re PR c++/57319 (bogus "defaulted move assignment for ... calls a non-trivial move...
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "cp-tree.h"
30 #include "flags.h"
31 #include "toplev.h"
32 #include "target.h"
33 #include "convert.h"
34 #include "cgraph.h"
35 #include "dumpfile.h"
36 #include "splay-tree.h"
37 #include "pointer-set.h"
38 #include "hash-table.h"
39
40 /* The number of nested classes being processed. If we are not in the
41 scope of any class, this is zero. */
42
43 int current_class_depth;
44
45 /* In order to deal with nested classes, we keep a stack of classes.
46 The topmost entry is the innermost class, and is the entry at index
47 CURRENT_CLASS_DEPTH */
48
49 typedef struct class_stack_node {
50 /* The name of the class. */
51 tree name;
52
53 /* The _TYPE node for the class. */
54 tree type;
55
56 /* The access specifier pending for new declarations in the scope of
57 this class. */
58 tree access;
59
60 /* If were defining TYPE, the names used in this class. */
61 splay_tree names_used;
62
63 /* Nonzero if this class is no longer open, because of a call to
64 push_to_top_level. */
65 size_t hidden;
66 }* class_stack_node_t;
67
68 typedef struct vtbl_init_data_s
69 {
70 /* The base for which we're building initializers. */
71 tree binfo;
72 /* The type of the most-derived type. */
73 tree derived;
74 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
75 unless ctor_vtbl_p is true. */
76 tree rtti_binfo;
77 /* The negative-index vtable initializers built up so far. These
78 are in order from least negative index to most negative index. */
79 vec<constructor_elt, va_gc> *inits;
80 /* The binfo for the virtual base for which we're building
81 vcall offset initializers. */
82 tree vbase;
83 /* The functions in vbase for which we have already provided vcall
84 offsets. */
85 vec<tree, va_gc> *fns;
86 /* The vtable index of the next vcall or vbase offset. */
87 tree index;
88 /* Nonzero if we are building the initializer for the primary
89 vtable. */
90 int primary_vtbl_p;
91 /* Nonzero if we are building the initializer for a construction
92 vtable. */
93 int ctor_vtbl_p;
94 /* True when adding vcall offset entries to the vtable. False when
95 merely computing the indices. */
96 bool generate_vcall_entries;
97 } vtbl_init_data;
98
99 /* The type of a function passed to walk_subobject_offsets. */
100 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
101
102 /* The stack itself. This is a dynamically resized array. The
103 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
104 static int current_class_stack_size;
105 static class_stack_node_t current_class_stack;
106
107 /* The size of the largest empty class seen in this translation unit. */
108 static GTY (()) tree sizeof_biggest_empty_class;
109
110 /* An array of all local classes present in this translation unit, in
111 declaration order. */
112 vec<tree, va_gc> *local_classes;
113
114 static tree get_vfield_name (tree);
115 static void finish_struct_anon (tree);
116 static tree get_vtable_name (tree);
117 static tree get_basefndecls (tree, tree);
118 static int build_primary_vtable (tree, tree);
119 static int build_secondary_vtable (tree);
120 static void finish_vtbls (tree);
121 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
122 static void finish_struct_bits (tree);
123 static int alter_access (tree, tree, tree);
124 static void handle_using_decl (tree, tree);
125 static tree dfs_modify_vtables (tree, void *);
126 static tree modify_all_vtables (tree, tree);
127 static void determine_primary_bases (tree);
128 static void finish_struct_methods (tree);
129 static void maybe_warn_about_overly_private_class (tree);
130 static int method_name_cmp (const void *, const void *);
131 static int resort_method_name_cmp (const void *, const void *);
132 static void add_implicitly_declared_members (tree, tree*, int, int);
133 static tree fixed_type_or_null (tree, int *, int *);
134 static tree build_simple_base_path (tree expr, tree binfo);
135 static tree build_vtbl_ref_1 (tree, tree);
136 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
137 vec<constructor_elt, va_gc> **);
138 static int count_fields (tree);
139 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
140 static void insert_into_classtype_sorted_fields (tree, tree, int);
141 static bool check_bitfield_decl (tree);
142 static void check_field_decl (tree, tree, int *, int *, int *);
143 static void check_field_decls (tree, tree *, int *, int *);
144 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
145 static void build_base_fields (record_layout_info, splay_tree, tree *);
146 static void check_methods (tree);
147 static void remove_zero_width_bit_fields (tree);
148 static void check_bases (tree, int *, int *);
149 static void check_bases_and_members (tree);
150 static tree create_vtable_ptr (tree, tree *);
151 static void include_empty_classes (record_layout_info);
152 static void layout_class_type (tree, tree *);
153 static void propagate_binfo_offsets (tree, tree);
154 static void layout_virtual_bases (record_layout_info, splay_tree);
155 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
156 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
157 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
158 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset (tree, tree, vtbl_init_data *);
160 static void layout_vtable_decl (tree, int);
161 static tree dfs_find_final_overrider_pre (tree, void *);
162 static tree dfs_find_final_overrider_post (tree, void *);
163 static tree find_final_overrider (tree, tree, tree);
164 static int make_new_vtable (tree, tree);
165 static tree get_primary_binfo (tree);
166 static int maybe_indent_hierarchy (FILE *, int, int);
167 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
168 static void dump_class_hierarchy (tree);
169 static void dump_class_hierarchy_1 (FILE *, int, tree);
170 static void dump_array (FILE *, tree);
171 static void dump_vtable (tree, tree, tree);
172 static void dump_vtt (tree, tree);
173 static void dump_thunk (FILE *, int, tree);
174 static tree build_vtable (tree, tree, tree);
175 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
176 static void layout_nonempty_base_or_field (record_layout_info,
177 tree, tree, splay_tree);
178 static tree end_of_class (tree, int);
179 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
180 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
181 vec<constructor_elt, va_gc> **);
182 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
183 vec<constructor_elt, va_gc> **);
184 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
185 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
186 static void clone_constructors_and_destructors (tree);
187 static tree build_clone (tree, tree);
188 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
189 static void build_ctor_vtbl_group (tree, tree);
190 static void build_vtt (tree);
191 static tree binfo_ctor_vtable (tree);
192 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
193 tree *);
194 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
195 static tree dfs_fixup_binfo_vtbls (tree, void *);
196 static int record_subobject_offset (tree, tree, splay_tree);
197 static int check_subobject_offset (tree, tree, splay_tree);
198 static int walk_subobject_offsets (tree, subobject_offset_fn,
199 tree, splay_tree, tree, int);
200 static void record_subobject_offsets (tree, tree, splay_tree, bool);
201 static int layout_conflict_p (tree, tree, splay_tree, int);
202 static int splay_tree_compare_integer_csts (splay_tree_key k1,
203 splay_tree_key k2);
204 static void warn_about_ambiguous_bases (tree);
205 static bool type_requires_array_cookie (tree);
206 static bool contains_empty_class_p (tree);
207 static bool base_derived_from (tree, tree);
208 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
209 static tree end_of_base (tree);
210 static tree get_vcall_index (tree, tree);
211
212 /* Variables shared between class.c and call.c. */
213
214 int n_vtables = 0;
215 int n_vtable_entries = 0;
216 int n_vtable_searches = 0;
217 int n_vtable_elems = 0;
218 int n_convert_harshness = 0;
219 int n_compute_conversion_costs = 0;
220 int n_inner_fields_searched = 0;
221
222 /* Convert to or from a base subobject. EXPR is an expression of type
223 `A' or `A*', an expression of type `B' or `B*' is returned. To
224 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
225 the B base instance within A. To convert base A to derived B, CODE
226 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
227 In this latter case, A must not be a morally virtual base of B.
228 NONNULL is true if EXPR is known to be non-NULL (this is only
229 needed when EXPR is of pointer type). CV qualifiers are preserved
230 from EXPR. */
231
232 tree
233 build_base_path (enum tree_code code,
234 tree expr,
235 tree binfo,
236 int nonnull,
237 tsubst_flags_t complain)
238 {
239 tree v_binfo = NULL_TREE;
240 tree d_binfo = NULL_TREE;
241 tree probe;
242 tree offset;
243 tree target_type;
244 tree null_test = NULL;
245 tree ptr_target_type;
246 int fixed_type_p;
247 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
248 bool has_empty = false;
249 bool virtual_access;
250
251 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
252 return error_mark_node;
253
254 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
255 {
256 d_binfo = probe;
257 if (is_empty_class (BINFO_TYPE (probe)))
258 has_empty = true;
259 if (!v_binfo && BINFO_VIRTUAL_P (probe))
260 v_binfo = probe;
261 }
262
263 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
264 if (want_pointer)
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
266
267 if (code == PLUS_EXPR
268 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
269 {
270 /* This can happen when adjust_result_of_qualified_name_lookup can't
271 find a unique base binfo in a call to a member function. We
272 couldn't give the diagnostic then since we might have been calling
273 a static member function, so we do it now. */
274 if (complain & tf_error)
275 {
276 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
277 ba_unique, NULL, complain);
278 gcc_assert (base == error_mark_node);
279 }
280 return error_mark_node;
281 }
282
283 gcc_assert ((code == MINUS_EXPR
284 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
285 || code == PLUS_EXPR);
286
287 if (binfo == d_binfo)
288 /* Nothing to do. */
289 return expr;
290
291 if (code == MINUS_EXPR && v_binfo)
292 {
293 if (complain & tf_error)
294 error ("cannot convert from base %qT to derived type %qT via "
295 "virtual base %qT", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
296 BINFO_TYPE (v_binfo));
297 return error_mark_node;
298 }
299
300 if (!want_pointer)
301 /* This must happen before the call to save_expr. */
302 expr = cp_build_addr_expr (expr, complain);
303 else
304 expr = mark_rvalue_use (expr);
305
306 offset = BINFO_OFFSET (binfo);
307 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
308 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
309 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
310 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
311 expression returned matches the input. */
312 target_type = cp_build_qualified_type
313 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
314 ptr_target_type = build_pointer_type (target_type);
315
316 /* Do we need to look in the vtable for the real offset? */
317 virtual_access = (v_binfo && fixed_type_p <= 0);
318
319 /* Don't bother with the calculations inside sizeof; they'll ICE if the
320 source type is incomplete and the pointer value doesn't matter. In a
321 template (even in fold_non_dependent_expr), we don't have vtables set
322 up properly yet, and the value doesn't matter there either; we're just
323 interested in the result of overload resolution. */
324 if (cp_unevaluated_operand != 0
325 || in_template_function ())
326 {
327 expr = build_nop (ptr_target_type, expr);
328 if (!want_pointer)
329 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
330 return expr;
331 }
332
333 /* If we're in an NSDMI, we don't have the full constructor context yet
334 that we need for converting to a virtual base, so just build a stub
335 CONVERT_EXPR and expand it later in bot_replace. */
336 if (virtual_access && fixed_type_p < 0
337 && current_scope () != current_function_decl)
338 {
339 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
340 CONVERT_EXPR_VBASE_PATH (expr) = true;
341 if (!want_pointer)
342 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
343 return expr;
344 }
345
346 /* Do we need to check for a null pointer? */
347 if (want_pointer && !nonnull)
348 {
349 /* If we know the conversion will not actually change the value
350 of EXPR, then we can avoid testing the expression for NULL.
351 We have to avoid generating a COMPONENT_REF for a base class
352 field, because other parts of the compiler know that such
353 expressions are always non-NULL. */
354 if (!virtual_access && integer_zerop (offset))
355 return build_nop (ptr_target_type, expr);
356 null_test = error_mark_node;
357 }
358
359 /* Protect against multiple evaluation if necessary. */
360 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
361 expr = save_expr (expr);
362
363 /* Now that we've saved expr, build the real null test. */
364 if (null_test)
365 {
366 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
367 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
368 expr, zero);
369 }
370
371 /* If this is a simple base reference, express it as a COMPONENT_REF. */
372 if (code == PLUS_EXPR && !virtual_access
373 /* We don't build base fields for empty bases, and they aren't very
374 interesting to the optimizers anyway. */
375 && !has_empty)
376 {
377 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
378 expr = build_simple_base_path (expr, binfo);
379 if (want_pointer)
380 expr = build_address (expr);
381 target_type = TREE_TYPE (expr);
382 goto out;
383 }
384
385 if (virtual_access)
386 {
387 /* Going via virtual base V_BINFO. We need the static offset
388 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
389 V_BINFO. That offset is an entry in D_BINFO's vtable. */
390 tree v_offset;
391
392 if (fixed_type_p < 0 && in_base_initializer)
393 {
394 /* In a base member initializer, we cannot rely on the
395 vtable being set up. We have to indirect via the
396 vtt_parm. */
397 tree t;
398
399 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
400 t = build_pointer_type (t);
401 v_offset = convert (t, current_vtt_parm);
402 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
403 }
404 else
405 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
406 complain),
407 TREE_TYPE (TREE_TYPE (expr)));
408
409 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
410 v_offset = build1 (NOP_EXPR,
411 build_pointer_type (ptrdiff_type_node),
412 v_offset);
413 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
414 TREE_CONSTANT (v_offset) = 1;
415
416 offset = convert_to_integer (ptrdiff_type_node,
417 size_diffop_loc (input_location, offset,
418 BINFO_OFFSET (v_binfo)));
419
420 if (!integer_zerop (offset))
421 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
422
423 if (fixed_type_p < 0)
424 /* Negative fixed_type_p means this is a constructor or destructor;
425 virtual base layout is fixed in in-charge [cd]tors, but not in
426 base [cd]tors. */
427 offset = build3 (COND_EXPR, ptrdiff_type_node,
428 build2 (EQ_EXPR, boolean_type_node,
429 current_in_charge_parm, integer_zero_node),
430 v_offset,
431 convert_to_integer (ptrdiff_type_node,
432 BINFO_OFFSET (binfo)));
433 else
434 offset = v_offset;
435 }
436
437 if (want_pointer)
438 target_type = ptr_target_type;
439
440 expr = build1 (NOP_EXPR, ptr_target_type, expr);
441
442 if (!integer_zerop (offset))
443 {
444 offset = fold_convert (sizetype, offset);
445 if (code == MINUS_EXPR)
446 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
447 expr = fold_build_pointer_plus (expr, offset);
448 }
449 else
450 null_test = NULL;
451
452 if (!want_pointer)
453 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
454
455 out:
456 if (null_test)
457 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
458 build_zero_cst (target_type));
459
460 return expr;
461 }
462
463 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
464 Perform a derived-to-base conversion by recursively building up a
465 sequence of COMPONENT_REFs to the appropriate base fields. */
466
467 static tree
468 build_simple_base_path (tree expr, tree binfo)
469 {
470 tree type = BINFO_TYPE (binfo);
471 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
472 tree field;
473
474 if (d_binfo == NULL_TREE)
475 {
476 tree temp;
477
478 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
479
480 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
481 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
482 an lvalue in the front end; only _DECLs and _REFs are lvalues
483 in the back end. */
484 temp = unary_complex_lvalue (ADDR_EXPR, expr);
485 if (temp)
486 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
487
488 return expr;
489 }
490
491 /* Recurse. */
492 expr = build_simple_base_path (expr, d_binfo);
493
494 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
495 field; field = DECL_CHAIN (field))
496 /* Is this the base field created by build_base_field? */
497 if (TREE_CODE (field) == FIELD_DECL
498 && DECL_FIELD_IS_BASE (field)
499 && TREE_TYPE (field) == type
500 /* If we're looking for a field in the most-derived class,
501 also check the field offset; we can have two base fields
502 of the same type if one is an indirect virtual base and one
503 is a direct non-virtual base. */
504 && (BINFO_INHERITANCE_CHAIN (d_binfo)
505 || tree_int_cst_equal (byte_position (field),
506 BINFO_OFFSET (binfo))))
507 {
508 /* We don't use build_class_member_access_expr here, as that
509 has unnecessary checks, and more importantly results in
510 recursive calls to dfs_walk_once. */
511 int type_quals = cp_type_quals (TREE_TYPE (expr));
512
513 expr = build3 (COMPONENT_REF,
514 cp_build_qualified_type (type, type_quals),
515 expr, field, NULL_TREE);
516 expr = fold_if_not_in_template (expr);
517
518 /* Mark the expression const or volatile, as appropriate.
519 Even though we've dealt with the type above, we still have
520 to mark the expression itself. */
521 if (type_quals & TYPE_QUAL_CONST)
522 TREE_READONLY (expr) = 1;
523 if (type_quals & TYPE_QUAL_VOLATILE)
524 TREE_THIS_VOLATILE (expr) = 1;
525
526 return expr;
527 }
528
529 /* Didn't find the base field?!? */
530 gcc_unreachable ();
531 }
532
533 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
534 type is a class type or a pointer to a class type. In the former
535 case, TYPE is also a class type; in the latter it is another
536 pointer type. If CHECK_ACCESS is true, an error message is emitted
537 if TYPE is inaccessible. If OBJECT has pointer type, the value is
538 assumed to be non-NULL. */
539
540 tree
541 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
542 tsubst_flags_t complain)
543 {
544 tree binfo;
545 tree object_type;
546
547 if (TYPE_PTR_P (TREE_TYPE (object)))
548 {
549 object_type = TREE_TYPE (TREE_TYPE (object));
550 type = TREE_TYPE (type);
551 }
552 else
553 object_type = TREE_TYPE (object);
554
555 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
556 NULL, complain);
557 if (!binfo || binfo == error_mark_node)
558 return error_mark_node;
559
560 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
561 }
562
563 /* EXPR is an expression with unqualified class type. BASE is a base
564 binfo of that class type. Returns EXPR, converted to the BASE
565 type. This function assumes that EXPR is the most derived class;
566 therefore virtual bases can be found at their static offsets. */
567
568 tree
569 convert_to_base_statically (tree expr, tree base)
570 {
571 tree expr_type;
572
573 expr_type = TREE_TYPE (expr);
574 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
575 {
576 /* If this is a non-empty base, use a COMPONENT_REF. */
577 if (!is_empty_class (BINFO_TYPE (base)))
578 return build_simple_base_path (expr, base);
579
580 /* We use fold_build2 and fold_convert below to simplify the trees
581 provided to the optimizers. It is not safe to call these functions
582 when processing a template because they do not handle C++-specific
583 trees. */
584 gcc_assert (!processing_template_decl);
585 expr = cp_build_addr_expr (expr, tf_warning_or_error);
586 if (!integer_zerop (BINFO_OFFSET (base)))
587 expr = fold_build_pointer_plus_loc (input_location,
588 expr, BINFO_OFFSET (base));
589 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
590 expr = build_fold_indirect_ref_loc (input_location, expr);
591 }
592
593 return expr;
594 }
595
596 \f
597 tree
598 build_vfield_ref (tree datum, tree type)
599 {
600 tree vfield, vcontext;
601
602 if (datum == error_mark_node)
603 return error_mark_node;
604
605 /* First, convert to the requested type. */
606 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
607 datum = convert_to_base (datum, type, /*check_access=*/false,
608 /*nonnull=*/true, tf_warning_or_error);
609
610 /* Second, the requested type may not be the owner of its own vptr.
611 If not, convert to the base class that owns it. We cannot use
612 convert_to_base here, because VCONTEXT may appear more than once
613 in the inheritance hierarchy of TYPE, and thus direct conversion
614 between the types may be ambiguous. Following the path back up
615 one step at a time via primary bases avoids the problem. */
616 vfield = TYPE_VFIELD (type);
617 vcontext = DECL_CONTEXT (vfield);
618 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
619 {
620 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
621 type = TREE_TYPE (datum);
622 }
623
624 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
625 }
626
627 /* Given an object INSTANCE, return an expression which yields the
628 vtable element corresponding to INDEX. There are many special
629 cases for INSTANCE which we take care of here, mainly to avoid
630 creating extra tree nodes when we don't have to. */
631
632 static tree
633 build_vtbl_ref_1 (tree instance, tree idx)
634 {
635 tree aref;
636 tree vtbl = NULL_TREE;
637
638 /* Try to figure out what a reference refers to, and
639 access its virtual function table directly. */
640
641 int cdtorp = 0;
642 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
643
644 tree basetype = non_reference (TREE_TYPE (instance));
645
646 if (fixed_type && !cdtorp)
647 {
648 tree binfo = lookup_base (fixed_type, basetype,
649 ba_unique, NULL, tf_none);
650 if (binfo && binfo != error_mark_node)
651 vtbl = unshare_expr (BINFO_VTABLE (binfo));
652 }
653
654 if (!vtbl)
655 vtbl = build_vfield_ref (instance, basetype);
656
657 aref = build_array_ref (input_location, vtbl, idx);
658 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
659
660 return aref;
661 }
662
663 tree
664 build_vtbl_ref (tree instance, tree idx)
665 {
666 tree aref = build_vtbl_ref_1 (instance, idx);
667
668 return aref;
669 }
670
671 /* Given a stable object pointer INSTANCE_PTR, return an expression which
672 yields a function pointer corresponding to vtable element INDEX. */
673
674 tree
675 build_vfn_ref (tree instance_ptr, tree idx)
676 {
677 tree aref;
678
679 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
680 tf_warning_or_error),
681 idx);
682
683 /* When using function descriptors, the address of the
684 vtable entry is treated as a function pointer. */
685 if (TARGET_VTABLE_USES_DESCRIPTORS)
686 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
687 cp_build_addr_expr (aref, tf_warning_or_error));
688
689 /* Remember this as a method reference, for later devirtualization. */
690 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
691
692 return aref;
693 }
694
695 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
696 for the given TYPE. */
697
698 static tree
699 get_vtable_name (tree type)
700 {
701 return mangle_vtbl_for_type (type);
702 }
703
704 /* DECL is an entity associated with TYPE, like a virtual table or an
705 implicitly generated constructor. Determine whether or not DECL
706 should have external or internal linkage at the object file
707 level. This routine does not deal with COMDAT linkage and other
708 similar complexities; it simply sets TREE_PUBLIC if it possible for
709 entities in other translation units to contain copies of DECL, in
710 the abstract. */
711
712 void
713 set_linkage_according_to_type (tree /*type*/, tree decl)
714 {
715 TREE_PUBLIC (decl) = 1;
716 determine_visibility (decl);
717 }
718
719 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
720 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
721 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
722
723 static tree
724 build_vtable (tree class_type, tree name, tree vtable_type)
725 {
726 tree decl;
727
728 decl = build_lang_decl (VAR_DECL, name, vtable_type);
729 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
730 now to avoid confusion in mangle_decl. */
731 SET_DECL_ASSEMBLER_NAME (decl, name);
732 DECL_CONTEXT (decl) = class_type;
733 DECL_ARTIFICIAL (decl) = 1;
734 TREE_STATIC (decl) = 1;
735 TREE_READONLY (decl) = 1;
736 DECL_VIRTUAL_P (decl) = 1;
737 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
738 DECL_VTABLE_OR_VTT_P (decl) = 1;
739 /* At one time the vtable info was grabbed 2 words at a time. This
740 fails on sparc unless you have 8-byte alignment. (tiemann) */
741 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
742 DECL_ALIGN (decl));
743 set_linkage_according_to_type (class_type, decl);
744 /* The vtable has not been defined -- yet. */
745 DECL_EXTERNAL (decl) = 1;
746 DECL_NOT_REALLY_EXTERN (decl) = 1;
747
748 /* Mark the VAR_DECL node representing the vtable itself as a
749 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
750 is rather important that such things be ignored because any
751 effort to actually generate DWARF for them will run into
752 trouble when/if we encounter code like:
753
754 #pragma interface
755 struct S { virtual void member (); };
756
757 because the artificial declaration of the vtable itself (as
758 manufactured by the g++ front end) will say that the vtable is
759 a static member of `S' but only *after* the debug output for
760 the definition of `S' has already been output. This causes
761 grief because the DWARF entry for the definition of the vtable
762 will try to refer back to an earlier *declaration* of the
763 vtable as a static member of `S' and there won't be one. We
764 might be able to arrange to have the "vtable static member"
765 attached to the member list for `S' before the debug info for
766 `S' get written (which would solve the problem) but that would
767 require more intrusive changes to the g++ front end. */
768 DECL_IGNORED_P (decl) = 1;
769
770 return decl;
771 }
772
773 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
774 or even complete. If this does not exist, create it. If COMPLETE is
775 nonzero, then complete the definition of it -- that will render it
776 impossible to actually build the vtable, but is useful to get at those
777 which are known to exist in the runtime. */
778
779 tree
780 get_vtable_decl (tree type, int complete)
781 {
782 tree decl;
783
784 if (CLASSTYPE_VTABLES (type))
785 return CLASSTYPE_VTABLES (type);
786
787 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
788 CLASSTYPE_VTABLES (type) = decl;
789
790 if (complete)
791 {
792 DECL_EXTERNAL (decl) = 1;
793 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
794 }
795
796 return decl;
797 }
798
799 /* Build the primary virtual function table for TYPE. If BINFO is
800 non-NULL, build the vtable starting with the initial approximation
801 that it is the same as the one which is the head of the association
802 list. Returns a nonzero value if a new vtable is actually
803 created. */
804
805 static int
806 build_primary_vtable (tree binfo, tree type)
807 {
808 tree decl;
809 tree virtuals;
810
811 decl = get_vtable_decl (type, /*complete=*/0);
812
813 if (binfo)
814 {
815 if (BINFO_NEW_VTABLE_MARKED (binfo))
816 /* We have already created a vtable for this base, so there's
817 no need to do it again. */
818 return 0;
819
820 virtuals = copy_list (BINFO_VIRTUALS (binfo));
821 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
822 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
823 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
824 }
825 else
826 {
827 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
828 virtuals = NULL_TREE;
829 }
830
831 if (GATHER_STATISTICS)
832 {
833 n_vtables += 1;
834 n_vtable_elems += list_length (virtuals);
835 }
836
837 /* Initialize the association list for this type, based
838 on our first approximation. */
839 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
840 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
841 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
842 return 1;
843 }
844
845 /* Give BINFO a new virtual function table which is initialized
846 with a skeleton-copy of its original initialization. The only
847 entry that changes is the `delta' entry, so we can really
848 share a lot of structure.
849
850 FOR_TYPE is the most derived type which caused this table to
851 be needed.
852
853 Returns nonzero if we haven't met BINFO before.
854
855 The order in which vtables are built (by calling this function) for
856 an object must remain the same, otherwise a binary incompatibility
857 can result. */
858
859 static int
860 build_secondary_vtable (tree binfo)
861 {
862 if (BINFO_NEW_VTABLE_MARKED (binfo))
863 /* We already created a vtable for this base. There's no need to
864 do it again. */
865 return 0;
866
867 /* Remember that we've created a vtable for this BINFO, so that we
868 don't try to do so again. */
869 SET_BINFO_NEW_VTABLE_MARKED (binfo);
870
871 /* Make fresh virtual list, so we can smash it later. */
872 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
873
874 /* Secondary vtables are laid out as part of the same structure as
875 the primary vtable. */
876 BINFO_VTABLE (binfo) = NULL_TREE;
877 return 1;
878 }
879
880 /* Create a new vtable for BINFO which is the hierarchy dominated by
881 T. Return nonzero if we actually created a new vtable. */
882
883 static int
884 make_new_vtable (tree t, tree binfo)
885 {
886 if (binfo == TYPE_BINFO (t))
887 /* In this case, it is *type*'s vtable we are modifying. We start
888 with the approximation that its vtable is that of the
889 immediate base class. */
890 return build_primary_vtable (binfo, t);
891 else
892 /* This is our very own copy of `basetype' to play with. Later,
893 we will fill in all the virtual functions that override the
894 virtual functions in these base classes which are not defined
895 by the current type. */
896 return build_secondary_vtable (binfo);
897 }
898
899 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
900 (which is in the hierarchy dominated by T) list FNDECL as its
901 BV_FN. DELTA is the required constant adjustment from the `this'
902 pointer where the vtable entry appears to the `this' required when
903 the function is actually called. */
904
905 static void
906 modify_vtable_entry (tree t,
907 tree binfo,
908 tree fndecl,
909 tree delta,
910 tree *virtuals)
911 {
912 tree v;
913
914 v = *virtuals;
915
916 if (fndecl != BV_FN (v)
917 || !tree_int_cst_equal (delta, BV_DELTA (v)))
918 {
919 /* We need a new vtable for BINFO. */
920 if (make_new_vtable (t, binfo))
921 {
922 /* If we really did make a new vtable, we also made a copy
923 of the BINFO_VIRTUALS list. Now, we have to find the
924 corresponding entry in that list. */
925 *virtuals = BINFO_VIRTUALS (binfo);
926 while (BV_FN (*virtuals) != BV_FN (v))
927 *virtuals = TREE_CHAIN (*virtuals);
928 v = *virtuals;
929 }
930
931 BV_DELTA (v) = delta;
932 BV_VCALL_INDEX (v) = NULL_TREE;
933 BV_FN (v) = fndecl;
934 }
935 }
936
937 \f
938 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
939 the USING_DECL naming METHOD. Returns true if the method could be
940 added to the method vec. */
941
942 bool
943 add_method (tree type, tree method, tree using_decl)
944 {
945 unsigned slot;
946 tree overload;
947 bool template_conv_p = false;
948 bool conv_p;
949 vec<tree, va_gc> *method_vec;
950 bool complete_p;
951 bool insert_p = false;
952 tree current_fns;
953 tree fns;
954
955 if (method == error_mark_node)
956 return false;
957
958 complete_p = COMPLETE_TYPE_P (type);
959 conv_p = DECL_CONV_FN_P (method);
960 if (conv_p)
961 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
962 && DECL_TEMPLATE_CONV_FN_P (method));
963
964 method_vec = CLASSTYPE_METHOD_VEC (type);
965 if (!method_vec)
966 {
967 /* Make a new method vector. We start with 8 entries. We must
968 allocate at least two (for constructors and destructors), and
969 we're going to end up with an assignment operator at some
970 point as well. */
971 vec_alloc (method_vec, 8);
972 /* Create slots for constructors and destructors. */
973 method_vec->quick_push (NULL_TREE);
974 method_vec->quick_push (NULL_TREE);
975 CLASSTYPE_METHOD_VEC (type) = method_vec;
976 }
977
978 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
979 grok_special_member_properties (method);
980
981 /* Constructors and destructors go in special slots. */
982 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
983 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
984 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
985 {
986 slot = CLASSTYPE_DESTRUCTOR_SLOT;
987
988 if (TYPE_FOR_JAVA (type))
989 {
990 if (!DECL_ARTIFICIAL (method))
991 error ("Java class %qT cannot have a destructor", type);
992 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
993 error ("Java class %qT cannot have an implicit non-trivial "
994 "destructor",
995 type);
996 }
997 }
998 else
999 {
1000 tree m;
1001
1002 insert_p = true;
1003 /* See if we already have an entry with this name. */
1004 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1005 vec_safe_iterate (method_vec, slot, &m);
1006 ++slot)
1007 {
1008 m = OVL_CURRENT (m);
1009 if (template_conv_p)
1010 {
1011 if (TREE_CODE (m) == TEMPLATE_DECL
1012 && DECL_TEMPLATE_CONV_FN_P (m))
1013 insert_p = false;
1014 break;
1015 }
1016 if (conv_p && !DECL_CONV_FN_P (m))
1017 break;
1018 if (DECL_NAME (m) == DECL_NAME (method))
1019 {
1020 insert_p = false;
1021 break;
1022 }
1023 if (complete_p
1024 && !DECL_CONV_FN_P (m)
1025 && DECL_NAME (m) > DECL_NAME (method))
1026 break;
1027 }
1028 }
1029 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1030
1031 /* Check to see if we've already got this method. */
1032 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1033 {
1034 tree fn = OVL_CURRENT (fns);
1035 tree fn_type;
1036 tree method_type;
1037 tree parms1;
1038 tree parms2;
1039
1040 if (TREE_CODE (fn) != TREE_CODE (method))
1041 continue;
1042
1043 /* [over.load] Member function declarations with the
1044 same name and the same parameter types cannot be
1045 overloaded if any of them is a static member
1046 function declaration.
1047
1048 [over.load] Member function declarations with the same name and
1049 the same parameter-type-list as well as member function template
1050 declarations with the same name, the same parameter-type-list, and
1051 the same template parameter lists cannot be overloaded if any of
1052 them, but not all, have a ref-qualifier.
1053
1054 [namespace.udecl] When a using-declaration brings names
1055 from a base class into a derived class scope, member
1056 functions in the derived class override and/or hide member
1057 functions with the same name and parameter types in a base
1058 class (rather than conflicting). */
1059 fn_type = TREE_TYPE (fn);
1060 method_type = TREE_TYPE (method);
1061 parms1 = TYPE_ARG_TYPES (fn_type);
1062 parms2 = TYPE_ARG_TYPES (method_type);
1063
1064 /* Compare the quals on the 'this' parm. Don't compare
1065 the whole types, as used functions are treated as
1066 coming from the using class in overload resolution. */
1067 if (! DECL_STATIC_FUNCTION_P (fn)
1068 && ! DECL_STATIC_FUNCTION_P (method)
1069 /* Either both or neither need to be ref-qualified for
1070 differing quals to allow overloading. */
1071 && (FUNCTION_REF_QUALIFIED (fn_type)
1072 == FUNCTION_REF_QUALIFIED (method_type))
1073 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1074 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1075 continue;
1076
1077 /* For templates, the return type and template parameters
1078 must be identical. */
1079 if (TREE_CODE (fn) == TEMPLATE_DECL
1080 && (!same_type_p (TREE_TYPE (fn_type),
1081 TREE_TYPE (method_type))
1082 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1083 DECL_TEMPLATE_PARMS (method))))
1084 continue;
1085
1086 if (! DECL_STATIC_FUNCTION_P (fn))
1087 parms1 = TREE_CHAIN (parms1);
1088 if (! DECL_STATIC_FUNCTION_P (method))
1089 parms2 = TREE_CHAIN (parms2);
1090
1091 if (compparms (parms1, parms2)
1092 && (!DECL_CONV_FN_P (fn)
1093 || same_type_p (TREE_TYPE (fn_type),
1094 TREE_TYPE (method_type))))
1095 {
1096 /* For function versions, their parms and types match
1097 but they are not duplicates. Record function versions
1098 as and when they are found. extern "C" functions are
1099 not treated as versions. */
1100 if (TREE_CODE (fn) == FUNCTION_DECL
1101 && TREE_CODE (method) == FUNCTION_DECL
1102 && !DECL_EXTERN_C_P (fn)
1103 && !DECL_EXTERN_C_P (method)
1104 && targetm.target_option.function_versions (fn, method))
1105 {
1106 /* Mark functions as versions if necessary. Modify the mangled
1107 decl name if necessary. */
1108 if (!DECL_FUNCTION_VERSIONED (fn))
1109 {
1110 DECL_FUNCTION_VERSIONED (fn) = 1;
1111 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1112 mangle_decl (fn);
1113 }
1114 if (!DECL_FUNCTION_VERSIONED (method))
1115 {
1116 DECL_FUNCTION_VERSIONED (method) = 1;
1117 if (DECL_ASSEMBLER_NAME_SET_P (method))
1118 mangle_decl (method);
1119 }
1120 record_function_versions (fn, method);
1121 continue;
1122 }
1123 if (DECL_INHERITED_CTOR_BASE (method))
1124 {
1125 if (DECL_INHERITED_CTOR_BASE (fn))
1126 {
1127 error_at (DECL_SOURCE_LOCATION (method),
1128 "%q#D inherited from %qT", method,
1129 DECL_INHERITED_CTOR_BASE (method));
1130 error_at (DECL_SOURCE_LOCATION (fn),
1131 "conflicts with version inherited from %qT",
1132 DECL_INHERITED_CTOR_BASE (fn));
1133 }
1134 /* Otherwise defer to the other function. */
1135 return false;
1136 }
1137 if (using_decl)
1138 {
1139 if (DECL_CONTEXT (fn) == type)
1140 /* Defer to the local function. */
1141 return false;
1142 }
1143 else
1144 {
1145 error ("%q+#D cannot be overloaded", method);
1146 error ("with %q+#D", fn);
1147 }
1148
1149 /* We don't call duplicate_decls here to merge the
1150 declarations because that will confuse things if the
1151 methods have inline definitions. In particular, we
1152 will crash while processing the definitions. */
1153 return false;
1154 }
1155 }
1156
1157 /* A class should never have more than one destructor. */
1158 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1159 return false;
1160
1161 /* Add the new binding. */
1162 if (using_decl)
1163 {
1164 overload = ovl_cons (method, current_fns);
1165 OVL_USED (overload) = true;
1166 }
1167 else
1168 overload = build_overload (method, current_fns);
1169
1170 if (conv_p)
1171 TYPE_HAS_CONVERSION (type) = 1;
1172 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1173 push_class_level_binding (DECL_NAME (method), overload);
1174
1175 if (insert_p)
1176 {
1177 bool reallocated;
1178
1179 /* We only expect to add few methods in the COMPLETE_P case, so
1180 just make room for one more method in that case. */
1181 if (complete_p)
1182 reallocated = vec_safe_reserve_exact (method_vec, 1);
1183 else
1184 reallocated = vec_safe_reserve (method_vec, 1);
1185 if (reallocated)
1186 CLASSTYPE_METHOD_VEC (type) = method_vec;
1187 if (slot == method_vec->length ())
1188 method_vec->quick_push (overload);
1189 else
1190 method_vec->quick_insert (slot, overload);
1191 }
1192 else
1193 /* Replace the current slot. */
1194 (*method_vec)[slot] = overload;
1195 return true;
1196 }
1197
1198 /* Subroutines of finish_struct. */
1199
1200 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1201 legit, otherwise return 0. */
1202
1203 static int
1204 alter_access (tree t, tree fdecl, tree access)
1205 {
1206 tree elem;
1207
1208 if (!DECL_LANG_SPECIFIC (fdecl))
1209 retrofit_lang_decl (fdecl);
1210
1211 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1212
1213 elem = purpose_member (t, DECL_ACCESS (fdecl));
1214 if (elem)
1215 {
1216 if (TREE_VALUE (elem) != access)
1217 {
1218 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1219 error ("conflicting access specifications for method"
1220 " %q+D, ignored", TREE_TYPE (fdecl));
1221 else
1222 error ("conflicting access specifications for field %qE, ignored",
1223 DECL_NAME (fdecl));
1224 }
1225 else
1226 {
1227 /* They're changing the access to the same thing they changed
1228 it to before. That's OK. */
1229 ;
1230 }
1231 }
1232 else
1233 {
1234 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1235 tf_warning_or_error);
1236 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1237 return 1;
1238 }
1239 return 0;
1240 }
1241
1242 /* Process the USING_DECL, which is a member of T. */
1243
1244 static void
1245 handle_using_decl (tree using_decl, tree t)
1246 {
1247 tree decl = USING_DECL_DECLS (using_decl);
1248 tree name = DECL_NAME (using_decl);
1249 tree access
1250 = TREE_PRIVATE (using_decl) ? access_private_node
1251 : TREE_PROTECTED (using_decl) ? access_protected_node
1252 : access_public_node;
1253 tree flist = NULL_TREE;
1254 tree old_value;
1255
1256 gcc_assert (!processing_template_decl && decl);
1257
1258 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1259 tf_warning_or_error);
1260 if (old_value)
1261 {
1262 if (is_overloaded_fn (old_value))
1263 old_value = OVL_CURRENT (old_value);
1264
1265 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1266 /* OK */;
1267 else
1268 old_value = NULL_TREE;
1269 }
1270
1271 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1272
1273 if (is_overloaded_fn (decl))
1274 flist = decl;
1275
1276 if (! old_value)
1277 ;
1278 else if (is_overloaded_fn (old_value))
1279 {
1280 if (flist)
1281 /* It's OK to use functions from a base when there are functions with
1282 the same name already present in the current class. */;
1283 else
1284 {
1285 error ("%q+D invalid in %q#T", using_decl, t);
1286 error (" because of local method %q+#D with same name",
1287 OVL_CURRENT (old_value));
1288 return;
1289 }
1290 }
1291 else if (!DECL_ARTIFICIAL (old_value))
1292 {
1293 error ("%q+D invalid in %q#T", using_decl, t);
1294 error (" because of local member %q+#D with same name", old_value);
1295 return;
1296 }
1297
1298 /* Make type T see field decl FDECL with access ACCESS. */
1299 if (flist)
1300 for (; flist; flist = OVL_NEXT (flist))
1301 {
1302 add_method (t, OVL_CURRENT (flist), using_decl);
1303 alter_access (t, OVL_CURRENT (flist), access);
1304 }
1305 else
1306 alter_access (t, decl, access);
1307 }
1308 \f
1309 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1310 types with abi tags, add the corresponding identifiers to the VEC in
1311 *DATA and set IDENTIFIER_MARKED. */
1312
1313 struct abi_tag_data
1314 {
1315 tree t;
1316 tree subob;
1317 };
1318
1319 static tree
1320 find_abi_tags_r (tree *tp, int */*walk_subtrees*/, void *data)
1321 {
1322 if (!OVERLOAD_TYPE_P (*tp))
1323 return NULL_TREE;
1324
1325 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1326 {
1327 struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1328 for (tree list = TREE_VALUE (attributes); list;
1329 list = TREE_CHAIN (list))
1330 {
1331 tree tag = TREE_VALUE (list);
1332 tree id = get_identifier (TREE_STRING_POINTER (tag));
1333 if (!IDENTIFIER_MARKED (id))
1334 {
1335 if (TYPE_P (p->subob))
1336 {
1337 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1338 "that base %qT has", p->t, tag, p->subob);
1339 inform (location_of (p->subob), "%qT declared here",
1340 p->subob);
1341 }
1342 else
1343 {
1344 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1345 "that %qT (used in the type of %qD) has",
1346 p->t, tag, *tp, p->subob);
1347 inform (location_of (p->subob), "%qD declared here",
1348 p->subob);
1349 inform (location_of (*tp), "%qT declared here", *tp);
1350 }
1351 }
1352 }
1353 }
1354 return NULL_TREE;
1355 }
1356
1357 /* Check that class T has all the abi tags that subobject SUBOB has, or
1358 warn if not. */
1359
1360 static void
1361 check_abi_tags (tree t, tree subob)
1362 {
1363 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1364 if (attributes)
1365 {
1366 for (tree list = TREE_VALUE (attributes); list;
1367 list = TREE_CHAIN (list))
1368 {
1369 tree tag = TREE_VALUE (list);
1370 tree id = get_identifier (TREE_STRING_POINTER (tag));
1371 IDENTIFIER_MARKED (id) = true;
1372 }
1373 }
1374
1375 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1376 struct abi_tag_data data = { t, subob };
1377
1378 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1379
1380 if (attributes)
1381 {
1382 for (tree list = TREE_VALUE (attributes); list;
1383 list = TREE_CHAIN (list))
1384 {
1385 tree tag = TREE_VALUE (list);
1386 tree id = get_identifier (TREE_STRING_POINTER (tag));
1387 IDENTIFIER_MARKED (id) = false;
1388 }
1389 }
1390 }
1391
1392 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1393 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1394 properties of the bases. */
1395
1396 static void
1397 check_bases (tree t,
1398 int* cant_have_const_ctor_p,
1399 int* no_const_asn_ref_p)
1400 {
1401 int i;
1402 bool seen_non_virtual_nearly_empty_base_p = 0;
1403 int seen_tm_mask = 0;
1404 tree base_binfo;
1405 tree binfo;
1406 tree field = NULL_TREE;
1407
1408 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1409 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1410 if (TREE_CODE (field) == FIELD_DECL)
1411 break;
1412
1413 for (binfo = TYPE_BINFO (t), i = 0;
1414 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1415 {
1416 tree basetype = TREE_TYPE (base_binfo);
1417
1418 gcc_assert (COMPLETE_TYPE_P (basetype));
1419
1420 if (CLASSTYPE_FINAL (basetype))
1421 error ("cannot derive from %<final%> base %qT in derived type %qT",
1422 basetype, t);
1423
1424 /* If any base class is non-literal, so is the derived class. */
1425 if (!CLASSTYPE_LITERAL_P (basetype))
1426 CLASSTYPE_LITERAL_P (t) = false;
1427
1428 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1429 here because the case of virtual functions but non-virtual
1430 dtor is handled in finish_struct_1. */
1431 if (!TYPE_POLYMORPHIC_P (basetype))
1432 warning (OPT_Weffc__,
1433 "base class %q#T has a non-virtual destructor", basetype);
1434
1435 /* If the base class doesn't have copy constructors or
1436 assignment operators that take const references, then the
1437 derived class cannot have such a member automatically
1438 generated. */
1439 if (TYPE_HAS_COPY_CTOR (basetype)
1440 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1441 *cant_have_const_ctor_p = 1;
1442 if (TYPE_HAS_COPY_ASSIGN (basetype)
1443 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1444 *no_const_asn_ref_p = 1;
1445
1446 if (BINFO_VIRTUAL_P (base_binfo))
1447 /* A virtual base does not effect nearly emptiness. */
1448 ;
1449 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1450 {
1451 if (seen_non_virtual_nearly_empty_base_p)
1452 /* And if there is more than one nearly empty base, then the
1453 derived class is not nearly empty either. */
1454 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1455 else
1456 /* Remember we've seen one. */
1457 seen_non_virtual_nearly_empty_base_p = 1;
1458 }
1459 else if (!is_empty_class (basetype))
1460 /* If the base class is not empty or nearly empty, then this
1461 class cannot be nearly empty. */
1462 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1463
1464 /* A lot of properties from the bases also apply to the derived
1465 class. */
1466 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1467 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1468 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1469 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1470 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1471 || !TYPE_HAS_COPY_ASSIGN (basetype));
1472 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1473 || !TYPE_HAS_COPY_CTOR (basetype));
1474 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1475 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1476 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1477 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1478 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1479 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1480 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1481 || TYPE_HAS_COMPLEX_DFLT (basetype));
1482
1483 /* A standard-layout class is a class that:
1484 ...
1485 * has no non-standard-layout base classes, */
1486 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1487 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1488 {
1489 tree basefield;
1490 /* ...has no base classes of the same type as the first non-static
1491 data member... */
1492 if (field && DECL_CONTEXT (field) == t
1493 && (same_type_ignoring_top_level_qualifiers_p
1494 (TREE_TYPE (field), basetype)))
1495 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1496 else
1497 /* ...either has no non-static data members in the most-derived
1498 class and at most one base class with non-static data
1499 members, or has no base classes with non-static data
1500 members */
1501 for (basefield = TYPE_FIELDS (basetype); basefield;
1502 basefield = DECL_CHAIN (basefield))
1503 if (TREE_CODE (basefield) == FIELD_DECL)
1504 {
1505 if (field)
1506 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1507 else
1508 field = basefield;
1509 break;
1510 }
1511 }
1512
1513 /* Don't bother collecting tm attributes if transactional memory
1514 support is not enabled. */
1515 if (flag_tm)
1516 {
1517 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1518 if (tm_attr)
1519 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1520 }
1521
1522 check_abi_tags (t, basetype);
1523 }
1524
1525 /* If one of the base classes had TM attributes, and the current class
1526 doesn't define its own, then the current class inherits one. */
1527 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1528 {
1529 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1530 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1531 }
1532 }
1533
1534 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1535 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1536 that have had a nearly-empty virtual primary base stolen by some
1537 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1538 T. */
1539
1540 static void
1541 determine_primary_bases (tree t)
1542 {
1543 unsigned i;
1544 tree primary = NULL_TREE;
1545 tree type_binfo = TYPE_BINFO (t);
1546 tree base_binfo;
1547
1548 /* Determine the primary bases of our bases. */
1549 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1550 base_binfo = TREE_CHAIN (base_binfo))
1551 {
1552 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1553
1554 /* See if we're the non-virtual primary of our inheritance
1555 chain. */
1556 if (!BINFO_VIRTUAL_P (base_binfo))
1557 {
1558 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1559 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1560
1561 if (parent_primary
1562 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1563 BINFO_TYPE (parent_primary)))
1564 /* We are the primary binfo. */
1565 BINFO_PRIMARY_P (base_binfo) = 1;
1566 }
1567 /* Determine if we have a virtual primary base, and mark it so.
1568 */
1569 if (primary && BINFO_VIRTUAL_P (primary))
1570 {
1571 tree this_primary = copied_binfo (primary, base_binfo);
1572
1573 if (BINFO_PRIMARY_P (this_primary))
1574 /* Someone already claimed this base. */
1575 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1576 else
1577 {
1578 tree delta;
1579
1580 BINFO_PRIMARY_P (this_primary) = 1;
1581 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1582
1583 /* A virtual binfo might have been copied from within
1584 another hierarchy. As we're about to use it as a
1585 primary base, make sure the offsets match. */
1586 delta = size_diffop_loc (input_location,
1587 convert (ssizetype,
1588 BINFO_OFFSET (base_binfo)),
1589 convert (ssizetype,
1590 BINFO_OFFSET (this_primary)));
1591
1592 propagate_binfo_offsets (this_primary, delta);
1593 }
1594 }
1595 }
1596
1597 /* First look for a dynamic direct non-virtual base. */
1598 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1599 {
1600 tree basetype = BINFO_TYPE (base_binfo);
1601
1602 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1603 {
1604 primary = base_binfo;
1605 goto found;
1606 }
1607 }
1608
1609 /* A "nearly-empty" virtual base class can be the primary base
1610 class, if no non-virtual polymorphic base can be found. Look for
1611 a nearly-empty virtual dynamic base that is not already a primary
1612 base of something in the hierarchy. If there is no such base,
1613 just pick the first nearly-empty virtual base. */
1614
1615 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1616 base_binfo = TREE_CHAIN (base_binfo))
1617 if (BINFO_VIRTUAL_P (base_binfo)
1618 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1619 {
1620 if (!BINFO_PRIMARY_P (base_binfo))
1621 {
1622 /* Found one that is not primary. */
1623 primary = base_binfo;
1624 goto found;
1625 }
1626 else if (!primary)
1627 /* Remember the first candidate. */
1628 primary = base_binfo;
1629 }
1630
1631 found:
1632 /* If we've got a primary base, use it. */
1633 if (primary)
1634 {
1635 tree basetype = BINFO_TYPE (primary);
1636
1637 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1638 if (BINFO_PRIMARY_P (primary))
1639 /* We are stealing a primary base. */
1640 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1641 BINFO_PRIMARY_P (primary) = 1;
1642 if (BINFO_VIRTUAL_P (primary))
1643 {
1644 tree delta;
1645
1646 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1647 /* A virtual binfo might have been copied from within
1648 another hierarchy. As we're about to use it as a primary
1649 base, make sure the offsets match. */
1650 delta = size_diffop_loc (input_location, ssize_int (0),
1651 convert (ssizetype, BINFO_OFFSET (primary)));
1652
1653 propagate_binfo_offsets (primary, delta);
1654 }
1655
1656 primary = TYPE_BINFO (basetype);
1657
1658 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1659 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1660 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1661 }
1662 }
1663
1664 /* Update the variant types of T. */
1665
1666 void
1667 fixup_type_variants (tree t)
1668 {
1669 tree variants;
1670
1671 if (!t)
1672 return;
1673
1674 for (variants = TYPE_NEXT_VARIANT (t);
1675 variants;
1676 variants = TYPE_NEXT_VARIANT (variants))
1677 {
1678 /* These fields are in the _TYPE part of the node, not in
1679 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1680 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1681 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1682 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1683 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1684
1685 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1686
1687 TYPE_BINFO (variants) = TYPE_BINFO (t);
1688
1689 /* Copy whatever these are holding today. */
1690 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1691 TYPE_METHODS (variants) = TYPE_METHODS (t);
1692 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1693 }
1694 }
1695
1696 /* Early variant fixups: we apply attributes at the beginning of the class
1697 definition, and we need to fix up any variants that have already been
1698 made via elaborated-type-specifier so that check_qualified_type works. */
1699
1700 void
1701 fixup_attribute_variants (tree t)
1702 {
1703 tree variants;
1704
1705 if (!t)
1706 return;
1707
1708 for (variants = TYPE_NEXT_VARIANT (t);
1709 variants;
1710 variants = TYPE_NEXT_VARIANT (variants))
1711 {
1712 /* These are the two fields that check_qualified_type looks at and
1713 are affected by attributes. */
1714 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1715 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1716 }
1717 }
1718 \f
1719 /* Set memoizing fields and bits of T (and its variants) for later
1720 use. */
1721
1722 static void
1723 finish_struct_bits (tree t)
1724 {
1725 /* Fix up variants (if any). */
1726 fixup_type_variants (t);
1727
1728 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1729 /* For a class w/o baseclasses, 'finish_struct' has set
1730 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1731 Similarly for a class whose base classes do not have vtables.
1732 When neither of these is true, we might have removed abstract
1733 virtuals (by providing a definition), added some (by declaring
1734 new ones), or redeclared ones from a base class. We need to
1735 recalculate what's really an abstract virtual at this point (by
1736 looking in the vtables). */
1737 get_pure_virtuals (t);
1738
1739 /* If this type has a copy constructor or a destructor, force its
1740 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1741 nonzero. This will cause it to be passed by invisible reference
1742 and prevent it from being returned in a register. */
1743 if (type_has_nontrivial_copy_init (t)
1744 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1745 {
1746 tree variants;
1747 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1748 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1749 {
1750 SET_TYPE_MODE (variants, BLKmode);
1751 TREE_ADDRESSABLE (variants) = 1;
1752 }
1753 }
1754 }
1755
1756 /* Issue warnings about T having private constructors, but no friends,
1757 and so forth.
1758
1759 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1760 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1761 non-private static member functions. */
1762
1763 static void
1764 maybe_warn_about_overly_private_class (tree t)
1765 {
1766 int has_member_fn = 0;
1767 int has_nonprivate_method = 0;
1768 tree fn;
1769
1770 if (!warn_ctor_dtor_privacy
1771 /* If the class has friends, those entities might create and
1772 access instances, so we should not warn. */
1773 || (CLASSTYPE_FRIEND_CLASSES (t)
1774 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1775 /* We will have warned when the template was declared; there's
1776 no need to warn on every instantiation. */
1777 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1778 /* There's no reason to even consider warning about this
1779 class. */
1780 return;
1781
1782 /* We only issue one warning, if more than one applies, because
1783 otherwise, on code like:
1784
1785 class A {
1786 // Oops - forgot `public:'
1787 A();
1788 A(const A&);
1789 ~A();
1790 };
1791
1792 we warn several times about essentially the same problem. */
1793
1794 /* Check to see if all (non-constructor, non-destructor) member
1795 functions are private. (Since there are no friends or
1796 non-private statics, we can't ever call any of the private member
1797 functions.) */
1798 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1799 /* We're not interested in compiler-generated methods; they don't
1800 provide any way to call private members. */
1801 if (!DECL_ARTIFICIAL (fn))
1802 {
1803 if (!TREE_PRIVATE (fn))
1804 {
1805 if (DECL_STATIC_FUNCTION_P (fn))
1806 /* A non-private static member function is just like a
1807 friend; it can create and invoke private member
1808 functions, and be accessed without a class
1809 instance. */
1810 return;
1811
1812 has_nonprivate_method = 1;
1813 /* Keep searching for a static member function. */
1814 }
1815 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1816 has_member_fn = 1;
1817 }
1818
1819 if (!has_nonprivate_method && has_member_fn)
1820 {
1821 /* There are no non-private methods, and there's at least one
1822 private member function that isn't a constructor or
1823 destructor. (If all the private members are
1824 constructors/destructors we want to use the code below that
1825 issues error messages specifically referring to
1826 constructors/destructors.) */
1827 unsigned i;
1828 tree binfo = TYPE_BINFO (t);
1829
1830 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1831 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1832 {
1833 has_nonprivate_method = 1;
1834 break;
1835 }
1836 if (!has_nonprivate_method)
1837 {
1838 warning (OPT_Wctor_dtor_privacy,
1839 "all member functions in class %qT are private", t);
1840 return;
1841 }
1842 }
1843
1844 /* Even if some of the member functions are non-private, the class
1845 won't be useful for much if all the constructors or destructors
1846 are private: such an object can never be created or destroyed. */
1847 fn = CLASSTYPE_DESTRUCTORS (t);
1848 if (fn && TREE_PRIVATE (fn))
1849 {
1850 warning (OPT_Wctor_dtor_privacy,
1851 "%q#T only defines a private destructor and has no friends",
1852 t);
1853 return;
1854 }
1855
1856 /* Warn about classes that have private constructors and no friends. */
1857 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1858 /* Implicitly generated constructors are always public. */
1859 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1860 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1861 {
1862 int nonprivate_ctor = 0;
1863
1864 /* If a non-template class does not define a copy
1865 constructor, one is defined for it, enabling it to avoid
1866 this warning. For a template class, this does not
1867 happen, and so we would normally get a warning on:
1868
1869 template <class T> class C { private: C(); };
1870
1871 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1872 complete non-template or fully instantiated classes have this
1873 flag set. */
1874 if (!TYPE_HAS_COPY_CTOR (t))
1875 nonprivate_ctor = 1;
1876 else
1877 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1878 {
1879 tree ctor = OVL_CURRENT (fn);
1880 /* Ideally, we wouldn't count copy constructors (or, in
1881 fact, any constructor that takes an argument of the
1882 class type as a parameter) because such things cannot
1883 be used to construct an instance of the class unless
1884 you already have one. But, for now at least, we're
1885 more generous. */
1886 if (! TREE_PRIVATE (ctor))
1887 {
1888 nonprivate_ctor = 1;
1889 break;
1890 }
1891 }
1892
1893 if (nonprivate_ctor == 0)
1894 {
1895 warning (OPT_Wctor_dtor_privacy,
1896 "%q#T only defines private constructors and has no friends",
1897 t);
1898 return;
1899 }
1900 }
1901 }
1902
1903 static struct {
1904 gt_pointer_operator new_value;
1905 void *cookie;
1906 } resort_data;
1907
1908 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1909
1910 static int
1911 method_name_cmp (const void* m1_p, const void* m2_p)
1912 {
1913 const tree *const m1 = (const tree *) m1_p;
1914 const tree *const m2 = (const tree *) m2_p;
1915
1916 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1917 return 0;
1918 if (*m1 == NULL_TREE)
1919 return -1;
1920 if (*m2 == NULL_TREE)
1921 return 1;
1922 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1923 return -1;
1924 return 1;
1925 }
1926
1927 /* This routine compares two fields like method_name_cmp but using the
1928 pointer operator in resort_field_decl_data. */
1929
1930 static int
1931 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1932 {
1933 const tree *const m1 = (const tree *) m1_p;
1934 const tree *const m2 = (const tree *) m2_p;
1935 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1936 return 0;
1937 if (*m1 == NULL_TREE)
1938 return -1;
1939 if (*m2 == NULL_TREE)
1940 return 1;
1941 {
1942 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1943 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1944 resort_data.new_value (&d1, resort_data.cookie);
1945 resort_data.new_value (&d2, resort_data.cookie);
1946 if (d1 < d2)
1947 return -1;
1948 }
1949 return 1;
1950 }
1951
1952 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1953
1954 void
1955 resort_type_method_vec (void* obj,
1956 void* /*orig_obj*/,
1957 gt_pointer_operator new_value,
1958 void* cookie)
1959 {
1960 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
1961 int len = vec_safe_length (method_vec);
1962 size_t slot;
1963 tree fn;
1964
1965 /* The type conversion ops have to live at the front of the vec, so we
1966 can't sort them. */
1967 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1968 vec_safe_iterate (method_vec, slot, &fn);
1969 ++slot)
1970 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1971 break;
1972
1973 if (len - slot > 1)
1974 {
1975 resort_data.new_value = new_value;
1976 resort_data.cookie = cookie;
1977 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
1978 resort_method_name_cmp);
1979 }
1980 }
1981
1982 /* Warn about duplicate methods in fn_fields.
1983
1984 Sort methods that are not special (i.e., constructors, destructors,
1985 and type conversion operators) so that we can find them faster in
1986 search. */
1987
1988 static void
1989 finish_struct_methods (tree t)
1990 {
1991 tree fn_fields;
1992 vec<tree, va_gc> *method_vec;
1993 int slot, len;
1994
1995 method_vec = CLASSTYPE_METHOD_VEC (t);
1996 if (!method_vec)
1997 return;
1998
1999 len = method_vec->length ();
2000
2001 /* Clear DECL_IN_AGGR_P for all functions. */
2002 for (fn_fields = TYPE_METHODS (t); fn_fields;
2003 fn_fields = DECL_CHAIN (fn_fields))
2004 DECL_IN_AGGR_P (fn_fields) = 0;
2005
2006 /* Issue warnings about private constructors and such. If there are
2007 no methods, then some public defaults are generated. */
2008 maybe_warn_about_overly_private_class (t);
2009
2010 /* The type conversion ops have to live at the front of the vec, so we
2011 can't sort them. */
2012 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2013 method_vec->iterate (slot, &fn_fields);
2014 ++slot)
2015 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2016 break;
2017 if (len - slot > 1)
2018 qsort (method_vec->address () + slot,
2019 len-slot, sizeof (tree), method_name_cmp);
2020 }
2021
2022 /* Make BINFO's vtable have N entries, including RTTI entries,
2023 vbase and vcall offsets, etc. Set its type and call the back end
2024 to lay it out. */
2025
2026 static void
2027 layout_vtable_decl (tree binfo, int n)
2028 {
2029 tree atype;
2030 tree vtable;
2031
2032 atype = build_array_of_n_type (vtable_entry_type, n);
2033 layout_type (atype);
2034
2035 /* We may have to grow the vtable. */
2036 vtable = get_vtbl_decl_for_binfo (binfo);
2037 if (!same_type_p (TREE_TYPE (vtable), atype))
2038 {
2039 TREE_TYPE (vtable) = atype;
2040 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2041 layout_decl (vtable, 0);
2042 }
2043 }
2044
2045 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2046 have the same signature. */
2047
2048 int
2049 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2050 {
2051 /* One destructor overrides another if they are the same kind of
2052 destructor. */
2053 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2054 && special_function_p (base_fndecl) == special_function_p (fndecl))
2055 return 1;
2056 /* But a non-destructor never overrides a destructor, nor vice
2057 versa, nor do different kinds of destructors override
2058 one-another. For example, a complete object destructor does not
2059 override a deleting destructor. */
2060 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2061 return 0;
2062
2063 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2064 || (DECL_CONV_FN_P (fndecl)
2065 && DECL_CONV_FN_P (base_fndecl)
2066 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2067 DECL_CONV_FN_TYPE (base_fndecl))))
2068 {
2069 tree fntype = TREE_TYPE (fndecl);
2070 tree base_fntype = TREE_TYPE (base_fndecl);
2071 if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2072 && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2073 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2074 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2075 return 1;
2076 }
2077 return 0;
2078 }
2079
2080 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2081 subobject. */
2082
2083 static bool
2084 base_derived_from (tree derived, tree base)
2085 {
2086 tree probe;
2087
2088 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2089 {
2090 if (probe == derived)
2091 return true;
2092 else if (BINFO_VIRTUAL_P (probe))
2093 /* If we meet a virtual base, we can't follow the inheritance
2094 any more. See if the complete type of DERIVED contains
2095 such a virtual base. */
2096 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2097 != NULL_TREE);
2098 }
2099 return false;
2100 }
2101
2102 typedef struct find_final_overrider_data_s {
2103 /* The function for which we are trying to find a final overrider. */
2104 tree fn;
2105 /* The base class in which the function was declared. */
2106 tree declaring_base;
2107 /* The candidate overriders. */
2108 tree candidates;
2109 /* Path to most derived. */
2110 vec<tree> path;
2111 } find_final_overrider_data;
2112
2113 /* Add the overrider along the current path to FFOD->CANDIDATES.
2114 Returns true if an overrider was found; false otherwise. */
2115
2116 static bool
2117 dfs_find_final_overrider_1 (tree binfo,
2118 find_final_overrider_data *ffod,
2119 unsigned depth)
2120 {
2121 tree method;
2122
2123 /* If BINFO is not the most derived type, try a more derived class.
2124 A definition there will overrider a definition here. */
2125 if (depth)
2126 {
2127 depth--;
2128 if (dfs_find_final_overrider_1
2129 (ffod->path[depth], ffod, depth))
2130 return true;
2131 }
2132
2133 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2134 if (method)
2135 {
2136 tree *candidate = &ffod->candidates;
2137
2138 /* Remove any candidates overridden by this new function. */
2139 while (*candidate)
2140 {
2141 /* If *CANDIDATE overrides METHOD, then METHOD
2142 cannot override anything else on the list. */
2143 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2144 return true;
2145 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2146 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2147 *candidate = TREE_CHAIN (*candidate);
2148 else
2149 candidate = &TREE_CHAIN (*candidate);
2150 }
2151
2152 /* Add the new function. */
2153 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2154 return true;
2155 }
2156
2157 return false;
2158 }
2159
2160 /* Called from find_final_overrider via dfs_walk. */
2161
2162 static tree
2163 dfs_find_final_overrider_pre (tree binfo, void *data)
2164 {
2165 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2166
2167 if (binfo == ffod->declaring_base)
2168 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2169 ffod->path.safe_push (binfo);
2170
2171 return NULL_TREE;
2172 }
2173
2174 static tree
2175 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2176 {
2177 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2178 ffod->path.pop ();
2179
2180 return NULL_TREE;
2181 }
2182
2183 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2184 FN and whose TREE_VALUE is the binfo for the base where the
2185 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2186 DERIVED) is the base object in which FN is declared. */
2187
2188 static tree
2189 find_final_overrider (tree derived, tree binfo, tree fn)
2190 {
2191 find_final_overrider_data ffod;
2192
2193 /* Getting this right is a little tricky. This is valid:
2194
2195 struct S { virtual void f (); };
2196 struct T { virtual void f (); };
2197 struct U : public S, public T { };
2198
2199 even though calling `f' in `U' is ambiguous. But,
2200
2201 struct R { virtual void f(); };
2202 struct S : virtual public R { virtual void f (); };
2203 struct T : virtual public R { virtual void f (); };
2204 struct U : public S, public T { };
2205
2206 is not -- there's no way to decide whether to put `S::f' or
2207 `T::f' in the vtable for `R'.
2208
2209 The solution is to look at all paths to BINFO. If we find
2210 different overriders along any two, then there is a problem. */
2211 if (DECL_THUNK_P (fn))
2212 fn = THUNK_TARGET (fn);
2213
2214 /* Determine the depth of the hierarchy. */
2215 ffod.fn = fn;
2216 ffod.declaring_base = binfo;
2217 ffod.candidates = NULL_TREE;
2218 ffod.path.create (30);
2219
2220 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2221 dfs_find_final_overrider_post, &ffod);
2222
2223 ffod.path.release ();
2224
2225 /* If there was no winner, issue an error message. */
2226 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2227 return error_mark_node;
2228
2229 return ffod.candidates;
2230 }
2231
2232 /* Return the index of the vcall offset for FN when TYPE is used as a
2233 virtual base. */
2234
2235 static tree
2236 get_vcall_index (tree fn, tree type)
2237 {
2238 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2239 tree_pair_p p;
2240 unsigned ix;
2241
2242 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2243 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2244 || same_signature_p (fn, p->purpose))
2245 return p->value;
2246
2247 /* There should always be an appropriate index. */
2248 gcc_unreachable ();
2249 }
2250
2251 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2252 dominated by T. FN is the old function; VIRTUALS points to the
2253 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2254 of that entry in the list. */
2255
2256 static void
2257 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2258 unsigned ix)
2259 {
2260 tree b;
2261 tree overrider;
2262 tree delta;
2263 tree virtual_base;
2264 tree first_defn;
2265 tree overrider_fn, overrider_target;
2266 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2267 tree over_return, base_return;
2268 bool lost = false;
2269
2270 /* Find the nearest primary base (possibly binfo itself) which defines
2271 this function; this is the class the caller will convert to when
2272 calling FN through BINFO. */
2273 for (b = binfo; ; b = get_primary_binfo (b))
2274 {
2275 gcc_assert (b);
2276 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2277 break;
2278
2279 /* The nearest definition is from a lost primary. */
2280 if (BINFO_LOST_PRIMARY_P (b))
2281 lost = true;
2282 }
2283 first_defn = b;
2284
2285 /* Find the final overrider. */
2286 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2287 if (overrider == error_mark_node)
2288 {
2289 error ("no unique final overrider for %qD in %qT", target_fn, t);
2290 return;
2291 }
2292 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2293
2294 /* Check for adjusting covariant return types. */
2295 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2296 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2297
2298 if (POINTER_TYPE_P (over_return)
2299 && TREE_CODE (over_return) == TREE_CODE (base_return)
2300 && CLASS_TYPE_P (TREE_TYPE (over_return))
2301 && CLASS_TYPE_P (TREE_TYPE (base_return))
2302 /* If the overrider is invalid, don't even try. */
2303 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2304 {
2305 /* If FN is a covariant thunk, we must figure out the adjustment
2306 to the final base FN was converting to. As OVERRIDER_TARGET might
2307 also be converting to the return type of FN, we have to
2308 combine the two conversions here. */
2309 tree fixed_offset, virtual_offset;
2310
2311 over_return = TREE_TYPE (over_return);
2312 base_return = TREE_TYPE (base_return);
2313
2314 if (DECL_THUNK_P (fn))
2315 {
2316 gcc_assert (DECL_RESULT_THUNK_P (fn));
2317 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2318 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2319 }
2320 else
2321 fixed_offset = virtual_offset = NULL_TREE;
2322
2323 if (virtual_offset)
2324 /* Find the equivalent binfo within the return type of the
2325 overriding function. We will want the vbase offset from
2326 there. */
2327 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2328 over_return);
2329 else if (!same_type_ignoring_top_level_qualifiers_p
2330 (over_return, base_return))
2331 {
2332 /* There was no existing virtual thunk (which takes
2333 precedence). So find the binfo of the base function's
2334 return type within the overriding function's return type.
2335 We cannot call lookup base here, because we're inside a
2336 dfs_walk, and will therefore clobber the BINFO_MARKED
2337 flags. Fortunately we know the covariancy is valid (it
2338 has already been checked), so we can just iterate along
2339 the binfos, which have been chained in inheritance graph
2340 order. Of course it is lame that we have to repeat the
2341 search here anyway -- we should really be caching pieces
2342 of the vtable and avoiding this repeated work. */
2343 tree thunk_binfo, base_binfo;
2344
2345 /* Find the base binfo within the overriding function's
2346 return type. We will always find a thunk_binfo, except
2347 when the covariancy is invalid (which we will have
2348 already diagnosed). */
2349 for (base_binfo = TYPE_BINFO (base_return),
2350 thunk_binfo = TYPE_BINFO (over_return);
2351 thunk_binfo;
2352 thunk_binfo = TREE_CHAIN (thunk_binfo))
2353 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2354 BINFO_TYPE (base_binfo)))
2355 break;
2356
2357 /* See if virtual inheritance is involved. */
2358 for (virtual_offset = thunk_binfo;
2359 virtual_offset;
2360 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2361 if (BINFO_VIRTUAL_P (virtual_offset))
2362 break;
2363
2364 if (virtual_offset
2365 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2366 {
2367 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2368
2369 if (virtual_offset)
2370 {
2371 /* We convert via virtual base. Adjust the fixed
2372 offset to be from there. */
2373 offset =
2374 size_diffop (offset,
2375 convert (ssizetype,
2376 BINFO_OFFSET (virtual_offset)));
2377 }
2378 if (fixed_offset)
2379 /* There was an existing fixed offset, this must be
2380 from the base just converted to, and the base the
2381 FN was thunking to. */
2382 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2383 else
2384 fixed_offset = offset;
2385 }
2386 }
2387
2388 if (fixed_offset || virtual_offset)
2389 /* Replace the overriding function with a covariant thunk. We
2390 will emit the overriding function in its own slot as
2391 well. */
2392 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2393 fixed_offset, virtual_offset);
2394 }
2395 else
2396 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2397 !DECL_THUNK_P (fn));
2398
2399 /* If we need a covariant thunk, then we may need to adjust first_defn.
2400 The ABI specifies that the thunks emitted with a function are
2401 determined by which bases the function overrides, so we need to be
2402 sure that we're using a thunk for some overridden base; even if we
2403 know that the necessary this adjustment is zero, there may not be an
2404 appropriate zero-this-adjusment thunk for us to use since thunks for
2405 overriding virtual bases always use the vcall offset.
2406
2407 Furthermore, just choosing any base that overrides this function isn't
2408 quite right, as this slot won't be used for calls through a type that
2409 puts a covariant thunk here. Calling the function through such a type
2410 will use a different slot, and that slot is the one that determines
2411 the thunk emitted for that base.
2412
2413 So, keep looking until we find the base that we're really overriding
2414 in this slot: the nearest primary base that doesn't use a covariant
2415 thunk in this slot. */
2416 if (overrider_target != overrider_fn)
2417 {
2418 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2419 /* We already know that the overrider needs a covariant thunk. */
2420 b = get_primary_binfo (b);
2421 for (; ; b = get_primary_binfo (b))
2422 {
2423 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2424 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2425 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2426 break;
2427 if (BINFO_LOST_PRIMARY_P (b))
2428 lost = true;
2429 }
2430 first_defn = b;
2431 }
2432
2433 /* Assume that we will produce a thunk that convert all the way to
2434 the final overrider, and not to an intermediate virtual base. */
2435 virtual_base = NULL_TREE;
2436
2437 /* See if we can convert to an intermediate virtual base first, and then
2438 use the vcall offset located there to finish the conversion. */
2439 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2440 {
2441 /* If we find the final overrider, then we can stop
2442 walking. */
2443 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2444 BINFO_TYPE (TREE_VALUE (overrider))))
2445 break;
2446
2447 /* If we find a virtual base, and we haven't yet found the
2448 overrider, then there is a virtual base between the
2449 declaring base (first_defn) and the final overrider. */
2450 if (BINFO_VIRTUAL_P (b))
2451 {
2452 virtual_base = b;
2453 break;
2454 }
2455 }
2456
2457 /* Compute the constant adjustment to the `this' pointer. The
2458 `this' pointer, when this function is called, will point at BINFO
2459 (or one of its primary bases, which are at the same offset). */
2460 if (virtual_base)
2461 /* The `this' pointer needs to be adjusted from the declaration to
2462 the nearest virtual base. */
2463 delta = size_diffop_loc (input_location,
2464 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2465 convert (ssizetype, BINFO_OFFSET (first_defn)));
2466 else if (lost)
2467 /* If the nearest definition is in a lost primary, we don't need an
2468 entry in our vtable. Except possibly in a constructor vtable,
2469 if we happen to get our primary back. In that case, the offset
2470 will be zero, as it will be a primary base. */
2471 delta = size_zero_node;
2472 else
2473 /* The `this' pointer needs to be adjusted from pointing to
2474 BINFO to pointing at the base where the final overrider
2475 appears. */
2476 delta = size_diffop_loc (input_location,
2477 convert (ssizetype,
2478 BINFO_OFFSET (TREE_VALUE (overrider))),
2479 convert (ssizetype, BINFO_OFFSET (binfo)));
2480
2481 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2482
2483 if (virtual_base)
2484 BV_VCALL_INDEX (*virtuals)
2485 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2486 else
2487 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2488
2489 BV_LOST_PRIMARY (*virtuals) = lost;
2490 }
2491
2492 /* Called from modify_all_vtables via dfs_walk. */
2493
2494 static tree
2495 dfs_modify_vtables (tree binfo, void* data)
2496 {
2497 tree t = (tree) data;
2498 tree virtuals;
2499 tree old_virtuals;
2500 unsigned ix;
2501
2502 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2503 /* A base without a vtable needs no modification, and its bases
2504 are uninteresting. */
2505 return dfs_skip_bases;
2506
2507 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2508 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2509 /* Don't do the primary vtable, if it's new. */
2510 return NULL_TREE;
2511
2512 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2513 /* There's no need to modify the vtable for a non-virtual primary
2514 base; we're not going to use that vtable anyhow. We do still
2515 need to do this for virtual primary bases, as they could become
2516 non-primary in a construction vtable. */
2517 return NULL_TREE;
2518
2519 make_new_vtable (t, binfo);
2520
2521 /* Now, go through each of the virtual functions in the virtual
2522 function table for BINFO. Find the final overrider, and update
2523 the BINFO_VIRTUALS list appropriately. */
2524 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2525 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2526 virtuals;
2527 ix++, virtuals = TREE_CHAIN (virtuals),
2528 old_virtuals = TREE_CHAIN (old_virtuals))
2529 update_vtable_entry_for_fn (t,
2530 binfo,
2531 BV_FN (old_virtuals),
2532 &virtuals, ix);
2533
2534 return NULL_TREE;
2535 }
2536
2537 /* Update all of the primary and secondary vtables for T. Create new
2538 vtables as required, and initialize their RTTI information. Each
2539 of the functions in VIRTUALS is declared in T and may override a
2540 virtual function from a base class; find and modify the appropriate
2541 entries to point to the overriding functions. Returns a list, in
2542 declaration order, of the virtual functions that are declared in T,
2543 but do not appear in the primary base class vtable, and which
2544 should therefore be appended to the end of the vtable for T. */
2545
2546 static tree
2547 modify_all_vtables (tree t, tree virtuals)
2548 {
2549 tree binfo = TYPE_BINFO (t);
2550 tree *fnsp;
2551
2552 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2553 if (TYPE_CONTAINS_VPTR_P (t))
2554 get_vtable_decl (t, false);
2555
2556 /* Update all of the vtables. */
2557 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2558
2559 /* Add virtual functions not already in our primary vtable. These
2560 will be both those introduced by this class, and those overridden
2561 from secondary bases. It does not include virtuals merely
2562 inherited from secondary bases. */
2563 for (fnsp = &virtuals; *fnsp; )
2564 {
2565 tree fn = TREE_VALUE (*fnsp);
2566
2567 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2568 || DECL_VINDEX (fn) == error_mark_node)
2569 {
2570 /* We don't need to adjust the `this' pointer when
2571 calling this function. */
2572 BV_DELTA (*fnsp) = integer_zero_node;
2573 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2574
2575 /* This is a function not already in our vtable. Keep it. */
2576 fnsp = &TREE_CHAIN (*fnsp);
2577 }
2578 else
2579 /* We've already got an entry for this function. Skip it. */
2580 *fnsp = TREE_CHAIN (*fnsp);
2581 }
2582
2583 return virtuals;
2584 }
2585
2586 /* Get the base virtual function declarations in T that have the
2587 indicated NAME. */
2588
2589 static tree
2590 get_basefndecls (tree name, tree t)
2591 {
2592 tree methods;
2593 tree base_fndecls = NULL_TREE;
2594 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2595 int i;
2596
2597 /* Find virtual functions in T with the indicated NAME. */
2598 i = lookup_fnfields_1 (t, name);
2599 if (i != -1)
2600 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2601 methods;
2602 methods = OVL_NEXT (methods))
2603 {
2604 tree method = OVL_CURRENT (methods);
2605
2606 if (TREE_CODE (method) == FUNCTION_DECL
2607 && DECL_VINDEX (method))
2608 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2609 }
2610
2611 if (base_fndecls)
2612 return base_fndecls;
2613
2614 for (i = 0; i < n_baseclasses; i++)
2615 {
2616 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2617 base_fndecls = chainon (get_basefndecls (name, basetype),
2618 base_fndecls);
2619 }
2620
2621 return base_fndecls;
2622 }
2623
2624 /* If this declaration supersedes the declaration of
2625 a method declared virtual in the base class, then
2626 mark this field as being virtual as well. */
2627
2628 void
2629 check_for_override (tree decl, tree ctype)
2630 {
2631 bool overrides_found = false;
2632 if (TREE_CODE (decl) == TEMPLATE_DECL)
2633 /* In [temp.mem] we have:
2634
2635 A specialization of a member function template does not
2636 override a virtual function from a base class. */
2637 return;
2638 if ((DECL_DESTRUCTOR_P (decl)
2639 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2640 || DECL_CONV_FN_P (decl))
2641 && look_for_overrides (ctype, decl)
2642 && !DECL_STATIC_FUNCTION_P (decl))
2643 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2644 the error_mark_node so that we know it is an overriding
2645 function. */
2646 {
2647 DECL_VINDEX (decl) = decl;
2648 overrides_found = true;
2649 }
2650
2651 if (DECL_VIRTUAL_P (decl))
2652 {
2653 if (!DECL_VINDEX (decl))
2654 DECL_VINDEX (decl) = error_mark_node;
2655 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2656 if (DECL_DESTRUCTOR_P (decl))
2657 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2658 }
2659 else if (DECL_FINAL_P (decl))
2660 error ("%q+#D marked final, but is not virtual", decl);
2661 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2662 error ("%q+#D marked override, but does not override", decl);
2663 }
2664
2665 /* Warn about hidden virtual functions that are not overridden in t.
2666 We know that constructors and destructors don't apply. */
2667
2668 static void
2669 warn_hidden (tree t)
2670 {
2671 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2672 tree fns;
2673 size_t i;
2674
2675 /* We go through each separately named virtual function. */
2676 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2677 vec_safe_iterate (method_vec, i, &fns);
2678 ++i)
2679 {
2680 tree fn;
2681 tree name;
2682 tree fndecl;
2683 tree base_fndecls;
2684 tree base_binfo;
2685 tree binfo;
2686 int j;
2687
2688 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2689 have the same name. Figure out what name that is. */
2690 name = DECL_NAME (OVL_CURRENT (fns));
2691 /* There are no possibly hidden functions yet. */
2692 base_fndecls = NULL_TREE;
2693 /* Iterate through all of the base classes looking for possibly
2694 hidden functions. */
2695 for (binfo = TYPE_BINFO (t), j = 0;
2696 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2697 {
2698 tree basetype = BINFO_TYPE (base_binfo);
2699 base_fndecls = chainon (get_basefndecls (name, basetype),
2700 base_fndecls);
2701 }
2702
2703 /* If there are no functions to hide, continue. */
2704 if (!base_fndecls)
2705 continue;
2706
2707 /* Remove any overridden functions. */
2708 for (fn = fns; fn; fn = OVL_NEXT (fn))
2709 {
2710 fndecl = OVL_CURRENT (fn);
2711 if (DECL_VINDEX (fndecl))
2712 {
2713 tree *prev = &base_fndecls;
2714
2715 while (*prev)
2716 /* If the method from the base class has the same
2717 signature as the method from the derived class, it
2718 has been overridden. */
2719 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2720 *prev = TREE_CHAIN (*prev);
2721 else
2722 prev = &TREE_CHAIN (*prev);
2723 }
2724 }
2725
2726 /* Now give a warning for all base functions without overriders,
2727 as they are hidden. */
2728 while (base_fndecls)
2729 {
2730 /* Here we know it is a hider, and no overrider exists. */
2731 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2732 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2733 base_fndecls = TREE_CHAIN (base_fndecls);
2734 }
2735 }
2736 }
2737
2738 /* Check for things that are invalid. There are probably plenty of other
2739 things we should check for also. */
2740
2741 static void
2742 finish_struct_anon (tree t)
2743 {
2744 tree field;
2745
2746 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2747 {
2748 if (TREE_STATIC (field))
2749 continue;
2750 if (TREE_CODE (field) != FIELD_DECL)
2751 continue;
2752
2753 if (DECL_NAME (field) == NULL_TREE
2754 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2755 {
2756 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2757 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2758 for (; elt; elt = DECL_CHAIN (elt))
2759 {
2760 /* We're generally only interested in entities the user
2761 declared, but we also find nested classes by noticing
2762 the TYPE_DECL that we create implicitly. You're
2763 allowed to put one anonymous union inside another,
2764 though, so we explicitly tolerate that. We use
2765 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2766 we also allow unnamed types used for defining fields. */
2767 if (DECL_ARTIFICIAL (elt)
2768 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2769 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2770 continue;
2771
2772 if (TREE_CODE (elt) != FIELD_DECL)
2773 {
2774 if (is_union)
2775 permerror (input_location, "%q+#D invalid; an anonymous union can "
2776 "only have non-static data members", elt);
2777 else
2778 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2779 "only have non-static data members", elt);
2780 continue;
2781 }
2782
2783 if (TREE_PRIVATE (elt))
2784 {
2785 if (is_union)
2786 permerror (input_location, "private member %q+#D in anonymous union", elt);
2787 else
2788 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2789 }
2790 else if (TREE_PROTECTED (elt))
2791 {
2792 if (is_union)
2793 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2794 else
2795 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2796 }
2797
2798 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2799 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2800 }
2801 }
2802 }
2803 }
2804
2805 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2806 will be used later during class template instantiation.
2807 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2808 a non-static member data (FIELD_DECL), a member function
2809 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2810 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2811 When FRIEND_P is nonzero, T is either a friend class
2812 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2813 (FUNCTION_DECL, TEMPLATE_DECL). */
2814
2815 void
2816 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2817 {
2818 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2819 if (CLASSTYPE_TEMPLATE_INFO (type))
2820 CLASSTYPE_DECL_LIST (type)
2821 = tree_cons (friend_p ? NULL_TREE : type,
2822 t, CLASSTYPE_DECL_LIST (type));
2823 }
2824
2825 /* This function is called from declare_virt_assop_and_dtor via
2826 dfs_walk_all.
2827
2828 DATA is a type that direcly or indirectly inherits the base
2829 represented by BINFO. If BINFO contains a virtual assignment [copy
2830 assignment or move assigment] operator or a virtual constructor,
2831 declare that function in DATA if it hasn't been already declared. */
2832
2833 static tree
2834 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2835 {
2836 tree bv, fn, t = (tree)data;
2837 tree opname = ansi_assopname (NOP_EXPR);
2838
2839 gcc_assert (t && CLASS_TYPE_P (t));
2840 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2841
2842 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2843 /* A base without a vtable needs no modification, and its bases
2844 are uninteresting. */
2845 return dfs_skip_bases;
2846
2847 if (BINFO_PRIMARY_P (binfo))
2848 /* If this is a primary base, then we have already looked at the
2849 virtual functions of its vtable. */
2850 return NULL_TREE;
2851
2852 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
2853 {
2854 fn = BV_FN (bv);
2855
2856 if (DECL_NAME (fn) == opname)
2857 {
2858 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
2859 lazily_declare_fn (sfk_copy_assignment, t);
2860 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
2861 lazily_declare_fn (sfk_move_assignment, t);
2862 }
2863 else if (DECL_DESTRUCTOR_P (fn)
2864 && CLASSTYPE_LAZY_DESTRUCTOR (t))
2865 lazily_declare_fn (sfk_destructor, t);
2866 }
2867
2868 return NULL_TREE;
2869 }
2870
2871 /* If the class type T has a direct or indirect base that contains a
2872 virtual assignment operator or a virtual destructor, declare that
2873 function in T if it hasn't been already declared. */
2874
2875 static void
2876 declare_virt_assop_and_dtor (tree t)
2877 {
2878 if (!(TYPE_POLYMORPHIC_P (t)
2879 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
2880 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
2881 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
2882 return;
2883
2884 dfs_walk_all (TYPE_BINFO (t),
2885 dfs_declare_virt_assop_and_dtor,
2886 NULL, t);
2887 }
2888
2889 /* Declare the inheriting constructor for class T inherited from base
2890 constructor CTOR with the parameter array PARMS of size NPARMS. */
2891
2892 static void
2893 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
2894 {
2895 /* We don't declare an inheriting ctor that would be a default,
2896 copy or move ctor for derived or base. */
2897 if (nparms == 0)
2898 return;
2899 if (nparms == 1
2900 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
2901 {
2902 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
2903 if (parm == t || parm == DECL_CONTEXT (ctor))
2904 return;
2905 }
2906
2907 tree parmlist = void_list_node;
2908 for (int i = nparms - 1; i >= 0; i--)
2909 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
2910 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
2911 t, false, ctor, parmlist);
2912 if (add_method (t, fn, NULL_TREE))
2913 {
2914 DECL_CHAIN (fn) = TYPE_METHODS (t);
2915 TYPE_METHODS (t) = fn;
2916 }
2917 }
2918
2919 /* Declare all the inheriting constructors for class T inherited from base
2920 constructor CTOR. */
2921
2922 static void
2923 one_inherited_ctor (tree ctor, tree t)
2924 {
2925 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
2926
2927 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
2928 int i = 0;
2929 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
2930 {
2931 if (TREE_PURPOSE (parms))
2932 one_inheriting_sig (t, ctor, new_parms, i);
2933 new_parms[i++] = TREE_VALUE (parms);
2934 }
2935 one_inheriting_sig (t, ctor, new_parms, i);
2936 if (parms == NULL_TREE)
2937 {
2938 warning (OPT_Winherited_variadic_ctor,
2939 "the ellipsis in %qD is not inherited", ctor);
2940 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
2941 }
2942 }
2943
2944 /* Create default constructors, assignment operators, and so forth for
2945 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2946 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2947 the class cannot have a default constructor, copy constructor
2948 taking a const reference argument, or an assignment operator taking
2949 a const reference, respectively. */
2950
2951 static void
2952 add_implicitly_declared_members (tree t, tree* access_decls,
2953 int cant_have_const_cctor,
2954 int cant_have_const_assignment)
2955 {
2956 bool move_ok = false;
2957
2958 if (cxx_dialect >= cxx0x && !CLASSTYPE_DESTRUCTORS (t)
2959 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
2960 && !type_has_move_constructor (t) && !type_has_move_assign (t))
2961 move_ok = true;
2962
2963 /* Destructor. */
2964 if (!CLASSTYPE_DESTRUCTORS (t))
2965 {
2966 /* In general, we create destructors lazily. */
2967 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2968
2969 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2970 && TYPE_FOR_JAVA (t))
2971 /* But if this is a Java class, any non-trivial destructor is
2972 invalid, even if compiler-generated. Therefore, if the
2973 destructor is non-trivial we create it now. */
2974 lazily_declare_fn (sfk_destructor, t);
2975 }
2976
2977 /* [class.ctor]
2978
2979 If there is no user-declared constructor for a class, a default
2980 constructor is implicitly declared. */
2981 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2982 {
2983 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2984 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2985 if (cxx_dialect >= cxx0x)
2986 TYPE_HAS_CONSTEXPR_CTOR (t)
2987 /* This might force the declaration. */
2988 = type_has_constexpr_default_constructor (t);
2989 }
2990
2991 /* [class.ctor]
2992
2993 If a class definition does not explicitly declare a copy
2994 constructor, one is declared implicitly. */
2995 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
2996 {
2997 TYPE_HAS_COPY_CTOR (t) = 1;
2998 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
2999 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3000 if (move_ok)
3001 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3002 }
3003
3004 /* If there is no assignment operator, one will be created if and
3005 when it is needed. For now, just record whether or not the type
3006 of the parameter to the assignment operator will be a const or
3007 non-const reference. */
3008 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3009 {
3010 TYPE_HAS_COPY_ASSIGN (t) = 1;
3011 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3012 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3013 if (move_ok)
3014 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3015 }
3016
3017 /* We can't be lazy about declaring functions that might override
3018 a virtual function from a base class. */
3019 declare_virt_assop_and_dtor (t);
3020
3021 while (*access_decls)
3022 {
3023 tree using_decl = TREE_VALUE (*access_decls);
3024 tree decl = USING_DECL_DECLS (using_decl);
3025 if (DECL_NAME (using_decl) == ctor_identifier)
3026 {
3027 /* declare, then remove the decl */
3028 tree ctor_list = decl;
3029 location_t loc = input_location;
3030 input_location = DECL_SOURCE_LOCATION (using_decl);
3031 if (ctor_list)
3032 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3033 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3034 *access_decls = TREE_CHAIN (*access_decls);
3035 input_location = loc;
3036 }
3037 else
3038 access_decls = &TREE_CHAIN (*access_decls);
3039 }
3040 }
3041
3042 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3043 count the number of fields in TYPE, including anonymous union
3044 members. */
3045
3046 static int
3047 count_fields (tree fields)
3048 {
3049 tree x;
3050 int n_fields = 0;
3051 for (x = fields; x; x = DECL_CHAIN (x))
3052 {
3053 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3054 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3055 else
3056 n_fields += 1;
3057 }
3058 return n_fields;
3059 }
3060
3061 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3062 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3063 elts, starting at offset IDX. */
3064
3065 static int
3066 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3067 {
3068 tree x;
3069 for (x = fields; x; x = DECL_CHAIN (x))
3070 {
3071 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3072 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3073 else
3074 field_vec->elts[idx++] = x;
3075 }
3076 return idx;
3077 }
3078
3079 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3080 starting at offset IDX. */
3081
3082 static int
3083 add_enum_fields_to_record_type (tree enumtype,
3084 struct sorted_fields_type *field_vec,
3085 int idx)
3086 {
3087 tree values;
3088 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3089 field_vec->elts[idx++] = TREE_VALUE (values);
3090 return idx;
3091 }
3092
3093 /* FIELD is a bit-field. We are finishing the processing for its
3094 enclosing type. Issue any appropriate messages and set appropriate
3095 flags. Returns false if an error has been diagnosed. */
3096
3097 static bool
3098 check_bitfield_decl (tree field)
3099 {
3100 tree type = TREE_TYPE (field);
3101 tree w;
3102
3103 /* Extract the declared width of the bitfield, which has been
3104 temporarily stashed in DECL_INITIAL. */
3105 w = DECL_INITIAL (field);
3106 gcc_assert (w != NULL_TREE);
3107 /* Remove the bit-field width indicator so that the rest of the
3108 compiler does not treat that value as an initializer. */
3109 DECL_INITIAL (field) = NULL_TREE;
3110
3111 /* Detect invalid bit-field type. */
3112 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3113 {
3114 error ("bit-field %q+#D with non-integral type", field);
3115 w = error_mark_node;
3116 }
3117 else
3118 {
3119 location_t loc = input_location;
3120 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3121 STRIP_NOPS (w);
3122
3123 /* detect invalid field size. */
3124 input_location = DECL_SOURCE_LOCATION (field);
3125 w = cxx_constant_value (w);
3126 input_location = loc;
3127
3128 if (TREE_CODE (w) != INTEGER_CST)
3129 {
3130 error ("bit-field %q+D width not an integer constant", field);
3131 w = error_mark_node;
3132 }
3133 else if (tree_int_cst_sgn (w) < 0)
3134 {
3135 error ("negative width in bit-field %q+D", field);
3136 w = error_mark_node;
3137 }
3138 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3139 {
3140 error ("zero width for bit-field %q+D", field);
3141 w = error_mark_node;
3142 }
3143 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
3144 && TREE_CODE (type) != ENUMERAL_TYPE
3145 && TREE_CODE (type) != BOOLEAN_TYPE)
3146 warning (0, "width of %q+D exceeds its type", field);
3147 else if (TREE_CODE (type) == ENUMERAL_TYPE
3148 && (0 > (compare_tree_int
3149 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3150 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3151 }
3152
3153 if (w != error_mark_node)
3154 {
3155 DECL_SIZE (field) = convert (bitsizetype, w);
3156 DECL_BIT_FIELD (field) = 1;
3157 return true;
3158 }
3159 else
3160 {
3161 /* Non-bit-fields are aligned for their type. */
3162 DECL_BIT_FIELD (field) = 0;
3163 CLEAR_DECL_C_BIT_FIELD (field);
3164 return false;
3165 }
3166 }
3167
3168 /* FIELD is a non bit-field. We are finishing the processing for its
3169 enclosing type T. Issue any appropriate messages and set appropriate
3170 flags. */
3171
3172 static void
3173 check_field_decl (tree field,
3174 tree t,
3175 int* cant_have_const_ctor,
3176 int* no_const_asn_ref,
3177 int* any_default_members)
3178 {
3179 tree type = strip_array_types (TREE_TYPE (field));
3180
3181 /* In C++98 an anonymous union cannot contain any fields which would change
3182 the settings of CANT_HAVE_CONST_CTOR and friends. */
3183 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx0x)
3184 ;
3185 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3186 structs. So, we recurse through their fields here. */
3187 else if (ANON_AGGR_TYPE_P (type))
3188 {
3189 tree fields;
3190
3191 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3192 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3193 check_field_decl (fields, t, cant_have_const_ctor,
3194 no_const_asn_ref, any_default_members);
3195 }
3196 /* Check members with class type for constructors, destructors,
3197 etc. */
3198 else if (CLASS_TYPE_P (type))
3199 {
3200 /* Never let anything with uninheritable virtuals
3201 make it through without complaint. */
3202 abstract_virtuals_error (field, type);
3203
3204 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx0x)
3205 {
3206 static bool warned;
3207 int oldcount = errorcount;
3208 if (TYPE_NEEDS_CONSTRUCTING (type))
3209 error ("member %q+#D with constructor not allowed in union",
3210 field);
3211 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3212 error ("member %q+#D with destructor not allowed in union", field);
3213 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3214 error ("member %q+#D with copy assignment operator not allowed in union",
3215 field);
3216 if (!warned && errorcount > oldcount)
3217 {
3218 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3219 "only available with -std=c++11 or -std=gnu++11");
3220 warned = true;
3221 }
3222 }
3223 else
3224 {
3225 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3226 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3227 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3228 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3229 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3230 || !TYPE_HAS_COPY_ASSIGN (type));
3231 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3232 || !TYPE_HAS_COPY_CTOR (type));
3233 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3234 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3235 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3236 || TYPE_HAS_COMPLEX_DFLT (type));
3237 }
3238
3239 if (TYPE_HAS_COPY_CTOR (type)
3240 && !TYPE_HAS_CONST_COPY_CTOR (type))
3241 *cant_have_const_ctor = 1;
3242
3243 if (TYPE_HAS_COPY_ASSIGN (type)
3244 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3245 *no_const_asn_ref = 1;
3246 }
3247
3248 check_abi_tags (t, field);
3249
3250 if (DECL_INITIAL (field) != NULL_TREE)
3251 {
3252 /* `build_class_init_list' does not recognize
3253 non-FIELD_DECLs. */
3254 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3255 error ("multiple fields in union %qT initialized", t);
3256 *any_default_members = 1;
3257 }
3258 }
3259
3260 /* Check the data members (both static and non-static), class-scoped
3261 typedefs, etc., appearing in the declaration of T. Issue
3262 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3263 declaration order) of access declarations; each TREE_VALUE in this
3264 list is a USING_DECL.
3265
3266 In addition, set the following flags:
3267
3268 EMPTY_P
3269 The class is empty, i.e., contains no non-static data members.
3270
3271 CANT_HAVE_CONST_CTOR_P
3272 This class cannot have an implicitly generated copy constructor
3273 taking a const reference.
3274
3275 CANT_HAVE_CONST_ASN_REF
3276 This class cannot have an implicitly generated assignment
3277 operator taking a const reference.
3278
3279 All of these flags should be initialized before calling this
3280 function.
3281
3282 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3283 fields can be added by adding to this chain. */
3284
3285 static void
3286 check_field_decls (tree t, tree *access_decls,
3287 int *cant_have_const_ctor_p,
3288 int *no_const_asn_ref_p)
3289 {
3290 tree *field;
3291 tree *next;
3292 bool has_pointers;
3293 int any_default_members;
3294 int cant_pack = 0;
3295 int field_access = -1;
3296
3297 /* Assume there are no access declarations. */
3298 *access_decls = NULL_TREE;
3299 /* Assume this class has no pointer members. */
3300 has_pointers = false;
3301 /* Assume none of the members of this class have default
3302 initializations. */
3303 any_default_members = 0;
3304
3305 for (field = &TYPE_FIELDS (t); *field; field = next)
3306 {
3307 tree x = *field;
3308 tree type = TREE_TYPE (x);
3309 int this_field_access;
3310
3311 next = &DECL_CHAIN (x);
3312
3313 if (TREE_CODE (x) == USING_DECL)
3314 {
3315 /* Save the access declarations for our caller. */
3316 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3317 continue;
3318 }
3319
3320 if (TREE_CODE (x) == TYPE_DECL
3321 || TREE_CODE (x) == TEMPLATE_DECL)
3322 continue;
3323
3324 /* If we've gotten this far, it's a data member, possibly static,
3325 or an enumerator. */
3326 if (TREE_CODE (x) != CONST_DECL)
3327 DECL_CONTEXT (x) = t;
3328
3329 /* When this goes into scope, it will be a non-local reference. */
3330 DECL_NONLOCAL (x) = 1;
3331
3332 if (TREE_CODE (t) == UNION_TYPE)
3333 {
3334 /* [class.union]
3335
3336 If a union contains a static data member, or a member of
3337 reference type, the program is ill-formed. */
3338 if (VAR_P (x))
3339 {
3340 error ("%q+D may not be static because it is a member of a union", x);
3341 continue;
3342 }
3343 if (TREE_CODE (type) == REFERENCE_TYPE)
3344 {
3345 error ("%q+D may not have reference type %qT because"
3346 " it is a member of a union",
3347 x, type);
3348 continue;
3349 }
3350 }
3351
3352 /* Perform error checking that did not get done in
3353 grokdeclarator. */
3354 if (TREE_CODE (type) == FUNCTION_TYPE)
3355 {
3356 error ("field %q+D invalidly declared function type", x);
3357 type = build_pointer_type (type);
3358 TREE_TYPE (x) = type;
3359 }
3360 else if (TREE_CODE (type) == METHOD_TYPE)
3361 {
3362 error ("field %q+D invalidly declared method type", x);
3363 type = build_pointer_type (type);
3364 TREE_TYPE (x) = type;
3365 }
3366
3367 if (type == error_mark_node)
3368 continue;
3369
3370 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3371 continue;
3372
3373 /* Now it can only be a FIELD_DECL. */
3374
3375 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3376 CLASSTYPE_NON_AGGREGATE (t) = 1;
3377
3378 /* If at least one non-static data member is non-literal, the whole
3379 class becomes non-literal. Note: if the type is incomplete we
3380 will complain later on. */
3381 if (COMPLETE_TYPE_P (type) && !literal_type_p (type))
3382 CLASSTYPE_LITERAL_P (t) = false;
3383
3384 /* A standard-layout class is a class that:
3385 ...
3386 has the same access control (Clause 11) for all non-static data members,
3387 ... */
3388 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3389 if (field_access == -1)
3390 field_access = this_field_access;
3391 else if (this_field_access != field_access)
3392 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3393
3394 /* If this is of reference type, check if it needs an init. */
3395 if (TREE_CODE (type) == REFERENCE_TYPE)
3396 {
3397 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3398 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3399 if (DECL_INITIAL (x) == NULL_TREE)
3400 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3401
3402 /* ARM $12.6.2: [A member initializer list] (or, for an
3403 aggregate, initialization by a brace-enclosed list) is the
3404 only way to initialize nonstatic const and reference
3405 members. */
3406 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3407 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3408 }
3409
3410 type = strip_array_types (type);
3411
3412 if (TYPE_PACKED (t))
3413 {
3414 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3415 {
3416 warning
3417 (0,
3418 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3419 x);
3420 cant_pack = 1;
3421 }
3422 else if (DECL_C_BIT_FIELD (x)
3423 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3424 DECL_PACKED (x) = 1;
3425 }
3426
3427 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3428 /* We don't treat zero-width bitfields as making a class
3429 non-empty. */
3430 ;
3431 else
3432 {
3433 /* The class is non-empty. */
3434 CLASSTYPE_EMPTY_P (t) = 0;
3435 /* The class is not even nearly empty. */
3436 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3437 /* If one of the data members contains an empty class,
3438 so does T. */
3439 if (CLASS_TYPE_P (type)
3440 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3441 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3442 }
3443
3444 /* This is used by -Weffc++ (see below). Warn only for pointers
3445 to members which might hold dynamic memory. So do not warn
3446 for pointers to functions or pointers to members. */
3447 if (TYPE_PTR_P (type)
3448 && !TYPE_PTRFN_P (type))
3449 has_pointers = true;
3450
3451 if (CLASS_TYPE_P (type))
3452 {
3453 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3454 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3455 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3456 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3457 }
3458
3459 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3460 CLASSTYPE_HAS_MUTABLE (t) = 1;
3461
3462 if (! layout_pod_type_p (type))
3463 /* DR 148 now allows pointers to members (which are POD themselves),
3464 to be allowed in POD structs. */
3465 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3466
3467 if (!std_layout_type_p (type))
3468 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3469
3470 if (! zero_init_p (type))
3471 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3472
3473 /* We set DECL_C_BIT_FIELD in grokbitfield.
3474 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3475 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3476 check_field_decl (x, t,
3477 cant_have_const_ctor_p,
3478 no_const_asn_ref_p,
3479 &any_default_members);
3480
3481 /* Now that we've removed bit-field widths from DECL_INITIAL,
3482 anything left in DECL_INITIAL is an NSDMI that makes the class
3483 non-aggregate. */
3484 if (DECL_INITIAL (x))
3485 CLASSTYPE_NON_AGGREGATE (t) = true;
3486
3487 /* If any field is const, the structure type is pseudo-const. */
3488 if (CP_TYPE_CONST_P (type))
3489 {
3490 C_TYPE_FIELDS_READONLY (t) = 1;
3491 if (DECL_INITIAL (x) == NULL_TREE)
3492 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3493
3494 /* ARM $12.6.2: [A member initializer list] (or, for an
3495 aggregate, initialization by a brace-enclosed list) is the
3496 only way to initialize nonstatic const and reference
3497 members. */
3498 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3499 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3500 }
3501 /* A field that is pseudo-const makes the structure likewise. */
3502 else if (CLASS_TYPE_P (type))
3503 {
3504 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3505 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3506 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3507 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3508 }
3509
3510 /* Core issue 80: A nonstatic data member is required to have a
3511 different name from the class iff the class has a
3512 user-declared constructor. */
3513 if (constructor_name_p (DECL_NAME (x), t)
3514 && TYPE_HAS_USER_CONSTRUCTOR (t))
3515 permerror (input_location, "field %q+#D with same name as class", x);
3516 }
3517
3518 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3519 it should also define a copy constructor and an assignment operator to
3520 implement the correct copy semantic (deep vs shallow, etc.). As it is
3521 not feasible to check whether the constructors do allocate dynamic memory
3522 and store it within members, we approximate the warning like this:
3523
3524 -- Warn only if there are members which are pointers
3525 -- Warn only if there is a non-trivial constructor (otherwise,
3526 there cannot be memory allocated).
3527 -- Warn only if there is a non-trivial destructor. We assume that the
3528 user at least implemented the cleanup correctly, and a destructor
3529 is needed to free dynamic memory.
3530
3531 This seems enough for practical purposes. */
3532 if (warn_ecpp
3533 && has_pointers
3534 && TYPE_HAS_USER_CONSTRUCTOR (t)
3535 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3536 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3537 {
3538 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3539
3540 if (! TYPE_HAS_COPY_CTOR (t))
3541 {
3542 warning (OPT_Weffc__,
3543 " but does not override %<%T(const %T&)%>", t, t);
3544 if (!TYPE_HAS_COPY_ASSIGN (t))
3545 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3546 }
3547 else if (! TYPE_HAS_COPY_ASSIGN (t))
3548 warning (OPT_Weffc__,
3549 " but does not override %<operator=(const %T&)%>", t);
3550 }
3551
3552 /* Non-static data member initializers make the default constructor
3553 non-trivial. */
3554 if (any_default_members)
3555 {
3556 TYPE_NEEDS_CONSTRUCTING (t) = true;
3557 TYPE_HAS_COMPLEX_DFLT (t) = true;
3558 }
3559
3560 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3561 if (cant_pack)
3562 TYPE_PACKED (t) = 0;
3563
3564 /* Check anonymous struct/anonymous union fields. */
3565 finish_struct_anon (t);
3566
3567 /* We've built up the list of access declarations in reverse order.
3568 Fix that now. */
3569 *access_decls = nreverse (*access_decls);
3570 }
3571
3572 /* If TYPE is an empty class type, records its OFFSET in the table of
3573 OFFSETS. */
3574
3575 static int
3576 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3577 {
3578 splay_tree_node n;
3579
3580 if (!is_empty_class (type))
3581 return 0;
3582
3583 /* Record the location of this empty object in OFFSETS. */
3584 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3585 if (!n)
3586 n = splay_tree_insert (offsets,
3587 (splay_tree_key) offset,
3588 (splay_tree_value) NULL_TREE);
3589 n->value = ((splay_tree_value)
3590 tree_cons (NULL_TREE,
3591 type,
3592 (tree) n->value));
3593
3594 return 0;
3595 }
3596
3597 /* Returns nonzero if TYPE is an empty class type and there is
3598 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3599
3600 static int
3601 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3602 {
3603 splay_tree_node n;
3604 tree t;
3605
3606 if (!is_empty_class (type))
3607 return 0;
3608
3609 /* Record the location of this empty object in OFFSETS. */
3610 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3611 if (!n)
3612 return 0;
3613
3614 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3615 if (same_type_p (TREE_VALUE (t), type))
3616 return 1;
3617
3618 return 0;
3619 }
3620
3621 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3622 F for every subobject, passing it the type, offset, and table of
3623 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3624 be traversed.
3625
3626 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3627 than MAX_OFFSET will not be walked.
3628
3629 If F returns a nonzero value, the traversal ceases, and that value
3630 is returned. Otherwise, returns zero. */
3631
3632 static int
3633 walk_subobject_offsets (tree type,
3634 subobject_offset_fn f,
3635 tree offset,
3636 splay_tree offsets,
3637 tree max_offset,
3638 int vbases_p)
3639 {
3640 int r = 0;
3641 tree type_binfo = NULL_TREE;
3642
3643 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3644 stop. */
3645 if (max_offset && INT_CST_LT (max_offset, offset))
3646 return 0;
3647
3648 if (type == error_mark_node)
3649 return 0;
3650
3651 if (!TYPE_P (type))
3652 {
3653 if (abi_version_at_least (2))
3654 type_binfo = type;
3655 type = BINFO_TYPE (type);
3656 }
3657
3658 if (CLASS_TYPE_P (type))
3659 {
3660 tree field;
3661 tree binfo;
3662 int i;
3663
3664 /* Avoid recursing into objects that are not interesting. */
3665 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3666 return 0;
3667
3668 /* Record the location of TYPE. */
3669 r = (*f) (type, offset, offsets);
3670 if (r)
3671 return r;
3672
3673 /* Iterate through the direct base classes of TYPE. */
3674 if (!type_binfo)
3675 type_binfo = TYPE_BINFO (type);
3676 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3677 {
3678 tree binfo_offset;
3679
3680 if (abi_version_at_least (2)
3681 && BINFO_VIRTUAL_P (binfo))
3682 continue;
3683
3684 if (!vbases_p
3685 && BINFO_VIRTUAL_P (binfo)
3686 && !BINFO_PRIMARY_P (binfo))
3687 continue;
3688
3689 if (!abi_version_at_least (2))
3690 binfo_offset = size_binop (PLUS_EXPR,
3691 offset,
3692 BINFO_OFFSET (binfo));
3693 else
3694 {
3695 tree orig_binfo;
3696 /* We cannot rely on BINFO_OFFSET being set for the base
3697 class yet, but the offsets for direct non-virtual
3698 bases can be calculated by going back to the TYPE. */
3699 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3700 binfo_offset = size_binop (PLUS_EXPR,
3701 offset,
3702 BINFO_OFFSET (orig_binfo));
3703 }
3704
3705 r = walk_subobject_offsets (binfo,
3706 f,
3707 binfo_offset,
3708 offsets,
3709 max_offset,
3710 (abi_version_at_least (2)
3711 ? /*vbases_p=*/0 : vbases_p));
3712 if (r)
3713 return r;
3714 }
3715
3716 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3717 {
3718 unsigned ix;
3719 vec<tree, va_gc> *vbases;
3720
3721 /* Iterate through the virtual base classes of TYPE. In G++
3722 3.2, we included virtual bases in the direct base class
3723 loop above, which results in incorrect results; the
3724 correct offsets for virtual bases are only known when
3725 working with the most derived type. */
3726 if (vbases_p)
3727 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3728 vec_safe_iterate (vbases, ix, &binfo); ix++)
3729 {
3730 r = walk_subobject_offsets (binfo,
3731 f,
3732 size_binop (PLUS_EXPR,
3733 offset,
3734 BINFO_OFFSET (binfo)),
3735 offsets,
3736 max_offset,
3737 /*vbases_p=*/0);
3738 if (r)
3739 return r;
3740 }
3741 else
3742 {
3743 /* We still have to walk the primary base, if it is
3744 virtual. (If it is non-virtual, then it was walked
3745 above.) */
3746 tree vbase = get_primary_binfo (type_binfo);
3747
3748 if (vbase && BINFO_VIRTUAL_P (vbase)
3749 && BINFO_PRIMARY_P (vbase)
3750 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3751 {
3752 r = (walk_subobject_offsets
3753 (vbase, f, offset,
3754 offsets, max_offset, /*vbases_p=*/0));
3755 if (r)
3756 return r;
3757 }
3758 }
3759 }
3760
3761 /* Iterate through the fields of TYPE. */
3762 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3763 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3764 {
3765 tree field_offset;
3766
3767 if (abi_version_at_least (2))
3768 field_offset = byte_position (field);
3769 else
3770 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3771 field_offset = DECL_FIELD_OFFSET (field);
3772
3773 r = walk_subobject_offsets (TREE_TYPE (field),
3774 f,
3775 size_binop (PLUS_EXPR,
3776 offset,
3777 field_offset),
3778 offsets,
3779 max_offset,
3780 /*vbases_p=*/1);
3781 if (r)
3782 return r;
3783 }
3784 }
3785 else if (TREE_CODE (type) == ARRAY_TYPE)
3786 {
3787 tree element_type = strip_array_types (type);
3788 tree domain = TYPE_DOMAIN (type);
3789 tree index;
3790
3791 /* Avoid recursing into objects that are not interesting. */
3792 if (!CLASS_TYPE_P (element_type)
3793 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3794 return 0;
3795
3796 /* Step through each of the elements in the array. */
3797 for (index = size_zero_node;
3798 /* G++ 3.2 had an off-by-one error here. */
3799 (abi_version_at_least (2)
3800 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3801 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3802 index = size_binop (PLUS_EXPR, index, size_one_node))
3803 {
3804 r = walk_subobject_offsets (TREE_TYPE (type),
3805 f,
3806 offset,
3807 offsets,
3808 max_offset,
3809 /*vbases_p=*/1);
3810 if (r)
3811 return r;
3812 offset = size_binop (PLUS_EXPR, offset,
3813 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3814 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3815 there's no point in iterating through the remaining
3816 elements of the array. */
3817 if (max_offset && INT_CST_LT (max_offset, offset))
3818 break;
3819 }
3820 }
3821
3822 return 0;
3823 }
3824
3825 /* Record all of the empty subobjects of TYPE (either a type or a
3826 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3827 is being placed at OFFSET; otherwise, it is a base class that is
3828 being placed at OFFSET. */
3829
3830 static void
3831 record_subobject_offsets (tree type,
3832 tree offset,
3833 splay_tree offsets,
3834 bool is_data_member)
3835 {
3836 tree max_offset;
3837 /* If recording subobjects for a non-static data member or a
3838 non-empty base class , we do not need to record offsets beyond
3839 the size of the biggest empty class. Additional data members
3840 will go at the end of the class. Additional base classes will go
3841 either at offset zero (if empty, in which case they cannot
3842 overlap with offsets past the size of the biggest empty class) or
3843 at the end of the class.
3844
3845 However, if we are placing an empty base class, then we must record
3846 all offsets, as either the empty class is at offset zero (where
3847 other empty classes might later be placed) or at the end of the
3848 class (where other objects might then be placed, so other empty
3849 subobjects might later overlap). */
3850 if (is_data_member
3851 || !is_empty_class (BINFO_TYPE (type)))
3852 max_offset = sizeof_biggest_empty_class;
3853 else
3854 max_offset = NULL_TREE;
3855 walk_subobject_offsets (type, record_subobject_offset, offset,
3856 offsets, max_offset, is_data_member);
3857 }
3858
3859 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3860 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3861 virtual bases of TYPE are examined. */
3862
3863 static int
3864 layout_conflict_p (tree type,
3865 tree offset,
3866 splay_tree offsets,
3867 int vbases_p)
3868 {
3869 splay_tree_node max_node;
3870
3871 /* Get the node in OFFSETS that indicates the maximum offset where
3872 an empty subobject is located. */
3873 max_node = splay_tree_max (offsets);
3874 /* If there aren't any empty subobjects, then there's no point in
3875 performing this check. */
3876 if (!max_node)
3877 return 0;
3878
3879 return walk_subobject_offsets (type, check_subobject_offset, offset,
3880 offsets, (tree) (max_node->key),
3881 vbases_p);
3882 }
3883
3884 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3885 non-static data member of the type indicated by RLI. BINFO is the
3886 binfo corresponding to the base subobject, OFFSETS maps offsets to
3887 types already located at those offsets. This function determines
3888 the position of the DECL. */
3889
3890 static void
3891 layout_nonempty_base_or_field (record_layout_info rli,
3892 tree decl,
3893 tree binfo,
3894 splay_tree offsets)
3895 {
3896 tree offset = NULL_TREE;
3897 bool field_p;
3898 tree type;
3899
3900 if (binfo)
3901 {
3902 /* For the purposes of determining layout conflicts, we want to
3903 use the class type of BINFO; TREE_TYPE (DECL) will be the
3904 CLASSTYPE_AS_BASE version, which does not contain entries for
3905 zero-sized bases. */
3906 type = TREE_TYPE (binfo);
3907 field_p = false;
3908 }
3909 else
3910 {
3911 type = TREE_TYPE (decl);
3912 field_p = true;
3913 }
3914
3915 /* Try to place the field. It may take more than one try if we have
3916 a hard time placing the field without putting two objects of the
3917 same type at the same address. */
3918 while (1)
3919 {
3920 struct record_layout_info_s old_rli = *rli;
3921
3922 /* Place this field. */
3923 place_field (rli, decl);
3924 offset = byte_position (decl);
3925
3926 /* We have to check to see whether or not there is already
3927 something of the same type at the offset we're about to use.
3928 For example, consider:
3929
3930 struct S {};
3931 struct T : public S { int i; };
3932 struct U : public S, public T {};
3933
3934 Here, we put S at offset zero in U. Then, we can't put T at
3935 offset zero -- its S component would be at the same address
3936 as the S we already allocated. So, we have to skip ahead.
3937 Since all data members, including those whose type is an
3938 empty class, have nonzero size, any overlap can happen only
3939 with a direct or indirect base-class -- it can't happen with
3940 a data member. */
3941 /* In a union, overlap is permitted; all members are placed at
3942 offset zero. */
3943 if (TREE_CODE (rli->t) == UNION_TYPE)
3944 break;
3945 /* G++ 3.2 did not check for overlaps when placing a non-empty
3946 virtual base. */
3947 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3948 break;
3949 if (layout_conflict_p (field_p ? type : binfo, offset,
3950 offsets, field_p))
3951 {
3952 /* Strip off the size allocated to this field. That puts us
3953 at the first place we could have put the field with
3954 proper alignment. */
3955 *rli = old_rli;
3956
3957 /* Bump up by the alignment required for the type. */
3958 rli->bitpos
3959 = size_binop (PLUS_EXPR, rli->bitpos,
3960 bitsize_int (binfo
3961 ? CLASSTYPE_ALIGN (type)
3962 : TYPE_ALIGN (type)));
3963 normalize_rli (rli);
3964 }
3965 else
3966 /* There was no conflict. We're done laying out this field. */
3967 break;
3968 }
3969
3970 /* Now that we know where it will be placed, update its
3971 BINFO_OFFSET. */
3972 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3973 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3974 this point because their BINFO_OFFSET is copied from another
3975 hierarchy. Therefore, we may not need to add the entire
3976 OFFSET. */
3977 propagate_binfo_offsets (binfo,
3978 size_diffop_loc (input_location,
3979 convert (ssizetype, offset),
3980 convert (ssizetype,
3981 BINFO_OFFSET (binfo))));
3982 }
3983
3984 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3985
3986 static int
3987 empty_base_at_nonzero_offset_p (tree type,
3988 tree offset,
3989 splay_tree /*offsets*/)
3990 {
3991 return is_empty_class (type) && !integer_zerop (offset);
3992 }
3993
3994 /* Layout the empty base BINFO. EOC indicates the byte currently just
3995 past the end of the class, and should be correctly aligned for a
3996 class of the type indicated by BINFO; OFFSETS gives the offsets of
3997 the empty bases allocated so far. T is the most derived
3998 type. Return nonzero iff we added it at the end. */
3999
4000 static bool
4001 layout_empty_base (record_layout_info rli, tree binfo,
4002 tree eoc, splay_tree offsets)
4003 {
4004 tree alignment;
4005 tree basetype = BINFO_TYPE (binfo);
4006 bool atend = false;
4007
4008 /* This routine should only be used for empty classes. */
4009 gcc_assert (is_empty_class (basetype));
4010 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4011
4012 if (!integer_zerop (BINFO_OFFSET (binfo)))
4013 {
4014 if (abi_version_at_least (2))
4015 propagate_binfo_offsets
4016 (binfo, size_diffop_loc (input_location,
4017 size_zero_node, BINFO_OFFSET (binfo)));
4018 else
4019 warning (OPT_Wabi,
4020 "offset of empty base %qT may not be ABI-compliant and may"
4021 "change in a future version of GCC",
4022 BINFO_TYPE (binfo));
4023 }
4024
4025 /* This is an empty base class. We first try to put it at offset
4026 zero. */
4027 if (layout_conflict_p (binfo,
4028 BINFO_OFFSET (binfo),
4029 offsets,
4030 /*vbases_p=*/0))
4031 {
4032 /* That didn't work. Now, we move forward from the next
4033 available spot in the class. */
4034 atend = true;
4035 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4036 while (1)
4037 {
4038 if (!layout_conflict_p (binfo,
4039 BINFO_OFFSET (binfo),
4040 offsets,
4041 /*vbases_p=*/0))
4042 /* We finally found a spot where there's no overlap. */
4043 break;
4044
4045 /* There's overlap here, too. Bump along to the next spot. */
4046 propagate_binfo_offsets (binfo, alignment);
4047 }
4048 }
4049
4050 if (CLASSTYPE_USER_ALIGN (basetype))
4051 {
4052 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4053 if (warn_packed)
4054 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4055 TYPE_USER_ALIGN (rli->t) = 1;
4056 }
4057
4058 return atend;
4059 }
4060
4061 /* Layout the base given by BINFO in the class indicated by RLI.
4062 *BASE_ALIGN is a running maximum of the alignments of
4063 any base class. OFFSETS gives the location of empty base
4064 subobjects. T is the most derived type. Return nonzero if the new
4065 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4066 *NEXT_FIELD, unless BINFO is for an empty base class.
4067
4068 Returns the location at which the next field should be inserted. */
4069
4070 static tree *
4071 build_base_field (record_layout_info rli, tree binfo,
4072 splay_tree offsets, tree *next_field)
4073 {
4074 tree t = rli->t;
4075 tree basetype = BINFO_TYPE (binfo);
4076
4077 if (!COMPLETE_TYPE_P (basetype))
4078 /* This error is now reported in xref_tag, thus giving better
4079 location information. */
4080 return next_field;
4081
4082 /* Place the base class. */
4083 if (!is_empty_class (basetype))
4084 {
4085 tree decl;
4086
4087 /* The containing class is non-empty because it has a non-empty
4088 base class. */
4089 CLASSTYPE_EMPTY_P (t) = 0;
4090
4091 /* Create the FIELD_DECL. */
4092 decl = build_decl (input_location,
4093 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4094 DECL_ARTIFICIAL (decl) = 1;
4095 DECL_IGNORED_P (decl) = 1;
4096 DECL_FIELD_CONTEXT (decl) = t;
4097 if (CLASSTYPE_AS_BASE (basetype))
4098 {
4099 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4100 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4101 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4102 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4103 DECL_MODE (decl) = TYPE_MODE (basetype);
4104 DECL_FIELD_IS_BASE (decl) = 1;
4105
4106 /* Try to place the field. It may take more than one try if we
4107 have a hard time placing the field without putting two
4108 objects of the same type at the same address. */
4109 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4110 /* Add the new FIELD_DECL to the list of fields for T. */
4111 DECL_CHAIN (decl) = *next_field;
4112 *next_field = decl;
4113 next_field = &DECL_CHAIN (decl);
4114 }
4115 }
4116 else
4117 {
4118 tree eoc;
4119 bool atend;
4120
4121 /* On some platforms (ARM), even empty classes will not be
4122 byte-aligned. */
4123 eoc = round_up_loc (input_location,
4124 rli_size_unit_so_far (rli),
4125 CLASSTYPE_ALIGN_UNIT (basetype));
4126 atend = layout_empty_base (rli, binfo, eoc, offsets);
4127 /* A nearly-empty class "has no proper base class that is empty,
4128 not morally virtual, and at an offset other than zero." */
4129 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4130 {
4131 if (atend)
4132 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4133 /* The check above (used in G++ 3.2) is insufficient because
4134 an empty class placed at offset zero might itself have an
4135 empty base at a nonzero offset. */
4136 else if (walk_subobject_offsets (basetype,
4137 empty_base_at_nonzero_offset_p,
4138 size_zero_node,
4139 /*offsets=*/NULL,
4140 /*max_offset=*/NULL_TREE,
4141 /*vbases_p=*/true))
4142 {
4143 if (abi_version_at_least (2))
4144 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4145 else
4146 warning (OPT_Wabi,
4147 "class %qT will be considered nearly empty in a "
4148 "future version of GCC", t);
4149 }
4150 }
4151
4152 /* We do not create a FIELD_DECL for empty base classes because
4153 it might overlap some other field. We want to be able to
4154 create CONSTRUCTORs for the class by iterating over the
4155 FIELD_DECLs, and the back end does not handle overlapping
4156 FIELD_DECLs. */
4157
4158 /* An empty virtual base causes a class to be non-empty
4159 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4160 here because that was already done when the virtual table
4161 pointer was created. */
4162 }
4163
4164 /* Record the offsets of BINFO and its base subobjects. */
4165 record_subobject_offsets (binfo,
4166 BINFO_OFFSET (binfo),
4167 offsets,
4168 /*is_data_member=*/false);
4169
4170 return next_field;
4171 }
4172
4173 /* Layout all of the non-virtual base classes. Record empty
4174 subobjects in OFFSETS. T is the most derived type. Return nonzero
4175 if the type cannot be nearly empty. The fields created
4176 corresponding to the base classes will be inserted at
4177 *NEXT_FIELD. */
4178
4179 static void
4180 build_base_fields (record_layout_info rli,
4181 splay_tree offsets, tree *next_field)
4182 {
4183 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4184 subobjects. */
4185 tree t = rli->t;
4186 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4187 int i;
4188
4189 /* The primary base class is always allocated first. */
4190 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4191 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4192 offsets, next_field);
4193
4194 /* Now allocate the rest of the bases. */
4195 for (i = 0; i < n_baseclasses; ++i)
4196 {
4197 tree base_binfo;
4198
4199 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4200
4201 /* The primary base was already allocated above, so we don't
4202 need to allocate it again here. */
4203 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4204 continue;
4205
4206 /* Virtual bases are added at the end (a primary virtual base
4207 will have already been added). */
4208 if (BINFO_VIRTUAL_P (base_binfo))
4209 continue;
4210
4211 next_field = build_base_field (rli, base_binfo,
4212 offsets, next_field);
4213 }
4214 }
4215
4216 /* Go through the TYPE_METHODS of T issuing any appropriate
4217 diagnostics, figuring out which methods override which other
4218 methods, and so forth. */
4219
4220 static void
4221 check_methods (tree t)
4222 {
4223 tree x;
4224
4225 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4226 {
4227 check_for_override (x, t);
4228 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
4229 error ("initializer specified for non-virtual method %q+D", x);
4230 /* The name of the field is the original field name
4231 Save this in auxiliary field for later overloading. */
4232 if (DECL_VINDEX (x))
4233 {
4234 TYPE_POLYMORPHIC_P (t) = 1;
4235 if (DECL_PURE_VIRTUAL_P (x))
4236 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4237 }
4238 /* All user-provided destructors are non-trivial.
4239 Constructors and assignment ops are handled in
4240 grok_special_member_properties. */
4241 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4242 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4243 }
4244 }
4245
4246 /* FN is a constructor or destructor. Clone the declaration to create
4247 a specialized in-charge or not-in-charge version, as indicated by
4248 NAME. */
4249
4250 static tree
4251 build_clone (tree fn, tree name)
4252 {
4253 tree parms;
4254 tree clone;
4255
4256 /* Copy the function. */
4257 clone = copy_decl (fn);
4258 /* Reset the function name. */
4259 DECL_NAME (clone) = name;
4260 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4261 /* Remember where this function came from. */
4262 DECL_ABSTRACT_ORIGIN (clone) = fn;
4263 /* Make it easy to find the CLONE given the FN. */
4264 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4265 DECL_CHAIN (fn) = clone;
4266
4267 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4268 if (TREE_CODE (clone) == TEMPLATE_DECL)
4269 {
4270 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4271 DECL_TEMPLATE_RESULT (clone) = result;
4272 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4273 DECL_TI_TEMPLATE (result) = clone;
4274 TREE_TYPE (clone) = TREE_TYPE (result);
4275 return clone;
4276 }
4277
4278 DECL_CLONED_FUNCTION (clone) = fn;
4279 /* There's no pending inline data for this function. */
4280 DECL_PENDING_INLINE_INFO (clone) = NULL;
4281 DECL_PENDING_INLINE_P (clone) = 0;
4282
4283 /* The base-class destructor is not virtual. */
4284 if (name == base_dtor_identifier)
4285 {
4286 DECL_VIRTUAL_P (clone) = 0;
4287 if (TREE_CODE (clone) != TEMPLATE_DECL)
4288 DECL_VINDEX (clone) = NULL_TREE;
4289 }
4290
4291 /* If there was an in-charge parameter, drop it from the function
4292 type. */
4293 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4294 {
4295 tree basetype;
4296 tree parmtypes;
4297 tree exceptions;
4298
4299 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4300 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4301 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4302 /* Skip the `this' parameter. */
4303 parmtypes = TREE_CHAIN (parmtypes);
4304 /* Skip the in-charge parameter. */
4305 parmtypes = TREE_CHAIN (parmtypes);
4306 /* And the VTT parm, in a complete [cd]tor. */
4307 if (DECL_HAS_VTT_PARM_P (fn)
4308 && ! DECL_NEEDS_VTT_PARM_P (clone))
4309 parmtypes = TREE_CHAIN (parmtypes);
4310 /* If this is subobject constructor or destructor, add the vtt
4311 parameter. */
4312 TREE_TYPE (clone)
4313 = build_method_type_directly (basetype,
4314 TREE_TYPE (TREE_TYPE (clone)),
4315 parmtypes);
4316 if (exceptions)
4317 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4318 exceptions);
4319 TREE_TYPE (clone)
4320 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4321 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4322 }
4323
4324 /* Copy the function parameters. */
4325 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4326 /* Remove the in-charge parameter. */
4327 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4328 {
4329 DECL_CHAIN (DECL_ARGUMENTS (clone))
4330 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4331 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4332 }
4333 /* And the VTT parm, in a complete [cd]tor. */
4334 if (DECL_HAS_VTT_PARM_P (fn))
4335 {
4336 if (DECL_NEEDS_VTT_PARM_P (clone))
4337 DECL_HAS_VTT_PARM_P (clone) = 1;
4338 else
4339 {
4340 DECL_CHAIN (DECL_ARGUMENTS (clone))
4341 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4342 DECL_HAS_VTT_PARM_P (clone) = 0;
4343 }
4344 }
4345
4346 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4347 {
4348 DECL_CONTEXT (parms) = clone;
4349 cxx_dup_lang_specific_decl (parms);
4350 }
4351
4352 /* Create the RTL for this function. */
4353 SET_DECL_RTL (clone, NULL);
4354 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4355
4356 if (pch_file)
4357 note_decl_for_pch (clone);
4358
4359 return clone;
4360 }
4361
4362 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4363 not invoke this function directly.
4364
4365 For a non-thunk function, returns the address of the slot for storing
4366 the function it is a clone of. Otherwise returns NULL_TREE.
4367
4368 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4369 cloned_function is unset. This is to support the separate
4370 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4371 on a template makes sense, but not the former. */
4372
4373 tree *
4374 decl_cloned_function_p (const_tree decl, bool just_testing)
4375 {
4376 tree *ptr;
4377 if (just_testing)
4378 decl = STRIP_TEMPLATE (decl);
4379
4380 if (TREE_CODE (decl) != FUNCTION_DECL
4381 || !DECL_LANG_SPECIFIC (decl)
4382 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4383 {
4384 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4385 if (!just_testing)
4386 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4387 else
4388 #endif
4389 return NULL;
4390 }
4391
4392 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4393 if (just_testing && *ptr == NULL_TREE)
4394 return NULL;
4395 else
4396 return ptr;
4397 }
4398
4399 /* Produce declarations for all appropriate clones of FN. If
4400 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4401 CLASTYPE_METHOD_VEC as well. */
4402
4403 void
4404 clone_function_decl (tree fn, int update_method_vec_p)
4405 {
4406 tree clone;
4407
4408 /* Avoid inappropriate cloning. */
4409 if (DECL_CHAIN (fn)
4410 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4411 return;
4412
4413 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4414 {
4415 /* For each constructor, we need two variants: an in-charge version
4416 and a not-in-charge version. */
4417 clone = build_clone (fn, complete_ctor_identifier);
4418 if (update_method_vec_p)
4419 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4420 clone = build_clone (fn, base_ctor_identifier);
4421 if (update_method_vec_p)
4422 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4423 }
4424 else
4425 {
4426 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4427
4428 /* For each destructor, we need three variants: an in-charge
4429 version, a not-in-charge version, and an in-charge deleting
4430 version. We clone the deleting version first because that
4431 means it will go second on the TYPE_METHODS list -- and that
4432 corresponds to the correct layout order in the virtual
4433 function table.
4434
4435 For a non-virtual destructor, we do not build a deleting
4436 destructor. */
4437 if (DECL_VIRTUAL_P (fn))
4438 {
4439 clone = build_clone (fn, deleting_dtor_identifier);
4440 if (update_method_vec_p)
4441 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4442 }
4443 clone = build_clone (fn, complete_dtor_identifier);
4444 if (update_method_vec_p)
4445 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4446 clone = build_clone (fn, base_dtor_identifier);
4447 if (update_method_vec_p)
4448 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4449 }
4450
4451 /* Note that this is an abstract function that is never emitted. */
4452 DECL_ABSTRACT (fn) = 1;
4453 }
4454
4455 /* DECL is an in charge constructor, which is being defined. This will
4456 have had an in class declaration, from whence clones were
4457 declared. An out-of-class definition can specify additional default
4458 arguments. As it is the clones that are involved in overload
4459 resolution, we must propagate the information from the DECL to its
4460 clones. */
4461
4462 void
4463 adjust_clone_args (tree decl)
4464 {
4465 tree clone;
4466
4467 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4468 clone = DECL_CHAIN (clone))
4469 {
4470 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4471 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4472 tree decl_parms, clone_parms;
4473
4474 clone_parms = orig_clone_parms;
4475
4476 /* Skip the 'this' parameter. */
4477 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4478 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4479
4480 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4481 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4482 if (DECL_HAS_VTT_PARM_P (decl))
4483 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4484
4485 clone_parms = orig_clone_parms;
4486 if (DECL_HAS_VTT_PARM_P (clone))
4487 clone_parms = TREE_CHAIN (clone_parms);
4488
4489 for (decl_parms = orig_decl_parms; decl_parms;
4490 decl_parms = TREE_CHAIN (decl_parms),
4491 clone_parms = TREE_CHAIN (clone_parms))
4492 {
4493 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4494 TREE_TYPE (clone_parms)));
4495
4496 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4497 {
4498 /* A default parameter has been added. Adjust the
4499 clone's parameters. */
4500 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4501 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4502 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4503 tree type;
4504
4505 clone_parms = orig_decl_parms;
4506
4507 if (DECL_HAS_VTT_PARM_P (clone))
4508 {
4509 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4510 TREE_VALUE (orig_clone_parms),
4511 clone_parms);
4512 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4513 }
4514 type = build_method_type_directly (basetype,
4515 TREE_TYPE (TREE_TYPE (clone)),
4516 clone_parms);
4517 if (exceptions)
4518 type = build_exception_variant (type, exceptions);
4519 if (attrs)
4520 type = cp_build_type_attribute_variant (type, attrs);
4521 TREE_TYPE (clone) = type;
4522
4523 clone_parms = NULL_TREE;
4524 break;
4525 }
4526 }
4527 gcc_assert (!clone_parms);
4528 }
4529 }
4530
4531 /* For each of the constructors and destructors in T, create an
4532 in-charge and not-in-charge variant. */
4533
4534 static void
4535 clone_constructors_and_destructors (tree t)
4536 {
4537 tree fns;
4538
4539 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4540 out now. */
4541 if (!CLASSTYPE_METHOD_VEC (t))
4542 return;
4543
4544 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4545 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4546 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4547 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4548 }
4549
4550 /* Deduce noexcept for a destructor DTOR. */
4551
4552 void
4553 deduce_noexcept_on_destructor (tree dtor)
4554 {
4555 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4556 {
4557 tree ctx = DECL_CONTEXT (dtor);
4558 tree implicit_fn = implicitly_declare_fn (sfk_destructor, ctx,
4559 /*const_p=*/false,
4560 NULL, NULL);
4561 tree eh_spec = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (implicit_fn));
4562 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4563 }
4564 }
4565
4566 /* For each destructor in T, deduce noexcept:
4567
4568 12.4/3: A declaration of a destructor that does not have an
4569 exception-specification is implicitly considered to have the
4570 same exception-specification as an implicit declaration (15.4). */
4571
4572 static void
4573 deduce_noexcept_on_destructors (tree t)
4574 {
4575 tree fns;
4576
4577 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4578 out now. */
4579 if (!CLASSTYPE_METHOD_VEC (t))
4580 return;
4581
4582 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4583 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4584 }
4585
4586 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4587 of TYPE for virtual functions which FNDECL overrides. Return a
4588 mask of the tm attributes found therein. */
4589
4590 static int
4591 look_for_tm_attr_overrides (tree type, tree fndecl)
4592 {
4593 tree binfo = TYPE_BINFO (type);
4594 tree base_binfo;
4595 int ix, found = 0;
4596
4597 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4598 {
4599 tree o, basetype = BINFO_TYPE (base_binfo);
4600
4601 if (!TYPE_POLYMORPHIC_P (basetype))
4602 continue;
4603
4604 o = look_for_overrides_here (basetype, fndecl);
4605 if (o)
4606 found |= tm_attr_to_mask (find_tm_attribute
4607 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4608 else
4609 found |= look_for_tm_attr_overrides (basetype, fndecl);
4610 }
4611
4612 return found;
4613 }
4614
4615 /* Subroutine of set_method_tm_attributes. Handle the checks and
4616 inheritance for one virtual method FNDECL. */
4617
4618 static void
4619 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4620 {
4621 tree tm_attr;
4622 int found, have;
4623
4624 found = look_for_tm_attr_overrides (type, fndecl);
4625
4626 /* If FNDECL doesn't actually override anything (i.e. T is the
4627 class that first declares FNDECL virtual), then we're done. */
4628 if (found == 0)
4629 return;
4630
4631 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4632 have = tm_attr_to_mask (tm_attr);
4633
4634 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4635 tm_pure must match exactly, otherwise no weakening of
4636 tm_safe > tm_callable > nothing. */
4637 /* ??? The tm_pure attribute didn't make the transition to the
4638 multivendor language spec. */
4639 if (have == TM_ATTR_PURE)
4640 {
4641 if (found != TM_ATTR_PURE)
4642 {
4643 found &= -found;
4644 goto err_override;
4645 }
4646 }
4647 /* If the overridden function is tm_pure, then FNDECL must be. */
4648 else if (found == TM_ATTR_PURE && tm_attr)
4649 goto err_override;
4650 /* Look for base class combinations that cannot be satisfied. */
4651 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4652 {
4653 found &= ~TM_ATTR_PURE;
4654 found &= -found;
4655 error_at (DECL_SOURCE_LOCATION (fndecl),
4656 "method overrides both %<transaction_pure%> and %qE methods",
4657 tm_mask_to_attr (found));
4658 }
4659 /* If FNDECL did not declare an attribute, then inherit the most
4660 restrictive one. */
4661 else if (tm_attr == NULL)
4662 {
4663 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4664 }
4665 /* Otherwise validate that we're not weaker than a function
4666 that is being overridden. */
4667 else
4668 {
4669 found &= -found;
4670 if (found <= TM_ATTR_CALLABLE && have > found)
4671 goto err_override;
4672 }
4673 return;
4674
4675 err_override:
4676 error_at (DECL_SOURCE_LOCATION (fndecl),
4677 "method declared %qE overriding %qE method",
4678 tm_attr, tm_mask_to_attr (found));
4679 }
4680
4681 /* For each of the methods in T, propagate a class-level tm attribute. */
4682
4683 static void
4684 set_method_tm_attributes (tree t)
4685 {
4686 tree class_tm_attr, fndecl;
4687
4688 /* Don't bother collecting tm attributes if transactional memory
4689 support is not enabled. */
4690 if (!flag_tm)
4691 return;
4692
4693 /* Process virtual methods first, as they inherit directly from the
4694 base virtual function and also require validation of new attributes. */
4695 if (TYPE_CONTAINS_VPTR_P (t))
4696 {
4697 tree vchain;
4698 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4699 vchain = TREE_CHAIN (vchain))
4700 {
4701 fndecl = BV_FN (vchain);
4702 if (DECL_THUNK_P (fndecl))
4703 fndecl = THUNK_TARGET (fndecl);
4704 set_one_vmethod_tm_attributes (t, fndecl);
4705 }
4706 }
4707
4708 /* If the class doesn't have an attribute, nothing more to do. */
4709 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4710 if (class_tm_attr == NULL)
4711 return;
4712
4713 /* Any method that does not yet have a tm attribute inherits
4714 the one from the class. */
4715 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4716 {
4717 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4718 apply_tm_attr (fndecl, class_tm_attr);
4719 }
4720 }
4721
4722 /* Returns true iff class T has a user-defined constructor other than
4723 the default constructor. */
4724
4725 bool
4726 type_has_user_nondefault_constructor (tree t)
4727 {
4728 tree fns;
4729
4730 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4731 return false;
4732
4733 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4734 {
4735 tree fn = OVL_CURRENT (fns);
4736 if (!DECL_ARTIFICIAL (fn)
4737 && (TREE_CODE (fn) == TEMPLATE_DECL
4738 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4739 != NULL_TREE)))
4740 return true;
4741 }
4742
4743 return false;
4744 }
4745
4746 /* Returns the defaulted constructor if T has one. Otherwise, returns
4747 NULL_TREE. */
4748
4749 tree
4750 in_class_defaulted_default_constructor (tree t)
4751 {
4752 tree fns, args;
4753
4754 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4755 return NULL_TREE;
4756
4757 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4758 {
4759 tree fn = OVL_CURRENT (fns);
4760
4761 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4762 {
4763 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4764 while (args && TREE_PURPOSE (args))
4765 args = TREE_CHAIN (args);
4766 if (!args || args == void_list_node)
4767 return fn;
4768 }
4769 }
4770
4771 return NULL_TREE;
4772 }
4773
4774 /* Returns true iff FN is a user-provided function, i.e. user-declared
4775 and not defaulted at its first declaration; or explicit, private,
4776 protected, or non-const. */
4777
4778 bool
4779 user_provided_p (tree fn)
4780 {
4781 if (TREE_CODE (fn) == TEMPLATE_DECL)
4782 return true;
4783 else
4784 return (!DECL_ARTIFICIAL (fn)
4785 && !DECL_DEFAULTED_IN_CLASS_P (fn));
4786 }
4787
4788 /* Returns true iff class T has a user-provided constructor. */
4789
4790 bool
4791 type_has_user_provided_constructor (tree t)
4792 {
4793 tree fns;
4794
4795 if (!CLASS_TYPE_P (t))
4796 return false;
4797
4798 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4799 return false;
4800
4801 /* This can happen in error cases; avoid crashing. */
4802 if (!CLASSTYPE_METHOD_VEC (t))
4803 return false;
4804
4805 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4806 if (user_provided_p (OVL_CURRENT (fns)))
4807 return true;
4808
4809 return false;
4810 }
4811
4812 /* Returns true iff class T has a user-provided default constructor. */
4813
4814 bool
4815 type_has_user_provided_default_constructor (tree t)
4816 {
4817 tree fns;
4818
4819 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4820 return false;
4821
4822 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4823 {
4824 tree fn = OVL_CURRENT (fns);
4825 if (TREE_CODE (fn) == FUNCTION_DECL
4826 && user_provided_p (fn)
4827 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4828 return true;
4829 }
4830
4831 return false;
4832 }
4833
4834 /* TYPE is being used as a virtual base, and has a non-trivial move
4835 assignment. Return true if this is due to there being a user-provided
4836 move assignment in TYPE or one of its subobjects; if there isn't, then
4837 multiple move assignment can't cause any harm. */
4838
4839 bool
4840 vbase_has_user_provided_move_assign (tree type)
4841 {
4842 /* Does the type itself have a user-provided move assignment operator? */
4843 for (tree fns
4844 = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR));
4845 fns; fns = OVL_NEXT (fns))
4846 {
4847 tree fn = OVL_CURRENT (fns);
4848 if (move_fn_p (fn) && user_provided_p (fn))
4849 return true;
4850 }
4851
4852 /* Do any of its bases? */
4853 tree binfo = TYPE_BINFO (type);
4854 tree base_binfo;
4855 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4856 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
4857 return true;
4858
4859 /* Or non-static data members? */
4860 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4861 {
4862 if (TREE_CODE (field) == FIELD_DECL
4863 && CLASS_TYPE_P (TREE_TYPE (field))
4864 && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
4865 return true;
4866 }
4867
4868 /* Seems not. */
4869 return false;
4870 }
4871
4872 /* If default-initialization leaves part of TYPE uninitialized, returns
4873 a DECL for the field or TYPE itself (DR 253). */
4874
4875 tree
4876 default_init_uninitialized_part (tree type)
4877 {
4878 tree t, r, binfo;
4879 int i;
4880
4881 type = strip_array_types (type);
4882 if (!CLASS_TYPE_P (type))
4883 return type;
4884 if (type_has_user_provided_default_constructor (type))
4885 return NULL_TREE;
4886 for (binfo = TYPE_BINFO (type), i = 0;
4887 BINFO_BASE_ITERATE (binfo, i, t); ++i)
4888 {
4889 r = default_init_uninitialized_part (BINFO_TYPE (t));
4890 if (r)
4891 return r;
4892 }
4893 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
4894 if (TREE_CODE (t) == FIELD_DECL
4895 && !DECL_ARTIFICIAL (t)
4896 && !DECL_INITIAL (t))
4897 {
4898 r = default_init_uninitialized_part (TREE_TYPE (t));
4899 if (r)
4900 return DECL_P (r) ? r : t;
4901 }
4902
4903 return NULL_TREE;
4904 }
4905
4906 /* Returns true iff for class T, a trivial synthesized default constructor
4907 would be constexpr. */
4908
4909 bool
4910 trivial_default_constructor_is_constexpr (tree t)
4911 {
4912 /* A defaulted trivial default constructor is constexpr
4913 if there is nothing to initialize. */
4914 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
4915 return is_really_empty_class (t);
4916 }
4917
4918 /* Returns true iff class T has a constexpr default constructor. */
4919
4920 bool
4921 type_has_constexpr_default_constructor (tree t)
4922 {
4923 tree fns;
4924
4925 if (!CLASS_TYPE_P (t))
4926 {
4927 /* The caller should have stripped an enclosing array. */
4928 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
4929 return false;
4930 }
4931 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
4932 {
4933 if (!TYPE_HAS_COMPLEX_DFLT (t))
4934 return trivial_default_constructor_is_constexpr (t);
4935 /* Non-trivial, we need to check subobject constructors. */
4936 lazily_declare_fn (sfk_constructor, t);
4937 }
4938 fns = locate_ctor (t);
4939 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
4940 }
4941
4942 /* Returns true iff class TYPE has a virtual destructor. */
4943
4944 bool
4945 type_has_virtual_destructor (tree type)
4946 {
4947 tree dtor;
4948
4949 if (!CLASS_TYPE_P (type))
4950 return false;
4951
4952 gcc_assert (COMPLETE_TYPE_P (type));
4953 dtor = CLASSTYPE_DESTRUCTORS (type);
4954 return (dtor && DECL_VIRTUAL_P (dtor));
4955 }
4956
4957 /* Returns true iff class T has a move constructor. */
4958
4959 bool
4960 type_has_move_constructor (tree t)
4961 {
4962 tree fns;
4963
4964 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
4965 {
4966 gcc_assert (COMPLETE_TYPE_P (t));
4967 lazily_declare_fn (sfk_move_constructor, t);
4968 }
4969
4970 if (!CLASSTYPE_METHOD_VEC (t))
4971 return false;
4972
4973 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4974 if (move_fn_p (OVL_CURRENT (fns)))
4975 return true;
4976
4977 return false;
4978 }
4979
4980 /* Returns true iff class T has a move assignment operator. */
4981
4982 bool
4983 type_has_move_assign (tree t)
4984 {
4985 tree fns;
4986
4987 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
4988 {
4989 gcc_assert (COMPLETE_TYPE_P (t));
4990 lazily_declare_fn (sfk_move_assignment, t);
4991 }
4992
4993 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
4994 fns; fns = OVL_NEXT (fns))
4995 if (move_fn_p (OVL_CURRENT (fns)))
4996 return true;
4997
4998 return false;
4999 }
5000
5001 /* Returns true iff class T has a move constructor that was explicitly
5002 declared in the class body. Note that this is different from
5003 "user-provided", which doesn't include functions that are defaulted in
5004 the class. */
5005
5006 bool
5007 type_has_user_declared_move_constructor (tree t)
5008 {
5009 tree fns;
5010
5011 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5012 return false;
5013
5014 if (!CLASSTYPE_METHOD_VEC (t))
5015 return false;
5016
5017 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5018 {
5019 tree fn = OVL_CURRENT (fns);
5020 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5021 return true;
5022 }
5023
5024 return false;
5025 }
5026
5027 /* Returns true iff class T has a move assignment operator that was
5028 explicitly declared in the class body. */
5029
5030 bool
5031 type_has_user_declared_move_assign (tree t)
5032 {
5033 tree fns;
5034
5035 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5036 return false;
5037
5038 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5039 fns; fns = OVL_NEXT (fns))
5040 {
5041 tree fn = OVL_CURRENT (fns);
5042 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5043 return true;
5044 }
5045
5046 return false;
5047 }
5048
5049 /* Nonzero if we need to build up a constructor call when initializing an
5050 object of this class, either because it has a user-provided constructor
5051 or because it doesn't have a default constructor (so we need to give an
5052 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5053 what you care about is whether or not an object can be produced by a
5054 constructor (e.g. so we don't set TREE_READONLY on const variables of
5055 such type); use this function when what you care about is whether or not
5056 to try to call a constructor to create an object. The latter case is
5057 the former plus some cases of constructors that cannot be called. */
5058
5059 bool
5060 type_build_ctor_call (tree t)
5061 {
5062 tree inner;
5063 if (TYPE_NEEDS_CONSTRUCTING (t))
5064 return true;
5065 inner = strip_array_types (t);
5066 return (CLASS_TYPE_P (inner) && !TYPE_HAS_DEFAULT_CONSTRUCTOR (inner)
5067 && !ANON_AGGR_TYPE_P (inner));
5068 }
5069
5070 /* Remove all zero-width bit-fields from T. */
5071
5072 static void
5073 remove_zero_width_bit_fields (tree t)
5074 {
5075 tree *fieldsp;
5076
5077 fieldsp = &TYPE_FIELDS (t);
5078 while (*fieldsp)
5079 {
5080 if (TREE_CODE (*fieldsp) == FIELD_DECL
5081 && DECL_C_BIT_FIELD (*fieldsp)
5082 /* We should not be confused by the fact that grokbitfield
5083 temporarily sets the width of the bit field into
5084 DECL_INITIAL (*fieldsp).
5085 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5086 to that width. */
5087 && integer_zerop (DECL_SIZE (*fieldsp)))
5088 *fieldsp = DECL_CHAIN (*fieldsp);
5089 else
5090 fieldsp = &DECL_CHAIN (*fieldsp);
5091 }
5092 }
5093
5094 /* Returns TRUE iff we need a cookie when dynamically allocating an
5095 array whose elements have the indicated class TYPE. */
5096
5097 static bool
5098 type_requires_array_cookie (tree type)
5099 {
5100 tree fns;
5101 bool has_two_argument_delete_p = false;
5102
5103 gcc_assert (CLASS_TYPE_P (type));
5104
5105 /* If there's a non-trivial destructor, we need a cookie. In order
5106 to iterate through the array calling the destructor for each
5107 element, we'll have to know how many elements there are. */
5108 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5109 return true;
5110
5111 /* If the usual deallocation function is a two-argument whose second
5112 argument is of type `size_t', then we have to pass the size of
5113 the array to the deallocation function, so we will need to store
5114 a cookie. */
5115 fns = lookup_fnfields (TYPE_BINFO (type),
5116 ansi_opname (VEC_DELETE_EXPR),
5117 /*protect=*/0);
5118 /* If there are no `operator []' members, or the lookup is
5119 ambiguous, then we don't need a cookie. */
5120 if (!fns || fns == error_mark_node)
5121 return false;
5122 /* Loop through all of the functions. */
5123 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5124 {
5125 tree fn;
5126 tree second_parm;
5127
5128 /* Select the current function. */
5129 fn = OVL_CURRENT (fns);
5130 /* See if this function is a one-argument delete function. If
5131 it is, then it will be the usual deallocation function. */
5132 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5133 if (second_parm == void_list_node)
5134 return false;
5135 /* Do not consider this function if its second argument is an
5136 ellipsis. */
5137 if (!second_parm)
5138 continue;
5139 /* Otherwise, if we have a two-argument function and the second
5140 argument is `size_t', it will be the usual deallocation
5141 function -- unless there is one-argument function, too. */
5142 if (TREE_CHAIN (second_parm) == void_list_node
5143 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5144 has_two_argument_delete_p = true;
5145 }
5146
5147 return has_two_argument_delete_p;
5148 }
5149
5150 /* Finish computing the `literal type' property of class type T.
5151
5152 At this point, we have already processed base classes and
5153 non-static data members. We need to check whether the copy
5154 constructor is trivial, the destructor is trivial, and there
5155 is a trivial default constructor or at least one constexpr
5156 constructor other than the copy constructor. */
5157
5158 static void
5159 finalize_literal_type_property (tree t)
5160 {
5161 tree fn;
5162
5163 if (cxx_dialect < cxx0x
5164 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5165 CLASSTYPE_LITERAL_P (t) = false;
5166 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5167 && CLASSTYPE_NON_AGGREGATE (t)
5168 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5169 CLASSTYPE_LITERAL_P (t) = false;
5170
5171 if (!CLASSTYPE_LITERAL_P (t))
5172 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5173 if (DECL_DECLARED_CONSTEXPR_P (fn)
5174 && TREE_CODE (fn) != TEMPLATE_DECL
5175 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5176 && !DECL_CONSTRUCTOR_P (fn))
5177 {
5178 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5179 if (!DECL_GENERATED_P (fn))
5180 {
5181 error ("enclosing class of constexpr non-static member "
5182 "function %q+#D is not a literal type", fn);
5183 explain_non_literal_class (t);
5184 }
5185 }
5186 }
5187
5188 /* T is a non-literal type used in a context which requires a constant
5189 expression. Explain why it isn't literal. */
5190
5191 void
5192 explain_non_literal_class (tree t)
5193 {
5194 static struct pointer_set_t *diagnosed;
5195
5196 if (!CLASS_TYPE_P (t))
5197 return;
5198 t = TYPE_MAIN_VARIANT (t);
5199
5200 if (diagnosed == NULL)
5201 diagnosed = pointer_set_create ();
5202 if (pointer_set_insert (diagnosed, t) != 0)
5203 /* Already explained. */
5204 return;
5205
5206 inform (0, "%q+T is not literal because:", t);
5207 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5208 inform (0, " %q+T has a non-trivial destructor", t);
5209 else if (CLASSTYPE_NON_AGGREGATE (t)
5210 && !TYPE_HAS_TRIVIAL_DFLT (t)
5211 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5212 {
5213 inform (0, " %q+T is not an aggregate, does not have a trivial "
5214 "default constructor, and has no constexpr constructor that "
5215 "is not a copy or move constructor", t);
5216 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5217 && !type_has_user_provided_default_constructor (t))
5218 {
5219 /* Note that we can't simply call locate_ctor because when the
5220 constructor is deleted it just returns NULL_TREE. */
5221 tree fns;
5222 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5223 {
5224 tree fn = OVL_CURRENT (fns);
5225 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5226
5227 parms = skip_artificial_parms_for (fn, parms);
5228
5229 if (sufficient_parms_p (parms))
5230 {
5231 if (DECL_DELETED_FN (fn))
5232 maybe_explain_implicit_delete (fn);
5233 else
5234 explain_invalid_constexpr_fn (fn);
5235 break;
5236 }
5237 }
5238 }
5239 }
5240 else
5241 {
5242 tree binfo, base_binfo, field; int i;
5243 for (binfo = TYPE_BINFO (t), i = 0;
5244 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5245 {
5246 tree basetype = TREE_TYPE (base_binfo);
5247 if (!CLASSTYPE_LITERAL_P (basetype))
5248 {
5249 inform (0, " base class %qT of %q+T is non-literal",
5250 basetype, t);
5251 explain_non_literal_class (basetype);
5252 return;
5253 }
5254 }
5255 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5256 {
5257 tree ftype;
5258 if (TREE_CODE (field) != FIELD_DECL)
5259 continue;
5260 ftype = TREE_TYPE (field);
5261 if (!literal_type_p (ftype))
5262 {
5263 inform (0, " non-static data member %q+D has "
5264 "non-literal type", field);
5265 if (CLASS_TYPE_P (ftype))
5266 explain_non_literal_class (ftype);
5267 }
5268 }
5269 }
5270 }
5271
5272 /* Check the validity of the bases and members declared in T. Add any
5273 implicitly-generated functions (like copy-constructors and
5274 assignment operators). Compute various flag bits (like
5275 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5276 level: i.e., independently of the ABI in use. */
5277
5278 static void
5279 check_bases_and_members (tree t)
5280 {
5281 /* Nonzero if the implicitly generated copy constructor should take
5282 a non-const reference argument. */
5283 int cant_have_const_ctor;
5284 /* Nonzero if the implicitly generated assignment operator
5285 should take a non-const reference argument. */
5286 int no_const_asn_ref;
5287 tree access_decls;
5288 bool saved_complex_asn_ref;
5289 bool saved_nontrivial_dtor;
5290 tree fn;
5291
5292 /* By default, we use const reference arguments and generate default
5293 constructors. */
5294 cant_have_const_ctor = 0;
5295 no_const_asn_ref = 0;
5296
5297 /* Check all the base-classes. */
5298 check_bases (t, &cant_have_const_ctor,
5299 &no_const_asn_ref);
5300
5301 /* Deduce noexcept on destructors. This needs to happen after we've set
5302 triviality flags appropriately for our bases. */
5303 if (cxx_dialect >= cxx0x)
5304 deduce_noexcept_on_destructors (t);
5305
5306 /* Check all the method declarations. */
5307 check_methods (t);
5308
5309 /* Save the initial values of these flags which only indicate whether
5310 or not the class has user-provided functions. As we analyze the
5311 bases and members we can set these flags for other reasons. */
5312 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5313 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5314
5315 /* Check all the data member declarations. We cannot call
5316 check_field_decls until we have called check_bases check_methods,
5317 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5318 being set appropriately. */
5319 check_field_decls (t, &access_decls,
5320 &cant_have_const_ctor,
5321 &no_const_asn_ref);
5322
5323 /* A nearly-empty class has to be vptr-containing; a nearly empty
5324 class contains just a vptr. */
5325 if (!TYPE_CONTAINS_VPTR_P (t))
5326 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5327
5328 /* Do some bookkeeping that will guide the generation of implicitly
5329 declared member functions. */
5330 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5331 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5332 /* We need to call a constructor for this class if it has a
5333 user-provided constructor, or if the default constructor is going
5334 to initialize the vptr. (This is not an if-and-only-if;
5335 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5336 themselves need constructing.) */
5337 TYPE_NEEDS_CONSTRUCTING (t)
5338 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5339 /* [dcl.init.aggr]
5340
5341 An aggregate is an array or a class with no user-provided
5342 constructors ... and no virtual functions.
5343
5344 Again, other conditions for being an aggregate are checked
5345 elsewhere. */
5346 CLASSTYPE_NON_AGGREGATE (t)
5347 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5348 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5349 retain the old definition internally for ABI reasons. */
5350 CLASSTYPE_NON_LAYOUT_POD_P (t)
5351 |= (CLASSTYPE_NON_AGGREGATE (t)
5352 || saved_nontrivial_dtor || saved_complex_asn_ref);
5353 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5354 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5355 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5356 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5357
5358 /* If the class has no user-declared constructor, but does have
5359 non-static const or reference data members that can never be
5360 initialized, issue a warning. */
5361 if (warn_uninitialized
5362 /* Classes with user-declared constructors are presumed to
5363 initialize these members. */
5364 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5365 /* Aggregates can be initialized with brace-enclosed
5366 initializers. */
5367 && CLASSTYPE_NON_AGGREGATE (t))
5368 {
5369 tree field;
5370
5371 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5372 {
5373 tree type;
5374
5375 if (TREE_CODE (field) != FIELD_DECL
5376 || DECL_INITIAL (field) != NULL_TREE)
5377 continue;
5378
5379 type = TREE_TYPE (field);
5380 if (TREE_CODE (type) == REFERENCE_TYPE)
5381 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5382 "in class without a constructor", field);
5383 else if (CP_TYPE_CONST_P (type)
5384 && (!CLASS_TYPE_P (type)
5385 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5386 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5387 "in class without a constructor", field);
5388 }
5389 }
5390
5391 /* Synthesize any needed methods. */
5392 add_implicitly_declared_members (t, &access_decls,
5393 cant_have_const_ctor,
5394 no_const_asn_ref);
5395
5396 /* Check defaulted declarations here so we have cant_have_const_ctor
5397 and don't need to worry about clones. */
5398 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5399 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5400 {
5401 int copy = copy_fn_p (fn);
5402 if (copy > 0)
5403 {
5404 bool imp_const_p
5405 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5406 : !no_const_asn_ref);
5407 bool fn_const_p = (copy == 2);
5408
5409 if (fn_const_p && !imp_const_p)
5410 /* If the function is defaulted outside the class, we just
5411 give the synthesis error. */
5412 error ("%q+D declared to take const reference, but implicit "
5413 "declaration would take non-const", fn);
5414 }
5415 defaulted_late_check (fn);
5416 }
5417
5418 if (LAMBDA_TYPE_P (t))
5419 {
5420 /* "The closure type associated with a lambda-expression has a deleted
5421 default constructor and a deleted copy assignment operator." */
5422 TYPE_NEEDS_CONSTRUCTING (t) = 1;
5423 TYPE_HAS_COMPLEX_DFLT (t) = 1;
5424 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
5425 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
5426
5427 /* "This class type is not an aggregate." */
5428 CLASSTYPE_NON_AGGREGATE (t) = 1;
5429 }
5430
5431 /* Compute the 'literal type' property before we
5432 do anything with non-static member functions. */
5433 finalize_literal_type_property (t);
5434
5435 /* Create the in-charge and not-in-charge variants of constructors
5436 and destructors. */
5437 clone_constructors_and_destructors (t);
5438
5439 /* Process the using-declarations. */
5440 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5441 handle_using_decl (TREE_VALUE (access_decls), t);
5442
5443 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5444 finish_struct_methods (t);
5445
5446 /* Figure out whether or not we will need a cookie when dynamically
5447 allocating an array of this type. */
5448 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5449 = type_requires_array_cookie (t);
5450 }
5451
5452 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5453 accordingly. If a new vfield was created (because T doesn't have a
5454 primary base class), then the newly created field is returned. It
5455 is not added to the TYPE_FIELDS list; it is the caller's
5456 responsibility to do that. Accumulate declared virtual functions
5457 on VIRTUALS_P. */
5458
5459 static tree
5460 create_vtable_ptr (tree t, tree* virtuals_p)
5461 {
5462 tree fn;
5463
5464 /* Collect the virtual functions declared in T. */
5465 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5466 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5467 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5468 {
5469 tree new_virtual = make_node (TREE_LIST);
5470
5471 BV_FN (new_virtual) = fn;
5472 BV_DELTA (new_virtual) = integer_zero_node;
5473 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5474
5475 TREE_CHAIN (new_virtual) = *virtuals_p;
5476 *virtuals_p = new_virtual;
5477 }
5478
5479 /* If we couldn't find an appropriate base class, create a new field
5480 here. Even if there weren't any new virtual functions, we might need a
5481 new virtual function table if we're supposed to include vptrs in
5482 all classes that need them. */
5483 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5484 {
5485 /* We build this decl with vtbl_ptr_type_node, which is a
5486 `vtable_entry_type*'. It might seem more precise to use
5487 `vtable_entry_type (*)[N]' where N is the number of virtual
5488 functions. However, that would require the vtable pointer in
5489 base classes to have a different type than the vtable pointer
5490 in derived classes. We could make that happen, but that
5491 still wouldn't solve all the problems. In particular, the
5492 type-based alias analysis code would decide that assignments
5493 to the base class vtable pointer can't alias assignments to
5494 the derived class vtable pointer, since they have different
5495 types. Thus, in a derived class destructor, where the base
5496 class constructor was inlined, we could generate bad code for
5497 setting up the vtable pointer.
5498
5499 Therefore, we use one type for all vtable pointers. We still
5500 use a type-correct type; it's just doesn't indicate the array
5501 bounds. That's better than using `void*' or some such; it's
5502 cleaner, and it let's the alias analysis code know that these
5503 stores cannot alias stores to void*! */
5504 tree field;
5505
5506 field = build_decl (input_location,
5507 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5508 DECL_VIRTUAL_P (field) = 1;
5509 DECL_ARTIFICIAL (field) = 1;
5510 DECL_FIELD_CONTEXT (field) = t;
5511 DECL_FCONTEXT (field) = t;
5512 if (TYPE_PACKED (t))
5513 DECL_PACKED (field) = 1;
5514
5515 TYPE_VFIELD (t) = field;
5516
5517 /* This class is non-empty. */
5518 CLASSTYPE_EMPTY_P (t) = 0;
5519
5520 return field;
5521 }
5522
5523 return NULL_TREE;
5524 }
5525
5526 /* Add OFFSET to all base types of BINFO which is a base in the
5527 hierarchy dominated by T.
5528
5529 OFFSET, which is a type offset, is number of bytes. */
5530
5531 static void
5532 propagate_binfo_offsets (tree binfo, tree offset)
5533 {
5534 int i;
5535 tree primary_binfo;
5536 tree base_binfo;
5537
5538 /* Update BINFO's offset. */
5539 BINFO_OFFSET (binfo)
5540 = convert (sizetype,
5541 size_binop (PLUS_EXPR,
5542 convert (ssizetype, BINFO_OFFSET (binfo)),
5543 offset));
5544
5545 /* Find the primary base class. */
5546 primary_binfo = get_primary_binfo (binfo);
5547
5548 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5549 propagate_binfo_offsets (primary_binfo, offset);
5550
5551 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5552 downwards. */
5553 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5554 {
5555 /* Don't do the primary base twice. */
5556 if (base_binfo == primary_binfo)
5557 continue;
5558
5559 if (BINFO_VIRTUAL_P (base_binfo))
5560 continue;
5561
5562 propagate_binfo_offsets (base_binfo, offset);
5563 }
5564 }
5565
5566 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5567 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5568 empty subobjects of T. */
5569
5570 static void
5571 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5572 {
5573 tree vbase;
5574 tree t = rli->t;
5575 bool first_vbase = true;
5576 tree *next_field;
5577
5578 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5579 return;
5580
5581 if (!abi_version_at_least(2))
5582 {
5583 /* In G++ 3.2, we incorrectly rounded the size before laying out
5584 the virtual bases. */
5585 finish_record_layout (rli, /*free_p=*/false);
5586 #ifdef STRUCTURE_SIZE_BOUNDARY
5587 /* Packed structures don't need to have minimum size. */
5588 if (! TYPE_PACKED (t))
5589 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
5590 #endif
5591 rli->offset = TYPE_SIZE_UNIT (t);
5592 rli->bitpos = bitsize_zero_node;
5593 rli->record_align = TYPE_ALIGN (t);
5594 }
5595
5596 /* Find the last field. The artificial fields created for virtual
5597 bases will go after the last extant field to date. */
5598 next_field = &TYPE_FIELDS (t);
5599 while (*next_field)
5600 next_field = &DECL_CHAIN (*next_field);
5601
5602 /* Go through the virtual bases, allocating space for each virtual
5603 base that is not already a primary base class. These are
5604 allocated in inheritance graph order. */
5605 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5606 {
5607 if (!BINFO_VIRTUAL_P (vbase))
5608 continue;
5609
5610 if (!BINFO_PRIMARY_P (vbase))
5611 {
5612 tree basetype = TREE_TYPE (vbase);
5613
5614 /* This virtual base is not a primary base of any class in the
5615 hierarchy, so we have to add space for it. */
5616 next_field = build_base_field (rli, vbase,
5617 offsets, next_field);
5618
5619 /* If the first virtual base might have been placed at a
5620 lower address, had we started from CLASSTYPE_SIZE, rather
5621 than TYPE_SIZE, issue a warning. There can be both false
5622 positives and false negatives from this warning in rare
5623 cases; to deal with all the possibilities would probably
5624 require performing both layout algorithms and comparing
5625 the results which is not particularly tractable. */
5626 if (warn_abi
5627 && first_vbase
5628 && (tree_int_cst_lt
5629 (size_binop (CEIL_DIV_EXPR,
5630 round_up_loc (input_location,
5631 CLASSTYPE_SIZE (t),
5632 CLASSTYPE_ALIGN (basetype)),
5633 bitsize_unit_node),
5634 BINFO_OFFSET (vbase))))
5635 warning (OPT_Wabi,
5636 "offset of virtual base %qT is not ABI-compliant and "
5637 "may change in a future version of GCC",
5638 basetype);
5639
5640 first_vbase = false;
5641 }
5642 }
5643 }
5644
5645 /* Returns the offset of the byte just past the end of the base class
5646 BINFO. */
5647
5648 static tree
5649 end_of_base (tree binfo)
5650 {
5651 tree size;
5652
5653 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5654 size = TYPE_SIZE_UNIT (char_type_node);
5655 else if (is_empty_class (BINFO_TYPE (binfo)))
5656 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5657 allocate some space for it. It cannot have virtual bases, so
5658 TYPE_SIZE_UNIT is fine. */
5659 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5660 else
5661 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5662
5663 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5664 }
5665
5666 /* Returns the offset of the byte just past the end of the base class
5667 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5668 only non-virtual bases are included. */
5669
5670 static tree
5671 end_of_class (tree t, int include_virtuals_p)
5672 {
5673 tree result = size_zero_node;
5674 vec<tree, va_gc> *vbases;
5675 tree binfo;
5676 tree base_binfo;
5677 tree offset;
5678 int i;
5679
5680 for (binfo = TYPE_BINFO (t), i = 0;
5681 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5682 {
5683 if (!include_virtuals_p
5684 && BINFO_VIRTUAL_P (base_binfo)
5685 && (!BINFO_PRIMARY_P (base_binfo)
5686 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5687 continue;
5688
5689 offset = end_of_base (base_binfo);
5690 if (INT_CST_LT_UNSIGNED (result, offset))
5691 result = offset;
5692 }
5693
5694 /* G++ 3.2 did not check indirect virtual bases. */
5695 if (abi_version_at_least (2) && include_virtuals_p)
5696 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5697 vec_safe_iterate (vbases, i, &base_binfo); i++)
5698 {
5699 offset = end_of_base (base_binfo);
5700 if (INT_CST_LT_UNSIGNED (result, offset))
5701 result = offset;
5702 }
5703
5704 return result;
5705 }
5706
5707 /* Warn about bases of T that are inaccessible because they are
5708 ambiguous. For example:
5709
5710 struct S {};
5711 struct T : public S {};
5712 struct U : public S, public T {};
5713
5714 Here, `(S*) new U' is not allowed because there are two `S'
5715 subobjects of U. */
5716
5717 static void
5718 warn_about_ambiguous_bases (tree t)
5719 {
5720 int i;
5721 vec<tree, va_gc> *vbases;
5722 tree basetype;
5723 tree binfo;
5724 tree base_binfo;
5725
5726 /* If there are no repeated bases, nothing can be ambiguous. */
5727 if (!CLASSTYPE_REPEATED_BASE_P (t))
5728 return;
5729
5730 /* Check direct bases. */
5731 for (binfo = TYPE_BINFO (t), i = 0;
5732 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5733 {
5734 basetype = BINFO_TYPE (base_binfo);
5735
5736 if (!uniquely_derived_from_p (basetype, t))
5737 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5738 basetype, t);
5739 }
5740
5741 /* Check for ambiguous virtual bases. */
5742 if (extra_warnings)
5743 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5744 vec_safe_iterate (vbases, i, &binfo); i++)
5745 {
5746 basetype = BINFO_TYPE (binfo);
5747
5748 if (!uniquely_derived_from_p (basetype, t))
5749 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5750 "to ambiguity", basetype, t);
5751 }
5752 }
5753
5754 /* Compare two INTEGER_CSTs K1 and K2. */
5755
5756 static int
5757 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5758 {
5759 return tree_int_cst_compare ((tree) k1, (tree) k2);
5760 }
5761
5762 /* Increase the size indicated in RLI to account for empty classes
5763 that are "off the end" of the class. */
5764
5765 static void
5766 include_empty_classes (record_layout_info rli)
5767 {
5768 tree eoc;
5769 tree rli_size;
5770
5771 /* It might be the case that we grew the class to allocate a
5772 zero-sized base class. That won't be reflected in RLI, yet,
5773 because we are willing to overlay multiple bases at the same
5774 offset. However, now we need to make sure that RLI is big enough
5775 to reflect the entire class. */
5776 eoc = end_of_class (rli->t,
5777 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5778 rli_size = rli_size_unit_so_far (rli);
5779 if (TREE_CODE (rli_size) == INTEGER_CST
5780 && INT_CST_LT_UNSIGNED (rli_size, eoc))
5781 {
5782 if (!abi_version_at_least (2))
5783 /* In version 1 of the ABI, the size of a class that ends with
5784 a bitfield was not rounded up to a whole multiple of a
5785 byte. Because rli_size_unit_so_far returns only the number
5786 of fully allocated bytes, any extra bits were not included
5787 in the size. */
5788 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
5789 else
5790 /* The size should have been rounded to a whole byte. */
5791 gcc_assert (tree_int_cst_equal
5792 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5793 rli->bitpos
5794 = size_binop (PLUS_EXPR,
5795 rli->bitpos,
5796 size_binop (MULT_EXPR,
5797 convert (bitsizetype,
5798 size_binop (MINUS_EXPR,
5799 eoc, rli_size)),
5800 bitsize_int (BITS_PER_UNIT)));
5801 normalize_rli (rli);
5802 }
5803 }
5804
5805 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5806 BINFO_OFFSETs for all of the base-classes. Position the vtable
5807 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5808
5809 static void
5810 layout_class_type (tree t, tree *virtuals_p)
5811 {
5812 tree non_static_data_members;
5813 tree field;
5814 tree vptr;
5815 record_layout_info rli;
5816 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
5817 types that appear at that offset. */
5818 splay_tree empty_base_offsets;
5819 /* True if the last field layed out was a bit-field. */
5820 bool last_field_was_bitfield = false;
5821 /* The location at which the next field should be inserted. */
5822 tree *next_field;
5823 /* T, as a base class. */
5824 tree base_t;
5825
5826 /* Keep track of the first non-static data member. */
5827 non_static_data_members = TYPE_FIELDS (t);
5828
5829 /* Start laying out the record. */
5830 rli = start_record_layout (t);
5831
5832 /* Mark all the primary bases in the hierarchy. */
5833 determine_primary_bases (t);
5834
5835 /* Create a pointer to our virtual function table. */
5836 vptr = create_vtable_ptr (t, virtuals_p);
5837
5838 /* The vptr is always the first thing in the class. */
5839 if (vptr)
5840 {
5841 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
5842 TYPE_FIELDS (t) = vptr;
5843 next_field = &DECL_CHAIN (vptr);
5844 place_field (rli, vptr);
5845 }
5846 else
5847 next_field = &TYPE_FIELDS (t);
5848
5849 /* Build FIELD_DECLs for all of the non-virtual base-types. */
5850 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5851 NULL, NULL);
5852 build_base_fields (rli, empty_base_offsets, next_field);
5853
5854 /* Layout the non-static data members. */
5855 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
5856 {
5857 tree type;
5858 tree padding;
5859
5860 /* We still pass things that aren't non-static data members to
5861 the back end, in case it wants to do something with them. */
5862 if (TREE_CODE (field) != FIELD_DECL)
5863 {
5864 place_field (rli, field);
5865 /* If the static data member has incomplete type, keep track
5866 of it so that it can be completed later. (The handling
5867 of pending statics in finish_record_layout is
5868 insufficient; consider:
5869
5870 struct S1;
5871 struct S2 { static S1 s1; };
5872
5873 At this point, finish_record_layout will be called, but
5874 S1 is still incomplete.) */
5875 if (VAR_P (field))
5876 {
5877 maybe_register_incomplete_var (field);
5878 /* The visibility of static data members is determined
5879 at their point of declaration, not their point of
5880 definition. */
5881 determine_visibility (field);
5882 }
5883 continue;
5884 }
5885
5886 type = TREE_TYPE (field);
5887 if (type == error_mark_node)
5888 continue;
5889
5890 padding = NULL_TREE;
5891
5892 /* If this field is a bit-field whose width is greater than its
5893 type, then there are some special rules for allocating
5894 it. */
5895 if (DECL_C_BIT_FIELD (field)
5896 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
5897 {
5898 unsigned int itk;
5899 tree integer_type;
5900 bool was_unnamed_p = false;
5901 /* We must allocate the bits as if suitably aligned for the
5902 longest integer type that fits in this many bits. type
5903 of the field. Then, we are supposed to use the left over
5904 bits as additional padding. */
5905 for (itk = itk_char; itk != itk_none; ++itk)
5906 if (integer_types[itk] != NULL_TREE
5907 && (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE),
5908 TYPE_SIZE (integer_types[itk]))
5909 || INT_CST_LT (DECL_SIZE (field),
5910 TYPE_SIZE (integer_types[itk]))))
5911 break;
5912
5913 /* ITK now indicates a type that is too large for the
5914 field. We have to back up by one to find the largest
5915 type that fits. */
5916 do
5917 {
5918 --itk;
5919 integer_type = integer_types[itk];
5920 } while (itk > 0 && integer_type == NULL_TREE);
5921
5922 /* Figure out how much additional padding is required. GCC
5923 3.2 always created a padding field, even if it had zero
5924 width. */
5925 if (!abi_version_at_least (2)
5926 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
5927 {
5928 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
5929 /* In a union, the padding field must have the full width
5930 of the bit-field; all fields start at offset zero. */
5931 padding = DECL_SIZE (field);
5932 else
5933 {
5934 if (TREE_CODE (t) == UNION_TYPE)
5935 warning (OPT_Wabi, "size assigned to %qT may not be "
5936 "ABI-compliant and may change in a future "
5937 "version of GCC",
5938 t);
5939 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
5940 TYPE_SIZE (integer_type));
5941 }
5942 }
5943 #ifdef PCC_BITFIELD_TYPE_MATTERS
5944 /* An unnamed bitfield does not normally affect the
5945 alignment of the containing class on a target where
5946 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
5947 make any exceptions for unnamed bitfields when the
5948 bitfields are longer than their types. Therefore, we
5949 temporarily give the field a name. */
5950 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
5951 {
5952 was_unnamed_p = true;
5953 DECL_NAME (field) = make_anon_name ();
5954 }
5955 #endif
5956 DECL_SIZE (field) = TYPE_SIZE (integer_type);
5957 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
5958 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
5959 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5960 empty_base_offsets);
5961 if (was_unnamed_p)
5962 DECL_NAME (field) = NULL_TREE;
5963 /* Now that layout has been performed, set the size of the
5964 field to the size of its declared type; the rest of the
5965 field is effectively invisible. */
5966 DECL_SIZE (field) = TYPE_SIZE (type);
5967 /* We must also reset the DECL_MODE of the field. */
5968 if (abi_version_at_least (2))
5969 DECL_MODE (field) = TYPE_MODE (type);
5970 else if (warn_abi
5971 && DECL_MODE (field) != TYPE_MODE (type))
5972 /* Versions of G++ before G++ 3.4 did not reset the
5973 DECL_MODE. */
5974 warning (OPT_Wabi,
5975 "the offset of %qD may not be ABI-compliant and may "
5976 "change in a future version of GCC", field);
5977 }
5978 else
5979 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5980 empty_base_offsets);
5981
5982 /* Remember the location of any empty classes in FIELD. */
5983 if (abi_version_at_least (2))
5984 record_subobject_offsets (TREE_TYPE (field),
5985 byte_position(field),
5986 empty_base_offsets,
5987 /*is_data_member=*/true);
5988
5989 /* If a bit-field does not immediately follow another bit-field,
5990 and yet it starts in the middle of a byte, we have failed to
5991 comply with the ABI. */
5992 if (warn_abi
5993 && DECL_C_BIT_FIELD (field)
5994 /* The TREE_NO_WARNING flag gets set by Objective-C when
5995 laying out an Objective-C class. The ObjC ABI differs
5996 from the C++ ABI, and so we do not want a warning
5997 here. */
5998 && !TREE_NO_WARNING (field)
5999 && !last_field_was_bitfield
6000 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6001 DECL_FIELD_BIT_OFFSET (field),
6002 bitsize_unit_node)))
6003 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
6004 "change in a future version of GCC", field);
6005
6006 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
6007 offset of the field. */
6008 if (warn_abi
6009 && !abi_version_at_least (2)
6010 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
6011 byte_position (field))
6012 && contains_empty_class_p (TREE_TYPE (field)))
6013 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
6014 "classes to be placed at different locations in a "
6015 "future version of GCC", field);
6016
6017 /* The middle end uses the type of expressions to determine the
6018 possible range of expression values. In order to optimize
6019 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6020 must be made aware of the width of "i", via its type.
6021
6022 Because C++ does not have integer types of arbitrary width,
6023 we must (for the purposes of the front end) convert from the
6024 type assigned here to the declared type of the bitfield
6025 whenever a bitfield expression is used as an rvalue.
6026 Similarly, when assigning a value to a bitfield, the value
6027 must be converted to the type given the bitfield here. */
6028 if (DECL_C_BIT_FIELD (field))
6029 {
6030 unsigned HOST_WIDE_INT width;
6031 tree ftype = TREE_TYPE (field);
6032 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
6033 if (width != TYPE_PRECISION (ftype))
6034 {
6035 TREE_TYPE (field)
6036 = c_build_bitfield_integer_type (width,
6037 TYPE_UNSIGNED (ftype));
6038 TREE_TYPE (field)
6039 = cp_build_qualified_type (TREE_TYPE (field),
6040 cp_type_quals (ftype));
6041 }
6042 }
6043
6044 /* If we needed additional padding after this field, add it
6045 now. */
6046 if (padding)
6047 {
6048 tree padding_field;
6049
6050 padding_field = build_decl (input_location,
6051 FIELD_DECL,
6052 NULL_TREE,
6053 char_type_node);
6054 DECL_BIT_FIELD (padding_field) = 1;
6055 DECL_SIZE (padding_field) = padding;
6056 DECL_CONTEXT (padding_field) = t;
6057 DECL_ARTIFICIAL (padding_field) = 1;
6058 DECL_IGNORED_P (padding_field) = 1;
6059 layout_nonempty_base_or_field (rli, padding_field,
6060 NULL_TREE,
6061 empty_base_offsets);
6062 }
6063
6064 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6065 }
6066
6067 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
6068 {
6069 /* Make sure that we are on a byte boundary so that the size of
6070 the class without virtual bases will always be a round number
6071 of bytes. */
6072 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6073 normalize_rli (rli);
6074 }
6075
6076 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
6077 padding. */
6078 if (!abi_version_at_least (2))
6079 include_empty_classes(rli);
6080
6081 /* Delete all zero-width bit-fields from the list of fields. Now
6082 that the type is laid out they are no longer important. */
6083 remove_zero_width_bit_fields (t);
6084
6085 /* Create the version of T used for virtual bases. We do not use
6086 make_class_type for this version; this is an artificial type. For
6087 a POD type, we just reuse T. */
6088 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6089 {
6090 base_t = make_node (TREE_CODE (t));
6091
6092 /* Set the size and alignment for the new type. In G++ 3.2, all
6093 empty classes were considered to have size zero when used as
6094 base classes. */
6095 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
6096 {
6097 TYPE_SIZE (base_t) = bitsize_zero_node;
6098 TYPE_SIZE_UNIT (base_t) = size_zero_node;
6099 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
6100 warning (OPT_Wabi,
6101 "layout of classes derived from empty class %qT "
6102 "may change in a future version of GCC",
6103 t);
6104 }
6105 else
6106 {
6107 tree eoc;
6108
6109 /* If the ABI version is not at least two, and the last
6110 field was a bit-field, RLI may not be on a byte
6111 boundary. In particular, rli_size_unit_so_far might
6112 indicate the last complete byte, while rli_size_so_far
6113 indicates the total number of bits used. Therefore,
6114 rli_size_so_far, rather than rli_size_unit_so_far, is
6115 used to compute TYPE_SIZE_UNIT. */
6116 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6117 TYPE_SIZE_UNIT (base_t)
6118 = size_binop (MAX_EXPR,
6119 convert (sizetype,
6120 size_binop (CEIL_DIV_EXPR,
6121 rli_size_so_far (rli),
6122 bitsize_int (BITS_PER_UNIT))),
6123 eoc);
6124 TYPE_SIZE (base_t)
6125 = size_binop (MAX_EXPR,
6126 rli_size_so_far (rli),
6127 size_binop (MULT_EXPR,
6128 convert (bitsizetype, eoc),
6129 bitsize_int (BITS_PER_UNIT)));
6130 }
6131 TYPE_ALIGN (base_t) = rli->record_align;
6132 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6133
6134 /* Copy the fields from T. */
6135 next_field = &TYPE_FIELDS (base_t);
6136 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6137 if (TREE_CODE (field) == FIELD_DECL)
6138 {
6139 *next_field = build_decl (input_location,
6140 FIELD_DECL,
6141 DECL_NAME (field),
6142 TREE_TYPE (field));
6143 DECL_CONTEXT (*next_field) = base_t;
6144 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6145 DECL_FIELD_BIT_OFFSET (*next_field)
6146 = DECL_FIELD_BIT_OFFSET (field);
6147 DECL_SIZE (*next_field) = DECL_SIZE (field);
6148 DECL_MODE (*next_field) = DECL_MODE (field);
6149 next_field = &DECL_CHAIN (*next_field);
6150 }
6151
6152 /* Record the base version of the type. */
6153 CLASSTYPE_AS_BASE (t) = base_t;
6154 TYPE_CONTEXT (base_t) = t;
6155 }
6156 else
6157 CLASSTYPE_AS_BASE (t) = t;
6158
6159 /* Every empty class contains an empty class. */
6160 if (CLASSTYPE_EMPTY_P (t))
6161 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6162
6163 /* Set the TYPE_DECL for this type to contain the right
6164 value for DECL_OFFSET, so that we can use it as part
6165 of a COMPONENT_REF for multiple inheritance. */
6166 layout_decl (TYPE_MAIN_DECL (t), 0);
6167
6168 /* Now fix up any virtual base class types that we left lying
6169 around. We must get these done before we try to lay out the
6170 virtual function table. As a side-effect, this will remove the
6171 base subobject fields. */
6172 layout_virtual_bases (rli, empty_base_offsets);
6173
6174 /* Make sure that empty classes are reflected in RLI at this
6175 point. */
6176 include_empty_classes(rli);
6177
6178 /* Make sure not to create any structures with zero size. */
6179 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6180 place_field (rli,
6181 build_decl (input_location,
6182 FIELD_DECL, NULL_TREE, char_type_node));
6183
6184 /* If this is a non-POD, declaring it packed makes a difference to how it
6185 can be used as a field; don't let finalize_record_size undo it. */
6186 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6187 rli->packed_maybe_necessary = true;
6188
6189 /* Let the back end lay out the type. */
6190 finish_record_layout (rli, /*free_p=*/true);
6191
6192 /* Warn about bases that can't be talked about due to ambiguity. */
6193 warn_about_ambiguous_bases (t);
6194
6195 /* Now that we're done with layout, give the base fields the real types. */
6196 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6197 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6198 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6199
6200 /* Clean up. */
6201 splay_tree_delete (empty_base_offsets);
6202
6203 if (CLASSTYPE_EMPTY_P (t)
6204 && tree_int_cst_lt (sizeof_biggest_empty_class,
6205 TYPE_SIZE_UNIT (t)))
6206 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6207 }
6208
6209 /* Determine the "key method" for the class type indicated by TYPE,
6210 and set CLASSTYPE_KEY_METHOD accordingly. */
6211
6212 void
6213 determine_key_method (tree type)
6214 {
6215 tree method;
6216
6217 if (TYPE_FOR_JAVA (type)
6218 || processing_template_decl
6219 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6220 || CLASSTYPE_INTERFACE_KNOWN (type))
6221 return;
6222
6223 /* The key method is the first non-pure virtual function that is not
6224 inline at the point of class definition. On some targets the
6225 key function may not be inline; those targets should not call
6226 this function until the end of the translation unit. */
6227 for (method = TYPE_METHODS (type); method != NULL_TREE;
6228 method = DECL_CHAIN (method))
6229 if (DECL_VINDEX (method) != NULL_TREE
6230 && ! DECL_DECLARED_INLINE_P (method)
6231 && ! DECL_PURE_VIRTUAL_P (method))
6232 {
6233 CLASSTYPE_KEY_METHOD (type) = method;
6234 break;
6235 }
6236
6237 return;
6238 }
6239
6240
6241 /* Allocate and return an instance of struct sorted_fields_type with
6242 N fields. */
6243
6244 static struct sorted_fields_type *
6245 sorted_fields_type_new (int n)
6246 {
6247 struct sorted_fields_type *sft;
6248 sft = ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type)
6249 + n * sizeof (tree));
6250 sft->len = n;
6251
6252 return sft;
6253 }
6254
6255
6256 /* Perform processing required when the definition of T (a class type)
6257 is complete. */
6258
6259 void
6260 finish_struct_1 (tree t)
6261 {
6262 tree x;
6263 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6264 tree virtuals = NULL_TREE;
6265
6266 if (COMPLETE_TYPE_P (t))
6267 {
6268 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6269 error ("redefinition of %q#T", t);
6270 popclass ();
6271 return;
6272 }
6273
6274 /* If this type was previously laid out as a forward reference,
6275 make sure we lay it out again. */
6276 TYPE_SIZE (t) = NULL_TREE;
6277 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6278
6279 /* Make assumptions about the class; we'll reset the flags if
6280 necessary. */
6281 CLASSTYPE_EMPTY_P (t) = 1;
6282 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6283 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6284 CLASSTYPE_LITERAL_P (t) = true;
6285
6286 /* Do end-of-class semantic processing: checking the validity of the
6287 bases and members and add implicitly generated methods. */
6288 check_bases_and_members (t);
6289
6290 /* Find the key method. */
6291 if (TYPE_CONTAINS_VPTR_P (t))
6292 {
6293 /* The Itanium C++ ABI permits the key method to be chosen when
6294 the class is defined -- even though the key method so
6295 selected may later turn out to be an inline function. On
6296 some systems (such as ARM Symbian OS) the key method cannot
6297 be determined until the end of the translation unit. On such
6298 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6299 will cause the class to be added to KEYED_CLASSES. Then, in
6300 finish_file we will determine the key method. */
6301 if (targetm.cxx.key_method_may_be_inline ())
6302 determine_key_method (t);
6303
6304 /* If a polymorphic class has no key method, we may emit the vtable
6305 in every translation unit where the class definition appears. */
6306 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6307 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6308 }
6309
6310 /* Layout the class itself. */
6311 layout_class_type (t, &virtuals);
6312 if (CLASSTYPE_AS_BASE (t) != t)
6313 /* We use the base type for trivial assignments, and hence it
6314 needs a mode. */
6315 compute_record_mode (CLASSTYPE_AS_BASE (t));
6316
6317 virtuals = modify_all_vtables (t, nreverse (virtuals));
6318
6319 /* If necessary, create the primary vtable for this class. */
6320 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6321 {
6322 /* We must enter these virtuals into the table. */
6323 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6324 build_primary_vtable (NULL_TREE, t);
6325 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6326 /* Here we know enough to change the type of our virtual
6327 function table, but we will wait until later this function. */
6328 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6329
6330 /* If we're warning about ABI tags, check the types of the new
6331 virtual functions. */
6332 if (warn_abi_tag)
6333 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6334 check_abi_tags (t, TREE_VALUE (v));
6335 }
6336
6337 if (TYPE_CONTAINS_VPTR_P (t))
6338 {
6339 int vindex;
6340 tree fn;
6341
6342 if (BINFO_VTABLE (TYPE_BINFO (t)))
6343 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6344 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6345 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6346
6347 /* Add entries for virtual functions introduced by this class. */
6348 BINFO_VIRTUALS (TYPE_BINFO (t))
6349 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6350
6351 /* Set DECL_VINDEX for all functions declared in this class. */
6352 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6353 fn;
6354 fn = TREE_CHAIN (fn),
6355 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6356 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6357 {
6358 tree fndecl = BV_FN (fn);
6359
6360 if (DECL_THUNK_P (fndecl))
6361 /* A thunk. We should never be calling this entry directly
6362 from this vtable -- we'd use the entry for the non
6363 thunk base function. */
6364 DECL_VINDEX (fndecl) = NULL_TREE;
6365 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6366 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6367 }
6368 }
6369
6370 finish_struct_bits (t);
6371 set_method_tm_attributes (t);
6372
6373 /* Complete the rtl for any static member objects of the type we're
6374 working on. */
6375 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6376 if (VAR_P (x) && TREE_STATIC (x)
6377 && TREE_TYPE (x) != error_mark_node
6378 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6379 DECL_MODE (x) = TYPE_MODE (t);
6380
6381 /* Done with FIELDS...now decide whether to sort these for
6382 faster lookups later.
6383
6384 We use a small number because most searches fail (succeeding
6385 ultimately as the search bores through the inheritance
6386 hierarchy), and we want this failure to occur quickly. */
6387
6388 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6389
6390 /* Complain if one of the field types requires lower visibility. */
6391 constrain_class_visibility (t);
6392
6393 /* Make the rtl for any new vtables we have created, and unmark
6394 the base types we marked. */
6395 finish_vtbls (t);
6396
6397 /* Build the VTT for T. */
6398 build_vtt (t);
6399
6400 /* This warning does not make sense for Java classes, since they
6401 cannot have destructors. */
6402 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
6403 {
6404 tree dtor;
6405
6406 dtor = CLASSTYPE_DESTRUCTORS (t);
6407 if (/* An implicitly declared destructor is always public. And,
6408 if it were virtual, we would have created it by now. */
6409 !dtor
6410 || (!DECL_VINDEX (dtor)
6411 && (/* public non-virtual */
6412 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
6413 || (/* non-public non-virtual with friends */
6414 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
6415 && (CLASSTYPE_FRIEND_CLASSES (t)
6416 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
6417 warning (OPT_Wnon_virtual_dtor,
6418 "%q#T has virtual functions and accessible"
6419 " non-virtual destructor", t);
6420 }
6421
6422 complete_vars (t);
6423
6424 if (warn_overloaded_virtual)
6425 warn_hidden (t);
6426
6427 /* Class layout, assignment of virtual table slots, etc., is now
6428 complete. Give the back end a chance to tweak the visibility of
6429 the class or perform any other required target modifications. */
6430 targetm.cxx.adjust_class_at_definition (t);
6431
6432 maybe_suppress_debug_info (t);
6433
6434 dump_class_hierarchy (t);
6435
6436 /* Finish debugging output for this type. */
6437 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6438
6439 if (TYPE_TRANSPARENT_AGGR (t))
6440 {
6441 tree field = first_field (t);
6442 if (field == NULL_TREE || error_operand_p (field))
6443 {
6444 error ("type transparent %q#T does not have any fields", t);
6445 TYPE_TRANSPARENT_AGGR (t) = 0;
6446 }
6447 else if (DECL_ARTIFICIAL (field))
6448 {
6449 if (DECL_FIELD_IS_BASE (field))
6450 error ("type transparent class %qT has base classes", t);
6451 else
6452 {
6453 gcc_checking_assert (DECL_VIRTUAL_P (field));
6454 error ("type transparent class %qT has virtual functions", t);
6455 }
6456 TYPE_TRANSPARENT_AGGR (t) = 0;
6457 }
6458 else if (TYPE_MODE (t) != DECL_MODE (field))
6459 {
6460 error ("type transparent %q#T cannot be made transparent because "
6461 "the type of the first field has a different ABI from the "
6462 "class overall", t);
6463 TYPE_TRANSPARENT_AGGR (t) = 0;
6464 }
6465 }
6466 }
6467
6468 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6469 equal to THRESHOLD or greater than THRESHOLD. */
6470
6471 static void
6472 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6473 {
6474 int n_fields = count_fields (fields);
6475 if (n_fields >= threshold)
6476 {
6477 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6478 add_fields_to_record_type (fields, field_vec, 0);
6479 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6480 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6481 }
6482 }
6483
6484 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6485
6486 void
6487 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6488 {
6489 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6490 if (sorted_fields)
6491 {
6492 int i;
6493 int n_fields
6494 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6495 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6496
6497 for (i = 0; i < sorted_fields->len; ++i)
6498 field_vec->elts[i] = sorted_fields->elts[i];
6499
6500 add_enum_fields_to_record_type (enumtype, field_vec,
6501 sorted_fields->len);
6502 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6503 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6504 }
6505 }
6506
6507 /* When T was built up, the member declarations were added in reverse
6508 order. Rearrange them to declaration order. */
6509
6510 void
6511 unreverse_member_declarations (tree t)
6512 {
6513 tree next;
6514 tree prev;
6515 tree x;
6516
6517 /* The following lists are all in reverse order. Put them in
6518 declaration order now. */
6519 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6520 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6521
6522 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6523 reverse order, so we can't just use nreverse. */
6524 prev = NULL_TREE;
6525 for (x = TYPE_FIELDS (t);
6526 x && TREE_CODE (x) != TYPE_DECL;
6527 x = next)
6528 {
6529 next = DECL_CHAIN (x);
6530 DECL_CHAIN (x) = prev;
6531 prev = x;
6532 }
6533 if (prev)
6534 {
6535 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6536 if (prev)
6537 TYPE_FIELDS (t) = prev;
6538 }
6539 }
6540
6541 tree
6542 finish_struct (tree t, tree attributes)
6543 {
6544 location_t saved_loc = input_location;
6545
6546 /* Now that we've got all the field declarations, reverse everything
6547 as necessary. */
6548 unreverse_member_declarations (t);
6549
6550 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6551
6552 /* Nadger the current location so that diagnostics point to the start of
6553 the struct, not the end. */
6554 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6555
6556 if (processing_template_decl)
6557 {
6558 tree x;
6559
6560 finish_struct_methods (t);
6561 TYPE_SIZE (t) = bitsize_zero_node;
6562 TYPE_SIZE_UNIT (t) = size_zero_node;
6563
6564 /* We need to emit an error message if this type was used as a parameter
6565 and it is an abstract type, even if it is a template. We construct
6566 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6567 account and we call complete_vars with this type, which will check
6568 the PARM_DECLS. Note that while the type is being defined,
6569 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6570 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6571 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6572 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6573 if (DECL_PURE_VIRTUAL_P (x))
6574 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6575 complete_vars (t);
6576 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6577 an enclosing scope is a template class, so that this function be
6578 found by lookup_fnfields_1 when the using declaration is not
6579 instantiated yet. */
6580 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6581 if (TREE_CODE (x) == USING_DECL)
6582 {
6583 tree fn = strip_using_decl (x);
6584 if (is_overloaded_fn (fn))
6585 for (; fn; fn = OVL_NEXT (fn))
6586 add_method (t, OVL_CURRENT (fn), x);
6587 }
6588
6589 /* Remember current #pragma pack value. */
6590 TYPE_PRECISION (t) = maximum_field_alignment;
6591
6592 /* Fix up any variants we've already built. */
6593 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6594 {
6595 TYPE_SIZE (x) = TYPE_SIZE (t);
6596 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6597 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6598 TYPE_METHODS (x) = TYPE_METHODS (t);
6599 }
6600 }
6601 else
6602 finish_struct_1 (t);
6603
6604 input_location = saved_loc;
6605
6606 TYPE_BEING_DEFINED (t) = 0;
6607
6608 if (current_class_type)
6609 popclass ();
6610 else
6611 error ("trying to finish struct, but kicked out due to previous parse errors");
6612
6613 if (processing_template_decl && at_function_scope_p ()
6614 /* Lambdas are defined by the LAMBDA_EXPR. */
6615 && !LAMBDA_TYPE_P (t))
6616 add_stmt (build_min (TAG_DEFN, t));
6617
6618 return t;
6619 }
6620 \f
6621 /* Hash table to avoid endless recursion when handling references. */
6622 static hash_table <pointer_hash <tree_node> > fixed_type_or_null_ref_ht;
6623
6624 /* Return the dynamic type of INSTANCE, if known.
6625 Used to determine whether the virtual function table is needed
6626 or not.
6627
6628 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6629 of our knowledge of its type. *NONNULL should be initialized
6630 before this function is called. */
6631
6632 static tree
6633 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6634 {
6635 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6636
6637 switch (TREE_CODE (instance))
6638 {
6639 case INDIRECT_REF:
6640 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6641 return NULL_TREE;
6642 else
6643 return RECUR (TREE_OPERAND (instance, 0));
6644
6645 case CALL_EXPR:
6646 /* This is a call to a constructor, hence it's never zero. */
6647 if (TREE_HAS_CONSTRUCTOR (instance))
6648 {
6649 if (nonnull)
6650 *nonnull = 1;
6651 return TREE_TYPE (instance);
6652 }
6653 return NULL_TREE;
6654
6655 case SAVE_EXPR:
6656 /* This is a call to a constructor, hence it's never zero. */
6657 if (TREE_HAS_CONSTRUCTOR (instance))
6658 {
6659 if (nonnull)
6660 *nonnull = 1;
6661 return TREE_TYPE (instance);
6662 }
6663 return RECUR (TREE_OPERAND (instance, 0));
6664
6665 case POINTER_PLUS_EXPR:
6666 case PLUS_EXPR:
6667 case MINUS_EXPR:
6668 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6669 return RECUR (TREE_OPERAND (instance, 0));
6670 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6671 /* Propagate nonnull. */
6672 return RECUR (TREE_OPERAND (instance, 0));
6673
6674 return NULL_TREE;
6675
6676 CASE_CONVERT:
6677 return RECUR (TREE_OPERAND (instance, 0));
6678
6679 case ADDR_EXPR:
6680 instance = TREE_OPERAND (instance, 0);
6681 if (nonnull)
6682 {
6683 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6684 with a real object -- given &p->f, p can still be null. */
6685 tree t = get_base_address (instance);
6686 /* ??? Probably should check DECL_WEAK here. */
6687 if (t && DECL_P (t))
6688 *nonnull = 1;
6689 }
6690 return RECUR (instance);
6691
6692 case COMPONENT_REF:
6693 /* If this component is really a base class reference, then the field
6694 itself isn't definitive. */
6695 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6696 return RECUR (TREE_OPERAND (instance, 0));
6697 return RECUR (TREE_OPERAND (instance, 1));
6698
6699 case VAR_DECL:
6700 case FIELD_DECL:
6701 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6702 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6703 {
6704 if (nonnull)
6705 *nonnull = 1;
6706 return TREE_TYPE (TREE_TYPE (instance));
6707 }
6708 /* fall through... */
6709 case TARGET_EXPR:
6710 case PARM_DECL:
6711 case RESULT_DECL:
6712 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6713 {
6714 if (nonnull)
6715 *nonnull = 1;
6716 return TREE_TYPE (instance);
6717 }
6718 else if (instance == current_class_ptr)
6719 {
6720 if (nonnull)
6721 *nonnull = 1;
6722
6723 /* if we're in a ctor or dtor, we know our type. If
6724 current_class_ptr is set but we aren't in a function, we're in
6725 an NSDMI (and therefore a constructor). */
6726 if (current_scope () != current_function_decl
6727 || (DECL_LANG_SPECIFIC (current_function_decl)
6728 && (DECL_CONSTRUCTOR_P (current_function_decl)
6729 || DECL_DESTRUCTOR_P (current_function_decl))))
6730 {
6731 if (cdtorp)
6732 *cdtorp = 1;
6733 return TREE_TYPE (TREE_TYPE (instance));
6734 }
6735 }
6736 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6737 {
6738 /* We only need one hash table because it is always left empty. */
6739 if (!fixed_type_or_null_ref_ht.is_created ())
6740 fixed_type_or_null_ref_ht.create (37);
6741
6742 /* Reference variables should be references to objects. */
6743 if (nonnull)
6744 *nonnull = 1;
6745
6746 /* Enter the INSTANCE in a table to prevent recursion; a
6747 variable's initializer may refer to the variable
6748 itself. */
6749 if (VAR_P (instance)
6750 && DECL_INITIAL (instance)
6751 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6752 && !fixed_type_or_null_ref_ht.find (instance))
6753 {
6754 tree type;
6755 tree_node **slot;
6756
6757 slot = fixed_type_or_null_ref_ht.find_slot (instance, INSERT);
6758 *slot = instance;
6759 type = RECUR (DECL_INITIAL (instance));
6760 fixed_type_or_null_ref_ht.remove_elt (instance);
6761
6762 return type;
6763 }
6764 }
6765 return NULL_TREE;
6766
6767 default:
6768 return NULL_TREE;
6769 }
6770 #undef RECUR
6771 }
6772
6773 /* Return nonzero if the dynamic type of INSTANCE is known, and
6774 equivalent to the static type. We also handle the case where
6775 INSTANCE is really a pointer. Return negative if this is a
6776 ctor/dtor. There the dynamic type is known, but this might not be
6777 the most derived base of the original object, and hence virtual
6778 bases may not be layed out according to this type.
6779
6780 Used to determine whether the virtual function table is needed
6781 or not.
6782
6783 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6784 of our knowledge of its type. *NONNULL should be initialized
6785 before this function is called. */
6786
6787 int
6788 resolves_to_fixed_type_p (tree instance, int* nonnull)
6789 {
6790 tree t = TREE_TYPE (instance);
6791 int cdtorp = 0;
6792 tree fixed;
6793
6794 /* processing_template_decl can be false in a template if we're in
6795 fold_non_dependent_expr, but we still want to suppress this check. */
6796 if (in_template_function ())
6797 {
6798 /* In a template we only care about the type of the result. */
6799 if (nonnull)
6800 *nonnull = true;
6801 return true;
6802 }
6803
6804 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6805 if (fixed == NULL_TREE)
6806 return 0;
6807 if (POINTER_TYPE_P (t))
6808 t = TREE_TYPE (t);
6809 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6810 return 0;
6811 return cdtorp ? -1 : 1;
6812 }
6813
6814 \f
6815 void
6816 init_class_processing (void)
6817 {
6818 current_class_depth = 0;
6819 current_class_stack_size = 10;
6820 current_class_stack
6821 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6822 vec_alloc (local_classes, 8);
6823 sizeof_biggest_empty_class = size_zero_node;
6824
6825 ridpointers[(int) RID_PUBLIC] = access_public_node;
6826 ridpointers[(int) RID_PRIVATE] = access_private_node;
6827 ridpointers[(int) RID_PROTECTED] = access_protected_node;
6828 }
6829
6830 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
6831
6832 static void
6833 restore_class_cache (void)
6834 {
6835 tree type;
6836
6837 /* We are re-entering the same class we just left, so we don't
6838 have to search the whole inheritance matrix to find all the
6839 decls to bind again. Instead, we install the cached
6840 class_shadowed list and walk through it binding names. */
6841 push_binding_level (previous_class_level);
6842 class_binding_level = previous_class_level;
6843 /* Restore IDENTIFIER_TYPE_VALUE. */
6844 for (type = class_binding_level->type_shadowed;
6845 type;
6846 type = TREE_CHAIN (type))
6847 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
6848 }
6849
6850 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
6851 appropriate for TYPE.
6852
6853 So that we may avoid calls to lookup_name, we cache the _TYPE
6854 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
6855
6856 For multiple inheritance, we perform a two-pass depth-first search
6857 of the type lattice. */
6858
6859 void
6860 pushclass (tree type)
6861 {
6862 class_stack_node_t csn;
6863
6864 type = TYPE_MAIN_VARIANT (type);
6865
6866 /* Make sure there is enough room for the new entry on the stack. */
6867 if (current_class_depth + 1 >= current_class_stack_size)
6868 {
6869 current_class_stack_size *= 2;
6870 current_class_stack
6871 = XRESIZEVEC (struct class_stack_node, current_class_stack,
6872 current_class_stack_size);
6873 }
6874
6875 /* Insert a new entry on the class stack. */
6876 csn = current_class_stack + current_class_depth;
6877 csn->name = current_class_name;
6878 csn->type = current_class_type;
6879 csn->access = current_access_specifier;
6880 csn->names_used = 0;
6881 csn->hidden = 0;
6882 current_class_depth++;
6883
6884 /* Now set up the new type. */
6885 current_class_name = TYPE_NAME (type);
6886 if (TREE_CODE (current_class_name) == TYPE_DECL)
6887 current_class_name = DECL_NAME (current_class_name);
6888 current_class_type = type;
6889
6890 /* By default, things in classes are private, while things in
6891 structures or unions are public. */
6892 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
6893 ? access_private_node
6894 : access_public_node);
6895
6896 if (previous_class_level
6897 && type != previous_class_level->this_entity
6898 && current_class_depth == 1)
6899 {
6900 /* Forcibly remove any old class remnants. */
6901 invalidate_class_lookup_cache ();
6902 }
6903
6904 if (!previous_class_level
6905 || type != previous_class_level->this_entity
6906 || current_class_depth > 1)
6907 pushlevel_class ();
6908 else
6909 restore_class_cache ();
6910 }
6911
6912 /* When we exit a toplevel class scope, we save its binding level so
6913 that we can restore it quickly. Here, we've entered some other
6914 class, so we must invalidate our cache. */
6915
6916 void
6917 invalidate_class_lookup_cache (void)
6918 {
6919 previous_class_level = NULL;
6920 }
6921
6922 /* Get out of the current class scope. If we were in a class scope
6923 previously, that is the one popped to. */
6924
6925 void
6926 popclass (void)
6927 {
6928 poplevel_class ();
6929
6930 current_class_depth--;
6931 current_class_name = current_class_stack[current_class_depth].name;
6932 current_class_type = current_class_stack[current_class_depth].type;
6933 current_access_specifier = current_class_stack[current_class_depth].access;
6934 if (current_class_stack[current_class_depth].names_used)
6935 splay_tree_delete (current_class_stack[current_class_depth].names_used);
6936 }
6937
6938 /* Mark the top of the class stack as hidden. */
6939
6940 void
6941 push_class_stack (void)
6942 {
6943 if (current_class_depth)
6944 ++current_class_stack[current_class_depth - 1].hidden;
6945 }
6946
6947 /* Mark the top of the class stack as un-hidden. */
6948
6949 void
6950 pop_class_stack (void)
6951 {
6952 if (current_class_depth)
6953 --current_class_stack[current_class_depth - 1].hidden;
6954 }
6955
6956 /* Returns 1 if the class type currently being defined is either T or
6957 a nested type of T. */
6958
6959 bool
6960 currently_open_class (tree t)
6961 {
6962 int i;
6963
6964 if (!CLASS_TYPE_P (t))
6965 return false;
6966
6967 t = TYPE_MAIN_VARIANT (t);
6968
6969 /* We start looking from 1 because entry 0 is from global scope,
6970 and has no type. */
6971 for (i = current_class_depth; i > 0; --i)
6972 {
6973 tree c;
6974 if (i == current_class_depth)
6975 c = current_class_type;
6976 else
6977 {
6978 if (current_class_stack[i].hidden)
6979 break;
6980 c = current_class_stack[i].type;
6981 }
6982 if (!c)
6983 continue;
6984 if (same_type_p (c, t))
6985 return true;
6986 }
6987 return false;
6988 }
6989
6990 /* If either current_class_type or one of its enclosing classes are derived
6991 from T, return the appropriate type. Used to determine how we found
6992 something via unqualified lookup. */
6993
6994 tree
6995 currently_open_derived_class (tree t)
6996 {
6997 int i;
6998
6999 /* The bases of a dependent type are unknown. */
7000 if (dependent_type_p (t))
7001 return NULL_TREE;
7002
7003 if (!current_class_type)
7004 return NULL_TREE;
7005
7006 if (DERIVED_FROM_P (t, current_class_type))
7007 return current_class_type;
7008
7009 for (i = current_class_depth - 1; i > 0; --i)
7010 {
7011 if (current_class_stack[i].hidden)
7012 break;
7013 if (DERIVED_FROM_P (t, current_class_stack[i].type))
7014 return current_class_stack[i].type;
7015 }
7016
7017 return NULL_TREE;
7018 }
7019
7020 /* Returns the innermost class type which is not a lambda closure type. */
7021
7022 tree
7023 current_nonlambda_class_type (void)
7024 {
7025 int i;
7026
7027 /* We start looking from 1 because entry 0 is from global scope,
7028 and has no type. */
7029 for (i = current_class_depth; i > 0; --i)
7030 {
7031 tree c;
7032 if (i == current_class_depth)
7033 c = current_class_type;
7034 else
7035 {
7036 if (current_class_stack[i].hidden)
7037 break;
7038 c = current_class_stack[i].type;
7039 }
7040 if (!c)
7041 continue;
7042 if (!LAMBDA_TYPE_P (c))
7043 return c;
7044 }
7045 return NULL_TREE;
7046 }
7047
7048 /* When entering a class scope, all enclosing class scopes' names with
7049 static meaning (static variables, static functions, types and
7050 enumerators) have to be visible. This recursive function calls
7051 pushclass for all enclosing class contexts until global or a local
7052 scope is reached. TYPE is the enclosed class. */
7053
7054 void
7055 push_nested_class (tree type)
7056 {
7057 /* A namespace might be passed in error cases, like A::B:C. */
7058 if (type == NULL_TREE
7059 || !CLASS_TYPE_P (type))
7060 return;
7061
7062 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7063
7064 pushclass (type);
7065 }
7066
7067 /* Undoes a push_nested_class call. */
7068
7069 void
7070 pop_nested_class (void)
7071 {
7072 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7073
7074 popclass ();
7075 if (context && CLASS_TYPE_P (context))
7076 pop_nested_class ();
7077 }
7078
7079 /* Returns the number of extern "LANG" blocks we are nested within. */
7080
7081 int
7082 current_lang_depth (void)
7083 {
7084 return vec_safe_length (current_lang_base);
7085 }
7086
7087 /* Set global variables CURRENT_LANG_NAME to appropriate value
7088 so that behavior of name-mangling machinery is correct. */
7089
7090 void
7091 push_lang_context (tree name)
7092 {
7093 vec_safe_push (current_lang_base, current_lang_name);
7094
7095 if (name == lang_name_cplusplus)
7096 {
7097 current_lang_name = name;
7098 }
7099 else if (name == lang_name_java)
7100 {
7101 current_lang_name = name;
7102 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7103 (See record_builtin_java_type in decl.c.) However, that causes
7104 incorrect debug entries if these types are actually used.
7105 So we re-enable debug output after extern "Java". */
7106 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7107 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7108 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7109 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7110 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7111 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7112 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7113 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7114 }
7115 else if (name == lang_name_c)
7116 {
7117 current_lang_name = name;
7118 }
7119 else
7120 error ("language string %<\"%E\"%> not recognized", name);
7121 }
7122
7123 /* Get out of the current language scope. */
7124
7125 void
7126 pop_lang_context (void)
7127 {
7128 current_lang_name = current_lang_base->pop ();
7129 }
7130 \f
7131 /* Type instantiation routines. */
7132
7133 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7134 matches the TARGET_TYPE. If there is no satisfactory match, return
7135 error_mark_node, and issue an error & warning messages under
7136 control of FLAGS. Permit pointers to member function if FLAGS
7137 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7138 a template-id, and EXPLICIT_TARGS are the explicitly provided
7139 template arguments.
7140
7141 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7142 is the base path used to reference those member functions. If
7143 the address is resolved to a member function, access checks will be
7144 performed and errors issued if appropriate. */
7145
7146 static tree
7147 resolve_address_of_overloaded_function (tree target_type,
7148 tree overload,
7149 tsubst_flags_t flags,
7150 bool template_only,
7151 tree explicit_targs,
7152 tree access_path)
7153 {
7154 /* Here's what the standard says:
7155
7156 [over.over]
7157
7158 If the name is a function template, template argument deduction
7159 is done, and if the argument deduction succeeds, the deduced
7160 arguments are used to generate a single template function, which
7161 is added to the set of overloaded functions considered.
7162
7163 Non-member functions and static member functions match targets of
7164 type "pointer-to-function" or "reference-to-function." Nonstatic
7165 member functions match targets of type "pointer-to-member
7166 function;" the function type of the pointer to member is used to
7167 select the member function from the set of overloaded member
7168 functions. If a nonstatic member function is selected, the
7169 reference to the overloaded function name is required to have the
7170 form of a pointer to member as described in 5.3.1.
7171
7172 If more than one function is selected, any template functions in
7173 the set are eliminated if the set also contains a non-template
7174 function, and any given template function is eliminated if the
7175 set contains a second template function that is more specialized
7176 than the first according to the partial ordering rules 14.5.5.2.
7177 After such eliminations, if any, there shall remain exactly one
7178 selected function. */
7179
7180 int is_ptrmem = 0;
7181 /* We store the matches in a TREE_LIST rooted here. The functions
7182 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7183 interoperability with most_specialized_instantiation. */
7184 tree matches = NULL_TREE;
7185 tree fn;
7186 tree target_fn_type;
7187
7188 /* By the time we get here, we should be seeing only real
7189 pointer-to-member types, not the internal POINTER_TYPE to
7190 METHOD_TYPE representation. */
7191 gcc_assert (!TYPE_PTR_P (target_type)
7192 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7193
7194 gcc_assert (is_overloaded_fn (overload));
7195
7196 /* Check that the TARGET_TYPE is reasonable. */
7197 if (TYPE_PTRFN_P (target_type)
7198 || TYPE_REFFN_P (target_type))
7199 /* This is OK. */;
7200 else if (TYPE_PTRMEMFUNC_P (target_type))
7201 /* This is OK, too. */
7202 is_ptrmem = 1;
7203 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7204 /* This is OK, too. This comes from a conversion to reference
7205 type. */
7206 target_type = build_reference_type (target_type);
7207 else
7208 {
7209 if (flags & tf_error)
7210 error ("cannot resolve overloaded function %qD based on"
7211 " conversion to type %qT",
7212 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7213 return error_mark_node;
7214 }
7215
7216 /* Non-member functions and static member functions match targets of type
7217 "pointer-to-function" or "reference-to-function." Nonstatic member
7218 functions match targets of type "pointer-to-member-function;" the
7219 function type of the pointer to member is used to select the member
7220 function from the set of overloaded member functions.
7221
7222 So figure out the FUNCTION_TYPE that we want to match against. */
7223 target_fn_type = static_fn_type (target_type);
7224
7225 /* If we can find a non-template function that matches, we can just
7226 use it. There's no point in generating template instantiations
7227 if we're just going to throw them out anyhow. But, of course, we
7228 can only do this when we don't *need* a template function. */
7229 if (!template_only)
7230 {
7231 tree fns;
7232
7233 for (fns = overload; fns; fns = OVL_NEXT (fns))
7234 {
7235 tree fn = OVL_CURRENT (fns);
7236
7237 if (TREE_CODE (fn) == TEMPLATE_DECL)
7238 /* We're not looking for templates just yet. */
7239 continue;
7240
7241 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7242 != is_ptrmem)
7243 /* We're looking for a non-static member, and this isn't
7244 one, or vice versa. */
7245 continue;
7246
7247 /* Ignore functions which haven't been explicitly
7248 declared. */
7249 if (DECL_ANTICIPATED (fn))
7250 continue;
7251
7252 /* See if there's a match. */
7253 if (same_type_p (target_fn_type, static_fn_type (fn)))
7254 matches = tree_cons (fn, NULL_TREE, matches);
7255 }
7256 }
7257
7258 /* Now, if we've already got a match (or matches), there's no need
7259 to proceed to the template functions. But, if we don't have a
7260 match we need to look at them, too. */
7261 if (!matches)
7262 {
7263 tree target_arg_types;
7264 tree target_ret_type;
7265 tree fns;
7266 tree *args;
7267 unsigned int nargs, ia;
7268 tree arg;
7269
7270 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7271 target_ret_type = TREE_TYPE (target_fn_type);
7272
7273 nargs = list_length (target_arg_types);
7274 args = XALLOCAVEC (tree, nargs);
7275 for (arg = target_arg_types, ia = 0;
7276 arg != NULL_TREE && arg != void_list_node;
7277 arg = TREE_CHAIN (arg), ++ia)
7278 args[ia] = TREE_VALUE (arg);
7279 nargs = ia;
7280
7281 for (fns = overload; fns; fns = OVL_NEXT (fns))
7282 {
7283 tree fn = OVL_CURRENT (fns);
7284 tree instantiation;
7285 tree targs;
7286
7287 if (TREE_CODE (fn) != TEMPLATE_DECL)
7288 /* We're only looking for templates. */
7289 continue;
7290
7291 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7292 != is_ptrmem)
7293 /* We're not looking for a non-static member, and this is
7294 one, or vice versa. */
7295 continue;
7296
7297 tree ret = target_ret_type;
7298
7299 /* If the template has a deduced return type, don't expose it to
7300 template argument deduction. */
7301 if (undeduced_auto_decl (fn))
7302 ret = NULL_TREE;
7303
7304 /* Try to do argument deduction. */
7305 targs = make_tree_vec (DECL_NTPARMS (fn));
7306 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7307 nargs, ret,
7308 DEDUCE_EXACT, LOOKUP_NORMAL,
7309 false, false);
7310 if (instantiation == error_mark_node)
7311 /* Instantiation failed. */
7312 continue;
7313
7314 /* And now force instantiation to do return type deduction. */
7315 if (undeduced_auto_decl (instantiation))
7316 {
7317 ++function_depth;
7318 instantiate_decl (instantiation, /*defer*/false, /*class*/false);
7319 --function_depth;
7320
7321 require_deduced_type (instantiation);
7322 }
7323
7324 /* See if there's a match. */
7325 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7326 matches = tree_cons (instantiation, fn, matches);
7327
7328 ggc_free (targs);
7329 }
7330
7331 /* Now, remove all but the most specialized of the matches. */
7332 if (matches)
7333 {
7334 tree match = most_specialized_instantiation (matches);
7335
7336 if (match != error_mark_node)
7337 matches = tree_cons (TREE_PURPOSE (match),
7338 NULL_TREE,
7339 NULL_TREE);
7340 }
7341 }
7342
7343 /* Now we should have exactly one function in MATCHES. */
7344 if (matches == NULL_TREE)
7345 {
7346 /* There were *no* matches. */
7347 if (flags & tf_error)
7348 {
7349 error ("no matches converting function %qD to type %q#T",
7350 DECL_NAME (OVL_CURRENT (overload)),
7351 target_type);
7352
7353 print_candidates (overload);
7354 }
7355 return error_mark_node;
7356 }
7357 else if (TREE_CHAIN (matches))
7358 {
7359 /* There were too many matches. First check if they're all
7360 the same function. */
7361 tree match = NULL_TREE;
7362
7363 fn = TREE_PURPOSE (matches);
7364
7365 /* For multi-versioned functions, more than one match is just fine and
7366 decls_match will return false as they are different. */
7367 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7368 if (!decls_match (fn, TREE_PURPOSE (match))
7369 && !targetm.target_option.function_versions
7370 (fn, TREE_PURPOSE (match)))
7371 break;
7372
7373 if (match)
7374 {
7375 if (flags & tf_error)
7376 {
7377 error ("converting overloaded function %qD to type %q#T is ambiguous",
7378 DECL_NAME (OVL_FUNCTION (overload)),
7379 target_type);
7380
7381 /* Since print_candidates expects the functions in the
7382 TREE_VALUE slot, we flip them here. */
7383 for (match = matches; match; match = TREE_CHAIN (match))
7384 TREE_VALUE (match) = TREE_PURPOSE (match);
7385
7386 print_candidates (matches);
7387 }
7388
7389 return error_mark_node;
7390 }
7391 }
7392
7393 /* Good, exactly one match. Now, convert it to the correct type. */
7394 fn = TREE_PURPOSE (matches);
7395
7396 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7397 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7398 {
7399 static int explained;
7400
7401 if (!(flags & tf_error))
7402 return error_mark_node;
7403
7404 permerror (input_location, "assuming pointer to member %qD", fn);
7405 if (!explained)
7406 {
7407 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7408 explained = 1;
7409 }
7410 }
7411
7412 /* If a pointer to a function that is multi-versioned is requested, the
7413 pointer to the dispatcher function is returned instead. This works
7414 well because indirectly calling the function will dispatch the right
7415 function version at run-time. */
7416 if (DECL_FUNCTION_VERSIONED (fn))
7417 {
7418 fn = get_function_version_dispatcher (fn);
7419 if (fn == NULL)
7420 return error_mark_node;
7421 /* Mark all the versions corresponding to the dispatcher as used. */
7422 if (!(flags & tf_conv))
7423 mark_versions_used (fn);
7424 }
7425
7426 /* If we're doing overload resolution purely for the purpose of
7427 determining conversion sequences, we should not consider the
7428 function used. If this conversion sequence is selected, the
7429 function will be marked as used at this point. */
7430 if (!(flags & tf_conv))
7431 {
7432 /* Make =delete work with SFINAE. */
7433 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7434 return error_mark_node;
7435
7436 mark_used (fn);
7437 }
7438
7439 /* We could not check access to member functions when this
7440 expression was originally created since we did not know at that
7441 time to which function the expression referred. */
7442 if (DECL_FUNCTION_MEMBER_P (fn))
7443 {
7444 gcc_assert (access_path);
7445 perform_or_defer_access_check (access_path, fn, fn, flags);
7446 }
7447
7448 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7449 return cp_build_addr_expr (fn, flags);
7450 else
7451 {
7452 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7453 will mark the function as addressed, but here we must do it
7454 explicitly. */
7455 cxx_mark_addressable (fn);
7456
7457 return fn;
7458 }
7459 }
7460
7461 /* This function will instantiate the type of the expression given in
7462 RHS to match the type of LHSTYPE. If errors exist, then return
7463 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7464 we complain on errors. If we are not complaining, never modify rhs,
7465 as overload resolution wants to try many possible instantiations, in
7466 the hope that at least one will work.
7467
7468 For non-recursive calls, LHSTYPE should be a function, pointer to
7469 function, or a pointer to member function. */
7470
7471 tree
7472 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7473 {
7474 tsubst_flags_t flags_in = flags;
7475 tree access_path = NULL_TREE;
7476
7477 flags &= ~tf_ptrmem_ok;
7478
7479 if (lhstype == unknown_type_node)
7480 {
7481 if (flags & tf_error)
7482 error ("not enough type information");
7483 return error_mark_node;
7484 }
7485
7486 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7487 {
7488 tree fntype = non_reference (lhstype);
7489 if (same_type_p (fntype, TREE_TYPE (rhs)))
7490 return rhs;
7491 if (flag_ms_extensions
7492 && TYPE_PTRMEMFUNC_P (fntype)
7493 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7494 /* Microsoft allows `A::f' to be resolved to a
7495 pointer-to-member. */
7496 ;
7497 else
7498 {
7499 if (flags & tf_error)
7500 error ("cannot convert %qE from type %qT to type %qT",
7501 rhs, TREE_TYPE (rhs), fntype);
7502 return error_mark_node;
7503 }
7504 }
7505
7506 if (BASELINK_P (rhs))
7507 {
7508 access_path = BASELINK_ACCESS_BINFO (rhs);
7509 rhs = BASELINK_FUNCTIONS (rhs);
7510 }
7511
7512 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7513 deduce any type information. */
7514 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7515 {
7516 if (flags & tf_error)
7517 error ("not enough type information");
7518 return error_mark_node;
7519 }
7520
7521 /* There only a few kinds of expressions that may have a type
7522 dependent on overload resolution. */
7523 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7524 || TREE_CODE (rhs) == COMPONENT_REF
7525 || really_overloaded_fn (rhs)
7526 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7527
7528 /* This should really only be used when attempting to distinguish
7529 what sort of a pointer to function we have. For now, any
7530 arithmetic operation which is not supported on pointers
7531 is rejected as an error. */
7532
7533 switch (TREE_CODE (rhs))
7534 {
7535 case COMPONENT_REF:
7536 {
7537 tree member = TREE_OPERAND (rhs, 1);
7538
7539 member = instantiate_type (lhstype, member, flags);
7540 if (member != error_mark_node
7541 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7542 /* Do not lose object's side effects. */
7543 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7544 TREE_OPERAND (rhs, 0), member);
7545 return member;
7546 }
7547
7548 case OFFSET_REF:
7549 rhs = TREE_OPERAND (rhs, 1);
7550 if (BASELINK_P (rhs))
7551 return instantiate_type (lhstype, rhs, flags_in);
7552
7553 /* This can happen if we are forming a pointer-to-member for a
7554 member template. */
7555 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7556
7557 /* Fall through. */
7558
7559 case TEMPLATE_ID_EXPR:
7560 {
7561 tree fns = TREE_OPERAND (rhs, 0);
7562 tree args = TREE_OPERAND (rhs, 1);
7563
7564 return
7565 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7566 /*template_only=*/true,
7567 args, access_path);
7568 }
7569
7570 case OVERLOAD:
7571 case FUNCTION_DECL:
7572 return
7573 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7574 /*template_only=*/false,
7575 /*explicit_targs=*/NULL_TREE,
7576 access_path);
7577
7578 case ADDR_EXPR:
7579 {
7580 if (PTRMEM_OK_P (rhs))
7581 flags |= tf_ptrmem_ok;
7582
7583 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7584 }
7585
7586 case ERROR_MARK:
7587 return error_mark_node;
7588
7589 default:
7590 gcc_unreachable ();
7591 }
7592 return error_mark_node;
7593 }
7594 \f
7595 /* Return the name of the virtual function pointer field
7596 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7597 this may have to look back through base types to find the
7598 ultimate field name. (For single inheritance, these could
7599 all be the same name. Who knows for multiple inheritance). */
7600
7601 static tree
7602 get_vfield_name (tree type)
7603 {
7604 tree binfo, base_binfo;
7605 char *buf;
7606
7607 for (binfo = TYPE_BINFO (type);
7608 BINFO_N_BASE_BINFOS (binfo);
7609 binfo = base_binfo)
7610 {
7611 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7612
7613 if (BINFO_VIRTUAL_P (base_binfo)
7614 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7615 break;
7616 }
7617
7618 type = BINFO_TYPE (binfo);
7619 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7620 + TYPE_NAME_LENGTH (type) + 2);
7621 sprintf (buf, VFIELD_NAME_FORMAT,
7622 IDENTIFIER_POINTER (constructor_name (type)));
7623 return get_identifier (buf);
7624 }
7625
7626 void
7627 print_class_statistics (void)
7628 {
7629 if (! GATHER_STATISTICS)
7630 return;
7631
7632 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7633 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7634 if (n_vtables)
7635 {
7636 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7637 n_vtables, n_vtable_searches);
7638 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7639 n_vtable_entries, n_vtable_elems);
7640 }
7641 }
7642
7643 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7644 according to [class]:
7645 The class-name is also inserted
7646 into the scope of the class itself. For purposes of access checking,
7647 the inserted class name is treated as if it were a public member name. */
7648
7649 void
7650 build_self_reference (void)
7651 {
7652 tree name = constructor_name (current_class_type);
7653 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7654 tree saved_cas;
7655
7656 DECL_NONLOCAL (value) = 1;
7657 DECL_CONTEXT (value) = current_class_type;
7658 DECL_ARTIFICIAL (value) = 1;
7659 SET_DECL_SELF_REFERENCE_P (value);
7660 set_underlying_type (value);
7661
7662 if (processing_template_decl)
7663 value = push_template_decl (value);
7664
7665 saved_cas = current_access_specifier;
7666 current_access_specifier = access_public_node;
7667 finish_member_declaration (value);
7668 current_access_specifier = saved_cas;
7669 }
7670
7671 /* Returns 1 if TYPE contains only padding bytes. */
7672
7673 int
7674 is_empty_class (tree type)
7675 {
7676 if (type == error_mark_node)
7677 return 0;
7678
7679 if (! CLASS_TYPE_P (type))
7680 return 0;
7681
7682 /* In G++ 3.2, whether or not a class was empty was determined by
7683 looking at its size. */
7684 if (abi_version_at_least (2))
7685 return CLASSTYPE_EMPTY_P (type);
7686 else
7687 return integer_zerop (CLASSTYPE_SIZE (type));
7688 }
7689
7690 /* Returns true if TYPE contains an empty class. */
7691
7692 static bool
7693 contains_empty_class_p (tree type)
7694 {
7695 if (is_empty_class (type))
7696 return true;
7697 if (CLASS_TYPE_P (type))
7698 {
7699 tree field;
7700 tree binfo;
7701 tree base_binfo;
7702 int i;
7703
7704 for (binfo = TYPE_BINFO (type), i = 0;
7705 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7706 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
7707 return true;
7708 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
7709 if (TREE_CODE (field) == FIELD_DECL
7710 && !DECL_ARTIFICIAL (field)
7711 && is_empty_class (TREE_TYPE (field)))
7712 return true;
7713 }
7714 else if (TREE_CODE (type) == ARRAY_TYPE)
7715 return contains_empty_class_p (TREE_TYPE (type));
7716 return false;
7717 }
7718
7719 /* Returns true if TYPE contains no actual data, just various
7720 possible combinations of empty classes and possibly a vptr. */
7721
7722 bool
7723 is_really_empty_class (tree type)
7724 {
7725 if (CLASS_TYPE_P (type))
7726 {
7727 tree field;
7728 tree binfo;
7729 tree base_binfo;
7730 int i;
7731
7732 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7733 out, but we'd like to be able to check this before then. */
7734 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7735 return true;
7736
7737 for (binfo = TYPE_BINFO (type), i = 0;
7738 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7739 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7740 return false;
7741 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7742 if (TREE_CODE (field) == FIELD_DECL
7743 && !DECL_ARTIFICIAL (field)
7744 && !is_really_empty_class (TREE_TYPE (field)))
7745 return false;
7746 return true;
7747 }
7748 else if (TREE_CODE (type) == ARRAY_TYPE)
7749 return is_really_empty_class (TREE_TYPE (type));
7750 return false;
7751 }
7752
7753 /* Note that NAME was looked up while the current class was being
7754 defined and that the result of that lookup was DECL. */
7755
7756 void
7757 maybe_note_name_used_in_class (tree name, tree decl)
7758 {
7759 splay_tree names_used;
7760
7761 /* If we're not defining a class, there's nothing to do. */
7762 if (!(innermost_scope_kind() == sk_class
7763 && TYPE_BEING_DEFINED (current_class_type)
7764 && !LAMBDA_TYPE_P (current_class_type)))
7765 return;
7766
7767 /* If there's already a binding for this NAME, then we don't have
7768 anything to worry about. */
7769 if (lookup_member (current_class_type, name,
7770 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7771 return;
7772
7773 if (!current_class_stack[current_class_depth - 1].names_used)
7774 current_class_stack[current_class_depth - 1].names_used
7775 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7776 names_used = current_class_stack[current_class_depth - 1].names_used;
7777
7778 splay_tree_insert (names_used,
7779 (splay_tree_key) name,
7780 (splay_tree_value) decl);
7781 }
7782
7783 /* Note that NAME was declared (as DECL) in the current class. Check
7784 to see that the declaration is valid. */
7785
7786 void
7787 note_name_declared_in_class (tree name, tree decl)
7788 {
7789 splay_tree names_used;
7790 splay_tree_node n;
7791
7792 /* Look to see if we ever used this name. */
7793 names_used
7794 = current_class_stack[current_class_depth - 1].names_used;
7795 if (!names_used)
7796 return;
7797 /* The C language allows members to be declared with a type of the same
7798 name, and the C++ standard says this diagnostic is not required. So
7799 allow it in extern "C" blocks unless predantic is specified.
7800 Allow it in all cases if -ms-extensions is specified. */
7801 if ((!pedantic && current_lang_name == lang_name_c)
7802 || flag_ms_extensions)
7803 return;
7804 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7805 if (n)
7806 {
7807 /* [basic.scope.class]
7808
7809 A name N used in a class S shall refer to the same declaration
7810 in its context and when re-evaluated in the completed scope of
7811 S. */
7812 permerror (input_location, "declaration of %q#D", decl);
7813 permerror (input_location, "changes meaning of %qD from %q+#D",
7814 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7815 }
7816 }
7817
7818 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7819 Secondary vtables are merged with primary vtables; this function
7820 will return the VAR_DECL for the primary vtable. */
7821
7822 tree
7823 get_vtbl_decl_for_binfo (tree binfo)
7824 {
7825 tree decl;
7826
7827 decl = BINFO_VTABLE (binfo);
7828 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7829 {
7830 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7831 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7832 }
7833 if (decl)
7834 gcc_assert (VAR_P (decl));
7835 return decl;
7836 }
7837
7838
7839 /* Returns the binfo for the primary base of BINFO. If the resulting
7840 BINFO is a virtual base, and it is inherited elsewhere in the
7841 hierarchy, then the returned binfo might not be the primary base of
7842 BINFO in the complete object. Check BINFO_PRIMARY_P or
7843 BINFO_LOST_PRIMARY_P to be sure. */
7844
7845 static tree
7846 get_primary_binfo (tree binfo)
7847 {
7848 tree primary_base;
7849
7850 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
7851 if (!primary_base)
7852 return NULL_TREE;
7853
7854 return copied_binfo (primary_base, binfo);
7855 }
7856
7857 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
7858
7859 static int
7860 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
7861 {
7862 if (!indented_p)
7863 fprintf (stream, "%*s", indent, "");
7864 return 1;
7865 }
7866
7867 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
7868 INDENT should be zero when called from the top level; it is
7869 incremented recursively. IGO indicates the next expected BINFO in
7870 inheritance graph ordering. */
7871
7872 static tree
7873 dump_class_hierarchy_r (FILE *stream,
7874 int flags,
7875 tree binfo,
7876 tree igo,
7877 int indent)
7878 {
7879 int indented = 0;
7880 tree base_binfo;
7881 int i;
7882
7883 indented = maybe_indent_hierarchy (stream, indent, 0);
7884 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
7885 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
7886 (HOST_WIDE_INT) (uintptr_t) binfo);
7887 if (binfo != igo)
7888 {
7889 fprintf (stream, "alternative-path\n");
7890 return igo;
7891 }
7892 igo = TREE_CHAIN (binfo);
7893
7894 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
7895 tree_low_cst (BINFO_OFFSET (binfo), 0));
7896 if (is_empty_class (BINFO_TYPE (binfo)))
7897 fprintf (stream, " empty");
7898 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
7899 fprintf (stream, " nearly-empty");
7900 if (BINFO_VIRTUAL_P (binfo))
7901 fprintf (stream, " virtual");
7902 fprintf (stream, "\n");
7903
7904 indented = 0;
7905 if (BINFO_PRIMARY_P (binfo))
7906 {
7907 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7908 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
7909 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
7910 TFF_PLAIN_IDENTIFIER),
7911 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
7912 }
7913 if (BINFO_LOST_PRIMARY_P (binfo))
7914 {
7915 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7916 fprintf (stream, " lost-primary");
7917 }
7918 if (indented)
7919 fprintf (stream, "\n");
7920
7921 if (!(flags & TDF_SLIM))
7922 {
7923 int indented = 0;
7924
7925 if (BINFO_SUBVTT_INDEX (binfo))
7926 {
7927 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7928 fprintf (stream, " subvttidx=%s",
7929 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
7930 TFF_PLAIN_IDENTIFIER));
7931 }
7932 if (BINFO_VPTR_INDEX (binfo))
7933 {
7934 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7935 fprintf (stream, " vptridx=%s",
7936 expr_as_string (BINFO_VPTR_INDEX (binfo),
7937 TFF_PLAIN_IDENTIFIER));
7938 }
7939 if (BINFO_VPTR_FIELD (binfo))
7940 {
7941 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7942 fprintf (stream, " vbaseoffset=%s",
7943 expr_as_string (BINFO_VPTR_FIELD (binfo),
7944 TFF_PLAIN_IDENTIFIER));
7945 }
7946 if (BINFO_VTABLE (binfo))
7947 {
7948 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7949 fprintf (stream, " vptr=%s",
7950 expr_as_string (BINFO_VTABLE (binfo),
7951 TFF_PLAIN_IDENTIFIER));
7952 }
7953
7954 if (indented)
7955 fprintf (stream, "\n");
7956 }
7957
7958 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
7959 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
7960
7961 return igo;
7962 }
7963
7964 /* Dump the BINFO hierarchy for T. */
7965
7966 static void
7967 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
7968 {
7969 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
7970 fprintf (stream, " size=%lu align=%lu\n",
7971 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
7972 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
7973 fprintf (stream, " base size=%lu base align=%lu\n",
7974 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
7975 / BITS_PER_UNIT),
7976 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
7977 / BITS_PER_UNIT));
7978 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
7979 fprintf (stream, "\n");
7980 }
7981
7982 /* Debug interface to hierarchy dumping. */
7983
7984 void
7985 debug_class (tree t)
7986 {
7987 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
7988 }
7989
7990 static void
7991 dump_class_hierarchy (tree t)
7992 {
7993 int flags;
7994 FILE *stream = dump_begin (TDI_class, &flags);
7995
7996 if (stream)
7997 {
7998 dump_class_hierarchy_1 (stream, flags, t);
7999 dump_end (TDI_class, stream);
8000 }
8001 }
8002
8003 static void
8004 dump_array (FILE * stream, tree decl)
8005 {
8006 tree value;
8007 unsigned HOST_WIDE_INT ix;
8008 HOST_WIDE_INT elt;
8009 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8010
8011 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
8012 / BITS_PER_UNIT);
8013 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8014 fprintf (stream, " %s entries",
8015 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8016 TFF_PLAIN_IDENTIFIER));
8017 fprintf (stream, "\n");
8018
8019 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8020 ix, value)
8021 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
8022 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8023 }
8024
8025 static void
8026 dump_vtable (tree t, tree binfo, tree vtable)
8027 {
8028 int flags;
8029 FILE *stream = dump_begin (TDI_class, &flags);
8030
8031 if (!stream)
8032 return;
8033
8034 if (!(flags & TDF_SLIM))
8035 {
8036 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8037
8038 fprintf (stream, "%s for %s",
8039 ctor_vtbl_p ? "Construction vtable" : "Vtable",
8040 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8041 if (ctor_vtbl_p)
8042 {
8043 if (!BINFO_VIRTUAL_P (binfo))
8044 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8045 (HOST_WIDE_INT) (uintptr_t) binfo);
8046 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8047 }
8048 fprintf (stream, "\n");
8049 dump_array (stream, vtable);
8050 fprintf (stream, "\n");
8051 }
8052
8053 dump_end (TDI_class, stream);
8054 }
8055
8056 static void
8057 dump_vtt (tree t, tree vtt)
8058 {
8059 int flags;
8060 FILE *stream = dump_begin (TDI_class, &flags);
8061
8062 if (!stream)
8063 return;
8064
8065 if (!(flags & TDF_SLIM))
8066 {
8067 fprintf (stream, "VTT for %s\n",
8068 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8069 dump_array (stream, vtt);
8070 fprintf (stream, "\n");
8071 }
8072
8073 dump_end (TDI_class, stream);
8074 }
8075
8076 /* Dump a function or thunk and its thunkees. */
8077
8078 static void
8079 dump_thunk (FILE *stream, int indent, tree thunk)
8080 {
8081 static const char spaces[] = " ";
8082 tree name = DECL_NAME (thunk);
8083 tree thunks;
8084
8085 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8086 (void *)thunk,
8087 !DECL_THUNK_P (thunk) ? "function"
8088 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8089 name ? IDENTIFIER_POINTER (name) : "<unset>");
8090 if (DECL_THUNK_P (thunk))
8091 {
8092 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8093 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8094
8095 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8096 if (!virtual_adjust)
8097 /*NOP*/;
8098 else if (DECL_THIS_THUNK_P (thunk))
8099 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8100 tree_low_cst (virtual_adjust, 0));
8101 else
8102 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8103 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
8104 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8105 if (THUNK_ALIAS (thunk))
8106 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8107 }
8108 fprintf (stream, "\n");
8109 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8110 dump_thunk (stream, indent + 2, thunks);
8111 }
8112
8113 /* Dump the thunks for FN. */
8114
8115 void
8116 debug_thunks (tree fn)
8117 {
8118 dump_thunk (stderr, 0, fn);
8119 }
8120
8121 /* Virtual function table initialization. */
8122
8123 /* Create all the necessary vtables for T and its base classes. */
8124
8125 static void
8126 finish_vtbls (tree t)
8127 {
8128 tree vbase;
8129 vec<constructor_elt, va_gc> *v = NULL;
8130 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8131
8132 /* We lay out the primary and secondary vtables in one contiguous
8133 vtable. The primary vtable is first, followed by the non-virtual
8134 secondary vtables in inheritance graph order. */
8135 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8136 vtable, t, &v);
8137
8138 /* Then come the virtual bases, also in inheritance graph order. */
8139 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8140 {
8141 if (!BINFO_VIRTUAL_P (vbase))
8142 continue;
8143 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8144 }
8145
8146 if (BINFO_VTABLE (TYPE_BINFO (t)))
8147 initialize_vtable (TYPE_BINFO (t), v);
8148 }
8149
8150 /* Initialize the vtable for BINFO with the INITS. */
8151
8152 static void
8153 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8154 {
8155 tree decl;
8156
8157 layout_vtable_decl (binfo, vec_safe_length (inits));
8158 decl = get_vtbl_decl_for_binfo (binfo);
8159 initialize_artificial_var (decl, inits);
8160 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8161 }
8162
8163 /* Build the VTT (virtual table table) for T.
8164 A class requires a VTT if it has virtual bases.
8165
8166 This holds
8167 1 - primary virtual pointer for complete object T
8168 2 - secondary VTTs for each direct non-virtual base of T which requires a
8169 VTT
8170 3 - secondary virtual pointers for each direct or indirect base of T which
8171 has virtual bases or is reachable via a virtual path from T.
8172 4 - secondary VTTs for each direct or indirect virtual base of T.
8173
8174 Secondary VTTs look like complete object VTTs without part 4. */
8175
8176 static void
8177 build_vtt (tree t)
8178 {
8179 tree type;
8180 tree vtt;
8181 tree index;
8182 vec<constructor_elt, va_gc> *inits;
8183
8184 /* Build up the initializers for the VTT. */
8185 inits = NULL;
8186 index = size_zero_node;
8187 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8188
8189 /* If we didn't need a VTT, we're done. */
8190 if (!inits)
8191 return;
8192
8193 /* Figure out the type of the VTT. */
8194 type = build_array_of_n_type (const_ptr_type_node,
8195 inits->length ());
8196
8197 /* Now, build the VTT object itself. */
8198 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8199 initialize_artificial_var (vtt, inits);
8200 /* Add the VTT to the vtables list. */
8201 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8202 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8203
8204 dump_vtt (t, vtt);
8205 }
8206
8207 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8208 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8209 and CHAIN the vtable pointer for this binfo after construction is
8210 complete. VALUE can also be another BINFO, in which case we recurse. */
8211
8212 static tree
8213 binfo_ctor_vtable (tree binfo)
8214 {
8215 tree vt;
8216
8217 while (1)
8218 {
8219 vt = BINFO_VTABLE (binfo);
8220 if (TREE_CODE (vt) == TREE_LIST)
8221 vt = TREE_VALUE (vt);
8222 if (TREE_CODE (vt) == TREE_BINFO)
8223 binfo = vt;
8224 else
8225 break;
8226 }
8227
8228 return vt;
8229 }
8230
8231 /* Data for secondary VTT initialization. */
8232 typedef struct secondary_vptr_vtt_init_data_s
8233 {
8234 /* Is this the primary VTT? */
8235 bool top_level_p;
8236
8237 /* Current index into the VTT. */
8238 tree index;
8239
8240 /* Vector of initializers built up. */
8241 vec<constructor_elt, va_gc> *inits;
8242
8243 /* The type being constructed by this secondary VTT. */
8244 tree type_being_constructed;
8245 } secondary_vptr_vtt_init_data;
8246
8247 /* Recursively build the VTT-initializer for BINFO (which is in the
8248 hierarchy dominated by T). INITS points to the end of the initializer
8249 list to date. INDEX is the VTT index where the next element will be
8250 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8251 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8252 for virtual bases of T. When it is not so, we build the constructor
8253 vtables for the BINFO-in-T variant. */
8254
8255 static void
8256 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8257 tree *index)
8258 {
8259 int i;
8260 tree b;
8261 tree init;
8262 secondary_vptr_vtt_init_data data;
8263 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8264
8265 /* We only need VTTs for subobjects with virtual bases. */
8266 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8267 return;
8268
8269 /* We need to use a construction vtable if this is not the primary
8270 VTT. */
8271 if (!top_level_p)
8272 {
8273 build_ctor_vtbl_group (binfo, t);
8274
8275 /* Record the offset in the VTT where this sub-VTT can be found. */
8276 BINFO_SUBVTT_INDEX (binfo) = *index;
8277 }
8278
8279 /* Add the address of the primary vtable for the complete object. */
8280 init = binfo_ctor_vtable (binfo);
8281 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8282 if (top_level_p)
8283 {
8284 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8285 BINFO_VPTR_INDEX (binfo) = *index;
8286 }
8287 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8288
8289 /* Recursively add the secondary VTTs for non-virtual bases. */
8290 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8291 if (!BINFO_VIRTUAL_P (b))
8292 build_vtt_inits (b, t, inits, index);
8293
8294 /* Add secondary virtual pointers for all subobjects of BINFO with
8295 either virtual bases or reachable along a virtual path, except
8296 subobjects that are non-virtual primary bases. */
8297 data.top_level_p = top_level_p;
8298 data.index = *index;
8299 data.inits = *inits;
8300 data.type_being_constructed = BINFO_TYPE (binfo);
8301
8302 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8303
8304 *index = data.index;
8305
8306 /* data.inits might have grown as we added secondary virtual pointers.
8307 Make sure our caller knows about the new vector. */
8308 *inits = data.inits;
8309
8310 if (top_level_p)
8311 /* Add the secondary VTTs for virtual bases in inheritance graph
8312 order. */
8313 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8314 {
8315 if (!BINFO_VIRTUAL_P (b))
8316 continue;
8317
8318 build_vtt_inits (b, t, inits, index);
8319 }
8320 else
8321 /* Remove the ctor vtables we created. */
8322 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8323 }
8324
8325 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8326 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8327
8328 static tree
8329 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8330 {
8331 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8332
8333 /* We don't care about bases that don't have vtables. */
8334 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8335 return dfs_skip_bases;
8336
8337 /* We're only interested in proper subobjects of the type being
8338 constructed. */
8339 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8340 return NULL_TREE;
8341
8342 /* We're only interested in bases with virtual bases or reachable
8343 via a virtual path from the type being constructed. */
8344 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8345 || binfo_via_virtual (binfo, data->type_being_constructed)))
8346 return dfs_skip_bases;
8347
8348 /* We're not interested in non-virtual primary bases. */
8349 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8350 return NULL_TREE;
8351
8352 /* Record the index where this secondary vptr can be found. */
8353 if (data->top_level_p)
8354 {
8355 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8356 BINFO_VPTR_INDEX (binfo) = data->index;
8357
8358 if (BINFO_VIRTUAL_P (binfo))
8359 {
8360 /* It's a primary virtual base, and this is not a
8361 construction vtable. Find the base this is primary of in
8362 the inheritance graph, and use that base's vtable
8363 now. */
8364 while (BINFO_PRIMARY_P (binfo))
8365 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8366 }
8367 }
8368
8369 /* Add the initializer for the secondary vptr itself. */
8370 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8371
8372 /* Advance the vtt index. */
8373 data->index = size_binop (PLUS_EXPR, data->index,
8374 TYPE_SIZE_UNIT (ptr_type_node));
8375
8376 return NULL_TREE;
8377 }
8378
8379 /* Called from build_vtt_inits via dfs_walk. After building
8380 constructor vtables and generating the sub-vtt from them, we need
8381 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8382 binfo of the base whose sub vtt was generated. */
8383
8384 static tree
8385 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8386 {
8387 tree vtable = BINFO_VTABLE (binfo);
8388
8389 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8390 /* If this class has no vtable, none of its bases do. */
8391 return dfs_skip_bases;
8392
8393 if (!vtable)
8394 /* This might be a primary base, so have no vtable in this
8395 hierarchy. */
8396 return NULL_TREE;
8397
8398 /* If we scribbled the construction vtable vptr into BINFO, clear it
8399 out now. */
8400 if (TREE_CODE (vtable) == TREE_LIST
8401 && (TREE_PURPOSE (vtable) == (tree) data))
8402 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8403
8404 return NULL_TREE;
8405 }
8406
8407 /* Build the construction vtable group for BINFO which is in the
8408 hierarchy dominated by T. */
8409
8410 static void
8411 build_ctor_vtbl_group (tree binfo, tree t)
8412 {
8413 tree type;
8414 tree vtbl;
8415 tree id;
8416 tree vbase;
8417 vec<constructor_elt, va_gc> *v;
8418
8419 /* See if we've already created this construction vtable group. */
8420 id = mangle_ctor_vtbl_for_type (t, binfo);
8421 if (IDENTIFIER_GLOBAL_VALUE (id))
8422 return;
8423
8424 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8425 /* Build a version of VTBL (with the wrong type) for use in
8426 constructing the addresses of secondary vtables in the
8427 construction vtable group. */
8428 vtbl = build_vtable (t, id, ptr_type_node);
8429 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8430 /* Don't export construction vtables from shared libraries. Even on
8431 targets that don't support hidden visibility, this tells
8432 can_refer_decl_in_current_unit_p not to assume that it's safe to
8433 access from a different compilation unit (bz 54314). */
8434 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8435 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8436
8437 v = NULL;
8438 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8439 binfo, vtbl, t, &v);
8440
8441 /* Add the vtables for each of our virtual bases using the vbase in T
8442 binfo. */
8443 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8444 vbase;
8445 vbase = TREE_CHAIN (vbase))
8446 {
8447 tree b;
8448
8449 if (!BINFO_VIRTUAL_P (vbase))
8450 continue;
8451 b = copied_binfo (vbase, binfo);
8452
8453 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8454 }
8455
8456 /* Figure out the type of the construction vtable. */
8457 type = build_array_of_n_type (vtable_entry_type, v->length ());
8458 layout_type (type);
8459 TREE_TYPE (vtbl) = type;
8460 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8461 layout_decl (vtbl, 0);
8462
8463 /* Initialize the construction vtable. */
8464 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8465 initialize_artificial_var (vtbl, v);
8466 dump_vtable (t, binfo, vtbl);
8467 }
8468
8469 /* Add the vtbl initializers for BINFO (and its bases other than
8470 non-virtual primaries) to the list of INITS. BINFO is in the
8471 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8472 the constructor the vtbl inits should be accumulated for. (If this
8473 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8474 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8475 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8476 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8477 but are not necessarily the same in terms of layout. */
8478
8479 static void
8480 accumulate_vtbl_inits (tree binfo,
8481 tree orig_binfo,
8482 tree rtti_binfo,
8483 tree vtbl,
8484 tree t,
8485 vec<constructor_elt, va_gc> **inits)
8486 {
8487 int i;
8488 tree base_binfo;
8489 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8490
8491 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8492
8493 /* If it doesn't have a vptr, we don't do anything. */
8494 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8495 return;
8496
8497 /* If we're building a construction vtable, we're not interested in
8498 subobjects that don't require construction vtables. */
8499 if (ctor_vtbl_p
8500 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8501 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8502 return;
8503
8504 /* Build the initializers for the BINFO-in-T vtable. */
8505 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8506
8507 /* Walk the BINFO and its bases. We walk in preorder so that as we
8508 initialize each vtable we can figure out at what offset the
8509 secondary vtable lies from the primary vtable. We can't use
8510 dfs_walk here because we need to iterate through bases of BINFO
8511 and RTTI_BINFO simultaneously. */
8512 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8513 {
8514 /* Skip virtual bases. */
8515 if (BINFO_VIRTUAL_P (base_binfo))
8516 continue;
8517 accumulate_vtbl_inits (base_binfo,
8518 BINFO_BASE_BINFO (orig_binfo, i),
8519 rtti_binfo, vtbl, t,
8520 inits);
8521 }
8522 }
8523
8524 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8525 BINFO vtable to L. */
8526
8527 static void
8528 dfs_accumulate_vtbl_inits (tree binfo,
8529 tree orig_binfo,
8530 tree rtti_binfo,
8531 tree orig_vtbl,
8532 tree t,
8533 vec<constructor_elt, va_gc> **l)
8534 {
8535 tree vtbl = NULL_TREE;
8536 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8537 int n_inits;
8538
8539 if (ctor_vtbl_p
8540 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8541 {
8542 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8543 primary virtual base. If it is not the same primary in
8544 the hierarchy of T, we'll need to generate a ctor vtable
8545 for it, to place at its location in T. If it is the same
8546 primary, we still need a VTT entry for the vtable, but it
8547 should point to the ctor vtable for the base it is a
8548 primary for within the sub-hierarchy of RTTI_BINFO.
8549
8550 There are three possible cases:
8551
8552 1) We are in the same place.
8553 2) We are a primary base within a lost primary virtual base of
8554 RTTI_BINFO.
8555 3) We are primary to something not a base of RTTI_BINFO. */
8556
8557 tree b;
8558 tree last = NULL_TREE;
8559
8560 /* First, look through the bases we are primary to for RTTI_BINFO
8561 or a virtual base. */
8562 b = binfo;
8563 while (BINFO_PRIMARY_P (b))
8564 {
8565 b = BINFO_INHERITANCE_CHAIN (b);
8566 last = b;
8567 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8568 goto found;
8569 }
8570 /* If we run out of primary links, keep looking down our
8571 inheritance chain; we might be an indirect primary. */
8572 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8573 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8574 break;
8575 found:
8576
8577 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8578 base B and it is a base of RTTI_BINFO, this is case 2. In
8579 either case, we share our vtable with LAST, i.e. the
8580 derived-most base within B of which we are a primary. */
8581 if (b == rtti_binfo
8582 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8583 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8584 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8585 binfo_ctor_vtable after everything's been set up. */
8586 vtbl = last;
8587
8588 /* Otherwise, this is case 3 and we get our own. */
8589 }
8590 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8591 return;
8592
8593 n_inits = vec_safe_length (*l);
8594
8595 if (!vtbl)
8596 {
8597 tree index;
8598 int non_fn_entries;
8599
8600 /* Add the initializer for this vtable. */
8601 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8602 &non_fn_entries, l);
8603
8604 /* Figure out the position to which the VPTR should point. */
8605 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8606 index = size_binop (MULT_EXPR,
8607 TYPE_SIZE_UNIT (vtable_entry_type),
8608 size_int (non_fn_entries + n_inits));
8609 vtbl = fold_build_pointer_plus (vtbl, index);
8610 }
8611
8612 if (ctor_vtbl_p)
8613 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8614 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8615 straighten this out. */
8616 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8617 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8618 /* Throw away any unneeded intializers. */
8619 (*l)->truncate (n_inits);
8620 else
8621 /* For an ordinary vtable, set BINFO_VTABLE. */
8622 BINFO_VTABLE (binfo) = vtbl;
8623 }
8624
8625 static GTY(()) tree abort_fndecl_addr;
8626
8627 /* Construct the initializer for BINFO's virtual function table. BINFO
8628 is part of the hierarchy dominated by T. If we're building a
8629 construction vtable, the ORIG_BINFO is the binfo we should use to
8630 find the actual function pointers to put in the vtable - but they
8631 can be overridden on the path to most-derived in the graph that
8632 ORIG_BINFO belongs. Otherwise,
8633 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8634 BINFO that should be indicated by the RTTI information in the
8635 vtable; it will be a base class of T, rather than T itself, if we
8636 are building a construction vtable.
8637
8638 The value returned is a TREE_LIST suitable for wrapping in a
8639 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8640 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8641 number of non-function entries in the vtable.
8642
8643 It might seem that this function should never be called with a
8644 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8645 base is always subsumed by a derived class vtable. However, when
8646 we are building construction vtables, we do build vtables for
8647 primary bases; we need these while the primary base is being
8648 constructed. */
8649
8650 static void
8651 build_vtbl_initializer (tree binfo,
8652 tree orig_binfo,
8653 tree t,
8654 tree rtti_binfo,
8655 int* non_fn_entries_p,
8656 vec<constructor_elt, va_gc> **inits)
8657 {
8658 tree v;
8659 vtbl_init_data vid;
8660 unsigned ix, jx;
8661 tree vbinfo;
8662 vec<tree, va_gc> *vbases;
8663 constructor_elt *e;
8664
8665 /* Initialize VID. */
8666 memset (&vid, 0, sizeof (vid));
8667 vid.binfo = binfo;
8668 vid.derived = t;
8669 vid.rtti_binfo = rtti_binfo;
8670 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8671 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8672 vid.generate_vcall_entries = true;
8673 /* The first vbase or vcall offset is at index -3 in the vtable. */
8674 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8675
8676 /* Add entries to the vtable for RTTI. */
8677 build_rtti_vtbl_entries (binfo, &vid);
8678
8679 /* Create an array for keeping track of the functions we've
8680 processed. When we see multiple functions with the same
8681 signature, we share the vcall offsets. */
8682 vec_alloc (vid.fns, 32);
8683 /* Add the vcall and vbase offset entries. */
8684 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8685
8686 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8687 build_vbase_offset_vtbl_entries. */
8688 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8689 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8690 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8691
8692 /* If the target requires padding between data entries, add that now. */
8693 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8694 {
8695 int n_entries = vec_safe_length (vid.inits);
8696
8697 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8698
8699 /* Move data entries into their new positions and add padding
8700 after the new positions. Iterate backwards so we don't
8701 overwrite entries that we would need to process later. */
8702 for (ix = n_entries - 1;
8703 vid.inits->iterate (ix, &e);
8704 ix--)
8705 {
8706 int j;
8707 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8708 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8709
8710 (*vid.inits)[new_position] = *e;
8711
8712 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8713 {
8714 constructor_elt *f = &(*vid.inits)[new_position - j];
8715 f->index = NULL_TREE;
8716 f->value = build1 (NOP_EXPR, vtable_entry_type,
8717 null_pointer_node);
8718 }
8719 }
8720 }
8721
8722 if (non_fn_entries_p)
8723 *non_fn_entries_p = vec_safe_length (vid.inits);
8724
8725 /* The initializers for virtual functions were built up in reverse
8726 order. Straighten them out and add them to the running list in one
8727 step. */
8728 jx = vec_safe_length (*inits);
8729 vec_safe_grow (*inits, jx + vid.inits->length ());
8730
8731 for (ix = vid.inits->length () - 1;
8732 vid.inits->iterate (ix, &e);
8733 ix--, jx++)
8734 (**inits)[jx] = *e;
8735
8736 /* Go through all the ordinary virtual functions, building up
8737 initializers. */
8738 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8739 {
8740 tree delta;
8741 tree vcall_index;
8742 tree fn, fn_original;
8743 tree init = NULL_TREE;
8744
8745 fn = BV_FN (v);
8746 fn_original = fn;
8747 if (DECL_THUNK_P (fn))
8748 {
8749 if (!DECL_NAME (fn))
8750 finish_thunk (fn);
8751 if (THUNK_ALIAS (fn))
8752 {
8753 fn = THUNK_ALIAS (fn);
8754 BV_FN (v) = fn;
8755 }
8756 fn_original = THUNK_TARGET (fn);
8757 }
8758
8759 /* If the only definition of this function signature along our
8760 primary base chain is from a lost primary, this vtable slot will
8761 never be used, so just zero it out. This is important to avoid
8762 requiring extra thunks which cannot be generated with the function.
8763
8764 We first check this in update_vtable_entry_for_fn, so we handle
8765 restored primary bases properly; we also need to do it here so we
8766 zero out unused slots in ctor vtables, rather than filling them
8767 with erroneous values (though harmless, apart from relocation
8768 costs). */
8769 if (BV_LOST_PRIMARY (v))
8770 init = size_zero_node;
8771
8772 if (! init)
8773 {
8774 /* Pull the offset for `this', and the function to call, out of
8775 the list. */
8776 delta = BV_DELTA (v);
8777 vcall_index = BV_VCALL_INDEX (v);
8778
8779 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8780 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8781
8782 /* You can't call an abstract virtual function; it's abstract.
8783 So, we replace these functions with __pure_virtual. */
8784 if (DECL_PURE_VIRTUAL_P (fn_original))
8785 {
8786 fn = abort_fndecl;
8787 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8788 {
8789 if (abort_fndecl_addr == NULL)
8790 abort_fndecl_addr
8791 = fold_convert (vfunc_ptr_type_node,
8792 build_fold_addr_expr (fn));
8793 init = abort_fndecl_addr;
8794 }
8795 }
8796 /* Likewise for deleted virtuals. */
8797 else if (DECL_DELETED_FN (fn_original))
8798 {
8799 fn = get_identifier ("__cxa_deleted_virtual");
8800 if (!get_global_value_if_present (fn, &fn))
8801 fn = push_library_fn (fn, (build_function_type_list
8802 (void_type_node, NULL_TREE)),
8803 NULL_TREE);
8804 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8805 init = fold_convert (vfunc_ptr_type_node,
8806 build_fold_addr_expr (fn));
8807 }
8808 else
8809 {
8810 if (!integer_zerop (delta) || vcall_index)
8811 {
8812 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8813 if (!DECL_NAME (fn))
8814 finish_thunk (fn);
8815 }
8816 /* Take the address of the function, considering it to be of an
8817 appropriate generic type. */
8818 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8819 init = fold_convert (vfunc_ptr_type_node,
8820 build_fold_addr_expr (fn));
8821 }
8822 }
8823
8824 /* And add it to the chain of initializers. */
8825 if (TARGET_VTABLE_USES_DESCRIPTORS)
8826 {
8827 int i;
8828 if (init == size_zero_node)
8829 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8830 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8831 else
8832 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8833 {
8834 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
8835 fn, build_int_cst (NULL_TREE, i));
8836 TREE_CONSTANT (fdesc) = 1;
8837
8838 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
8839 }
8840 }
8841 else
8842 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8843 }
8844 }
8845
8846 /* Adds to vid->inits the initializers for the vbase and vcall
8847 offsets in BINFO, which is in the hierarchy dominated by T. */
8848
8849 static void
8850 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
8851 {
8852 tree b;
8853
8854 /* If this is a derived class, we must first create entries
8855 corresponding to the primary base class. */
8856 b = get_primary_binfo (binfo);
8857 if (b)
8858 build_vcall_and_vbase_vtbl_entries (b, vid);
8859
8860 /* Add the vbase entries for this base. */
8861 build_vbase_offset_vtbl_entries (binfo, vid);
8862 /* Add the vcall entries for this base. */
8863 build_vcall_offset_vtbl_entries (binfo, vid);
8864 }
8865
8866 /* Returns the initializers for the vbase offset entries in the vtable
8867 for BINFO (which is part of the class hierarchy dominated by T), in
8868 reverse order. VBASE_OFFSET_INDEX gives the vtable index
8869 where the next vbase offset will go. */
8870
8871 static void
8872 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8873 {
8874 tree vbase;
8875 tree t;
8876 tree non_primary_binfo;
8877
8878 /* If there are no virtual baseclasses, then there is nothing to
8879 do. */
8880 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8881 return;
8882
8883 t = vid->derived;
8884
8885 /* We might be a primary base class. Go up the inheritance hierarchy
8886 until we find the most derived class of which we are a primary base:
8887 it is the offset of that which we need to use. */
8888 non_primary_binfo = binfo;
8889 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
8890 {
8891 tree b;
8892
8893 /* If we have reached a virtual base, then it must be a primary
8894 base (possibly multi-level) of vid->binfo, or we wouldn't
8895 have called build_vcall_and_vbase_vtbl_entries for it. But it
8896 might be a lost primary, so just skip down to vid->binfo. */
8897 if (BINFO_VIRTUAL_P (non_primary_binfo))
8898 {
8899 non_primary_binfo = vid->binfo;
8900 break;
8901 }
8902
8903 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
8904 if (get_primary_binfo (b) != non_primary_binfo)
8905 break;
8906 non_primary_binfo = b;
8907 }
8908
8909 /* Go through the virtual bases, adding the offsets. */
8910 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8911 vbase;
8912 vbase = TREE_CHAIN (vbase))
8913 {
8914 tree b;
8915 tree delta;
8916
8917 if (!BINFO_VIRTUAL_P (vbase))
8918 continue;
8919
8920 /* Find the instance of this virtual base in the complete
8921 object. */
8922 b = copied_binfo (vbase, binfo);
8923
8924 /* If we've already got an offset for this virtual base, we
8925 don't need another one. */
8926 if (BINFO_VTABLE_PATH_MARKED (b))
8927 continue;
8928 BINFO_VTABLE_PATH_MARKED (b) = 1;
8929
8930 /* Figure out where we can find this vbase offset. */
8931 delta = size_binop (MULT_EXPR,
8932 vid->index,
8933 convert (ssizetype,
8934 TYPE_SIZE_UNIT (vtable_entry_type)));
8935 if (vid->primary_vtbl_p)
8936 BINFO_VPTR_FIELD (b) = delta;
8937
8938 if (binfo != TYPE_BINFO (t))
8939 /* The vbase offset had better be the same. */
8940 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
8941
8942 /* The next vbase will come at a more negative offset. */
8943 vid->index = size_binop (MINUS_EXPR, vid->index,
8944 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
8945
8946 /* The initializer is the delta from BINFO to this virtual base.
8947 The vbase offsets go in reverse inheritance-graph order, and
8948 we are walking in inheritance graph order so these end up in
8949 the right order. */
8950 delta = size_diffop_loc (input_location,
8951 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
8952
8953 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
8954 fold_build1_loc (input_location, NOP_EXPR,
8955 vtable_entry_type, delta));
8956 }
8957 }
8958
8959 /* Adds the initializers for the vcall offset entries in the vtable
8960 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
8961 to VID->INITS. */
8962
8963 static void
8964 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8965 {
8966 /* We only need these entries if this base is a virtual base. We
8967 compute the indices -- but do not add to the vtable -- when
8968 building the main vtable for a class. */
8969 if (binfo == TYPE_BINFO (vid->derived)
8970 || (BINFO_VIRTUAL_P (binfo)
8971 /* If BINFO is RTTI_BINFO, then (since BINFO does not
8972 correspond to VID->DERIVED), we are building a primary
8973 construction virtual table. Since this is a primary
8974 virtual table, we do not need the vcall offsets for
8975 BINFO. */
8976 && binfo != vid->rtti_binfo))
8977 {
8978 /* We need a vcall offset for each of the virtual functions in this
8979 vtable. For example:
8980
8981 class A { virtual void f (); };
8982 class B1 : virtual public A { virtual void f (); };
8983 class B2 : virtual public A { virtual void f (); };
8984 class C: public B1, public B2 { virtual void f (); };
8985
8986 A C object has a primary base of B1, which has a primary base of A. A
8987 C also has a secondary base of B2, which no longer has a primary base
8988 of A. So the B2-in-C construction vtable needs a secondary vtable for
8989 A, which will adjust the A* to a B2* to call f. We have no way of
8990 knowing what (or even whether) this offset will be when we define B2,
8991 so we store this "vcall offset" in the A sub-vtable and look it up in
8992 a "virtual thunk" for B2::f.
8993
8994 We need entries for all the functions in our primary vtable and
8995 in our non-virtual bases' secondary vtables. */
8996 vid->vbase = binfo;
8997 /* If we are just computing the vcall indices -- but do not need
8998 the actual entries -- not that. */
8999 if (!BINFO_VIRTUAL_P (binfo))
9000 vid->generate_vcall_entries = false;
9001 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9002 add_vcall_offset_vtbl_entries_r (binfo, vid);
9003 }
9004 }
9005
9006 /* Build vcall offsets, starting with those for BINFO. */
9007
9008 static void
9009 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9010 {
9011 int i;
9012 tree primary_binfo;
9013 tree base_binfo;
9014
9015 /* Don't walk into virtual bases -- except, of course, for the
9016 virtual base for which we are building vcall offsets. Any
9017 primary virtual base will have already had its offsets generated
9018 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9019 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9020 return;
9021
9022 /* If BINFO has a primary base, process it first. */
9023 primary_binfo = get_primary_binfo (binfo);
9024 if (primary_binfo)
9025 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9026
9027 /* Add BINFO itself to the list. */
9028 add_vcall_offset_vtbl_entries_1 (binfo, vid);
9029
9030 /* Scan the non-primary bases of BINFO. */
9031 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9032 if (base_binfo != primary_binfo)
9033 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9034 }
9035
9036 /* Called from build_vcall_offset_vtbl_entries_r. */
9037
9038 static void
9039 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9040 {
9041 /* Make entries for the rest of the virtuals. */
9042 if (abi_version_at_least (2))
9043 {
9044 tree orig_fn;
9045
9046 /* The ABI requires that the methods be processed in declaration
9047 order. G++ 3.2 used the order in the vtable. */
9048 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
9049 orig_fn;
9050 orig_fn = DECL_CHAIN (orig_fn))
9051 if (DECL_VINDEX (orig_fn))
9052 add_vcall_offset (orig_fn, binfo, vid);
9053 }
9054 else
9055 {
9056 tree derived_virtuals;
9057 tree base_virtuals;
9058 tree orig_virtuals;
9059 /* If BINFO is a primary base, the most derived class which has
9060 BINFO as a primary base; otherwise, just BINFO. */
9061 tree non_primary_binfo;
9062
9063 /* We might be a primary base class. Go up the inheritance hierarchy
9064 until we find the most derived class of which we are a primary base:
9065 it is the BINFO_VIRTUALS there that we need to consider. */
9066 non_primary_binfo = binfo;
9067 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9068 {
9069 tree b;
9070
9071 /* If we have reached a virtual base, then it must be vid->vbase,
9072 because we ignore other virtual bases in
9073 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
9074 base (possibly multi-level) of vid->binfo, or we wouldn't
9075 have called build_vcall_and_vbase_vtbl_entries for it. But it
9076 might be a lost primary, so just skip down to vid->binfo. */
9077 if (BINFO_VIRTUAL_P (non_primary_binfo))
9078 {
9079 gcc_assert (non_primary_binfo == vid->vbase);
9080 non_primary_binfo = vid->binfo;
9081 break;
9082 }
9083
9084 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9085 if (get_primary_binfo (b) != non_primary_binfo)
9086 break;
9087 non_primary_binfo = b;
9088 }
9089
9090 if (vid->ctor_vtbl_p)
9091 /* For a ctor vtable we need the equivalent binfo within the hierarchy
9092 where rtti_binfo is the most derived type. */
9093 non_primary_binfo
9094 = original_binfo (non_primary_binfo, vid->rtti_binfo);
9095
9096 for (base_virtuals = BINFO_VIRTUALS (binfo),
9097 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
9098 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
9099 base_virtuals;
9100 base_virtuals = TREE_CHAIN (base_virtuals),
9101 derived_virtuals = TREE_CHAIN (derived_virtuals),
9102 orig_virtuals = TREE_CHAIN (orig_virtuals))
9103 {
9104 tree orig_fn;
9105
9106 /* Find the declaration that originally caused this function to
9107 be present in BINFO_TYPE (binfo). */
9108 orig_fn = BV_FN (orig_virtuals);
9109
9110 /* When processing BINFO, we only want to generate vcall slots for
9111 function slots introduced in BINFO. So don't try to generate
9112 one if the function isn't even defined in BINFO. */
9113 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
9114 continue;
9115
9116 add_vcall_offset (orig_fn, binfo, vid);
9117 }
9118 }
9119 }
9120
9121 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9122
9123 static void
9124 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9125 {
9126 size_t i;
9127 tree vcall_offset;
9128 tree derived_entry;
9129
9130 /* If there is already an entry for a function with the same
9131 signature as FN, then we do not need a second vcall offset.
9132 Check the list of functions already present in the derived
9133 class vtable. */
9134 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9135 {
9136 if (same_signature_p (derived_entry, orig_fn)
9137 /* We only use one vcall offset for virtual destructors,
9138 even though there are two virtual table entries. */
9139 || (DECL_DESTRUCTOR_P (derived_entry)
9140 && DECL_DESTRUCTOR_P (orig_fn)))
9141 return;
9142 }
9143
9144 /* If we are building these vcall offsets as part of building
9145 the vtable for the most derived class, remember the vcall
9146 offset. */
9147 if (vid->binfo == TYPE_BINFO (vid->derived))
9148 {
9149 tree_pair_s elt = {orig_fn, vid->index};
9150 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9151 }
9152
9153 /* The next vcall offset will be found at a more negative
9154 offset. */
9155 vid->index = size_binop (MINUS_EXPR, vid->index,
9156 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9157
9158 /* Keep track of this function. */
9159 vec_safe_push (vid->fns, orig_fn);
9160
9161 if (vid->generate_vcall_entries)
9162 {
9163 tree base;
9164 tree fn;
9165
9166 /* Find the overriding function. */
9167 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9168 if (fn == error_mark_node)
9169 vcall_offset = build_zero_cst (vtable_entry_type);
9170 else
9171 {
9172 base = TREE_VALUE (fn);
9173
9174 /* The vbase we're working on is a primary base of
9175 vid->binfo. But it might be a lost primary, so its
9176 BINFO_OFFSET might be wrong, so we just use the
9177 BINFO_OFFSET from vid->binfo. */
9178 vcall_offset = size_diffop_loc (input_location,
9179 BINFO_OFFSET (base),
9180 BINFO_OFFSET (vid->binfo));
9181 vcall_offset = fold_build1_loc (input_location,
9182 NOP_EXPR, vtable_entry_type,
9183 vcall_offset);
9184 }
9185 /* Add the initializer to the vtable. */
9186 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9187 }
9188 }
9189
9190 /* Return vtbl initializers for the RTTI entries corresponding to the
9191 BINFO's vtable. The RTTI entries should indicate the object given
9192 by VID->rtti_binfo. */
9193
9194 static void
9195 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9196 {
9197 tree b;
9198 tree t;
9199 tree offset;
9200 tree decl;
9201 tree init;
9202
9203 t = BINFO_TYPE (vid->rtti_binfo);
9204
9205 /* To find the complete object, we will first convert to our most
9206 primary base, and then add the offset in the vtbl to that value. */
9207 b = binfo;
9208 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9209 && !BINFO_LOST_PRIMARY_P (b))
9210 {
9211 tree primary_base;
9212
9213 primary_base = get_primary_binfo (b);
9214 gcc_assert (BINFO_PRIMARY_P (primary_base)
9215 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9216 b = primary_base;
9217 }
9218 offset = size_diffop_loc (input_location,
9219 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9220
9221 /* The second entry is the address of the typeinfo object. */
9222 if (flag_rtti)
9223 decl = build_address (get_tinfo_decl (t));
9224 else
9225 decl = integer_zero_node;
9226
9227 /* Convert the declaration to a type that can be stored in the
9228 vtable. */
9229 init = build_nop (vfunc_ptr_type_node, decl);
9230 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9231
9232 /* Add the offset-to-top entry. It comes earlier in the vtable than
9233 the typeinfo entry. Convert the offset to look like a
9234 function pointer, so that we can put it in the vtable. */
9235 init = build_nop (vfunc_ptr_type_node, offset);
9236 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9237 }
9238
9239 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9240 accessibility. */
9241
9242 bool
9243 uniquely_derived_from_p (tree parent, tree type)
9244 {
9245 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9246 return base && base != error_mark_node;
9247 }
9248
9249 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9250
9251 bool
9252 publicly_uniquely_derived_p (tree parent, tree type)
9253 {
9254 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9255 NULL, tf_none);
9256 return base && base != error_mark_node;
9257 }
9258
9259 #include "gt-cp-class.h"