtable_entry_type, n);
2033 layout_type (atype);
2034
2035 /* We may have to grow the vtable. */
2036 vtable = get_vtbl_decl_for_binfo (binfo);
2037 if (!same_type_p (TREE_TYPE (vtable), atype))
2038 {
2039 TREE_TYPE (vtable) = atype;
2040 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2041 layout_decl (vtable, 0);
2042 }
2043 }
2044
2045 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2046 have the same signature. */
2047
2048 int
2049 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2050 {
2051 /* One destructor overrides another if they are the same kind of
2052 destructor. */
2053 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2054 && special_function_p (base_fndecl) == special_function_p (fndecl))
2055 return 1;
2056 /* But a non-destructor never overrides a destructor, nor vice
2057 versa, nor do different kinds of destructors override
2058 one-another. For example, a complete object destructor does not
2059 override a deleting destructor. */
2060 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2061 return 0;
2062
2063 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2064 || (DECL_CONV_FN_P (fndecl)
2065 && DECL_CONV_FN_P (base_fndecl)
2066 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2067 DECL_CONV_FN_TYPE (base_fndecl))))
2068 {
2069 tree types, base_types;
2070 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2071 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
2072 if ((cp_type_quals (TREE_TYPE (TREE_VALUE (base_types)))
2073 == cp_type_quals (TREE_TYPE (TREE_VALUE (types))))
2074 && (type_memfn_rqual (TREE_TYPE (fndecl))
2075 == type_memfn_rqual (TREE_TYPE (base_fndecl)))
2076 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
2077 return 1;
2078 }
2079 return 0;
2080 }
2081
2082 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2083 subobject. */
2084
2085 static bool
2086 base_derived_from (tree derived, tree base)
2087 {
2088 tree probe;
2089
2090 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2091 {
2092 if (probe == derived)
2093 return true;
2094 else if (BINFO_VIRTUAL_P (probe))
2095 /* If we meet a virtual base, we can't follow the inheritance
2096 any more. See if the complete type of DERIVED contains
2097 such a virtual base. */
2098 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2099 != NULL_TREE);
2100 }
2101 return false;
2102 }
2103
2104 typedef struct find_final_overrider_data_s {
2105 /* The function for which we are trying to find a final overrider. */
2106 tree fn;
2107 /* The base class in which the function was declared. */
2108 tree declaring_base;
2109 /* The candidate overriders. */
2110 tree candidates;
2111 /* Path to most derived. */
2112 vec<tree> path;
2113 } find_final_overrider_data;
2114
2115 /* Add the overrider along the current path to FFOD->CANDIDATES.
2116 Returns true if an overrider was found; false otherwise. */
2117
2118 static bool
2119 dfs_find_final_overrider_1 (tree binfo,
2120 find_final_overrider_data *ffod,
2121 unsigned depth)
2122 {
2123 tree method;
2124
2125 /* If BINFO is not the most derived type, try a more derived class.
2126 A definition there will overrider a definition here. */
2127 if (depth)
2128 {
2129 depth--;
2130 if (dfs_find_final_overrider_1
2131 (ffod->path[depth], ffod, depth))
2132 return true;
2133 }
2134
2135 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2136 if (method)
2137 {
2138 tree *candidate = &ffod->candidates;
2139
2140 /* Remove any candidates overridden by this new function. */
2141 while (*candidate)
2142 {
2143 /* If *CANDIDATE overrides METHOD, then METHOD
2144 cannot override anything else on the list. */
2145 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2146 return true;
2147 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2148 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2149 *candidate = TREE_CHAIN (*candidate);
2150 else
2151 candidate = &TREE_CHAIN (*candidate);
2152 }
2153
2154 /* Add the new function. */
2155 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2156 return true;
2157 }
2158
2159 return false;
2160 }
2161
2162 /* Called from find_final_overrider via dfs_walk. */
2163
2164 static tree
2165 dfs_find_final_overrider_pre (tree binfo, void *data)
2166 {
2167 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2168
2169 if (binfo == ffod->declaring_base)
2170 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2171 ffod->path.safe_push (binfo);
2172
2173 return NULL_TREE;
2174 }
2175
2176 static tree
2177 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2178 {
2179 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2180 ffod->path.pop ();
2181
2182 return NULL_TREE;
2183 }
2184
2185 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2186 FN and whose TREE_VALUE is the binfo for the base where the
2187 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2188 DERIVED) is the base object in which FN is declared. */
2189
2190 static tree
2191 find_final_overrider (tree derived, tree binfo, tree fn)
2192 {
2193 find_final_overrider_data ffod;
2194
2195 /* Getting this right is a little tricky. This is valid:
2196
2197 struct S { virtual void f (); };
2198 struct T { virtual void f (); };
2199 struct U : public S, public T { };
2200
2201 even though calling `f' in `U' is ambiguous. But,
2202
2203 struct R { virtual void f(); };
2204 struct S : virtual public R { virtual void f (); };
2205 struct T : virtual public R { virtual void f (); };
2206 struct U : public S, public T { };
2207
2208 is not -- there's no way to decide whether to put `S::f' or
2209 `T::f' in the vtable for `R'.
2210
2211 The solution is to look at all paths to BINFO. If we find
2212 different overriders along any two, then there is a problem. */
2213 if (DECL_THUNK_P (fn))
2214 fn = THUNK_TARGET (fn);
2215
2216 /* Determine the depth of the hierarchy. */
2217 ffod.fn = fn;
2218 ffod.declaring_base = binfo;
2219 ffod.candidates = NULL_TREE;
2220 ffod.path.create (30);
2221
2222 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2223 dfs_find_final_overrider_post, &ffod);
2224
2225 ffod.path.release ();
2226
2227 /* If there was no winner, issue an error message. */
2228 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2229 return error_mark_node;
2230
2231 return ffod.candidates;
2232 }
2233
2234 /* Return the index of the vcall offset for FN when TYPE is used as a
2235 virtual base. */
2236
2237 static tree
2238 get_vcall_index (tree fn, tree type)
2239 {
2240 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2241 tree_pair_p p;
2242 unsigned ix;
2243
2244 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2245 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2246 || same_signature_p (fn, p->purpose))
2247 return p->value;
2248
2249 /* There should always be an appropriate index. */
2250 gcc_unreachable ();
2251 }
2252
2253 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2254 dominated by T. FN is the old function; VIRTUALS points to the
2255 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2256 of that entry in the list. */
2257
2258 static void
2259 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2260 unsigned ix)
2261 {
2262 tree b;
2263 tree overrider;
2264 tree delta;
2265 tree virtual_base;
2266 tree first_defn;
2267 tree overrider_fn, overrider_target;
2268 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2269 tree over_return, base_return;
2270 bool lost = false;
2271
2272 /* Find the nearest primary base (possibly binfo itself) which defines
2273 this function; this is the class the caller will convert to when
2274 calling FN through BINFO. */
2275 for (b = binfo; ; b = get_primary_binfo (b))
2276 {
2277 gcc_assert (b);
2278 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2279 break;
2280
2281 /* The nearest definition is from a lost primary. */
2282 if (BINFO_LOST_PRIMARY_P (b))
2283 lost = true;
2284 }
2285 first_defn = b;
2286
2287 /* Find the final overrider. */
2288 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2289 if (overrider == error_mark_node)
2290 {
2291 error ("no unique final overrider for %qD in %qT", target_fn, t);
2292 return;
2293 }
2294 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2295
2296 /* Check for adjusting covariant return types. */
2297 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2298 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2299
2300 if (POINTER_TYPE_P (over_return)
2301 && TREE_CODE (over_return) == TREE_CODE (base_return)
2302 && CLASS_TYPE_P (TREE_TYPE (over_return))
2303 && CLASS_TYPE_P (TREE_TYPE (base_return))
2304 /* If the overrider is invalid, don't even try. */
2305 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2306 {
2307 /* If FN is a covariant thunk, we must figure out the adjustment
2308 to the final base FN was converting to. As OVERRIDER_TARGET might
2309 also be converting to the return type of FN, we have to
2310 combine the two conversions here. */
2311 tree fixed_offset, virtual_offset;
2312
2313 over_return = TREE_TYPE (over_return);
2314 base_return = TREE_TYPE (base_return);
2315
2316 if (DECL_THUNK_P (fn))
2317 {
2318 gcc_assert (DECL_RESULT_THUNK_P (fn));
2319 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2320 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2321 }
2322 else
2323 fixed_offset = virtual_offset = NULL_TREE;
2324
2325 if (virtual_offset)
2326 /* Find the equivalent binfo within the return type of the
2327 overriding function. We will want the vbase offset from
2328 there. */
2329 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2330 over_return);
2331 else if (!same_type_ignoring_top_level_qualifiers_p
2332 (over_return, base_return))
2333 {
2334 /* There was no existing virtual thunk (which takes
2335 precedence). So find the binfo of the base function's
2336 return type within the overriding function's return type.
2337 We cannot call lookup base here, because we're inside a
2338 dfs_walk, and will therefore clobber the BINFO_MARKED
2339 flags. Fortunately we know the covariancy is valid (it
2340 has already been checked), so we can just iterate along
2341 the binfos, which have been chained in inheritance graph
2342 order. Of course it is lame that we have to repeat the
2343 search here anyway -- we should really be caching pieces
2344 of the vtable and avoiding this repeated work. */
2345 tree thunk_binfo, base_binfo;
2346
2347 /* Find the base binfo within the overriding function's
2348 return type. We will always find a thunk_binfo, except
2349 when the covariancy is invalid (which we will have
2350 already diagnosed). */
2351 for (base_binfo = TYPE_BINFO (base_return),
2352 thunk_binfo = TYPE_BINFO (over_return);
2353 thunk_binfo;
2354 thunk_binfo = TREE_CHAIN (thunk_binfo))
2355 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2356 BINFO_TYPE (base_binfo)))
2357 break;
2358
2359 /* See if virtual inheritance is involved. */
2360 for (virtual_offset = thunk_binfo;
2361 virtual_offset;
2362 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2363 if (BINFO_VIRTUAL_P (virtual_offset))
2364 break;
2365
2366 if (virtual_offset
2367 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2368 {
2369 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2370
2371 if (virtual_offset)
2372 {
2373 /* We convert via virtual base. Adjust the fixed
2374 offset to be from there. */
2375 offset =
2376 size_diffop (offset,
2377 convert (ssizetype,
2378 BINFO_OFFSET (virtual_offset)));
2379 }
2380 if (fixed_offset)
2381 /* There was an existing fixed offset, this must be
2382 from the base just converted to, and the base the
2383 FN was thunking to. */
2384 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2385 else
2386 fixed_offset = offset;
2387 }
2388 }
2389
2390 if (fixed_offset || virtual_offset)
2391 /* Replace the overriding function with a covariant thunk. We
2392 will emit the overriding function in its own slot as
2393 well. */
2394 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2395 fixed_offset, virtual_offset);
2396 }
2397 else
2398 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2399 !DECL_THUNK_P (fn));
2400
2401 /* If we need a covariant thunk, then we may need to adjust first_defn.
2402 The ABI specifies that the thunks emitted with a function are
2403 determined by which bases the function overrides, so we need to be
2404 sure that we're using a thunk for some overridden base; even if we
2405 know that the necessary this adjustment is zero, there may not be an
2406 appropriate zero-this-adjusment thunk for us to use since thunks for
2407 overriding virtual bases always use the vcall offset.
2408
2409 Furthermore, just choosing any base that overrides this function isn't
2410 quite right, as this slot won't be used for calls through a type that
2411 puts a covariant thunk here. Calling the function through such a type
2412 will use a different slot, and that slot is the one that determines
2413 the thunk emitted for that base.
2414
2415 So, keep looking until we find the base that we're really overriding
2416 in this slot: the nearest primary base that doesn't use a covariant
2417 thunk in this slot. */
2418 if (overrider_target != overrider_fn)
2419 {
2420 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2421 /* We already know that the overrider needs a covariant thunk. */
2422 b = get_primary_binfo (b);
2423 for (; ; b = get_primary_binfo (b))
2424 {
2425 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2426 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2427 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2428 break;
2429 if (BINFO_LOST_PRIMARY_P (b))
2430 lost = true;
2431 }
2432 first_defn = b;
2433 }
2434
2435 /* Assume that we will produce a thunk that convert all the way to
2436 the final overrider, and not to an intermediate virtual base. */
2437 virtual_base = NULL_TREE;
2438
2439 /* See if we can convert to an intermediate virtual base first, and then
2440 use the vcall offset located there to finish the conversion. */
2441 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2442 {
2443 /* If we find the final overrider, then we can stop
2444 walking. */
2445 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2446 BINFO_TYPE (TREE_VALUE (overrider))))
2447 break;
2448
2449 /* If we find a virtual base, and we haven't yet found the
2450 overrider, then there is a virtual base between the
2451 declaring base (first_defn) and the final overrider. */
2452 if (BINFO_VIRTUAL_P (b))
2453 {
2454 virtual_base = b;
2455 break;
2456 }
2457 }
2458
2459 /* Compute the constant adjustment to the `this' pointer. The
2460 `this' pointer, when this function is called, will point at BINFO
2461 (or one of its primary bases, which are at the same offset). */
2462 if (virtual_base)
2463 /* The `this' pointer needs to be adjusted from the declaration to
2464 the nearest virtual base. */
2465 delta = size_diffop_loc (input_location,
2466 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2467 convert (ssizetype, BINFO_OFFSET (first_defn)));
2468 else if (lost)
2469 /* If the nearest definition is in a lost primary, we don't need an
2470 entry in our vtable. Except possibly in a constructor vtable,
2471 if we happen to get our primary back. In that case, the offset
2472 will be zero, as it will be a primary base. */
2473 delta = size_zero_node;
2474 else
2475 /* The `this' pointer needs to be adjusted from pointing to
2476 BINFO to pointing at the base where the final overrider
2477 appears. */
2478 delta = size_diffop_loc (input_location,
2479 convert (ssizetype,
2480 BINFO_OFFSET (TREE_VALUE (overrider))),
2481 convert (ssizetype, BINFO_OFFSET (binfo)));
2482
2483 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2484
2485 if (virtual_base)
2486 BV_VCALL_INDEX (*virtuals)
2487 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2488 else
2489 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2490
2491 BV_LOST_PRIMARY (*virtuals) = lost;
2492 }
2493
2494 /* Called from modify_all_vtables via dfs_walk. */
2495
2496 static tree
2497 dfs_modify_vtables (tree binfo, void* data)
2498 {
2499 tree t = (tree) data;
2500 tree virtuals;
2501 tree old_virtuals;
2502 unsigned ix;
2503
2504 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2505 /* A base without a vtable needs no modification, and its bases
2506 are uninteresting. */
2507 return dfs_skip_bases;
2508
2509 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2510 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2511 /* Don't do the primary vtable, if it's new. */
2512 return NULL_TREE;
2513
2514 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2515 /* There's no need to modify the vtable for a non-virtual primary
2516 base; we're not going to use that vtable anyhow. We do still
2517 need to do this for virtual primary bases, as they could become
2518 non-primary in a construction vtable. */
2519 return NULL_TREE;
2520
2521 make_new_vtable (t, binfo);
2522
2523 /* Now, go through each of the virtual functions in the virtual
2524 function table for BINFO. Find the final overrider, and update
2525 the BINFO_VIRTUALS list appropriately. */
2526 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2527 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2528 virtuals;
2529 ix++, virtuals = TREE_CHAIN (virtuals),
2530 old_virtuals = TREE_CHAIN (old_virtuals))
2531 update_vtable_entry_for_fn (t,
2532 binfo,
2533 BV_FN (old_virtuals),
2534 &virtuals, ix);
2535
2536 return NULL_TREE;
2537 }
2538
2539 /* Update all of the primary and secondary vtables for T. Create new
2540 vtables as required, and initialize their RTTI information. Each
2541 of the functions in VIRTUALS is declared in T and may override a
2542 virtual function from a base class; find and modify the appropriate
2543 entries to point to the overriding functions. Returns a list, in
2544 declaration order, of the virtual functions that are declared in T,
2545 but do not appear in the primary base class vtable, and which
2546 should therefore be appended to the end of the vtable for T. */
2547
2548 static tree
2549 modify_all_vtables (tree t, tree virtuals)
2550 {
2551 tree binfo = TYPE_BINFO (t);
2552 tree *fnsp;
2553
2554 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2555 if (TYPE_CONTAINS_VPTR_P (t))
2556 get_vtable_decl (t, false);
2557
2558 /* Update all of the vtables. */
2559 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2560
2561 /* Add virtual functions not already in our primary vtable. These
2562 will be both those introduced by this class, and those overridden
2563 from secondary bases. It does not include virtuals merely
2564 inherited from secondary bases. */
2565 for (fnsp = &virtuals; *fnsp; )
2566 {
2567 tree fn = TREE_VALUE (*fnsp);
2568
2569 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2570 || DECL_VINDEX (fn) == error_mark_node)
2571 {
2572 /* We don't need to adjust the `this' pointer when
2573 calling this function. */
2574 BV_DELTA (*fnsp) = integer_zero_node;
2575 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2576
2577 /* This is a function not already in our vtable. Keep it. */
2578 fnsp = &TREE_CHAIN (*fnsp);
2579 }
2580 else
2581 /* We've already got an entry for this function. Skip it. */
2582 *fnsp = TREE_CHAIN (*fnsp);
2583 }
2584
2585 return virtuals;
2586 }
2587
2588 /* Get the base virtual function declarations in T that have the
2589 indicated NAME. */
2590
2591 static tree
2592 get_basefndecls (tree name, tree t)
2593 {
2594 tree methods;
2595 tree base_fndecls = NULL_TREE;
2596 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2597 int i;
2598
2599 /* Find virtual functions in T with the indicated NAME. */
2600 i = lookup_fnfields_1 (t, name);
2601 if (i != -1)
2602 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2603 methods;
2604 methods = OVL_NEXT (methods))
2605 {
2606 tree method = OVL_CURRENT (methods);
2607
2608 if (TREE_CODE (method) == FUNCTION_DECL
2609 && DECL_VINDEX (method))
2610 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2611 }
2612
2613 if (base_fndecls)
2614 return base_fndecls;
2615
2616 for (i = 0; i < n_baseclasses; i++)
2617 {
2618 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2619 base_fndecls = chainon (get_basefndecls (name, basetype),
2620 base_fndecls);
2621 }
2622
2623 return base_fndecls;
2624 }
2625
2626 /* If this declaration supersedes the declaration of
2627 a method declared virtual in the base class, then
2628 mark this field as being virtual as well. */
2629
2630 void
2631 check_for_override (tree decl, tree ctype)
2632 {
2633 bool overrides_found = false;
2634 if (TREE_CODE (decl) == TEMPLATE_DECL)
2635 /* In [temp.mem] we have:
2636
2637 A specialization of a member function template does not
2638 override a virtual function from a base class. */
2639 return;
2640 if ((DECL_DESTRUCTOR_P (decl)
2641 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2642 || DECL_CONV_FN_P (decl))
2643 && look_for_overrides (ctype, decl)
2644 && !DECL_STATIC_FUNCTION_P (decl))
2645 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2646 the error_mark_node so that we know it is an overriding
2647 function. */
2648 {
2649 DECL_VINDEX (decl) = decl;
2650 overrides_found = true;
2651 }
2652
2653 if (DECL_VIRTUAL_P (decl))
2654 {
2655 if (!DECL_VINDEX (decl))
2656 DECL_VINDEX (decl) = error_mark_node;
2657 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2658 if (DECL_DESTRUCTOR_P (decl))
2659 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2660 }
2661 else if (DECL_FINAL_P (decl))
2662 error ("%q+#D marked final, but is not virtual", decl);
2663 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2664 error ("%q+#D marked override, but does not override", decl);
2665 }
2666
2667 /* Warn about hidden virtual functions that are not overridden in t.
2668 We know that constructors and destructors don't apply. */
2669
2670 static void
2671 warn_hidden (tree t)
2672 {
2673 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2674 tree fns;
2675 size_t i;
2676
2677 /* We go through each separately named virtual function. */
2678 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2679 vec_safe_iterate (method_vec, i, &fns);
2680 ++i)
2681 {
2682 tree fn;
2683 tree name;
2684 tree fndecl;
2685 tree base_fndecls;
2686 tree base_binfo;
2687 tree binfo;
2688 int j;
2689
2690 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2691 have the same name. Figure out what name that is. */
2692 name = DECL_NAME (OVL_CURRENT (fns));
2693 /* There are no possibly hidden functions yet. */
2694 base_fndecls = NULL_TREE;
2695 /* Iterate through all of the base classes looking for possibly
2696 hidden functions. */
2697 for (binfo = TYPE_BINFO (t), j = 0;
2698 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2699 {
2700 tree basetype = BINFO_TYPE (base_binfo);
2701 base_fndecls = chainon (get_basefndecls (name, basetype),
2702 base_fndecls);
2703 }
2704
2705 /* If there are no functions to hide, continue. */
2706 if (!base_fndecls)
2707 continue;
2708
2709 /* Remove any overridden functions. */
2710 for (fn = fns; fn; fn = OVL_NEXT (fn))
2711 {
2712 fndecl = OVL_CURRENT (fn);
2713 if (DECL_VINDEX (fndecl))
2714 {
2715 tree *prev = &base_fndecls;
2716
2717 while (*prev)
2718 /* If the method from the base class has the same
2719 signature as the method from the derived class, it
2720 has been overridden. */
2721 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2722 *prev = TREE_CHAIN (*prev);
2723 else
2724 prev = &TREE_CHAIN (*prev);
2725 }
2726 }
2727
2728 /* Now give a warning for all base functions without overriders,
2729 as they are hidden. */
2730 while (base_fndecls)
2731 {
2732 /* Here we know it is a hider, and no overrider exists. */
2733 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2734 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2735 base_fndecls = TREE_CHAIN (base_fndecls);
2736 }
2737 }
2738 }
2739
2740 /* Check for things that are invalid. There are probably plenty of other
2741 things we should check for also. */
2742
2743 static void
2744 finish_struct_anon (tree t)
2745 {
2746 tree field;
2747
2748 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2749 {
2750 if (TREE_STATIC (field))
2751 continue;
2752 if (TREE_CODE (field) != FIELD_DECL)
2753 continue;
2754
2755 if (DECL_NAME (field) == NULL_TREE
2756 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2757 {
2758 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2759 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2760 for (; elt; elt = DECL_CHAIN (elt))
2761 {
2762 /* We're generally only interested in entities the user
2763 declared, but we also find nested classes by noticing
2764 the TYPE_DECL that we create implicitly. You're
2765 allowed to put one anonymous union inside another,
2766 though, so we explicitly tolerate that. We use
2767 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2768 we also allow unnamed types used for defining fields. */
2769 if (DECL_ARTIFICIAL (elt)
2770 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2771 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2772 continue;
2773
2774 if (TREE_CODE (elt) != FIELD_DECL)
2775 {
2776 if (is_union)
2777 permerror (input_location, "%q+#D invalid; an anonymous union can "
2778 "only have non-static data members", elt);
2779 else
2780 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2781 "only have non-static data members", elt);
2782 continue;
2783 }
2784
2785 if (TREE_PRIVATE (elt))
2786 {
2787 if (is_union)
2788 permerror (input_location, "private member %q+#D in anonymous union", elt);
2789 else
2790 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2791 }
2792 else if (TREE_PROTECTED (elt))
2793 {
2794 if (is_union)
2795 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2796 else
2797 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2798 }
2799
2800 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2801 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2802 }
2803 }
2804 }
2805 }
2806
2807 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2808 will be used later during class template instantiation.
2809 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2810 a non-static member data (FIELD_DECL), a member function
2811 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2812 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2813 When FRIEND_P is nonzero, T is either a friend class
2814 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2815 (FUNCTION_DECL, TEMPLATE_DECL). */
2816
2817 void
2818 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2819 {
2820 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2821 if (CLASSTYPE_TEMPLATE_INFO (type))
2822 CLASSTYPE_DECL_LIST (type)
2823 = tree_cons (friend_p ? NULL_TREE : type,
2824 t, CLASSTYPE_DECL_LIST (type));
2825 }
2826
2827 /* This function is called from declare_virt_assop_and_dtor via
2828 dfs_walk_all.
2829
2830 DATA is a type that direcly or indirectly inherits the base
2831 represented by BINFO. If BINFO contains a virtual assignment [copy
2832 assignment or move assigment] operator or a virtual constructor,
2833 declare that function in DATA if it hasn't been already declared. */
2834
2835 static tree
2836 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2837 {
2838 tree bv, fn, t = (tree)data;
2839 tree opname = ansi_assopname (NOP_EXPR);
2840
2841 gcc_assert (t && CLASS_TYPE_P (t));
2842 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2843
2844 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2845 /* A base without a vtable needs no modification, and its bases
2846 are uninteresting. */
2847 return dfs_skip_bases;
2848
2849 if (BINFO_PRIMARY_P (binfo))
2850 /* If this is a primary base, then we have already looked at the
2851 virtual functions of its vtable. */
2852 return NULL_TREE;
2853
2854 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
2855 {
2856 fn = BV_FN (bv);
2857
2858 if (DECL_NAME (fn) == opname)
2859 {
2860 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
2861 lazily_declare_fn (sfk_copy_assignment, t);
2862 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
2863 lazily_declare_fn (sfk_move_assignment, t);
2864 }
2865 else if (DECL_DESTRUCTOR_P (fn)
2866 && CLASSTYPE_LAZY_DESTRUCTOR (t))
2867 lazily_declare_fn (sfk_destructor, t);
2868 }
2869
2870 return NULL_TREE;
2871 }
2872
2873 /* If the class type T has a direct or indirect base that contains a
2874 virtual assignment operator or a virtual destructor, declare that
2875 function in T if it hasn't been already declared. */
2876
2877 static void
2878 declare_virt_assop_and_dtor (tree t)
2879 {
2880 if (!(TYPE_POLYMORPHIC_P (t)
2881 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
2882 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
2883 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
2884 return;
2885
2886 dfs_walk_all (TYPE_BINFO (t),
2887 dfs_declare_virt_assop_and_dtor,
2888 NULL, t);
2889 }
2890
2891 /* Declare the inheriting constructor for class T inherited from base
2892 constructor CTOR with the parameter array PARMS of size NPARMS. */
2893
2894 static void
2895 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
2896 {
2897 /* We don't declare an inheriting ctor that would be a default,
2898 copy or move ctor for derived or base. */
2899 if (nparms == 0)
2900 return;
2901 if (nparms == 1
2902 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
2903 {
2904 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
2905 if (parm == t || parm == DECL_CONTEXT (ctor))
2906 return;
2907 }
2908
2909 tree parmlist = void_list_node;
2910 for (int i = nparms - 1; i >= 0; i--)
2911 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
2912 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
2913 t, false, ctor, parmlist);
2914 if (add_method (t, fn, NULL_TREE))
2915 {
2916 DECL_CHAIN (fn) = TYPE_METHODS (t);
2917 TYPE_METHODS (t) = fn;
2918 }
2919 }
2920
2921 /* Declare all the inheriting constructors for class T inherited from base
2922 constructor CTOR. */
2923
2924 static void
2925 one_inherited_ctor (tree ctor, tree t)
2926 {
2927 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
2928
2929 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
2930 int i = 0;
2931 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
2932 {
2933 if (TREE_PURPOSE (parms))
2934 one_inheriting_sig (t, ctor, new_parms, i);
2935 new_parms[i++] = TREE_VALUE (parms);
2936 }
2937 one_inheriting_sig (t, ctor, new_parms, i);
2938 if (parms == NULL_TREE)
2939 {
2940 warning (OPT_Winherited_variadic_ctor,
2941 "the ellipsis in %qD is not inherited", ctor);
2942 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
2943 }
2944 }
2945
2946 /* Create default constructors, assignment operators, and so forth for
2947 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2948 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2949 the class cannot have a default constructor, copy constructor
2950 taking a const reference argument, or an assignment operator taking
2951 a const reference, respectively. */
2952
2953 static void
2954 add_implicitly_declared_members (tree t, tree* access_decls,
2955 int cant_have_const_cctor,
2956 int cant_have_const_assignment)
2957 {
2958 bool move_ok = false;
2959
2960 if (cxx_dialect >= cxx0x && !CLASSTYPE_DESTRUCTORS (t)
2961 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
2962 && !type_has_move_constructor (t) && !type_has_move_assign (t))
2963 move_ok = true;
2964
2965 /* Destructor. */
2966 if (!CLASSTYPE_DESTRUCTORS (t))
2967 {
2968 /* In general, we create destructors lazily. */
2969 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2970
2971 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2972 && TYPE_FOR_JAVA (t))
2973 /* But if this is a Java class, any non-trivial destructor is
2974 invalid, even if compiler-generated. Therefore, if the
2975 destructor is non-trivial we create it now. */
2976 lazily_declare_fn (sfk_destructor, t);
2977 }
2978
2979 /* [class.ctor]
2980
2981 If there is no user-declared constructor for a class, a default
2982 constructor is implicitly declared. */
2983 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2984 {
2985 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2986 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2987 if (cxx_dialect >= cxx0x)
2988 TYPE_HAS_CONSTEXPR_CTOR (t)
2989 /* This might force the declaration. */
2990 = type_has_constexpr_default_constructor (t);
2991 }
2992
2993 /* [class.ctor]
2994
2995 If a class definition does not explicitly declare a copy
2996 constructor, one is declared implicitly. */
2997 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
2998 {
2999 TYPE_HAS_COPY_CTOR (t) = 1;
3000 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
3001 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3002 if (move_ok)
3003 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3004 }
3005
3006 /* If there is no assignment operator, one will be created if and
3007 when it is needed. For now, just record whether or not the type
3008 of the parameter to the assignment operator will be a const or
3009 non-const reference. */
3010 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3011 {
3012 TYPE_HAS_COPY_ASSIGN (t) = 1;
3013 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3014 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3015 if (move_ok)
3016 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3017 }
3018
3019 /* We can't be lazy about declaring functions that might override
3020 a virtual function from a base class. */
3021 declare_virt_assop_and_dtor (t);
3022
3023 while (*access_decls)
3024 {
3025 tree using_decl = TREE_VALUE (*access_decls);
3026 tree decl = USING_DECL_DECLS (using_decl);
3027 if (DECL_NAME (using_decl) == ctor_identifier)
3028 {
3029 /* declare, then remove the decl */
3030 tree ctor_list = decl;
3031 location_t loc = input_location;
3032 input_location = DECL_SOURCE_LOCATION (using_decl);
3033 if (ctor_list)
3034 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3035 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3036 *access_decls = TREE_CHAIN (*access_decls);
3037 input_location = loc;
3038 }
3039 else
3040 access_decls = &TREE_CHAIN (*access_decls);
3041 }
3042 }
3043
3044 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3045 count the number of fields in TYPE, including anonymous union
3046 members. */
3047
3048 static int
3049 count_fields (tree fields)
3050 {
3051 tree x;
3052 int n_fields = 0;
3053 for (x = fields; x; x = DECL_CHAIN (x))
3054 {
3055 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3056 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3057 else
3058 n_fields += 1;
3059 }
3060 return n_fields;
3061 }
3062
3063 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3064 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3065 elts, starting at offset IDX. */
3066
3067 static int
3068 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3069 {
3070 tree x;
3071 for (x = fields; x; x = DECL_CHAIN (x))
3072 {
3073 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3074 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3075 else
3076 field_vec->elts[idx++] = x;
3077 }
3078 return idx;
3079 }
3080
3081 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3082 starting at offset IDX. */
3083
3084 static int
3085 add_enum_fields_to_record_type (tree enumtype,
3086 struct sorted_fields_type *field_vec,
3087 int idx)
3088 {
3089 tree values;
3090 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3091 field_vec->elts[idx++] = TREE_VALUE (values);
3092 return idx;
3093 }
3094
3095 /* FIELD is a bit-field. We are finishing the processing for its
3096 enclosing type. Issue any appropriate messages and set appropriate
3097 flags. Returns false if an error has been diagnosed. */
3098
3099 static bool
3100 check_bitfield_decl (tree field)
3101 {
3102 tree type = TREE_TYPE (field);
3103 tree w;
3104
3105 /* Extract the declared width of the bitfield, which has been
3106 temporarily stashed in DECL_INITIAL. */
3107 w = DECL_INITIAL (field);
3108 gcc_assert (w != NULL_TREE);
3109 /* Remove the bit-field width indicator so that the rest of the
3110 compiler does not treat that value as an initializer. */
3111 DECL_INITIAL (field) = NULL_TREE;
3112
3113 /* Detect invalid bit-field type. */
3114 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3115 {
3116 error ("bit-field %q+#D with non-integral type", field);
3117 w = error_mark_node;
3118 }
3119 else
3120 {
3121 location_t loc = input_location;
3122 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3123 STRIP_NOPS (w);
3124
3125 /* detect invalid field size. */
3126 input_location = DECL_SOURCE_LOCATION (field);
3127 w = cxx_constant_value (w);
3128 input_location = loc;
3129
3130 if (TREE_CODE (w) != INTEGER_CST)
3131 {
3132 error ("bit-field %q+D width not an integer constant", field);
3133 w = error_mark_node;
3134 }
3135 else if (tree_int_cst_sgn (w) < 0)
3136 {
3137 error ("negative width in bit-field %q+D", field);
3138 w = error_mark_node;
3139 }
3140 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3141 {
3142 error ("zero width for bit-field %q+D", field);
3143 w = error_mark_node;
3144 }
3145 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
3146 && TREE_CODE (type) != ENUMERAL_TYPE
3147 && TREE_CODE (type) != BOOLEAN_TYPE)
3148 warning (0, "width of %q+D exceeds its type", field);
3149 else if (TREE_CODE (type) == ENUMERAL_TYPE
3150 && (0 > (compare_tree_int
3151 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3152 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3153 }
3154
3155 if (w != error_mark_node)
3156 {
3157 DECL_SIZE (field) = convert (bitsizetype, w);
3158 DECL_BIT_FIELD (field) = 1;
3159 return true;
3160 }
3161 else
3162 {
3163 /* Non-bit-fields are aligned for their type. */
3164 DECL_BIT_FIELD (field) = 0;
3165 CLEAR_DECL_C_BIT_FIELD (field);
3166 return false;
3167 }
3168 }
3169
3170 /* FIELD is a non bit-field. We are finishing the processing for its
3171 enclosing type T. Issue any appropriate messages and set appropriate
3172 flags. */
3173
3174 static void
3175 check_field_decl (tree field,
3176 tree t,
3177 int* cant_have_const_ctor,
3178 int* no_const_asn_ref,
3179 int* any_default_members)
3180 {
3181 tree type = strip_array_types (TREE_TYPE (field));
3182
3183 /* In C++98 an anonymous union cannot contain any fields which would change
3184 the settings of CANT_HAVE_CONST_CTOR and friends. */
3185 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx0x)
3186 ;
3187 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3188 structs. So, we recurse through their fields here. */
3189 else if (ANON_AGGR_TYPE_P (type))
3190 {
3191 tree fields;
3192
3193 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3194 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3195 check_field_decl (fields, t, cant_have_const_ctor,
3196 no_const_asn_ref, any_default_members);
3197 }
3198 /* Check members with class type for constructors, destructors,
3199 etc. */
3200 else if (CLASS_TYPE_P (type))
3201 {
3202 /* Never let anything with uninheritable virtuals
3203 make it through without complaint. */
3204 abstract_virtuals_error (field, type);
3205
3206 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx0x)
3207 {
3208 static bool warned;
3209 int oldcount = errorcount;
3210 if (TYPE_NEEDS_CONSTRUCTING (type))
3211 error ("member %q+#D with constructor not allowed in union",
3212 field);
3213 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3214 error ("member %q+#D with destructor not allowed in union", field);
3215 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3216 error ("member %q+#D with copy assignment operator not allowed in union",
3217 field);
3218 if (!warned && errorcount > oldcount)
3219 {
3220 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3221 "only available with -std=c++11 or -std=gnu++11");
3222 warned = true;
3223 }
3224 }
3225 else
3226 {
3227 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3228 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3229 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3230 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3231 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3232 || !TYPE_HAS_COPY_ASSIGN (type));
3233 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3234 || !TYPE_HAS_COPY_CTOR (type));
3235 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3236 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3237 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3238 || TYPE_HAS_COMPLEX_DFLT (type));
3239 }
3240
3241 if (TYPE_HAS_COPY_CTOR (type)
3242 && !TYPE_HAS_CONST_COPY_CTOR (type))
3243 *cant_have_const_ctor = 1;
3244
3245 if (TYPE_HAS_COPY_ASSIGN (type)
3246 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3247 *no_const_asn_ref = 1;
3248 }
3249
3250 check_abi_tags (t, field);
3251
3252 if (DECL_INITIAL (field) != NULL_TREE)
3253 {
3254 /* `build_class_init_list' does not recognize
3255 non-FIELD_DECLs. */
3256 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3257 error ("multiple fields in union %qT initialized", t);
3258 *any_default_members = 1;
3259 }
3260 }
3261
3262 /* Check the data members (both static and non-static), class-scoped
3263 typedefs, etc., appearing in the declaration of T. Issue
3264 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3265 declaration order) of access declarations; each TREE_VALUE in this
3266 list is a USING_DECL.
3267
3268 In addition, set the following flags:
3269
3270 EMPTY_P
3271 The class is empty, i.e., contains no non-static data members.
3272
3273 CANT_HAVE_CONST_CTOR_P
3274 This class cannot have an implicitly generated copy constructor
3275 taking a const reference.
3276
3277 CANT_HAVE_CONST_ASN_REF
3278 This class cannot have an implicitly generated assignment
3279 operator taking a const reference.
3280
3281 All of these flags should be initialized before calling this
3282 function.
3283
3284 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3285 fields can be added by adding to this chain. */
3286
3287 static void
3288 check_field_decls (tree t, tree *access_decls,
3289 int *cant_have_const_ctor_p,
3290 int *no_const_asn_ref_p)
3291 {
3292 tree *field;
3293 tree *next;
3294 bool has_pointers;
3295 int any_default_members;
3296 int cant_pack = 0;
3297 int field_access = -1;
3298
3299 /* Assume there are no access declarations. */
3300 *access_decls = NULL_TREE;
3301 /* Assume this class has no pointer members. */
3302 has_pointers = false;
3303 /* Assume none of the members of this class have default
3304 initializations. */
3305 any_default_members = 0;
3306
3307 for (field = &TYPE_FIELDS (t); *field; field = next)
3308 {
3309 tree x = *field;
3310 tree type = TREE_TYPE (x);
3311 int this_field_access;
3312
3313 next = &DECL_CHAIN (x);
3314
3315 if (TREE_CODE (x) == USING_DECL)
3316 {
3317 /* Save the access declarations for our caller. */
3318 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3319 continue;
3320 }
3321
3322 if (TREE_CODE (x) == TYPE_DECL
3323 || TREE_CODE (x) == TEMPLATE_DECL)
3324 continue;
3325
3326 /* If we've gotten this far, it's a data member, possibly static,
3327 or an enumerator. */
3328 if (TREE_CODE (x) != CONST_DECL)
3329 DECL_CONTEXT (x) = t;
3330
3331 /* When this goes into scope, it will be a non-local reference. */
3332 DECL_NONLOCAL (x) = 1;
3333
3334 if (TREE_CODE (t) == UNION_TYPE)
3335 {
3336 /* [class.union]
3337
3338 If a union contains a static data member, or a member of
3339 reference type, the program is ill-formed. */
3340 if (VAR_P (x))
3341 {
3342 error ("%q+D may not be static because it is a member of a union", x);
3343 continue;
3344 }
3345 if (TREE_CODE (type) == REFERENCE_TYPE)
3346 {
3347 error ("%q+D may not have reference type %qT because"
3348 " it is a member of a union",
3349 x, type);
3350 continue;
3351 }
3352 }
3353
3354 /* Perform error checking that did not get done in
3355 grokdeclarator. */
3356 if (TREE_CODE (type) == FUNCTION_TYPE)
3357 {
3358 error ("field %q+D invalidly declared function type", x);
3359 type = build_pointer_type (type);
3360 TREE_TYPE (x) = type;
3361 }
3362 else if (TREE_CODE (type) == METHOD_TYPE)
3363 {
3364 error ("field %q+D invalidly declared method type", x);
3365 type = build_pointer_type (type);
3366 TREE_TYPE (x) = type;
3367 }
3368
3369 if (type == error_mark_node)
3370 continue;
3371
3372 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3373 continue;
3374
3375 /* Now it can only be a FIELD_DECL. */
3376
3377 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3378 CLASSTYPE_NON_AGGREGATE (t) = 1;
3379
3380 /* If at least one non-static data member is non-literal, the whole
3381 class becomes non-literal. Note: if the type is incomplete we
3382 will complain later on. */
3383 if (COMPLETE_TYPE_P (type) && !literal_type_p (type))
3384 CLASSTYPE_LITERAL_P (t) = false;
3385
3386 /* A standard-layout class is a class that:
3387 ...
3388 has the same access control (Clause 11) for all non-static data members,
3389 ... */
3390 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3391 if (field_access == -1)
3392 field_access = this_field_access;
3393 else if (this_field_access != field_access)
3394 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3395
3396 /* If this is of reference type, check if it needs an init. */
3397 if (TREE_CODE (type) == REFERENCE_TYPE)
3398 {
3399 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3400 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3401 if (DECL_INITIAL (x) == NULL_TREE)
3402 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3403
3404 /* ARM $12.6.2: [A member initializer list] (or, for an
3405 aggregate, initialization by a brace-enclosed list) is the
3406 only way to initialize nonstatic const and reference
3407 members. */
3408 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3409 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3410 }
3411
3412 type = strip_array_types (type);
3413
3414 if (TYPE_PACKED (t))
3415 {
3416 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3417 {
3418 warning
3419 (0,
3420 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3421 x);
3422 cant_pack = 1;
3423 }
3424 else if (DECL_C_BIT_FIELD (x)
3425 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3426 DECL_PACKED (x) = 1;
3427 }
3428
3429 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3430 /* We don't treat zero-width bitfields as making a class
3431 non-empty. */
3432 ;
3433 else
3434 {
3435 /* The class is non-empty. */
3436 CLASSTYPE_EMPTY_P (t) = 0;
3437 /* The class is not even nearly empty. */
3438 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3439 /* If one of the data members contains an empty class,
3440 so does T. */
3441 if (CLASS_TYPE_P (type)
3442 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3443 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3444 }
3445
3446 /* This is used by -Weffc++ (see below). Warn only for pointers
3447 to members which might hold dynamic memory. So do not warn
3448 for pointers to functions or pointers to members. */
3449 if (TYPE_PTR_P (type)
3450 && !TYPE_PTRFN_P (type))
3451 has_pointers = true;
3452
3453 if (CLASS_TYPE_P (type))
3454 {
3455 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3456 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3457 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3458 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3459 }
3460
3461 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3462 CLASSTYPE_HAS_MUTABLE (t) = 1;
3463
3464 if (! layout_pod_type_p (type))
3465 /* DR 148 now allows pointers to members (which are POD themselves),
3466 to be allowed in POD structs. */
3467 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3468
3469 if (!std_layout_type_p (type))
3470 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3471
3472 if (! zero_init_p (type))
3473 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3474
3475 /* We set DECL_C_BIT_FIELD in grokbitfield.
3476 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3477 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3478 check_field_decl (x, t,
3479 cant_have_const_ctor_p,
3480 no_const_asn_ref_p,
3481 &any_default_members);
3482
3483 /* Now that we've removed bit-field widths from DECL_INITIAL,
3484 anything left in DECL_INITIAL is an NSDMI that makes the class
3485 non-aggregate. */
3486 if (DECL_INITIAL (x))
3487 CLASSTYPE_NON_AGGREGATE (t) = true;
3488
3489 /* If any field is const, the structure type is pseudo-const. */
3490 if (CP_TYPE_CONST_P (type))
3491 {
3492 C_TYPE_FIELDS_READONLY (t) = 1;
3493 if (DECL_INITIAL (x) == NULL_TREE)
3494 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3495
3496 /* ARM $12.6.2: [A member initializer list] (or, for an
3497 aggregate, initialization by a brace-enclosed list) is the
3498 only way to initialize nonstatic const and reference
3499 members. */
3500 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3501 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3502 }
3503 /* A field that is pseudo-const makes the structure likewise. */
3504 else if (CLASS_TYPE_P (type))
3505 {
3506 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3507 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3508 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3509 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3510 }
3511
3512 /* Core issue 80: A nonstatic data member is required to have a
3513 different name from the class iff the class has a
3514 user-declared constructor. */
3515 if (constructor_name_p (DECL_NAME (x), t)
3516 && TYPE_HAS_USER_CONSTRUCTOR (t))
3517 permerror (input_location, "field %q+#D with same name as class", x);
3518 }
3519
3520 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3521 it should also define a copy constructor and an assignment operator to
3522 implement the correct copy semantic (deep vs shallow, etc.). As it is
3523 not feasible to check whether the constructors do allocate dynamic memory
3524 and store it within members, we approximate the warning like this:
3525
3526 -- Warn only if there are members which are pointers
3527 -- Warn only if there is a non-trivial constructor (otherwise,
3528 there cannot be memory allocated).
3529 -- Warn only if there is a non-trivial destructor. We assume that the
3530 user at least implemented the cleanup correctly, and a destructor
3531 is needed to free dynamic memory.
3532
3533 This seems enough for practical purposes. */
3534 if (warn_ecpp
3535 && has_pointers
3536 && TYPE_HAS_USER_CONSTRUCTOR (t)
3537 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3538 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3539 {
3540 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3541
3542 if (! TYPE_HAS_COPY_CTOR (t))
3543 {
3544 warning (OPT_Weffc__,
3545 " but does not override %<%T(const %T&)%>", t, t);
3546 if (!TYPE_HAS_COPY_ASSIGN (t))
3547 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3548 }
3549 else if (! TYPE_HAS_COPY_ASSIGN (t))
3550 warning (OPT_Weffc__,
3551 " but does not override %<operator=(const %T&)%>", t);
3552 }
3553
3554 /* Non-static data member initializers make the default constructor
3555 non-trivial. */
3556 if (any_default_members)
3557 {
3558 TYPE_NEEDS_CONSTRUCTING (t) = true;
3559 TYPE_HAS_COMPLEX_DFLT (t) = true;
3560 }
3561
3562 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3563 if (cant_pack)
3564 TYPE_PACKED (t) = 0;
3565
3566 /* Check anonymous struct/anonymous union fields. */
3567 finish_struct_anon (t);
3568
3569 /* We've built up the list of access declarations in reverse order.
3570 Fix that now. */
3571 *access_decls = nreverse (*access_decls);
3572 }
3573
3574 /* If TYPE is an empty class type, records its OFFSET in the table of
3575 OFFSETS. */
3576
3577 static int
3578 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3579 {
3580 splay_tree_node n;
3581
3582 if (!is_empty_class (type))
3583 return 0;
3584
3585 /* Record the location of this empty object in OFFSETS. */
3586 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3587 if (!n)
3588 n = splay_tree_insert (offsets,
3589 (splay_tree_key) offset,
3590 (splay_tree_value) NULL_TREE);
3591 n->value = ((splay_tree_value)
3592 tree_cons (NULL_TREE,
3593 type,
3594 (tree) n->value));
3595
3596 return 0;
3597 }
3598
3599 /* Returns nonzero if TYPE is an empty class type and there is
3600 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3601
3602 static int
3603 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3604 {
3605 splay_tree_node n;
3606 tree t;
3607
3608 if (!is_empty_class (type))
3609 return 0;
3610
3611 /* Record the location of this empty object in OFFSETS. */
3612 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3613 if (!n)
3614 return 0;
3615
3616 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3617 if (same_type_p (TREE_VALUE (t), type))
3618 return 1;
3619
3620 return 0;
3621 }
3622
3623 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3624 F for every subobject, passing it the type, offset, and table of
3625 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3626 be traversed.
3627
3628 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3629 than MAX_OFFSET will not be walked.
3630
3631 If F returns a nonzero value, the traversal ceases, and that value
3632 is returned. Otherwise, returns zero. */
3633
3634 static int
3635 walk_subobject_offsets (tree type,
3636 subobject_offset_fn f,
3637 tree offset,
3638 splay_tree offsets,
3639 tree max_offset,
3640 int vbases_p)
3641 {
3642 int r = 0;
3643 tree type_binfo = NULL_TREE;
3644
3645 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3646 stop. */
3647 if (max_offset && INT_CST_LT (max_offset, offset))
3648 return 0;
3649
3650 if (type == error_mark_node)
3651 return 0;
3652
3653 if (!TYPE_P (type))
3654 {
3655 if (abi_version_at_least (2))
3656 type_binfo = type;
3657 type = BINFO_TYPE (type);
3658 }
3659
3660 if (CLASS_TYPE_P (type))
3661 {
3662 tree field;
3663 tree binfo;
3664 int i;
3665
3666 /* Avoid recursing into objects that are not interesting. */
3667 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3668 return 0;
3669
3670 /* Record the location of TYPE. */
3671 r = (*f) (type, offset, offsets);
3672 if (r)
3673 return r;
3674
3675 /* Iterate through the direct base classes of TYPE. */
3676 if (!type_binfo)
3677 type_binfo = TYPE_BINFO (type);
3678 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3679 {
3680 tree binfo_offset;
3681
3682 if (abi_version_at_least (2)
3683 && BINFO_VIRTUAL_P (binfo))
3684 continue;
3685
3686 if (!vbases_p
3687 && BINFO_VIRTUAL_P (binfo)
3688 && !BINFO_PRIMARY_P (binfo))
3689 continue;
3690
3691 if (!abi_version_at_least (2))
3692 binfo_offset = size_binop (PLUS_EXPR,
3693 offset,
3694 BINFO_OFFSET (binfo));
3695 else
3696 {
3697 tree orig_binfo;
3698 /* We cannot rely on BINFO_OFFSET being set for the base
3699 class yet, but the offsets for direct non-virtual
3700 bases can be calculated by going back to the TYPE. */
3701 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3702 binfo_offset = size_binop (PLUS_EXPR,
3703 offset,
3704 BINFO_OFFSET (orig_binfo));
3705 }
3706
3707 r = walk_subobject_offsets (binfo,
3708 f,
3709 binfo_offset,
3710 offsets,
3711 max_offset,
3712 (abi_version_at_least (2)
3713 ? /*vbases_p=*/0 : vbases_p));
3714 if (r)
3715 return r;
3716 }
3717
3718 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3719 {
3720 unsigned ix;
3721 vec<tree, va_gc> *vbases;
3722
3723 /* Iterate through the virtual base classes of TYPE. In G++
3724 3.2, we included virtual bases in the direct base class
3725 loop above, which results in incorrect results; the
3726 correct offsets for virtual bases are only known when
3727 working with the most derived type. */
3728 if (vbases_p)
3729 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3730 vec_safe_iterate (vbases, ix, &binfo); ix++)
3731 {
3732 r = walk_subobject_offsets (binfo,
3733 f,
3734 size_binop (PLUS_EXPR,
3735 offset,
3736 BINFO_OFFSET (binfo)),
3737 offsets,
3738 max_offset,
3739 /*vbases_p=*/0);
3740 if (r)
3741 return r;
3742 }
3743 else
3744 {
3745 /* We still have to walk the primary base, if it is
3746 virtual. (If it is non-virtual, then it was walked
3747 above.) */
3748 tree vbase = get_primary_binfo (type_binfo);
3749
3750 if (vbase && BINFO_VIRTUAL_P (vbase)
3751 && BINFO_PRIMARY_P (vbase)
3752 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3753 {
3754 r = (walk_subobject_offsets
3755 (vbase, f, offset,
3756 offsets, max_offset, /*vbases_p=*/0));
3757 if (r)
3758 return r;
3759 }
3760 }
3761 }
3762
3763 /* Iterate through the fields of TYPE. */
3764 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3765 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3766 {
3767 tree field_offset;
3768
3769 if (abi_version_at_least (2))
3770 field_offset = byte_position (field);
3771 else
3772 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3773 field_offset = DECL_FIELD_OFFSET (field);
3774
3775 r = walk_subobject_offsets (TREE_TYPE (field),
3776 f,
3777 size_binop (PLUS_EXPR,
3778 offset,
3779 field_offset),
3780 offsets,
3781 max_offset,
3782 /*vbases_p=*/1);
3783 if (r)
3784 return r;
3785 }
3786 }
3787 else if (TREE_CODE (type) == ARRAY_TYPE)
3788 {
3789 tree element_type = strip_array_types (type);
3790 tree domain = TYPE_DOMAIN (type);
3791 tree index;
3792
3793 /* Avoid recursing into objects that are not interesting. */
3794 if (!CLASS_TYPE_P (element_type)
3795 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3796 return 0;
3797
3798 /* Step through each of the elements in the array. */
3799 for (index = size_zero_node;
3800 /* G++ 3.2 had an off-by-one error here. */
3801 (abi_version_at_least (2)
3802 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3803 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3804 index = size_binop (PLUS_EXPR, index, size_one_node))
3805 {
3806 r = walk_subobject_offsets (TREE_TYPE (type),
3807 f,
3808 offset,
3809 offsets,
3810 max_offset,
3811 /*vbases_p=*/1);
3812 if (r)
3813 return r;
3814 offset = size_binop (PLUS_EXPR, offset,
3815 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3816 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3817 there's no point in iterating through the remaining
3818 elements of the array. */
3819 if (max_offset && INT_CST_LT (max_offset, offset))
3820 break;
3821 }
3822 }
3823
3824 return 0;
3825 }
3826
3827 /* Record all of the empty subobjects of TYPE (either a type or a
3828 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3829 is being placed at OFFSET; otherwise, it is a base class that is
3830 being placed at OFFSET. */
3831
3832 static void
3833 record_subobject_offsets (tree type,
3834 tree offset,
3835 splay_tree offsets,
3836 bool is_data_member)
3837 {
3838 tree max_offset;
3839 /* If recording subobjects for a non-static data member or a
3840 non-empty base class , we do not need to record offsets beyond
3841 the size of the biggest empty class. Additional data members
3842 will go at the end of the class. Additional base classes will go
3843 either at offset zero (if empty, in which case they cannot
3844 overlap with offsets past the size of the biggest empty class) or
3845 at the end of the class.
3846
3847 However, if we are placing an empty base class, then we must record
3848 all offsets, as either the empty class is at offset zero (where
3849 other empty classes might later be placed) or at the end of the
3850 class (where other objects might then be placed, so other empty
3851 subobjects might later overlap). */
3852 if (is_data_member
3853 || !is_empty_class (BINFO_TYPE (type)))
3854 max_offset = sizeof_biggest_empty_class;
3855 else
3856 max_offset = NULL_TREE;
3857 walk_subobject_offsets (type, record_subobject_offset, offset,
3858 offsets, max_offset, is_data_member);
3859 }
3860
3861 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3862 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3863 virtual bases of TYPE are examined. */
3864
3865 static int
3866 layout_conflict_p (tree type,
3867 tree offset,
3868 splay_tree offsets,
3869 int vbases_p)
3870 {
3871 splay_tree_node max_node;
3872
3873 /* Get the node in OFFSETS that indicates the maximum offset where
3874 an empty subobject is located. */
3875 max_node = splay_tree_max (offsets);
3876 /* If there aren't any empty subobjects, then there's no point in
3877 performing this check. */
3878 if (!max_node)
3879 return 0;
3880
3881 return walk_subobject_offsets (type, check_subobject_offset, offset,
3882 offsets, (tree) (max_node->key),
3883 vbases_p);
3884 }
3885
3886 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3887 non-static data member of the type indicated by RLI. BINFO is the
3888 binfo corresponding to the base subobject, OFFSETS maps offsets to
3889 types already located at those offsets. This function determines
3890 the position of the DECL. */
3891
3892 static void
3893 layout_nonempty_base_or_field (record_layout_info rli,
3894 tree decl,
3895 tree binfo,
3896 splay_tree offsets)
3897 {
3898 tree offset = NULL_TREE;
3899 bool field_p;
3900 tree type;
3901
3902 if (binfo)
3903 {
3904 /* For the purposes of determining layout conflicts, we want to
3905 use the class type of BINFO; TREE_TYPE (DECL) will be the
3906 CLASSTYPE_AS_BASE version, which does not contain entries for
3907 zero-sized bases. */
3908 type = TREE_TYPE (binfo);
3909 field_p = false;
3910 }
3911 else
3912 {
3913 type = TREE_TYPE (decl);
3914 field_p = true;
3915 }
3916
3917 /* Try to place the field. It may take more than one try if we have
3918 a hard time placing the field without putting two objects of the
3919 same type at the same address. */
3920 while (1)
3921 {
3922 struct record_layout_info_s old_rli = *rli;
3923
3924 /* Place this field. */
3925 place_field (rli, decl);
3926 offset = byte_position (decl);
3927
3928 /* We have to check to see whether or not there is already
3929 something of the same type at the offset we're about to use.
3930 For example, consider:
3931
3932 struct S {};
3933 struct T : public S { int i; };
3934 struct U : public S, public T {};
3935
3936 Here, we put S at offset zero in U. Then, we can't put T at
3937 offset zero -- its S component would be at the same address
3938 as the S we already allocated. So, we have to skip ahead.
3939 Since all data members, including those whose type is an
3940 empty class, have nonzero size, any overlap can happen only
3941 with a direct or indirect base-class -- it can't happen with
3942 a data member. */
3943 /* In a union, overlap is permitted; all members are placed at
3944 offset zero. */
3945 if (TREE_CODE (rli->t) == UNION_TYPE)
3946 break;
3947 /* G++ 3.2 did not check for overlaps when placing a non-empty
3948 virtual base. */
3949 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3950 break;
3951 if (layout_conflict_p (field_p ? type : binfo, offset,
3952 offsets, field_p))
3953 {
3954 /* Strip off the size allocated to this field. That puts us
3955 at the first place we could have put the field with
3956 proper alignment. */
3957 *rli = old_rli;
3958
3959 /* Bump up by the alignment required for the type. */
3960 rli->bitpos
3961 = size_binop (PLUS_EXPR, rli->bitpos,
3962 bitsize_int (binfo
3963 ? CLASSTYPE_ALIGN (type)
3964 : TYPE_ALIGN (type)));
3965 normalize_rli (rli);
3966 }
3967 else
3968 /* There was no conflict. We're done laying out this field. */
3969 break;
3970 }
3971
3972 /* Now that we know where it will be placed, update its
3973 BINFO_OFFSET. */
3974 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3975 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3976 this point because their BINFO_OFFSET is copied from another
3977 hierarchy. Therefore, we may not need to add the entire
3978 OFFSET. */
3979 propagate_binfo_offsets (binfo,
3980 size_diffop_loc (input_location,
3981 convert (ssizetype, offset),
3982 convert (ssizetype,
3983 BINFO_OFFSET (binfo))));
3984 }
3985
3986 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3987
3988 static int
3989 empty_base_at_nonzero_offset_p (tree type,
3990 tree offset,
3991 splay_tree /*offsets*/)
3992 {
3993 return is_empty_class (type) && !integer_zerop (offset);
3994 }
3995
3996 /* Layout the empty base BINFO. EOC indicates the byte currently just
3997 past the end of the class, and should be correctly aligned for a
3998 class of the type indicated by BINFO; OFFSETS gives the offsets of
3999 the empty bases allocated so far. T is the most derived
4000 type. Return nonzero iff we added it at the end. */
4001
4002 static bool
4003 layout_empty_base (record_layout_info rli, tree binfo,
4004 tree eoc, splay_tree offsets)
4005 {
4006 tree alignment;
4007 tree basetype = BINFO_TYPE (binfo);
4008 bool atend = false;
4009
4010 /* This routine should only be used for empty classes. */
4011 gcc_assert (is_empty_class (basetype));
4012 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4013
4014 if (!integer_zerop (BINFO_OFFSET (binfo)))
4015 {
4016 if (abi_version_at_least (2))
4017 propagate_binfo_offsets
4018 (binfo, size_diffop_loc (input_location,
4019 size_zero_node, BINFO_OFFSET (binfo)));
4020 else
4021 warning (OPT_Wabi,
4022 "offset of empty base %qT may not be ABI-compliant and may"
4023 "change in a future version of GCC",
4024 BINFO_TYPE (binfo));
4025 }
4026
4027 /* This is an empty base class. We first try to put it at offset
4028 zero. */
4029 if (layout_conflict_p (binfo,
4030 BINFO_OFFSET (binfo),
4031 offsets,
4032 /*vbases_p=*/0))
4033 {
4034 /* That didn't work. Now, we move forward from the next
4035 available spot in the class. */
4036 atend = true;
4037 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4038 while (1)
4039 {
4040 if (!layout_conflict_p (binfo,
4041 BINFO_OFFSET (binfo),
4042 offsets,
4043 /*vbases_p=*/0))
4044 /* We finally found a spot where there's no overlap. */
4045 break;
4046
4047 /* There's overlap here, too. Bump along to the next spot. */
4048 propagate_binfo_offsets (binfo, alignment);
4049 }
4050 }
4051
4052 if (CLASSTYPE_USER_ALIGN (basetype))
4053 {
4054 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4055 if (warn_packed)
4056 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4057 TYPE_USER_ALIGN (rli->t) = 1;
4058 }
4059
4060 return atend;
4061 }
4062
4063 /* Layout the base given by BINFO in the class indicated by RLI.
4064 *BASE_ALIGN is a running maximum of the alignments of
4065 any base class. OFFSETS gives the location of empty base
4066 subobjects. T is the most derived type. Return nonzero if the new
4067 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4068 *NEXT_FIELD, unless BINFO is for an empty base class.
4069
4070 Returns the location at which the next field should be inserted. */
4071
4072 static tree *
4073 build_base_field (record_layout_info rli, tree binfo,
4074 splay_tree offsets, tree *next_field)
4075 {
4076 tree t = rli->t;
4077 tree basetype = BINFO_TYPE (binfo);
4078
4079 if (!COMPLETE_TYPE_P (basetype))
4080 /* This error is now reported in xref_tag, thus giving better
4081 location information. */
4082 return next_field;
4083
4084 /* Place the base class. */
4085 if (!is_empty_class (basetype))
4086 {
4087 tree decl;
4088
4089 /* The containing class is non-empty because it has a non-empty
4090 base class. */
4091 CLASSTYPE_EMPTY_P (t) = 0;
4092
4093 /* Create the FIELD_DECL. */
4094 decl = build_decl (input_location,
4095 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4096 DECL_ARTIFICIAL (decl) = 1;
4097 DECL_IGNORED_P (decl) = 1;
4098 DECL_FIELD_CONTEXT (decl) = t;
4099 if (CLASSTYPE_AS_BASE (basetype))
4100 {
4101 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4102 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4103 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4104 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4105 DECL_MODE (decl) = TYPE_MODE (basetype);
4106 DECL_FIELD_IS_BASE (decl) = 1;
4107
4108 /* Try to place the field. It may take more than one try if we
4109 have a hard time placing the field without putting two
4110 objects of the same type at the same address. */
4111 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4112 /* Add the new FIELD_DECL to the list of fields for T. */
4113 DECL_CHAIN (decl) = *next_field;
4114 *next_field = decl;
4115 next_field = &DECL_CHAIN (decl);
4116 }
4117 }
4118 else
4119 {
4120 tree eoc;
4121 bool atend;
4122
4123 /* On some platforms (ARM), even empty classes will not be
4124 byte-aligned. */
4125 eoc = round_up_loc (input_location,
4126 rli_size_unit_so_far (rli),
4127 CLASSTYPE_ALIGN_UNIT (basetype));
4128 atend = layout_empty_base (rli, binfo, eoc, offsets);
4129 /* A nearly-empty class "has no proper base class that is empty,
4130 not morally virtual, and at an offset other than zero." */
4131 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4132 {
4133 if (atend)
4134 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4135 /* The check above (used in G++ 3.2) is insufficient because
4136 an empty class placed at offset zero might itself have an
4137 empty base at a nonzero offset. */
4138 else if (walk_subobject_offsets (basetype,
4139 empty_base_at_nonzero_offset_p,
4140 size_zero_node,
4141 /*offsets=*/NULL,
4142 /*max_offset=*/NULL_TREE,
4143 /*vbases_p=*/true))
4144 {
4145 if (abi_version_at_least (2))
4146 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4147 else
4148 warning (OPT_Wabi,
4149 "class %qT will be considered nearly empty in a "
4150 "future version of GCC", t);
4151 }
4152 }
4153
4154 /* We do not create a FIELD_DECL for empty base classes because
4155 it might overlap some other field. We want to be able to
4156 create CONSTRUCTORs for the class by iterating over the
4157 FIELD_DECLs, and the back end does not handle overlapping
4158 FIELD_DECLs. */
4159
4160 /* An empty virtual base causes a class to be non-empty
4161 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4162 here because that was already done when the virtual table
4163 pointer was created. */
4164 }
4165
4166 /* Record the offsets of BINFO and its base subobjects. */
4167 record_subobject_offsets (binfo,
4168 BINFO_OFFSET (binfo),
4169 offsets,
4170 /*is_data_member=*/false);
4171
4172 return next_field;
4173 }
4174
4175 /* Layout all of the non-virtual base classes. Record empty
4176 subobjects in OFFSETS. T is the most derived type. Return nonzero
4177 if the type cannot be nearly empty. The fields created
4178 corresponding to the base classes will be inserted at
4179 *NEXT_FIELD. */
4180
4181 static void
4182 build_base_fields (record_layout_info rli,
4183 splay_tree offsets, tree *next_field)
4184 {
4185 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4186 subobjects. */
4187 tree t = rli->t;
4188 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4189 int i;
4190
4191 /* The primary base class is always allocated first. */
4192 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4193 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4194 offsets, next_field);
4195
4196 /* Now allocate the rest of the bases. */
4197 for (i = 0; i < n_baseclasses; ++i)
4198 {
4199 tree base_binfo;
4200
4201 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4202
4203 /* The primary base was already allocated above, so we don't
4204 need to allocate it again here. */
4205 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4206 continue;
4207
4208 /* Virtual bases are added at the end (a primary virtual base
4209 will have already been added). */
4210 if (BINFO_VIRTUAL_P (base_binfo))
4211 continue;
4212
4213 next_field = build_base_field (rli, base_binfo,
4214 offsets, next_field);
4215 }
4216 }
4217
4218 /* Go through the TYPE_METHODS of T issuing any appropriate
4219 diagnostics, figuring out which methods override which other
4220 methods, and so forth. */
4221
4222 static void
4223 check_methods (tree t)
4224 {
4225 tree x;
4226
4227 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4228 {
4229 check_for_override (x, t);
4230 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
4231 error ("initializer specified for non-virtual method %q+D", x);
4232 /* The name of the field is the original field name
4233 Save this in auxiliary field for later overloading. */
4234 if (DECL_VINDEX (x))
4235 {
4236 TYPE_POLYMORPHIC_P (t) = 1;
4237 if (DECL_PURE_VIRTUAL_P (x))
4238 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4239 }
4240 /* All user-provided destructors are non-trivial.
4241 Constructors and assignment ops are handled in
4242 grok_special_member_properties. */
4243 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4244 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4245 }
4246 }
4247
4248 /* FN is a constructor or destructor. Clone the declaration to create
4249 a specialized in-charge or not-in-charge version, as indicated by
4250 NAME. */
4251
4252 static tree
4253 build_clone (tree fn, tree name)
4254 {
4255 tree parms;
4256 tree clone;
4257
4258 /* Copy the function. */
4259 clone = copy_decl (fn);
4260 /* Reset the function name. */
4261 DECL_NAME (clone) = name;
4262 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4263 /* Remember where this function came from. */
4264 DECL_ABSTRACT_ORIGIN (clone) = fn;
4265 /* Make it easy to find the CLONE given the FN. */
4266 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4267 DECL_CHAIN (fn) = clone;
4268
4269 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4270 if (TREE_CODE (clone) == TEMPLATE_DECL)
4271 {
4272 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4273 DECL_TEMPLATE_RESULT (clone) = result;
4274 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4275 DECL_TI_TEMPLATE (result) = clone;
4276 TREE_TYPE (clone) = TREE_TYPE (result);
4277 return clone;
4278 }
4279
4280 DECL_CLONED_FUNCTION (clone) = fn;
4281 /* There's no pending inline data for this function. */
4282 DECL_PENDING_INLINE_INFO (clone) = NULL;
4283 DECL_PENDING_INLINE_P (clone) = 0;
4284
4285 /* The base-class destructor is not virtual. */
4286 if (name == base_dtor_identifier)
4287 {
4288 DECL_VIRTUAL_P (clone) = 0;
4289 if (TREE_CODE (clone) != TEMPLATE_DECL)
4290 DECL_VINDEX (clone) = NULL_TREE;
4291 }
4292
4293 /* If there was an in-charge parameter, drop it from the function
4294 type. */
4295 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4296 {
4297 tree basetype;
4298 tree parmtypes;
4299 tree exceptions;
4300
4301 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4302 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4303 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4304 /* Skip the `this' parameter. */
4305 parmtypes = TREE_CHAIN (parmtypes);
4306 /* Skip the in-charge parameter. */
4307 parmtypes = TREE_CHAIN (parmtypes);
4308 /* And the VTT parm, in a complete [cd]tor. */
4309 if (DECL_HAS_VTT_PARM_P (fn)
4310 && ! DECL_NEEDS_VTT_PARM_P (clone))
4311 parmtypes = TREE_CHAIN (parmtypes);
4312 /* If this is subobject constructor or destructor, add the vtt
4313 parameter. */
4314 TREE_TYPE (clone)
4315 = build_method_type_directly (basetype,
4316 TREE_TYPE (TREE_TYPE (clone)),
4317 parmtypes);
4318 if (exceptions)
4319 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4320 exceptions);
4321 TREE_TYPE (clone)
4322 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4323 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4324 }
4325
4326 /* Copy the function parameters. */
4327 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4328 /* Remove the in-charge parameter. */
4329 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4330 {
4331 DECL_CHAIN (DECL_ARGUMENTS (clone))
4332 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4333 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4334 }
4335 /* And the VTT parm, in a complete [cd]tor. */
4336 if (DECL_HAS_VTT_PARM_P (fn))
4337 {
4338 if (DECL_NEEDS_VTT_PARM_P (clone))
4339 DECL_HAS_VTT_PARM_P (clone) = 1;
4340 else
4341 {
4342 DECL_CHAIN (DECL_ARGUMENTS (clone))
4343 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4344 DECL_HAS_VTT_PARM_P (clone) = 0;
4345 }
4346 }
4347
4348 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4349 {
4350 DECL_CONTEXT (parms) = clone;
4351 cxx_dup_lang_specific_decl (parms);
4352 }
4353
4354 /* Create the RTL for this function. */
4355 SET_DECL_RTL (clone, NULL);
4356 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4357
4358 if (pch_file)
4359 note_decl_for_pch (clone);
4360
4361 return clone;
4362 }
4363
4364 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4365 not invoke this function directly.
4366
4367 For a non-thunk function, returns the address of the slot for storing
4368 the function it is a clone of. Otherwise returns NULL_TREE.
4369
4370 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4371 cloned_function is unset. This is to support the separate
4372 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4373 on a template makes sense, but not the former. */
4374
4375 tree *
4376 decl_cloned_function_p (const_tree decl, bool just_testing)
4377 {
4378 tree *ptr;
4379 if (just_testing)
4380 decl = STRIP_TEMPLATE (decl);
4381
4382 if (TREE_CODE (decl) != FUNCTION_DECL
4383 || !DECL_LANG_SPECIFIC (decl)
4384 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4385 {
4386 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4387 if (!just_testing)
4388 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4389 else
4390 #endif
4391 return NULL;
4392 }
4393
4394 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4395 if (just_testing && *ptr == NULL_TREE)
4396 return NULL;
4397 else
4398 return ptr;
4399 }
4400
4401 /* Produce declarations for all appropriate clones of FN. If
4402 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4403 CLASTYPE_METHOD_VEC as well. */
4404
4405 void
4406 clone_function_decl (tree fn, int update_method_vec_p)
4407 {
4408 tree clone;
4409
4410 /* Avoid inappropriate cloning. */
4411 if (DECL_CHAIN (fn)
4412 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4413 return;
4414
4415 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4416 {
4417 /* For each constructor, we need two variants: an in-charge version
4418 and a not-in-charge version. */
4419 clone = build_clone (fn, complete_ctor_identifier);
4420 if (update_method_vec_p)
4421 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4422 clone = build_clone (fn, base_ctor_identifier);
4423 if (update_method_vec_p)
4424 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4425 }
4426 else
4427 {
4428 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4429
4430 /* For each destructor, we need three variants: an in-charge
4431 version, a not-in-charge version, and an in-charge deleting
4432 version. We clone the deleting version first because that
4433 means it will go second on the TYPE_METHODS list -- and that
4434 corresponds to the correct layout order in the virtual
4435 function table.
4436
4437 For a non-virtual destructor, we do not build a deleting
4438 destructor. */
4439 if (DECL_VIRTUAL_P (fn))
4440 {
4441 clone = build_clone (fn, deleting_dtor_identifier);
4442 if (update_method_vec_p)
4443 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4444 }
4445 clone = build_clone (fn, complete_dtor_identifier);
4446 if (update_method_vec_p)
4447 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4448 clone = build_clone (fn, base_dtor_identifier);
4449 if (update_method_vec_p)
4450 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4451 }
4452
4453 /* Note that this is an abstract function that is never emitted. */
4454 DECL_ABSTRACT (fn) = 1;
4455 }
4456
4457 /* DECL is an in charge constructor, which is being defined. This will
4458 have had an in class declaration, from whence clones were
4459 declared. An out-of-class definition can specify additional default
4460 arguments. As it is the clones that are involved in overload
4461 resolution, we must propagate the information from the DECL to its
4462 clones. */
4463
4464 void
4465 adjust_clone_args (tree decl)
4466 {
4467 tree clone;
4468
4469 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4470 clone = DECL_CHAIN (clone))
4471 {
4472 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4473 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4474 tree decl_parms, clone_parms;
4475
4476 clone_parms = orig_clone_parms;
4477
4478 /* Skip the 'this' parameter. */
4479 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4480 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4481
4482 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4483 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4484 if (DECL_HAS_VTT_PARM_P (decl))
4485 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4486
4487 clone_parms = orig_clone_parms;
4488 if (DECL_HAS_VTT_PARM_P (clone))
4489 clone_parms = TREE_CHAIN (clone_parms);
4490
4491 for (decl_parms = orig_decl_parms; decl_parms;
4492 decl_parms = TREE_CHAIN (decl_parms),
4493 clone_parms = TREE_CHAIN (clone_parms))
4494 {
4495 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4496 TREE_TYPE (clone_parms)));
4497
4498 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4499 {
4500 /* A default parameter has been added. Adjust the
4501 clone's parameters. */
4502 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4503 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4504 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4505 tree type;
4506
4507 clone_parms = orig_decl_parms;
4508
4509 if (DECL_HAS_VTT_PARM_P (clone))
4510 {
4511 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4512 TREE_VALUE (orig_clone_parms),
4513 clone_parms);
4514 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4515 }
4516 type = build_method_type_directly (basetype,
4517 TREE_TYPE (TREE_TYPE (clone)),
4518 clone_parms);
4519 if (exceptions)
4520 type = build_exception_variant (type, exceptions);
4521 if (attrs)
4522 type = cp_build_type_attribute_variant (type, attrs);
4523 TREE_TYPE (clone) = type;
4524
4525 clone_parms = NULL_TREE;
4526 break;
4527 }
4528 }
4529 gcc_assert (!clone_parms);
4530 }
4531 }
4532
4533 /* For each of the constructors and destructors in T, create an
4534 in-charge and not-in-charge variant. */
4535
4536 static void
4537 clone_constructors_and_destructors (tree t)
4538 {
4539 tree fns;
4540
4541 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4542 out now. */
4543 if (!CLASSTYPE_METHOD_VEC (t))
4544 return;
4545
4546 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4547 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4548 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4549 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4550 }
4551
4552 /* Deduce noexcept for a destructor DTOR. */
4553
4554 void
4555 deduce_noexcept_on_destructor (tree dtor)
4556 {
4557 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4558 {
4559 tree ctx = DECL_CONTEXT (dtor);
4560 tree implicit_fn = implicitly_declare_fn (sfk_destructor, ctx,
4561 /*const_p=*/false,
4562 NULL, NULL);
4563 tree eh_spec = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (implicit_fn));
4564 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4565 }
4566 }
4567
4568 /* For each destructor in T, deduce noexcept:
4569
4570 12.4/3: A declaration of a destructor that does not have an
4571 exception-specification is implicitly considered to have the
4572 same exception-specification as an implicit declaration (15.4). */
4573
4574 static void
4575 deduce_noexcept_on_destructors (tree t)
4576 {
4577 tree fns;
4578
4579 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4580 out now. */
4581 if (!CLASSTYPE_METHOD_VEC (t))
4582 return;
4583
4584 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4585 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4586 }
4587
4588 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4589 of TYPE for virtual functions which FNDECL overrides. Return a
4590 mask of the tm attributes found therein. */
4591
4592 static int
4593 look_for_tm_attr_overrides (tree type, tree fndecl)
4594 {
4595 tree binfo = TYPE_BINFO (type);
4596 tree base_binfo;
4597 int ix, found = 0;
4598
4599 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4600 {
4601 tree o, basetype = BINFO_TYPE (base_binfo);
4602
4603 if (!TYPE_POLYMORPHIC_P (basetype))
4604 continue;
4605
4606 o = look_for_overrides_here (basetype, fndecl);
4607 if (o)
4608 found |= tm_attr_to_mask (find_tm_attribute
4609 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4610 else
4611 found |= look_for_tm_attr_overrides (basetype, fndecl);
4612 }
4613
4614 return found;
4615 }
4616
4617 /* Subroutine of set_method_tm_attributes. Handle the checks and
4618 inheritance for one virtual method FNDECL. */
4619
4620 static void
4621 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4622 {
4623 tree tm_attr;
4624 int found, have;
4625
4626 found = look_for_tm_attr_overrides (type, fndecl);
4627
4628 /* If FNDECL doesn't actually override anything (i.e. T is the
4629 class that first declares FNDECL virtual), then we're done. */
4630 if (found == 0)
4631 return;
4632
4633 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4634 have = tm_attr_to_mask (tm_attr);
4635
4636 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4637 tm_pure must match exactly, otherwise no weakening of
4638 tm_safe > tm_callable > nothing. */
4639 /* ??? The tm_pure attribute didn't make the transition to the
4640 multivendor language spec. */
4641 if (have == TM_ATTR_PURE)
4642 {
4643 if (found != TM_ATTR_PURE)
4644 {
4645 found &= -found;
4646 goto err_override;
4647 }
4648 }
4649 /* If the overridden function is tm_pure, then FNDECL must be. */
4650 else if (found == TM_ATTR_PURE && tm_attr)
4651 goto err_override;
4652 /* Look for base class combinations that cannot be satisfied. */
4653 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4654 {
4655 found &= ~TM_ATTR_PURE;
4656 found &= -found;
4657 error_at (DECL_SOURCE_LOCATION (fndecl),
4658 "method overrides both %<transaction_pure%> and %qE methods",
4659 tm_mask_to_attr (found));
4660 }
4661 /* If FNDECL did not declare an attribute, then inherit the most
4662 restrictive one. */
4663 else if (tm_attr == NULL)
4664 {
4665 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4666 }
4667 /* Otherwise validate that we're not weaker than a function
4668 that is being overridden. */
4669 else
4670 {
4671 found &= -found;
4672 if (found <= TM_ATTR_CALLABLE && have > found)
4673 goto err_override;
4674 }
4675 return;
4676
4677 err_override:
4678 error_at (DECL_SOURCE_LOCATION (fndecl),
4679 "method declared %qE overriding %qE method",
4680 tm_attr, tm_mask_to_attr (found));
4681 }
4682
4683 /* For each of the methods in T, propagate a class-level tm attribute. */
4684
4685 static void
4686 set_method_tm_attributes (tree t)
4687 {
4688 tree class_tm_attr, fndecl;
4689
4690 /* Don't bother collecting tm attributes if transactional memory
4691 support is not enabled. */
4692 if (!flag_tm)
4693 return;
4694
4695 /* Process virtual methods first, as they inherit directly from the
4696 base virtual function and also require validation of new attributes. */
4697 if (TYPE_CONTAINS_VPTR_P (t))
4698 {
4699 tree vchain;
4700 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4701 vchain = TREE_CHAIN (vchain))
4702 {
4703 fndecl = BV_FN (vchain);
4704 if (DECL_THUNK_P (fndecl))
4705 fndecl = THUNK_TARGET (fndecl);
4706 set_one_vmethod_tm_attributes (t, fndecl);
4707 }
4708 }
4709
4710 /* If the class doesn't have an attribute, nothing more to do. */
4711 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4712 if (class_tm_attr == NULL)
4713 return;
4714
4715 /* Any method that does not yet have a tm attribute inherits
4716 the one from the class. */
4717 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4718 {
4719 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4720 apply_tm_attr (fndecl, class_tm_attr);
4721 }
4722 }
4723
4724 /* Returns true iff class T has a user-defined constructor other than
4725 the default constructor. */
4726
4727 bool
4728 type_has_user_nondefault_constructor (tree t)
4729 {
4730 tree fns;
4731
4732 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4733 return false;
4734
4735 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4736 {
4737 tree fn = OVL_CURRENT (fns);
4738 if (!DECL_ARTIFICIAL (fn)
4739 && (TREE_CODE (fn) == TEMPLATE_DECL
4740 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4741 != NULL_TREE)))
4742 return true;
4743 }
4744
4745 return false;
4746 }
4747
4748 /* Returns the defaulted constructor if T has one. Otherwise, returns
4749 NULL_TREE. */
4750
4751 tree
4752 in_class_defaulted_default_constructor (tree t)
4753 {
4754 tree fns, args;
4755
4756 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4757 return NULL_TREE;
4758
4759 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4760 {
4761 tree fn = OVL_CURRENT (fns);
4762
4763 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4764 {
4765 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4766 while (args && TREE_PURPOSE (args))
4767 args = TREE_CHAIN (args);
4768 if (!args || args == void_list_node)
4769 return fn;
4770 }
4771 }
4772
4773 return NULL_TREE;
4774 }
4775
4776 /* Returns true iff FN is a user-provided function, i.e. user-declared
4777 and not defaulted at its first declaration; or explicit, private,
4778 protected, or non-const. */
4779
4780 bool
4781 user_provided_p (tree fn)
4782 {
4783 if (TREE_CODE (fn) == TEMPLATE_DECL)
4784 return true;
4785 else
4786 return (!DECL_ARTIFICIAL (fn)
4787 && !DECL_DEFAULTED_IN_CLASS_P (fn));
4788 }
4789
4790 /* Returns true iff class T has a user-provided constructor. */
4791
4792 bool
4793 type_has_user_provided_constructor (tree t)
4794 {
4795 tree fns;
4796
4797 if (!CLASS_TYPE_P (t))
4798 return false;
4799
4800 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4801 return false;
4802
4803 /* This can happen in error cases; avoid crashing. */
4804 if (!CLASSTYPE_METHOD_VEC (t))
4805 return false;
4806
4807 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4808 if (user_provided_p (OVL_CURRENT (fns)))
4809 return true;
4810
4811 return false;
4812 }
4813
4814 /* Returns true iff class T has a user-provided default constructor. */
4815
4816 bool
4817 type_has_user_provided_default_constructor (tree t)
4818 {
4819 tree fns;
4820
4821 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4822 return false;
4823
4824 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4825 {
4826 tree fn = OVL_CURRENT (fns);
4827 if (TREE_CODE (fn) == FUNCTION_DECL
4828 && user_provided_p (fn)
4829 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4830 return true;
4831 }
4832
4833 return false;
4834 }
4835
4836 /* If default-initialization leaves part of TYPE uninitialized, returns
4837 a DECL for the field or TYPE itself (DR 253). */
4838
4839 tree
4840 default_init_uninitialized_part (tree type)
4841 {
4842 tree t, r, binfo;
4843 int i;
4844
4845 type = strip_array_types (type);
4846 if (!CLASS_TYPE_P (type))
4847 return type;
4848 if (type_has_user_provided_default_constructor (type))
4849 return NULL_TREE;
4850 for (binfo = TYPE_BINFO (type), i = 0;
4851 BINFO_BASE_ITERATE (binfo, i, t); ++i)
4852 {
4853 r = default_init_uninitialized_part (BINFO_TYPE (t));
4854 if (r)
4855 return r;
4856 }
4857 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
4858 if (TREE_CODE (t) == FIELD_DECL
4859 && !DECL_ARTIFICIAL (t)
4860 && !DECL_INITIAL (t))
4861 {
4862 r = default_init_uninitialized_part (TREE_TYPE (t));
4863 if (r)
4864 return DECL_P (r) ? r : t;
4865 }
4866
4867 return NULL_TREE;
4868 }
4869
4870 /* Returns true iff for class T, a trivial synthesized default constructor
4871 would be constexpr. */
4872
4873 bool
4874 trivial_default_constructor_is_constexpr (tree t)
4875 {
4876 /* A defaulted trivial default constructor is constexpr
4877 if there is nothing to initialize. */
4878 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
4879 return is_really_empty_class (t);
4880 }
4881
4882 /* Returns true iff class T has a constexpr default constructor. */
4883
4884 bool
4885 type_has_constexpr_default_constructor (tree t)
4886 {
4887 tree fns;
4888
4889 if (!CLASS_TYPE_P (t))
4890 {
4891 /* The caller should have stripped an enclosing array. */
4892 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
4893 return false;
4894 }
4895 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
4896 {
4897 if (!TYPE_HAS_COMPLEX_DFLT (t))
4898 return trivial_default_constructor_is_constexpr (t);
4899 /* Non-trivial, we need to check subobject constructors. */
4900 lazily_declare_fn (sfk_constructor, t);
4901 }
4902 fns = locate_ctor (t);
4903 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
4904 }
4905
4906 /* Returns true iff class TYPE has a virtual destructor. */
4907
4908 bool
4909 type_has_virtual_destructor (tree type)
4910 {
4911 tree dtor;
4912
4913 if (!CLASS_TYPE_P (type))
4914 return false;
4915
4916 gcc_assert (COMPLETE_TYPE_P (type));
4917 dtor = CLASSTYPE_DESTRUCTORS (type);
4918 return (dtor && DECL_VIRTUAL_P (dtor));
4919 }
4920
4921 /* Returns true iff class T has a move constructor. */
4922
4923 bool
4924 type_has_move_constructor (tree t)
4925 {
4926 tree fns;
4927
4928 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
4929 {
4930 gcc_assert (COMPLETE_TYPE_P (t));
4931 lazily_declare_fn (sfk_move_constructor, t);
4932 }
4933
4934 if (!CLASSTYPE_METHOD_VEC (t))
4935 return false;
4936
4937 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4938 if (move_fn_p (OVL_CURRENT (fns)))
4939 return true;
4940
4941 return false;
4942 }
4943
4944 /* Returns true iff class T has a move assignment operator. */
4945
4946 bool
4947 type_has_move_assign (tree t)
4948 {
4949 tree fns;
4950
4951 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
4952 {
4953 gcc_assert (COMPLETE_TYPE_P (t));
4954 lazily_declare_fn (sfk_move_assignment, t);
4955 }
4956
4957 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
4958 fns; fns = OVL_NEXT (fns))
4959 if (move_fn_p (OVL_CURRENT (fns)))
4960 return true;
4961
4962 return false;
4963 }
4964
4965 /* Returns true iff class T has a move constructor that was explicitly
4966 declared in the class body. Note that this is different from
4967 "user-provided", which doesn't include functions that are defaulted in
4968 the class. */
4969
4970 bool
4971 type_has_user_declared_move_constructor (tree t)
4972 {
4973 tree fns;
4974
4975 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
4976 return false;
4977
4978 if (!CLASSTYPE_METHOD_VEC (t))
4979 return false;
4980
4981 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4982 {
4983 tree fn = OVL_CURRENT (fns);
4984 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
4985 return true;
4986 }
4987
4988 return false;
4989 }
4990
4991 /* Returns true iff class T has a move assignment operator that was
4992 explicitly declared in the class body. */
4993
4994 bool
4995 type_has_user_declared_move_assign (tree t)
4996 {
4997 tree fns;
4998
4999 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5000 return false;
5001
5002 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5003 fns; fns = OVL_NEXT (fns))
5004 {
5005 tree fn = OVL_CURRENT (fns);
5006 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5007 return true;
5008 }
5009
5010 return false;
5011 }
5012
5013 /* Nonzero if we need to build up a constructor call when initializing an
5014 object of this class, either because it has a user-provided constructor
5015 or because it doesn't have a default constructor (so we need to give an
5016 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5017 what you care about is whether or not an object can be produced by a
5018 constructor (e.g. so we don't set TREE_READONLY on const variables of
5019 such type); use this function when what you care about is whether or not
5020 to try to call a constructor to create an object. The latter case is
5021 the former plus some cases of constructors that cannot be called. */
5022
5023 bool
5024 type_build_ctor_call (tree t)
5025 {
5026 tree inner;
5027 if (TYPE_NEEDS_CONSTRUCTING (t))
5028 return true;
5029 inner = strip_array_types (t);
5030 return (CLASS_TYPE_P (inner) && !TYPE_HAS_DEFAULT_CONSTRUCTOR (inner)
5031 && !ANON_AGGR_TYPE_P (inner));
5032 }
5033
5034 /* Remove all zero-width bit-fields from T. */
5035
5036 static void
5037 remove_zero_width_bit_fields (tree t)
5038 {
5039 tree *fieldsp;
5040
5041 fieldsp = &TYPE_FIELDS (t);
5042 while (*fieldsp)
5043 {
5044 if (TREE_CODE (*fieldsp) == FIELD_DECL
5045 && DECL_C_BIT_FIELD (*fieldsp)
5046 /* We should not be confused by the fact that grokbitfield
5047 temporarily sets the width of the bit field into
5048 DECL_INITIAL (*fieldsp).
5049 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5050 to that width. */
5051 && integer_zerop (DECL_SIZE (*fieldsp)))
5052 *fieldsp = DECL_CHAIN (*fieldsp);
5053 else
5054 fieldsp = &DECL_CHAIN (*fieldsp);
5055 }
5056 }
5057
5058 /* Returns TRUE iff we need a cookie when dynamically allocating an
5059 array whose elements have the indicated class TYPE. */
5060
5061 static bool
5062 type_requires_array_cookie (tree type)
5063 {
5064 tree fns;
5065 bool has_two_argument_delete_p = false;
5066
5067 gcc_assert (CLASS_TYPE_P (type));
5068
5069 /* If there's a non-trivial destructor, we need a cookie. In order
5070 to iterate through the array calling the destructor for each
5071 element, we'll have to know how many elements there are. */
5072 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5073 return true;
5074
5075 /* If the usual deallocation function is a two-argument whose second
5076 argument is of type `size_t', then we have to pass the size of
5077 the array to the deallocation function, so we will need to store
5078 a cookie. */
5079 fns = lookup_fnfields (TYPE_BINFO (type),
5080 ansi_opname (VEC_DELETE_EXPR),
5081 /*protect=*/0);
5082 /* If there are no `operator []' members, or the lookup is
5083 ambiguous, then we don't need a cookie. */
5084 if (!fns || fns == error_mark_node)
5085 return false;
5086 /* Loop through all of the functions. */
5087 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5088 {
5089 tree fn;
5090 tree second_parm;
5091
5092 /* Select the current function. */
5093 fn = OVL_CURRENT (fns);
5094 /* See if this function is a one-argument delete function. If
5095 it is, then it will be the usual deallocation function. */
5096 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5097 if (second_parm == void_list_node)
5098 return false;
5099 /* Do not consider this function if its second argument is an
5100 ellipsis. */
5101 if (!second_parm)
5102 continue;
5103 /* Otherwise, if we have a two-argument function and the second
5104 argument is `size_t', it will be the usual deallocation
5105 function -- unless there is one-argument function, too. */
5106 if (TREE_CHAIN (second_parm) == void_list_node
5107 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5108 has_two_argument_delete_p = true;
5109 }
5110
5111 return has_two_argument_delete_p;
5112 }
5113
5114 /* Finish computing the `literal type' property of class type T.
5115
5116 At this point, we have already processed base classes and
5117 non-static data members. We need to check whether the copy
5118 constructor is trivial, the destructor is trivial, and there
5119 is a trivial default constructor or at least one constexpr
5120 constructor other than the copy constructor. */
5121
5122 static void
5123 finalize_literal_type_property (tree t)
5124 {
5125 tree fn;
5126
5127 if (cxx_dialect < cxx0x
5128 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5129 CLASSTYPE_LITERAL_P (t) = false;
5130 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5131 && CLASSTYPE_NON_AGGREGATE (t)
5132 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5133 CLASSTYPE_LITERAL_P (t) = false;
5134
5135 if (!CLASSTYPE_LITERAL_P (t))
5136 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5137 if (DECL_DECLARED_CONSTEXPR_P (fn)
5138 && TREE_CODE (fn) != TEMPLATE_DECL
5139 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5140 && !DECL_CONSTRUCTOR_P (fn))
5141 {
5142 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5143 if (!DECL_GENERATED_P (fn))
5144 {
5145 error ("enclosing class of constexpr non-static member "
5146 "function %q+#D is not a literal type", fn);
5147 explain_non_literal_class (t);
5148 }
5149 }
5150 }
5151
5152 /* T is a non-literal type used in a context which requires a constant
5153 expression. Explain why it isn't literal. */
5154
5155 void
5156 explain_non_literal_class (tree t)
5157 {
5158 static struct pointer_set_t *diagnosed;
5159
5160 if (!CLASS_TYPE_P (t))
5161 return;
5162 t = TYPE_MAIN_VARIANT (t);
5163
5164 if (diagnosed == NULL)
5165 diagnosed = pointer_set_create ();
5166 if (pointer_set_insert (diagnosed, t) != 0)
5167 /* Already explained. */
5168 return;
5169
5170 inform (0, "%q+T is not literal because:", t);
5171 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5172 inform (0, " %q+T has a non-trivial destructor", t);
5173 else if (CLASSTYPE_NON_AGGREGATE (t)
5174 && !TYPE_HAS_TRIVIAL_DFLT (t)
5175 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5176 {
5177 inform (0, " %q+T is not an aggregate, does not have a trivial "
5178 "default constructor, and has no constexpr constructor that "
5179 "is not a copy or move constructor", t);
5180 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5181 && !type_has_user_provided_default_constructor (t))
5182 {
5183 /* Note that we can't simply call locate_ctor because when the
5184 constructor is deleted it just returns NULL_TREE. */
5185 tree fns;
5186 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5187 {
5188 tree fn = OVL_CURRENT (fns);
5189 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5190
5191 parms = skip_artificial_parms_for (fn, parms);
5192
5193 if (sufficient_parms_p (parms))
5194 {
5195 if (DECL_DELETED_FN (fn))
5196 maybe_explain_implicit_delete (fn);
5197 else
5198 explain_invalid_constexpr_fn (fn);
5199 break;
5200 }
5201 }
5202 }
5203 }
5204 else
5205 {
5206 tree binfo, base_binfo, field; int i;
5207 for (binfo = TYPE_BINFO (t), i = 0;
5208 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5209 {
5210 tree basetype = TREE_TYPE (base_binfo);
5211 if (!CLASSTYPE_LITERAL_P (basetype))
5212 {
5213 inform (0, " base class %qT of %q+T is non-literal",
5214 basetype, t);
5215 explain_non_literal_class (basetype);
5216 return;
5217 }
5218 }
5219 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5220 {
5221 tree ftype;
5222 if (TREE_CODE (field) != FIELD_DECL)
5223 continue;
5224 ftype = TREE_TYPE (field);
5225 if (!literal_type_p (ftype))
5226 {
5227 inform (0, " non-static data member %q+D has "
5228 "non-literal type", field);
5229 if (CLASS_TYPE_P (ftype))
5230 explain_non_literal_class (ftype);
5231 }
5232 }
5233 }
5234 }
5235
5236 /* Check the validity of the bases and members declared in T. Add any
5237 implicitly-generated functions (like copy-constructors and
5238 assignment operators). Compute various flag bits (like
5239 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5240 level: i.e., independently of the ABI in use. */
5241
5242 static void
5243 check_bases_and_members (tree t)
5244 {
5245 /* Nonzero if the implicitly generated copy constructor should take
5246 a non-const reference argument. */
5247 int cant_have_const_ctor;
5248 /* Nonzero if the implicitly generated assignment operator
5249 should take a non-const reference argument. */
5250 int no_const_asn_ref;
5251 tree access_decls;
5252 bool saved_complex_asn_ref;
5253 bool saved_nontrivial_dtor;
5254 tree fn;
5255
5256 /* By default, we use const reference arguments and generate default
5257 constructors. */
5258 cant_have_const_ctor = 0;
5259 no_const_asn_ref = 0;
5260
5261 /* Check all the base-classes. */
5262 check_bases (t, &cant_have_const_ctor,
5263 &no_const_asn_ref);
5264
5265 /* Deduce noexcept on destructors. This needs to happen after we've set
5266 triviality flags appropriately for our bases. */
5267 if (cxx_dialect >= cxx0x)
5268 deduce_noexcept_on_destructors (t);
5269
5270 /* Check all the method declarations. */
5271 check_methods (t);
5272
5273 /* Save the initial values of these flags which only indicate whether
5274 or not the class has user-provided functions. As we analyze the
5275 bases and members we can set these flags for other reasons. */
5276 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5277 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5278
5279 /* Check all the data member declarations. We cannot call
5280 check_field_decls until we have called check_bases check_methods,
5281 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5282 being set appropriately. */
5283 check_field_decls (t, &access_decls,
5284 &cant_have_const_ctor,
5285 &no_const_asn_ref);
5286
5287 /* A nearly-empty class has to be vptr-containing; a nearly empty
5288 class contains just a vptr. */
5289 if (!TYPE_CONTAINS_VPTR_P (t))
5290 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5291
5292 /* Do some bookkeeping that will guide the generation of implicitly
5293 declared member functions. */
5294 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5295 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5296 /* We need to call a constructor for this class if it has a
5297 user-provided constructor, or if the default constructor is going
5298 to initialize the vptr. (This is not an if-and-only-if;
5299 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5300 themselves need constructing.) */
5301 TYPE_NEEDS_CONSTRUCTING (t)
5302 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5303 /* [dcl.init.aggr]
5304
5305 An aggregate is an array or a class with no user-provided
5306 constructors ... and no virtual functions.
5307
5308 Again, other conditions for being an aggregate are checked
5309 elsewhere. */
5310 CLASSTYPE_NON_AGGREGATE (t)
5311 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5312 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5313 retain the old definition internally for ABI reasons. */
5314 CLASSTYPE_NON_LAYOUT_POD_P (t)
5315 |= (CLASSTYPE_NON_AGGREGATE (t)
5316 || saved_nontrivial_dtor || saved_complex_asn_ref);
5317 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5318 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5319 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5320 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5321
5322 /* If the class has no user-declared constructor, but does have
5323 non-static const or reference data members that can never be
5324 initialized, issue a warning. */
5325 if (warn_uninitialized
5326 /* Classes with user-declared constructors are presumed to
5327 initialize these members. */
5328 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5329 /* Aggregates can be initialized with brace-enclosed
5330 initializers. */
5331 && CLASSTYPE_NON_AGGREGATE (t))
5332 {
5333 tree field;
5334
5335 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5336 {
5337 tree type;
5338
5339 if (TREE_CODE (field) != FIELD_DECL
5340 || DECL_INITIAL (field) != NULL_TREE)
5341 continue;
5342
5343 type = TREE_TYPE (field);
5344 if (TREE_CODE (type) == REFERENCE_TYPE)
5345 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5346 "in class without a constructor", field);
5347 else if (CP_TYPE_CONST_P (type)
5348 && (!CLASS_TYPE_P (type)
5349 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5350 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5351 "in class without a constructor", field);
5352 }
5353 }
5354
5355 /* Synthesize any needed methods. */
5356 add_implicitly_declared_members (t, &access_decls,
5357 cant_have_const_ctor,
5358 no_const_asn_ref);
5359
5360 /* Check defaulted declarations here so we have cant_have_const_ctor
5361 and don't need to worry about clones. */
5362 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5363 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5364 {
5365 int copy = copy_fn_p (fn);
5366 if (copy > 0)
5367 {
5368 bool imp_const_p
5369 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5370 : !no_const_asn_ref);
5371 bool fn_const_p = (copy == 2);
5372
5373 if (fn_const_p && !imp_const_p)
5374 /* If the function is defaulted outside the class, we just
5375 give the synthesis error. */
5376 error ("%q+D declared to take const reference, but implicit "
5377 "declaration would take non-const", fn);
5378 }
5379 defaulted_late_check (fn);
5380 }
5381
5382 if (LAMBDA_TYPE_P (t))
5383 {
5384 /* "The closure type associated with a lambda-expression has a deleted
5385 default constructor and a deleted copy assignment operator." */
5386 TYPE_NEEDS_CONSTRUCTING (t) = 1;
5387 TYPE_HAS_COMPLEX_DFLT (t) = 1;
5388 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
5389 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
5390
5391 /* "This class type is not an aggregate." */
5392 CLASSTYPE_NON_AGGREGATE (t) = 1;
5393 }
5394
5395 /* Compute the 'literal type' property before we
5396 do anything with non-static member functions. */
5397 finalize_literal_type_property (t);
5398
5399 /* Create the in-charge and not-in-charge variants of constructors
5400 and destructors. */
5401 clone_constructors_and_destructors (t);
5402
5403 /* Process the using-declarations. */
5404 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5405 handle_using_decl (TREE_VALUE (access_decls), t);
5406
5407 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5408 finish_struct_methods (t);
5409
5410 /* Figure out whether or not we will need a cookie when dynamically
5411 allocating an array of this type. */
5412 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5413 = type_requires_array_cookie (t);
5414 }
5415
5416 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5417 accordingly. If a new vfield was created (because T doesn't have a
5418 primary base class), then the newly created field is returned. It
5419 is not added to the TYPE_FIELDS list; it is the caller's
5420 responsibility to do that. Accumulate declared virtual functions
5421 on VIRTUALS_P. */
5422
5423 static tree
5424 create_vtable_ptr (tree t, tree* virtuals_p)
5425 {
5426 tree fn;
5427
5428 /* Collect the virtual functions declared in T. */
5429 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5430 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5431 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5432 {
5433 tree new_virtual = make_node (TREE_LIST);
5434
5435 BV_FN (new_virtual) = fn;
5436 BV_DELTA (new_virtual) = integer_zero_node;
5437 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5438
5439 TREE_CHAIN (new_virtual) = *virtuals_p;
5440 *virtuals_p = new_virtual;
5441 }
5442
5443 /* If we couldn't find an appropriate base class, create a new field
5444 here. Even if there weren't any new virtual functions, we might need a
5445 new virtual function table if we're supposed to include vptrs in
5446 all classes that need them. */
5447 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5448 {
5449 /* We build this decl with vtbl_ptr_type_node, which is a
5450 `vtable_entry_type*'. It might seem more precise to use
5451 `vtable_entry_type (*)[N]' where N is the number of virtual
5452 functions. However, that would require the vtable pointer in
5453 base classes to have a different type than the vtable pointer
5454 in derived classes. We could make that happen, but that
5455 still wouldn't solve all the problems. In particular, the
5456 type-based alias analysis code would decide that assignments
5457 to the base class vtable pointer can't alias assignments to
5458 the derived class vtable pointer, since they have different
5459 types. Thus, in a derived class destructor, where the base
5460 class constructor was inlined, we could generate bad code for
5461 setting up the vtable pointer.
5462
5463 Therefore, we use one type for all vtable pointers. We still
5464 use a type-correct type; it's just doesn't indicate the array
5465 bounds. That's better than using `void*' or some such; it's
5466 cleaner, and it let's the alias analysis code know that these
5467 stores cannot alias stores to void*! */
5468 tree field;
5469
5470 field = build_decl (input_location,
5471 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5472 DECL_VIRTUAL_P (field) = 1;
5473 DECL_ARTIFICIAL (field) = 1;
5474 DECL_FIELD_CONTEXT (field) = t;
5475 DECL_FCONTEXT (field) = t;
5476 if (TYPE_PACKED (t))
5477 DECL_PACKED (field) = 1;
5478
5479 TYPE_VFIELD (t) = field;
5480
5481 /* This class is non-empty. */
5482 CLASSTYPE_EMPTY_P (t) = 0;
5483
5484 return field;
5485 }
5486
5487 return NULL_TREE;
5488 }
5489
5490 /* Add OFFSET to all base types of BINFO which is a base in the
5491 hierarchy dominated by T.
5492
5493 OFFSET, which is a type offset, is number of bytes. */
5494
5495 static void
5496 propagate_binfo_offsets (tree binfo, tree offset)
5497 {
5498 int i;
5499 tree primary_binfo;
5500 tree base_binfo;
5501
5502 /* Update BINFO's offset. */
5503 BINFO_OFFSET (binfo)
5504 = convert (sizetype,
5505 size_binop (PLUS_EXPR,
5506 convert (ssizetype, BINFO_OFFSET (binfo)),
5507 offset));
5508
5509 /* Find the primary base class. */
5510 primary_binfo = get_primary_binfo (binfo);
5511
5512 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5513 propagate_binfo_offsets (primary_binfo, offset);
5514
5515 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5516 downwards. */
5517 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5518 {
5519 /* Don't do the primary base twice. */
5520 if (base_binfo == primary_binfo)
5521 continue;
5522
5523 if (BINFO_VIRTUAL_P (base_binfo))
5524 continue;
5525
5526 propagate_binfo_offsets (base_binfo, offset);
5527 }
5528 }
5529
5530 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5531 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5532 empty subobjects of T. */
5533
5534 static void
5535 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5536 {
5537 tree vbase;
5538 tree t = rli->t;
5539 bool first_vbase = true;
5540 tree *next_field;
5541
5542 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5543 return;
5544
5545 if (!abi_version_at_least(2))
5546 {
5547 /* In G++ 3.2, we incorrectly rounded the size before laying out
5548 the virtual bases. */
5549 finish_record_layout (rli, /*free_p=*/false);
5550 #ifdef STRUCTURE_SIZE_BOUNDARY
5551 /* Packed structures don't need to have minimum size. */
5552 if (! TYPE_PACKED (t))
5553 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
5554 #endif
5555 rli->offset = TYPE_SIZE_UNIT (t);
5556 rli->bitpos = bitsize_zero_node;
5557 rli->record_align = TYPE_ALIGN (t);
5558 }
5559
5560 /* Find the last field. The artificial fields created for virtual
5561 bases will go after the last extant field to date. */
5562 next_field = &TYPE_FIELDS (t);
5563 while (*next_field)
5564 next_field = &DECL_CHAIN (*next_field);
5565
5566 /* Go through the virtual bases, allocating space for each virtual
5567 base that is not already a primary base class. These are
5568 allocated in inheritance graph order. */
5569 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5570 {
5571 if (!BINFO_VIRTUAL_P (vbase))
5572 continue;
5573
5574 if (!BINFO_PRIMARY_P (vbase))
5575 {
5576 tree basetype = TREE_TYPE (vbase);
5577
5578 /* This virtual base is not a primary base of any class in the
5579 hierarchy, so we have to add space for it. */
5580 next_field = build_base_field (rli, vbase,
5581 offsets, next_field);
5582
5583 /* If the first virtual base might have been placed at a
5584 lower address, had we started from CLASSTYPE_SIZE, rather
5585 than TYPE_SIZE, issue a warning. There can be both false
5586 positives and false negatives from this warning in rare
5587 cases; to deal with all the possibilities would probably
5588 require performing both layout algorithms and comparing
5589 the results which is not particularly tractable. */
5590 if (warn_abi
5591 && first_vbase
5592 && (tree_int_cst_lt
5593 (size_binop (CEIL_DIV_EXPR,
5594 round_up_loc (input_location,
5595 CLASSTYPE_SIZE (t),
5596 CLASSTYPE_ALIGN (basetype)),
5597 bitsize_unit_node),
5598 BINFO_OFFSET (vbase))))
5599 warning (OPT_Wabi,
5600 "offset of virtual base %qT is not ABI-compliant and "
5601 "may change in a future version of GCC",
5602 basetype);
5603
5604 first_vbase = false;
5605 }
5606 }
5607 }
5608
5609 /* Returns the offset of the byte just past the end of the base class
5610 BINFO. */
5611
5612 static tree
5613 end_of_base (tree binfo)
5614 {
5615 tree size;
5616
5617 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5618 size = TYPE_SIZE_UNIT (char_type_node);
5619 else if (is_empty_class (BINFO_TYPE (binfo)))
5620 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5621 allocate some space for it. It cannot have virtual bases, so
5622 TYPE_SIZE_UNIT is fine. */
5623 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5624 else
5625 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5626
5627 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5628 }
5629
5630 /* Returns the offset of the byte just past the end of the base class
5631 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5632 only non-virtual bases are included. */
5633
5634 static tree
5635 end_of_class (tree t, int include_virtuals_p)
5636 {
5637 tree result = size_zero_node;
5638 vec<tree, va_gc> *vbases;
5639 tree binfo;
5640 tree base_binfo;
5641 tree offset;
5642 int i;
5643
5644 for (binfo = TYPE_BINFO (t), i = 0;
5645 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5646 {
5647 if (!include_virtuals_p
5648 && BINFO_VIRTUAL_P (base_binfo)
5649 && (!BINFO_PRIMARY_P (base_binfo)
5650 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5651 continue;
5652
5653 offset = end_of_base (base_binfo);
5654 if (INT_CST_LT_UNSIGNED (result, offset))
5655 result = offset;
5656 }
5657
5658 /* G++ 3.2 did not check indirect virtual bases. */
5659 if (abi_version_at_least (2) && include_virtuals_p)
5660 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5661 vec_safe_iterate (vbases, i, &base_binfo); i++)
5662 {
5663 offset = end_of_base (base_binfo);
5664 if (INT_CST_LT_UNSIGNED (result, offset))
5665 result = offset;
5666 }
5667
5668 return result;
5669 }
5670
5671 /* Warn about bases of T that are inaccessible because they are
5672 ambiguous. For example:
5673
5674 struct S {};
5675 struct T : public S {};
5676 struct U : public S, public T {};
5677
5678 Here, `(S*) new U' is not allowed because there are two `S'
5679 subobjects of U. */
5680
5681 static void
5682 warn_about_ambiguous_bases (tree t)
5683 {
5684 int i;
5685 vec<tree, va_gc> *vbases;
5686 tree basetype;
5687 tree binfo;
5688 tree base_binfo;
5689
5690 /* If there are no repeated bases, nothing can be ambiguous. */
5691 if (!CLASSTYPE_REPEATED_BASE_P (t))
5692 return;
5693
5694 /* Check direct bases. */
5695 for (binfo = TYPE_BINFO (t), i = 0;
5696 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5697 {
5698 basetype = BINFO_TYPE (base_binfo);
5699
5700 if (!uniquely_derived_from_p (basetype, t))
5701 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5702 basetype, t);
5703 }
5704
5705 /* Check for ambiguous virtual bases. */
5706 if (extra_warnings)
5707 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5708 vec_safe_iterate (vbases, i, &binfo); i++)
5709 {
5710 basetype = BINFO_TYPE (binfo);
5711
5712 if (!uniquely_derived_from_p (basetype, t))
5713 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5714 "to ambiguity", basetype, t);
5715 }
5716 }
5717
5718 /* Compare two INTEGER_CSTs K1 and K2. */
5719
5720 static int
5721 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5722 {
5723 return tree_int_cst_compare ((tree) k1, (tree) k2);
5724 }
5725
5726 /* Increase the size indicated in RLI to account for empty classes
5727 that are "off the end" of the class. */
5728
5729 static void
5730 include_empty_classes (record_layout_info rli)
5731 {
5732 tree eoc;
5733 tree rli_size;
5734
5735 /* It might be the case that we grew the class to allocate a
5736 zero-sized base class. That won't be reflected in RLI, yet,
5737 because we are willing to overlay multiple bases at the same
5738 offset. However, now we need to make sure that RLI is big enough
5739 to reflect the entire class. */
5740 eoc = end_of_class (rli->t,
5741 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5742 rli_size = rli_size_unit_so_far (rli);
5743 if (TREE_CODE (rli_size) == INTEGER_CST
5744 && INT_CST_LT_UNSIGNED (rli_size, eoc))
5745 {
5746 if (!abi_version_at_least (2))
5747 /* In version 1 of the ABI, the size of a class that ends with
5748 a bitfield was not rounded up to a whole multiple of a
5749 byte. Because rli_size_unit_so_far returns only the number
5750 of fully allocated bytes, any extra bits were not included
5751 in the size. */
5752 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
5753 else
5754 /* The size should have been rounded to a whole byte. */
5755 gcc_assert (tree_int_cst_equal
5756 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5757 rli->bitpos
5758 = size_binop (PLUS_EXPR,
5759 rli->bitpos,
5760 size_binop (MULT_EXPR,
5761 convert (bitsizetype,
5762 size_binop (MINUS_EXPR,
5763 eoc, rli_size)),
5764 bitsize_int (BITS_PER_UNIT)));
5765 normalize_rli (rli);
5766 }
5767 }
5768
5769 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5770 BINFO_OFFSETs for all of the base-classes. Position the vtable
5771 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5772
5773 static void
5774 layout_class_type (tree t, tree *virtuals_p)
5775 {
5776 tree non_static_data_members;
5777 tree field;
5778 tree vptr;
5779 record_layout_info rli;
5780 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
5781 types that appear at that offset. */
5782 splay_tree empty_base_offsets;
5783 /* True if the last field layed out was a bit-field. */
5784 bool last_field_was_bitfield = false;
5785 /* The location at which the next field should be inserted. */
5786 tree *next_field;
5787 /* T, as a base class. */
5788 tree base_t;
5789
5790 /* Keep track of the first non-static data member. */
5791 non_static_data_members = TYPE_FIELDS (t);
5792
5793 /* Start laying out the record. */
5794 rli = start_record_layout (t);
5795
5796 /* Mark all the primary bases in the hierarchy. */
5797 determine_primary_bases (t);
5798
5799 /* Create a pointer to our virtual function table. */
5800 vptr = create_vtable_ptr (t, virtuals_p);
5801
5802 /* The vptr is always the first thing in the class. */
5803 if (vptr)
5804 {
5805 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
5806 TYPE_FIELDS (t) = vptr;
5807 next_field = &DECL_CHAIN (vptr);
5808 place_field (rli, vptr);
5809 }
5810 else
5811 next_field = &TYPE_FIELDS (t);
5812
5813 /* Build FIELD_DECLs for all of the non-virtual base-types. */
5814 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5815 NULL, NULL);
5816 build_base_fields (rli, empty_base_offsets, next_field);
5817
5818 /* Layout the non-static data members. */
5819 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
5820 {
5821 tree type;
5822 tree padding;
5823
5824 /* We still pass things that aren't non-static data members to
5825 the back end, in case it wants to do something with them. */
5826 if (TREE_CODE (field) != FIELD_DECL)
5827 {
5828 place_field (rli, field);
5829 /* If the static data member has incomplete type, keep track
5830 of it so that it can be completed later. (The handling
5831 of pending statics in finish_record_layout is
5832 insufficient; consider:
5833
5834 struct S1;
5835 struct S2 { static S1 s1; };
5836
5837 At this point, finish_record_layout will be called, but
5838 S1 is still incomplete.) */
5839 if (VAR_P (field))
5840 {
5841 maybe_register_incomplete_var (field);
5842 /* The visibility of static data members is determined
5843 at their point of declaration, not their point of
5844 definition. */
5845 determine_visibility (field);
5846 }
5847 continue;
5848 }
5849
5850 type = TREE_TYPE (field);
5851 if (type == error_mark_node)
5852 continue;
5853
5854 padding = NULL_TREE;
5855
5856 /* If this field is a bit-field whose width is greater than its
5857 type, then there are some special rules for allocating
5858 it. */
5859 if (DECL_C_BIT_FIELD (field)
5860 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
5861 {
5862 unsigned int itk;
5863 tree integer_type;
5864 bool was_unnamed_p = false;
5865 /* We must allocate the bits as if suitably aligned for the
5866 longest integer type that fits in this many bits. type
5867 of the field. Then, we are supposed to use the left over
5868 bits as additional padding. */
5869 for (itk = itk_char; itk != itk_none; ++itk)
5870 if (integer_types[itk] != NULL_TREE
5871 && (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE),
5872 TYPE_SIZE (integer_types[itk]))
5873 || INT_CST_LT (DECL_SIZE (field),
5874 TYPE_SIZE (integer_types[itk]))))
5875 break;
5876
5877 /* ITK now indicates a type that is too large for the
5878 field. We have to back up by one to find the largest
5879 type that fits. */
5880 do
5881 {
5882 --itk;
5883 integer_type = integer_types[itk];
5884 } while (itk > 0 && integer_type == NULL_TREE);
5885
5886 /* Figure out how much additional padding is required. GCC
5887 3.2 always created a padding field, even if it had zero
5888 width. */
5889 if (!abi_version_at_least (2)
5890 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
5891 {
5892 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
5893 /* In a union, the padding field must have the full width
5894 of the bit-field; all fields start at offset zero. */
5895 padding = DECL_SIZE (field);
5896 else
5897 {
5898 if (TREE_CODE (t) == UNION_TYPE)
5899 warning (OPT_Wabi, "size assigned to %qT may not be "
5900 "ABI-compliant and may change in a future "
5901 "version of GCC",
5902 t);
5903 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
5904 TYPE_SIZE (integer_type));
5905 }
5906 }
5907 #ifdef PCC_BITFIELD_TYPE_MATTERS
5908 /* An unnamed bitfield does not normally affect the
5909 alignment of the containing class on a target where
5910 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
5911 make any exceptions for unnamed bitfields when the
5912 bitfields are longer than their types. Therefore, we
5913 temporarily give the field a name. */
5914 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
5915 {
5916 was_unnamed_p = true;
5917 DECL_NAME (field) = make_anon_name ();
5918 }
5919 #endif
5920 DECL_SIZE (field) = TYPE_SIZE (integer_type);
5921 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
5922 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
5923 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5924 empty_base_offsets);
5925 if (was_unnamed_p)
5926 DECL_NAME (field) = NULL_TREE;
5927 /* Now that layout has been performed, set the size of the
5928 field to the size of its declared type; the rest of the
5929 field is effectively invisible. */
5930 DECL_SIZE (field) = TYPE_SIZE (type);
5931 /* We must also reset the DECL_MODE of the field. */
5932 if (abi_version_at_least (2))
5933 DECL_MODE (field) = TYPE_MODE (type);
5934 else if (warn_abi
5935 && DECL_MODE (field) != TYPE_MODE (type))
5936 /* Versions of G++ before G++ 3.4 did not reset the
5937 DECL_MODE. */
5938 warning (OPT_Wabi,
5939 "the offset of %qD may not be ABI-compliant and may "
5940 "change in a future version of GCC", field);
5941 }
5942 else
5943 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5944 empty_base_offsets);
5945
5946 /* Remember the location of any empty classes in FIELD. */
5947 if (abi_version_at_least (2))
5948 record_subobject_offsets (TREE_TYPE (field),
5949 byte_position(field),
5950 empty_base_offsets,
5951 /*is_data_member=*/true);
5952
5953 /* If a bit-field does not immediately follow another bit-field,
5954 and yet it starts in the middle of a byte, we have failed to
5955 comply with the ABI. */
5956 if (warn_abi
5957 && DECL_C_BIT_FIELD (field)
5958 /* The TREE_NO_WARNING flag gets set by Objective-C when
5959 laying out an Objective-C class. The ObjC ABI differs
5960 from the C++ ABI, and so we do not want a warning
5961 here. */
5962 && !TREE_NO_WARNING (field)
5963 && !last_field_was_bitfield
5964 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
5965 DECL_FIELD_BIT_OFFSET (field),
5966 bitsize_unit_node)))
5967 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
5968 "change in a future version of GCC", field);
5969
5970 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
5971 offset of the field. */
5972 if (warn_abi
5973 && !abi_version_at_least (2)
5974 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
5975 byte_position (field))
5976 && contains_empty_class_p (TREE_TYPE (field)))
5977 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
5978 "classes to be placed at different locations in a "
5979 "future version of GCC", field);
5980
5981 /* The middle end uses the type of expressions to determine the
5982 possible range of expression values. In order to optimize
5983 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
5984 must be made aware of the width of "i", via its type.
5985
5986 Because C++ does not have integer types of arbitrary width,
5987 we must (for the purposes of the front end) convert from the
5988 type assigned here to the declared type of the bitfield
5989 whenever a bitfield expression is used as an rvalue.
5990 Similarly, when assigning a value to a bitfield, the value
5991 must be converted to the type given the bitfield here. */
5992 if (DECL_C_BIT_FIELD (field))
5993 {
5994 unsigned HOST_WIDE_INT width;
5995 tree ftype = TREE_TYPE (field);
5996 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
5997 if (width != TYPE_PRECISION (ftype))
5998 {
5999 TREE_TYPE (field)
6000 = c_build_bitfield_integer_type (width,
6001 TYPE_UNSIGNED (ftype));
6002 TREE_TYPE (field)
6003 = cp_build_qualified_type (TREE_TYPE (field),
6004 cp_type_quals (ftype));
6005 }
6006 }
6007
6008 /* If we needed additional padding after this field, add it
6009 now. */
6010 if (padding)
6011 {
6012 tree padding_field;
6013
6014 padding_field = build_decl (input_location,
6015 FIELD_DECL,
6016 NULL_TREE,
6017 char_type_node);
6018 DECL_BIT_FIELD (padding_field) = 1;
6019 DECL_SIZE (padding_field) = padding;
6020 DECL_CONTEXT (padding_field) = t;
6021 DECL_ARTIFICIAL (padding_field) = 1;
6022 DECL_IGNORED_P (padding_field) = 1;
6023 layout_nonempty_base_or_field (rli, padding_field,
6024 NULL_TREE,
6025 empty_base_offsets);
6026 }
6027
6028 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6029 }
6030
6031 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
6032 {
6033 /* Make sure that we are on a byte boundary so that the size of
6034 the class without virtual bases will always be a round number
6035 of bytes. */
6036 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6037 normalize_rli (rli);
6038 }
6039
6040 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
6041 padding. */
6042 if (!abi_version_at_least (2))
6043 include_empty_classes(rli);
6044
6045 /* Delete all zero-width bit-fields from the list of fields. Now
6046 that the type is laid out they are no longer important. */
6047 remove_zero_width_bit_fields (t);
6048
6049 /* Create the version of T used for virtual bases. We do not use
6050 make_class_type for this version; this is an artificial type. For
6051 a POD type, we just reuse T. */
6052 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6053 {
6054 base_t = make_node (TREE_CODE (t));
6055
6056 /* Set the size and alignment for the new type. In G++ 3.2, all
6057 empty classes were considered to have size zero when used as
6058 base classes. */
6059 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
6060 {
6061 TYPE_SIZE (base_t) = bitsize_zero_node;
6062 TYPE_SIZE_UNIT (base_t) = size_zero_node;
6063 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
6064 warning (OPT_Wabi,
6065 "layout of classes derived from empty class %qT "
6066 "may change in a future version of GCC",
6067 t);
6068 }
6069 else
6070 {
6071 tree eoc;
6072
6073 /* If the ABI version is not at least two, and the last
6074 field was a bit-field, RLI may not be on a byte
6075 boundary. In particular, rli_size_unit_so_far might
6076 indicate the last complete byte, while rli_size_so_far
6077 indicates the total number of bits used. Therefore,
6078 rli_size_so_far, rather than rli_size_unit_so_far, is
6079 used to compute TYPE_SIZE_UNIT. */
6080 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6081 TYPE_SIZE_UNIT (base_t)
6082 = size_binop (MAX_EXPR,
6083 convert (sizetype,
6084 size_binop (CEIL_DIV_EXPR,
6085 rli_size_so_far (rli),
6086 bitsize_int (BITS_PER_UNIT))),
6087 eoc);
6088 TYPE_SIZE (base_t)
6089 = size_binop (MAX_EXPR,
6090 rli_size_so_far (rli),
6091 size_binop (MULT_EXPR,
6092 convert (bitsizetype, eoc),
6093 bitsize_int (BITS_PER_UNIT)));
6094 }
6095 TYPE_ALIGN (base_t) = rli->record_align;
6096 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6097
6098 /* Copy the fields from T. */
6099 next_field = &TYPE_FIELDS (base_t);
6100 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6101 if (TREE_CODE (field) == FIELD_DECL)
6102 {
6103 *next_field = build_decl (input_location,
6104 FIELD_DECL,
6105 DECL_NAME (field),
6106 TREE_TYPE (field));
6107 DECL_CONTEXT (*next_field) = base_t;
6108 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6109 DECL_FIELD_BIT_OFFSET (*next_field)
6110 = DECL_FIELD_BIT_OFFSET (field);
6111 DECL_SIZE (*next_field) = DECL_SIZE (field);
6112 DECL_MODE (*next_field) = DECL_MODE (field);
6113 next_field = &DECL_CHAIN (*next_field);
6114 }
6115
6116 /* Record the base version of the type. */
6117 CLASSTYPE_AS_BASE (t) = base_t;
6118 TYPE_CONTEXT (base_t) = t;
6119 }
6120 else
6121 CLASSTYPE_AS_BASE (t) = t;
6122
6123 /* Every empty class contains an empty class. */
6124 if (CLASSTYPE_EMPTY_P (t))
6125 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6126
6127 /* Set the TYPE_DECL for this type to contain the right
6128 value for DECL_OFFSET, so that we can use it as part
6129 of a COMPONENT_REF for multiple inheritance. */
6130 layout_decl (TYPE_MAIN_DECL (t), 0);
6131
6132 /* Now fix up any virtual base class types that we left lying
6133 around. We must get these done before we try to lay out the
6134 virtual function table. As a side-effect, this will remove the
6135 base subobject fields. */
6136 layout_virtual_bases (rli, empty_base_offsets);
6137
6138 /* Make sure that empty classes are reflected in RLI at this
6139 point. */
6140 include_empty_classes(rli);
6141
6142 /* Make sure not to create any structures with zero size. */
6143 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6144 place_field (rli,
6145 build_decl (input_location,
6146 FIELD_DECL, NULL_TREE, char_type_node));
6147
6148 /* If this is a non-POD, declaring it packed makes a difference to how it
6149 can be used as a field; don't let finalize_record_size undo it. */
6150 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6151 rli->packed_maybe_necessary = true;
6152
6153 /* Let the back end lay out the type. */
6154 finish_record_layout (rli, /*free_p=*/true);
6155
6156 /* Warn about bases that can't be talked about due to ambiguity. */
6157 warn_about_ambiguous_bases (t);
6158
6159 /* Now that we're done with layout, give the base fields the real types. */
6160 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6161 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6162 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6163
6164 /* Clean up. */
6165 splay_tree_delete (empty_base_offsets);
6166
6167 if (CLASSTYPE_EMPTY_P (t)
6168 && tree_int_cst_lt (sizeof_biggest_empty_class,
6169 TYPE_SIZE_UNIT (t)))
6170 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6171 }
6172
6173 /* Determine the "key method" for the class type indicated by TYPE,
6174 and set CLASSTYPE_KEY_METHOD accordingly. */
6175
6176 void
6177 determine_key_method (tree type)
6178 {
6179 tree method;
6180
6181 if (TYPE_FOR_JAVA (type)
6182 || processing_template_decl
6183 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6184 || CLASSTYPE_INTERFACE_KNOWN (type))
6185 return;
6186
6187 /* The key method is the first non-pure virtual function that is not
6188 inline at the point of class definition. On some targets the
6189 key function may not be inline; those targets should not call
6190 this function until the end of the translation unit. */
6191 for (method = TYPE_METHODS (type); method != NULL_TREE;
6192 method = DECL_CHAIN (method))
6193 if (DECL_VINDEX (method) != NULL_TREE
6194 && ! DECL_DECLARED_INLINE_P (method)
6195 && ! DECL_PURE_VIRTUAL_P (method))
6196 {
6197 CLASSTYPE_KEY_METHOD (type) = method;
6198 break;
6199 }
6200
6201 return;
6202 }
6203
6204
6205 /* Allocate and return an instance of struct sorted_fields_type with
6206 N fields. */
6207
6208 static struct sorted_fields_type *
6209 sorted_fields_type_new (int n)
6210 {
6211 struct sorted_fields_type *sft;
6212 sft = ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type)
6213 + n * sizeof (tree));
6214 sft->len = n;
6215
6216 return sft;
6217 }
6218
6219
6220 /* Perform processing required when the definition of T (a class type)
6221 is complete. */
6222
6223 void
6224 finish_struct_1 (tree t)
6225 {
6226 tree x;
6227 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6228 tree virtuals = NULL_TREE;
6229
6230 if (COMPLETE_TYPE_P (t))
6231 {
6232 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6233 error ("redefinition of %q#T", t);
6234 popclass ();
6235 return;
6236 }
6237
6238 /* If this type was previously laid out as a forward reference,
6239 make sure we lay it out again. */
6240 TYPE_SIZE (t) = NULL_TREE;
6241 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6242
6243 /* Make assumptions about the class; we'll reset the flags if
6244 necessary. */
6245 CLASSTYPE_EMPTY_P (t) = 1;
6246 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6247 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6248 CLASSTYPE_LITERAL_P (t) = true;
6249
6250 /* Do end-of-class semantic processing: checking the validity of the
6251 bases and members and add implicitly generated methods. */
6252 check_bases_and_members (t);
6253
6254 /* Find the key method. */
6255 if (TYPE_CONTAINS_VPTR_P (t))
6256 {
6257 /* The Itanium C++ ABI permits the key method to be chosen when
6258 the class is defined -- even though the key method so
6259 selected may later turn out to be an inline function. On
6260 some systems (such as ARM Symbian OS) the key method cannot
6261 be determined until the end of the translation unit. On such
6262 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6263 will cause the class to be added to KEYED_CLASSES. Then, in
6264 finish_file we will determine the key method. */
6265 if (targetm.cxx.key_method_may_be_inline ())
6266 determine_key_method (t);
6267
6268 /* If a polymorphic class has no key method, we may emit the vtable
6269 in every translation unit where the class definition appears. */
6270 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6271 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6272 }
6273
6274 /* Layout the class itself. */
6275 layout_class_type (t, &virtuals);
6276 if (CLASSTYPE_AS_BASE (t) != t)
6277 /* We use the base type for trivial assignments, and hence it
6278 needs a mode. */
6279 compute_record_mode (CLASSTYPE_AS_BASE (t));
6280
6281 virtuals = modify_all_vtables (t, nreverse (virtuals));
6282
6283 /* If necessary, create the primary vtable for this class. */
6284 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6285 {
6286 /* We must enter these virtuals into the table. */
6287 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6288 build_primary_vtable (NULL_TREE, t);
6289 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6290 /* Here we know enough to change the type of our virtual
6291 function table, but we will wait until later this function. */
6292 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6293
6294 /* If we're warning about ABI tags, check the types of the new
6295 virtual functions. */
6296 if (warn_abi_tag)
6297 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6298 check_abi_tags (t, TREE_VALUE (v));
6299 }
6300
6301 if (TYPE_CONTAINS_VPTR_P (t))
6302 {
6303 int vindex;
6304 tree fn;
6305
6306 if (BINFO_VTABLE (TYPE_BINFO (t)))
6307 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6308 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6309 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6310
6311 /* Add entries for virtual functions introduced by this class. */
6312 BINFO_VIRTUALS (TYPE_BINFO (t))
6313 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6314
6315 /* Set DECL_VINDEX for all functions declared in this class. */
6316 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6317 fn;
6318 fn = TREE_CHAIN (fn),
6319 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6320 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6321 {
6322 tree fndecl = BV_FN (fn);
6323
6324 if (DECL_THUNK_P (fndecl))
6325 /* A thunk. We should never be calling this entry directly
6326 from this vtable -- we'd use the entry for the non
6327 thunk base function. */
6328 DECL_VINDEX (fndecl) = NULL_TREE;
6329 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6330 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6331 }
6332 }
6333
6334 finish_struct_bits (t);
6335 set_method_tm_attributes (t);
6336
6337 /* Complete the rtl for any static member objects of the type we're
6338 working on. */
6339 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6340 if (VAR_P (x) && TREE_STATIC (x)
6341 && TREE_TYPE (x) != error_mark_node
6342 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6343 DECL_MODE (x) = TYPE_MODE (t);
6344
6345 /* Done with FIELDS...now decide whether to sort these for
6346 faster lookups later.
6347
6348 We use a small number because most searches fail (succeeding
6349 ultimately as the search bores through the inheritance
6350 hierarchy), and we want this failure to occur quickly. */
6351
6352 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6353
6354 /* Complain if one of the field types requires lower visibility. */
6355 constrain_class_visibility (t);
6356
6357 /* Make the rtl for any new vtables we have created, and unmark
6358 the base types we marked. */
6359 finish_vtbls (t);
6360
6361 /* Build the VTT for T. */
6362 build_vtt (t);
6363
6364 /* This warning does not make sense for Java classes, since they
6365 cannot have destructors. */
6366 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
6367 {
6368 tree dtor;
6369
6370 dtor = CLASSTYPE_DESTRUCTORS (t);
6371 if (/* An implicitly declared destructor is always public. And,
6372 if it were virtual, we would have created it by now. */
6373 !dtor
6374 || (!DECL_VINDEX (dtor)
6375 && (/* public non-virtual */
6376 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
6377 || (/* non-public non-virtual with friends */
6378 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
6379 && (CLASSTYPE_FRIEND_CLASSES (t)
6380 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
6381 warning (OPT_Wnon_virtual_dtor,
6382 "%q#T has virtual functions and accessible"
6383 " non-virtual destructor", t);
6384 }
6385
6386 complete_vars (t);
6387
6388 if (warn_overloaded_virtual)
6389 warn_hidden (t);
6390
6391 /* Class layout, assignment of virtual table slots, etc., is now
6392 complete. Give the back end a chance to tweak the visibility of
6393 the class or perform any other required target modifications. */
6394 targetm.cxx.adjust_class_at_definition (t);
6395
6396 maybe_suppress_debug_info (t);
6397
6398 dump_class_hierarchy (t);
6399
6400 /* Finish debugging output for this type. */
6401 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6402
6403 if (TYPE_TRANSPARENT_AGGR (t))
6404 {
6405 tree field = first_field (t);
6406 if (field == NULL_TREE || error_operand_p (field))
6407 {
6408 error ("type transparent %q#T does not have any fields", t);
6409 TYPE_TRANSPARENT_AGGR (t) = 0;
6410 }
6411 else if (DECL_ARTIFICIAL (field))
6412 {
6413 if (DECL_FIELD_IS_BASE (field))
6414 error ("type transparent class %qT has base classes", t);
6415 else
6416 {
6417 gcc_checking_assert (DECL_VIRTUAL_P (field));
6418 error ("type transparent class %qT has virtual functions", t);
6419 }
6420 TYPE_TRANSPARENT_AGGR (t) = 0;
6421 }
6422 else if (TYPE_MODE (t) != DECL_MODE (field))
6423 {
6424 error ("type transparent %q#T cannot be made transparent because "
6425 "the type of the first field has a different ABI from the "
6426 "class overall", t);
6427 TYPE_TRANSPARENT_AGGR (t) = 0;
6428 }
6429 }
6430 }
6431
6432 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6433 equal to THRESHOLD or greater than THRESHOLD. */
6434
6435 static void
6436 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6437 {
6438 int n_fields = count_fields (fields);
6439 if (n_fields >= threshold)
6440 {
6441 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6442 add_fields_to_record_type (fields, field_vec, 0);
6443 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6444 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6445 }
6446 }
6447
6448 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6449
6450 void
6451 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6452 {
6453 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6454 if (sorted_fields)
6455 {
6456 int i;
6457 int n_fields
6458 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6459 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6460
6461 for (i = 0; i < sorted_fields->len; ++i)
6462 field_vec->elts[i] = sorted_fields->elts[i];
6463
6464 add_enum_fields_to_record_type (enumtype, field_vec,
6465 sorted_fields->len);
6466 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6467 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6468 }
6469 }
6470
6471 /* When T was built up, the member declarations were added in reverse
6472 order. Rearrange them to declaration order. */
6473
6474 void
6475 unreverse_member_declarations (tree t)
6476 {
6477 tree next;
6478 tree prev;
6479 tree x;
6480
6481 /* The following lists are all in reverse order. Put them in
6482 declaration order now. */
6483 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6484 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6485
6486 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6487 reverse order, so we can't just use nreverse. */
6488 prev = NULL_TREE;
6489 for (x = TYPE_FIELDS (t);
6490 x && TREE_CODE (x) != TYPE_DECL;
6491 x = next)
6492 {
6493 next = DECL_CHAIN (x);
6494 DECL_CHAIN (x) = prev;
6495 prev = x;
6496 }
6497 if (prev)
6498 {
6499 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6500 if (prev)
6501 TYPE_FIELDS (t) = prev;
6502 }
6503 }
6504
6505 tree
6506 finish_struct (tree t, tree attributes)
6507 {
6508 location_t saved_loc = input_location;
6509
6510 /* Now that we've got all the field declarations, reverse everything
6511 as necessary. */
6512 unreverse_member_declarations (t);
6513
6514 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6515
6516 /* Nadger the current location so that diagnostics point to the start of
6517 the struct, not the end. */
6518 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6519
6520 if (processing_template_decl)
6521 {
6522 tree x;
6523
6524 finish_struct_methods (t);
6525 TYPE_SIZE (t) = bitsize_zero_node;
6526 TYPE_SIZE_UNIT (t) = size_zero_node;
6527
6528 /* We need to emit an error message if this type was used as a parameter
6529 and it is an abstract type, even if it is a template. We construct
6530 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6531 account and we call complete_vars with this type, which will check
6532 the PARM_DECLS. Note that while the type is being defined,
6533 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6534 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6535 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6536 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6537 if (DECL_PURE_VIRTUAL_P (x))
6538 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6539 complete_vars (t);
6540 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6541 an enclosing scope is a template class, so that this function be
6542 found by lookup_fnfields_1 when the using declaration is not
6543 instantiated yet. */
6544 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6545 if (TREE_CODE (x) == USING_DECL)
6546 {
6547 tree fn = strip_using_decl (x);
6548 if (is_overloaded_fn (fn))
6549 for (; fn; fn = OVL_NEXT (fn))
6550 add_method (t, OVL_CURRENT (fn), x);
6551 }
6552
6553 /* Remember current #pragma pack value. */
6554 TYPE_PRECISION (t) = maximum_field_alignment;
6555
6556 /* Fix up any variants we've already built. */
6557 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6558 {
6559 TYPE_SIZE (x) = TYPE_SIZE (t);
6560 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6561 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6562 TYPE_METHODS (x) = TYPE_METHODS (t);
6563 }
6564 }
6565 else
6566 finish_struct_1 (t);
6567
6568 input_location = saved_loc;
6569
6570 TYPE_BEING_DEFINED (t) = 0;
6571
6572 if (current_class_type)
6573 popclass ();
6574 else
6575 error ("trying to finish struct, but kicked out due to previous parse errors");
6576
6577 if (processing_template_decl && at_function_scope_p ()
6578 /* Lambdas are defined by the LAMBDA_EXPR. */
6579 && !LAMBDA_TYPE_P (t))
6580 add_stmt (build_min (TAG_DEFN, t));
6581
6582 return t;
6583 }
6584 \f
6585 /* Hash table to avoid endless recursion when handling references. */
6586 static hash_table <pointer_hash <tree_node> > fixed_type_or_null_ref_ht;
6587
6588 /* Return the dynamic type of INSTANCE, if known.
6589 Used to determine whether the virtual function table is needed
6590 or not.
6591
6592 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6593 of our knowledge of its type. *NONNULL should be initialized
6594 before this function is called. */
6595
6596 static tree
6597 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6598 {
6599 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6600
6601 switch (TREE_CODE (instance))
6602 {
6603 case INDIRECT_REF:
6604 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6605 return NULL_TREE;
6606 else
6607 return RECUR (TREE_OPERAND (instance, 0));
6608
6609 case CALL_EXPR:
6610 /* This is a call to a constructor, hence it's never zero. */
6611 if (TREE_HAS_CONSTRUCTOR (instance))
6612 {
6613 if (nonnull)
6614 *nonnull = 1;
6615 return TREE_TYPE (instance);
6616 }
6617 return NULL_TREE;
6618
6619 case SAVE_EXPR:
6620 /* This is a call to a constructor, hence it's never zero. */
6621 if (TREE_HAS_CONSTRUCTOR (instance))
6622 {
6623 if (nonnull)
6624 *nonnull = 1;
6625 return TREE_TYPE (instance);
6626 }
6627 return RECUR (TREE_OPERAND (instance, 0));
6628
6629 case POINTER_PLUS_EXPR:
6630 case PLUS_EXPR:
6631 case MINUS_EXPR:
6632 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6633 return RECUR (TREE_OPERAND (instance, 0));
6634 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6635 /* Propagate nonnull. */
6636 return RECUR (TREE_OPERAND (instance, 0));
6637
6638 return NULL_TREE;
6639
6640 CASE_CONVERT:
6641 return RECUR (TREE_OPERAND (instance, 0));
6642
6643 case ADDR_EXPR:
6644 instance = TREE_OPERAND (instance, 0);
6645 if (nonnull)
6646 {
6647 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6648 with a real object -- given &p->f, p can still be null. */
6649 tree t = get_base_address (instance);
6650 /* ??? Probably should check DECL_WEAK here. */
6651 if (t && DECL_P (t))
6652 *nonnull = 1;
6653 }
6654 return RECUR (instance);
6655
6656 case COMPONENT_REF:
6657 /* If this component is really a base class reference, then the field
6658 itself isn't definitive. */
6659 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6660 return RECUR (TREE_OPERAND (instance, 0));
6661 return RECUR (TREE_OPERAND (instance, 1));
6662
6663 case VAR_DECL:
6664 case FIELD_DECL:
6665 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6666 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6667 {
6668 if (nonnull)
6669 *nonnull = 1;
6670 return TREE_TYPE (TREE_TYPE (instance));
6671 }
6672 /* fall through... */
6673 case TARGET_EXPR:
6674 case PARM_DECL:
6675 case RESULT_DECL:
6676 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6677 {
6678 if (nonnull)
6679 *nonnull = 1;
6680 return TREE_TYPE (instance);
6681 }
6682 else if (instance == current_class_ptr)
6683 {
6684 if (nonnull)
6685 *nonnull = 1;
6686
6687 /* if we're in a ctor or dtor, we know our type. If
6688 current_class_ptr is set but we aren't in a function, we're in
6689 an NSDMI (and therefore a constructor). */
6690 if (current_scope () != current_function_decl
6691 || (DECL_LANG_SPECIFIC (current_function_decl)
6692 && (DECL_CONSTRUCTOR_P (current_function_decl)
6693 || DECL_DESTRUCTOR_P (current_function_decl))))
6694 {
6695 if (cdtorp)
6696 *cdtorp = 1;
6697 return TREE_TYPE (TREE_TYPE (instance));
6698 }
6699 }
6700 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6701 {
6702 /* We only need one hash table because it is always left empty. */
6703 if (!fixed_type_or_null_ref_ht.is_created ())
6704 fixed_type_or_null_ref_ht.create (37);
6705
6706 /* Reference variables should be references to objects. */
6707 if (nonnull)
6708 *nonnull = 1;
6709
6710 /* Enter the INSTANCE in a table to prevent recursion; a
6711 variable's initializer may refer to the variable
6712 itself. */
6713 if (VAR_P (instance)
6714 && DECL_INITIAL (instance)
6715 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6716 && !fixed_type_or_null_ref_ht.find (instance))
6717 {
6718 tree type;
6719 tree_node **slot;
6720
6721 slot = fixed_type_or_null_ref_ht.find_slot (instance, INSERT);
6722 *slot = instance;
6723 type = RECUR (DECL_INITIAL (instance));
6724 fixed_type_or_null_ref_ht.remove_elt (instance);
6725
6726 return type;
6727 }
6728 }
6729 return NULL_TREE;
6730
6731 default:
6732 return NULL_TREE;
6733 }
6734 #undef RECUR
6735 }
6736
6737 /* Return nonzero if the dynamic type of INSTANCE is known, and
6738 equivalent to the static type. We also handle the case where
6739 INSTANCE is really a pointer. Return negative if this is a
6740 ctor/dtor. There the dynamic type is known, but this might not be
6741 the most derived base of the original object, and hence virtual
6742 bases may not be layed out according to this type.
6743
6744 Used to determine whether the virtual function table is needed
6745 or not.
6746
6747 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6748 of our knowledge of its type. *NONNULL should be initialized
6749 before this function is called. */
6750
6751 int
6752 resolves_to_fixed_type_p (tree instance, int* nonnull)
6753 {
6754 tree t = TREE_TYPE (instance);
6755 int cdtorp = 0;
6756 tree fixed;
6757
6758 /* processing_template_decl can be false in a template if we're in
6759 fold_non_dependent_expr, but we still want to suppress this check. */
6760 if (in_template_function ())
6761 {
6762 /* In a template we only care about the type of the result. */
6763 if (nonnull)
6764 *nonnull = true;
6765 return true;
6766 }
6767
6768 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6769 if (fixed == NULL_TREE)
6770 return 0;
6771 if (POINTER_TYPE_P (t))
6772 t = TREE_TYPE (t);
6773 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6774 return 0;
6775 return cdtorp ? -1 : 1;
6776 }
6777
6778 \f
6779 void
6780 init_class_processing (void)
6781 {
6782 current_class_depth = 0;
6783 current_class_stack_size = 10;
6784 current_class_stack
6785 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6786 vec_alloc (local_classes, 8);
6787 sizeof_biggest_empty_class = size_zero_node;
6788
6789 ridpointers[(int) RID_PUBLIC] = access_public_node;
6790 ridpointers[(int) RID_PRIVATE] = access_private_node;
6791 ridpointers[(int) RID_PROTECTED] = access_protected_node;
6792 }
6793
6794 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
6795
6796 static void
6797 restore_class_cache (void)
6798 {
6799 tree type;
6800
6801 /* We are re-entering the same class we just left, so we don't
6802 have to search the whole inheritance matrix to find all the
6803 decls to bind again. Instead, we install the cached
6804 class_shadowed list and walk through it binding names. */
6805 push_binding_level (previous_class_level);
6806 class_binding_level = previous_class_level;
6807 /* Restore IDENTIFIER_TYPE_VALUE. */
6808 for (type = class_binding_level->type_shadowed;
6809 type;
6810 type = TREE_CHAIN (type))
6811 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
6812 }
6813
6814 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
6815 appropriate for TYPE.
6816
6817 So that we may avoid calls to lookup_name, we cache the _TYPE
6818 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
6819
6820 For multiple inheritance, we perform a two-pass depth-first search
6821 of the type lattice. */
6822
6823 void
6824 pushclass (tree type)
6825 {
6826 class_stack_node_t csn;
6827
6828 type = TYPE_MAIN_VARIANT (type);
6829
6830 /* Make sure there is enough room for the new entry on the stack. */
6831 if (current_class_depth + 1 >= current_class_stack_size)
6832 {
6833 current_class_stack_size *= 2;
6834 current_class_stack
6835 = XRESIZEVEC (struct class_stack_node, current_class_stack,
6836 current_class_stack_size);
6837 }
6838
6839 /* Insert a new entry on the class stack. */
6840 csn = current_class_stack + current_class_depth;
6841 csn->name = current_class_name;
6842 csn->type = current_class_type;
6843 csn->access = current_access_specifier;
6844 csn->names_used = 0;
6845 csn->hidden = 0;
6846 current_class_depth++;
6847
6848 /* Now set up the new type. */
6849 current_class_name = TYPE_NAME (type);
6850 if (TREE_CODE (current_class_name) == TYPE_DECL)
6851 current_class_name = DECL_NAME (current_class_name);
6852 current_class_type = type;
6853
6854 /* By default, things in classes are private, while things in
6855 structures or unions are public. */
6856 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
6857 ? access_private_node
6858 : access_public_node);
6859
6860 if (previous_class_level
6861 && type != previous_class_level->this_entity
6862 && current_class_depth == 1)
6863 {
6864 /* Forcibly remove any old class remnants. */
6865 invalidate_class_lookup_cache ();
6866 }
6867
6868 if (!previous_class_level
6869 || type != previous_class_level->this_entity
6870 || current_class_depth > 1)
6871 pushlevel_class ();
6872 else
6873 restore_class_cache ();
6874 }
6875
6876 /* When we exit a toplevel class scope, we save its binding level so
6877 that we can restore it quickly. Here, we've entered some other
6878 class, so we must invalidate our cache. */
6879
6880 void
6881 invalidate_class_lookup_cache (void)
6882 {
6883 previous_class_level = NULL;
6884 }
6885
6886 /* Get out of the current class scope. If we were in a class scope
6887 previously, that is the one popped to. */
6888
6889 void
6890 popclass (void)
6891 {
6892 poplevel_class ();
6893
6894 current_class_depth--;
6895 current_class_name = current_class_stack[current_class_depth].name;
6896 current_class_type = current_class_stack[current_class_depth].type;
6897 current_access_specifier = current_class_stack[current_class_depth].access;
6898 if (current_class_stack[current_class_depth].names_used)
6899 splay_tree_delete (current_class_stack[current_class_depth].names_used);
6900 }
6901
6902 /* Mark the top of the class stack as hidden. */
6903
6904 void
6905 push_class_stack (void)
6906 {
6907 if (current_class_depth)
6908 ++current_class_stack[current_class_depth - 1].hidden;
6909 }
6910
6911 /* Mark the top of the class stack as un-hidden. */
6912
6913 void
6914 pop_class_stack (void)
6915 {
6916 if (current_class_depth)
6917 --current_class_stack[current_class_depth - 1].hidden;
6918 }
6919
6920 /* Returns 1 if the class type currently being defined is either T or
6921 a nested type of T. */
6922
6923 bool
6924 currently_open_class (tree t)
6925 {
6926 int i;
6927
6928 if (!CLASS_TYPE_P (t))
6929 return false;
6930
6931 t = TYPE_MAIN_VARIANT (t);
6932
6933 /* We start looking from 1 because entry 0 is from global scope,
6934 and has no type. */
6935 for (i = current_class_depth; i > 0; --i)
6936 {
6937 tree c;
6938 if (i == current_class_depth)
6939 c = current_class_type;
6940 else
6941 {
6942 if (current_class_stack[i].hidden)
6943 break;
6944 c = current_class_stack[i].type;
6945 }
6946 if (!c)
6947 continue;
6948 if (same_type_p (c, t))
6949 return true;
6950 }
6951 return false;
6952 }
6953
6954 /* If either current_class_type or one of its enclosing classes are derived
6955 from T, return the appropriate type. Used to determine how we found
6956 something via unqualified lookup. */
6957
6958 tree
6959 currently_open_derived_class (tree t)
6960 {
6961 int i;
6962
6963 /* The bases of a dependent type are unknown. */
6964 if (dependent_type_p (t))
6965 return NULL_TREE;
6966
6967 if (!current_class_type)
6968 return NULL_TREE;
6969
6970 if (DERIVED_FROM_P (t, current_class_type))
6971 return current_class_type;
6972
6973 for (i = current_class_depth - 1; i > 0; --i)
6974 {
6975 if (current_class_stack[i].hidden)
6976 break;
6977 if (DERIVED_FROM_P (t, current_class_stack[i].type))
6978 return current_class_stack[i].type;
6979 }
6980
6981 return NULL_TREE;
6982 }
6983
6984 /* Returns the innermost class type which is not a lambda closure type. */
6985
6986 tree
6987 current_nonlambda_class_type (void)
6988 {
6989 int i;
6990
6991 /* We start looking from 1 because entry 0 is from global scope,
6992 and has no type. */
6993 for (i = current_class_depth; i > 0; --i)
6994 {
6995 tree c;
6996 if (i == current_class_depth)
6997 c = current_class_type;
6998 else
6999 {
7000 if (current_class_stack[i].hidden)
7001 break;
7002 c = current_class_stack[i].type;
7003 }
7004 if (!c)
7005 continue;
7006 if (!LAMBDA_TYPE_P (c))
7007 return c;
7008 }
7009 return NULL_TREE;
7010 }
7011
7012 /* When entering a class scope, all enclosing class scopes' names with
7013 static meaning (static variables, static functions, types and
7014 enumerators) have to be visible. This recursive function calls
7015 pushclass for all enclosing class contexts until global or a local
7016 scope is reached. TYPE is the enclosed class. */
7017
7018 void
7019 push_nested_class (tree type)
7020 {
7021 /* A namespace might be passed in error cases, like A::B:C. */
7022 if (type == NULL_TREE
7023 || !CLASS_TYPE_P (type))
7024 return;
7025
7026 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7027
7028 pushclass (type);
7029 }
7030
7031 /* Undoes a push_nested_class call. */
7032
7033 void
7034 pop_nested_class (void)
7035 {
7036 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7037
7038 popclass ();
7039 if (context && CLASS_TYPE_P (context))
7040 pop_nested_class ();
7041 }
7042
7043 /* Returns the number of extern "LANG" blocks we are nested within. */
7044
7045 int
7046 current_lang_depth (void)
7047 {
7048 return vec_safe_length (current_lang_base);
7049 }
7050
7051 /* Set global variables CURRENT_LANG_NAME to appropriate value
7052 so that behavior of name-mangling machinery is correct. */
7053
7054 void
7055 push_lang_context (tree name)
7056 {
7057 vec_safe_push (current_lang_base, current_lang_name);
7058
7059 if (name == lang_name_cplusplus)
7060 {
7061 current_lang_name = name;
7062 }
7063 else if (name == lang_name_java)
7064 {
7065 current_lang_name = name;
7066 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7067 (See record_builtin_java_type in decl.c.) However, that causes
7068 incorrect debug entries if these types are actually used.
7069 So we re-enable debug output after extern "Java". */
7070 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7071 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7072 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7073 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7074 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7075 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7076 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7077 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7078 }
7079 else if (name == lang_name_c)
7080 {
7081 current_lang_name = name;
7082 }
7083 else
7084 error ("language string %<\"%E\"%> not recognized", name);
7085 }
7086
7087 /* Get out of the current language scope. */
7088
7089 void
7090 pop_lang_context (void)
7091 {
7092 current_lang_name = current_lang_base->pop ();
7093 }
7094 \f
7095 /* Type instantiation routines. */
7096
7097 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7098 matches the TARGET_TYPE. If there is no satisfactory match, return
7099 error_mark_node, and issue an error & warning messages under
7100 control of FLAGS. Permit pointers to member function if FLAGS
7101 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7102 a template-id, and EXPLICIT_TARGS are the explicitly provided
7103 template arguments.
7104
7105 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7106 is the base path used to reference those member functions. If
7107 the address is resolved to a member function, access checks will be
7108 performed and errors issued if appropriate. */
7109
7110 static tree
7111 resolve_address_of_overloaded_function (tree target_type,
7112 tree overload,
7113 tsubst_flags_t flags,
7114 bool template_only,
7115 tree explicit_targs,
7116 tree access_path)
7117 {
7118 /* Here's what the standard says:
7119
7120 [over.over]
7121
7122 If the name is a function template, template argument deduction
7123 is done, and if the argument deduction succeeds, the deduced
7124 arguments are used to generate a single template function, which
7125 is added to the set of overloaded functions considered.
7126
7127 Non-member functions and static member functions match targets of
7128 type "pointer-to-function" or "reference-to-function." Nonstatic
7129 member functions match targets of type "pointer-to-member
7130 function;" the function type of the pointer to member is used to
7131 select the member function from the set of overloaded member
7132 functions. If a nonstatic member function is selected, the
7133 reference to the overloaded function name is required to have the
7134 form of a pointer to member as described in 5.3.1.
7135
7136 If more than one function is selected, any template functions in
7137 the set are eliminated if the set also contains a non-template
7138 function, and any given template function is eliminated if the
7139 set contains a second template function that is more specialized
7140 than the first according to the partial ordering rules 14.5.5.2.
7141 After such eliminations, if any, there shall remain exactly one
7142 selected function. */
7143
7144 int is_ptrmem = 0;
7145 /* We store the matches in a TREE_LIST rooted here. The functions
7146 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7147 interoperability with most_specialized_instantiation. */
7148 tree matches = NULL_TREE;
7149 tree fn;
7150 tree target_fn_type;
7151
7152 /* By the time we get here, we should be seeing only real
7153 pointer-to-member types, not the internal POINTER_TYPE to
7154 METHOD_TYPE representation. */
7155 gcc_assert (!TYPE_PTR_P (target_type)
7156 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7157
7158 gcc_assert (is_overloaded_fn (overload));
7159
7160 /* Check that the TARGET_TYPE is reasonable. */
7161 if (TYPE_PTRFN_P (target_type)
7162 || TYPE_REFFN_P (target_type))
7163 /* This is OK. */;
7164 else if (TYPE_PTRMEMFUNC_P (target_type))
7165 /* This is OK, too. */
7166 is_ptrmem = 1;
7167 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7168 /* This is OK, too. This comes from a conversion to reference
7169 type. */
7170 target_type = build_reference_type (target_type);
7171 else
7172 {
7173 if (flags & tf_error)
7174 error ("cannot resolve overloaded function %qD based on"
7175 " conversion to type %qT",
7176 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7177 return error_mark_node;
7178 }
7179
7180 /* Non-member functions and static member functions match targets of type
7181 "pointer-to-function" or "reference-to-function." Nonstatic member
7182 functions match targets of type "pointer-to-member-function;" the
7183 function type of the pointer to member is used to select the member
7184 function from the set of overloaded member functions.
7185
7186 So figure out the FUNCTION_TYPE that we want to match against. */
7187 target_fn_type = static_fn_type (target_type);
7188
7189 /* If we can find a non-template function that matches, we can just
7190 use it. There's no point in generating template instantiations
7191 if we're just going to throw them out anyhow. But, of course, we
7192 can only do this when we don't *need* a template function. */
7193 if (!template_only)
7194 {
7195 tree fns;
7196
7197 for (fns = overload; fns; fns = OVL_NEXT (fns))
7198 {
7199 tree fn = OVL_CURRENT (fns);
7200
7201 if (TREE_CODE (fn) == TEMPLATE_DECL)
7202 /* We're not looking for templates just yet. */
7203 continue;
7204
7205 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7206 != is_ptrmem)
7207 /* We're looking for a non-static member, and this isn't
7208 one, or vice versa. */
7209 continue;
7210
7211 /* Ignore functions which haven't been explicitly
7212 declared. */
7213 if (DECL_ANTICIPATED (fn))
7214 continue;
7215
7216 /* See if there's a match. */
7217 if (same_type_p (target_fn_type, static_fn_type (fn)))
7218 matches = tree_cons (fn, NULL_TREE, matches);
7219 }
7220 }
7221
7222 /* Now, if we've already got a match (or matches), there's no need
7223 to proceed to the template functions. But, if we don't have a
7224 match we need to look at them, too. */
7225 if (!matches)
7226 {
7227 tree target_arg_types;
7228 tree target_ret_type;
7229 tree fns;
7230 tree *args;
7231 unsigned int nargs, ia;
7232 tree arg;
7233
7234 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7235 target_ret_type = TREE_TYPE (target_fn_type);
7236
7237 nargs = list_length (target_arg_types);
7238 args = XALLOCAVEC (tree, nargs);
7239 for (arg = target_arg_types, ia = 0;
7240 arg != NULL_TREE && arg != void_list_node;
7241 arg = TREE_CHAIN (arg), ++ia)
7242 args[ia] = TREE_VALUE (arg);
7243 nargs = ia;
7244
7245 for (fns = overload; fns; fns = OVL_NEXT (fns))
7246 {
7247 tree fn = OVL_CURRENT (fns);
7248 tree instantiation;
7249 tree targs;
7250
7251 if (TREE_CODE (fn) != TEMPLATE_DECL)
7252 /* We're only looking for templates. */
7253 continue;
7254
7255 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7256 != is_ptrmem)
7257 /* We're not looking for a non-static member, and this is
7258 one, or vice versa. */
7259 continue;
7260
7261 /* Try to do argument deduction. */
7262 targs = make_tree_vec (DECL_NTPARMS (fn));
7263 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7264 nargs, target_ret_type,
7265 DEDUCE_EXACT, LOOKUP_NORMAL,
7266 false, false);
7267 if (instantiation == error_mark_node)
7268 /* Instantiation failed. */
7269 continue;
7270
7271 /* See if there's a match. */
7272 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7273 matches = tree_cons (instantiation, fn, matches);
7274 }
7275
7276 /* Now, remove all but the most specialized of the matches. */
7277 if (matches)
7278 {
7279 tree match = most_specialized_instantiation (matches);
7280
7281 if (match != error_mark_node)
7282 matches = tree_cons (TREE_PURPOSE (match),
7283 NULL_TREE,
7284 NULL_TREE);
7285 }
7286 }
7287
7288 /* Now we should have exactly one function in MATCHES. */
7289 if (matches == NULL_TREE)
7290 {
7291 /* There were *no* matches. */
7292 if (flags & tf_error)
7293 {
7294 error ("no matches converting function %qD to type %q#T",
7295 DECL_NAME (OVL_CURRENT (overload)),
7296 target_type);
7297
7298 print_candidates (overload);
7299 }
7300 return error_mark_node;
7301 }
7302 else if (TREE_CHAIN (matches))
7303 {
7304 /* There were too many matches. First check if they're all
7305 the same function. */
7306 tree match = NULL_TREE;
7307
7308 fn = TREE_PURPOSE (matches);
7309
7310 /* For multi-versioned functions, more than one match is just fine and
7311 decls_match will return false as they are different. */
7312 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7313 if (!decls_match (fn, TREE_PURPOSE (match))
7314 && !targetm.target_option.function_versions
7315 (fn, TREE_PURPOSE (match)))
7316 break;
7317
7318 if (match)
7319 {
7320 if (flags & tf_error)
7321 {
7322 error ("converting overloaded function %qD to type %q#T is ambiguous",
7323 DECL_NAME (OVL_FUNCTION (overload)),
7324 target_type);
7325
7326 /* Since print_candidates expects the functions in the
7327 TREE_VALUE slot, we flip them here. */
7328 for (match = matches; match; match = TREE_CHAIN (match))
7329 TREE_VALUE (match) = TREE_PURPOSE (match);
7330
7331 print_candidates (matches);
7332 }
7333
7334 return error_mark_node;
7335 }
7336 }
7337
7338 /* Good, exactly one match. Now, convert it to the correct type. */
7339 fn = TREE_PURPOSE (matches);
7340
7341 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7342 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7343 {
7344 static int explained;
7345
7346 if (!(flags & tf_error))
7347 return error_mark_node;
7348
7349 permerror (input_location, "assuming pointer to member %qD", fn);
7350 if (!explained)
7351 {
7352 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7353 explained = 1;
7354 }
7355 }
7356
7357 /* If a pointer to a function that is multi-versioned is requested, the
7358 pointer to the dispatcher function is returned instead. This works
7359 well because indirectly calling the function will dispatch the right
7360 function version at run-time. */
7361 if (DECL_FUNCTION_VERSIONED (fn))
7362 {
7363 fn = get_function_version_dispatcher (fn);
7364 if (fn == NULL)
7365 return error_mark_node;
7366 /* Mark all the versions corresponding to the dispatcher as used. */
7367 if (!(flags & tf_conv))
7368 mark_versions_used (fn);
7369 }
7370
7371 /* If we're doing overload resolution purely for the purpose of
7372 determining conversion sequences, we should not consider the
7373 function used. If this conversion sequence is selected, the
7374 function will be marked as used at this point. */
7375 if (!(flags & tf_conv))
7376 {
7377 /* Make =delete work with SFINAE. */
7378 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7379 return error_mark_node;
7380
7381 mark_used (fn);
7382 }
7383
7384 /* We could not check access to member functions when this
7385 expression was originally created since we did not know at that
7386 time to which function the expression referred. */
7387 if (DECL_FUNCTION_MEMBER_P (fn))
7388 {
7389 gcc_assert (access_path);
7390 perform_or_defer_access_check (access_path, fn, fn, flags);
7391 }
7392
7393 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7394 return cp_build_addr_expr (fn, flags);
7395 else
7396 {
7397 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7398 will mark the function as addressed, but here we must do it
7399 explicitly. */
7400 cxx_mark_addressable (fn);
7401
7402 return fn;
7403 }
7404 }
7405
7406 /* This function will instantiate the type of the expression given in
7407 RHS to match the type of LHSTYPE. If errors exist, then return
7408 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7409 we complain on errors. If we are not complaining, never modify rhs,
7410 as overload resolution wants to try many possible instantiations, in
7411 the hope that at least one will work.
7412
7413 For non-recursive calls, LHSTYPE should be a function, pointer to
7414 function, or a pointer to member function. */
7415
7416 tree
7417 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7418 {
7419 tsubst_flags_t flags_in = flags;
7420 tree access_path = NULL_TREE;
7421
7422 flags &= ~tf_ptrmem_ok;
7423
7424 if (lhstype == unknown_type_node)
7425 {
7426 if (flags & tf_error)
7427 error ("not enough type information");
7428 return error_mark_node;
7429 }
7430
7431 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7432 {
7433 tree fntype = non_reference (lhstype);
7434 if (same_type_p (fntype, TREE_TYPE (rhs)))
7435 return rhs;
7436 if (flag_ms_extensions
7437 && TYPE_PTRMEMFUNC_P (fntype)
7438 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7439 /* Microsoft allows `A::f' to be resolved to a
7440 pointer-to-member. */
7441 ;
7442 else
7443 {
7444 if (flags & tf_error)
7445 error ("cannot convert %qE from type %qT to type %qT",
7446 rhs, TREE_TYPE (rhs), fntype);
7447 return error_mark_node;
7448 }
7449 }
7450
7451 if (BASELINK_P (rhs))
7452 {
7453 access_path = BASELINK_ACCESS_BINFO (rhs);
7454 rhs = BASELINK_FUNCTIONS (rhs);
7455 }
7456
7457 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7458 deduce any type information. */
7459 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7460 {
7461 if (flags & tf_error)
7462 error ("not enough type information");
7463 return error_mark_node;
7464 }
7465
7466 /* There only a few kinds of expressions that may have a type
7467 dependent on overload resolution. */
7468 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7469 || TREE_CODE (rhs) == COMPONENT_REF
7470 || really_overloaded_fn (rhs)
7471 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7472
7473 /* This should really only be used when attempting to distinguish
7474 what sort of a pointer to function we have. For now, any
7475 arithmetic operation which is not supported on pointers
7476 is rejected as an error. */
7477
7478 switch (TREE_CODE (rhs))
7479 {
7480 case COMPONENT_REF:
7481 {
7482 tree member = TREE_OPERAND (rhs, 1);
7483
7484 member = instantiate_type (lhstype, member, flags);
7485 if (member != error_mark_node
7486 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7487 /* Do not lose object's side effects. */
7488 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7489 TREE_OPERAND (rhs, 0), member);
7490 return member;
7491 }
7492
7493 case OFFSET_REF:
7494 rhs = TREE_OPERAND (rhs, 1);
7495 if (BASELINK_P (rhs))
7496 return instantiate_type (lhstype, rhs, flags_in);
7497
7498 /* This can happen if we are forming a pointer-to-member for a
7499 member template. */
7500 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7501
7502 /* Fall through. */
7503
7504 case TEMPLATE_ID_EXPR:
7505 {
7506 tree fns = TREE_OPERAND (rhs, 0);
7507 tree args = TREE_OPERAND (rhs, 1);
7508
7509 return
7510 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7511 /*template_only=*/true,
7512 args, access_path);
7513 }
7514
7515 case OVERLOAD:
7516 case FUNCTION_DECL:
7517 return
7518 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7519 /*template_only=*/false,
7520 /*explicit_targs=*/NULL_TREE,
7521 access_path);
7522
7523 case ADDR_EXPR:
7524 {
7525 if (PTRMEM_OK_P (rhs))
7526 flags |= tf_ptrmem_ok;
7527
7528 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7529 }
7530
7531 case ERROR_MARK:
7532 return error_mark_node;
7533
7534 default:
7535 gcc_unreachable ();
7536 }
7537 return error_mark_node;
7538 }
7539 \f
7540 /* Return the name of the virtual function pointer field
7541 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7542 this may have to look back through base types to find the
7543 ultimate field name. (For single inheritance, these could
7544 all be the same name. Who knows for multiple inheritance). */
7545
7546 static tree
7547 get_vfield_name (tree type)
7548 {
7549 tree binfo, base_binfo;
7550 char *buf;
7551
7552 for (binfo = TYPE_BINFO (type);
7553 BINFO_N_BASE_BINFOS (binfo);
7554 binfo = base_binfo)
7555 {
7556 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7557
7558 if (BINFO_VIRTUAL_P (base_binfo)
7559 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7560 break;
7561 }
7562
7563 type = BINFO_TYPE (binfo);
7564 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7565 + TYPE_NAME_LENGTH (type) + 2);
7566 sprintf (buf, VFIELD_NAME_FORMAT,
7567 IDENTIFIER_POINTER (constructor_name (type)));
7568 return get_identifier (buf);
7569 }
7570
7571 void
7572 print_class_statistics (void)
7573 {
7574 if (! GATHER_STATISTICS)
7575 return;
7576
7577 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7578 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7579 if (n_vtables)
7580 {
7581 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7582 n_vtables, n_vtable_searches);
7583 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7584 n_vtable_entries, n_vtable_elems);
7585 }
7586 }
7587
7588 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7589 according to [class]:
7590 The class-name is also inserted
7591 into the scope of the class itself. For purposes of access checking,
7592 the inserted class name is treated as if it were a public member name. */
7593
7594 void
7595 build_self_reference (void)
7596 {
7597 tree name = constructor_name (current_class_type);
7598 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7599 tree saved_cas;
7600
7601 DECL_NONLOCAL (value) = 1;
7602 DECL_CONTEXT (value) = current_class_type;
7603 DECL_ARTIFICIAL (value) = 1;
7604 SET_DECL_SELF_REFERENCE_P (value);
7605 set_underlying_type (value);
7606
7607 if (processing_template_decl)
7608 value = push_template_decl (value);
7609
7610 saved_cas = current_access_specifier;
7611 current_access_specifier = access_public_node;
7612 finish_member_declaration (value);
7613 current_access_specifier = saved_cas;
7614 }
7615
7616 /* Returns 1 if TYPE contains only padding bytes. */
7617
7618 int
7619 is_empty_class (tree type)
7620 {
7621 if (type == error_mark_node)
7622 return 0;
7623
7624 if (! CLASS_TYPE_P (type))
7625 return 0;
7626
7627 /* In G++ 3.2, whether or not a class was empty was determined by
7628 looking at its size. */
7629 if (abi_version_at_least (2))
7630 return CLASSTYPE_EMPTY_P (type);
7631 else
7632 return integer_zerop (CLASSTYPE_SIZE (type));
7633 }
7634
7635 /* Returns true if TYPE contains an empty class. */
7636
7637 static bool
7638 contains_empty_class_p (tree type)
7639 {
7640 if (is_empty_class (type))
7641 return true;
7642 if (CLASS_TYPE_P (type))
7643 {
7644 tree field;
7645 tree binfo;
7646 tree base_binfo;
7647 int i;
7648
7649 for (binfo = TYPE_BINFO (type), i = 0;
7650 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7651 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
7652 return true;
7653 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
7654 if (TREE_CODE (field) == FIELD_DECL
7655 && !DECL_ARTIFICIAL (field)
7656 && is_empty_class (TREE_TYPE (field)))
7657 return true;
7658 }
7659 else if (TREE_CODE (type) == ARRAY_TYPE)
7660 return contains_empty_class_p (TREE_TYPE (type));
7661 return false;
7662 }
7663
7664 /* Returns true if TYPE contains no actual data, just various
7665 possible combinations of empty classes and possibly a vptr. */
7666
7667 bool
7668 is_really_empty_class (tree type)
7669 {
7670 if (CLASS_TYPE_P (type))
7671 {
7672 tree field;
7673 tree binfo;
7674 tree base_binfo;
7675 int i;
7676
7677 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7678 out, but we'd like to be able to check this before then. */
7679 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7680 return true;
7681
7682 for (binfo = TYPE_BINFO (type), i = 0;
7683 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7684 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7685 return false;
7686 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7687 if (TREE_CODE (field) == FIELD_DECL
7688 && !DECL_ARTIFICIAL (field)
7689 && !is_really_empty_class (TREE_TYPE (field)))
7690 return false;
7691 return true;
7692 }
7693 else if (TREE_CODE (type) == ARRAY_TYPE)
7694 return is_really_empty_class (TREE_TYPE (type));
7695 return false;
7696 }
7697
7698 /* Note that NAME was looked up while the current class was being
7699 defined and that the result of that lookup was DECL. */
7700
7701 void
7702 maybe_note_name_used_in_class (tree name, tree decl)
7703 {
7704 splay_tree names_used;
7705
7706 /* If we're not defining a class, there's nothing to do. */
7707 if (!(innermost_scope_kind() == sk_class
7708 && TYPE_BEING_DEFINED (current_class_type)
7709 && !LAMBDA_TYPE_P (current_class_type)))
7710 return;
7711
7712 /* If there's already a binding for this NAME, then we don't have
7713 anything to worry about. */
7714 if (lookup_member (current_class_type, name,
7715 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7716 return;
7717
7718 if (!current_class_stack[current_class_depth - 1].names_used)
7719 current_class_stack[current_class_depth - 1].names_used
7720 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7721 names_used = current_class_stack[current_class_depth - 1].names_used;
7722
7723 splay_tree_insert (names_used,
7724 (splay_tree_key) name,
7725 (splay_tree_value) decl);
7726 }
7727
7728 /* Note that NAME was declared (as DECL) in the current class. Check
7729 to see that the declaration is valid. */
7730
7731 void
7732 note_name_declared_in_class (tree name, tree decl)
7733 {
7734 splay_tree names_used;
7735 splay_tree_node n;
7736
7737 /* Look to see if we ever used this name. */
7738 names_used
7739 = current_class_stack[current_class_depth - 1].names_used;
7740 if (!names_used)
7741 return;
7742 /* The C language allows members to be declared with a type of the same
7743 name, and the C++ standard says this diagnostic is not required. So
7744 allow it in extern "C" blocks unless predantic is specified.
7745 Allow it in all cases if -ms-extensions is specified. */
7746 if ((!pedantic && current_lang_name == lang_name_c)
7747 || flag_ms_extensions)
7748 return;
7749 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7750 if (n)
7751 {
7752 /* [basic.scope.class]
7753
7754 A name N used in a class S shall refer to the same declaration
7755 in its context and when re-evaluated in the completed scope of
7756 S. */
7757 permerror (input_location, "declaration of %q#D", decl);
7758 permerror (input_location, "changes meaning of %qD from %q+#D",
7759 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7760 }
7761 }
7762
7763 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7764 Secondary vtables are merged with primary vtables; this function
7765 will return the VAR_DECL for the primary vtable. */
7766
7767 tree
7768 get_vtbl_decl_for_binfo (tree binfo)
7769 {
7770 tree decl;
7771
7772 decl = BINFO_VTABLE (binfo);
7773 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7774 {
7775 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7776 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7777 }
7778 if (decl)
7779 gcc_assert (VAR_P (decl));
7780 return decl;
7781 }
7782
7783
7784 /* Returns the binfo for the primary base of BINFO. If the resulting
7785 BINFO is a virtual base, and it is inherited elsewhere in the
7786 hierarchy, then the returned binfo might not be the primary base of
7787 BINFO in the complete object. Check BINFO_PRIMARY_P or
7788 BINFO_LOST_PRIMARY_P to be sure. */
7789
7790 static tree
7791 get_primary_binfo (tree binfo)
7792 {
7793 tree primary_base;
7794
7795 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
7796 if (!primary_base)
7797 return NULL_TREE;
7798
7799 return copied_binfo (primary_base, binfo);
7800 }
7801
7802 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
7803
7804 static int
7805 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
7806 {
7807 if (!indented_p)
7808 fprintf (stream, "%*s", indent, "");
7809 return 1;
7810 }
7811
7812 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
7813 INDENT should be zero when called from the top level; it is
7814 incremented recursively. IGO indicates the next expected BINFO in
7815 inheritance graph ordering. */
7816
7817 static tree
7818 dump_class_hierarchy_r (FILE *stream,
7819 int flags,
7820 tree binfo,
7821 tree igo,
7822 int indent)
7823 {
7824 int indented = 0;
7825 tree base_binfo;
7826 int i;
7827
7828 indented = maybe_indent_hierarchy (stream, indent, 0);
7829 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
7830 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
7831 (HOST_WIDE_INT) (uintptr_t) binfo);
7832 if (binfo != igo)
7833 {
7834 fprintf (stream, "alternative-path\n");
7835 return igo;
7836 }
7837 igo = TREE_CHAIN (binfo);
7838
7839 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
7840 tree_low_cst (BINFO_OFFSET (binfo), 0));
7841 if (is_empty_class (BINFO_TYPE (binfo)))
7842 fprintf (stream, " empty");
7843 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
7844 fprintf (stream, " nearly-empty");
7845 if (BINFO_VIRTUAL_P (binfo))
7846 fprintf (stream, " virtual");
7847 fprintf (stream, "\n");
7848
7849 indented = 0;
7850 if (BINFO_PRIMARY_P (binfo))
7851 {
7852 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7853 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
7854 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
7855 TFF_PLAIN_IDENTIFIER),
7856 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
7857 }
7858 if (BINFO_LOST_PRIMARY_P (binfo))
7859 {
7860 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7861 fprintf (stream, " lost-primary");
7862 }
7863 if (indented)
7864 fprintf (stream, "\n");
7865
7866 if (!(flags & TDF_SLIM))
7867 {
7868 int indented = 0;
7869
7870 if (BINFO_SUBVTT_INDEX (binfo))
7871 {
7872 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7873 fprintf (stream, " subvttidx=%s",
7874 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
7875 TFF_PLAIN_IDENTIFIER));
7876 }
7877 if (BINFO_VPTR_INDEX (binfo))
7878 {
7879 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7880 fprintf (stream, " vptridx=%s",
7881 expr_as_string (BINFO_VPTR_INDEX (binfo),
7882 TFF_PLAIN_IDENTIFIER));
7883 }
7884 if (BINFO_VPTR_FIELD (binfo))
7885 {
7886 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7887 fprintf (stream, " vbaseoffset=%s",
7888 expr_as_string (BINFO_VPTR_FIELD (binfo),
7889 TFF_PLAIN_IDENTIFIER));
7890 }
7891 if (BINFO_VTABLE (binfo))
7892 {
7893 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7894 fprintf (stream, " vptr=%s",
7895 expr_as_string (BINFO_VTABLE (binfo),
7896 TFF_PLAIN_IDENTIFIER));
7897 }
7898
7899 if (indented)
7900 fprintf (stream, "\n");
7901 }
7902
7903 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
7904 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
7905
7906 return igo;
7907 }
7908
7909 /* Dump the BINFO hierarchy for T. */
7910
7911 static void
7912 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
7913 {
7914 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
7915 fprintf (stream, " size=%lu align=%lu\n",
7916 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
7917 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
7918 fprintf (stream, " base size=%lu base align=%lu\n",
7919 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
7920 / BITS_PER_UNIT),
7921 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
7922 / BITS_PER_UNIT));
7923 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
7924 fprintf (stream, "\n");
7925 }
7926
7927 /* Debug interface to hierarchy dumping. */
7928
7929 void
7930 debug_class (tree t)
7931 {
7932 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
7933 }
7934
7935 static void
7936 dump_class_hierarchy (tree t)
7937 {
7938 int flags;
7939 FILE *stream = dump_begin (TDI_class, &flags);
7940
7941 if (stream)
7942 {
7943 dump_class_hierarchy_1 (stream, flags, t);
7944 dump_end (TDI_class, stream);
7945 }
7946 }
7947
7948 static void
7949 dump_array (FILE * stream, tree decl)
7950 {
7951 tree value;
7952 unsigned HOST_WIDE_INT ix;
7953 HOST_WIDE_INT elt;
7954 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
7955
7956 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
7957 / BITS_PER_UNIT);
7958 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
7959 fprintf (stream, " %s entries",
7960 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
7961 TFF_PLAIN_IDENTIFIER));
7962 fprintf (stream, "\n");
7963
7964 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
7965 ix, value)
7966 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
7967 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
7968 }
7969
7970 static void
7971 dump_vtable (tree t, tree binfo, tree vtable)
7972 {
7973 int flags;
7974 FILE *stream = dump_begin (TDI_class, &flags);
7975
7976 if (!stream)
7977 return;
7978
7979 if (!(flags & TDF_SLIM))
7980 {
7981 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
7982
7983 fprintf (stream, "%s for %s",
7984 ctor_vtbl_p ? "Construction vtable" : "Vtable",
7985 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
7986 if (ctor_vtbl_p)
7987 {
7988 if (!BINFO_VIRTUAL_P (binfo))
7989 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
7990 (HOST_WIDE_INT) (uintptr_t) binfo);
7991 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
7992 }
7993 fprintf (stream, "\n");
7994 dump_array (stream, vtable);
7995 fprintf (stream, "\n");
7996 }
7997
7998 dump_end (TDI_class, stream);
7999 }
8000
8001 static void
8002 dump_vtt (tree t, tree vtt)
8003 {
8004 int flags;
8005 FILE *stream = dump_begin (TDI_class, &flags);
8006
8007 if (!stream)
8008 return;
8009
8010 if (!(flags & TDF_SLIM))
8011 {
8012 fprintf (stream, "VTT for %s\n",
8013 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8014 dump_array (stream, vtt);
8015 fprintf (stream, "\n");
8016 }
8017
8018 dump_end (TDI_class, stream);
8019 }
8020
8021 /* Dump a function or thunk and its thunkees. */
8022
8023 static void
8024 dump_thunk (FILE *stream, int indent, tree thunk)
8025 {
8026 static const char spaces[] = " ";
8027 tree name = DECL_NAME (thunk);
8028 tree thunks;
8029
8030 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8031 (void *)thunk,
8032 !DECL_THUNK_P (thunk) ? "function"
8033 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8034 name ? IDENTIFIER_POINTER (name) : "<unset>");
8035 if (DECL_THUNK_P (thunk))
8036 {
8037 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8038 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8039
8040 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8041 if (!virtual_adjust)
8042 /*NOP*/;
8043 else if (DECL_THIS_THUNK_P (thunk))
8044 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8045 tree_low_cst (virtual_adjust, 0));
8046 else
8047 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8048 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
8049 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8050 if (THUNK_ALIAS (thunk))
8051 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8052 }
8053 fprintf (stream, "\n");
8054 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8055 dump_thunk (stream, indent + 2, thunks);
8056 }
8057
8058 /* Dump the thunks for FN. */
8059
8060 void
8061 debug_thunks (tree fn)
8062 {
8063 dump_thunk (stderr, 0, fn);
8064 }
8065
8066 /* Virtual function table initialization. */
8067
8068 /* Create all the necessary vtables for T and its base classes. */
8069
8070 static void
8071 finish_vtbls (tree t)
8072 {
8073 tree vbase;
8074 vec<constructor_elt, va_gc> *v = NULL;
8075 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8076
8077 /* We lay out the primary and secondary vtables in one contiguous
8078 vtable. The primary vtable is first, followed by the non-virtual
8079 secondary vtables in inheritance graph order. */
8080 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8081 vtable, t, &v);
8082
8083 /* Then come the virtual bases, also in inheritance graph order. */
8084 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8085 {
8086 if (!BINFO_VIRTUAL_P (vbase))
8087 continue;
8088 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8089 }
8090
8091 if (BINFO_VTABLE (TYPE_BINFO (t)))
8092 initialize_vtable (TYPE_BINFO (t), v);
8093 }
8094
8095 /* Initialize the vtable for BINFO with the INITS. */
8096
8097 static void
8098 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8099 {
8100 tree decl;
8101
8102 layout_vtable_decl (binfo, vec_safe_length (inits));
8103 decl = get_vtbl_decl_for_binfo (binfo);
8104 initialize_artificial_var (decl, inits);
8105 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8106 }
8107
8108 /* Build the VTT (virtual table table) for T.
8109 A class requires a VTT if it has virtual bases.
8110
8111 This holds
8112 1 - primary virtual pointer for complete object T
8113 2 - secondary VTTs for each direct non-virtual base of T which requires a
8114 VTT
8115 3 - secondary virtual pointers for each direct or indirect base of T which
8116 has virtual bases or is reachable via a virtual path from T.
8117 4 - secondary VTTs for each direct or indirect virtual base of T.
8118
8119 Secondary VTTs look like complete object VTTs without part 4. */
8120
8121 static void
8122 build_vtt (tree t)
8123 {
8124 tree type;
8125 tree vtt;
8126 tree index;
8127 vec<constructor_elt, va_gc> *inits;
8128
8129 /* Build up the initializers for the VTT. */
8130 inits = NULL;
8131 index = size_zero_node;
8132 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8133
8134 /* If we didn't need a VTT, we're done. */
8135 if (!inits)
8136 return;
8137
8138 /* Figure out the type of the VTT. */
8139 type = build_array_of_n_type (const_ptr_type_node,
8140 inits->length ());
8141
8142 /* Now, build the VTT object itself. */
8143 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8144 initialize_artificial_var (vtt, inits);
8145 /* Add the VTT to the vtables list. */
8146 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8147 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8148
8149 dump_vtt (t, vtt);
8150 }
8151
8152 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8153 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8154 and CHAIN the vtable pointer for this binfo after construction is
8155 complete. VALUE can also be another BINFO, in which case we recurse. */
8156
8157 static tree
8158 binfo_ctor_vtable (tree binfo)
8159 {
8160 tree vt;
8161
8162 while (1)
8163 {
8164 vt = BINFO_VTABLE (binfo);
8165 if (TREE_CODE (vt) == TREE_LIST)
8166 vt = TREE_VALUE (vt);
8167 if (TREE_CODE (vt) == TREE_BINFO)
8168 binfo = vt;
8169 else
8170 break;
8171 }
8172
8173 return vt;
8174 }
8175
8176 /* Data for secondary VTT initialization. */
8177 typedef struct secondary_vptr_vtt_init_data_s
8178 {
8179 /* Is this the primary VTT? */
8180 bool top_level_p;
8181
8182 /* Current index into the VTT. */
8183 tree index;
8184
8185 /* Vector of initializers built up. */
8186 vec<constructor_elt, va_gc> *inits;
8187
8188 /* The type being constructed by this secondary VTT. */
8189 tree type_being_constructed;
8190 } secondary_vptr_vtt_init_data;
8191
8192 /* Recursively build the VTT-initializer for BINFO (which is in the
8193 hierarchy dominated by T). INITS points to the end of the initializer
8194 list to date. INDEX is the VTT index where the next element will be
8195 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8196 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8197 for virtual bases of T. When it is not so, we build the constructor
8198 vtables for the BINFO-in-T variant. */
8199
8200 static void
8201 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8202 tree *index)
8203 {
8204 int i;
8205 tree b;
8206 tree init;
8207 secondary_vptr_vtt_init_data data;
8208 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8209
8210 /* We only need VTTs for subobjects with virtual bases. */
8211 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8212 return;
8213
8214 /* We need to use a construction vtable if this is not the primary
8215 VTT. */
8216 if (!top_level_p)
8217 {
8218 build_ctor_vtbl_group (binfo, t);
8219
8220 /* Record the offset in the VTT where this sub-VTT can be found. */
8221 BINFO_SUBVTT_INDEX (binfo) = *index;
8222 }
8223
8224 /* Add the address of the primary vtable for the complete object. */
8225 init = binfo_ctor_vtable (binfo);
8226 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8227 if (top_level_p)
8228 {
8229 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8230 BINFO_VPTR_INDEX (binfo) = *index;
8231 }
8232 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8233
8234 /* Recursively add the secondary VTTs for non-virtual bases. */
8235 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8236 if (!BINFO_VIRTUAL_P (b))
8237 build_vtt_inits (b, t, inits, index);
8238
8239 /* Add secondary virtual pointers for all subobjects of BINFO with
8240 either virtual bases or reachable along a virtual path, except
8241 subobjects that are non-virtual primary bases. */
8242 data.top_level_p = top_level_p;
8243 data.index = *index;
8244 data.inits = *inits;
8245 data.type_being_constructed = BINFO_TYPE (binfo);
8246
8247 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8248
8249 *index = data.index;
8250
8251 /* data.inits might have grown as we added secondary virtual pointers.
8252 Make sure our caller knows about the new vector. */
8253 *inits = data.inits;
8254
8255 if (top_level_p)
8256 /* Add the secondary VTTs for virtual bases in inheritance graph
8257 order. */
8258 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8259 {
8260 if (!BINFO_VIRTUAL_P (b))
8261 continue;
8262
8263 build_vtt_inits (b, t, inits, index);
8264 }
8265 else
8266 /* Remove the ctor vtables we created. */
8267 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8268 }
8269
8270 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8271 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8272
8273 static tree
8274 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8275 {
8276 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8277
8278 /* We don't care about bases that don't have vtables. */
8279 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8280 return dfs_skip_bases;
8281
8282 /* We're only interested in proper subobjects of the type being
8283 constructed. */
8284 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8285 return NULL_TREE;
8286
8287 /* We're only interested in bases with virtual bases or reachable
8288 via a virtual path from the type being constructed. */
8289 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8290 || binfo_via_virtual (binfo, data->type_being_constructed)))
8291 return dfs_skip_bases;
8292
8293 /* We're not interested in non-virtual primary bases. */
8294 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8295 return NULL_TREE;
8296
8297 /* Record the index where this secondary vptr can be found. */
8298 if (data->top_level_p)
8299 {
8300 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8301 BINFO_VPTR_INDEX (binfo) = data->index;
8302
8303 if (BINFO_VIRTUAL_P (binfo))
8304 {
8305 /* It's a primary virtual base, and this is not a
8306 construction vtable. Find the base this is primary of in
8307 the inheritance graph, and use that base's vtable
8308 now. */
8309 while (BINFO_PRIMARY_P (binfo))
8310 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8311 }
8312 }
8313
8314 /* Add the initializer for the secondary vptr itself. */
8315 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8316
8317 /* Advance the vtt index. */
8318 data->index = size_binop (PLUS_EXPR, data->index,
8319 TYPE_SIZE_UNIT (ptr_type_node));
8320
8321 return NULL_TREE;
8322 }
8323
8324 /* Called from build_vtt_inits via dfs_walk. After building
8325 constructor vtables and generating the sub-vtt from them, we need
8326 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8327 binfo of the base whose sub vtt was generated. */
8328
8329 static tree
8330 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8331 {
8332 tree vtable = BINFO_VTABLE (binfo);
8333
8334 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8335 /* If this class has no vtable, none of its bases do. */
8336 return dfs_skip_bases;
8337
8338 if (!vtable)
8339 /* This might be a primary base, so have no vtable in this
8340 hierarchy. */
8341 return NULL_TREE;
8342
8343 /* If we scribbled the construction vtable vptr into BINFO, clear it
8344 out now. */
8345 if (TREE_CODE (vtable) == TREE_LIST
8346 && (TREE_PURPOSE (vtable) == (tree) data))
8347 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8348
8349 return NULL_TREE;
8350 }
8351
8352 /* Build the construction vtable group for BINFO which is in the
8353 hierarchy dominated by T. */
8354
8355 static void
8356 build_ctor_vtbl_group (tree binfo, tree t)
8357 {
8358 tree type;
8359 tree vtbl;
8360 tree id;
8361 tree vbase;
8362 vec<constructor_elt, va_gc> *v;
8363
8364 /* See if we've already created this construction vtable group. */
8365 id = mangle_ctor_vtbl_for_type (t, binfo);
8366 if (IDENTIFIER_GLOBAL_VALUE (id))
8367 return;
8368
8369 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8370 /* Build a version of VTBL (with the wrong type) for use in
8371 constructing the addresses of secondary vtables in the
8372 construction vtable group. */
8373 vtbl = build_vtable (t, id, ptr_type_node);
8374 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8375 /* Don't export construction vtables from shared libraries. Even on
8376 targets that don't support hidden visibility, this tells
8377 can_refer_decl_in_current_unit_p not to assume that it's safe to
8378 access from a different compilation unit (bz 54314). */
8379 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8380 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8381
8382 v = NULL;
8383 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8384 binfo, vtbl, t, &v);
8385
8386 /* Add the vtables for each of our virtual bases using the vbase in T
8387 binfo. */
8388 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8389 vbase;
8390 vbase = TREE_CHAIN (vbase))
8391 {
8392 tree b;
8393
8394 if (!BINFO_VIRTUAL_P (vbase))
8395 continue;
8396 b = copied_binfo (vbase, binfo);
8397
8398 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8399 }
8400
8401 /* Figure out the type of the construction vtable. */
8402 type = build_array_of_n_type (vtable_entry_type, v->length ());
8403 layout_type (type);
8404 TREE_TYPE (vtbl) = type;
8405 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8406 layout_decl (vtbl, 0);
8407
8408 /* Initialize the construction vtable. */
8409 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8410 initialize_artificial_var (vtbl, v);
8411 dump_vtable (t, binfo, vtbl);
8412 }
8413
8414 /* Add the vtbl initializers for BINFO (and its bases other than
8415 non-virtual primaries) to the list of INITS. BINFO is in the
8416 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8417 the constructor the vtbl inits should be accumulated for. (If this
8418 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8419 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8420 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8421 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8422 but are not necessarily the same in terms of layout. */
8423
8424 static void
8425 accumulate_vtbl_inits (tree binfo,
8426 tree orig_binfo,
8427 tree rtti_binfo,
8428 tree vtbl,
8429 tree t,
8430 vec<constructor_elt, va_gc> **inits)
8431 {
8432 int i;
8433 tree base_binfo;
8434 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8435
8436 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8437
8438 /* If it doesn't have a vptr, we don't do anything. */
8439 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8440 return;
8441
8442 /* If we're building a construction vtable, we're not interested in
8443 subobjects that don't require construction vtables. */
8444 if (ctor_vtbl_p
8445 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8446 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8447 return;
8448
8449 /* Build the initializers for the BINFO-in-T vtable. */
8450 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8451
8452 /* Walk the BINFO and its bases. We walk in preorder so that as we
8453 initialize each vtable we can figure out at what offset the
8454 secondary vtable lies from the primary vtable. We can't use
8455 dfs_walk here because we need to iterate through bases of BINFO
8456 and RTTI_BINFO simultaneously. */
8457 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8458 {
8459 /* Skip virtual bases. */
8460 if (BINFO_VIRTUAL_P (base_binfo))
8461 continue;
8462 accumulate_vtbl_inits (base_binfo,
8463 BINFO_BASE_BINFO (orig_binfo, i),
8464 rtti_binfo, vtbl, t,
8465 inits);
8466 }
8467 }
8468
8469 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8470 BINFO vtable to L. */
8471
8472 static void
8473 dfs_accumulate_vtbl_inits (tree binfo,
8474 tree orig_binfo,
8475 tree rtti_binfo,
8476 tree orig_vtbl,
8477 tree t,
8478 vec<constructor_elt, va_gc> **l)
8479 {
8480 tree vtbl = NULL_TREE;
8481 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8482 int n_inits;
8483
8484 if (ctor_vtbl_p
8485 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8486 {
8487 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8488 primary virtual base. If it is not the same primary in
8489 the hierarchy of T, we'll need to generate a ctor vtable
8490 for it, to place at its location in T. If it is the same
8491 primary, we still need a VTT entry for the vtable, but it
8492 should point to the ctor vtable for the base it is a
8493 primary for within the sub-hierarchy of RTTI_BINFO.
8494
8495 There are three possible cases:
8496
8497 1) We are in the same place.
8498 2) We are a primary base within a lost primary virtual base of
8499 RTTI_BINFO.
8500 3) We are primary to something not a base of RTTI_BINFO. */
8501
8502 tree b;
8503 tree last = NULL_TREE;
8504
8505 /* First, look through the bases we are primary to for RTTI_BINFO
8506 or a virtual base. */
8507 b = binfo;
8508 while (BINFO_PRIMARY_P (b))
8509 {
8510 b = BINFO_INHERITANCE_CHAIN (b);
8511 last = b;
8512 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8513 goto found;
8514 }
8515 /* If we run out of primary links, keep looking down our
8516 inheritance chain; we might be an indirect primary. */
8517 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8518 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8519 break;
8520 found:
8521
8522 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8523 base B and it is a base of RTTI_BINFO, this is case 2. In
8524 either case, we share our vtable with LAST, i.e. the
8525 derived-most base within B of which we are a primary. */
8526 if (b == rtti_binfo
8527 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8528 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8529 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8530 binfo_ctor_vtable after everything's been set up. */
8531 vtbl = last;
8532
8533 /* Otherwise, this is case 3 and we get our own. */
8534 }
8535 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8536 return;
8537
8538 n_inits = vec_safe_length (*l);
8539
8540 if (!vtbl)
8541 {
8542 tree index;
8543 int non_fn_entries;
8544
8545 /* Add the initializer for this vtable. */
8546 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8547 &non_fn_entries, l);
8548
8549 /* Figure out the position to which the VPTR should point. */
8550 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8551 index = size_binop (MULT_EXPR,
8552 TYPE_SIZE_UNIT (vtable_entry_type),
8553 size_int (non_fn_entries + n_inits));
8554 vtbl = fold_build_pointer_plus (vtbl, index);
8555 }
8556
8557 if (ctor_vtbl_p)
8558 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8559 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8560 straighten this out. */
8561 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8562 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8563 /* Throw away any unneeded intializers. */
8564 (*l)->truncate (n_inits);
8565 else
8566 /* For an ordinary vtable, set BINFO_VTABLE. */
8567 BINFO_VTABLE (binfo) = vtbl;
8568 }
8569
8570 static GTY(()) tree abort_fndecl_addr;
8571
8572 /* Construct the initializer for BINFO's virtual function table. BINFO
8573 is part of the hierarchy dominated by T. If we're building a
8574 construction vtable, the ORIG_BINFO is the binfo we should use to
8575 find the actual function pointers to put in the vtable - but they
8576 can be overridden on the path to most-derived in the graph that
8577 ORIG_BINFO belongs. Otherwise,
8578 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8579 BINFO that should be indicated by the RTTI information in the
8580 vtable; it will be a base class of T, rather than T itself, if we
8581 are building a construction vtable.
8582
8583 The value returned is a TREE_LIST suitable for wrapping in a
8584 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8585 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8586 number of non-function entries in the vtable.
8587
8588 It might seem that this function should never be called with a
8589 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8590 base is always subsumed by a derived class vtable. However, when
8591 we are building construction vtables, we do build vtables for
8592 primary bases; we need these while the primary base is being
8593 constructed. */
8594
8595 static void
8596 build_vtbl_initializer (tree binfo,
8597 tree orig_binfo,
8598 tree t,
8599 tree rtti_binfo,
8600 int* non_fn_entries_p,
8601 vec<constructor_elt, va_gc> **inits)
8602 {
8603 tree v;
8604 vtbl_init_data vid;
8605 unsigned ix, jx;
8606 tree vbinfo;
8607 vec<tree, va_gc> *vbases;
8608 constructor_elt *e;
8609
8610 /* Initialize VID. */
8611 memset (&vid, 0, sizeof (vid));
8612 vid.binfo = binfo;
8613 vid.derived = t;
8614 vid.rtti_binfo = rtti_binfo;
8615 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8616 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8617 vid.generate_vcall_entries = true;
8618 /* The first vbase or vcall offset is at index -3 in the vtable. */
8619 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8620
8621 /* Add entries to the vtable for RTTI. */
8622 build_rtti_vtbl_entries (binfo, &vid);
8623
8624 /* Create an array for keeping track of the functions we've
8625 processed. When we see multiple functions with the same
8626 signature, we share the vcall offsets. */
8627 vec_alloc (vid.fns, 32);
8628 /* Add the vcall and vbase offset entries. */
8629 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8630
8631 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8632 build_vbase_offset_vtbl_entries. */
8633 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8634 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8635 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8636
8637 /* If the target requires padding between data entries, add that now. */
8638 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8639 {
8640 int n_entries = vec_safe_length (vid.inits);
8641
8642 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8643
8644 /* Move data entries into their new positions and add padding
8645 after the new positions. Iterate backwards so we don't
8646 overwrite entries that we would need to process later. */
8647 for (ix = n_entries - 1;
8648 vid.inits->iterate (ix, &e);
8649 ix--)
8650 {
8651 int j;
8652 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8653 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8654
8655 (*vid.inits)[new_position] = *e;
8656
8657 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8658 {
8659 constructor_elt *f = &(*vid.inits)[new_position - j];
8660 f->index = NULL_TREE;
8661 f->value = build1 (NOP_EXPR, vtable_entry_type,
8662 null_pointer_node);
8663 }
8664 }
8665 }
8666
8667 if (non_fn_entries_p)
8668 *non_fn_entries_p = vec_safe_length (vid.inits);
8669
8670 /* The initializers for virtual functions were built up in reverse
8671 order. Straighten them out and add them to the running list in one
8672 step. */
8673 jx = vec_safe_length (*inits);
8674 vec_safe_grow (*inits, jx + vid.inits->length ());
8675
8676 for (ix = vid.inits->length () - 1;
8677 vid.inits->iterate (ix, &e);
8678 ix--, jx++)
8679 (**inits)[jx] = *e;
8680
8681 /* Go through all the ordinary virtual functions, building up
8682 initializers. */
8683 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8684 {
8685 tree delta;
8686 tree vcall_index;
8687 tree fn, fn_original;
8688 tree init = NULL_TREE;
8689
8690 fn = BV_FN (v);
8691 fn_original = fn;
8692 if (DECL_THUNK_P (fn))
8693 {
8694 if (!DECL_NAME (fn))
8695 finish_thunk (fn);
8696 if (THUNK_ALIAS (fn))
8697 {
8698 fn = THUNK_ALIAS (fn);
8699 BV_FN (v) = fn;
8700 }
8701 fn_original = THUNK_TARGET (fn);
8702 }
8703
8704 /* If the only definition of this function signature along our
8705 primary base chain is from a lost primary, this vtable slot will
8706 never be used, so just zero it out. This is important to avoid
8707 requiring extra thunks which cannot be generated with the function.
8708
8709 We first check this in update_vtable_entry_for_fn, so we handle
8710 restored primary bases properly; we also need to do it here so we
8711 zero out unused slots in ctor vtables, rather than filling them
8712 with erroneous values (though harmless, apart from relocation
8713 costs). */
8714 if (BV_LOST_PRIMARY (v))
8715 init = size_zero_node;
8716
8717 if (! init)
8718 {
8719 /* Pull the offset for `this', and the function to call, out of
8720 the list. */
8721 delta = BV_DELTA (v);
8722 vcall_index = BV_VCALL_INDEX (v);
8723
8724 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8725 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8726
8727 /* You can't call an abstract virtual function; it's abstract.
8728 So, we replace these functions with __pure_virtual. */
8729 if (DECL_PURE_VIRTUAL_P (fn_original))
8730 {
8731 fn = abort_fndecl;
8732 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8733 {
8734 if (abort_fndecl_addr == NULL)
8735 abort_fndecl_addr
8736 = fold_convert (vfunc_ptr_type_node,
8737 build_fold_addr_expr (fn));
8738 init = abort_fndecl_addr;
8739 }
8740 }
8741 /* Likewise for deleted virtuals. */
8742 else if (DECL_DELETED_FN (fn_original))
8743 {
8744 fn = get_identifier ("__cxa_deleted_virtual");
8745 if (!get_global_value_if_present (fn, &fn))
8746 fn = push_library_fn (fn, (build_function_type_list
8747 (void_type_node, NULL_TREE)),
8748 NULL_TREE);
8749 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8750 init = fold_convert (vfunc_ptr_type_node,
8751 build_fold_addr_expr (fn));
8752 }
8753 else
8754 {
8755 if (!integer_zerop (delta) || vcall_index)
8756 {
8757 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8758 if (!DECL_NAME (fn))
8759 finish_thunk (fn);
8760 }
8761 /* Take the address of the function, considering it to be of an
8762 appropriate generic type. */
8763 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8764 init = fold_convert (vfunc_ptr_type_node,
8765 build_fold_addr_expr (fn));
8766 }
8767 }
8768
8769 /* And add it to the chain of initializers. */
8770 if (TARGET_VTABLE_USES_DESCRIPTORS)
8771 {
8772 int i;
8773 if (init == size_zero_node)
8774 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8775 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8776 else
8777 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8778 {
8779 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
8780 fn, build_int_cst (NULL_TREE, i));
8781 TREE_CONSTANT (fdesc) = 1;
8782
8783 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
8784 }
8785 }
8786 else
8787 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8788 }
8789 }
8790
8791 /* Adds to vid->inits the initializers for the vbase and vcall
8792 offsets in BINFO, which is in the hierarchy dominated by T. */
8793
8794 static void
8795 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
8796 {
8797 tree b;
8798
8799 /* If this is a derived class, we must first create entries
8800 corresponding to the primary base class. */
8801 b = get_primary_binfo (binfo);
8802 if (b)
8803 build_vcall_and_vbase_vtbl_entries (b, vid);
8804
8805 /* Add the vbase entries for this base. */
8806 build_vbase_offset_vtbl_entries (binfo, vid);
8807 /* Add the vcall entries for this base. */
8808 build_vcall_offset_vtbl_entries (binfo, vid);
8809 }
8810
8811 /* Returns the initializers for the vbase offset entries in the vtable
8812 for BINFO (which is part of the class hierarchy dominated by T), in
8813 reverse order. VBASE_OFFSET_INDEX gives the vtable index
8814 where the next vbase offset will go. */
8815
8816 static void
8817 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8818 {
8819 tree vbase;
8820 tree t;
8821 tree non_primary_binfo;
8822
8823 /* If there are no virtual baseclasses, then there is nothing to
8824 do. */
8825 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8826 return;
8827
8828 t = vid->derived;
8829
8830 /* We might be a primary base class. Go up the inheritance hierarchy
8831 until we find the most derived class of which we are a primary base:
8832 it is the offset of that which we need to use. */
8833 non_primary_binfo = binfo;
8834 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
8835 {
8836 tree b;
8837
8838 /* If we have reached a virtual base, then it must be a primary
8839 base (possibly multi-level) of vid->binfo, or we wouldn't
8840 have called build_vcall_and_vbase_vtbl_entries for it. But it
8841 might be a lost primary, so just skip down to vid->binfo. */
8842 if (BINFO_VIRTUAL_P (non_primary_binfo))
8843 {
8844 non_primary_binfo = vid->binfo;
8845 break;
8846 }
8847
8848 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
8849 if (get_primary_binfo (b) != non_primary_binfo)
8850 break;
8851 non_primary_binfo = b;
8852 }
8853
8854 /* Go through the virtual bases, adding the offsets. */
8855 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8856 vbase;
8857 vbase = TREE_CHAIN (vbase))
8858 {
8859 tree b;
8860 tree delta;
8861
8862 if (!BINFO_VIRTUAL_P (vbase))
8863 continue;
8864
8865 /* Find the instance of this virtual base in the complete
8866 object. */
8867 b = copied_binfo (vbase, binfo);
8868
8869 /* If we've already got an offset for this virtual base, we
8870 don't need another one. */
8871 if (BINFO_VTABLE_PATH_MARKED (b))
8872 continue;
8873 BINFO_VTABLE_PATH_MARKED (b) = 1;
8874
8875 /* Figure out where we can find this vbase offset. */
8876 delta = size_binop (MULT_EXPR,
8877 vid->index,
8878 convert (ssizetype,
8879 TYPE_SIZE_UNIT (vtable_entry_type)));
8880 if (vid->primary_vtbl_p)
8881 BINFO_VPTR_FIELD (b) = delta;
8882
8883 if (binfo != TYPE_BINFO (t))
8884 /* The vbase offset had better be the same. */
8885 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
8886
8887 /* The next vbase will come at a more negative offset. */
8888 vid->index = size_binop (MINUS_EXPR, vid->index,
8889 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
8890
8891 /* The initializer is the delta from BINFO to this virtual base.
8892 The vbase offsets go in reverse inheritance-graph order, and
8893 we are walking in inheritance graph order so these end up in
8894 the right order. */
8895 delta = size_diffop_loc (input_location,
8896 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
8897
8898 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
8899 fold_build1_loc (input_location, NOP_EXPR,
8900 vtable_entry_type, delta));
8901 }
8902 }
8903
8904 /* Adds the initializers for the vcall offset entries in the vtable
8905 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
8906 to VID->INITS. */
8907
8908 static void
8909 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8910 {
8911 /* We only need these entries if this base is a virtual base. We
8912 compute the indices -- but do not add to the vtable -- when
8913 building the main vtable for a class. */
8914 if (binfo == TYPE_BINFO (vid->derived)
8915 || (BINFO_VIRTUAL_P (binfo)
8916 /* If BINFO is RTTI_BINFO, then (since BINFO does not
8917 correspond to VID->DERIVED), we are building a primary
8918 construction virtual table. Since this is a primary
8919 virtual table, we do not need the vcall offsets for
8920 BINFO. */
8921 && binfo != vid->rtti_binfo))
8922 {
8923 /* We need a vcall offset for each of the virtual functions in this
8924 vtable. For example:
8925
8926 class A { virtual void f (); };
8927 class B1 : virtual public A { virtual void f (); };
8928 class B2 : virtual public A { virtual void f (); };
8929 class C: public B1, public B2 { virtual void f (); };
8930
8931 A C object has a primary base of B1, which has a primary base of A. A
8932 C also has a secondary base of B2, which no longer has a primary base
8933 of A. So the B2-in-C construction vtable needs a secondary vtable for
8934 A, which will adjust the A* to a B2* to call f. We have no way of
8935 knowing what (or even whether) this offset will be when we define B2,
8936 so we store this "vcall offset" in the A sub-vtable and look it up in
8937 a "virtual thunk" for B2::f.
8938
8939 We need entries for all the functions in our primary vtable and
8940 in our non-virtual bases' secondary vtables. */
8941 vid->vbase = binfo;
8942 /* If we are just computing the vcall indices -- but do not need
8943 the actual entries -- not that. */
8944 if (!BINFO_VIRTUAL_P (binfo))
8945 vid->generate_vcall_entries = false;
8946 /* Now, walk through the non-virtual bases, adding vcall offsets. */
8947 add_vcall_offset_vtbl_entries_r (binfo, vid);
8948 }
8949 }
8950
8951 /* Build vcall offsets, starting with those for BINFO. */
8952
8953 static void
8954 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
8955 {
8956 int i;
8957 tree primary_binfo;
8958 tree base_binfo;
8959
8960 /* Don't walk into virtual bases -- except, of course, for the
8961 virtual base for which we are building vcall offsets. Any
8962 primary virtual base will have already had its offsets generated
8963 through the recursion in build_vcall_and_vbase_vtbl_entries. */
8964 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
8965 return;
8966
8967 /* If BINFO has a primary base, process it first. */
8968 primary_binfo = get_primary_binfo (binfo);
8969 if (primary_binfo)
8970 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
8971
8972 /* Add BINFO itself to the list. */
8973 add_vcall_offset_vtbl_entries_1 (binfo, vid);
8974
8975 /* Scan the non-primary bases of BINFO. */
8976 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8977 if (base_binfo != primary_binfo)
8978 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
8979 }
8980
8981 /* Called from build_vcall_offset_vtbl_entries_r. */
8982
8983 static void
8984 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
8985 {
8986 /* Make entries for the rest of the virtuals. */
8987 if (abi_version_at_least (2))
8988 {
8989 tree orig_fn;
8990
8991 /* The ABI requires that the methods be processed in declaration
8992 order. G++ 3.2 used the order in the vtable. */
8993 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
8994 orig_fn;
8995 orig_fn = DECL_CHAIN (orig_fn))
8996 if (DECL_VINDEX (orig_fn))
8997 add_vcall_offset (orig_fn, binfo, vid);
8998 }
8999 else
9000 {
9001 tree derived_virtuals;
9002 tree base_virtuals;
9003 tree orig_virtuals;
9004 /* If BINFO is a primary base, the most derived class which has
9005 BINFO as a primary base; otherwise, just BINFO. */
9006 tree non_primary_binfo;
9007
9008 /* We might be a primary base class. Go up the inheritance hierarchy
9009 until we find the most derived class of which we are a primary base:
9010 it is the BINFO_VIRTUALS there that we need to consider. */
9011 non_primary_binfo = binfo;
9012 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9013 {
9014 tree b;
9015
9016 /* If we have reached a virtual base, then it must be vid->vbase,
9017 because we ignore other virtual bases in
9018 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
9019 base (possibly multi-level) of vid->binfo, or we wouldn't
9020 have called build_vcall_and_vbase_vtbl_entries for it. But it
9021 might be a lost primary, so just skip down to vid->binfo. */
9022 if (BINFO_VIRTUAL_P (non_primary_binfo))
9023 {
9024 gcc_assert (non_primary_binfo == vid->vbase);
9025 non_primary_binfo = vid->binfo;
9026 break;
9027 }
9028
9029 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9030 if (get_primary_binfo (b) != non_primary_binfo)
9031 break;
9032 non_primary_binfo = b;
9033 }
9034
9035 if (vid->ctor_vtbl_p)
9036 /* For a ctor vtable we need the equivalent binfo within the hierarchy
9037 where rtti_binfo is the most derived type. */
9038 non_primary_binfo
9039 = original_binfo (non_primary_binfo, vid->rtti_binfo);
9040
9041 for (base_virtuals = BINFO_VIRTUALS (binfo),
9042 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
9043 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
9044 base_virtuals;
9045 base_virtuals = TREE_CHAIN (base_virtuals),
9046 derived_virtuals = TREE_CHAIN (derived_virtuals),
9047 orig_virtuals = TREE_CHAIN (orig_virtuals))
9048 {
9049 tree orig_fn;
9050
9051 /* Find the declaration that originally caused this function to
9052 be present in BINFO_TYPE (binfo). */
9053 orig_fn = BV_FN (orig_virtuals);
9054
9055 /* When processing BINFO, we only want to generate vcall slots for
9056 function slots introduced in BINFO. So don't try to generate
9057 one if the function isn't even defined in BINFO. */
9058 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
9059 continue;
9060
9061 add_vcall_offset (orig_fn, binfo, vid);
9062 }
9063 }
9064 }
9065
9066 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9067
9068 static void
9069 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9070 {
9071 size_t i;
9072 tree vcall_offset;
9073 tree derived_entry;
9074
9075 /* If there is already an entry for a function with the same
9076 signature as FN, then we do not need a second vcall offset.
9077 Check the list of functions already present in the derived
9078 class vtable. */
9079 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9080 {
9081 if (same_signature_p (derived_entry, orig_fn)
9082 /* We only use one vcall offset for virtual destructors,
9083 even though there are two virtual table entries. */
9084 || (DECL_DESTRUCTOR_P (derived_entry)
9085 && DECL_DESTRUCTOR_P (orig_fn)))
9086 return;
9087 }
9088
9089 /* If we are building these vcall offsets as part of building
9090 the vtable for the most derived class, remember the vcall
9091 offset. */
9092 if (vid->binfo == TYPE_BINFO (vid->derived))
9093 {
9094 tree_pair_s elt = {orig_fn, vid->index};
9095 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9096 }
9097
9098 /* The next vcall offset will be found at a more negative
9099 offset. */
9100 vid->index = size_binop (MINUS_EXPR, vid->index,
9101 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9102
9103 /* Keep track of this function. */
9104 vec_safe_push (vid->fns, orig_fn);
9105
9106 if (vid->generate_vcall_entries)
9107 {
9108 tree base;
9109 tree fn;
9110
9111 /* Find the overriding function. */
9112 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9113 if (fn == error_mark_node)
9114 vcall_offset = build_zero_cst (vtable_entry_type);
9115 else
9116 {
9117 base = TREE_VALUE (fn);
9118
9119 /* The vbase we're working on is a primary base of
9120 vid->binfo. But it might be a lost primary, so its
9121 BINFO_OFFSET might be wrong, so we just use the
9122 BINFO_OFFSET from vid->binfo. */
9123 vcall_offset = size_diffop_loc (input_location,
9124 BINFO_OFFSET (base),
9125 BINFO_OFFSET (vid->binfo));
9126 vcall_offset = fold_build1_loc (input_location,
9127 NOP_EXPR, vtable_entry_type,
9128 vcall_offset);
9129 }
9130 /* Add the initializer to the vtable. */
9131 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9132 }
9133 }
9134
9135 /* Return vtbl initializers for the RTTI entries corresponding to the
9136 BINFO's vtable. The RTTI entries should indicate the object given
9137 by VID->rtti_binfo. */
9138
9139 static void
9140 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9141 {
9142 tree b;
9143 tree t;
9144 tree offset;
9145 tree decl;
9146 tree init;
9147
9148 t = BINFO_TYPE (vid->rtti_binfo);
9149
9150 /* To find the complete object, we will first convert to our most
9151 primary base, and then add the offset in the vtbl to that value. */
9152 b = binfo;
9153 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9154 && !BINFO_LOST_PRIMARY_P (b))
9155 {
9156 tree primary_base;
9157
9158 primary_base = get_primary_binfo (b);
9159 gcc_assert (BINFO_PRIMARY_P (primary_base)
9160 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9161 b = primary_base;
9162 }
9163 offset = size_diffop_loc (input_location,
9164 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9165
9166 /* The second entry is the address of the typeinfo object. */
9167 if (flag_rtti)
9168 decl = build_address (get_tinfo_decl (t));
9169 else
9170 decl = integer_zero_node;
9171
9172 /* Convert the declaration to a type that can be stored in the
9173 vtable. */
9174 init = build_nop (vfunc_ptr_type_node, decl);
9175 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9176
9177 /* Add the offset-to-top entry. It comes earlier in the vtable than
9178 the typeinfo entry. Convert the offset to look like a
9179 function pointer, so that we can put it in the vtable. */
9180 init = build_nop (vfunc_ptr_type_node, offset);
9181 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9182 }
9183
9184 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9185 accessibility. */
9186
9187 bool
9188 uniquely_derived_from_p (tree parent, tree type)
9189 {
9190 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9191 return base && base != error_mark_node;
9192 }
9193
9194 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9195
9196 bool
9197 publicly_uniquely_derived_p (tree parent, tree type)
9198 {
9199 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9200 NULL, tf_none);
9201 return base && base != error_mark_node;
9202 }
9203
9204 #include "gt-cp-class.h"