flag-types.h (enum sanitize_code): Add SANITIZE_VPTR, include SANITIZE_VPTR in SANITI...
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "options.h"
35 #include "wide-int.h"
36 #include "inchash.h"
37 #include "tm.h"
38 #include "tree.h"
39 #include "stringpool.h"
40 #include "stor-layout.h"
41 #include "attribs.h"
42 #include "hash-table.h"
43 #include "cp-tree.h"
44 #include "flags.h"
45 #include "toplev.h"
46 #include "target.h"
47 #include "convert.h"
48 #include "hash-map.h"
49 #include "is-a.h"
50 #include "plugin-api.h"
51 #include "hard-reg-set.h"
52 #include "input.h"
53 #include "function.h"
54 #include "ipa-ref.h"
55 #include "cgraph.h"
56 #include "dumpfile.h"
57 #include "splay-tree.h"
58 #include "gimplify.h"
59 #include "wide-int.h"
60
61 /* The number of nested classes being processed. If we are not in the
62 scope of any class, this is zero. */
63
64 int current_class_depth;
65
66 /* In order to deal with nested classes, we keep a stack of classes.
67 The topmost entry is the innermost class, and is the entry at index
68 CURRENT_CLASS_DEPTH */
69
70 typedef struct class_stack_node {
71 /* The name of the class. */
72 tree name;
73
74 /* The _TYPE node for the class. */
75 tree type;
76
77 /* The access specifier pending for new declarations in the scope of
78 this class. */
79 tree access;
80
81 /* If were defining TYPE, the names used in this class. */
82 splay_tree names_used;
83
84 /* Nonzero if this class is no longer open, because of a call to
85 push_to_top_level. */
86 size_t hidden;
87 }* class_stack_node_t;
88
89 typedef struct vtbl_init_data_s
90 {
91 /* The base for which we're building initializers. */
92 tree binfo;
93 /* The type of the most-derived type. */
94 tree derived;
95 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
96 unless ctor_vtbl_p is true. */
97 tree rtti_binfo;
98 /* The negative-index vtable initializers built up so far. These
99 are in order from least negative index to most negative index. */
100 vec<constructor_elt, va_gc> *inits;
101 /* The binfo for the virtual base for which we're building
102 vcall offset initializers. */
103 tree vbase;
104 /* The functions in vbase for which we have already provided vcall
105 offsets. */
106 vec<tree, va_gc> *fns;
107 /* The vtable index of the next vcall or vbase offset. */
108 tree index;
109 /* Nonzero if we are building the initializer for the primary
110 vtable. */
111 int primary_vtbl_p;
112 /* Nonzero if we are building the initializer for a construction
113 vtable. */
114 int ctor_vtbl_p;
115 /* True when adding vcall offset entries to the vtable. False when
116 merely computing the indices. */
117 bool generate_vcall_entries;
118 } vtbl_init_data;
119
120 /* The type of a function passed to walk_subobject_offsets. */
121 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
122
123 /* The stack itself. This is a dynamically resized array. The
124 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
125 static int current_class_stack_size;
126 static class_stack_node_t current_class_stack;
127
128 /* The size of the largest empty class seen in this translation unit. */
129 static GTY (()) tree sizeof_biggest_empty_class;
130
131 /* An array of all local classes present in this translation unit, in
132 declaration order. */
133 vec<tree, va_gc> *local_classes;
134
135 static tree get_vfield_name (tree);
136 static void finish_struct_anon (tree);
137 static tree get_vtable_name (tree);
138 static void get_basefndecls (tree, tree, vec<tree> *);
139 static int build_primary_vtable (tree, tree);
140 static int build_secondary_vtable (tree);
141 static void finish_vtbls (tree);
142 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
143 static void finish_struct_bits (tree);
144 static int alter_access (tree, tree, tree);
145 static void handle_using_decl (tree, tree);
146 static tree dfs_modify_vtables (tree, void *);
147 static tree modify_all_vtables (tree, tree);
148 static void determine_primary_bases (tree);
149 static void finish_struct_methods (tree);
150 static void maybe_warn_about_overly_private_class (tree);
151 static int method_name_cmp (const void *, const void *);
152 static int resort_method_name_cmp (const void *, const void *);
153 static void add_implicitly_declared_members (tree, tree*, int, int);
154 static tree fixed_type_or_null (tree, int *, int *);
155 static tree build_simple_base_path (tree expr, tree binfo);
156 static tree build_vtbl_ref_1 (tree, tree);
157 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
158 vec<constructor_elt, va_gc> **);
159 static int count_fields (tree);
160 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
161 static void insert_into_classtype_sorted_fields (tree, tree, int);
162 static bool check_bitfield_decl (tree);
163 static void check_field_decl (tree, tree, int *, int *, int *);
164 static void check_field_decls (tree, tree *, int *, int *);
165 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
166 static void build_base_fields (record_layout_info, splay_tree, tree *);
167 static void check_methods (tree);
168 static void remove_zero_width_bit_fields (tree);
169 static bool accessible_nvdtor_p (tree);
170 static void check_bases (tree, int *, int *);
171 static void check_bases_and_members (tree);
172 static tree create_vtable_ptr (tree, tree *);
173 static void include_empty_classes (record_layout_info);
174 static void layout_class_type (tree, tree *);
175 static void propagate_binfo_offsets (tree, tree);
176 static void layout_virtual_bases (record_layout_info, splay_tree);
177 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
178 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
179 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
180 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
181 static void add_vcall_offset (tree, tree, vtbl_init_data *);
182 static void layout_vtable_decl (tree, int);
183 static tree dfs_find_final_overrider_pre (tree, void *);
184 static tree dfs_find_final_overrider_post (tree, void *);
185 static tree find_final_overrider (tree, tree, tree);
186 static int make_new_vtable (tree, tree);
187 static tree get_primary_binfo (tree);
188 static int maybe_indent_hierarchy (FILE *, int, int);
189 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
190 static void dump_class_hierarchy (tree);
191 static void dump_class_hierarchy_1 (FILE *, int, tree);
192 static void dump_array (FILE *, tree);
193 static void dump_vtable (tree, tree, tree);
194 static void dump_vtt (tree, tree);
195 static void dump_thunk (FILE *, int, tree);
196 static tree build_vtable (tree, tree, tree);
197 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
198 static void layout_nonempty_base_or_field (record_layout_info,
199 tree, tree, splay_tree);
200 static tree end_of_class (tree, int);
201 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
202 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
203 vec<constructor_elt, va_gc> **);
204 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
205 vec<constructor_elt, va_gc> **);
206 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
207 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
208 static void clone_constructors_and_destructors (tree);
209 static tree build_clone (tree, tree);
210 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
211 static void build_ctor_vtbl_group (tree, tree);
212 static void build_vtt (tree);
213 static tree binfo_ctor_vtable (tree);
214 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
215 tree *);
216 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
217 static tree dfs_fixup_binfo_vtbls (tree, void *);
218 static int record_subobject_offset (tree, tree, splay_tree);
219 static int check_subobject_offset (tree, tree, splay_tree);
220 static int walk_subobject_offsets (tree, subobject_offset_fn,
221 tree, splay_tree, tree, int);
222 static void record_subobject_offsets (tree, tree, splay_tree, bool);
223 static int layout_conflict_p (tree, tree, splay_tree, int);
224 static int splay_tree_compare_integer_csts (splay_tree_key k1,
225 splay_tree_key k2);
226 static void warn_about_ambiguous_bases (tree);
227 static bool type_requires_array_cookie (tree);
228 static bool base_derived_from (tree, tree);
229 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
230 static tree end_of_base (tree);
231 static tree get_vcall_index (tree, tree);
232
233 /* Variables shared between class.c and call.c. */
234
235 int n_vtables = 0;
236 int n_vtable_entries = 0;
237 int n_vtable_searches = 0;
238 int n_vtable_elems = 0;
239 int n_convert_harshness = 0;
240 int n_compute_conversion_costs = 0;
241 int n_inner_fields_searched = 0;
242
243 /* Convert to or from a base subobject. EXPR is an expression of type
244 `A' or `A*', an expression of type `B' or `B*' is returned. To
245 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
246 the B base instance within A. To convert base A to derived B, CODE
247 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
248 In this latter case, A must not be a morally virtual base of B.
249 NONNULL is true if EXPR is known to be non-NULL (this is only
250 needed when EXPR is of pointer type). CV qualifiers are preserved
251 from EXPR. */
252
253 tree
254 build_base_path (enum tree_code code,
255 tree expr,
256 tree binfo,
257 int nonnull,
258 tsubst_flags_t complain)
259 {
260 tree v_binfo = NULL_TREE;
261 tree d_binfo = NULL_TREE;
262 tree probe;
263 tree offset;
264 tree target_type;
265 tree null_test = NULL;
266 tree ptr_target_type;
267 int fixed_type_p;
268 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
269 bool has_empty = false;
270 bool virtual_access;
271 bool rvalue = false;
272
273 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
274 return error_mark_node;
275
276 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
277 {
278 d_binfo = probe;
279 if (is_empty_class (BINFO_TYPE (probe)))
280 has_empty = true;
281 if (!v_binfo && BINFO_VIRTUAL_P (probe))
282 v_binfo = probe;
283 }
284
285 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
286 if (want_pointer)
287 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
288
289 if (code == PLUS_EXPR
290 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
291 {
292 /* This can happen when adjust_result_of_qualified_name_lookup can't
293 find a unique base binfo in a call to a member function. We
294 couldn't give the diagnostic then since we might have been calling
295 a static member function, so we do it now. */
296 if (complain & tf_error)
297 {
298 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
299 ba_unique, NULL, complain);
300 gcc_assert (base == error_mark_node);
301 }
302 return error_mark_node;
303 }
304
305 gcc_assert ((code == MINUS_EXPR
306 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
307 || code == PLUS_EXPR);
308
309 if (binfo == d_binfo)
310 /* Nothing to do. */
311 return expr;
312
313 if (code == MINUS_EXPR && v_binfo)
314 {
315 if (complain & tf_error)
316 {
317 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo)))
318 {
319 if (want_pointer)
320 error ("cannot convert from pointer to base class %qT to "
321 "pointer to derived class %qT because the base is "
322 "virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
323 else
324 error ("cannot convert from base class %qT to derived "
325 "class %qT because the base is virtual",
326 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
327 }
328 else
329 {
330 if (want_pointer)
331 error ("cannot convert from pointer to base class %qT to "
332 "pointer to derived class %qT via virtual base %qT",
333 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
334 BINFO_TYPE (v_binfo));
335 else
336 error ("cannot convert from base class %qT to derived "
337 "class %qT via virtual base %qT", BINFO_TYPE (binfo),
338 BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
339 }
340 }
341 return error_mark_node;
342 }
343
344 if (!want_pointer)
345 {
346 rvalue = !real_lvalue_p (expr);
347 /* This must happen before the call to save_expr. */
348 expr = cp_build_addr_expr (expr, complain);
349 }
350 else
351 expr = mark_rvalue_use (expr);
352
353 offset = BINFO_OFFSET (binfo);
354 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
355 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
356 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
357 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
358 expression returned matches the input. */
359 target_type = cp_build_qualified_type
360 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
361 ptr_target_type = build_pointer_type (target_type);
362
363 /* Do we need to look in the vtable for the real offset? */
364 virtual_access = (v_binfo && fixed_type_p <= 0);
365
366 /* Don't bother with the calculations inside sizeof; they'll ICE if the
367 source type is incomplete and the pointer value doesn't matter. In a
368 template (even in instantiate_non_dependent_expr), we don't have vtables
369 set up properly yet, and the value doesn't matter there either; we're
370 just interested in the result of overload resolution. */
371 if (cp_unevaluated_operand != 0
372 || in_template_function ())
373 {
374 expr = build_nop (ptr_target_type, expr);
375 goto indout;
376 }
377
378 /* If we're in an NSDMI, we don't have the full constructor context yet
379 that we need for converting to a virtual base, so just build a stub
380 CONVERT_EXPR and expand it later in bot_replace. */
381 if (virtual_access && fixed_type_p < 0
382 && current_scope () != current_function_decl)
383 {
384 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
385 CONVERT_EXPR_VBASE_PATH (expr) = true;
386 goto indout;
387 }
388
389 /* Do we need to check for a null pointer? */
390 if (want_pointer && !nonnull)
391 {
392 /* If we know the conversion will not actually change the value
393 of EXPR, then we can avoid testing the expression for NULL.
394 We have to avoid generating a COMPONENT_REF for a base class
395 field, because other parts of the compiler know that such
396 expressions are always non-NULL. */
397 if (!virtual_access && integer_zerop (offset))
398 return build_nop (ptr_target_type, expr);
399 null_test = error_mark_node;
400 }
401
402 /* Protect against multiple evaluation if necessary. */
403 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
404 expr = save_expr (expr);
405
406 /* Now that we've saved expr, build the real null test. */
407 if (null_test)
408 {
409 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
410 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
411 expr, zero);
412 }
413
414 /* If this is a simple base reference, express it as a COMPONENT_REF. */
415 if (code == PLUS_EXPR && !virtual_access
416 /* We don't build base fields for empty bases, and they aren't very
417 interesting to the optimizers anyway. */
418 && !has_empty)
419 {
420 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
421 expr = build_simple_base_path (expr, binfo);
422 if (rvalue)
423 expr = move (expr);
424 if (want_pointer)
425 expr = build_address (expr);
426 target_type = TREE_TYPE (expr);
427 goto out;
428 }
429
430 if (virtual_access)
431 {
432 /* Going via virtual base V_BINFO. We need the static offset
433 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
434 V_BINFO. That offset is an entry in D_BINFO's vtable. */
435 tree v_offset;
436
437 if (fixed_type_p < 0 && in_base_initializer)
438 {
439 /* In a base member initializer, we cannot rely on the
440 vtable being set up. We have to indirect via the
441 vtt_parm. */
442 tree t;
443
444 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
445 t = build_pointer_type (t);
446 v_offset = convert (t, current_vtt_parm);
447 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
448 }
449 else
450 {
451 tree t = expr;
452 if ((flag_sanitize & SANITIZE_VPTR) && fixed_type_p == 0)
453 {
454 t = cp_ubsan_maybe_instrument_cast_to_vbase (input_location,
455 probe, expr);
456 if (t == NULL_TREE)
457 t = expr;
458 }
459 v_offset = build_vfield_ref (cp_build_indirect_ref (t, RO_NULL,
460 complain),
461 TREE_TYPE (TREE_TYPE (expr)));
462 }
463
464 if (v_offset == error_mark_node)
465 return error_mark_node;
466
467 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
468 v_offset = build1 (NOP_EXPR,
469 build_pointer_type (ptrdiff_type_node),
470 v_offset);
471 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
472 TREE_CONSTANT (v_offset) = 1;
473
474 offset = convert_to_integer (ptrdiff_type_node,
475 size_diffop_loc (input_location, offset,
476 BINFO_OFFSET (v_binfo)));
477
478 if (!integer_zerop (offset))
479 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
480
481 if (fixed_type_p < 0)
482 /* Negative fixed_type_p means this is a constructor or destructor;
483 virtual base layout is fixed in in-charge [cd]tors, but not in
484 base [cd]tors. */
485 offset = build3 (COND_EXPR, ptrdiff_type_node,
486 build2 (EQ_EXPR, boolean_type_node,
487 current_in_charge_parm, integer_zero_node),
488 v_offset,
489 convert_to_integer (ptrdiff_type_node,
490 BINFO_OFFSET (binfo)));
491 else
492 offset = v_offset;
493 }
494
495 if (want_pointer)
496 target_type = ptr_target_type;
497
498 expr = build1 (NOP_EXPR, ptr_target_type, expr);
499
500 if (!integer_zerop (offset))
501 {
502 offset = fold_convert (sizetype, offset);
503 if (code == MINUS_EXPR)
504 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
505 expr = fold_build_pointer_plus (expr, offset);
506 }
507 else
508 null_test = NULL;
509
510 indout:
511 if (!want_pointer)
512 {
513 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
514 if (rvalue)
515 expr = move (expr);
516 }
517
518 out:
519 if (null_test)
520 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
521 build_zero_cst (target_type));
522
523 return expr;
524 }
525
526 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
527 Perform a derived-to-base conversion by recursively building up a
528 sequence of COMPONENT_REFs to the appropriate base fields. */
529
530 static tree
531 build_simple_base_path (tree expr, tree binfo)
532 {
533 tree type = BINFO_TYPE (binfo);
534 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
535 tree field;
536
537 if (d_binfo == NULL_TREE)
538 {
539 tree temp;
540
541 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
542
543 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
544 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
545 an lvalue in the front end; only _DECLs and _REFs are lvalues
546 in the back end. */
547 temp = unary_complex_lvalue (ADDR_EXPR, expr);
548 if (temp)
549 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
550
551 return expr;
552 }
553
554 /* Recurse. */
555 expr = build_simple_base_path (expr, d_binfo);
556
557 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
558 field; field = DECL_CHAIN (field))
559 /* Is this the base field created by build_base_field? */
560 if (TREE_CODE (field) == FIELD_DECL
561 && DECL_FIELD_IS_BASE (field)
562 && TREE_TYPE (field) == type
563 /* If we're looking for a field in the most-derived class,
564 also check the field offset; we can have two base fields
565 of the same type if one is an indirect virtual base and one
566 is a direct non-virtual base. */
567 && (BINFO_INHERITANCE_CHAIN (d_binfo)
568 || tree_int_cst_equal (byte_position (field),
569 BINFO_OFFSET (binfo))))
570 {
571 /* We don't use build_class_member_access_expr here, as that
572 has unnecessary checks, and more importantly results in
573 recursive calls to dfs_walk_once. */
574 int type_quals = cp_type_quals (TREE_TYPE (expr));
575
576 expr = build3 (COMPONENT_REF,
577 cp_build_qualified_type (type, type_quals),
578 expr, field, NULL_TREE);
579 expr = fold_if_not_in_template (expr);
580
581 /* Mark the expression const or volatile, as appropriate.
582 Even though we've dealt with the type above, we still have
583 to mark the expression itself. */
584 if (type_quals & TYPE_QUAL_CONST)
585 TREE_READONLY (expr) = 1;
586 if (type_quals & TYPE_QUAL_VOLATILE)
587 TREE_THIS_VOLATILE (expr) = 1;
588
589 return expr;
590 }
591
592 /* Didn't find the base field?!? */
593 gcc_unreachable ();
594 }
595
596 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
597 type is a class type or a pointer to a class type. In the former
598 case, TYPE is also a class type; in the latter it is another
599 pointer type. If CHECK_ACCESS is true, an error message is emitted
600 if TYPE is inaccessible. If OBJECT has pointer type, the value is
601 assumed to be non-NULL. */
602
603 tree
604 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
605 tsubst_flags_t complain)
606 {
607 tree binfo;
608 tree object_type;
609
610 if (TYPE_PTR_P (TREE_TYPE (object)))
611 {
612 object_type = TREE_TYPE (TREE_TYPE (object));
613 type = TREE_TYPE (type);
614 }
615 else
616 object_type = TREE_TYPE (object);
617
618 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
619 NULL, complain);
620 if (!binfo || binfo == error_mark_node)
621 return error_mark_node;
622
623 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
624 }
625
626 /* EXPR is an expression with unqualified class type. BASE is a base
627 binfo of that class type. Returns EXPR, converted to the BASE
628 type. This function assumes that EXPR is the most derived class;
629 therefore virtual bases can be found at their static offsets. */
630
631 tree
632 convert_to_base_statically (tree expr, tree base)
633 {
634 tree expr_type;
635
636 expr_type = TREE_TYPE (expr);
637 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
638 {
639 /* If this is a non-empty base, use a COMPONENT_REF. */
640 if (!is_empty_class (BINFO_TYPE (base)))
641 return build_simple_base_path (expr, base);
642
643 /* We use fold_build2 and fold_convert below to simplify the trees
644 provided to the optimizers. It is not safe to call these functions
645 when processing a template because they do not handle C++-specific
646 trees. */
647 gcc_assert (!processing_template_decl);
648 expr = cp_build_addr_expr (expr, tf_warning_or_error);
649 if (!integer_zerop (BINFO_OFFSET (base)))
650 expr = fold_build_pointer_plus_loc (input_location,
651 expr, BINFO_OFFSET (base));
652 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
653 expr = build_fold_indirect_ref_loc (input_location, expr);
654 }
655
656 return expr;
657 }
658
659 \f
660 tree
661 build_vfield_ref (tree datum, tree type)
662 {
663 tree vfield, vcontext;
664
665 if (datum == error_mark_node
666 /* Can happen in case of duplicate base types (c++/59082). */
667 || !TYPE_VFIELD (type))
668 return error_mark_node;
669
670 /* First, convert to the requested type. */
671 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
672 datum = convert_to_base (datum, type, /*check_access=*/false,
673 /*nonnull=*/true, tf_warning_or_error);
674
675 /* Second, the requested type may not be the owner of its own vptr.
676 If not, convert to the base class that owns it. We cannot use
677 convert_to_base here, because VCONTEXT may appear more than once
678 in the inheritance hierarchy of TYPE, and thus direct conversion
679 between the types may be ambiguous. Following the path back up
680 one step at a time via primary bases avoids the problem. */
681 vfield = TYPE_VFIELD (type);
682 vcontext = DECL_CONTEXT (vfield);
683 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
684 {
685 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
686 type = TREE_TYPE (datum);
687 }
688
689 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
690 }
691
692 /* Given an object INSTANCE, return an expression which yields the
693 vtable element corresponding to INDEX. There are many special
694 cases for INSTANCE which we take care of here, mainly to avoid
695 creating extra tree nodes when we don't have to. */
696
697 static tree
698 build_vtbl_ref_1 (tree instance, tree idx)
699 {
700 tree aref;
701 tree vtbl = NULL_TREE;
702
703 /* Try to figure out what a reference refers to, and
704 access its virtual function table directly. */
705
706 int cdtorp = 0;
707 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
708
709 tree basetype = non_reference (TREE_TYPE (instance));
710
711 if (fixed_type && !cdtorp)
712 {
713 tree binfo = lookup_base (fixed_type, basetype,
714 ba_unique, NULL, tf_none);
715 if (binfo && binfo != error_mark_node)
716 vtbl = unshare_expr (BINFO_VTABLE (binfo));
717 }
718
719 if (!vtbl)
720 vtbl = build_vfield_ref (instance, basetype);
721
722 aref = build_array_ref (input_location, vtbl, idx);
723 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
724
725 return aref;
726 }
727
728 tree
729 build_vtbl_ref (tree instance, tree idx)
730 {
731 tree aref = build_vtbl_ref_1 (instance, idx);
732
733 return aref;
734 }
735
736 /* Given a stable object pointer INSTANCE_PTR, return an expression which
737 yields a function pointer corresponding to vtable element INDEX. */
738
739 tree
740 build_vfn_ref (tree instance_ptr, tree idx)
741 {
742 tree aref;
743
744 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
745 tf_warning_or_error),
746 idx);
747
748 /* When using function descriptors, the address of the
749 vtable entry is treated as a function pointer. */
750 if (TARGET_VTABLE_USES_DESCRIPTORS)
751 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
752 cp_build_addr_expr (aref, tf_warning_or_error));
753
754 /* Remember this as a method reference, for later devirtualization. */
755 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
756
757 return aref;
758 }
759
760 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
761 for the given TYPE. */
762
763 static tree
764 get_vtable_name (tree type)
765 {
766 return mangle_vtbl_for_type (type);
767 }
768
769 /* DECL is an entity associated with TYPE, like a virtual table or an
770 implicitly generated constructor. Determine whether or not DECL
771 should have external or internal linkage at the object file
772 level. This routine does not deal with COMDAT linkage and other
773 similar complexities; it simply sets TREE_PUBLIC if it possible for
774 entities in other translation units to contain copies of DECL, in
775 the abstract. */
776
777 void
778 set_linkage_according_to_type (tree /*type*/, tree decl)
779 {
780 TREE_PUBLIC (decl) = 1;
781 determine_visibility (decl);
782 }
783
784 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
785 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
786 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
787
788 static tree
789 build_vtable (tree class_type, tree name, tree vtable_type)
790 {
791 tree decl;
792
793 decl = build_lang_decl (VAR_DECL, name, vtable_type);
794 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
795 now to avoid confusion in mangle_decl. */
796 SET_DECL_ASSEMBLER_NAME (decl, name);
797 DECL_CONTEXT (decl) = class_type;
798 DECL_ARTIFICIAL (decl) = 1;
799 TREE_STATIC (decl) = 1;
800 TREE_READONLY (decl) = 1;
801 DECL_VIRTUAL_P (decl) = 1;
802 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
803 DECL_USER_ALIGN (decl) = true;
804 DECL_VTABLE_OR_VTT_P (decl) = 1;
805 set_linkage_according_to_type (class_type, decl);
806 /* The vtable has not been defined -- yet. */
807 DECL_EXTERNAL (decl) = 1;
808 DECL_NOT_REALLY_EXTERN (decl) = 1;
809
810 /* Mark the VAR_DECL node representing the vtable itself as a
811 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
812 is rather important that such things be ignored because any
813 effort to actually generate DWARF for them will run into
814 trouble when/if we encounter code like:
815
816 #pragma interface
817 struct S { virtual void member (); };
818
819 because the artificial declaration of the vtable itself (as
820 manufactured by the g++ front end) will say that the vtable is
821 a static member of `S' but only *after* the debug output for
822 the definition of `S' has already been output. This causes
823 grief because the DWARF entry for the definition of the vtable
824 will try to refer back to an earlier *declaration* of the
825 vtable as a static member of `S' and there won't be one. We
826 might be able to arrange to have the "vtable static member"
827 attached to the member list for `S' before the debug info for
828 `S' get written (which would solve the problem) but that would
829 require more intrusive changes to the g++ front end. */
830 DECL_IGNORED_P (decl) = 1;
831
832 return decl;
833 }
834
835 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
836 or even complete. If this does not exist, create it. If COMPLETE is
837 nonzero, then complete the definition of it -- that will render it
838 impossible to actually build the vtable, but is useful to get at those
839 which are known to exist in the runtime. */
840
841 tree
842 get_vtable_decl (tree type, int complete)
843 {
844 tree decl;
845
846 if (CLASSTYPE_VTABLES (type))
847 return CLASSTYPE_VTABLES (type);
848
849 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
850 CLASSTYPE_VTABLES (type) = decl;
851
852 if (complete)
853 {
854 DECL_EXTERNAL (decl) = 1;
855 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
856 }
857
858 return decl;
859 }
860
861 /* Build the primary virtual function table for TYPE. If BINFO is
862 non-NULL, build the vtable starting with the initial approximation
863 that it is the same as the one which is the head of the association
864 list. Returns a nonzero value if a new vtable is actually
865 created. */
866
867 static int
868 build_primary_vtable (tree binfo, tree type)
869 {
870 tree decl;
871 tree virtuals;
872
873 decl = get_vtable_decl (type, /*complete=*/0);
874
875 if (binfo)
876 {
877 if (BINFO_NEW_VTABLE_MARKED (binfo))
878 /* We have already created a vtable for this base, so there's
879 no need to do it again. */
880 return 0;
881
882 virtuals = copy_list (BINFO_VIRTUALS (binfo));
883 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
884 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
885 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
886 }
887 else
888 {
889 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
890 virtuals = NULL_TREE;
891 }
892
893 if (GATHER_STATISTICS)
894 {
895 n_vtables += 1;
896 n_vtable_elems += list_length (virtuals);
897 }
898
899 /* Initialize the association list for this type, based
900 on our first approximation. */
901 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
902 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
903 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
904 return 1;
905 }
906
907 /* Give BINFO a new virtual function table which is initialized
908 with a skeleton-copy of its original initialization. The only
909 entry that changes is the `delta' entry, so we can really
910 share a lot of structure.
911
912 FOR_TYPE is the most derived type which caused this table to
913 be needed.
914
915 Returns nonzero if we haven't met BINFO before.
916
917 The order in which vtables are built (by calling this function) for
918 an object must remain the same, otherwise a binary incompatibility
919 can result. */
920
921 static int
922 build_secondary_vtable (tree binfo)
923 {
924 if (BINFO_NEW_VTABLE_MARKED (binfo))
925 /* We already created a vtable for this base. There's no need to
926 do it again. */
927 return 0;
928
929 /* Remember that we've created a vtable for this BINFO, so that we
930 don't try to do so again. */
931 SET_BINFO_NEW_VTABLE_MARKED (binfo);
932
933 /* Make fresh virtual list, so we can smash it later. */
934 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
935
936 /* Secondary vtables are laid out as part of the same structure as
937 the primary vtable. */
938 BINFO_VTABLE (binfo) = NULL_TREE;
939 return 1;
940 }
941
942 /* Create a new vtable for BINFO which is the hierarchy dominated by
943 T. Return nonzero if we actually created a new vtable. */
944
945 static int
946 make_new_vtable (tree t, tree binfo)
947 {
948 if (binfo == TYPE_BINFO (t))
949 /* In this case, it is *type*'s vtable we are modifying. We start
950 with the approximation that its vtable is that of the
951 immediate base class. */
952 return build_primary_vtable (binfo, t);
953 else
954 /* This is our very own copy of `basetype' to play with. Later,
955 we will fill in all the virtual functions that override the
956 virtual functions in these base classes which are not defined
957 by the current type. */
958 return build_secondary_vtable (binfo);
959 }
960
961 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
962 (which is in the hierarchy dominated by T) list FNDECL as its
963 BV_FN. DELTA is the required constant adjustment from the `this'
964 pointer where the vtable entry appears to the `this' required when
965 the function is actually called. */
966
967 static void
968 modify_vtable_entry (tree t,
969 tree binfo,
970 tree fndecl,
971 tree delta,
972 tree *virtuals)
973 {
974 tree v;
975
976 v = *virtuals;
977
978 if (fndecl != BV_FN (v)
979 || !tree_int_cst_equal (delta, BV_DELTA (v)))
980 {
981 /* We need a new vtable for BINFO. */
982 if (make_new_vtable (t, binfo))
983 {
984 /* If we really did make a new vtable, we also made a copy
985 of the BINFO_VIRTUALS list. Now, we have to find the
986 corresponding entry in that list. */
987 *virtuals = BINFO_VIRTUALS (binfo);
988 while (BV_FN (*virtuals) != BV_FN (v))
989 *virtuals = TREE_CHAIN (*virtuals);
990 v = *virtuals;
991 }
992
993 BV_DELTA (v) = delta;
994 BV_VCALL_INDEX (v) = NULL_TREE;
995 BV_FN (v) = fndecl;
996 }
997 }
998
999 \f
1000 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
1001 the USING_DECL naming METHOD. Returns true if the method could be
1002 added to the method vec. */
1003
1004 bool
1005 add_method (tree type, tree method, tree using_decl)
1006 {
1007 unsigned slot;
1008 tree overload;
1009 bool template_conv_p = false;
1010 bool conv_p;
1011 vec<tree, va_gc> *method_vec;
1012 bool complete_p;
1013 bool insert_p = false;
1014 tree current_fns;
1015 tree fns;
1016
1017 if (method == error_mark_node)
1018 return false;
1019
1020 complete_p = COMPLETE_TYPE_P (type);
1021 conv_p = DECL_CONV_FN_P (method);
1022 if (conv_p)
1023 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
1024 && DECL_TEMPLATE_CONV_FN_P (method));
1025
1026 method_vec = CLASSTYPE_METHOD_VEC (type);
1027 if (!method_vec)
1028 {
1029 /* Make a new method vector. We start with 8 entries. We must
1030 allocate at least two (for constructors and destructors), and
1031 we're going to end up with an assignment operator at some
1032 point as well. */
1033 vec_alloc (method_vec, 8);
1034 /* Create slots for constructors and destructors. */
1035 method_vec->quick_push (NULL_TREE);
1036 method_vec->quick_push (NULL_TREE);
1037 CLASSTYPE_METHOD_VEC (type) = method_vec;
1038 }
1039
1040 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
1041 grok_special_member_properties (method);
1042
1043 /* Constructors and destructors go in special slots. */
1044 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
1045 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
1046 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1047 {
1048 slot = CLASSTYPE_DESTRUCTOR_SLOT;
1049
1050 if (TYPE_FOR_JAVA (type))
1051 {
1052 if (!DECL_ARTIFICIAL (method))
1053 error ("Java class %qT cannot have a destructor", type);
1054 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1055 error ("Java class %qT cannot have an implicit non-trivial "
1056 "destructor",
1057 type);
1058 }
1059 }
1060 else
1061 {
1062 tree m;
1063
1064 insert_p = true;
1065 /* See if we already have an entry with this name. */
1066 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1067 vec_safe_iterate (method_vec, slot, &m);
1068 ++slot)
1069 {
1070 m = OVL_CURRENT (m);
1071 if (template_conv_p)
1072 {
1073 if (TREE_CODE (m) == TEMPLATE_DECL
1074 && DECL_TEMPLATE_CONV_FN_P (m))
1075 insert_p = false;
1076 break;
1077 }
1078 if (conv_p && !DECL_CONV_FN_P (m))
1079 break;
1080 if (DECL_NAME (m) == DECL_NAME (method))
1081 {
1082 insert_p = false;
1083 break;
1084 }
1085 if (complete_p
1086 && !DECL_CONV_FN_P (m)
1087 && DECL_NAME (m) > DECL_NAME (method))
1088 break;
1089 }
1090 }
1091 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1092
1093 /* Check to see if we've already got this method. */
1094 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1095 {
1096 tree fn = OVL_CURRENT (fns);
1097 tree fn_type;
1098 tree method_type;
1099 tree parms1;
1100 tree parms2;
1101
1102 if (TREE_CODE (fn) != TREE_CODE (method))
1103 continue;
1104
1105 /* [over.load] Member function declarations with the
1106 same name and the same parameter types cannot be
1107 overloaded if any of them is a static member
1108 function declaration.
1109
1110 [over.load] Member function declarations with the same name and
1111 the same parameter-type-list as well as member function template
1112 declarations with the same name, the same parameter-type-list, and
1113 the same template parameter lists cannot be overloaded if any of
1114 them, but not all, have a ref-qualifier.
1115
1116 [namespace.udecl] When a using-declaration brings names
1117 from a base class into a derived class scope, member
1118 functions in the derived class override and/or hide member
1119 functions with the same name and parameter types in a base
1120 class (rather than conflicting). */
1121 fn_type = TREE_TYPE (fn);
1122 method_type = TREE_TYPE (method);
1123 parms1 = TYPE_ARG_TYPES (fn_type);
1124 parms2 = TYPE_ARG_TYPES (method_type);
1125
1126 /* Compare the quals on the 'this' parm. Don't compare
1127 the whole types, as used functions are treated as
1128 coming from the using class in overload resolution. */
1129 if (! DECL_STATIC_FUNCTION_P (fn)
1130 && ! DECL_STATIC_FUNCTION_P (method)
1131 /* Either both or neither need to be ref-qualified for
1132 differing quals to allow overloading. */
1133 && (FUNCTION_REF_QUALIFIED (fn_type)
1134 == FUNCTION_REF_QUALIFIED (method_type))
1135 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1136 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1137 continue;
1138
1139 /* For templates, the return type and template parameters
1140 must be identical. */
1141 if (TREE_CODE (fn) == TEMPLATE_DECL
1142 && (!same_type_p (TREE_TYPE (fn_type),
1143 TREE_TYPE (method_type))
1144 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1145 DECL_TEMPLATE_PARMS (method))))
1146 continue;
1147
1148 if (! DECL_STATIC_FUNCTION_P (fn))
1149 parms1 = TREE_CHAIN (parms1);
1150 if (! DECL_STATIC_FUNCTION_P (method))
1151 parms2 = TREE_CHAIN (parms2);
1152
1153 if (compparms (parms1, parms2)
1154 && (!DECL_CONV_FN_P (fn)
1155 || same_type_p (TREE_TYPE (fn_type),
1156 TREE_TYPE (method_type))))
1157 {
1158 /* For function versions, their parms and types match
1159 but they are not duplicates. Record function versions
1160 as and when they are found. extern "C" functions are
1161 not treated as versions. */
1162 if (TREE_CODE (fn) == FUNCTION_DECL
1163 && TREE_CODE (method) == FUNCTION_DECL
1164 && !DECL_EXTERN_C_P (fn)
1165 && !DECL_EXTERN_C_P (method)
1166 && targetm.target_option.function_versions (fn, method))
1167 {
1168 /* Mark functions as versions if necessary. Modify the mangled
1169 decl name if necessary. */
1170 if (!DECL_FUNCTION_VERSIONED (fn))
1171 {
1172 DECL_FUNCTION_VERSIONED (fn) = 1;
1173 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1174 mangle_decl (fn);
1175 }
1176 if (!DECL_FUNCTION_VERSIONED (method))
1177 {
1178 DECL_FUNCTION_VERSIONED (method) = 1;
1179 if (DECL_ASSEMBLER_NAME_SET_P (method))
1180 mangle_decl (method);
1181 }
1182 cgraph_node::record_function_versions (fn, method);
1183 continue;
1184 }
1185 if (DECL_INHERITED_CTOR_BASE (method))
1186 {
1187 if (DECL_INHERITED_CTOR_BASE (fn))
1188 {
1189 error_at (DECL_SOURCE_LOCATION (method),
1190 "%q#D inherited from %qT", method,
1191 DECL_INHERITED_CTOR_BASE (method));
1192 error_at (DECL_SOURCE_LOCATION (fn),
1193 "conflicts with version inherited from %qT",
1194 DECL_INHERITED_CTOR_BASE (fn));
1195 }
1196 /* Otherwise defer to the other function. */
1197 return false;
1198 }
1199 if (using_decl)
1200 {
1201 if (DECL_CONTEXT (fn) == type)
1202 /* Defer to the local function. */
1203 return false;
1204 }
1205 else
1206 {
1207 error ("%q+#D cannot be overloaded", method);
1208 error ("with %q+#D", fn);
1209 }
1210
1211 /* We don't call duplicate_decls here to merge the
1212 declarations because that will confuse things if the
1213 methods have inline definitions. In particular, we
1214 will crash while processing the definitions. */
1215 return false;
1216 }
1217 }
1218
1219 /* A class should never have more than one destructor. */
1220 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1221 return false;
1222
1223 /* Add the new binding. */
1224 if (using_decl)
1225 {
1226 overload = ovl_cons (method, current_fns);
1227 OVL_USED (overload) = true;
1228 }
1229 else
1230 overload = build_overload (method, current_fns);
1231
1232 if (conv_p)
1233 TYPE_HAS_CONVERSION (type) = 1;
1234 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1235 push_class_level_binding (DECL_NAME (method), overload);
1236
1237 if (insert_p)
1238 {
1239 bool reallocated;
1240
1241 /* We only expect to add few methods in the COMPLETE_P case, so
1242 just make room for one more method in that case. */
1243 if (complete_p)
1244 reallocated = vec_safe_reserve_exact (method_vec, 1);
1245 else
1246 reallocated = vec_safe_reserve (method_vec, 1);
1247 if (reallocated)
1248 CLASSTYPE_METHOD_VEC (type) = method_vec;
1249 if (slot == method_vec->length ())
1250 method_vec->quick_push (overload);
1251 else
1252 method_vec->quick_insert (slot, overload);
1253 }
1254 else
1255 /* Replace the current slot. */
1256 (*method_vec)[slot] = overload;
1257 return true;
1258 }
1259
1260 /* Subroutines of finish_struct. */
1261
1262 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1263 legit, otherwise return 0. */
1264
1265 static int
1266 alter_access (tree t, tree fdecl, tree access)
1267 {
1268 tree elem;
1269
1270 if (!DECL_LANG_SPECIFIC (fdecl))
1271 retrofit_lang_decl (fdecl);
1272
1273 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1274
1275 elem = purpose_member (t, DECL_ACCESS (fdecl));
1276 if (elem)
1277 {
1278 if (TREE_VALUE (elem) != access)
1279 {
1280 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1281 error ("conflicting access specifications for method"
1282 " %q+D, ignored", TREE_TYPE (fdecl));
1283 else
1284 error ("conflicting access specifications for field %qE, ignored",
1285 DECL_NAME (fdecl));
1286 }
1287 else
1288 {
1289 /* They're changing the access to the same thing they changed
1290 it to before. That's OK. */
1291 ;
1292 }
1293 }
1294 else
1295 {
1296 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1297 tf_warning_or_error);
1298 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1299 return 1;
1300 }
1301 return 0;
1302 }
1303
1304 /* Process the USING_DECL, which is a member of T. */
1305
1306 static void
1307 handle_using_decl (tree using_decl, tree t)
1308 {
1309 tree decl = USING_DECL_DECLS (using_decl);
1310 tree name = DECL_NAME (using_decl);
1311 tree access
1312 = TREE_PRIVATE (using_decl) ? access_private_node
1313 : TREE_PROTECTED (using_decl) ? access_protected_node
1314 : access_public_node;
1315 tree flist = NULL_TREE;
1316 tree old_value;
1317
1318 gcc_assert (!processing_template_decl && decl);
1319
1320 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1321 tf_warning_or_error);
1322 if (old_value)
1323 {
1324 if (is_overloaded_fn (old_value))
1325 old_value = OVL_CURRENT (old_value);
1326
1327 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1328 /* OK */;
1329 else
1330 old_value = NULL_TREE;
1331 }
1332
1333 cp_emit_debug_info_for_using (decl, t);
1334
1335 if (is_overloaded_fn (decl))
1336 flist = decl;
1337
1338 if (! old_value)
1339 ;
1340 else if (is_overloaded_fn (old_value))
1341 {
1342 if (flist)
1343 /* It's OK to use functions from a base when there are functions with
1344 the same name already present in the current class. */;
1345 else
1346 {
1347 error ("%q+D invalid in %q#T", using_decl, t);
1348 error (" because of local method %q+#D with same name",
1349 OVL_CURRENT (old_value));
1350 return;
1351 }
1352 }
1353 else if (!DECL_ARTIFICIAL (old_value))
1354 {
1355 error ("%q+D invalid in %q#T", using_decl, t);
1356 error (" because of local member %q+#D with same name", old_value);
1357 return;
1358 }
1359
1360 /* Make type T see field decl FDECL with access ACCESS. */
1361 if (flist)
1362 for (; flist; flist = OVL_NEXT (flist))
1363 {
1364 add_method (t, OVL_CURRENT (flist), using_decl);
1365 alter_access (t, OVL_CURRENT (flist), access);
1366 }
1367 else
1368 alter_access (t, decl, access);
1369 }
1370 \f
1371 /* Data structure for find_abi_tags_r, below. */
1372
1373 struct abi_tag_data
1374 {
1375 tree t; // The type that we're checking for missing tags.
1376 tree subob; // The subobject of T that we're getting tags from.
1377 tree tags; // error_mark_node for diagnostics, or a list of missing tags.
1378 };
1379
1380 /* Subroutine of find_abi_tags_r. Handle a single TAG found on the class TP
1381 in the context of P. TAG can be either an identifier (the DECL_NAME of
1382 a tag NAMESPACE_DECL) or a STRING_CST (a tag attribute). */
1383
1384 static void
1385 check_tag (tree tag, tree *tp, abi_tag_data *p)
1386 {
1387 tree id;
1388
1389 if (TREE_CODE (tag) == STRING_CST)
1390 id = get_identifier (TREE_STRING_POINTER (tag));
1391 else
1392 {
1393 id = tag;
1394 tag = NULL_TREE;
1395 }
1396
1397 if (!IDENTIFIER_MARKED (id))
1398 {
1399 if (!tag)
1400 tag = build_string (IDENTIFIER_LENGTH (id) + 1,
1401 IDENTIFIER_POINTER (id));
1402 if (p->tags != error_mark_node)
1403 {
1404 /* We're collecting tags from template arguments. */
1405 p->tags = tree_cons (NULL_TREE, tag, p->tags);
1406 ABI_TAG_IMPLICIT (p->tags) = true;
1407
1408 /* Don't inherit this tag multiple times. */
1409 IDENTIFIER_MARKED (id) = true;
1410 }
1411
1412 /* Otherwise we're diagnosing missing tags. */
1413 else if (TYPE_P (p->subob))
1414 {
1415 if (warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1416 "that base %qT has", p->t, tag, p->subob))
1417 inform (location_of (p->subob), "%qT declared here",
1418 p->subob);
1419 }
1420 else
1421 {
1422 if (warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1423 "that %qT (used in the type of %qD) has",
1424 p->t, tag, *tp, p->subob))
1425 {
1426 inform (location_of (p->subob), "%qD declared here",
1427 p->subob);
1428 inform (location_of (*tp), "%qT declared here", *tp);
1429 }
1430 }
1431 }
1432 }
1433
1434 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1435 types with abi tags, add the corresponding identifiers to the VEC in
1436 *DATA and set IDENTIFIER_MARKED. */
1437
1438 static tree
1439 find_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
1440 {
1441 if (!OVERLOAD_TYPE_P (*tp))
1442 return NULL_TREE;
1443
1444 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1445 anyway, but let's make sure of it. */
1446 *walk_subtrees = false;
1447
1448 abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1449
1450 for (tree ns = decl_namespace_context (*tp);
1451 ns != global_namespace;
1452 ns = CP_DECL_CONTEXT (ns))
1453 if (NAMESPACE_ABI_TAG (ns))
1454 check_tag (DECL_NAME (ns), tp, p);
1455
1456 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1457 {
1458 for (tree list = TREE_VALUE (attributes); list;
1459 list = TREE_CHAIN (list))
1460 {
1461 tree tag = TREE_VALUE (list);
1462 check_tag (tag, tp, p);
1463 }
1464 }
1465 return NULL_TREE;
1466 }
1467
1468 /* Set IDENTIFIER_MARKED on all the ABI tags on T and its (transitively
1469 complete) template arguments. */
1470
1471 static void
1472 mark_type_abi_tags (tree t, bool val)
1473 {
1474 for (tree ns = decl_namespace_context (t);
1475 ns != global_namespace;
1476 ns = CP_DECL_CONTEXT (ns))
1477 if (NAMESPACE_ABI_TAG (ns))
1478 IDENTIFIER_MARKED (DECL_NAME (ns)) = val;
1479
1480 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1481 if (attributes)
1482 {
1483 for (tree list = TREE_VALUE (attributes); list;
1484 list = TREE_CHAIN (list))
1485 {
1486 tree tag = TREE_VALUE (list);
1487 tree id = get_identifier (TREE_STRING_POINTER (tag));
1488 IDENTIFIER_MARKED (id) = val;
1489 }
1490 }
1491 }
1492
1493 /* Check that class T has all the abi tags that subobject SUBOB has, or
1494 warn if not. */
1495
1496 static void
1497 check_abi_tags (tree t, tree subob)
1498 {
1499 mark_type_abi_tags (t, true);
1500
1501 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1502 struct abi_tag_data data = { t, subob, error_mark_node };
1503
1504 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1505
1506 mark_type_abi_tags (t, false);
1507 }
1508
1509 void
1510 inherit_targ_abi_tags (tree t)
1511 {
1512 if (!CLASS_TYPE_P (t)
1513 || CLASSTYPE_TEMPLATE_INFO (t) == NULL_TREE)
1514 return;
1515
1516 mark_type_abi_tags (t, true);
1517
1518 tree args = CLASSTYPE_TI_ARGS (t);
1519 struct abi_tag_data data = { t, NULL_TREE, NULL_TREE };
1520 for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
1521 {
1522 tree level = TMPL_ARGS_LEVEL (args, i+1);
1523 for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1524 {
1525 tree arg = TREE_VEC_ELT (level, j);
1526 data.subob = arg;
1527 cp_walk_tree_without_duplicates (&arg, find_abi_tags_r, &data);
1528 }
1529 }
1530
1531 // If we found some tags on our template arguments, add them to our
1532 // abi_tag attribute.
1533 if (data.tags)
1534 {
1535 tree attr = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1536 if (attr)
1537 TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
1538 else
1539 TYPE_ATTRIBUTES (t)
1540 = tree_cons (get_identifier ("abi_tag"), data.tags,
1541 TYPE_ATTRIBUTES (t));
1542 }
1543
1544 mark_type_abi_tags (t, false);
1545 }
1546
1547 /* Return true, iff class T has a non-virtual destructor that is
1548 accessible from outside the class heirarchy (i.e. is public, or
1549 there's a suitable friend. */
1550
1551 static bool
1552 accessible_nvdtor_p (tree t)
1553 {
1554 tree dtor = CLASSTYPE_DESTRUCTORS (t);
1555
1556 /* An implicitly declared destructor is always public. And,
1557 if it were virtual, we would have created it by now. */
1558 if (!dtor)
1559 return true;
1560
1561 if (DECL_VINDEX (dtor))
1562 return false; /* Virtual */
1563
1564 if (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
1565 return true; /* Public */
1566
1567 if (CLASSTYPE_FRIEND_CLASSES (t)
1568 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1569 return true; /* Has friends */
1570
1571 return false;
1572 }
1573
1574 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1575 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1576 properties of the bases. */
1577
1578 static void
1579 check_bases (tree t,
1580 int* cant_have_const_ctor_p,
1581 int* no_const_asn_ref_p)
1582 {
1583 int i;
1584 bool seen_non_virtual_nearly_empty_base_p = 0;
1585 int seen_tm_mask = 0;
1586 tree base_binfo;
1587 tree binfo;
1588 tree field = NULL_TREE;
1589
1590 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1591 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1592 if (TREE_CODE (field) == FIELD_DECL)
1593 break;
1594
1595 for (binfo = TYPE_BINFO (t), i = 0;
1596 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1597 {
1598 tree basetype = TREE_TYPE (base_binfo);
1599
1600 gcc_assert (COMPLETE_TYPE_P (basetype));
1601
1602 if (CLASSTYPE_FINAL (basetype))
1603 error ("cannot derive from %<final%> base %qT in derived type %qT",
1604 basetype, t);
1605
1606 /* If any base class is non-literal, so is the derived class. */
1607 if (!CLASSTYPE_LITERAL_P (basetype))
1608 CLASSTYPE_LITERAL_P (t) = false;
1609
1610 /* If the base class doesn't have copy constructors or
1611 assignment operators that take const references, then the
1612 derived class cannot have such a member automatically
1613 generated. */
1614 if (TYPE_HAS_COPY_CTOR (basetype)
1615 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1616 *cant_have_const_ctor_p = 1;
1617 if (TYPE_HAS_COPY_ASSIGN (basetype)
1618 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1619 *no_const_asn_ref_p = 1;
1620
1621 if (BINFO_VIRTUAL_P (base_binfo))
1622 /* A virtual base does not effect nearly emptiness. */
1623 ;
1624 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1625 {
1626 if (seen_non_virtual_nearly_empty_base_p)
1627 /* And if there is more than one nearly empty base, then the
1628 derived class is not nearly empty either. */
1629 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1630 else
1631 /* Remember we've seen one. */
1632 seen_non_virtual_nearly_empty_base_p = 1;
1633 }
1634 else if (!is_empty_class (basetype))
1635 /* If the base class is not empty or nearly empty, then this
1636 class cannot be nearly empty. */
1637 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1638
1639 /* A lot of properties from the bases also apply to the derived
1640 class. */
1641 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1642 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1643 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1644 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1645 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1646 || !TYPE_HAS_COPY_ASSIGN (basetype));
1647 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1648 || !TYPE_HAS_COPY_CTOR (basetype));
1649 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1650 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1651 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1652 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1653 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1654 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1655 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1656 || TYPE_HAS_COMPLEX_DFLT (basetype));
1657 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
1658 (t, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
1659 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype));
1660 SET_CLASSTYPE_REF_FIELDS_NEED_INIT
1661 (t, CLASSTYPE_REF_FIELDS_NEED_INIT (t)
1662 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype));
1663
1664 /* A standard-layout class is a class that:
1665 ...
1666 * has no non-standard-layout base classes, */
1667 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1668 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1669 {
1670 tree basefield;
1671 /* ...has no base classes of the same type as the first non-static
1672 data member... */
1673 if (field && DECL_CONTEXT (field) == t
1674 && (same_type_ignoring_top_level_qualifiers_p
1675 (TREE_TYPE (field), basetype)))
1676 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1677 else
1678 /* ...either has no non-static data members in the most-derived
1679 class and at most one base class with non-static data
1680 members, or has no base classes with non-static data
1681 members */
1682 for (basefield = TYPE_FIELDS (basetype); basefield;
1683 basefield = DECL_CHAIN (basefield))
1684 if (TREE_CODE (basefield) == FIELD_DECL)
1685 {
1686 if (field)
1687 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1688 else
1689 field = basefield;
1690 break;
1691 }
1692 }
1693
1694 /* Don't bother collecting tm attributes if transactional memory
1695 support is not enabled. */
1696 if (flag_tm)
1697 {
1698 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1699 if (tm_attr)
1700 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1701 }
1702
1703 check_abi_tags (t, basetype);
1704 }
1705
1706 /* If one of the base classes had TM attributes, and the current class
1707 doesn't define its own, then the current class inherits one. */
1708 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1709 {
1710 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1711 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1712 }
1713 }
1714
1715 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1716 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1717 that have had a nearly-empty virtual primary base stolen by some
1718 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1719 T. */
1720
1721 static void
1722 determine_primary_bases (tree t)
1723 {
1724 unsigned i;
1725 tree primary = NULL_TREE;
1726 tree type_binfo = TYPE_BINFO (t);
1727 tree base_binfo;
1728
1729 /* Determine the primary bases of our bases. */
1730 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1731 base_binfo = TREE_CHAIN (base_binfo))
1732 {
1733 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1734
1735 /* See if we're the non-virtual primary of our inheritance
1736 chain. */
1737 if (!BINFO_VIRTUAL_P (base_binfo))
1738 {
1739 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1740 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1741
1742 if (parent_primary
1743 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1744 BINFO_TYPE (parent_primary)))
1745 /* We are the primary binfo. */
1746 BINFO_PRIMARY_P (base_binfo) = 1;
1747 }
1748 /* Determine if we have a virtual primary base, and mark it so.
1749 */
1750 if (primary && BINFO_VIRTUAL_P (primary))
1751 {
1752 tree this_primary = copied_binfo (primary, base_binfo);
1753
1754 if (BINFO_PRIMARY_P (this_primary))
1755 /* Someone already claimed this base. */
1756 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1757 else
1758 {
1759 tree delta;
1760
1761 BINFO_PRIMARY_P (this_primary) = 1;
1762 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1763
1764 /* A virtual binfo might have been copied from within
1765 another hierarchy. As we're about to use it as a
1766 primary base, make sure the offsets match. */
1767 delta = size_diffop_loc (input_location,
1768 convert (ssizetype,
1769 BINFO_OFFSET (base_binfo)),
1770 convert (ssizetype,
1771 BINFO_OFFSET (this_primary)));
1772
1773 propagate_binfo_offsets (this_primary, delta);
1774 }
1775 }
1776 }
1777
1778 /* First look for a dynamic direct non-virtual base. */
1779 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1780 {
1781 tree basetype = BINFO_TYPE (base_binfo);
1782
1783 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1784 {
1785 primary = base_binfo;
1786 goto found;
1787 }
1788 }
1789
1790 /* A "nearly-empty" virtual base class can be the primary base
1791 class, if no non-virtual polymorphic base can be found. Look for
1792 a nearly-empty virtual dynamic base that is not already a primary
1793 base of something in the hierarchy. If there is no such base,
1794 just pick the first nearly-empty virtual base. */
1795
1796 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1797 base_binfo = TREE_CHAIN (base_binfo))
1798 if (BINFO_VIRTUAL_P (base_binfo)
1799 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1800 {
1801 if (!BINFO_PRIMARY_P (base_binfo))
1802 {
1803 /* Found one that is not primary. */
1804 primary = base_binfo;
1805 goto found;
1806 }
1807 else if (!primary)
1808 /* Remember the first candidate. */
1809 primary = base_binfo;
1810 }
1811
1812 found:
1813 /* If we've got a primary base, use it. */
1814 if (primary)
1815 {
1816 tree basetype = BINFO_TYPE (primary);
1817
1818 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1819 if (BINFO_PRIMARY_P (primary))
1820 /* We are stealing a primary base. */
1821 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1822 BINFO_PRIMARY_P (primary) = 1;
1823 if (BINFO_VIRTUAL_P (primary))
1824 {
1825 tree delta;
1826
1827 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1828 /* A virtual binfo might have been copied from within
1829 another hierarchy. As we're about to use it as a primary
1830 base, make sure the offsets match. */
1831 delta = size_diffop_loc (input_location, ssize_int (0),
1832 convert (ssizetype, BINFO_OFFSET (primary)));
1833
1834 propagate_binfo_offsets (primary, delta);
1835 }
1836
1837 primary = TYPE_BINFO (basetype);
1838
1839 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1840 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1841 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1842 }
1843 }
1844
1845 /* Update the variant types of T. */
1846
1847 void
1848 fixup_type_variants (tree t)
1849 {
1850 tree variants;
1851
1852 if (!t)
1853 return;
1854
1855 for (variants = TYPE_NEXT_VARIANT (t);
1856 variants;
1857 variants = TYPE_NEXT_VARIANT (variants))
1858 {
1859 /* These fields are in the _TYPE part of the node, not in
1860 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1861 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1862 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1863 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1864 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1865
1866 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1867
1868 TYPE_BINFO (variants) = TYPE_BINFO (t);
1869
1870 /* Copy whatever these are holding today. */
1871 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1872 TYPE_METHODS (variants) = TYPE_METHODS (t);
1873 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1874 }
1875 }
1876
1877 /* Early variant fixups: we apply attributes at the beginning of the class
1878 definition, and we need to fix up any variants that have already been
1879 made via elaborated-type-specifier so that check_qualified_type works. */
1880
1881 void
1882 fixup_attribute_variants (tree t)
1883 {
1884 tree variants;
1885
1886 if (!t)
1887 return;
1888
1889 for (variants = TYPE_NEXT_VARIANT (t);
1890 variants;
1891 variants = TYPE_NEXT_VARIANT (variants))
1892 {
1893 /* These are the two fields that check_qualified_type looks at and
1894 are affected by attributes. */
1895 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1896 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1897 }
1898 }
1899 \f
1900 /* Set memoizing fields and bits of T (and its variants) for later
1901 use. */
1902
1903 static void
1904 finish_struct_bits (tree t)
1905 {
1906 /* Fix up variants (if any). */
1907 fixup_type_variants (t);
1908
1909 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1910 /* For a class w/o baseclasses, 'finish_struct' has set
1911 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1912 Similarly for a class whose base classes do not have vtables.
1913 When neither of these is true, we might have removed abstract
1914 virtuals (by providing a definition), added some (by declaring
1915 new ones), or redeclared ones from a base class. We need to
1916 recalculate what's really an abstract virtual at this point (by
1917 looking in the vtables). */
1918 get_pure_virtuals (t);
1919
1920 /* If this type has a copy constructor or a destructor, force its
1921 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1922 nonzero. This will cause it to be passed by invisible reference
1923 and prevent it from being returned in a register. */
1924 if (type_has_nontrivial_copy_init (t)
1925 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1926 {
1927 tree variants;
1928 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1929 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1930 {
1931 SET_TYPE_MODE (variants, BLKmode);
1932 TREE_ADDRESSABLE (variants) = 1;
1933 }
1934 }
1935 }
1936
1937 /* Issue warnings about T having private constructors, but no friends,
1938 and so forth.
1939
1940 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1941 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1942 non-private static member functions. */
1943
1944 static void
1945 maybe_warn_about_overly_private_class (tree t)
1946 {
1947 int has_member_fn = 0;
1948 int has_nonprivate_method = 0;
1949 tree fn;
1950
1951 if (!warn_ctor_dtor_privacy
1952 /* If the class has friends, those entities might create and
1953 access instances, so we should not warn. */
1954 || (CLASSTYPE_FRIEND_CLASSES (t)
1955 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1956 /* We will have warned when the template was declared; there's
1957 no need to warn on every instantiation. */
1958 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1959 /* There's no reason to even consider warning about this
1960 class. */
1961 return;
1962
1963 /* We only issue one warning, if more than one applies, because
1964 otherwise, on code like:
1965
1966 class A {
1967 // Oops - forgot `public:'
1968 A();
1969 A(const A&);
1970 ~A();
1971 };
1972
1973 we warn several times about essentially the same problem. */
1974
1975 /* Check to see if all (non-constructor, non-destructor) member
1976 functions are private. (Since there are no friends or
1977 non-private statics, we can't ever call any of the private member
1978 functions.) */
1979 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1980 /* We're not interested in compiler-generated methods; they don't
1981 provide any way to call private members. */
1982 if (!DECL_ARTIFICIAL (fn))
1983 {
1984 if (!TREE_PRIVATE (fn))
1985 {
1986 if (DECL_STATIC_FUNCTION_P (fn))
1987 /* A non-private static member function is just like a
1988 friend; it can create and invoke private member
1989 functions, and be accessed without a class
1990 instance. */
1991 return;
1992
1993 has_nonprivate_method = 1;
1994 /* Keep searching for a static member function. */
1995 }
1996 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1997 has_member_fn = 1;
1998 }
1999
2000 if (!has_nonprivate_method && has_member_fn)
2001 {
2002 /* There are no non-private methods, and there's at least one
2003 private member function that isn't a constructor or
2004 destructor. (If all the private members are
2005 constructors/destructors we want to use the code below that
2006 issues error messages specifically referring to
2007 constructors/destructors.) */
2008 unsigned i;
2009 tree binfo = TYPE_BINFO (t);
2010
2011 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
2012 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
2013 {
2014 has_nonprivate_method = 1;
2015 break;
2016 }
2017 if (!has_nonprivate_method)
2018 {
2019 warning (OPT_Wctor_dtor_privacy,
2020 "all member functions in class %qT are private", t);
2021 return;
2022 }
2023 }
2024
2025 /* Even if some of the member functions are non-private, the class
2026 won't be useful for much if all the constructors or destructors
2027 are private: such an object can never be created or destroyed. */
2028 fn = CLASSTYPE_DESTRUCTORS (t);
2029 if (fn && TREE_PRIVATE (fn))
2030 {
2031 warning (OPT_Wctor_dtor_privacy,
2032 "%q#T only defines a private destructor and has no friends",
2033 t);
2034 return;
2035 }
2036
2037 /* Warn about classes that have private constructors and no friends. */
2038 if (TYPE_HAS_USER_CONSTRUCTOR (t)
2039 /* Implicitly generated constructors are always public. */
2040 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
2041 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
2042 {
2043 int nonprivate_ctor = 0;
2044
2045 /* If a non-template class does not define a copy
2046 constructor, one is defined for it, enabling it to avoid
2047 this warning. For a template class, this does not
2048 happen, and so we would normally get a warning on:
2049
2050 template <class T> class C { private: C(); };
2051
2052 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
2053 complete non-template or fully instantiated classes have this
2054 flag set. */
2055 if (!TYPE_HAS_COPY_CTOR (t))
2056 nonprivate_ctor = 1;
2057 else
2058 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
2059 {
2060 tree ctor = OVL_CURRENT (fn);
2061 /* Ideally, we wouldn't count copy constructors (or, in
2062 fact, any constructor that takes an argument of the
2063 class type as a parameter) because such things cannot
2064 be used to construct an instance of the class unless
2065 you already have one. But, for now at least, we're
2066 more generous. */
2067 if (! TREE_PRIVATE (ctor))
2068 {
2069 nonprivate_ctor = 1;
2070 break;
2071 }
2072 }
2073
2074 if (nonprivate_ctor == 0)
2075 {
2076 warning (OPT_Wctor_dtor_privacy,
2077 "%q#T only defines private constructors and has no friends",
2078 t);
2079 return;
2080 }
2081 }
2082 }
2083
2084 static struct {
2085 gt_pointer_operator new_value;
2086 void *cookie;
2087 } resort_data;
2088
2089 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
2090
2091 static int
2092 method_name_cmp (const void* m1_p, const void* m2_p)
2093 {
2094 const tree *const m1 = (const tree *) m1_p;
2095 const tree *const m2 = (const tree *) m2_p;
2096
2097 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2098 return 0;
2099 if (*m1 == NULL_TREE)
2100 return -1;
2101 if (*m2 == NULL_TREE)
2102 return 1;
2103 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
2104 return -1;
2105 return 1;
2106 }
2107
2108 /* This routine compares two fields like method_name_cmp but using the
2109 pointer operator in resort_field_decl_data. */
2110
2111 static int
2112 resort_method_name_cmp (const void* m1_p, const void* m2_p)
2113 {
2114 const tree *const m1 = (const tree *) m1_p;
2115 const tree *const m2 = (const tree *) m2_p;
2116 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2117 return 0;
2118 if (*m1 == NULL_TREE)
2119 return -1;
2120 if (*m2 == NULL_TREE)
2121 return 1;
2122 {
2123 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
2124 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
2125 resort_data.new_value (&d1, resort_data.cookie);
2126 resort_data.new_value (&d2, resort_data.cookie);
2127 if (d1 < d2)
2128 return -1;
2129 }
2130 return 1;
2131 }
2132
2133 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
2134
2135 void
2136 resort_type_method_vec (void* obj,
2137 void* /*orig_obj*/,
2138 gt_pointer_operator new_value,
2139 void* cookie)
2140 {
2141 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
2142 int len = vec_safe_length (method_vec);
2143 size_t slot;
2144 tree fn;
2145
2146 /* The type conversion ops have to live at the front of the vec, so we
2147 can't sort them. */
2148 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2149 vec_safe_iterate (method_vec, slot, &fn);
2150 ++slot)
2151 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
2152 break;
2153
2154 if (len - slot > 1)
2155 {
2156 resort_data.new_value = new_value;
2157 resort_data.cookie = cookie;
2158 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
2159 resort_method_name_cmp);
2160 }
2161 }
2162
2163 /* Warn about duplicate methods in fn_fields.
2164
2165 Sort methods that are not special (i.e., constructors, destructors,
2166 and type conversion operators) so that we can find them faster in
2167 search. */
2168
2169 static void
2170 finish_struct_methods (tree t)
2171 {
2172 tree fn_fields;
2173 vec<tree, va_gc> *method_vec;
2174 int slot, len;
2175
2176 method_vec = CLASSTYPE_METHOD_VEC (t);
2177 if (!method_vec)
2178 return;
2179
2180 len = method_vec->length ();
2181
2182 /* Clear DECL_IN_AGGR_P for all functions. */
2183 for (fn_fields = TYPE_METHODS (t); fn_fields;
2184 fn_fields = DECL_CHAIN (fn_fields))
2185 DECL_IN_AGGR_P (fn_fields) = 0;
2186
2187 /* Issue warnings about private constructors and such. If there are
2188 no methods, then some public defaults are generated. */
2189 maybe_warn_about_overly_private_class (t);
2190
2191 /* The type conversion ops have to live at the front of the vec, so we
2192 can't sort them. */
2193 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2194 method_vec->iterate (slot, &fn_fields);
2195 ++slot)
2196 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2197 break;
2198 if (len - slot > 1)
2199 qsort (method_vec->address () + slot,
2200 len-slot, sizeof (tree), method_name_cmp);
2201 }
2202
2203 /* Make BINFO's vtable have N entries, including RTTI entries,
2204 vbase and vcall offsets, etc. Set its type and call the back end
2205 to lay it out. */
2206
2207 static void
2208 layout_vtable_decl (tree binfo, int n)
2209 {
2210 tree atype;
2211 tree vtable;
2212
2213 atype = build_array_of_n_type (vtable_entry_type, n);
2214 layout_type (atype);
2215
2216 /* We may have to grow the vtable. */
2217 vtable = get_vtbl_decl_for_binfo (binfo);
2218 if (!same_type_p (TREE_TYPE (vtable), atype))
2219 {
2220 TREE_TYPE (vtable) = atype;
2221 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2222 layout_decl (vtable, 0);
2223 }
2224 }
2225
2226 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2227 have the same signature. */
2228
2229 int
2230 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2231 {
2232 /* One destructor overrides another if they are the same kind of
2233 destructor. */
2234 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2235 && special_function_p (base_fndecl) == special_function_p (fndecl))
2236 return 1;
2237 /* But a non-destructor never overrides a destructor, nor vice
2238 versa, nor do different kinds of destructors override
2239 one-another. For example, a complete object destructor does not
2240 override a deleting destructor. */
2241 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2242 return 0;
2243
2244 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2245 || (DECL_CONV_FN_P (fndecl)
2246 && DECL_CONV_FN_P (base_fndecl)
2247 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2248 DECL_CONV_FN_TYPE (base_fndecl))))
2249 {
2250 tree fntype = TREE_TYPE (fndecl);
2251 tree base_fntype = TREE_TYPE (base_fndecl);
2252 if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2253 && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2254 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2255 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2256 return 1;
2257 }
2258 return 0;
2259 }
2260
2261 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2262 subobject. */
2263
2264 static bool
2265 base_derived_from (tree derived, tree base)
2266 {
2267 tree probe;
2268
2269 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2270 {
2271 if (probe == derived)
2272 return true;
2273 else if (BINFO_VIRTUAL_P (probe))
2274 /* If we meet a virtual base, we can't follow the inheritance
2275 any more. See if the complete type of DERIVED contains
2276 such a virtual base. */
2277 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2278 != NULL_TREE);
2279 }
2280 return false;
2281 }
2282
2283 typedef struct find_final_overrider_data_s {
2284 /* The function for which we are trying to find a final overrider. */
2285 tree fn;
2286 /* The base class in which the function was declared. */
2287 tree declaring_base;
2288 /* The candidate overriders. */
2289 tree candidates;
2290 /* Path to most derived. */
2291 vec<tree> path;
2292 } find_final_overrider_data;
2293
2294 /* Add the overrider along the current path to FFOD->CANDIDATES.
2295 Returns true if an overrider was found; false otherwise. */
2296
2297 static bool
2298 dfs_find_final_overrider_1 (tree binfo,
2299 find_final_overrider_data *ffod,
2300 unsigned depth)
2301 {
2302 tree method;
2303
2304 /* If BINFO is not the most derived type, try a more derived class.
2305 A definition there will overrider a definition here. */
2306 if (depth)
2307 {
2308 depth--;
2309 if (dfs_find_final_overrider_1
2310 (ffod->path[depth], ffod, depth))
2311 return true;
2312 }
2313
2314 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2315 if (method)
2316 {
2317 tree *candidate = &ffod->candidates;
2318
2319 /* Remove any candidates overridden by this new function. */
2320 while (*candidate)
2321 {
2322 /* If *CANDIDATE overrides METHOD, then METHOD
2323 cannot override anything else on the list. */
2324 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2325 return true;
2326 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2327 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2328 *candidate = TREE_CHAIN (*candidate);
2329 else
2330 candidate = &TREE_CHAIN (*candidate);
2331 }
2332
2333 /* Add the new function. */
2334 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2335 return true;
2336 }
2337
2338 return false;
2339 }
2340
2341 /* Called from find_final_overrider via dfs_walk. */
2342
2343 static tree
2344 dfs_find_final_overrider_pre (tree binfo, void *data)
2345 {
2346 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2347
2348 if (binfo == ffod->declaring_base)
2349 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2350 ffod->path.safe_push (binfo);
2351
2352 return NULL_TREE;
2353 }
2354
2355 static tree
2356 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2357 {
2358 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2359 ffod->path.pop ();
2360
2361 return NULL_TREE;
2362 }
2363
2364 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2365 FN and whose TREE_VALUE is the binfo for the base where the
2366 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2367 DERIVED) is the base object in which FN is declared. */
2368
2369 static tree
2370 find_final_overrider (tree derived, tree binfo, tree fn)
2371 {
2372 find_final_overrider_data ffod;
2373
2374 /* Getting this right is a little tricky. This is valid:
2375
2376 struct S { virtual void f (); };
2377 struct T { virtual void f (); };
2378 struct U : public S, public T { };
2379
2380 even though calling `f' in `U' is ambiguous. But,
2381
2382 struct R { virtual void f(); };
2383 struct S : virtual public R { virtual void f (); };
2384 struct T : virtual public R { virtual void f (); };
2385 struct U : public S, public T { };
2386
2387 is not -- there's no way to decide whether to put `S::f' or
2388 `T::f' in the vtable for `R'.
2389
2390 The solution is to look at all paths to BINFO. If we find
2391 different overriders along any two, then there is a problem. */
2392 if (DECL_THUNK_P (fn))
2393 fn = THUNK_TARGET (fn);
2394
2395 /* Determine the depth of the hierarchy. */
2396 ffod.fn = fn;
2397 ffod.declaring_base = binfo;
2398 ffod.candidates = NULL_TREE;
2399 ffod.path.create (30);
2400
2401 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2402 dfs_find_final_overrider_post, &ffod);
2403
2404 ffod.path.release ();
2405
2406 /* If there was no winner, issue an error message. */
2407 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2408 return error_mark_node;
2409
2410 return ffod.candidates;
2411 }
2412
2413 /* Return the index of the vcall offset for FN when TYPE is used as a
2414 virtual base. */
2415
2416 static tree
2417 get_vcall_index (tree fn, tree type)
2418 {
2419 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2420 tree_pair_p p;
2421 unsigned ix;
2422
2423 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2424 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2425 || same_signature_p (fn, p->purpose))
2426 return p->value;
2427
2428 /* There should always be an appropriate index. */
2429 gcc_unreachable ();
2430 }
2431
2432 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2433 dominated by T. FN is the old function; VIRTUALS points to the
2434 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2435 of that entry in the list. */
2436
2437 static void
2438 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2439 unsigned ix)
2440 {
2441 tree b;
2442 tree overrider;
2443 tree delta;
2444 tree virtual_base;
2445 tree first_defn;
2446 tree overrider_fn, overrider_target;
2447 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2448 tree over_return, base_return;
2449 bool lost = false;
2450
2451 /* Find the nearest primary base (possibly binfo itself) which defines
2452 this function; this is the class the caller will convert to when
2453 calling FN through BINFO. */
2454 for (b = binfo; ; b = get_primary_binfo (b))
2455 {
2456 gcc_assert (b);
2457 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2458 break;
2459
2460 /* The nearest definition is from a lost primary. */
2461 if (BINFO_LOST_PRIMARY_P (b))
2462 lost = true;
2463 }
2464 first_defn = b;
2465
2466 /* Find the final overrider. */
2467 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2468 if (overrider == error_mark_node)
2469 {
2470 error ("no unique final overrider for %qD in %qT", target_fn, t);
2471 return;
2472 }
2473 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2474
2475 /* Check for adjusting covariant return types. */
2476 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2477 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2478
2479 if (POINTER_TYPE_P (over_return)
2480 && TREE_CODE (over_return) == TREE_CODE (base_return)
2481 && CLASS_TYPE_P (TREE_TYPE (over_return))
2482 && CLASS_TYPE_P (TREE_TYPE (base_return))
2483 /* If the overrider is invalid, don't even try. */
2484 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2485 {
2486 /* If FN is a covariant thunk, we must figure out the adjustment
2487 to the final base FN was converting to. As OVERRIDER_TARGET might
2488 also be converting to the return type of FN, we have to
2489 combine the two conversions here. */
2490 tree fixed_offset, virtual_offset;
2491
2492 over_return = TREE_TYPE (over_return);
2493 base_return = TREE_TYPE (base_return);
2494
2495 if (DECL_THUNK_P (fn))
2496 {
2497 gcc_assert (DECL_RESULT_THUNK_P (fn));
2498 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2499 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2500 }
2501 else
2502 fixed_offset = virtual_offset = NULL_TREE;
2503
2504 if (virtual_offset)
2505 /* Find the equivalent binfo within the return type of the
2506 overriding function. We will want the vbase offset from
2507 there. */
2508 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2509 over_return);
2510 else if (!same_type_ignoring_top_level_qualifiers_p
2511 (over_return, base_return))
2512 {
2513 /* There was no existing virtual thunk (which takes
2514 precedence). So find the binfo of the base function's
2515 return type within the overriding function's return type.
2516 We cannot call lookup base here, because we're inside a
2517 dfs_walk, and will therefore clobber the BINFO_MARKED
2518 flags. Fortunately we know the covariancy is valid (it
2519 has already been checked), so we can just iterate along
2520 the binfos, which have been chained in inheritance graph
2521 order. Of course it is lame that we have to repeat the
2522 search here anyway -- we should really be caching pieces
2523 of the vtable and avoiding this repeated work. */
2524 tree thunk_binfo, base_binfo;
2525
2526 /* Find the base binfo within the overriding function's
2527 return type. We will always find a thunk_binfo, except
2528 when the covariancy is invalid (which we will have
2529 already diagnosed). */
2530 for (base_binfo = TYPE_BINFO (base_return),
2531 thunk_binfo = TYPE_BINFO (over_return);
2532 thunk_binfo;
2533 thunk_binfo = TREE_CHAIN (thunk_binfo))
2534 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2535 BINFO_TYPE (base_binfo)))
2536 break;
2537
2538 /* See if virtual inheritance is involved. */
2539 for (virtual_offset = thunk_binfo;
2540 virtual_offset;
2541 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2542 if (BINFO_VIRTUAL_P (virtual_offset))
2543 break;
2544
2545 if (virtual_offset
2546 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2547 {
2548 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2549
2550 if (virtual_offset)
2551 {
2552 /* We convert via virtual base. Adjust the fixed
2553 offset to be from there. */
2554 offset =
2555 size_diffop (offset,
2556 convert (ssizetype,
2557 BINFO_OFFSET (virtual_offset)));
2558 }
2559 if (fixed_offset)
2560 /* There was an existing fixed offset, this must be
2561 from the base just converted to, and the base the
2562 FN was thunking to. */
2563 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2564 else
2565 fixed_offset = offset;
2566 }
2567 }
2568
2569 if (fixed_offset || virtual_offset)
2570 /* Replace the overriding function with a covariant thunk. We
2571 will emit the overriding function in its own slot as
2572 well. */
2573 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2574 fixed_offset, virtual_offset);
2575 }
2576 else
2577 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2578 !DECL_THUNK_P (fn));
2579
2580 /* If we need a covariant thunk, then we may need to adjust first_defn.
2581 The ABI specifies that the thunks emitted with a function are
2582 determined by which bases the function overrides, so we need to be
2583 sure that we're using a thunk for some overridden base; even if we
2584 know that the necessary this adjustment is zero, there may not be an
2585 appropriate zero-this-adjusment thunk for us to use since thunks for
2586 overriding virtual bases always use the vcall offset.
2587
2588 Furthermore, just choosing any base that overrides this function isn't
2589 quite right, as this slot won't be used for calls through a type that
2590 puts a covariant thunk here. Calling the function through such a type
2591 will use a different slot, and that slot is the one that determines
2592 the thunk emitted for that base.
2593
2594 So, keep looking until we find the base that we're really overriding
2595 in this slot: the nearest primary base that doesn't use a covariant
2596 thunk in this slot. */
2597 if (overrider_target != overrider_fn)
2598 {
2599 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2600 /* We already know that the overrider needs a covariant thunk. */
2601 b = get_primary_binfo (b);
2602 for (; ; b = get_primary_binfo (b))
2603 {
2604 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2605 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2606 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2607 break;
2608 if (BINFO_LOST_PRIMARY_P (b))
2609 lost = true;
2610 }
2611 first_defn = b;
2612 }
2613
2614 /* Assume that we will produce a thunk that convert all the way to
2615 the final overrider, and not to an intermediate virtual base. */
2616 virtual_base = NULL_TREE;
2617
2618 /* See if we can convert to an intermediate virtual base first, and then
2619 use the vcall offset located there to finish the conversion. */
2620 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2621 {
2622 /* If we find the final overrider, then we can stop
2623 walking. */
2624 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2625 BINFO_TYPE (TREE_VALUE (overrider))))
2626 break;
2627
2628 /* If we find a virtual base, and we haven't yet found the
2629 overrider, then there is a virtual base between the
2630 declaring base (first_defn) and the final overrider. */
2631 if (BINFO_VIRTUAL_P (b))
2632 {
2633 virtual_base = b;
2634 break;
2635 }
2636 }
2637
2638 /* Compute the constant adjustment to the `this' pointer. The
2639 `this' pointer, when this function is called, will point at BINFO
2640 (or one of its primary bases, which are at the same offset). */
2641 if (virtual_base)
2642 /* The `this' pointer needs to be adjusted from the declaration to
2643 the nearest virtual base. */
2644 delta = size_diffop_loc (input_location,
2645 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2646 convert (ssizetype, BINFO_OFFSET (first_defn)));
2647 else if (lost)
2648 /* If the nearest definition is in a lost primary, we don't need an
2649 entry in our vtable. Except possibly in a constructor vtable,
2650 if we happen to get our primary back. In that case, the offset
2651 will be zero, as it will be a primary base. */
2652 delta = size_zero_node;
2653 else
2654 /* The `this' pointer needs to be adjusted from pointing to
2655 BINFO to pointing at the base where the final overrider
2656 appears. */
2657 delta = size_diffop_loc (input_location,
2658 convert (ssizetype,
2659 BINFO_OFFSET (TREE_VALUE (overrider))),
2660 convert (ssizetype, BINFO_OFFSET (binfo)));
2661
2662 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2663
2664 if (virtual_base)
2665 BV_VCALL_INDEX (*virtuals)
2666 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2667 else
2668 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2669
2670 BV_LOST_PRIMARY (*virtuals) = lost;
2671 }
2672
2673 /* Called from modify_all_vtables via dfs_walk. */
2674
2675 static tree
2676 dfs_modify_vtables (tree binfo, void* data)
2677 {
2678 tree t = (tree) data;
2679 tree virtuals;
2680 tree old_virtuals;
2681 unsigned ix;
2682
2683 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2684 /* A base without a vtable needs no modification, and its bases
2685 are uninteresting. */
2686 return dfs_skip_bases;
2687
2688 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2689 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2690 /* Don't do the primary vtable, if it's new. */
2691 return NULL_TREE;
2692
2693 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2694 /* There's no need to modify the vtable for a non-virtual primary
2695 base; we're not going to use that vtable anyhow. We do still
2696 need to do this for virtual primary bases, as they could become
2697 non-primary in a construction vtable. */
2698 return NULL_TREE;
2699
2700 make_new_vtable (t, binfo);
2701
2702 /* Now, go through each of the virtual functions in the virtual
2703 function table for BINFO. Find the final overrider, and update
2704 the BINFO_VIRTUALS list appropriately. */
2705 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2706 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2707 virtuals;
2708 ix++, virtuals = TREE_CHAIN (virtuals),
2709 old_virtuals = TREE_CHAIN (old_virtuals))
2710 update_vtable_entry_for_fn (t,
2711 binfo,
2712 BV_FN (old_virtuals),
2713 &virtuals, ix);
2714
2715 return NULL_TREE;
2716 }
2717
2718 /* Update all of the primary and secondary vtables for T. Create new
2719 vtables as required, and initialize their RTTI information. Each
2720 of the functions in VIRTUALS is declared in T and may override a
2721 virtual function from a base class; find and modify the appropriate
2722 entries to point to the overriding functions. Returns a list, in
2723 declaration order, of the virtual functions that are declared in T,
2724 but do not appear in the primary base class vtable, and which
2725 should therefore be appended to the end of the vtable for T. */
2726
2727 static tree
2728 modify_all_vtables (tree t, tree virtuals)
2729 {
2730 tree binfo = TYPE_BINFO (t);
2731 tree *fnsp;
2732
2733 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2734 if (TYPE_CONTAINS_VPTR_P (t))
2735 get_vtable_decl (t, false);
2736
2737 /* Update all of the vtables. */
2738 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2739
2740 /* Add virtual functions not already in our primary vtable. These
2741 will be both those introduced by this class, and those overridden
2742 from secondary bases. It does not include virtuals merely
2743 inherited from secondary bases. */
2744 for (fnsp = &virtuals; *fnsp; )
2745 {
2746 tree fn = TREE_VALUE (*fnsp);
2747
2748 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2749 || DECL_VINDEX (fn) == error_mark_node)
2750 {
2751 /* We don't need to adjust the `this' pointer when
2752 calling this function. */
2753 BV_DELTA (*fnsp) = integer_zero_node;
2754 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2755
2756 /* This is a function not already in our vtable. Keep it. */
2757 fnsp = &TREE_CHAIN (*fnsp);
2758 }
2759 else
2760 /* We've already got an entry for this function. Skip it. */
2761 *fnsp = TREE_CHAIN (*fnsp);
2762 }
2763
2764 return virtuals;
2765 }
2766
2767 /* Get the base virtual function declarations in T that have the
2768 indicated NAME. */
2769
2770 static void
2771 get_basefndecls (tree name, tree t, vec<tree> *base_fndecls)
2772 {
2773 tree methods;
2774 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2775 int i;
2776
2777 /* Find virtual functions in T with the indicated NAME. */
2778 i = lookup_fnfields_1 (t, name);
2779 bool found_decls = false;
2780 if (i != -1)
2781 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2782 methods;
2783 methods = OVL_NEXT (methods))
2784 {
2785 tree method = OVL_CURRENT (methods);
2786
2787 if (TREE_CODE (method) == FUNCTION_DECL
2788 && DECL_VINDEX (method))
2789 {
2790 base_fndecls->safe_push (method);
2791 found_decls = true;
2792 }
2793 }
2794
2795 if (found_decls)
2796 return;
2797
2798 for (i = 0; i < n_baseclasses; i++)
2799 {
2800 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2801 get_basefndecls (name, basetype, base_fndecls);
2802 }
2803 }
2804
2805 /* If this declaration supersedes the declaration of
2806 a method declared virtual in the base class, then
2807 mark this field as being virtual as well. */
2808
2809 void
2810 check_for_override (tree decl, tree ctype)
2811 {
2812 bool overrides_found = false;
2813 if (TREE_CODE (decl) == TEMPLATE_DECL)
2814 /* In [temp.mem] we have:
2815
2816 A specialization of a member function template does not
2817 override a virtual function from a base class. */
2818 return;
2819 if ((DECL_DESTRUCTOR_P (decl)
2820 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2821 || DECL_CONV_FN_P (decl))
2822 && look_for_overrides (ctype, decl)
2823 && !DECL_STATIC_FUNCTION_P (decl))
2824 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2825 the error_mark_node so that we know it is an overriding
2826 function. */
2827 {
2828 DECL_VINDEX (decl) = decl;
2829 overrides_found = true;
2830 if (warn_override && !DECL_OVERRIDE_P (decl)
2831 && !DECL_DESTRUCTOR_P (decl))
2832 warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wsuggest_override,
2833 "%q+D can be marked override", decl);
2834 }
2835
2836 if (DECL_VIRTUAL_P (decl))
2837 {
2838 if (!DECL_VINDEX (decl))
2839 DECL_VINDEX (decl) = error_mark_node;
2840 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2841 if (DECL_DESTRUCTOR_P (decl))
2842 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2843 }
2844 else if (DECL_FINAL_P (decl))
2845 error ("%q+#D marked %<final%>, but is not virtual", decl);
2846 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2847 error ("%q+#D marked %<override%>, but does not override", decl);
2848 }
2849
2850 /* Warn about hidden virtual functions that are not overridden in t.
2851 We know that constructors and destructors don't apply. */
2852
2853 static void
2854 warn_hidden (tree t)
2855 {
2856 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2857 tree fns;
2858 size_t i;
2859
2860 /* We go through each separately named virtual function. */
2861 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2862 vec_safe_iterate (method_vec, i, &fns);
2863 ++i)
2864 {
2865 tree fn;
2866 tree name;
2867 tree fndecl;
2868 tree base_binfo;
2869 tree binfo;
2870 int j;
2871
2872 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2873 have the same name. Figure out what name that is. */
2874 name = DECL_NAME (OVL_CURRENT (fns));
2875 /* There are no possibly hidden functions yet. */
2876 auto_vec<tree, 20> base_fndecls;
2877 /* Iterate through all of the base classes looking for possibly
2878 hidden functions. */
2879 for (binfo = TYPE_BINFO (t), j = 0;
2880 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2881 {
2882 tree basetype = BINFO_TYPE (base_binfo);
2883 get_basefndecls (name, basetype, &base_fndecls);
2884 }
2885
2886 /* If there are no functions to hide, continue. */
2887 if (base_fndecls.is_empty ())
2888 continue;
2889
2890 /* Remove any overridden functions. */
2891 for (fn = fns; fn; fn = OVL_NEXT (fn))
2892 {
2893 fndecl = OVL_CURRENT (fn);
2894 if (TREE_CODE (fndecl) == FUNCTION_DECL
2895 && DECL_VINDEX (fndecl))
2896 {
2897 /* If the method from the base class has the same
2898 signature as the method from the derived class, it
2899 has been overridden. */
2900 for (size_t k = 0; k < base_fndecls.length (); k++)
2901 if (base_fndecls[k]
2902 && same_signature_p (fndecl, base_fndecls[k]))
2903 base_fndecls[k] = NULL_TREE;
2904 }
2905 }
2906
2907 /* Now give a warning for all base functions without overriders,
2908 as they are hidden. */
2909 size_t k;
2910 tree base_fndecl;
2911 FOR_EACH_VEC_ELT (base_fndecls, k, base_fndecl)
2912 if (base_fndecl)
2913 {
2914 /* Here we know it is a hider, and no overrider exists. */
2915 warning (OPT_Woverloaded_virtual, "%q+D was hidden", base_fndecl);
2916 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2917 }
2918 }
2919 }
2920
2921 /* Recursive helper for finish_struct_anon. */
2922
2923 static void
2924 finish_struct_anon_r (tree field, bool complain)
2925 {
2926 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2927 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2928 for (; elt; elt = DECL_CHAIN (elt))
2929 {
2930 /* We're generally only interested in entities the user
2931 declared, but we also find nested classes by noticing
2932 the TYPE_DECL that we create implicitly. You're
2933 allowed to put one anonymous union inside another,
2934 though, so we explicitly tolerate that. We use
2935 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2936 we also allow unnamed types used for defining fields. */
2937 if (DECL_ARTIFICIAL (elt)
2938 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2939 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2940 continue;
2941
2942 if (TREE_CODE (elt) != FIELD_DECL)
2943 {
2944 /* We already complained about static data members in
2945 finish_static_data_member_decl. */
2946 if (complain && TREE_CODE (elt) != VAR_DECL)
2947 {
2948 if (is_union)
2949 permerror (input_location,
2950 "%q+#D invalid; an anonymous union can "
2951 "only have non-static data members", elt);
2952 else
2953 permerror (input_location,
2954 "%q+#D invalid; an anonymous struct can "
2955 "only have non-static data members", elt);
2956 }
2957 continue;
2958 }
2959
2960 if (complain)
2961 {
2962 if (TREE_PRIVATE (elt))
2963 {
2964 if (is_union)
2965 permerror (input_location,
2966 "private member %q+#D in anonymous union", elt);
2967 else
2968 permerror (input_location,
2969 "private member %q+#D in anonymous struct", elt);
2970 }
2971 else if (TREE_PROTECTED (elt))
2972 {
2973 if (is_union)
2974 permerror (input_location,
2975 "protected member %q+#D in anonymous union", elt);
2976 else
2977 permerror (input_location,
2978 "protected member %q+#D in anonymous struct", elt);
2979 }
2980 }
2981
2982 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2983 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2984
2985 /* Recurse into the anonymous aggregates to handle correctly
2986 access control (c++/24926):
2987
2988 class A {
2989 union {
2990 union {
2991 int i;
2992 };
2993 };
2994 };
2995
2996 int j=A().i; */
2997 if (DECL_NAME (elt) == NULL_TREE
2998 && ANON_AGGR_TYPE_P (TREE_TYPE (elt)))
2999 finish_struct_anon_r (elt, /*complain=*/false);
3000 }
3001 }
3002
3003 /* Check for things that are invalid. There are probably plenty of other
3004 things we should check for also. */
3005
3006 static void
3007 finish_struct_anon (tree t)
3008 {
3009 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
3010 {
3011 if (TREE_STATIC (field))
3012 continue;
3013 if (TREE_CODE (field) != FIELD_DECL)
3014 continue;
3015
3016 if (DECL_NAME (field) == NULL_TREE
3017 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
3018 finish_struct_anon_r (field, /*complain=*/true);
3019 }
3020 }
3021
3022 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
3023 will be used later during class template instantiation.
3024 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
3025 a non-static member data (FIELD_DECL), a member function
3026 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
3027 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
3028 When FRIEND_P is nonzero, T is either a friend class
3029 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
3030 (FUNCTION_DECL, TEMPLATE_DECL). */
3031
3032 void
3033 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
3034 {
3035 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
3036 if (CLASSTYPE_TEMPLATE_INFO (type))
3037 CLASSTYPE_DECL_LIST (type)
3038 = tree_cons (friend_p ? NULL_TREE : type,
3039 t, CLASSTYPE_DECL_LIST (type));
3040 }
3041
3042 /* This function is called from declare_virt_assop_and_dtor via
3043 dfs_walk_all.
3044
3045 DATA is a type that direcly or indirectly inherits the base
3046 represented by BINFO. If BINFO contains a virtual assignment [copy
3047 assignment or move assigment] operator or a virtual constructor,
3048 declare that function in DATA if it hasn't been already declared. */
3049
3050 static tree
3051 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
3052 {
3053 tree bv, fn, t = (tree)data;
3054 tree opname = ansi_assopname (NOP_EXPR);
3055
3056 gcc_assert (t && CLASS_TYPE_P (t));
3057 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
3058
3059 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
3060 /* A base without a vtable needs no modification, and its bases
3061 are uninteresting. */
3062 return dfs_skip_bases;
3063
3064 if (BINFO_PRIMARY_P (binfo))
3065 /* If this is a primary base, then we have already looked at the
3066 virtual functions of its vtable. */
3067 return NULL_TREE;
3068
3069 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
3070 {
3071 fn = BV_FN (bv);
3072
3073 if (DECL_NAME (fn) == opname)
3074 {
3075 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
3076 lazily_declare_fn (sfk_copy_assignment, t);
3077 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
3078 lazily_declare_fn (sfk_move_assignment, t);
3079 }
3080 else if (DECL_DESTRUCTOR_P (fn)
3081 && CLASSTYPE_LAZY_DESTRUCTOR (t))
3082 lazily_declare_fn (sfk_destructor, t);
3083 }
3084
3085 return NULL_TREE;
3086 }
3087
3088 /* If the class type T has a direct or indirect base that contains a
3089 virtual assignment operator or a virtual destructor, declare that
3090 function in T if it hasn't been already declared. */
3091
3092 static void
3093 declare_virt_assop_and_dtor (tree t)
3094 {
3095 if (!(TYPE_POLYMORPHIC_P (t)
3096 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
3097 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
3098 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
3099 return;
3100
3101 dfs_walk_all (TYPE_BINFO (t),
3102 dfs_declare_virt_assop_and_dtor,
3103 NULL, t);
3104 }
3105
3106 /* Declare the inheriting constructor for class T inherited from base
3107 constructor CTOR with the parameter array PARMS of size NPARMS. */
3108
3109 static void
3110 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
3111 {
3112 /* We don't declare an inheriting ctor that would be a default,
3113 copy or move ctor for derived or base. */
3114 if (nparms == 0)
3115 return;
3116 if (nparms == 1
3117 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
3118 {
3119 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
3120 if (parm == t || parm == DECL_CONTEXT (ctor))
3121 return;
3122 }
3123
3124 tree parmlist = void_list_node;
3125 for (int i = nparms - 1; i >= 0; i--)
3126 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
3127 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
3128 t, false, ctor, parmlist);
3129 if (add_method (t, fn, NULL_TREE))
3130 {
3131 DECL_CHAIN (fn) = TYPE_METHODS (t);
3132 TYPE_METHODS (t) = fn;
3133 }
3134 }
3135
3136 /* Declare all the inheriting constructors for class T inherited from base
3137 constructor CTOR. */
3138
3139 static void
3140 one_inherited_ctor (tree ctor, tree t)
3141 {
3142 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
3143
3144 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
3145 int i = 0;
3146 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
3147 {
3148 if (TREE_PURPOSE (parms))
3149 one_inheriting_sig (t, ctor, new_parms, i);
3150 new_parms[i++] = TREE_VALUE (parms);
3151 }
3152 one_inheriting_sig (t, ctor, new_parms, i);
3153 if (parms == NULL_TREE)
3154 {
3155 if (warning (OPT_Winherited_variadic_ctor,
3156 "the ellipsis in %qD is not inherited", ctor))
3157 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
3158 }
3159 }
3160
3161 /* Create default constructors, assignment operators, and so forth for
3162 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
3163 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
3164 the class cannot have a default constructor, copy constructor
3165 taking a const reference argument, or an assignment operator taking
3166 a const reference, respectively. */
3167
3168 static void
3169 add_implicitly_declared_members (tree t, tree* access_decls,
3170 int cant_have_const_cctor,
3171 int cant_have_const_assignment)
3172 {
3173 bool move_ok = false;
3174
3175 if (cxx_dialect >= cxx11 && !CLASSTYPE_DESTRUCTORS (t)
3176 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
3177 && !type_has_move_constructor (t) && !type_has_move_assign (t))
3178 move_ok = true;
3179
3180 /* Destructor. */
3181 if (!CLASSTYPE_DESTRUCTORS (t))
3182 {
3183 /* In general, we create destructors lazily. */
3184 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
3185
3186 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3187 && TYPE_FOR_JAVA (t))
3188 /* But if this is a Java class, any non-trivial destructor is
3189 invalid, even if compiler-generated. Therefore, if the
3190 destructor is non-trivial we create it now. */
3191 lazily_declare_fn (sfk_destructor, t);
3192 }
3193
3194 /* [class.ctor]
3195
3196 If there is no user-declared constructor for a class, a default
3197 constructor is implicitly declared. */
3198 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
3199 {
3200 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
3201 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
3202 if (cxx_dialect >= cxx11)
3203 TYPE_HAS_CONSTEXPR_CTOR (t)
3204 /* This might force the declaration. */
3205 = type_has_constexpr_default_constructor (t);
3206 }
3207
3208 /* [class.ctor]
3209
3210 If a class definition does not explicitly declare a copy
3211 constructor, one is declared implicitly. */
3212 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
3213 {
3214 TYPE_HAS_COPY_CTOR (t) = 1;
3215 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
3216 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3217 if (move_ok)
3218 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3219 }
3220
3221 /* If there is no assignment operator, one will be created if and
3222 when it is needed. For now, just record whether or not the type
3223 of the parameter to the assignment operator will be a const or
3224 non-const reference. */
3225 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3226 {
3227 TYPE_HAS_COPY_ASSIGN (t) = 1;
3228 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3229 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3230 if (move_ok && !LAMBDA_TYPE_P (t))
3231 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3232 }
3233
3234 /* We can't be lazy about declaring functions that might override
3235 a virtual function from a base class. */
3236 declare_virt_assop_and_dtor (t);
3237
3238 while (*access_decls)
3239 {
3240 tree using_decl = TREE_VALUE (*access_decls);
3241 tree decl = USING_DECL_DECLS (using_decl);
3242 if (DECL_NAME (using_decl) == ctor_identifier)
3243 {
3244 /* declare, then remove the decl */
3245 tree ctor_list = decl;
3246 location_t loc = input_location;
3247 input_location = DECL_SOURCE_LOCATION (using_decl);
3248 if (ctor_list)
3249 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3250 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3251 *access_decls = TREE_CHAIN (*access_decls);
3252 input_location = loc;
3253 }
3254 else
3255 access_decls = &TREE_CHAIN (*access_decls);
3256 }
3257 }
3258
3259 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3260 count the number of fields in TYPE, including anonymous union
3261 members. */
3262
3263 static int
3264 count_fields (tree fields)
3265 {
3266 tree x;
3267 int n_fields = 0;
3268 for (x = fields; x; x = DECL_CHAIN (x))
3269 {
3270 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3271 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3272 else
3273 n_fields += 1;
3274 }
3275 return n_fields;
3276 }
3277
3278 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3279 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3280 elts, starting at offset IDX. */
3281
3282 static int
3283 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3284 {
3285 tree x;
3286 for (x = fields; x; x = DECL_CHAIN (x))
3287 {
3288 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3289 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3290 else
3291 field_vec->elts[idx++] = x;
3292 }
3293 return idx;
3294 }
3295
3296 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3297 starting at offset IDX. */
3298
3299 static int
3300 add_enum_fields_to_record_type (tree enumtype,
3301 struct sorted_fields_type *field_vec,
3302 int idx)
3303 {
3304 tree values;
3305 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3306 field_vec->elts[idx++] = TREE_VALUE (values);
3307 return idx;
3308 }
3309
3310 /* FIELD is a bit-field. We are finishing the processing for its
3311 enclosing type. Issue any appropriate messages and set appropriate
3312 flags. Returns false if an error has been diagnosed. */
3313
3314 static bool
3315 check_bitfield_decl (tree field)
3316 {
3317 tree type = TREE_TYPE (field);
3318 tree w;
3319
3320 /* Extract the declared width of the bitfield, which has been
3321 temporarily stashed in DECL_INITIAL. */
3322 w = DECL_INITIAL (field);
3323 gcc_assert (w != NULL_TREE);
3324 /* Remove the bit-field width indicator so that the rest of the
3325 compiler does not treat that value as an initializer. */
3326 DECL_INITIAL (field) = NULL_TREE;
3327
3328 /* Detect invalid bit-field type. */
3329 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3330 {
3331 error ("bit-field %q+#D with non-integral type", field);
3332 w = error_mark_node;
3333 }
3334 else
3335 {
3336 location_t loc = input_location;
3337 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3338 STRIP_NOPS (w);
3339
3340 /* detect invalid field size. */
3341 input_location = DECL_SOURCE_LOCATION (field);
3342 w = cxx_constant_value (w);
3343 input_location = loc;
3344
3345 if (TREE_CODE (w) != INTEGER_CST)
3346 {
3347 error ("bit-field %q+D width not an integer constant", field);
3348 w = error_mark_node;
3349 }
3350 else if (tree_int_cst_sgn (w) < 0)
3351 {
3352 error ("negative width in bit-field %q+D", field);
3353 w = error_mark_node;
3354 }
3355 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3356 {
3357 error ("zero width for bit-field %q+D", field);
3358 w = error_mark_node;
3359 }
3360 else if ((TREE_CODE (type) != ENUMERAL_TYPE
3361 && TREE_CODE (type) != BOOLEAN_TYPE
3362 && compare_tree_int (w, TYPE_PRECISION (type)) > 0)
3363 || ((TREE_CODE (type) == ENUMERAL_TYPE
3364 || TREE_CODE (type) == BOOLEAN_TYPE)
3365 && tree_int_cst_lt (TYPE_SIZE (type), w)))
3366 warning (0, "width of %q+D exceeds its type", field);
3367 else if (TREE_CODE (type) == ENUMERAL_TYPE
3368 && (0 > (compare_tree_int
3369 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3370 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3371 }
3372
3373 if (w != error_mark_node)
3374 {
3375 DECL_SIZE (field) = convert (bitsizetype, w);
3376 DECL_BIT_FIELD (field) = 1;
3377 return true;
3378 }
3379 else
3380 {
3381 /* Non-bit-fields are aligned for their type. */
3382 DECL_BIT_FIELD (field) = 0;
3383 CLEAR_DECL_C_BIT_FIELD (field);
3384 return false;
3385 }
3386 }
3387
3388 /* FIELD is a non bit-field. We are finishing the processing for its
3389 enclosing type T. Issue any appropriate messages and set appropriate
3390 flags. */
3391
3392 static void
3393 check_field_decl (tree field,
3394 tree t,
3395 int* cant_have_const_ctor,
3396 int* no_const_asn_ref,
3397 int* any_default_members)
3398 {
3399 tree type = strip_array_types (TREE_TYPE (field));
3400
3401 /* In C++98 an anonymous union cannot contain any fields which would change
3402 the settings of CANT_HAVE_CONST_CTOR and friends. */
3403 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11)
3404 ;
3405 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3406 structs. So, we recurse through their fields here. */
3407 else if (ANON_AGGR_TYPE_P (type))
3408 {
3409 tree fields;
3410
3411 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3412 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3413 check_field_decl (fields, t, cant_have_const_ctor,
3414 no_const_asn_ref, any_default_members);
3415 }
3416 /* Check members with class type for constructors, destructors,
3417 etc. */
3418 else if (CLASS_TYPE_P (type))
3419 {
3420 /* Never let anything with uninheritable virtuals
3421 make it through without complaint. */
3422 abstract_virtuals_error (field, type);
3423
3424 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11)
3425 {
3426 static bool warned;
3427 int oldcount = errorcount;
3428 if (TYPE_NEEDS_CONSTRUCTING (type))
3429 error ("member %q+#D with constructor not allowed in union",
3430 field);
3431 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3432 error ("member %q+#D with destructor not allowed in union", field);
3433 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3434 error ("member %q+#D with copy assignment operator not allowed in union",
3435 field);
3436 if (!warned && errorcount > oldcount)
3437 {
3438 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3439 "only available with -std=c++11 or -std=gnu++11");
3440 warned = true;
3441 }
3442 }
3443 else
3444 {
3445 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3446 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3447 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3448 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3449 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3450 || !TYPE_HAS_COPY_ASSIGN (type));
3451 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3452 || !TYPE_HAS_COPY_CTOR (type));
3453 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3454 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3455 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3456 || TYPE_HAS_COMPLEX_DFLT (type));
3457 }
3458
3459 if (TYPE_HAS_COPY_CTOR (type)
3460 && !TYPE_HAS_CONST_COPY_CTOR (type))
3461 *cant_have_const_ctor = 1;
3462
3463 if (TYPE_HAS_COPY_ASSIGN (type)
3464 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3465 *no_const_asn_ref = 1;
3466 }
3467
3468 check_abi_tags (t, field);
3469
3470 if (DECL_INITIAL (field) != NULL_TREE)
3471 {
3472 /* `build_class_init_list' does not recognize
3473 non-FIELD_DECLs. */
3474 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3475 error ("multiple fields in union %qT initialized", t);
3476 *any_default_members = 1;
3477 }
3478 }
3479
3480 /* Check the data members (both static and non-static), class-scoped
3481 typedefs, etc., appearing in the declaration of T. Issue
3482 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3483 declaration order) of access declarations; each TREE_VALUE in this
3484 list is a USING_DECL.
3485
3486 In addition, set the following flags:
3487
3488 EMPTY_P
3489 The class is empty, i.e., contains no non-static data members.
3490
3491 CANT_HAVE_CONST_CTOR_P
3492 This class cannot have an implicitly generated copy constructor
3493 taking a const reference.
3494
3495 CANT_HAVE_CONST_ASN_REF
3496 This class cannot have an implicitly generated assignment
3497 operator taking a const reference.
3498
3499 All of these flags should be initialized before calling this
3500 function.
3501
3502 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3503 fields can be added by adding to this chain. */
3504
3505 static void
3506 check_field_decls (tree t, tree *access_decls,
3507 int *cant_have_const_ctor_p,
3508 int *no_const_asn_ref_p)
3509 {
3510 tree *field;
3511 tree *next;
3512 bool has_pointers;
3513 int any_default_members;
3514 int cant_pack = 0;
3515 int field_access = -1;
3516
3517 /* Assume there are no access declarations. */
3518 *access_decls = NULL_TREE;
3519 /* Assume this class has no pointer members. */
3520 has_pointers = false;
3521 /* Assume none of the members of this class have default
3522 initializations. */
3523 any_default_members = 0;
3524
3525 for (field = &TYPE_FIELDS (t); *field; field = next)
3526 {
3527 tree x = *field;
3528 tree type = TREE_TYPE (x);
3529 int this_field_access;
3530
3531 next = &DECL_CHAIN (x);
3532
3533 if (TREE_CODE (x) == USING_DECL)
3534 {
3535 /* Save the access declarations for our caller. */
3536 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3537 continue;
3538 }
3539
3540 if (TREE_CODE (x) == TYPE_DECL
3541 || TREE_CODE (x) == TEMPLATE_DECL)
3542 continue;
3543
3544 /* If we've gotten this far, it's a data member, possibly static,
3545 or an enumerator. */
3546 if (TREE_CODE (x) != CONST_DECL)
3547 DECL_CONTEXT (x) = t;
3548
3549 /* When this goes into scope, it will be a non-local reference. */
3550 DECL_NONLOCAL (x) = 1;
3551
3552 if (TREE_CODE (t) == UNION_TYPE
3553 && cxx_dialect < cxx11)
3554 {
3555 /* [class.union] (C++98)
3556
3557 If a union contains a static data member, or a member of
3558 reference type, the program is ill-formed.
3559
3560 In C++11 this limitation doesn't exist anymore. */
3561 if (VAR_P (x))
3562 {
3563 error ("in C++98 %q+D may not be static because it is "
3564 "a member of a union", x);
3565 continue;
3566 }
3567 if (TREE_CODE (type) == REFERENCE_TYPE)
3568 {
3569 error ("in C++98 %q+D may not have reference type %qT "
3570 "because it is a member of a union", x, type);
3571 continue;
3572 }
3573 }
3574
3575 /* Perform error checking that did not get done in
3576 grokdeclarator. */
3577 if (TREE_CODE (type) == FUNCTION_TYPE)
3578 {
3579 error ("field %q+D invalidly declared function type", x);
3580 type = build_pointer_type (type);
3581 TREE_TYPE (x) = type;
3582 }
3583 else if (TREE_CODE (type) == METHOD_TYPE)
3584 {
3585 error ("field %q+D invalidly declared method type", x);
3586 type = build_pointer_type (type);
3587 TREE_TYPE (x) = type;
3588 }
3589
3590 if (type == error_mark_node)
3591 continue;
3592
3593 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3594 continue;
3595
3596 /* Now it can only be a FIELD_DECL. */
3597
3598 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3599 CLASSTYPE_NON_AGGREGATE (t) = 1;
3600
3601 /* If at least one non-static data member is non-literal, the whole
3602 class becomes non-literal. Per Core/1453, volatile non-static
3603 data members and base classes are also not allowed.
3604 Note: if the type is incomplete we will complain later on. */
3605 if (COMPLETE_TYPE_P (type)
3606 && (!literal_type_p (type) || CP_TYPE_VOLATILE_P (type)))
3607 CLASSTYPE_LITERAL_P (t) = false;
3608
3609 /* A standard-layout class is a class that:
3610 ...
3611 has the same access control (Clause 11) for all non-static data members,
3612 ... */
3613 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3614 if (field_access == -1)
3615 field_access = this_field_access;
3616 else if (this_field_access != field_access)
3617 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3618
3619 /* If this is of reference type, check if it needs an init. */
3620 if (TREE_CODE (type) == REFERENCE_TYPE)
3621 {
3622 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3623 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3624 if (DECL_INITIAL (x) == NULL_TREE)
3625 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3626 if (cxx_dialect < cxx11)
3627 {
3628 /* ARM $12.6.2: [A member initializer list] (or, for an
3629 aggregate, initialization by a brace-enclosed list) is the
3630 only way to initialize nonstatic const and reference
3631 members. */
3632 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3633 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3634 }
3635 }
3636
3637 type = strip_array_types (type);
3638
3639 if (TYPE_PACKED (t))
3640 {
3641 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3642 {
3643 warning
3644 (0,
3645 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3646 x);
3647 cant_pack = 1;
3648 }
3649 else if (DECL_C_BIT_FIELD (x)
3650 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3651 DECL_PACKED (x) = 1;
3652 }
3653
3654 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3655 /* We don't treat zero-width bitfields as making a class
3656 non-empty. */
3657 ;
3658 else
3659 {
3660 /* The class is non-empty. */
3661 CLASSTYPE_EMPTY_P (t) = 0;
3662 /* The class is not even nearly empty. */
3663 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3664 /* If one of the data members contains an empty class,
3665 so does T. */
3666 if (CLASS_TYPE_P (type)
3667 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3668 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3669 }
3670
3671 /* This is used by -Weffc++ (see below). Warn only for pointers
3672 to members which might hold dynamic memory. So do not warn
3673 for pointers to functions or pointers to members. */
3674 if (TYPE_PTR_P (type)
3675 && !TYPE_PTRFN_P (type))
3676 has_pointers = true;
3677
3678 if (CLASS_TYPE_P (type))
3679 {
3680 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3681 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3682 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3683 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3684 }
3685
3686 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3687 CLASSTYPE_HAS_MUTABLE (t) = 1;
3688
3689 if (DECL_MUTABLE_P (x))
3690 {
3691 if (CP_TYPE_CONST_P (type))
3692 {
3693 error ("member %q+D cannot be declared both %<const%> "
3694 "and %<mutable%>", x);
3695 continue;
3696 }
3697 if (TREE_CODE (type) == REFERENCE_TYPE)
3698 {
3699 error ("member %q+D cannot be declared as a %<mutable%> "
3700 "reference", x);
3701 continue;
3702 }
3703 }
3704
3705 if (! layout_pod_type_p (type))
3706 /* DR 148 now allows pointers to members (which are POD themselves),
3707 to be allowed in POD structs. */
3708 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3709
3710 if (!std_layout_type_p (type))
3711 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3712
3713 if (! zero_init_p (type))
3714 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3715
3716 /* We set DECL_C_BIT_FIELD in grokbitfield.
3717 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3718 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3719 check_field_decl (x, t,
3720 cant_have_const_ctor_p,
3721 no_const_asn_ref_p,
3722 &any_default_members);
3723
3724 /* Now that we've removed bit-field widths from DECL_INITIAL,
3725 anything left in DECL_INITIAL is an NSDMI that makes the class
3726 non-aggregate in C++11. */
3727 if (DECL_INITIAL (x) && cxx_dialect < cxx14)
3728 CLASSTYPE_NON_AGGREGATE (t) = true;
3729
3730 /* If any field is const, the structure type is pseudo-const. */
3731 if (CP_TYPE_CONST_P (type))
3732 {
3733 C_TYPE_FIELDS_READONLY (t) = 1;
3734 if (DECL_INITIAL (x) == NULL_TREE)
3735 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3736 if (cxx_dialect < cxx11)
3737 {
3738 /* ARM $12.6.2: [A member initializer list] (or, for an
3739 aggregate, initialization by a brace-enclosed list) is the
3740 only way to initialize nonstatic const and reference
3741 members. */
3742 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3743 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3744 }
3745 }
3746 /* A field that is pseudo-const makes the structure likewise. */
3747 else if (CLASS_TYPE_P (type))
3748 {
3749 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3750 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3751 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3752 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3753 }
3754
3755 /* Core issue 80: A nonstatic data member is required to have a
3756 different name from the class iff the class has a
3757 user-declared constructor. */
3758 if (constructor_name_p (DECL_NAME (x), t)
3759 && TYPE_HAS_USER_CONSTRUCTOR (t))
3760 permerror (input_location, "field %q+#D with same name as class", x);
3761 }
3762
3763 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3764 it should also define a copy constructor and an assignment operator to
3765 implement the correct copy semantic (deep vs shallow, etc.). As it is
3766 not feasible to check whether the constructors do allocate dynamic memory
3767 and store it within members, we approximate the warning like this:
3768
3769 -- Warn only if there are members which are pointers
3770 -- Warn only if there is a non-trivial constructor (otherwise,
3771 there cannot be memory allocated).
3772 -- Warn only if there is a non-trivial destructor. We assume that the
3773 user at least implemented the cleanup correctly, and a destructor
3774 is needed to free dynamic memory.
3775
3776 This seems enough for practical purposes. */
3777 if (warn_ecpp
3778 && has_pointers
3779 && TYPE_HAS_USER_CONSTRUCTOR (t)
3780 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3781 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3782 {
3783 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3784
3785 if (! TYPE_HAS_COPY_CTOR (t))
3786 {
3787 warning (OPT_Weffc__,
3788 " but does not override %<%T(const %T&)%>", t, t);
3789 if (!TYPE_HAS_COPY_ASSIGN (t))
3790 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3791 }
3792 else if (! TYPE_HAS_COPY_ASSIGN (t))
3793 warning (OPT_Weffc__,
3794 " but does not override %<operator=(const %T&)%>", t);
3795 }
3796
3797 /* Non-static data member initializers make the default constructor
3798 non-trivial. */
3799 if (any_default_members)
3800 {
3801 TYPE_NEEDS_CONSTRUCTING (t) = true;
3802 TYPE_HAS_COMPLEX_DFLT (t) = true;
3803 }
3804
3805 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3806 if (cant_pack)
3807 TYPE_PACKED (t) = 0;
3808
3809 /* Check anonymous struct/anonymous union fields. */
3810 finish_struct_anon (t);
3811
3812 /* We've built up the list of access declarations in reverse order.
3813 Fix that now. */
3814 *access_decls = nreverse (*access_decls);
3815 }
3816
3817 /* If TYPE is an empty class type, records its OFFSET in the table of
3818 OFFSETS. */
3819
3820 static int
3821 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3822 {
3823 splay_tree_node n;
3824
3825 if (!is_empty_class (type))
3826 return 0;
3827
3828 /* Record the location of this empty object in OFFSETS. */
3829 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3830 if (!n)
3831 n = splay_tree_insert (offsets,
3832 (splay_tree_key) offset,
3833 (splay_tree_value) NULL_TREE);
3834 n->value = ((splay_tree_value)
3835 tree_cons (NULL_TREE,
3836 type,
3837 (tree) n->value));
3838
3839 return 0;
3840 }
3841
3842 /* Returns nonzero if TYPE is an empty class type and there is
3843 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3844
3845 static int
3846 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3847 {
3848 splay_tree_node n;
3849 tree t;
3850
3851 if (!is_empty_class (type))
3852 return 0;
3853
3854 /* Record the location of this empty object in OFFSETS. */
3855 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3856 if (!n)
3857 return 0;
3858
3859 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3860 if (same_type_p (TREE_VALUE (t), type))
3861 return 1;
3862
3863 return 0;
3864 }
3865
3866 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3867 F for every subobject, passing it the type, offset, and table of
3868 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3869 be traversed.
3870
3871 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3872 than MAX_OFFSET will not be walked.
3873
3874 If F returns a nonzero value, the traversal ceases, and that value
3875 is returned. Otherwise, returns zero. */
3876
3877 static int
3878 walk_subobject_offsets (tree type,
3879 subobject_offset_fn f,
3880 tree offset,
3881 splay_tree offsets,
3882 tree max_offset,
3883 int vbases_p)
3884 {
3885 int r = 0;
3886 tree type_binfo = NULL_TREE;
3887
3888 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3889 stop. */
3890 if (max_offset && tree_int_cst_lt (max_offset, offset))
3891 return 0;
3892
3893 if (type == error_mark_node)
3894 return 0;
3895
3896 if (!TYPE_P (type))
3897 {
3898 type_binfo = type;
3899 type = BINFO_TYPE (type);
3900 }
3901
3902 if (CLASS_TYPE_P (type))
3903 {
3904 tree field;
3905 tree binfo;
3906 int i;
3907
3908 /* Avoid recursing into objects that are not interesting. */
3909 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3910 return 0;
3911
3912 /* Record the location of TYPE. */
3913 r = (*f) (type, offset, offsets);
3914 if (r)
3915 return r;
3916
3917 /* Iterate through the direct base classes of TYPE. */
3918 if (!type_binfo)
3919 type_binfo = TYPE_BINFO (type);
3920 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3921 {
3922 tree binfo_offset;
3923
3924 if (BINFO_VIRTUAL_P (binfo))
3925 continue;
3926
3927 tree orig_binfo;
3928 /* We cannot rely on BINFO_OFFSET being set for the base
3929 class yet, but the offsets for direct non-virtual
3930 bases can be calculated by going back to the TYPE. */
3931 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3932 binfo_offset = size_binop (PLUS_EXPR,
3933 offset,
3934 BINFO_OFFSET (orig_binfo));
3935
3936 r = walk_subobject_offsets (binfo,
3937 f,
3938 binfo_offset,
3939 offsets,
3940 max_offset,
3941 /*vbases_p=*/0);
3942 if (r)
3943 return r;
3944 }
3945
3946 if (CLASSTYPE_VBASECLASSES (type))
3947 {
3948 unsigned ix;
3949 vec<tree, va_gc> *vbases;
3950
3951 /* Iterate through the virtual base classes of TYPE. In G++
3952 3.2, we included virtual bases in the direct base class
3953 loop above, which results in incorrect results; the
3954 correct offsets for virtual bases are only known when
3955 working with the most derived type. */
3956 if (vbases_p)
3957 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3958 vec_safe_iterate (vbases, ix, &binfo); ix++)
3959 {
3960 r = walk_subobject_offsets (binfo,
3961 f,
3962 size_binop (PLUS_EXPR,
3963 offset,
3964 BINFO_OFFSET (binfo)),
3965 offsets,
3966 max_offset,
3967 /*vbases_p=*/0);
3968 if (r)
3969 return r;
3970 }
3971 else
3972 {
3973 /* We still have to walk the primary base, if it is
3974 virtual. (If it is non-virtual, then it was walked
3975 above.) */
3976 tree vbase = get_primary_binfo (type_binfo);
3977
3978 if (vbase && BINFO_VIRTUAL_P (vbase)
3979 && BINFO_PRIMARY_P (vbase)
3980 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3981 {
3982 r = (walk_subobject_offsets
3983 (vbase, f, offset,
3984 offsets, max_offset, /*vbases_p=*/0));
3985 if (r)
3986 return r;
3987 }
3988 }
3989 }
3990
3991 /* Iterate through the fields of TYPE. */
3992 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3993 if (TREE_CODE (field) == FIELD_DECL
3994 && TREE_TYPE (field) != error_mark_node
3995 && !DECL_ARTIFICIAL (field))
3996 {
3997 tree field_offset;
3998
3999 field_offset = byte_position (field);
4000
4001 r = walk_subobject_offsets (TREE_TYPE (field),
4002 f,
4003 size_binop (PLUS_EXPR,
4004 offset,
4005 field_offset),
4006 offsets,
4007 max_offset,
4008 /*vbases_p=*/1);
4009 if (r)
4010 return r;
4011 }
4012 }
4013 else if (TREE_CODE (type) == ARRAY_TYPE)
4014 {
4015 tree element_type = strip_array_types (type);
4016 tree domain = TYPE_DOMAIN (type);
4017 tree index;
4018
4019 /* Avoid recursing into objects that are not interesting. */
4020 if (!CLASS_TYPE_P (element_type)
4021 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
4022 return 0;
4023
4024 /* Step through each of the elements in the array. */
4025 for (index = size_zero_node;
4026 !tree_int_cst_lt (TYPE_MAX_VALUE (domain), index);
4027 index = size_binop (PLUS_EXPR, index, size_one_node))
4028 {
4029 r = walk_subobject_offsets (TREE_TYPE (type),
4030 f,
4031 offset,
4032 offsets,
4033 max_offset,
4034 /*vbases_p=*/1);
4035 if (r)
4036 return r;
4037 offset = size_binop (PLUS_EXPR, offset,
4038 TYPE_SIZE_UNIT (TREE_TYPE (type)));
4039 /* If this new OFFSET is bigger than the MAX_OFFSET, then
4040 there's no point in iterating through the remaining
4041 elements of the array. */
4042 if (max_offset && tree_int_cst_lt (max_offset, offset))
4043 break;
4044 }
4045 }
4046
4047 return 0;
4048 }
4049
4050 /* Record all of the empty subobjects of TYPE (either a type or a
4051 binfo). If IS_DATA_MEMBER is true, then a non-static data member
4052 is being placed at OFFSET; otherwise, it is a base class that is
4053 being placed at OFFSET. */
4054
4055 static void
4056 record_subobject_offsets (tree type,
4057 tree offset,
4058 splay_tree offsets,
4059 bool is_data_member)
4060 {
4061 tree max_offset;
4062 /* If recording subobjects for a non-static data member or a
4063 non-empty base class , we do not need to record offsets beyond
4064 the size of the biggest empty class. Additional data members
4065 will go at the end of the class. Additional base classes will go
4066 either at offset zero (if empty, in which case they cannot
4067 overlap with offsets past the size of the biggest empty class) or
4068 at the end of the class.
4069
4070 However, if we are placing an empty base class, then we must record
4071 all offsets, as either the empty class is at offset zero (where
4072 other empty classes might later be placed) or at the end of the
4073 class (where other objects might then be placed, so other empty
4074 subobjects might later overlap). */
4075 if (is_data_member
4076 || !is_empty_class (BINFO_TYPE (type)))
4077 max_offset = sizeof_biggest_empty_class;
4078 else
4079 max_offset = NULL_TREE;
4080 walk_subobject_offsets (type, record_subobject_offset, offset,
4081 offsets, max_offset, is_data_member);
4082 }
4083
4084 /* Returns nonzero if any of the empty subobjects of TYPE (located at
4085 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
4086 virtual bases of TYPE are examined. */
4087
4088 static int
4089 layout_conflict_p (tree type,
4090 tree offset,
4091 splay_tree offsets,
4092 int vbases_p)
4093 {
4094 splay_tree_node max_node;
4095
4096 /* Get the node in OFFSETS that indicates the maximum offset where
4097 an empty subobject is located. */
4098 max_node = splay_tree_max (offsets);
4099 /* If there aren't any empty subobjects, then there's no point in
4100 performing this check. */
4101 if (!max_node)
4102 return 0;
4103
4104 return walk_subobject_offsets (type, check_subobject_offset, offset,
4105 offsets, (tree) (max_node->key),
4106 vbases_p);
4107 }
4108
4109 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
4110 non-static data member of the type indicated by RLI. BINFO is the
4111 binfo corresponding to the base subobject, OFFSETS maps offsets to
4112 types already located at those offsets. This function determines
4113 the position of the DECL. */
4114
4115 static void
4116 layout_nonempty_base_or_field (record_layout_info rli,
4117 tree decl,
4118 tree binfo,
4119 splay_tree offsets)
4120 {
4121 tree offset = NULL_TREE;
4122 bool field_p;
4123 tree type;
4124
4125 if (binfo)
4126 {
4127 /* For the purposes of determining layout conflicts, we want to
4128 use the class type of BINFO; TREE_TYPE (DECL) will be the
4129 CLASSTYPE_AS_BASE version, which does not contain entries for
4130 zero-sized bases. */
4131 type = TREE_TYPE (binfo);
4132 field_p = false;
4133 }
4134 else
4135 {
4136 type = TREE_TYPE (decl);
4137 field_p = true;
4138 }
4139
4140 /* Try to place the field. It may take more than one try if we have
4141 a hard time placing the field without putting two objects of the
4142 same type at the same address. */
4143 while (1)
4144 {
4145 struct record_layout_info_s old_rli = *rli;
4146
4147 /* Place this field. */
4148 place_field (rli, decl);
4149 offset = byte_position (decl);
4150
4151 /* We have to check to see whether or not there is already
4152 something of the same type at the offset we're about to use.
4153 For example, consider:
4154
4155 struct S {};
4156 struct T : public S { int i; };
4157 struct U : public S, public T {};
4158
4159 Here, we put S at offset zero in U. Then, we can't put T at
4160 offset zero -- its S component would be at the same address
4161 as the S we already allocated. So, we have to skip ahead.
4162 Since all data members, including those whose type is an
4163 empty class, have nonzero size, any overlap can happen only
4164 with a direct or indirect base-class -- it can't happen with
4165 a data member. */
4166 /* In a union, overlap is permitted; all members are placed at
4167 offset zero. */
4168 if (TREE_CODE (rli->t) == UNION_TYPE)
4169 break;
4170 if (layout_conflict_p (field_p ? type : binfo, offset,
4171 offsets, field_p))
4172 {
4173 /* Strip off the size allocated to this field. That puts us
4174 at the first place we could have put the field with
4175 proper alignment. */
4176 *rli = old_rli;
4177
4178 /* Bump up by the alignment required for the type. */
4179 rli->bitpos
4180 = size_binop (PLUS_EXPR, rli->bitpos,
4181 bitsize_int (binfo
4182 ? CLASSTYPE_ALIGN (type)
4183 : TYPE_ALIGN (type)));
4184 normalize_rli (rli);
4185 }
4186 else
4187 /* There was no conflict. We're done laying out this field. */
4188 break;
4189 }
4190
4191 /* Now that we know where it will be placed, update its
4192 BINFO_OFFSET. */
4193 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
4194 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4195 this point because their BINFO_OFFSET is copied from another
4196 hierarchy. Therefore, we may not need to add the entire
4197 OFFSET. */
4198 propagate_binfo_offsets (binfo,
4199 size_diffop_loc (input_location,
4200 convert (ssizetype, offset),
4201 convert (ssizetype,
4202 BINFO_OFFSET (binfo))));
4203 }
4204
4205 /* Returns true if TYPE is empty and OFFSET is nonzero. */
4206
4207 static int
4208 empty_base_at_nonzero_offset_p (tree type,
4209 tree offset,
4210 splay_tree /*offsets*/)
4211 {
4212 return is_empty_class (type) && !integer_zerop (offset);
4213 }
4214
4215 /* Layout the empty base BINFO. EOC indicates the byte currently just
4216 past the end of the class, and should be correctly aligned for a
4217 class of the type indicated by BINFO; OFFSETS gives the offsets of
4218 the empty bases allocated so far. T is the most derived
4219 type. Return nonzero iff we added it at the end. */
4220
4221 static bool
4222 layout_empty_base (record_layout_info rli, tree binfo,
4223 tree eoc, splay_tree offsets)
4224 {
4225 tree alignment;
4226 tree basetype = BINFO_TYPE (binfo);
4227 bool atend = false;
4228
4229 /* This routine should only be used for empty classes. */
4230 gcc_assert (is_empty_class (basetype));
4231 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4232
4233 if (!integer_zerop (BINFO_OFFSET (binfo)))
4234 propagate_binfo_offsets
4235 (binfo, size_diffop_loc (input_location,
4236 size_zero_node, BINFO_OFFSET (binfo)));
4237
4238 /* This is an empty base class. We first try to put it at offset
4239 zero. */
4240 if (layout_conflict_p (binfo,
4241 BINFO_OFFSET (binfo),
4242 offsets,
4243 /*vbases_p=*/0))
4244 {
4245 /* That didn't work. Now, we move forward from the next
4246 available spot in the class. */
4247 atend = true;
4248 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4249 while (1)
4250 {
4251 if (!layout_conflict_p (binfo,
4252 BINFO_OFFSET (binfo),
4253 offsets,
4254 /*vbases_p=*/0))
4255 /* We finally found a spot where there's no overlap. */
4256 break;
4257
4258 /* There's overlap here, too. Bump along to the next spot. */
4259 propagate_binfo_offsets (binfo, alignment);
4260 }
4261 }
4262
4263 if (CLASSTYPE_USER_ALIGN (basetype))
4264 {
4265 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4266 if (warn_packed)
4267 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4268 TYPE_USER_ALIGN (rli->t) = 1;
4269 }
4270
4271 return atend;
4272 }
4273
4274 /* Layout the base given by BINFO in the class indicated by RLI.
4275 *BASE_ALIGN is a running maximum of the alignments of
4276 any base class. OFFSETS gives the location of empty base
4277 subobjects. T is the most derived type. Return nonzero if the new
4278 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4279 *NEXT_FIELD, unless BINFO is for an empty base class.
4280
4281 Returns the location at which the next field should be inserted. */
4282
4283 static tree *
4284 build_base_field (record_layout_info rli, tree binfo,
4285 splay_tree offsets, tree *next_field)
4286 {
4287 tree t = rli->t;
4288 tree basetype = BINFO_TYPE (binfo);
4289
4290 if (!COMPLETE_TYPE_P (basetype))
4291 /* This error is now reported in xref_tag, thus giving better
4292 location information. */
4293 return next_field;
4294
4295 /* Place the base class. */
4296 if (!is_empty_class (basetype))
4297 {
4298 tree decl;
4299
4300 /* The containing class is non-empty because it has a non-empty
4301 base class. */
4302 CLASSTYPE_EMPTY_P (t) = 0;
4303
4304 /* Create the FIELD_DECL. */
4305 decl = build_decl (input_location,
4306 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4307 DECL_ARTIFICIAL (decl) = 1;
4308 DECL_IGNORED_P (decl) = 1;
4309 DECL_FIELD_CONTEXT (decl) = t;
4310 if (CLASSTYPE_AS_BASE (basetype))
4311 {
4312 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4313 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4314 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4315 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4316 DECL_MODE (decl) = TYPE_MODE (basetype);
4317 DECL_FIELD_IS_BASE (decl) = 1;
4318
4319 /* Try to place the field. It may take more than one try if we
4320 have a hard time placing the field without putting two
4321 objects of the same type at the same address. */
4322 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4323 /* Add the new FIELD_DECL to the list of fields for T. */
4324 DECL_CHAIN (decl) = *next_field;
4325 *next_field = decl;
4326 next_field = &DECL_CHAIN (decl);
4327 }
4328 }
4329 else
4330 {
4331 tree eoc;
4332 bool atend;
4333
4334 /* On some platforms (ARM), even empty classes will not be
4335 byte-aligned. */
4336 eoc = round_up_loc (input_location,
4337 rli_size_unit_so_far (rli),
4338 CLASSTYPE_ALIGN_UNIT (basetype));
4339 atend = layout_empty_base (rli, binfo, eoc, offsets);
4340 /* A nearly-empty class "has no proper base class that is empty,
4341 not morally virtual, and at an offset other than zero." */
4342 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4343 {
4344 if (atend)
4345 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4346 /* The check above (used in G++ 3.2) is insufficient because
4347 an empty class placed at offset zero might itself have an
4348 empty base at a nonzero offset. */
4349 else if (walk_subobject_offsets (basetype,
4350 empty_base_at_nonzero_offset_p,
4351 size_zero_node,
4352 /*offsets=*/NULL,
4353 /*max_offset=*/NULL_TREE,
4354 /*vbases_p=*/true))
4355 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4356 }
4357
4358 /* We do not create a FIELD_DECL for empty base classes because
4359 it might overlap some other field. We want to be able to
4360 create CONSTRUCTORs for the class by iterating over the
4361 FIELD_DECLs, and the back end does not handle overlapping
4362 FIELD_DECLs. */
4363
4364 /* An empty virtual base causes a class to be non-empty
4365 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4366 here because that was already done when the virtual table
4367 pointer was created. */
4368 }
4369
4370 /* Record the offsets of BINFO and its base subobjects. */
4371 record_subobject_offsets (binfo,
4372 BINFO_OFFSET (binfo),
4373 offsets,
4374 /*is_data_member=*/false);
4375
4376 return next_field;
4377 }
4378
4379 /* Layout all of the non-virtual base classes. Record empty
4380 subobjects in OFFSETS. T is the most derived type. Return nonzero
4381 if the type cannot be nearly empty. The fields created
4382 corresponding to the base classes will be inserted at
4383 *NEXT_FIELD. */
4384
4385 static void
4386 build_base_fields (record_layout_info rli,
4387 splay_tree offsets, tree *next_field)
4388 {
4389 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4390 subobjects. */
4391 tree t = rli->t;
4392 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4393 int i;
4394
4395 /* The primary base class is always allocated first. */
4396 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4397 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4398 offsets, next_field);
4399
4400 /* Now allocate the rest of the bases. */
4401 for (i = 0; i < n_baseclasses; ++i)
4402 {
4403 tree base_binfo;
4404
4405 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4406
4407 /* The primary base was already allocated above, so we don't
4408 need to allocate it again here. */
4409 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4410 continue;
4411
4412 /* Virtual bases are added at the end (a primary virtual base
4413 will have already been added). */
4414 if (BINFO_VIRTUAL_P (base_binfo))
4415 continue;
4416
4417 next_field = build_base_field (rli, base_binfo,
4418 offsets, next_field);
4419 }
4420 }
4421
4422 /* Go through the TYPE_METHODS of T issuing any appropriate
4423 diagnostics, figuring out which methods override which other
4424 methods, and so forth. */
4425
4426 static void
4427 check_methods (tree t)
4428 {
4429 tree x;
4430
4431 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4432 {
4433 check_for_override (x, t);
4434 if (DECL_PURE_VIRTUAL_P (x) && (TREE_CODE (x) != FUNCTION_DECL || ! DECL_VINDEX (x)))
4435 error ("initializer specified for non-virtual method %q+D", x);
4436 /* The name of the field is the original field name
4437 Save this in auxiliary field for later overloading. */
4438 if (TREE_CODE (x) == FUNCTION_DECL && DECL_VINDEX (x))
4439 {
4440 TYPE_POLYMORPHIC_P (t) = 1;
4441 if (DECL_PURE_VIRTUAL_P (x))
4442 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4443 }
4444 /* All user-provided destructors are non-trivial.
4445 Constructors and assignment ops are handled in
4446 grok_special_member_properties. */
4447 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4448 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4449 }
4450 }
4451
4452 /* FN is a constructor or destructor. Clone the declaration to create
4453 a specialized in-charge or not-in-charge version, as indicated by
4454 NAME. */
4455
4456 static tree
4457 build_clone (tree fn, tree name)
4458 {
4459 tree parms;
4460 tree clone;
4461
4462 /* Copy the function. */
4463 clone = copy_decl (fn);
4464 /* Reset the function name. */
4465 DECL_NAME (clone) = name;
4466 /* Remember where this function came from. */
4467 DECL_ABSTRACT_ORIGIN (clone) = fn;
4468 /* Make it easy to find the CLONE given the FN. */
4469 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4470 DECL_CHAIN (fn) = clone;
4471
4472 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4473 if (TREE_CODE (clone) == TEMPLATE_DECL)
4474 {
4475 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4476 DECL_TEMPLATE_RESULT (clone) = result;
4477 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4478 DECL_TI_TEMPLATE (result) = clone;
4479 TREE_TYPE (clone) = TREE_TYPE (result);
4480 return clone;
4481 }
4482
4483 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4484 DECL_CLONED_FUNCTION (clone) = fn;
4485 /* There's no pending inline data for this function. */
4486 DECL_PENDING_INLINE_INFO (clone) = NULL;
4487 DECL_PENDING_INLINE_P (clone) = 0;
4488
4489 /* The base-class destructor is not virtual. */
4490 if (name == base_dtor_identifier)
4491 {
4492 DECL_VIRTUAL_P (clone) = 0;
4493 if (TREE_CODE (clone) != TEMPLATE_DECL)
4494 DECL_VINDEX (clone) = NULL_TREE;
4495 }
4496
4497 /* If there was an in-charge parameter, drop it from the function
4498 type. */
4499 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4500 {
4501 tree basetype;
4502 tree parmtypes;
4503 tree exceptions;
4504
4505 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4506 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4507 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4508 /* Skip the `this' parameter. */
4509 parmtypes = TREE_CHAIN (parmtypes);
4510 /* Skip the in-charge parameter. */
4511 parmtypes = TREE_CHAIN (parmtypes);
4512 /* And the VTT parm, in a complete [cd]tor. */
4513 if (DECL_HAS_VTT_PARM_P (fn)
4514 && ! DECL_NEEDS_VTT_PARM_P (clone))
4515 parmtypes = TREE_CHAIN (parmtypes);
4516 /* If this is subobject constructor or destructor, add the vtt
4517 parameter. */
4518 TREE_TYPE (clone)
4519 = build_method_type_directly (basetype,
4520 TREE_TYPE (TREE_TYPE (clone)),
4521 parmtypes);
4522 if (exceptions)
4523 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4524 exceptions);
4525 TREE_TYPE (clone)
4526 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4527 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4528 }
4529
4530 /* Copy the function parameters. */
4531 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4532 /* Remove the in-charge parameter. */
4533 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4534 {
4535 DECL_CHAIN (DECL_ARGUMENTS (clone))
4536 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4537 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4538 }
4539 /* And the VTT parm, in a complete [cd]tor. */
4540 if (DECL_HAS_VTT_PARM_P (fn))
4541 {
4542 if (DECL_NEEDS_VTT_PARM_P (clone))
4543 DECL_HAS_VTT_PARM_P (clone) = 1;
4544 else
4545 {
4546 DECL_CHAIN (DECL_ARGUMENTS (clone))
4547 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4548 DECL_HAS_VTT_PARM_P (clone) = 0;
4549 }
4550 }
4551
4552 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4553 {
4554 DECL_CONTEXT (parms) = clone;
4555 cxx_dup_lang_specific_decl (parms);
4556 }
4557
4558 /* Create the RTL for this function. */
4559 SET_DECL_RTL (clone, NULL);
4560 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4561
4562 if (pch_file)
4563 note_decl_for_pch (clone);
4564
4565 return clone;
4566 }
4567
4568 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4569 not invoke this function directly.
4570
4571 For a non-thunk function, returns the address of the slot for storing
4572 the function it is a clone of. Otherwise returns NULL_TREE.
4573
4574 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4575 cloned_function is unset. This is to support the separate
4576 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4577 on a template makes sense, but not the former. */
4578
4579 tree *
4580 decl_cloned_function_p (const_tree decl, bool just_testing)
4581 {
4582 tree *ptr;
4583 if (just_testing)
4584 decl = STRIP_TEMPLATE (decl);
4585
4586 if (TREE_CODE (decl) != FUNCTION_DECL
4587 || !DECL_LANG_SPECIFIC (decl)
4588 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4589 {
4590 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4591 if (!just_testing)
4592 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4593 else
4594 #endif
4595 return NULL;
4596 }
4597
4598 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4599 if (just_testing && *ptr == NULL_TREE)
4600 return NULL;
4601 else
4602 return ptr;
4603 }
4604
4605 /* Produce declarations for all appropriate clones of FN. If
4606 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4607 CLASTYPE_METHOD_VEC as well. */
4608
4609 void
4610 clone_function_decl (tree fn, int update_method_vec_p)
4611 {
4612 tree clone;
4613
4614 /* Avoid inappropriate cloning. */
4615 if (DECL_CHAIN (fn)
4616 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4617 return;
4618
4619 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4620 {
4621 /* For each constructor, we need two variants: an in-charge version
4622 and a not-in-charge version. */
4623 clone = build_clone (fn, complete_ctor_identifier);
4624 if (update_method_vec_p)
4625 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4626 clone = build_clone (fn, base_ctor_identifier);
4627 if (update_method_vec_p)
4628 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4629 }
4630 else
4631 {
4632 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4633
4634 /* For each destructor, we need three variants: an in-charge
4635 version, a not-in-charge version, and an in-charge deleting
4636 version. We clone the deleting version first because that
4637 means it will go second on the TYPE_METHODS list -- and that
4638 corresponds to the correct layout order in the virtual
4639 function table.
4640
4641 For a non-virtual destructor, we do not build a deleting
4642 destructor. */
4643 if (DECL_VIRTUAL_P (fn))
4644 {
4645 clone = build_clone (fn, deleting_dtor_identifier);
4646 if (update_method_vec_p)
4647 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4648 }
4649 clone = build_clone (fn, complete_dtor_identifier);
4650 if (update_method_vec_p)
4651 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4652 clone = build_clone (fn, base_dtor_identifier);
4653 if (update_method_vec_p)
4654 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4655 }
4656
4657 /* Note that this is an abstract function that is never emitted. */
4658 DECL_ABSTRACT_P (fn) = true;
4659 }
4660
4661 /* DECL is an in charge constructor, which is being defined. This will
4662 have had an in class declaration, from whence clones were
4663 declared. An out-of-class definition can specify additional default
4664 arguments. As it is the clones that are involved in overload
4665 resolution, we must propagate the information from the DECL to its
4666 clones. */
4667
4668 void
4669 adjust_clone_args (tree decl)
4670 {
4671 tree clone;
4672
4673 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4674 clone = DECL_CHAIN (clone))
4675 {
4676 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4677 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4678 tree decl_parms, clone_parms;
4679
4680 clone_parms = orig_clone_parms;
4681
4682 /* Skip the 'this' parameter. */
4683 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4684 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4685
4686 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4687 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4688 if (DECL_HAS_VTT_PARM_P (decl))
4689 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4690
4691 clone_parms = orig_clone_parms;
4692 if (DECL_HAS_VTT_PARM_P (clone))
4693 clone_parms = TREE_CHAIN (clone_parms);
4694
4695 for (decl_parms = orig_decl_parms; decl_parms;
4696 decl_parms = TREE_CHAIN (decl_parms),
4697 clone_parms = TREE_CHAIN (clone_parms))
4698 {
4699 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4700 TREE_TYPE (clone_parms)));
4701
4702 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4703 {
4704 /* A default parameter has been added. Adjust the
4705 clone's parameters. */
4706 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4707 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4708 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4709 tree type;
4710
4711 clone_parms = orig_decl_parms;
4712
4713 if (DECL_HAS_VTT_PARM_P (clone))
4714 {
4715 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4716 TREE_VALUE (orig_clone_parms),
4717 clone_parms);
4718 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4719 }
4720 type = build_method_type_directly (basetype,
4721 TREE_TYPE (TREE_TYPE (clone)),
4722 clone_parms);
4723 if (exceptions)
4724 type = build_exception_variant (type, exceptions);
4725 if (attrs)
4726 type = cp_build_type_attribute_variant (type, attrs);
4727 TREE_TYPE (clone) = type;
4728
4729 clone_parms = NULL_TREE;
4730 break;
4731 }
4732 }
4733 gcc_assert (!clone_parms);
4734 }
4735 }
4736
4737 /* For each of the constructors and destructors in T, create an
4738 in-charge and not-in-charge variant. */
4739
4740 static void
4741 clone_constructors_and_destructors (tree t)
4742 {
4743 tree fns;
4744
4745 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4746 out now. */
4747 if (!CLASSTYPE_METHOD_VEC (t))
4748 return;
4749
4750 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4751 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4752 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4753 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4754 }
4755
4756 /* Deduce noexcept for a destructor DTOR. */
4757
4758 void
4759 deduce_noexcept_on_destructor (tree dtor)
4760 {
4761 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4762 {
4763 tree eh_spec = unevaluated_noexcept_spec ();
4764 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4765 }
4766 }
4767
4768 /* For each destructor in T, deduce noexcept:
4769
4770 12.4/3: A declaration of a destructor that does not have an
4771 exception-specification is implicitly considered to have the
4772 same exception-specification as an implicit declaration (15.4). */
4773
4774 static void
4775 deduce_noexcept_on_destructors (tree t)
4776 {
4777 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4778 out now. */
4779 if (!CLASSTYPE_METHOD_VEC (t))
4780 return;
4781
4782 for (tree fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4783 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4784 }
4785
4786 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4787 of TYPE for virtual functions which FNDECL overrides. Return a
4788 mask of the tm attributes found therein. */
4789
4790 static int
4791 look_for_tm_attr_overrides (tree type, tree fndecl)
4792 {
4793 tree binfo = TYPE_BINFO (type);
4794 tree base_binfo;
4795 int ix, found = 0;
4796
4797 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4798 {
4799 tree o, basetype = BINFO_TYPE (base_binfo);
4800
4801 if (!TYPE_POLYMORPHIC_P (basetype))
4802 continue;
4803
4804 o = look_for_overrides_here (basetype, fndecl);
4805 if (o)
4806 found |= tm_attr_to_mask (find_tm_attribute
4807 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4808 else
4809 found |= look_for_tm_attr_overrides (basetype, fndecl);
4810 }
4811
4812 return found;
4813 }
4814
4815 /* Subroutine of set_method_tm_attributes. Handle the checks and
4816 inheritance for one virtual method FNDECL. */
4817
4818 static void
4819 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4820 {
4821 tree tm_attr;
4822 int found, have;
4823
4824 found = look_for_tm_attr_overrides (type, fndecl);
4825
4826 /* If FNDECL doesn't actually override anything (i.e. T is the
4827 class that first declares FNDECL virtual), then we're done. */
4828 if (found == 0)
4829 return;
4830
4831 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4832 have = tm_attr_to_mask (tm_attr);
4833
4834 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4835 tm_pure must match exactly, otherwise no weakening of
4836 tm_safe > tm_callable > nothing. */
4837 /* ??? The tm_pure attribute didn't make the transition to the
4838 multivendor language spec. */
4839 if (have == TM_ATTR_PURE)
4840 {
4841 if (found != TM_ATTR_PURE)
4842 {
4843 found &= -found;
4844 goto err_override;
4845 }
4846 }
4847 /* If the overridden function is tm_pure, then FNDECL must be. */
4848 else if (found == TM_ATTR_PURE && tm_attr)
4849 goto err_override;
4850 /* Look for base class combinations that cannot be satisfied. */
4851 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4852 {
4853 found &= ~TM_ATTR_PURE;
4854 found &= -found;
4855 error_at (DECL_SOURCE_LOCATION (fndecl),
4856 "method overrides both %<transaction_pure%> and %qE methods",
4857 tm_mask_to_attr (found));
4858 }
4859 /* If FNDECL did not declare an attribute, then inherit the most
4860 restrictive one. */
4861 else if (tm_attr == NULL)
4862 {
4863 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4864 }
4865 /* Otherwise validate that we're not weaker than a function
4866 that is being overridden. */
4867 else
4868 {
4869 found &= -found;
4870 if (found <= TM_ATTR_CALLABLE && have > found)
4871 goto err_override;
4872 }
4873 return;
4874
4875 err_override:
4876 error_at (DECL_SOURCE_LOCATION (fndecl),
4877 "method declared %qE overriding %qE method",
4878 tm_attr, tm_mask_to_attr (found));
4879 }
4880
4881 /* For each of the methods in T, propagate a class-level tm attribute. */
4882
4883 static void
4884 set_method_tm_attributes (tree t)
4885 {
4886 tree class_tm_attr, fndecl;
4887
4888 /* Don't bother collecting tm attributes if transactional memory
4889 support is not enabled. */
4890 if (!flag_tm)
4891 return;
4892
4893 /* Process virtual methods first, as they inherit directly from the
4894 base virtual function and also require validation of new attributes. */
4895 if (TYPE_CONTAINS_VPTR_P (t))
4896 {
4897 tree vchain;
4898 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4899 vchain = TREE_CHAIN (vchain))
4900 {
4901 fndecl = BV_FN (vchain);
4902 if (DECL_THUNK_P (fndecl))
4903 fndecl = THUNK_TARGET (fndecl);
4904 set_one_vmethod_tm_attributes (t, fndecl);
4905 }
4906 }
4907
4908 /* If the class doesn't have an attribute, nothing more to do. */
4909 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4910 if (class_tm_attr == NULL)
4911 return;
4912
4913 /* Any method that does not yet have a tm attribute inherits
4914 the one from the class. */
4915 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4916 {
4917 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4918 apply_tm_attr (fndecl, class_tm_attr);
4919 }
4920 }
4921
4922 /* Returns true iff class T has a user-defined constructor other than
4923 the default constructor. */
4924
4925 bool
4926 type_has_user_nondefault_constructor (tree t)
4927 {
4928 tree fns;
4929
4930 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4931 return false;
4932
4933 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4934 {
4935 tree fn = OVL_CURRENT (fns);
4936 if (!DECL_ARTIFICIAL (fn)
4937 && (TREE_CODE (fn) == TEMPLATE_DECL
4938 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4939 != NULL_TREE)))
4940 return true;
4941 }
4942
4943 return false;
4944 }
4945
4946 /* Returns the defaulted constructor if T has one. Otherwise, returns
4947 NULL_TREE. */
4948
4949 tree
4950 in_class_defaulted_default_constructor (tree t)
4951 {
4952 tree fns, args;
4953
4954 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4955 return NULL_TREE;
4956
4957 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4958 {
4959 tree fn = OVL_CURRENT (fns);
4960
4961 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4962 {
4963 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4964 while (args && TREE_PURPOSE (args))
4965 args = TREE_CHAIN (args);
4966 if (!args || args == void_list_node)
4967 return fn;
4968 }
4969 }
4970
4971 return NULL_TREE;
4972 }
4973
4974 /* Returns true iff FN is a user-provided function, i.e. user-declared
4975 and not defaulted at its first declaration; or explicit, private,
4976 protected, or non-const. */
4977
4978 bool
4979 user_provided_p (tree fn)
4980 {
4981 if (TREE_CODE (fn) == TEMPLATE_DECL)
4982 return true;
4983 else
4984 return (!DECL_ARTIFICIAL (fn)
4985 && !(DECL_INITIALIZED_IN_CLASS_P (fn)
4986 && (DECL_DEFAULTED_FN (fn) || DECL_DELETED_FN (fn))));
4987 }
4988
4989 /* Returns true iff class T has a user-provided constructor. */
4990
4991 bool
4992 type_has_user_provided_constructor (tree t)
4993 {
4994 tree fns;
4995
4996 if (!CLASS_TYPE_P (t))
4997 return false;
4998
4999 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
5000 return false;
5001
5002 /* This can happen in error cases; avoid crashing. */
5003 if (!CLASSTYPE_METHOD_VEC (t))
5004 return false;
5005
5006 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5007 if (user_provided_p (OVL_CURRENT (fns)))
5008 return true;
5009
5010 return false;
5011 }
5012
5013 /* Returns true iff class T has a non-user-provided (i.e. implicitly
5014 declared or explicitly defaulted in the class body) default
5015 constructor. */
5016
5017 bool
5018 type_has_non_user_provided_default_constructor (tree t)
5019 {
5020 tree fns;
5021
5022 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (t))
5023 return false;
5024 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5025 return true;
5026
5027 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5028 {
5029 tree fn = OVL_CURRENT (fns);
5030 if (TREE_CODE (fn) == FUNCTION_DECL
5031 && !user_provided_p (fn)
5032 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
5033 return true;
5034 }
5035
5036 return false;
5037 }
5038
5039 /* TYPE is being used as a virtual base, and has a non-trivial move
5040 assignment. Return true if this is due to there being a user-provided
5041 move assignment in TYPE or one of its subobjects; if there isn't, then
5042 multiple move assignment can't cause any harm. */
5043
5044 bool
5045 vbase_has_user_provided_move_assign (tree type)
5046 {
5047 /* Does the type itself have a user-provided move assignment operator? */
5048 for (tree fns
5049 = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR));
5050 fns; fns = OVL_NEXT (fns))
5051 {
5052 tree fn = OVL_CURRENT (fns);
5053 if (move_fn_p (fn) && user_provided_p (fn))
5054 return true;
5055 }
5056
5057 /* Do any of its bases? */
5058 tree binfo = TYPE_BINFO (type);
5059 tree base_binfo;
5060 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5061 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
5062 return true;
5063
5064 /* Or non-static data members? */
5065 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5066 {
5067 if (TREE_CODE (field) == FIELD_DECL
5068 && CLASS_TYPE_P (TREE_TYPE (field))
5069 && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
5070 return true;
5071 }
5072
5073 /* Seems not. */
5074 return false;
5075 }
5076
5077 /* If default-initialization leaves part of TYPE uninitialized, returns
5078 a DECL for the field or TYPE itself (DR 253). */
5079
5080 tree
5081 default_init_uninitialized_part (tree type)
5082 {
5083 tree t, r, binfo;
5084 int i;
5085
5086 type = strip_array_types (type);
5087 if (!CLASS_TYPE_P (type))
5088 return type;
5089 if (!type_has_non_user_provided_default_constructor (type))
5090 return NULL_TREE;
5091 for (binfo = TYPE_BINFO (type), i = 0;
5092 BINFO_BASE_ITERATE (binfo, i, t); ++i)
5093 {
5094 r = default_init_uninitialized_part (BINFO_TYPE (t));
5095 if (r)
5096 return r;
5097 }
5098 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
5099 if (TREE_CODE (t) == FIELD_DECL
5100 && !DECL_ARTIFICIAL (t)
5101 && !DECL_INITIAL (t))
5102 {
5103 r = default_init_uninitialized_part (TREE_TYPE (t));
5104 if (r)
5105 return DECL_P (r) ? r : t;
5106 }
5107
5108 return NULL_TREE;
5109 }
5110
5111 /* Returns true iff for class T, a trivial synthesized default constructor
5112 would be constexpr. */
5113
5114 bool
5115 trivial_default_constructor_is_constexpr (tree t)
5116 {
5117 /* A defaulted trivial default constructor is constexpr
5118 if there is nothing to initialize. */
5119 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
5120 return is_really_empty_class (t);
5121 }
5122
5123 /* Returns true iff class T has a constexpr default constructor. */
5124
5125 bool
5126 type_has_constexpr_default_constructor (tree t)
5127 {
5128 tree fns;
5129
5130 if (!CLASS_TYPE_P (t))
5131 {
5132 /* The caller should have stripped an enclosing array. */
5133 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
5134 return false;
5135 }
5136 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5137 {
5138 if (!TYPE_HAS_COMPLEX_DFLT (t))
5139 return trivial_default_constructor_is_constexpr (t);
5140 /* Non-trivial, we need to check subobject constructors. */
5141 lazily_declare_fn (sfk_constructor, t);
5142 }
5143 fns = locate_ctor (t);
5144 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
5145 }
5146
5147 /* Returns true iff class TYPE has a virtual destructor. */
5148
5149 bool
5150 type_has_virtual_destructor (tree type)
5151 {
5152 tree dtor;
5153
5154 if (!CLASS_TYPE_P (type))
5155 return false;
5156
5157 gcc_assert (COMPLETE_TYPE_P (type));
5158 dtor = CLASSTYPE_DESTRUCTORS (type);
5159 return (dtor && DECL_VIRTUAL_P (dtor));
5160 }
5161
5162 /* Returns true iff class T has a move constructor. */
5163
5164 bool
5165 type_has_move_constructor (tree t)
5166 {
5167 tree fns;
5168
5169 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5170 {
5171 gcc_assert (COMPLETE_TYPE_P (t));
5172 lazily_declare_fn (sfk_move_constructor, t);
5173 }
5174
5175 if (!CLASSTYPE_METHOD_VEC (t))
5176 return false;
5177
5178 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5179 if (move_fn_p (OVL_CURRENT (fns)))
5180 return true;
5181
5182 return false;
5183 }
5184
5185 /* Returns true iff class T has a move assignment operator. */
5186
5187 bool
5188 type_has_move_assign (tree t)
5189 {
5190 tree fns;
5191
5192 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5193 {
5194 gcc_assert (COMPLETE_TYPE_P (t));
5195 lazily_declare_fn (sfk_move_assignment, t);
5196 }
5197
5198 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5199 fns; fns = OVL_NEXT (fns))
5200 if (move_fn_p (OVL_CURRENT (fns)))
5201 return true;
5202
5203 return false;
5204 }
5205
5206 /* Returns true iff class T has a move constructor that was explicitly
5207 declared in the class body. Note that this is different from
5208 "user-provided", which doesn't include functions that are defaulted in
5209 the class. */
5210
5211 bool
5212 type_has_user_declared_move_constructor (tree t)
5213 {
5214 tree fns;
5215
5216 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5217 return false;
5218
5219 if (!CLASSTYPE_METHOD_VEC (t))
5220 return false;
5221
5222 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5223 {
5224 tree fn = OVL_CURRENT (fns);
5225 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5226 return true;
5227 }
5228
5229 return false;
5230 }
5231
5232 /* Returns true iff class T has a move assignment operator that was
5233 explicitly declared in the class body. */
5234
5235 bool
5236 type_has_user_declared_move_assign (tree t)
5237 {
5238 tree fns;
5239
5240 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5241 return false;
5242
5243 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5244 fns; fns = OVL_NEXT (fns))
5245 {
5246 tree fn = OVL_CURRENT (fns);
5247 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5248 return true;
5249 }
5250
5251 return false;
5252 }
5253
5254 /* Nonzero if we need to build up a constructor call when initializing an
5255 object of this class, either because it has a user-declared constructor
5256 or because it doesn't have a default constructor (so we need to give an
5257 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5258 what you care about is whether or not an object can be produced by a
5259 constructor (e.g. so we don't set TREE_READONLY on const variables of
5260 such type); use this function when what you care about is whether or not
5261 to try to call a constructor to create an object. The latter case is
5262 the former plus some cases of constructors that cannot be called. */
5263
5264 bool
5265 type_build_ctor_call (tree t)
5266 {
5267 tree inner;
5268 if (TYPE_NEEDS_CONSTRUCTING (t))
5269 return true;
5270 inner = strip_array_types (t);
5271 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner))
5272 return false;
5273 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner))
5274 return true;
5275 if (cxx_dialect < cxx11)
5276 return false;
5277 /* A user-declared constructor might be private, and a constructor might
5278 be trivial but deleted. */
5279 for (tree fns = lookup_fnfields_slot (inner, complete_ctor_identifier);
5280 fns; fns = OVL_NEXT (fns))
5281 {
5282 tree fn = OVL_CURRENT (fns);
5283 if (!DECL_ARTIFICIAL (fn)
5284 || DECL_DELETED_FN (fn))
5285 return true;
5286 }
5287 return false;
5288 }
5289
5290 /* Like type_build_ctor_call, but for destructors. */
5291
5292 bool
5293 type_build_dtor_call (tree t)
5294 {
5295 tree inner;
5296 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5297 return true;
5298 inner = strip_array_types (t);
5299 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner)
5300 || !COMPLETE_TYPE_P (inner))
5301 return false;
5302 if (cxx_dialect < cxx11)
5303 return false;
5304 /* A user-declared destructor might be private, and a destructor might
5305 be trivial but deleted. */
5306 for (tree fns = lookup_fnfields_slot (inner, complete_dtor_identifier);
5307 fns; fns = OVL_NEXT (fns))
5308 {
5309 tree fn = OVL_CURRENT (fns);
5310 if (!DECL_ARTIFICIAL (fn)
5311 || DECL_DELETED_FN (fn))
5312 return true;
5313 }
5314 return false;
5315 }
5316
5317 /* Remove all zero-width bit-fields from T. */
5318
5319 static void
5320 remove_zero_width_bit_fields (tree t)
5321 {
5322 tree *fieldsp;
5323
5324 fieldsp = &TYPE_FIELDS (t);
5325 while (*fieldsp)
5326 {
5327 if (TREE_CODE (*fieldsp) == FIELD_DECL
5328 && DECL_C_BIT_FIELD (*fieldsp)
5329 /* We should not be confused by the fact that grokbitfield
5330 temporarily sets the width of the bit field into
5331 DECL_INITIAL (*fieldsp).
5332 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5333 to that width. */
5334 && integer_zerop (DECL_SIZE (*fieldsp)))
5335 *fieldsp = DECL_CHAIN (*fieldsp);
5336 else
5337 fieldsp = &DECL_CHAIN (*fieldsp);
5338 }
5339 }
5340
5341 /* Returns TRUE iff we need a cookie when dynamically allocating an
5342 array whose elements have the indicated class TYPE. */
5343
5344 static bool
5345 type_requires_array_cookie (tree type)
5346 {
5347 tree fns;
5348 bool has_two_argument_delete_p = false;
5349
5350 gcc_assert (CLASS_TYPE_P (type));
5351
5352 /* If there's a non-trivial destructor, we need a cookie. In order
5353 to iterate through the array calling the destructor for each
5354 element, we'll have to know how many elements there are. */
5355 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5356 return true;
5357
5358 /* If the usual deallocation function is a two-argument whose second
5359 argument is of type `size_t', then we have to pass the size of
5360 the array to the deallocation function, so we will need to store
5361 a cookie. */
5362 fns = lookup_fnfields (TYPE_BINFO (type),
5363 ansi_opname (VEC_DELETE_EXPR),
5364 /*protect=*/0);
5365 /* If there are no `operator []' members, or the lookup is
5366 ambiguous, then we don't need a cookie. */
5367 if (!fns || fns == error_mark_node)
5368 return false;
5369 /* Loop through all of the functions. */
5370 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5371 {
5372 tree fn;
5373 tree second_parm;
5374
5375 /* Select the current function. */
5376 fn = OVL_CURRENT (fns);
5377 /* See if this function is a one-argument delete function. If
5378 it is, then it will be the usual deallocation function. */
5379 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5380 if (second_parm == void_list_node)
5381 return false;
5382 /* Do not consider this function if its second argument is an
5383 ellipsis. */
5384 if (!second_parm)
5385 continue;
5386 /* Otherwise, if we have a two-argument function and the second
5387 argument is `size_t', it will be the usual deallocation
5388 function -- unless there is one-argument function, too. */
5389 if (TREE_CHAIN (second_parm) == void_list_node
5390 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5391 has_two_argument_delete_p = true;
5392 }
5393
5394 return has_two_argument_delete_p;
5395 }
5396
5397 /* Finish computing the `literal type' property of class type T.
5398
5399 At this point, we have already processed base classes and
5400 non-static data members. We need to check whether the copy
5401 constructor is trivial, the destructor is trivial, and there
5402 is a trivial default constructor or at least one constexpr
5403 constructor other than the copy constructor. */
5404
5405 static void
5406 finalize_literal_type_property (tree t)
5407 {
5408 tree fn;
5409
5410 if (cxx_dialect < cxx11
5411 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5412 CLASSTYPE_LITERAL_P (t) = false;
5413 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5414 && CLASSTYPE_NON_AGGREGATE (t)
5415 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5416 CLASSTYPE_LITERAL_P (t) = false;
5417
5418 if (!CLASSTYPE_LITERAL_P (t))
5419 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5420 if (DECL_DECLARED_CONSTEXPR_P (fn)
5421 && TREE_CODE (fn) != TEMPLATE_DECL
5422 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5423 && !DECL_CONSTRUCTOR_P (fn))
5424 {
5425 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5426 if (!DECL_GENERATED_P (fn))
5427 {
5428 error ("enclosing class of constexpr non-static member "
5429 "function %q+#D is not a literal type", fn);
5430 explain_non_literal_class (t);
5431 }
5432 }
5433 }
5434
5435 /* T is a non-literal type used in a context which requires a constant
5436 expression. Explain why it isn't literal. */
5437
5438 void
5439 explain_non_literal_class (tree t)
5440 {
5441 static hash_set<tree> *diagnosed;
5442
5443 if (!CLASS_TYPE_P (t))
5444 return;
5445 t = TYPE_MAIN_VARIANT (t);
5446
5447 if (diagnosed == NULL)
5448 diagnosed = new hash_set<tree>;
5449 if (diagnosed->add (t))
5450 /* Already explained. */
5451 return;
5452
5453 inform (0, "%q+T is not literal because:", t);
5454 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5455 inform (0, " %q+T has a non-trivial destructor", t);
5456 else if (CLASSTYPE_NON_AGGREGATE (t)
5457 && !TYPE_HAS_TRIVIAL_DFLT (t)
5458 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5459 {
5460 inform (0, " %q+T is not an aggregate, does not have a trivial "
5461 "default constructor, and has no constexpr constructor that "
5462 "is not a copy or move constructor", t);
5463 if (type_has_non_user_provided_default_constructor (t))
5464 {
5465 /* Note that we can't simply call locate_ctor because when the
5466 constructor is deleted it just returns NULL_TREE. */
5467 tree fns;
5468 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5469 {
5470 tree fn = OVL_CURRENT (fns);
5471 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5472
5473 parms = skip_artificial_parms_for (fn, parms);
5474
5475 if (sufficient_parms_p (parms))
5476 {
5477 if (DECL_DELETED_FN (fn))
5478 maybe_explain_implicit_delete (fn);
5479 else
5480 explain_invalid_constexpr_fn (fn);
5481 break;
5482 }
5483 }
5484 }
5485 }
5486 else
5487 {
5488 tree binfo, base_binfo, field; int i;
5489 for (binfo = TYPE_BINFO (t), i = 0;
5490 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5491 {
5492 tree basetype = TREE_TYPE (base_binfo);
5493 if (!CLASSTYPE_LITERAL_P (basetype))
5494 {
5495 inform (0, " base class %qT of %q+T is non-literal",
5496 basetype, t);
5497 explain_non_literal_class (basetype);
5498 return;
5499 }
5500 }
5501 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5502 {
5503 tree ftype;
5504 if (TREE_CODE (field) != FIELD_DECL)
5505 continue;
5506 ftype = TREE_TYPE (field);
5507 if (!literal_type_p (ftype))
5508 {
5509 inform (0, " non-static data member %q+D has "
5510 "non-literal type", field);
5511 if (CLASS_TYPE_P (ftype))
5512 explain_non_literal_class (ftype);
5513 }
5514 if (CP_TYPE_VOLATILE_P (ftype))
5515 inform (0, " non-static data member %q+D has "
5516 "volatile type", field);
5517 }
5518 }
5519 }
5520
5521 /* Check the validity of the bases and members declared in T. Add any
5522 implicitly-generated functions (like copy-constructors and
5523 assignment operators). Compute various flag bits (like
5524 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5525 level: i.e., independently of the ABI in use. */
5526
5527 static void
5528 check_bases_and_members (tree t)
5529 {
5530 /* Nonzero if the implicitly generated copy constructor should take
5531 a non-const reference argument. */
5532 int cant_have_const_ctor;
5533 /* Nonzero if the implicitly generated assignment operator
5534 should take a non-const reference argument. */
5535 int no_const_asn_ref;
5536 tree access_decls;
5537 bool saved_complex_asn_ref;
5538 bool saved_nontrivial_dtor;
5539 tree fn;
5540
5541 /* By default, we use const reference arguments and generate default
5542 constructors. */
5543 cant_have_const_ctor = 0;
5544 no_const_asn_ref = 0;
5545
5546 /* Check all the base-classes. */
5547 check_bases (t, &cant_have_const_ctor,
5548 &no_const_asn_ref);
5549
5550 /* Deduce noexcept on destructors. This needs to happen after we've set
5551 triviality flags appropriately for our bases. */
5552 if (cxx_dialect >= cxx11)
5553 deduce_noexcept_on_destructors (t);
5554
5555 /* Check all the method declarations. */
5556 check_methods (t);
5557
5558 /* Save the initial values of these flags which only indicate whether
5559 or not the class has user-provided functions. As we analyze the
5560 bases and members we can set these flags for other reasons. */
5561 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5562 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5563
5564 /* Check all the data member declarations. We cannot call
5565 check_field_decls until we have called check_bases check_methods,
5566 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5567 being set appropriately. */
5568 check_field_decls (t, &access_decls,
5569 &cant_have_const_ctor,
5570 &no_const_asn_ref);
5571
5572 /* A nearly-empty class has to be vptr-containing; a nearly empty
5573 class contains just a vptr. */
5574 if (!TYPE_CONTAINS_VPTR_P (t))
5575 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5576
5577 /* Do some bookkeeping that will guide the generation of implicitly
5578 declared member functions. */
5579 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5580 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5581 /* We need to call a constructor for this class if it has a
5582 user-provided constructor, or if the default constructor is going
5583 to initialize the vptr. (This is not an if-and-only-if;
5584 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5585 themselves need constructing.) */
5586 TYPE_NEEDS_CONSTRUCTING (t)
5587 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5588 /* [dcl.init.aggr]
5589
5590 An aggregate is an array or a class with no user-provided
5591 constructors ... and no virtual functions.
5592
5593 Again, other conditions for being an aggregate are checked
5594 elsewhere. */
5595 CLASSTYPE_NON_AGGREGATE (t)
5596 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5597 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5598 retain the old definition internally for ABI reasons. */
5599 CLASSTYPE_NON_LAYOUT_POD_P (t)
5600 |= (CLASSTYPE_NON_AGGREGATE (t)
5601 || saved_nontrivial_dtor || saved_complex_asn_ref);
5602 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5603 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5604 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5605 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5606
5607 /* If the only explicitly declared default constructor is user-provided,
5608 set TYPE_HAS_COMPLEX_DFLT. */
5609 if (!TYPE_HAS_COMPLEX_DFLT (t)
5610 && TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5611 && !type_has_non_user_provided_default_constructor (t))
5612 TYPE_HAS_COMPLEX_DFLT (t) = true;
5613
5614 /* Warn if a public base of a polymorphic type has an accessible
5615 non-virtual destructor. It is only now that we know the class is
5616 polymorphic. Although a polymorphic base will have a already
5617 been diagnosed during its definition, we warn on use too. */
5618 if (TYPE_POLYMORPHIC_P (t) && warn_nonvdtor)
5619 {
5620 tree binfo = TYPE_BINFO (t);
5621 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
5622 tree base_binfo;
5623 unsigned i;
5624
5625 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5626 {
5627 tree basetype = TREE_TYPE (base_binfo);
5628
5629 if ((*accesses)[i] == access_public_node
5630 && (TYPE_POLYMORPHIC_P (basetype) || warn_ecpp)
5631 && accessible_nvdtor_p (basetype))
5632 warning (OPT_Wnon_virtual_dtor,
5633 "base class %q#T has accessible non-virtual destructor",
5634 basetype);
5635 }
5636 }
5637
5638 /* If the class has no user-declared constructor, but does have
5639 non-static const or reference data members that can never be
5640 initialized, issue a warning. */
5641 if (warn_uninitialized
5642 /* Classes with user-declared constructors are presumed to
5643 initialize these members. */
5644 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5645 /* Aggregates can be initialized with brace-enclosed
5646 initializers. */
5647 && CLASSTYPE_NON_AGGREGATE (t))
5648 {
5649 tree field;
5650
5651 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5652 {
5653 tree type;
5654
5655 if (TREE_CODE (field) != FIELD_DECL
5656 || DECL_INITIAL (field) != NULL_TREE)
5657 continue;
5658
5659 type = TREE_TYPE (field);
5660 if (TREE_CODE (type) == REFERENCE_TYPE)
5661 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5662 "in class without a constructor", field);
5663 else if (CP_TYPE_CONST_P (type)
5664 && (!CLASS_TYPE_P (type)
5665 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5666 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5667 "in class without a constructor", field);
5668 }
5669 }
5670
5671 /* Synthesize any needed methods. */
5672 add_implicitly_declared_members (t, &access_decls,
5673 cant_have_const_ctor,
5674 no_const_asn_ref);
5675
5676 /* Check defaulted declarations here so we have cant_have_const_ctor
5677 and don't need to worry about clones. */
5678 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5679 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5680 {
5681 int copy = copy_fn_p (fn);
5682 if (copy > 0)
5683 {
5684 bool imp_const_p
5685 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5686 : !no_const_asn_ref);
5687 bool fn_const_p = (copy == 2);
5688
5689 if (fn_const_p && !imp_const_p)
5690 /* If the function is defaulted outside the class, we just
5691 give the synthesis error. */
5692 error ("%q+D declared to take const reference, but implicit "
5693 "declaration would take non-const", fn);
5694 }
5695 defaulted_late_check (fn);
5696 }
5697
5698 if (LAMBDA_TYPE_P (t))
5699 {
5700 /* "This class type is not an aggregate." */
5701 CLASSTYPE_NON_AGGREGATE (t) = 1;
5702 }
5703
5704 /* Compute the 'literal type' property before we
5705 do anything with non-static member functions. */
5706 finalize_literal_type_property (t);
5707
5708 /* Create the in-charge and not-in-charge variants of constructors
5709 and destructors. */
5710 clone_constructors_and_destructors (t);
5711
5712 /* Process the using-declarations. */
5713 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5714 handle_using_decl (TREE_VALUE (access_decls), t);
5715
5716 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5717 finish_struct_methods (t);
5718
5719 /* Figure out whether or not we will need a cookie when dynamically
5720 allocating an array of this type. */
5721 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5722 = type_requires_array_cookie (t);
5723 }
5724
5725 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5726 accordingly. If a new vfield was created (because T doesn't have a
5727 primary base class), then the newly created field is returned. It
5728 is not added to the TYPE_FIELDS list; it is the caller's
5729 responsibility to do that. Accumulate declared virtual functions
5730 on VIRTUALS_P. */
5731
5732 static tree
5733 create_vtable_ptr (tree t, tree* virtuals_p)
5734 {
5735 tree fn;
5736
5737 /* Collect the virtual functions declared in T. */
5738 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5739 if (TREE_CODE (fn) == FUNCTION_DECL
5740 && DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5741 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5742 {
5743 tree new_virtual = make_node (TREE_LIST);
5744
5745 BV_FN (new_virtual) = fn;
5746 BV_DELTA (new_virtual) = integer_zero_node;
5747 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5748
5749 TREE_CHAIN (new_virtual) = *virtuals_p;
5750 *virtuals_p = new_virtual;
5751 }
5752
5753 /* If we couldn't find an appropriate base class, create a new field
5754 here. Even if there weren't any new virtual functions, we might need a
5755 new virtual function table if we're supposed to include vptrs in
5756 all classes that need them. */
5757 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5758 {
5759 /* We build this decl with vtbl_ptr_type_node, which is a
5760 `vtable_entry_type*'. It might seem more precise to use
5761 `vtable_entry_type (*)[N]' where N is the number of virtual
5762 functions. However, that would require the vtable pointer in
5763 base classes to have a different type than the vtable pointer
5764 in derived classes. We could make that happen, but that
5765 still wouldn't solve all the problems. In particular, the
5766 type-based alias analysis code would decide that assignments
5767 to the base class vtable pointer can't alias assignments to
5768 the derived class vtable pointer, since they have different
5769 types. Thus, in a derived class destructor, where the base
5770 class constructor was inlined, we could generate bad code for
5771 setting up the vtable pointer.
5772
5773 Therefore, we use one type for all vtable pointers. We still
5774 use a type-correct type; it's just doesn't indicate the array
5775 bounds. That's better than using `void*' or some such; it's
5776 cleaner, and it let's the alias analysis code know that these
5777 stores cannot alias stores to void*! */
5778 tree field;
5779
5780 field = build_decl (input_location,
5781 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5782 DECL_VIRTUAL_P (field) = 1;
5783 DECL_ARTIFICIAL (field) = 1;
5784 DECL_FIELD_CONTEXT (field) = t;
5785 DECL_FCONTEXT (field) = t;
5786 if (TYPE_PACKED (t))
5787 DECL_PACKED (field) = 1;
5788
5789 TYPE_VFIELD (t) = field;
5790
5791 /* This class is non-empty. */
5792 CLASSTYPE_EMPTY_P (t) = 0;
5793
5794 return field;
5795 }
5796
5797 return NULL_TREE;
5798 }
5799
5800 /* Add OFFSET to all base types of BINFO which is a base in the
5801 hierarchy dominated by T.
5802
5803 OFFSET, which is a type offset, is number of bytes. */
5804
5805 static void
5806 propagate_binfo_offsets (tree binfo, tree offset)
5807 {
5808 int i;
5809 tree primary_binfo;
5810 tree base_binfo;
5811
5812 /* Update BINFO's offset. */
5813 BINFO_OFFSET (binfo)
5814 = convert (sizetype,
5815 size_binop (PLUS_EXPR,
5816 convert (ssizetype, BINFO_OFFSET (binfo)),
5817 offset));
5818
5819 /* Find the primary base class. */
5820 primary_binfo = get_primary_binfo (binfo);
5821
5822 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5823 propagate_binfo_offsets (primary_binfo, offset);
5824
5825 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5826 downwards. */
5827 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5828 {
5829 /* Don't do the primary base twice. */
5830 if (base_binfo == primary_binfo)
5831 continue;
5832
5833 if (BINFO_VIRTUAL_P (base_binfo))
5834 continue;
5835
5836 propagate_binfo_offsets (base_binfo, offset);
5837 }
5838 }
5839
5840 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5841 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5842 empty subobjects of T. */
5843
5844 static void
5845 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5846 {
5847 tree vbase;
5848 tree t = rli->t;
5849 tree *next_field;
5850
5851 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5852 return;
5853
5854 /* Find the last field. The artificial fields created for virtual
5855 bases will go after the last extant field to date. */
5856 next_field = &TYPE_FIELDS (t);
5857 while (*next_field)
5858 next_field = &DECL_CHAIN (*next_field);
5859
5860 /* Go through the virtual bases, allocating space for each virtual
5861 base that is not already a primary base class. These are
5862 allocated in inheritance graph order. */
5863 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5864 {
5865 if (!BINFO_VIRTUAL_P (vbase))
5866 continue;
5867
5868 if (!BINFO_PRIMARY_P (vbase))
5869 {
5870 /* This virtual base is not a primary base of any class in the
5871 hierarchy, so we have to add space for it. */
5872 next_field = build_base_field (rli, vbase,
5873 offsets, next_field);
5874 }
5875 }
5876 }
5877
5878 /* Returns the offset of the byte just past the end of the base class
5879 BINFO. */
5880
5881 static tree
5882 end_of_base (tree binfo)
5883 {
5884 tree size;
5885
5886 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5887 size = TYPE_SIZE_UNIT (char_type_node);
5888 else if (is_empty_class (BINFO_TYPE (binfo)))
5889 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5890 allocate some space for it. It cannot have virtual bases, so
5891 TYPE_SIZE_UNIT is fine. */
5892 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5893 else
5894 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5895
5896 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5897 }
5898
5899 /* Returns the offset of the byte just past the end of the base class
5900 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5901 only non-virtual bases are included. */
5902
5903 static tree
5904 end_of_class (tree t, int include_virtuals_p)
5905 {
5906 tree result = size_zero_node;
5907 vec<tree, va_gc> *vbases;
5908 tree binfo;
5909 tree base_binfo;
5910 tree offset;
5911 int i;
5912
5913 for (binfo = TYPE_BINFO (t), i = 0;
5914 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5915 {
5916 if (!include_virtuals_p
5917 && BINFO_VIRTUAL_P (base_binfo)
5918 && (!BINFO_PRIMARY_P (base_binfo)
5919 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5920 continue;
5921
5922 offset = end_of_base (base_binfo);
5923 if (tree_int_cst_lt (result, offset))
5924 result = offset;
5925 }
5926
5927 if (include_virtuals_p)
5928 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5929 vec_safe_iterate (vbases, i, &base_binfo); i++)
5930 {
5931 offset = end_of_base (base_binfo);
5932 if (tree_int_cst_lt (result, offset))
5933 result = offset;
5934 }
5935
5936 return result;
5937 }
5938
5939 /* Warn about bases of T that are inaccessible because they are
5940 ambiguous. For example:
5941
5942 struct S {};
5943 struct T : public S {};
5944 struct U : public S, public T {};
5945
5946 Here, `(S*) new U' is not allowed because there are two `S'
5947 subobjects of U. */
5948
5949 static void
5950 warn_about_ambiguous_bases (tree t)
5951 {
5952 int i;
5953 vec<tree, va_gc> *vbases;
5954 tree basetype;
5955 tree binfo;
5956 tree base_binfo;
5957
5958 /* If there are no repeated bases, nothing can be ambiguous. */
5959 if (!CLASSTYPE_REPEATED_BASE_P (t))
5960 return;
5961
5962 /* Check direct bases. */
5963 for (binfo = TYPE_BINFO (t), i = 0;
5964 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5965 {
5966 basetype = BINFO_TYPE (base_binfo);
5967
5968 if (!uniquely_derived_from_p (basetype, t))
5969 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5970 basetype, t);
5971 }
5972
5973 /* Check for ambiguous virtual bases. */
5974 if (extra_warnings)
5975 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5976 vec_safe_iterate (vbases, i, &binfo); i++)
5977 {
5978 basetype = BINFO_TYPE (binfo);
5979
5980 if (!uniquely_derived_from_p (basetype, t))
5981 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5982 "to ambiguity", basetype, t);
5983 }
5984 }
5985
5986 /* Compare two INTEGER_CSTs K1 and K2. */
5987
5988 static int
5989 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5990 {
5991 return tree_int_cst_compare ((tree) k1, (tree) k2);
5992 }
5993
5994 /* Increase the size indicated in RLI to account for empty classes
5995 that are "off the end" of the class. */
5996
5997 static void
5998 include_empty_classes (record_layout_info rli)
5999 {
6000 tree eoc;
6001 tree rli_size;
6002
6003 /* It might be the case that we grew the class to allocate a
6004 zero-sized base class. That won't be reflected in RLI, yet,
6005 because we are willing to overlay multiple bases at the same
6006 offset. However, now we need to make sure that RLI is big enough
6007 to reflect the entire class. */
6008 eoc = end_of_class (rli->t,
6009 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
6010 rli_size = rli_size_unit_so_far (rli);
6011 if (TREE_CODE (rli_size) == INTEGER_CST
6012 && tree_int_cst_lt (rli_size, eoc))
6013 {
6014 /* The size should have been rounded to a whole byte. */
6015 gcc_assert (tree_int_cst_equal
6016 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
6017 rli->bitpos
6018 = size_binop (PLUS_EXPR,
6019 rli->bitpos,
6020 size_binop (MULT_EXPR,
6021 convert (bitsizetype,
6022 size_binop (MINUS_EXPR,
6023 eoc, rli_size)),
6024 bitsize_int (BITS_PER_UNIT)));
6025 normalize_rli (rli);
6026 }
6027 }
6028
6029 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
6030 BINFO_OFFSETs for all of the base-classes. Position the vtable
6031 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
6032
6033 static void
6034 layout_class_type (tree t, tree *virtuals_p)
6035 {
6036 tree non_static_data_members;
6037 tree field;
6038 tree vptr;
6039 record_layout_info rli;
6040 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
6041 types that appear at that offset. */
6042 splay_tree empty_base_offsets;
6043 /* True if the last field laid out was a bit-field. */
6044 bool last_field_was_bitfield = false;
6045 /* The location at which the next field should be inserted. */
6046 tree *next_field;
6047 /* T, as a base class. */
6048 tree base_t;
6049
6050 /* Keep track of the first non-static data member. */
6051 non_static_data_members = TYPE_FIELDS (t);
6052
6053 /* Start laying out the record. */
6054 rli = start_record_layout (t);
6055
6056 /* Mark all the primary bases in the hierarchy. */
6057 determine_primary_bases (t);
6058
6059 /* Create a pointer to our virtual function table. */
6060 vptr = create_vtable_ptr (t, virtuals_p);
6061
6062 /* The vptr is always the first thing in the class. */
6063 if (vptr)
6064 {
6065 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
6066 TYPE_FIELDS (t) = vptr;
6067 next_field = &DECL_CHAIN (vptr);
6068 place_field (rli, vptr);
6069 }
6070 else
6071 next_field = &TYPE_FIELDS (t);
6072
6073 /* Build FIELD_DECLs for all of the non-virtual base-types. */
6074 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
6075 NULL, NULL);
6076 build_base_fields (rli, empty_base_offsets, next_field);
6077
6078 /* Layout the non-static data members. */
6079 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
6080 {
6081 tree type;
6082 tree padding;
6083
6084 /* We still pass things that aren't non-static data members to
6085 the back end, in case it wants to do something with them. */
6086 if (TREE_CODE (field) != FIELD_DECL)
6087 {
6088 place_field (rli, field);
6089 /* If the static data member has incomplete type, keep track
6090 of it so that it can be completed later. (The handling
6091 of pending statics in finish_record_layout is
6092 insufficient; consider:
6093
6094 struct S1;
6095 struct S2 { static S1 s1; };
6096
6097 At this point, finish_record_layout will be called, but
6098 S1 is still incomplete.) */
6099 if (VAR_P (field))
6100 {
6101 maybe_register_incomplete_var (field);
6102 /* The visibility of static data members is determined
6103 at their point of declaration, not their point of
6104 definition. */
6105 determine_visibility (field);
6106 }
6107 continue;
6108 }
6109
6110 type = TREE_TYPE (field);
6111 if (type == error_mark_node)
6112 continue;
6113
6114 padding = NULL_TREE;
6115
6116 /* If this field is a bit-field whose width is greater than its
6117 type, then there are some special rules for allocating
6118 it. */
6119 if (DECL_C_BIT_FIELD (field)
6120 && tree_int_cst_lt (TYPE_SIZE (type), DECL_SIZE (field)))
6121 {
6122 unsigned int itk;
6123 tree integer_type;
6124 bool was_unnamed_p = false;
6125 /* We must allocate the bits as if suitably aligned for the
6126 longest integer type that fits in this many bits. type
6127 of the field. Then, we are supposed to use the left over
6128 bits as additional padding. */
6129 for (itk = itk_char; itk != itk_none; ++itk)
6130 if (integer_types[itk] != NULL_TREE
6131 && (tree_int_cst_lt (size_int (MAX_FIXED_MODE_SIZE),
6132 TYPE_SIZE (integer_types[itk]))
6133 || tree_int_cst_lt (DECL_SIZE (field),
6134 TYPE_SIZE (integer_types[itk]))))
6135 break;
6136
6137 /* ITK now indicates a type that is too large for the
6138 field. We have to back up by one to find the largest
6139 type that fits. */
6140 do
6141 {
6142 --itk;
6143 integer_type = integer_types[itk];
6144 } while (itk > 0 && integer_type == NULL_TREE);
6145
6146 /* Figure out how much additional padding is required. */
6147 if (tree_int_cst_lt (TYPE_SIZE (integer_type), DECL_SIZE (field)))
6148 {
6149 if (TREE_CODE (t) == UNION_TYPE)
6150 /* In a union, the padding field must have the full width
6151 of the bit-field; all fields start at offset zero. */
6152 padding = DECL_SIZE (field);
6153 else
6154 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
6155 TYPE_SIZE (integer_type));
6156 }
6157 #ifdef PCC_BITFIELD_TYPE_MATTERS
6158 /* An unnamed bitfield does not normally affect the
6159 alignment of the containing class on a target where
6160 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
6161 make any exceptions for unnamed bitfields when the
6162 bitfields are longer than their types. Therefore, we
6163 temporarily give the field a name. */
6164 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
6165 {
6166 was_unnamed_p = true;
6167 DECL_NAME (field) = make_anon_name ();
6168 }
6169 #endif
6170 DECL_SIZE (field) = TYPE_SIZE (integer_type);
6171 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
6172 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
6173 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6174 empty_base_offsets);
6175 if (was_unnamed_p)
6176 DECL_NAME (field) = NULL_TREE;
6177 /* Now that layout has been performed, set the size of the
6178 field to the size of its declared type; the rest of the
6179 field is effectively invisible. */
6180 DECL_SIZE (field) = TYPE_SIZE (type);
6181 /* We must also reset the DECL_MODE of the field. */
6182 DECL_MODE (field) = TYPE_MODE (type);
6183 }
6184 else
6185 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6186 empty_base_offsets);
6187
6188 /* Remember the location of any empty classes in FIELD. */
6189 record_subobject_offsets (TREE_TYPE (field),
6190 byte_position(field),
6191 empty_base_offsets,
6192 /*is_data_member=*/true);
6193
6194 /* If a bit-field does not immediately follow another bit-field,
6195 and yet it starts in the middle of a byte, we have failed to
6196 comply with the ABI. */
6197 if (warn_abi
6198 && DECL_C_BIT_FIELD (field)
6199 /* The TREE_NO_WARNING flag gets set by Objective-C when
6200 laying out an Objective-C class. The ObjC ABI differs
6201 from the C++ ABI, and so we do not want a warning
6202 here. */
6203 && !TREE_NO_WARNING (field)
6204 && !last_field_was_bitfield
6205 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6206 DECL_FIELD_BIT_OFFSET (field),
6207 bitsize_unit_node)))
6208 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
6209 "change in a future version of GCC", field);
6210
6211 /* The middle end uses the type of expressions to determine the
6212 possible range of expression values. In order to optimize
6213 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6214 must be made aware of the width of "i", via its type.
6215
6216 Because C++ does not have integer types of arbitrary width,
6217 we must (for the purposes of the front end) convert from the
6218 type assigned here to the declared type of the bitfield
6219 whenever a bitfield expression is used as an rvalue.
6220 Similarly, when assigning a value to a bitfield, the value
6221 must be converted to the type given the bitfield here. */
6222 if (DECL_C_BIT_FIELD (field))
6223 {
6224 unsigned HOST_WIDE_INT width;
6225 tree ftype = TREE_TYPE (field);
6226 width = tree_to_uhwi (DECL_SIZE (field));
6227 if (width != TYPE_PRECISION (ftype))
6228 {
6229 TREE_TYPE (field)
6230 = c_build_bitfield_integer_type (width,
6231 TYPE_UNSIGNED (ftype));
6232 TREE_TYPE (field)
6233 = cp_build_qualified_type (TREE_TYPE (field),
6234 cp_type_quals (ftype));
6235 }
6236 }
6237
6238 /* If we needed additional padding after this field, add it
6239 now. */
6240 if (padding)
6241 {
6242 tree padding_field;
6243
6244 padding_field = build_decl (input_location,
6245 FIELD_DECL,
6246 NULL_TREE,
6247 char_type_node);
6248 DECL_BIT_FIELD (padding_field) = 1;
6249 DECL_SIZE (padding_field) = padding;
6250 DECL_CONTEXT (padding_field) = t;
6251 DECL_ARTIFICIAL (padding_field) = 1;
6252 DECL_IGNORED_P (padding_field) = 1;
6253 layout_nonempty_base_or_field (rli, padding_field,
6254 NULL_TREE,
6255 empty_base_offsets);
6256 }
6257
6258 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6259 }
6260
6261 if (!integer_zerop (rli->bitpos))
6262 {
6263 /* Make sure that we are on a byte boundary so that the size of
6264 the class without virtual bases will always be a round number
6265 of bytes. */
6266 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6267 normalize_rli (rli);
6268 }
6269
6270 /* Delete all zero-width bit-fields from the list of fields. Now
6271 that the type is laid out they are no longer important. */
6272 remove_zero_width_bit_fields (t);
6273
6274 /* Create the version of T used for virtual bases. We do not use
6275 make_class_type for this version; this is an artificial type. For
6276 a POD type, we just reuse T. */
6277 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6278 {
6279 base_t = make_node (TREE_CODE (t));
6280
6281 /* Set the size and alignment for the new type. */
6282 tree eoc;
6283
6284 /* If the ABI version is not at least two, and the last
6285 field was a bit-field, RLI may not be on a byte
6286 boundary. In particular, rli_size_unit_so_far might
6287 indicate the last complete byte, while rli_size_so_far
6288 indicates the total number of bits used. Therefore,
6289 rli_size_so_far, rather than rli_size_unit_so_far, is
6290 used to compute TYPE_SIZE_UNIT. */
6291 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6292 TYPE_SIZE_UNIT (base_t)
6293 = size_binop (MAX_EXPR,
6294 convert (sizetype,
6295 size_binop (CEIL_DIV_EXPR,
6296 rli_size_so_far (rli),
6297 bitsize_int (BITS_PER_UNIT))),
6298 eoc);
6299 TYPE_SIZE (base_t)
6300 = size_binop (MAX_EXPR,
6301 rli_size_so_far (rli),
6302 size_binop (MULT_EXPR,
6303 convert (bitsizetype, eoc),
6304 bitsize_int (BITS_PER_UNIT)));
6305 TYPE_ALIGN (base_t) = rli->record_align;
6306 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6307
6308 /* Copy the fields from T. */
6309 next_field = &TYPE_FIELDS (base_t);
6310 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6311 if (TREE_CODE (field) == FIELD_DECL)
6312 {
6313 *next_field = build_decl (input_location,
6314 FIELD_DECL,
6315 DECL_NAME (field),
6316 TREE_TYPE (field));
6317 DECL_CONTEXT (*next_field) = base_t;
6318 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6319 DECL_FIELD_BIT_OFFSET (*next_field)
6320 = DECL_FIELD_BIT_OFFSET (field);
6321 DECL_SIZE (*next_field) = DECL_SIZE (field);
6322 DECL_MODE (*next_field) = DECL_MODE (field);
6323 next_field = &DECL_CHAIN (*next_field);
6324 }
6325
6326 /* Record the base version of the type. */
6327 CLASSTYPE_AS_BASE (t) = base_t;
6328 TYPE_CONTEXT (base_t) = t;
6329 }
6330 else
6331 CLASSTYPE_AS_BASE (t) = t;
6332
6333 /* Every empty class contains an empty class. */
6334 if (CLASSTYPE_EMPTY_P (t))
6335 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6336
6337 /* Set the TYPE_DECL for this type to contain the right
6338 value for DECL_OFFSET, so that we can use it as part
6339 of a COMPONENT_REF for multiple inheritance. */
6340 layout_decl (TYPE_MAIN_DECL (t), 0);
6341
6342 /* Now fix up any virtual base class types that we left lying
6343 around. We must get these done before we try to lay out the
6344 virtual function table. As a side-effect, this will remove the
6345 base subobject fields. */
6346 layout_virtual_bases (rli, empty_base_offsets);
6347
6348 /* Make sure that empty classes are reflected in RLI at this
6349 point. */
6350 include_empty_classes(rli);
6351
6352 /* Make sure not to create any structures with zero size. */
6353 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6354 place_field (rli,
6355 build_decl (input_location,
6356 FIELD_DECL, NULL_TREE, char_type_node));
6357
6358 /* If this is a non-POD, declaring it packed makes a difference to how it
6359 can be used as a field; don't let finalize_record_size undo it. */
6360 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6361 rli->packed_maybe_necessary = true;
6362
6363 /* Let the back end lay out the type. */
6364 finish_record_layout (rli, /*free_p=*/true);
6365
6366 if (TYPE_SIZE_UNIT (t)
6367 && TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST
6368 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t))
6369 && !valid_constant_size_p (TYPE_SIZE_UNIT (t)))
6370 error ("type %qT is too large", t);
6371
6372 /* Warn about bases that can't be talked about due to ambiguity. */
6373 warn_about_ambiguous_bases (t);
6374
6375 /* Now that we're done with layout, give the base fields the real types. */
6376 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6377 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6378 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6379
6380 /* Clean up. */
6381 splay_tree_delete (empty_base_offsets);
6382
6383 if (CLASSTYPE_EMPTY_P (t)
6384 && tree_int_cst_lt (sizeof_biggest_empty_class,
6385 TYPE_SIZE_UNIT (t)))
6386 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6387 }
6388
6389 /* Determine the "key method" for the class type indicated by TYPE,
6390 and set CLASSTYPE_KEY_METHOD accordingly. */
6391
6392 void
6393 determine_key_method (tree type)
6394 {
6395 tree method;
6396
6397 if (TYPE_FOR_JAVA (type)
6398 || processing_template_decl
6399 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6400 || CLASSTYPE_INTERFACE_KNOWN (type))
6401 return;
6402
6403 /* The key method is the first non-pure virtual function that is not
6404 inline at the point of class definition. On some targets the
6405 key function may not be inline; those targets should not call
6406 this function until the end of the translation unit. */
6407 for (method = TYPE_METHODS (type); method != NULL_TREE;
6408 method = DECL_CHAIN (method))
6409 if (TREE_CODE (method) == FUNCTION_DECL
6410 && DECL_VINDEX (method) != NULL_TREE
6411 && ! DECL_DECLARED_INLINE_P (method)
6412 && ! DECL_PURE_VIRTUAL_P (method))
6413 {
6414 CLASSTYPE_KEY_METHOD (type) = method;
6415 break;
6416 }
6417
6418 return;
6419 }
6420
6421
6422 /* Allocate and return an instance of struct sorted_fields_type with
6423 N fields. */
6424
6425 static struct sorted_fields_type *
6426 sorted_fields_type_new (int n)
6427 {
6428 struct sorted_fields_type *sft;
6429 sft = (sorted_fields_type *) ggc_internal_alloc (sizeof (sorted_fields_type)
6430 + n * sizeof (tree));
6431 sft->len = n;
6432
6433 return sft;
6434 }
6435
6436
6437 /* Perform processing required when the definition of T (a class type)
6438 is complete. */
6439
6440 void
6441 finish_struct_1 (tree t)
6442 {
6443 tree x;
6444 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6445 tree virtuals = NULL_TREE;
6446
6447 if (COMPLETE_TYPE_P (t))
6448 {
6449 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6450 error ("redefinition of %q#T", t);
6451 popclass ();
6452 return;
6453 }
6454
6455 /* If this type was previously laid out as a forward reference,
6456 make sure we lay it out again. */
6457 TYPE_SIZE (t) = NULL_TREE;
6458 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6459
6460 /* Make assumptions about the class; we'll reset the flags if
6461 necessary. */
6462 CLASSTYPE_EMPTY_P (t) = 1;
6463 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6464 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6465 CLASSTYPE_LITERAL_P (t) = true;
6466
6467 /* Do end-of-class semantic processing: checking the validity of the
6468 bases and members and add implicitly generated methods. */
6469 check_bases_and_members (t);
6470
6471 /* Find the key method. */
6472 if (TYPE_CONTAINS_VPTR_P (t))
6473 {
6474 /* The Itanium C++ ABI permits the key method to be chosen when
6475 the class is defined -- even though the key method so
6476 selected may later turn out to be an inline function. On
6477 some systems (such as ARM Symbian OS) the key method cannot
6478 be determined until the end of the translation unit. On such
6479 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6480 will cause the class to be added to KEYED_CLASSES. Then, in
6481 finish_file we will determine the key method. */
6482 if (targetm.cxx.key_method_may_be_inline ())
6483 determine_key_method (t);
6484
6485 /* If a polymorphic class has no key method, we may emit the vtable
6486 in every translation unit where the class definition appears. If
6487 we're devirtualizing, we can look into the vtable even if we
6488 aren't emitting it. */
6489 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6490 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6491 }
6492
6493 /* Layout the class itself. */
6494 layout_class_type (t, &virtuals);
6495 if (CLASSTYPE_AS_BASE (t) != t)
6496 /* We use the base type for trivial assignments, and hence it
6497 needs a mode. */
6498 compute_record_mode (CLASSTYPE_AS_BASE (t));
6499
6500 virtuals = modify_all_vtables (t, nreverse (virtuals));
6501
6502 /* If necessary, create the primary vtable for this class. */
6503 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6504 {
6505 /* We must enter these virtuals into the table. */
6506 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6507 build_primary_vtable (NULL_TREE, t);
6508 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6509 /* Here we know enough to change the type of our virtual
6510 function table, but we will wait until later this function. */
6511 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6512
6513 /* If we're warning about ABI tags, check the types of the new
6514 virtual functions. */
6515 if (warn_abi_tag)
6516 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6517 check_abi_tags (t, TREE_VALUE (v));
6518 }
6519
6520 if (TYPE_CONTAINS_VPTR_P (t))
6521 {
6522 int vindex;
6523 tree fn;
6524
6525 if (BINFO_VTABLE (TYPE_BINFO (t)))
6526 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6527 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6528 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6529
6530 /* Add entries for virtual functions introduced by this class. */
6531 BINFO_VIRTUALS (TYPE_BINFO (t))
6532 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6533
6534 /* Set DECL_VINDEX for all functions declared in this class. */
6535 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6536 fn;
6537 fn = TREE_CHAIN (fn),
6538 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6539 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6540 {
6541 tree fndecl = BV_FN (fn);
6542
6543 if (DECL_THUNK_P (fndecl))
6544 /* A thunk. We should never be calling this entry directly
6545 from this vtable -- we'd use the entry for the non
6546 thunk base function. */
6547 DECL_VINDEX (fndecl) = NULL_TREE;
6548 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6549 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6550 }
6551 }
6552
6553 finish_struct_bits (t);
6554 set_method_tm_attributes (t);
6555
6556 /* Complete the rtl for any static member objects of the type we're
6557 working on. */
6558 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6559 if (VAR_P (x) && TREE_STATIC (x)
6560 && TREE_TYPE (x) != error_mark_node
6561 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6562 DECL_MODE (x) = TYPE_MODE (t);
6563
6564 /* Done with FIELDS...now decide whether to sort these for
6565 faster lookups later.
6566
6567 We use a small number because most searches fail (succeeding
6568 ultimately as the search bores through the inheritance
6569 hierarchy), and we want this failure to occur quickly. */
6570
6571 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6572
6573 /* Complain if one of the field types requires lower visibility. */
6574 constrain_class_visibility (t);
6575
6576 /* Make the rtl for any new vtables we have created, and unmark
6577 the base types we marked. */
6578 finish_vtbls (t);
6579
6580 /* Build the VTT for T. */
6581 build_vtt (t);
6582
6583 /* This warning does not make sense for Java classes, since they
6584 cannot have destructors. */
6585 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor
6586 && TYPE_POLYMORPHIC_P (t) && accessible_nvdtor_p (t)
6587 && !CLASSTYPE_FINAL (t))
6588 warning (OPT_Wnon_virtual_dtor,
6589 "%q#T has virtual functions and accessible"
6590 " non-virtual destructor", t);
6591
6592 complete_vars (t);
6593
6594 if (warn_overloaded_virtual)
6595 warn_hidden (t);
6596
6597 /* Class layout, assignment of virtual table slots, etc., is now
6598 complete. Give the back end a chance to tweak the visibility of
6599 the class or perform any other required target modifications. */
6600 targetm.cxx.adjust_class_at_definition (t);
6601
6602 maybe_suppress_debug_info (t);
6603
6604 if (flag_vtable_verify)
6605 vtv_save_class_info (t);
6606
6607 dump_class_hierarchy (t);
6608
6609 /* Finish debugging output for this type. */
6610 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6611
6612 if (TYPE_TRANSPARENT_AGGR (t))
6613 {
6614 tree field = first_field (t);
6615 if (field == NULL_TREE || error_operand_p (field))
6616 {
6617 error ("type transparent %q#T does not have any fields", t);
6618 TYPE_TRANSPARENT_AGGR (t) = 0;
6619 }
6620 else if (DECL_ARTIFICIAL (field))
6621 {
6622 if (DECL_FIELD_IS_BASE (field))
6623 error ("type transparent class %qT has base classes", t);
6624 else
6625 {
6626 gcc_checking_assert (DECL_VIRTUAL_P (field));
6627 error ("type transparent class %qT has virtual functions", t);
6628 }
6629 TYPE_TRANSPARENT_AGGR (t) = 0;
6630 }
6631 else if (TYPE_MODE (t) != DECL_MODE (field))
6632 {
6633 error ("type transparent %q#T cannot be made transparent because "
6634 "the type of the first field has a different ABI from the "
6635 "class overall", t);
6636 TYPE_TRANSPARENT_AGGR (t) = 0;
6637 }
6638 }
6639 }
6640
6641 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6642 equal to THRESHOLD or greater than THRESHOLD. */
6643
6644 static void
6645 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6646 {
6647 int n_fields = count_fields (fields);
6648 if (n_fields >= threshold)
6649 {
6650 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6651 add_fields_to_record_type (fields, field_vec, 0);
6652 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6653 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6654 }
6655 }
6656
6657 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6658
6659 void
6660 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6661 {
6662 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6663 if (sorted_fields)
6664 {
6665 int i;
6666 int n_fields
6667 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6668 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6669
6670 for (i = 0; i < sorted_fields->len; ++i)
6671 field_vec->elts[i] = sorted_fields->elts[i];
6672
6673 add_enum_fields_to_record_type (enumtype, field_vec,
6674 sorted_fields->len);
6675 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6676 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6677 }
6678 }
6679
6680 /* When T was built up, the member declarations were added in reverse
6681 order. Rearrange them to declaration order. */
6682
6683 void
6684 unreverse_member_declarations (tree t)
6685 {
6686 tree next;
6687 tree prev;
6688 tree x;
6689
6690 /* The following lists are all in reverse order. Put them in
6691 declaration order now. */
6692 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6693 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6694
6695 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6696 reverse order, so we can't just use nreverse. */
6697 prev = NULL_TREE;
6698 for (x = TYPE_FIELDS (t);
6699 x && TREE_CODE (x) != TYPE_DECL;
6700 x = next)
6701 {
6702 next = DECL_CHAIN (x);
6703 DECL_CHAIN (x) = prev;
6704 prev = x;
6705 }
6706 if (prev)
6707 {
6708 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6709 if (prev)
6710 TYPE_FIELDS (t) = prev;
6711 }
6712 }
6713
6714 tree
6715 finish_struct (tree t, tree attributes)
6716 {
6717 location_t saved_loc = input_location;
6718
6719 /* Now that we've got all the field declarations, reverse everything
6720 as necessary. */
6721 unreverse_member_declarations (t);
6722
6723 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6724
6725 /* Nadger the current location so that diagnostics point to the start of
6726 the struct, not the end. */
6727 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6728
6729 if (processing_template_decl)
6730 {
6731 tree x;
6732
6733 finish_struct_methods (t);
6734 TYPE_SIZE (t) = bitsize_zero_node;
6735 TYPE_SIZE_UNIT (t) = size_zero_node;
6736
6737 /* We need to emit an error message if this type was used as a parameter
6738 and it is an abstract type, even if it is a template. We construct
6739 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6740 account and we call complete_vars with this type, which will check
6741 the PARM_DECLS. Note that while the type is being defined,
6742 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6743 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6744 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6745 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6746 if (DECL_PURE_VIRTUAL_P (x))
6747 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6748 complete_vars (t);
6749 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6750 an enclosing scope is a template class, so that this function be
6751 found by lookup_fnfields_1 when the using declaration is not
6752 instantiated yet. */
6753 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6754 if (TREE_CODE (x) == USING_DECL)
6755 {
6756 tree fn = strip_using_decl (x);
6757 if (is_overloaded_fn (fn))
6758 for (; fn; fn = OVL_NEXT (fn))
6759 add_method (t, OVL_CURRENT (fn), x);
6760 }
6761
6762 /* Remember current #pragma pack value. */
6763 TYPE_PRECISION (t) = maximum_field_alignment;
6764
6765 /* Fix up any variants we've already built. */
6766 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6767 {
6768 TYPE_SIZE (x) = TYPE_SIZE (t);
6769 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6770 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6771 TYPE_METHODS (x) = TYPE_METHODS (t);
6772 }
6773 }
6774 else
6775 finish_struct_1 (t);
6776
6777 if (is_std_init_list (t))
6778 {
6779 /* People keep complaining that the compiler crashes on an invalid
6780 definition of initializer_list, so I guess we should explicitly
6781 reject it. What the compiler internals care about is that it's a
6782 template and has a pointer field followed by an integer field. */
6783 bool ok = false;
6784 if (processing_template_decl)
6785 {
6786 tree f = next_initializable_field (TYPE_FIELDS (t));
6787 if (f && TREE_CODE (TREE_TYPE (f)) == POINTER_TYPE)
6788 {
6789 f = next_initializable_field (DECL_CHAIN (f));
6790 if (f && TREE_CODE (TREE_TYPE (f)) == INTEGER_TYPE)
6791 ok = true;
6792 }
6793 }
6794 if (!ok)
6795 fatal_error ("definition of std::initializer_list does not match "
6796 "#include <initializer_list>");
6797 }
6798
6799 input_location = saved_loc;
6800
6801 TYPE_BEING_DEFINED (t) = 0;
6802
6803 if (current_class_type)
6804 popclass ();
6805 else
6806 error ("trying to finish struct, but kicked out due to previous parse errors");
6807
6808 if (processing_template_decl && at_function_scope_p ()
6809 /* Lambdas are defined by the LAMBDA_EXPR. */
6810 && !LAMBDA_TYPE_P (t))
6811 add_stmt (build_min (TAG_DEFN, t));
6812
6813 return t;
6814 }
6815 \f
6816 /* Hash table to avoid endless recursion when handling references. */
6817 static hash_table<pointer_hash<tree_node> > *fixed_type_or_null_ref_ht;
6818
6819 /* Return the dynamic type of INSTANCE, if known.
6820 Used to determine whether the virtual function table is needed
6821 or not.
6822
6823 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6824 of our knowledge of its type. *NONNULL should be initialized
6825 before this function is called. */
6826
6827 static tree
6828 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6829 {
6830 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6831
6832 switch (TREE_CODE (instance))
6833 {
6834 case INDIRECT_REF:
6835 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6836 return NULL_TREE;
6837 else
6838 return RECUR (TREE_OPERAND (instance, 0));
6839
6840 case CALL_EXPR:
6841 /* This is a call to a constructor, hence it's never zero. */
6842 if (TREE_HAS_CONSTRUCTOR (instance))
6843 {
6844 if (nonnull)
6845 *nonnull = 1;
6846 return TREE_TYPE (instance);
6847 }
6848 return NULL_TREE;
6849
6850 case SAVE_EXPR:
6851 /* This is a call to a constructor, hence it's never zero. */
6852 if (TREE_HAS_CONSTRUCTOR (instance))
6853 {
6854 if (nonnull)
6855 *nonnull = 1;
6856 return TREE_TYPE (instance);
6857 }
6858 return RECUR (TREE_OPERAND (instance, 0));
6859
6860 case POINTER_PLUS_EXPR:
6861 case PLUS_EXPR:
6862 case MINUS_EXPR:
6863 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6864 return RECUR (TREE_OPERAND (instance, 0));
6865 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6866 /* Propagate nonnull. */
6867 return RECUR (TREE_OPERAND (instance, 0));
6868
6869 return NULL_TREE;
6870
6871 CASE_CONVERT:
6872 return RECUR (TREE_OPERAND (instance, 0));
6873
6874 case ADDR_EXPR:
6875 instance = TREE_OPERAND (instance, 0);
6876 if (nonnull)
6877 {
6878 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6879 with a real object -- given &p->f, p can still be null. */
6880 tree t = get_base_address (instance);
6881 /* ??? Probably should check DECL_WEAK here. */
6882 if (t && DECL_P (t))
6883 *nonnull = 1;
6884 }
6885 return RECUR (instance);
6886
6887 case COMPONENT_REF:
6888 /* If this component is really a base class reference, then the field
6889 itself isn't definitive. */
6890 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6891 return RECUR (TREE_OPERAND (instance, 0));
6892 return RECUR (TREE_OPERAND (instance, 1));
6893
6894 case VAR_DECL:
6895 case FIELD_DECL:
6896 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6897 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6898 {
6899 if (nonnull)
6900 *nonnull = 1;
6901 return TREE_TYPE (TREE_TYPE (instance));
6902 }
6903 /* fall through... */
6904 case TARGET_EXPR:
6905 case PARM_DECL:
6906 case RESULT_DECL:
6907 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6908 {
6909 if (nonnull)
6910 *nonnull = 1;
6911 return TREE_TYPE (instance);
6912 }
6913 else if (instance == current_class_ptr)
6914 {
6915 if (nonnull)
6916 *nonnull = 1;
6917
6918 /* if we're in a ctor or dtor, we know our type. If
6919 current_class_ptr is set but we aren't in a function, we're in
6920 an NSDMI (and therefore a constructor). */
6921 if (current_scope () != current_function_decl
6922 || (DECL_LANG_SPECIFIC (current_function_decl)
6923 && (DECL_CONSTRUCTOR_P (current_function_decl)
6924 || DECL_DESTRUCTOR_P (current_function_decl))))
6925 {
6926 if (cdtorp)
6927 *cdtorp = 1;
6928 return TREE_TYPE (TREE_TYPE (instance));
6929 }
6930 }
6931 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6932 {
6933 /* We only need one hash table because it is always left empty. */
6934 if (!fixed_type_or_null_ref_ht)
6935 fixed_type_or_null_ref_ht
6936 = new hash_table<pointer_hash<tree_node> > (37);
6937
6938 /* Reference variables should be references to objects. */
6939 if (nonnull)
6940 *nonnull = 1;
6941
6942 /* Enter the INSTANCE in a table to prevent recursion; a
6943 variable's initializer may refer to the variable
6944 itself. */
6945 if (VAR_P (instance)
6946 && DECL_INITIAL (instance)
6947 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6948 && !fixed_type_or_null_ref_ht->find (instance))
6949 {
6950 tree type;
6951 tree_node **slot;
6952
6953 slot = fixed_type_or_null_ref_ht->find_slot (instance, INSERT);
6954 *slot = instance;
6955 type = RECUR (DECL_INITIAL (instance));
6956 fixed_type_or_null_ref_ht->remove_elt (instance);
6957
6958 return type;
6959 }
6960 }
6961 return NULL_TREE;
6962
6963 default:
6964 return NULL_TREE;
6965 }
6966 #undef RECUR
6967 }
6968
6969 /* Return nonzero if the dynamic type of INSTANCE is known, and
6970 equivalent to the static type. We also handle the case where
6971 INSTANCE is really a pointer. Return negative if this is a
6972 ctor/dtor. There the dynamic type is known, but this might not be
6973 the most derived base of the original object, and hence virtual
6974 bases may not be laid out according to this type.
6975
6976 Used to determine whether the virtual function table is needed
6977 or not.
6978
6979 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6980 of our knowledge of its type. *NONNULL should be initialized
6981 before this function is called. */
6982
6983 int
6984 resolves_to_fixed_type_p (tree instance, int* nonnull)
6985 {
6986 tree t = TREE_TYPE (instance);
6987 int cdtorp = 0;
6988 tree fixed;
6989
6990 /* processing_template_decl can be false in a template if we're in
6991 instantiate_non_dependent_expr, but we still want to suppress
6992 this check. */
6993 if (in_template_function ())
6994 {
6995 /* In a template we only care about the type of the result. */
6996 if (nonnull)
6997 *nonnull = true;
6998 return true;
6999 }
7000
7001 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
7002 if (fixed == NULL_TREE)
7003 return 0;
7004 if (POINTER_TYPE_P (t))
7005 t = TREE_TYPE (t);
7006 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
7007 return 0;
7008 return cdtorp ? -1 : 1;
7009 }
7010
7011 \f
7012 void
7013 init_class_processing (void)
7014 {
7015 current_class_depth = 0;
7016 current_class_stack_size = 10;
7017 current_class_stack
7018 = XNEWVEC (struct class_stack_node, current_class_stack_size);
7019 vec_alloc (local_classes, 8);
7020 sizeof_biggest_empty_class = size_zero_node;
7021
7022 ridpointers[(int) RID_PUBLIC] = access_public_node;
7023 ridpointers[(int) RID_PRIVATE] = access_private_node;
7024 ridpointers[(int) RID_PROTECTED] = access_protected_node;
7025 }
7026
7027 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
7028
7029 static void
7030 restore_class_cache (void)
7031 {
7032 tree type;
7033
7034 /* We are re-entering the same class we just left, so we don't
7035 have to search the whole inheritance matrix to find all the
7036 decls to bind again. Instead, we install the cached
7037 class_shadowed list and walk through it binding names. */
7038 push_binding_level (previous_class_level);
7039 class_binding_level = previous_class_level;
7040 /* Restore IDENTIFIER_TYPE_VALUE. */
7041 for (type = class_binding_level->type_shadowed;
7042 type;
7043 type = TREE_CHAIN (type))
7044 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
7045 }
7046
7047 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
7048 appropriate for TYPE.
7049
7050 So that we may avoid calls to lookup_name, we cache the _TYPE
7051 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
7052
7053 For multiple inheritance, we perform a two-pass depth-first search
7054 of the type lattice. */
7055
7056 void
7057 pushclass (tree type)
7058 {
7059 class_stack_node_t csn;
7060
7061 type = TYPE_MAIN_VARIANT (type);
7062
7063 /* Make sure there is enough room for the new entry on the stack. */
7064 if (current_class_depth + 1 >= current_class_stack_size)
7065 {
7066 current_class_stack_size *= 2;
7067 current_class_stack
7068 = XRESIZEVEC (struct class_stack_node, current_class_stack,
7069 current_class_stack_size);
7070 }
7071
7072 /* Insert a new entry on the class stack. */
7073 csn = current_class_stack + current_class_depth;
7074 csn->name = current_class_name;
7075 csn->type = current_class_type;
7076 csn->access = current_access_specifier;
7077 csn->names_used = 0;
7078 csn->hidden = 0;
7079 current_class_depth++;
7080
7081 /* Now set up the new type. */
7082 current_class_name = TYPE_NAME (type);
7083 if (TREE_CODE (current_class_name) == TYPE_DECL)
7084 current_class_name = DECL_NAME (current_class_name);
7085 current_class_type = type;
7086
7087 /* By default, things in classes are private, while things in
7088 structures or unions are public. */
7089 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
7090 ? access_private_node
7091 : access_public_node);
7092
7093 if (previous_class_level
7094 && type != previous_class_level->this_entity
7095 && current_class_depth == 1)
7096 {
7097 /* Forcibly remove any old class remnants. */
7098 invalidate_class_lookup_cache ();
7099 }
7100
7101 if (!previous_class_level
7102 || type != previous_class_level->this_entity
7103 || current_class_depth > 1)
7104 pushlevel_class ();
7105 else
7106 restore_class_cache ();
7107 }
7108
7109 /* When we exit a toplevel class scope, we save its binding level so
7110 that we can restore it quickly. Here, we've entered some other
7111 class, so we must invalidate our cache. */
7112
7113 void
7114 invalidate_class_lookup_cache (void)
7115 {
7116 previous_class_level = NULL;
7117 }
7118
7119 /* Get out of the current class scope. If we were in a class scope
7120 previously, that is the one popped to. */
7121
7122 void
7123 popclass (void)
7124 {
7125 poplevel_class ();
7126
7127 current_class_depth--;
7128 current_class_name = current_class_stack[current_class_depth].name;
7129 current_class_type = current_class_stack[current_class_depth].type;
7130 current_access_specifier = current_class_stack[current_class_depth].access;
7131 if (current_class_stack[current_class_depth].names_used)
7132 splay_tree_delete (current_class_stack[current_class_depth].names_used);
7133 }
7134
7135 /* Mark the top of the class stack as hidden. */
7136
7137 void
7138 push_class_stack (void)
7139 {
7140 if (current_class_depth)
7141 ++current_class_stack[current_class_depth - 1].hidden;
7142 }
7143
7144 /* Mark the top of the class stack as un-hidden. */
7145
7146 void
7147 pop_class_stack (void)
7148 {
7149 if (current_class_depth)
7150 --current_class_stack[current_class_depth - 1].hidden;
7151 }
7152
7153 /* Returns 1 if the class type currently being defined is either T or
7154 a nested type of T. */
7155
7156 bool
7157 currently_open_class (tree t)
7158 {
7159 int i;
7160
7161 if (!CLASS_TYPE_P (t))
7162 return false;
7163
7164 t = TYPE_MAIN_VARIANT (t);
7165
7166 /* We start looking from 1 because entry 0 is from global scope,
7167 and has no type. */
7168 for (i = current_class_depth; i > 0; --i)
7169 {
7170 tree c;
7171 if (i == current_class_depth)
7172 c = current_class_type;
7173 else
7174 {
7175 if (current_class_stack[i].hidden)
7176 break;
7177 c = current_class_stack[i].type;
7178 }
7179 if (!c)
7180 continue;
7181 if (same_type_p (c, t))
7182 return true;
7183 }
7184 return false;
7185 }
7186
7187 /* If either current_class_type or one of its enclosing classes are derived
7188 from T, return the appropriate type. Used to determine how we found
7189 something via unqualified lookup. */
7190
7191 tree
7192 currently_open_derived_class (tree t)
7193 {
7194 int i;
7195
7196 /* The bases of a dependent type are unknown. */
7197 if (dependent_type_p (t))
7198 return NULL_TREE;
7199
7200 if (!current_class_type)
7201 return NULL_TREE;
7202
7203 if (DERIVED_FROM_P (t, current_class_type))
7204 return current_class_type;
7205
7206 for (i = current_class_depth - 1; i > 0; --i)
7207 {
7208 if (current_class_stack[i].hidden)
7209 break;
7210 if (DERIVED_FROM_P (t, current_class_stack[i].type))
7211 return current_class_stack[i].type;
7212 }
7213
7214 return NULL_TREE;
7215 }
7216
7217 /* Return the outermost enclosing class type that is still open, or
7218 NULL_TREE. */
7219
7220 tree
7221 outermost_open_class (void)
7222 {
7223 if (!current_class_type)
7224 return NULL_TREE;
7225 tree r = NULL_TREE;
7226 if (TYPE_BEING_DEFINED (current_class_type))
7227 r = current_class_type;
7228 for (int i = current_class_depth - 1; i > 0; --i)
7229 {
7230 if (current_class_stack[i].hidden)
7231 break;
7232 tree t = current_class_stack[i].type;
7233 if (!TYPE_BEING_DEFINED (t))
7234 break;
7235 r = t;
7236 }
7237 return r;
7238 }
7239
7240 /* Returns the innermost class type which is not a lambda closure type. */
7241
7242 tree
7243 current_nonlambda_class_type (void)
7244 {
7245 int i;
7246
7247 /* We start looking from 1 because entry 0 is from global scope,
7248 and has no type. */
7249 for (i = current_class_depth; i > 0; --i)
7250 {
7251 tree c;
7252 if (i == current_class_depth)
7253 c = current_class_type;
7254 else
7255 {
7256 if (current_class_stack[i].hidden)
7257 break;
7258 c = current_class_stack[i].type;
7259 }
7260 if (!c)
7261 continue;
7262 if (!LAMBDA_TYPE_P (c))
7263 return c;
7264 }
7265 return NULL_TREE;
7266 }
7267
7268 /* When entering a class scope, all enclosing class scopes' names with
7269 static meaning (static variables, static functions, types and
7270 enumerators) have to be visible. This recursive function calls
7271 pushclass for all enclosing class contexts until global or a local
7272 scope is reached. TYPE is the enclosed class. */
7273
7274 void
7275 push_nested_class (tree type)
7276 {
7277 /* A namespace might be passed in error cases, like A::B:C. */
7278 if (type == NULL_TREE
7279 || !CLASS_TYPE_P (type))
7280 return;
7281
7282 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7283
7284 pushclass (type);
7285 }
7286
7287 /* Undoes a push_nested_class call. */
7288
7289 void
7290 pop_nested_class (void)
7291 {
7292 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7293
7294 popclass ();
7295 if (context && CLASS_TYPE_P (context))
7296 pop_nested_class ();
7297 }
7298
7299 /* Returns the number of extern "LANG" blocks we are nested within. */
7300
7301 int
7302 current_lang_depth (void)
7303 {
7304 return vec_safe_length (current_lang_base);
7305 }
7306
7307 /* Set global variables CURRENT_LANG_NAME to appropriate value
7308 so that behavior of name-mangling machinery is correct. */
7309
7310 void
7311 push_lang_context (tree name)
7312 {
7313 vec_safe_push (current_lang_base, current_lang_name);
7314
7315 if (name == lang_name_cplusplus)
7316 {
7317 current_lang_name = name;
7318 }
7319 else if (name == lang_name_java)
7320 {
7321 current_lang_name = name;
7322 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7323 (See record_builtin_java_type in decl.c.) However, that causes
7324 incorrect debug entries if these types are actually used.
7325 So we re-enable debug output after extern "Java". */
7326 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7327 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7328 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7329 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7330 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7331 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7332 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7333 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7334 }
7335 else if (name == lang_name_c)
7336 {
7337 current_lang_name = name;
7338 }
7339 else
7340 error ("language string %<\"%E\"%> not recognized", name);
7341 }
7342
7343 /* Get out of the current language scope. */
7344
7345 void
7346 pop_lang_context (void)
7347 {
7348 current_lang_name = current_lang_base->pop ();
7349 }
7350 \f
7351 /* Type instantiation routines. */
7352
7353 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7354 matches the TARGET_TYPE. If there is no satisfactory match, return
7355 error_mark_node, and issue an error & warning messages under
7356 control of FLAGS. Permit pointers to member function if FLAGS
7357 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7358 a template-id, and EXPLICIT_TARGS are the explicitly provided
7359 template arguments.
7360
7361 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7362 is the base path used to reference those member functions. If
7363 the address is resolved to a member function, access checks will be
7364 performed and errors issued if appropriate. */
7365
7366 static tree
7367 resolve_address_of_overloaded_function (tree target_type,
7368 tree overload,
7369 tsubst_flags_t flags,
7370 bool template_only,
7371 tree explicit_targs,
7372 tree access_path)
7373 {
7374 /* Here's what the standard says:
7375
7376 [over.over]
7377
7378 If the name is a function template, template argument deduction
7379 is done, and if the argument deduction succeeds, the deduced
7380 arguments are used to generate a single template function, which
7381 is added to the set of overloaded functions considered.
7382
7383 Non-member functions and static member functions match targets of
7384 type "pointer-to-function" or "reference-to-function." Nonstatic
7385 member functions match targets of type "pointer-to-member
7386 function;" the function type of the pointer to member is used to
7387 select the member function from the set of overloaded member
7388 functions. If a nonstatic member function is selected, the
7389 reference to the overloaded function name is required to have the
7390 form of a pointer to member as described in 5.3.1.
7391
7392 If more than one function is selected, any template functions in
7393 the set are eliminated if the set also contains a non-template
7394 function, and any given template function is eliminated if the
7395 set contains a second template function that is more specialized
7396 than the first according to the partial ordering rules 14.5.5.2.
7397 After such eliminations, if any, there shall remain exactly one
7398 selected function. */
7399
7400 int is_ptrmem = 0;
7401 /* We store the matches in a TREE_LIST rooted here. The functions
7402 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7403 interoperability with most_specialized_instantiation. */
7404 tree matches = NULL_TREE;
7405 tree fn;
7406 tree target_fn_type;
7407
7408 /* By the time we get here, we should be seeing only real
7409 pointer-to-member types, not the internal POINTER_TYPE to
7410 METHOD_TYPE representation. */
7411 gcc_assert (!TYPE_PTR_P (target_type)
7412 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7413
7414 gcc_assert (is_overloaded_fn (overload));
7415
7416 /* Check that the TARGET_TYPE is reasonable. */
7417 if (TYPE_PTRFN_P (target_type)
7418 || TYPE_REFFN_P (target_type))
7419 /* This is OK. */;
7420 else if (TYPE_PTRMEMFUNC_P (target_type))
7421 /* This is OK, too. */
7422 is_ptrmem = 1;
7423 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7424 /* This is OK, too. This comes from a conversion to reference
7425 type. */
7426 target_type = build_reference_type (target_type);
7427 else
7428 {
7429 if (flags & tf_error)
7430 error ("cannot resolve overloaded function %qD based on"
7431 " conversion to type %qT",
7432 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7433 return error_mark_node;
7434 }
7435
7436 /* Non-member functions and static member functions match targets of type
7437 "pointer-to-function" or "reference-to-function." Nonstatic member
7438 functions match targets of type "pointer-to-member-function;" the
7439 function type of the pointer to member is used to select the member
7440 function from the set of overloaded member functions.
7441
7442 So figure out the FUNCTION_TYPE that we want to match against. */
7443 target_fn_type = static_fn_type (target_type);
7444
7445 /* If we can find a non-template function that matches, we can just
7446 use it. There's no point in generating template instantiations
7447 if we're just going to throw them out anyhow. But, of course, we
7448 can only do this when we don't *need* a template function. */
7449 if (!template_only)
7450 {
7451 tree fns;
7452
7453 for (fns = overload; fns; fns = OVL_NEXT (fns))
7454 {
7455 tree fn = OVL_CURRENT (fns);
7456
7457 if (TREE_CODE (fn) == TEMPLATE_DECL)
7458 /* We're not looking for templates just yet. */
7459 continue;
7460
7461 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7462 != is_ptrmem)
7463 /* We're looking for a non-static member, and this isn't
7464 one, or vice versa. */
7465 continue;
7466
7467 /* Ignore functions which haven't been explicitly
7468 declared. */
7469 if (DECL_ANTICIPATED (fn))
7470 continue;
7471
7472 /* See if there's a match. */
7473 if (same_type_p (target_fn_type, static_fn_type (fn)))
7474 matches = tree_cons (fn, NULL_TREE, matches);
7475 }
7476 }
7477
7478 /* Now, if we've already got a match (or matches), there's no need
7479 to proceed to the template functions. But, if we don't have a
7480 match we need to look at them, too. */
7481 if (!matches)
7482 {
7483 tree target_arg_types;
7484 tree target_ret_type;
7485 tree fns;
7486 tree *args;
7487 unsigned int nargs, ia;
7488 tree arg;
7489
7490 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7491 target_ret_type = TREE_TYPE (target_fn_type);
7492
7493 nargs = list_length (target_arg_types);
7494 args = XALLOCAVEC (tree, nargs);
7495 for (arg = target_arg_types, ia = 0;
7496 arg != NULL_TREE && arg != void_list_node;
7497 arg = TREE_CHAIN (arg), ++ia)
7498 args[ia] = TREE_VALUE (arg);
7499 nargs = ia;
7500
7501 for (fns = overload; fns; fns = OVL_NEXT (fns))
7502 {
7503 tree fn = OVL_CURRENT (fns);
7504 tree instantiation;
7505 tree targs;
7506
7507 if (TREE_CODE (fn) != TEMPLATE_DECL)
7508 /* We're only looking for templates. */
7509 continue;
7510
7511 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7512 != is_ptrmem)
7513 /* We're not looking for a non-static member, and this is
7514 one, or vice versa. */
7515 continue;
7516
7517 tree ret = target_ret_type;
7518
7519 /* If the template has a deduced return type, don't expose it to
7520 template argument deduction. */
7521 if (undeduced_auto_decl (fn))
7522 ret = NULL_TREE;
7523
7524 /* Try to do argument deduction. */
7525 targs = make_tree_vec (DECL_NTPARMS (fn));
7526 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7527 nargs, ret,
7528 DEDUCE_EXACT, LOOKUP_NORMAL,
7529 false, false);
7530 if (instantiation == error_mark_node)
7531 /* Instantiation failed. */
7532 continue;
7533
7534 /* And now force instantiation to do return type deduction. */
7535 if (undeduced_auto_decl (instantiation))
7536 {
7537 ++function_depth;
7538 instantiate_decl (instantiation, /*defer*/false, /*class*/false);
7539 --function_depth;
7540
7541 require_deduced_type (instantiation);
7542 }
7543
7544 /* See if there's a match. */
7545 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7546 matches = tree_cons (instantiation, fn, matches);
7547 }
7548
7549 /* Now, remove all but the most specialized of the matches. */
7550 if (matches)
7551 {
7552 tree match = most_specialized_instantiation (matches);
7553
7554 if (match != error_mark_node)
7555 matches = tree_cons (TREE_PURPOSE (match),
7556 NULL_TREE,
7557 NULL_TREE);
7558 }
7559 }
7560
7561 /* Now we should have exactly one function in MATCHES. */
7562 if (matches == NULL_TREE)
7563 {
7564 /* There were *no* matches. */
7565 if (flags & tf_error)
7566 {
7567 error ("no matches converting function %qD to type %q#T",
7568 DECL_NAME (OVL_CURRENT (overload)),
7569 target_type);
7570
7571 print_candidates (overload);
7572 }
7573 return error_mark_node;
7574 }
7575 else if (TREE_CHAIN (matches))
7576 {
7577 /* There were too many matches. First check if they're all
7578 the same function. */
7579 tree match = NULL_TREE;
7580
7581 fn = TREE_PURPOSE (matches);
7582
7583 /* For multi-versioned functions, more than one match is just fine and
7584 decls_match will return false as they are different. */
7585 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7586 if (!decls_match (fn, TREE_PURPOSE (match))
7587 && !targetm.target_option.function_versions
7588 (fn, TREE_PURPOSE (match)))
7589 break;
7590
7591 if (match)
7592 {
7593 if (flags & tf_error)
7594 {
7595 error ("converting overloaded function %qD to type %q#T is ambiguous",
7596 DECL_NAME (OVL_FUNCTION (overload)),
7597 target_type);
7598
7599 /* Since print_candidates expects the functions in the
7600 TREE_VALUE slot, we flip them here. */
7601 for (match = matches; match; match = TREE_CHAIN (match))
7602 TREE_VALUE (match) = TREE_PURPOSE (match);
7603
7604 print_candidates (matches);
7605 }
7606
7607 return error_mark_node;
7608 }
7609 }
7610
7611 /* Good, exactly one match. Now, convert it to the correct type. */
7612 fn = TREE_PURPOSE (matches);
7613
7614 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7615 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7616 {
7617 static int explained;
7618
7619 if (!(flags & tf_error))
7620 return error_mark_node;
7621
7622 permerror (input_location, "assuming pointer to member %qD", fn);
7623 if (!explained)
7624 {
7625 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7626 explained = 1;
7627 }
7628 }
7629
7630 /* If a pointer to a function that is multi-versioned is requested, the
7631 pointer to the dispatcher function is returned instead. This works
7632 well because indirectly calling the function will dispatch the right
7633 function version at run-time. */
7634 if (DECL_FUNCTION_VERSIONED (fn))
7635 {
7636 fn = get_function_version_dispatcher (fn);
7637 if (fn == NULL)
7638 return error_mark_node;
7639 /* Mark all the versions corresponding to the dispatcher as used. */
7640 if (!(flags & tf_conv))
7641 mark_versions_used (fn);
7642 }
7643
7644 /* If we're doing overload resolution purely for the purpose of
7645 determining conversion sequences, we should not consider the
7646 function used. If this conversion sequence is selected, the
7647 function will be marked as used at this point. */
7648 if (!(flags & tf_conv))
7649 {
7650 /* Make =delete work with SFINAE. */
7651 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7652 return error_mark_node;
7653
7654 mark_used (fn);
7655 }
7656
7657 /* We could not check access to member functions when this
7658 expression was originally created since we did not know at that
7659 time to which function the expression referred. */
7660 if (DECL_FUNCTION_MEMBER_P (fn))
7661 {
7662 gcc_assert (access_path);
7663 perform_or_defer_access_check (access_path, fn, fn, flags);
7664 }
7665
7666 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7667 return cp_build_addr_expr (fn, flags);
7668 else
7669 {
7670 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7671 will mark the function as addressed, but here we must do it
7672 explicitly. */
7673 cxx_mark_addressable (fn);
7674
7675 return fn;
7676 }
7677 }
7678
7679 /* This function will instantiate the type of the expression given in
7680 RHS to match the type of LHSTYPE. If errors exist, then return
7681 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7682 we complain on errors. If we are not complaining, never modify rhs,
7683 as overload resolution wants to try many possible instantiations, in
7684 the hope that at least one will work.
7685
7686 For non-recursive calls, LHSTYPE should be a function, pointer to
7687 function, or a pointer to member function. */
7688
7689 tree
7690 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7691 {
7692 tsubst_flags_t flags_in = flags;
7693 tree access_path = NULL_TREE;
7694
7695 flags &= ~tf_ptrmem_ok;
7696
7697 if (lhstype == unknown_type_node)
7698 {
7699 if (flags & tf_error)
7700 error ("not enough type information");
7701 return error_mark_node;
7702 }
7703
7704 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7705 {
7706 tree fntype = non_reference (lhstype);
7707 if (same_type_p (fntype, TREE_TYPE (rhs)))
7708 return rhs;
7709 if (flag_ms_extensions
7710 && TYPE_PTRMEMFUNC_P (fntype)
7711 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7712 /* Microsoft allows `A::f' to be resolved to a
7713 pointer-to-member. */
7714 ;
7715 else
7716 {
7717 if (flags & tf_error)
7718 error ("cannot convert %qE from type %qT to type %qT",
7719 rhs, TREE_TYPE (rhs), fntype);
7720 return error_mark_node;
7721 }
7722 }
7723
7724 if (BASELINK_P (rhs))
7725 {
7726 access_path = BASELINK_ACCESS_BINFO (rhs);
7727 rhs = BASELINK_FUNCTIONS (rhs);
7728 }
7729
7730 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7731 deduce any type information. */
7732 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7733 {
7734 if (flags & tf_error)
7735 error ("not enough type information");
7736 return error_mark_node;
7737 }
7738
7739 /* There only a few kinds of expressions that may have a type
7740 dependent on overload resolution. */
7741 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7742 || TREE_CODE (rhs) == COMPONENT_REF
7743 || is_overloaded_fn (rhs)
7744 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7745
7746 /* This should really only be used when attempting to distinguish
7747 what sort of a pointer to function we have. For now, any
7748 arithmetic operation which is not supported on pointers
7749 is rejected as an error. */
7750
7751 switch (TREE_CODE (rhs))
7752 {
7753 case COMPONENT_REF:
7754 {
7755 tree member = TREE_OPERAND (rhs, 1);
7756
7757 member = instantiate_type (lhstype, member, flags);
7758 if (member != error_mark_node
7759 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7760 /* Do not lose object's side effects. */
7761 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7762 TREE_OPERAND (rhs, 0), member);
7763 return member;
7764 }
7765
7766 case OFFSET_REF:
7767 rhs = TREE_OPERAND (rhs, 1);
7768 if (BASELINK_P (rhs))
7769 return instantiate_type (lhstype, rhs, flags_in);
7770
7771 /* This can happen if we are forming a pointer-to-member for a
7772 member template. */
7773 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7774
7775 /* Fall through. */
7776
7777 case TEMPLATE_ID_EXPR:
7778 {
7779 tree fns = TREE_OPERAND (rhs, 0);
7780 tree args = TREE_OPERAND (rhs, 1);
7781
7782 return
7783 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7784 /*template_only=*/true,
7785 args, access_path);
7786 }
7787
7788 case OVERLOAD:
7789 case FUNCTION_DECL:
7790 return
7791 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7792 /*template_only=*/false,
7793 /*explicit_targs=*/NULL_TREE,
7794 access_path);
7795
7796 case ADDR_EXPR:
7797 {
7798 if (PTRMEM_OK_P (rhs))
7799 flags |= tf_ptrmem_ok;
7800
7801 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7802 }
7803
7804 case ERROR_MARK:
7805 return error_mark_node;
7806
7807 default:
7808 gcc_unreachable ();
7809 }
7810 return error_mark_node;
7811 }
7812 \f
7813 /* Return the name of the virtual function pointer field
7814 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7815 this may have to look back through base types to find the
7816 ultimate field name. (For single inheritance, these could
7817 all be the same name. Who knows for multiple inheritance). */
7818
7819 static tree
7820 get_vfield_name (tree type)
7821 {
7822 tree binfo, base_binfo;
7823 char *buf;
7824
7825 for (binfo = TYPE_BINFO (type);
7826 BINFO_N_BASE_BINFOS (binfo);
7827 binfo = base_binfo)
7828 {
7829 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7830
7831 if (BINFO_VIRTUAL_P (base_binfo)
7832 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7833 break;
7834 }
7835
7836 type = BINFO_TYPE (binfo);
7837 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7838 + TYPE_NAME_LENGTH (type) + 2);
7839 sprintf (buf, VFIELD_NAME_FORMAT,
7840 IDENTIFIER_POINTER (constructor_name (type)));
7841 return get_identifier (buf);
7842 }
7843
7844 void
7845 print_class_statistics (void)
7846 {
7847 if (! GATHER_STATISTICS)
7848 return;
7849
7850 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7851 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7852 if (n_vtables)
7853 {
7854 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7855 n_vtables, n_vtable_searches);
7856 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7857 n_vtable_entries, n_vtable_elems);
7858 }
7859 }
7860
7861 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7862 according to [class]:
7863 The class-name is also inserted
7864 into the scope of the class itself. For purposes of access checking,
7865 the inserted class name is treated as if it were a public member name. */
7866
7867 void
7868 build_self_reference (void)
7869 {
7870 tree name = constructor_name (current_class_type);
7871 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7872 tree saved_cas;
7873
7874 DECL_NONLOCAL (value) = 1;
7875 DECL_CONTEXT (value) = current_class_type;
7876 DECL_ARTIFICIAL (value) = 1;
7877 SET_DECL_SELF_REFERENCE_P (value);
7878 set_underlying_type (value);
7879
7880 if (processing_template_decl)
7881 value = push_template_decl (value);
7882
7883 saved_cas = current_access_specifier;
7884 current_access_specifier = access_public_node;
7885 finish_member_declaration (value);
7886 current_access_specifier = saved_cas;
7887 }
7888
7889 /* Returns 1 if TYPE contains only padding bytes. */
7890
7891 int
7892 is_empty_class (tree type)
7893 {
7894 if (type == error_mark_node)
7895 return 0;
7896
7897 if (! CLASS_TYPE_P (type))
7898 return 0;
7899
7900 return CLASSTYPE_EMPTY_P (type);
7901 }
7902
7903 /* Returns true if TYPE contains no actual data, just various
7904 possible combinations of empty classes and possibly a vptr. */
7905
7906 bool
7907 is_really_empty_class (tree type)
7908 {
7909 if (CLASS_TYPE_P (type))
7910 {
7911 tree field;
7912 tree binfo;
7913 tree base_binfo;
7914 int i;
7915
7916 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7917 out, but we'd like to be able to check this before then. */
7918 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7919 return true;
7920
7921 for (binfo = TYPE_BINFO (type), i = 0;
7922 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7923 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7924 return false;
7925 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7926 if (TREE_CODE (field) == FIELD_DECL
7927 && !DECL_ARTIFICIAL (field)
7928 && !is_really_empty_class (TREE_TYPE (field)))
7929 return false;
7930 return true;
7931 }
7932 else if (TREE_CODE (type) == ARRAY_TYPE)
7933 return is_really_empty_class (TREE_TYPE (type));
7934 return false;
7935 }
7936
7937 /* Note that NAME was looked up while the current class was being
7938 defined and that the result of that lookup was DECL. */
7939
7940 void
7941 maybe_note_name_used_in_class (tree name, tree decl)
7942 {
7943 splay_tree names_used;
7944
7945 /* If we're not defining a class, there's nothing to do. */
7946 if (!(innermost_scope_kind() == sk_class
7947 && TYPE_BEING_DEFINED (current_class_type)
7948 && !LAMBDA_TYPE_P (current_class_type)))
7949 return;
7950
7951 /* If there's already a binding for this NAME, then we don't have
7952 anything to worry about. */
7953 if (lookup_member (current_class_type, name,
7954 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7955 return;
7956
7957 if (!current_class_stack[current_class_depth - 1].names_used)
7958 current_class_stack[current_class_depth - 1].names_used
7959 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7960 names_used = current_class_stack[current_class_depth - 1].names_used;
7961
7962 splay_tree_insert (names_used,
7963 (splay_tree_key) name,
7964 (splay_tree_value) decl);
7965 }
7966
7967 /* Note that NAME was declared (as DECL) in the current class. Check
7968 to see that the declaration is valid. */
7969
7970 void
7971 note_name_declared_in_class (tree name, tree decl)
7972 {
7973 splay_tree names_used;
7974 splay_tree_node n;
7975
7976 /* Look to see if we ever used this name. */
7977 names_used
7978 = current_class_stack[current_class_depth - 1].names_used;
7979 if (!names_used)
7980 return;
7981 /* The C language allows members to be declared with a type of the same
7982 name, and the C++ standard says this diagnostic is not required. So
7983 allow it in extern "C" blocks unless predantic is specified.
7984 Allow it in all cases if -ms-extensions is specified. */
7985 if ((!pedantic && current_lang_name == lang_name_c)
7986 || flag_ms_extensions)
7987 return;
7988 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7989 if (n)
7990 {
7991 /* [basic.scope.class]
7992
7993 A name N used in a class S shall refer to the same declaration
7994 in its context and when re-evaluated in the completed scope of
7995 S. */
7996 permerror (input_location, "declaration of %q#D", decl);
7997 permerror (input_location, "changes meaning of %qD from %q+#D",
7998 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7999 }
8000 }
8001
8002 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
8003 Secondary vtables are merged with primary vtables; this function
8004 will return the VAR_DECL for the primary vtable. */
8005
8006 tree
8007 get_vtbl_decl_for_binfo (tree binfo)
8008 {
8009 tree decl;
8010
8011 decl = BINFO_VTABLE (binfo);
8012 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
8013 {
8014 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
8015 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
8016 }
8017 if (decl)
8018 gcc_assert (VAR_P (decl));
8019 return decl;
8020 }
8021
8022
8023 /* Returns the binfo for the primary base of BINFO. If the resulting
8024 BINFO is a virtual base, and it is inherited elsewhere in the
8025 hierarchy, then the returned binfo might not be the primary base of
8026 BINFO in the complete object. Check BINFO_PRIMARY_P or
8027 BINFO_LOST_PRIMARY_P to be sure. */
8028
8029 static tree
8030 get_primary_binfo (tree binfo)
8031 {
8032 tree primary_base;
8033
8034 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
8035 if (!primary_base)
8036 return NULL_TREE;
8037
8038 return copied_binfo (primary_base, binfo);
8039 }
8040
8041 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
8042
8043 static int
8044 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
8045 {
8046 if (!indented_p)
8047 fprintf (stream, "%*s", indent, "");
8048 return 1;
8049 }
8050
8051 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
8052 INDENT should be zero when called from the top level; it is
8053 incremented recursively. IGO indicates the next expected BINFO in
8054 inheritance graph ordering. */
8055
8056 static tree
8057 dump_class_hierarchy_r (FILE *stream,
8058 int flags,
8059 tree binfo,
8060 tree igo,
8061 int indent)
8062 {
8063 int indented = 0;
8064 tree base_binfo;
8065 int i;
8066
8067 indented = maybe_indent_hierarchy (stream, indent, 0);
8068 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
8069 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
8070 (HOST_WIDE_INT) (uintptr_t) binfo);
8071 if (binfo != igo)
8072 {
8073 fprintf (stream, "alternative-path\n");
8074 return igo;
8075 }
8076 igo = TREE_CHAIN (binfo);
8077
8078 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
8079 tree_to_shwi (BINFO_OFFSET (binfo)));
8080 if (is_empty_class (BINFO_TYPE (binfo)))
8081 fprintf (stream, " empty");
8082 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
8083 fprintf (stream, " nearly-empty");
8084 if (BINFO_VIRTUAL_P (binfo))
8085 fprintf (stream, " virtual");
8086 fprintf (stream, "\n");
8087
8088 indented = 0;
8089 if (BINFO_PRIMARY_P (binfo))
8090 {
8091 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8092 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
8093 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
8094 TFF_PLAIN_IDENTIFIER),
8095 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
8096 }
8097 if (BINFO_LOST_PRIMARY_P (binfo))
8098 {
8099 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8100 fprintf (stream, " lost-primary");
8101 }
8102 if (indented)
8103 fprintf (stream, "\n");
8104
8105 if (!(flags & TDF_SLIM))
8106 {
8107 int indented = 0;
8108
8109 if (BINFO_SUBVTT_INDEX (binfo))
8110 {
8111 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8112 fprintf (stream, " subvttidx=%s",
8113 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
8114 TFF_PLAIN_IDENTIFIER));
8115 }
8116 if (BINFO_VPTR_INDEX (binfo))
8117 {
8118 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8119 fprintf (stream, " vptridx=%s",
8120 expr_as_string (BINFO_VPTR_INDEX (binfo),
8121 TFF_PLAIN_IDENTIFIER));
8122 }
8123 if (BINFO_VPTR_FIELD (binfo))
8124 {
8125 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8126 fprintf (stream, " vbaseoffset=%s",
8127 expr_as_string (BINFO_VPTR_FIELD (binfo),
8128 TFF_PLAIN_IDENTIFIER));
8129 }
8130 if (BINFO_VTABLE (binfo))
8131 {
8132 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8133 fprintf (stream, " vptr=%s",
8134 expr_as_string (BINFO_VTABLE (binfo),
8135 TFF_PLAIN_IDENTIFIER));
8136 }
8137
8138 if (indented)
8139 fprintf (stream, "\n");
8140 }
8141
8142 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
8143 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
8144
8145 return igo;
8146 }
8147
8148 /* Dump the BINFO hierarchy for T. */
8149
8150 static void
8151 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
8152 {
8153 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8154 fprintf (stream, " size=%lu align=%lu\n",
8155 (unsigned long)(tree_to_shwi (TYPE_SIZE (t)) / BITS_PER_UNIT),
8156 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
8157 fprintf (stream, " base size=%lu base align=%lu\n",
8158 (unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t)))
8159 / BITS_PER_UNIT),
8160 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
8161 / BITS_PER_UNIT));
8162 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
8163 fprintf (stream, "\n");
8164 }
8165
8166 /* Debug interface to hierarchy dumping. */
8167
8168 void
8169 debug_class (tree t)
8170 {
8171 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
8172 }
8173
8174 static void
8175 dump_class_hierarchy (tree t)
8176 {
8177 int flags;
8178 FILE *stream = get_dump_info (TDI_class, &flags);
8179
8180 if (stream)
8181 {
8182 dump_class_hierarchy_1 (stream, flags, t);
8183 }
8184 }
8185
8186 static void
8187 dump_array (FILE * stream, tree decl)
8188 {
8189 tree value;
8190 unsigned HOST_WIDE_INT ix;
8191 HOST_WIDE_INT elt;
8192 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8193
8194 elt = (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))))
8195 / BITS_PER_UNIT);
8196 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8197 fprintf (stream, " %s entries",
8198 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8199 TFF_PLAIN_IDENTIFIER));
8200 fprintf (stream, "\n");
8201
8202 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8203 ix, value)
8204 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
8205 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8206 }
8207
8208 static void
8209 dump_vtable (tree t, tree binfo, tree vtable)
8210 {
8211 int flags;
8212 FILE *stream = get_dump_info (TDI_class, &flags);
8213
8214 if (!stream)
8215 return;
8216
8217 if (!(flags & TDF_SLIM))
8218 {
8219 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8220
8221 fprintf (stream, "%s for %s",
8222 ctor_vtbl_p ? "Construction vtable" : "Vtable",
8223 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8224 if (ctor_vtbl_p)
8225 {
8226 if (!BINFO_VIRTUAL_P (binfo))
8227 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8228 (HOST_WIDE_INT) (uintptr_t) binfo);
8229 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8230 }
8231 fprintf (stream, "\n");
8232 dump_array (stream, vtable);
8233 fprintf (stream, "\n");
8234 }
8235 }
8236
8237 static void
8238 dump_vtt (tree t, tree vtt)
8239 {
8240 int flags;
8241 FILE *stream = get_dump_info (TDI_class, &flags);
8242
8243 if (!stream)
8244 return;
8245
8246 if (!(flags & TDF_SLIM))
8247 {
8248 fprintf (stream, "VTT for %s\n",
8249 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8250 dump_array (stream, vtt);
8251 fprintf (stream, "\n");
8252 }
8253 }
8254
8255 /* Dump a function or thunk and its thunkees. */
8256
8257 static void
8258 dump_thunk (FILE *stream, int indent, tree thunk)
8259 {
8260 static const char spaces[] = " ";
8261 tree name = DECL_NAME (thunk);
8262 tree thunks;
8263
8264 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8265 (void *)thunk,
8266 !DECL_THUNK_P (thunk) ? "function"
8267 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8268 name ? IDENTIFIER_POINTER (name) : "<unset>");
8269 if (DECL_THUNK_P (thunk))
8270 {
8271 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8272 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8273
8274 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8275 if (!virtual_adjust)
8276 /*NOP*/;
8277 else if (DECL_THIS_THUNK_P (thunk))
8278 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8279 tree_to_shwi (virtual_adjust));
8280 else
8281 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8282 tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust)),
8283 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8284 if (THUNK_ALIAS (thunk))
8285 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8286 }
8287 fprintf (stream, "\n");
8288 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8289 dump_thunk (stream, indent + 2, thunks);
8290 }
8291
8292 /* Dump the thunks for FN. */
8293
8294 void
8295 debug_thunks (tree fn)
8296 {
8297 dump_thunk (stderr, 0, fn);
8298 }
8299
8300 /* Virtual function table initialization. */
8301
8302 /* Create all the necessary vtables for T and its base classes. */
8303
8304 static void
8305 finish_vtbls (tree t)
8306 {
8307 tree vbase;
8308 vec<constructor_elt, va_gc> *v = NULL;
8309 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8310
8311 /* We lay out the primary and secondary vtables in one contiguous
8312 vtable. The primary vtable is first, followed by the non-virtual
8313 secondary vtables in inheritance graph order. */
8314 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8315 vtable, t, &v);
8316
8317 /* Then come the virtual bases, also in inheritance graph order. */
8318 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8319 {
8320 if (!BINFO_VIRTUAL_P (vbase))
8321 continue;
8322 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8323 }
8324
8325 if (BINFO_VTABLE (TYPE_BINFO (t)))
8326 initialize_vtable (TYPE_BINFO (t), v);
8327 }
8328
8329 /* Initialize the vtable for BINFO with the INITS. */
8330
8331 static void
8332 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8333 {
8334 tree decl;
8335
8336 layout_vtable_decl (binfo, vec_safe_length (inits));
8337 decl = get_vtbl_decl_for_binfo (binfo);
8338 initialize_artificial_var (decl, inits);
8339 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8340 }
8341
8342 /* Build the VTT (virtual table table) for T.
8343 A class requires a VTT if it has virtual bases.
8344
8345 This holds
8346 1 - primary virtual pointer for complete object T
8347 2 - secondary VTTs for each direct non-virtual base of T which requires a
8348 VTT
8349 3 - secondary virtual pointers for each direct or indirect base of T which
8350 has virtual bases or is reachable via a virtual path from T.
8351 4 - secondary VTTs for each direct or indirect virtual base of T.
8352
8353 Secondary VTTs look like complete object VTTs without part 4. */
8354
8355 static void
8356 build_vtt (tree t)
8357 {
8358 tree type;
8359 tree vtt;
8360 tree index;
8361 vec<constructor_elt, va_gc> *inits;
8362
8363 /* Build up the initializers for the VTT. */
8364 inits = NULL;
8365 index = size_zero_node;
8366 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8367
8368 /* If we didn't need a VTT, we're done. */
8369 if (!inits)
8370 return;
8371
8372 /* Figure out the type of the VTT. */
8373 type = build_array_of_n_type (const_ptr_type_node,
8374 inits->length ());
8375
8376 /* Now, build the VTT object itself. */
8377 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8378 initialize_artificial_var (vtt, inits);
8379 /* Add the VTT to the vtables list. */
8380 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8381 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8382
8383 dump_vtt (t, vtt);
8384 }
8385
8386 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8387 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8388 and CHAIN the vtable pointer for this binfo after construction is
8389 complete. VALUE can also be another BINFO, in which case we recurse. */
8390
8391 static tree
8392 binfo_ctor_vtable (tree binfo)
8393 {
8394 tree vt;
8395
8396 while (1)
8397 {
8398 vt = BINFO_VTABLE (binfo);
8399 if (TREE_CODE (vt) == TREE_LIST)
8400 vt = TREE_VALUE (vt);
8401 if (TREE_CODE (vt) == TREE_BINFO)
8402 binfo = vt;
8403 else
8404 break;
8405 }
8406
8407 return vt;
8408 }
8409
8410 /* Data for secondary VTT initialization. */
8411 typedef struct secondary_vptr_vtt_init_data_s
8412 {
8413 /* Is this the primary VTT? */
8414 bool top_level_p;
8415
8416 /* Current index into the VTT. */
8417 tree index;
8418
8419 /* Vector of initializers built up. */
8420 vec<constructor_elt, va_gc> *inits;
8421
8422 /* The type being constructed by this secondary VTT. */
8423 tree type_being_constructed;
8424 } secondary_vptr_vtt_init_data;
8425
8426 /* Recursively build the VTT-initializer for BINFO (which is in the
8427 hierarchy dominated by T). INITS points to the end of the initializer
8428 list to date. INDEX is the VTT index where the next element will be
8429 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8430 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8431 for virtual bases of T. When it is not so, we build the constructor
8432 vtables for the BINFO-in-T variant. */
8433
8434 static void
8435 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8436 tree *index)
8437 {
8438 int i;
8439 tree b;
8440 tree init;
8441 secondary_vptr_vtt_init_data data;
8442 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8443
8444 /* We only need VTTs for subobjects with virtual bases. */
8445 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8446 return;
8447
8448 /* We need to use a construction vtable if this is not the primary
8449 VTT. */
8450 if (!top_level_p)
8451 {
8452 build_ctor_vtbl_group (binfo, t);
8453
8454 /* Record the offset in the VTT where this sub-VTT can be found. */
8455 BINFO_SUBVTT_INDEX (binfo) = *index;
8456 }
8457
8458 /* Add the address of the primary vtable for the complete object. */
8459 init = binfo_ctor_vtable (binfo);
8460 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8461 if (top_level_p)
8462 {
8463 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8464 BINFO_VPTR_INDEX (binfo) = *index;
8465 }
8466 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8467
8468 /* Recursively add the secondary VTTs for non-virtual bases. */
8469 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8470 if (!BINFO_VIRTUAL_P (b))
8471 build_vtt_inits (b, t, inits, index);
8472
8473 /* Add secondary virtual pointers for all subobjects of BINFO with
8474 either virtual bases or reachable along a virtual path, except
8475 subobjects that are non-virtual primary bases. */
8476 data.top_level_p = top_level_p;
8477 data.index = *index;
8478 data.inits = *inits;
8479 data.type_being_constructed = BINFO_TYPE (binfo);
8480
8481 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8482
8483 *index = data.index;
8484
8485 /* data.inits might have grown as we added secondary virtual pointers.
8486 Make sure our caller knows about the new vector. */
8487 *inits = data.inits;
8488
8489 if (top_level_p)
8490 /* Add the secondary VTTs for virtual bases in inheritance graph
8491 order. */
8492 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8493 {
8494 if (!BINFO_VIRTUAL_P (b))
8495 continue;
8496
8497 build_vtt_inits (b, t, inits, index);
8498 }
8499 else
8500 /* Remove the ctor vtables we created. */
8501 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8502 }
8503
8504 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8505 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8506
8507 static tree
8508 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8509 {
8510 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8511
8512 /* We don't care about bases that don't have vtables. */
8513 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8514 return dfs_skip_bases;
8515
8516 /* We're only interested in proper subobjects of the type being
8517 constructed. */
8518 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8519 return NULL_TREE;
8520
8521 /* We're only interested in bases with virtual bases or reachable
8522 via a virtual path from the type being constructed. */
8523 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8524 || binfo_via_virtual (binfo, data->type_being_constructed)))
8525 return dfs_skip_bases;
8526
8527 /* We're not interested in non-virtual primary bases. */
8528 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8529 return NULL_TREE;
8530
8531 /* Record the index where this secondary vptr can be found. */
8532 if (data->top_level_p)
8533 {
8534 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8535 BINFO_VPTR_INDEX (binfo) = data->index;
8536
8537 if (BINFO_VIRTUAL_P (binfo))
8538 {
8539 /* It's a primary virtual base, and this is not a
8540 construction vtable. Find the base this is primary of in
8541 the inheritance graph, and use that base's vtable
8542 now. */
8543 while (BINFO_PRIMARY_P (binfo))
8544 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8545 }
8546 }
8547
8548 /* Add the initializer for the secondary vptr itself. */
8549 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8550
8551 /* Advance the vtt index. */
8552 data->index = size_binop (PLUS_EXPR, data->index,
8553 TYPE_SIZE_UNIT (ptr_type_node));
8554
8555 return NULL_TREE;
8556 }
8557
8558 /* Called from build_vtt_inits via dfs_walk. After building
8559 constructor vtables and generating the sub-vtt from them, we need
8560 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8561 binfo of the base whose sub vtt was generated. */
8562
8563 static tree
8564 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8565 {
8566 tree vtable = BINFO_VTABLE (binfo);
8567
8568 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8569 /* If this class has no vtable, none of its bases do. */
8570 return dfs_skip_bases;
8571
8572 if (!vtable)
8573 /* This might be a primary base, so have no vtable in this
8574 hierarchy. */
8575 return NULL_TREE;
8576
8577 /* If we scribbled the construction vtable vptr into BINFO, clear it
8578 out now. */
8579 if (TREE_CODE (vtable) == TREE_LIST
8580 && (TREE_PURPOSE (vtable) == (tree) data))
8581 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8582
8583 return NULL_TREE;
8584 }
8585
8586 /* Build the construction vtable group for BINFO which is in the
8587 hierarchy dominated by T. */
8588
8589 static void
8590 build_ctor_vtbl_group (tree binfo, tree t)
8591 {
8592 tree type;
8593 tree vtbl;
8594 tree id;
8595 tree vbase;
8596 vec<constructor_elt, va_gc> *v;
8597
8598 /* See if we've already created this construction vtable group. */
8599 id = mangle_ctor_vtbl_for_type (t, binfo);
8600 if (IDENTIFIER_GLOBAL_VALUE (id))
8601 return;
8602
8603 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8604 /* Build a version of VTBL (with the wrong type) for use in
8605 constructing the addresses of secondary vtables in the
8606 construction vtable group. */
8607 vtbl = build_vtable (t, id, ptr_type_node);
8608 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8609 /* Don't export construction vtables from shared libraries. Even on
8610 targets that don't support hidden visibility, this tells
8611 can_refer_decl_in_current_unit_p not to assume that it's safe to
8612 access from a different compilation unit (bz 54314). */
8613 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8614 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8615
8616 v = NULL;
8617 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8618 binfo, vtbl, t, &v);
8619
8620 /* Add the vtables for each of our virtual bases using the vbase in T
8621 binfo. */
8622 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8623 vbase;
8624 vbase = TREE_CHAIN (vbase))
8625 {
8626 tree b;
8627
8628 if (!BINFO_VIRTUAL_P (vbase))
8629 continue;
8630 b = copied_binfo (vbase, binfo);
8631
8632 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8633 }
8634
8635 /* Figure out the type of the construction vtable. */
8636 type = build_array_of_n_type (vtable_entry_type, v->length ());
8637 layout_type (type);
8638 TREE_TYPE (vtbl) = type;
8639 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8640 layout_decl (vtbl, 0);
8641
8642 /* Initialize the construction vtable. */
8643 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8644 initialize_artificial_var (vtbl, v);
8645 dump_vtable (t, binfo, vtbl);
8646 }
8647
8648 /* Add the vtbl initializers for BINFO (and its bases other than
8649 non-virtual primaries) to the list of INITS. BINFO is in the
8650 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8651 the constructor the vtbl inits should be accumulated for. (If this
8652 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8653 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8654 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8655 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8656 but are not necessarily the same in terms of layout. */
8657
8658 static void
8659 accumulate_vtbl_inits (tree binfo,
8660 tree orig_binfo,
8661 tree rtti_binfo,
8662 tree vtbl,
8663 tree t,
8664 vec<constructor_elt, va_gc> **inits)
8665 {
8666 int i;
8667 tree base_binfo;
8668 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8669
8670 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8671
8672 /* If it doesn't have a vptr, we don't do anything. */
8673 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8674 return;
8675
8676 /* If we're building a construction vtable, we're not interested in
8677 subobjects that don't require construction vtables. */
8678 if (ctor_vtbl_p
8679 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8680 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8681 return;
8682
8683 /* Build the initializers for the BINFO-in-T vtable. */
8684 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8685
8686 /* Walk the BINFO and its bases. We walk in preorder so that as we
8687 initialize each vtable we can figure out at what offset the
8688 secondary vtable lies from the primary vtable. We can't use
8689 dfs_walk here because we need to iterate through bases of BINFO
8690 and RTTI_BINFO simultaneously. */
8691 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8692 {
8693 /* Skip virtual bases. */
8694 if (BINFO_VIRTUAL_P (base_binfo))
8695 continue;
8696 accumulate_vtbl_inits (base_binfo,
8697 BINFO_BASE_BINFO (orig_binfo, i),
8698 rtti_binfo, vtbl, t,
8699 inits);
8700 }
8701 }
8702
8703 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8704 BINFO vtable to L. */
8705
8706 static void
8707 dfs_accumulate_vtbl_inits (tree binfo,
8708 tree orig_binfo,
8709 tree rtti_binfo,
8710 tree orig_vtbl,
8711 tree t,
8712 vec<constructor_elt, va_gc> **l)
8713 {
8714 tree vtbl = NULL_TREE;
8715 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8716 int n_inits;
8717
8718 if (ctor_vtbl_p
8719 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8720 {
8721 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8722 primary virtual base. If it is not the same primary in
8723 the hierarchy of T, we'll need to generate a ctor vtable
8724 for it, to place at its location in T. If it is the same
8725 primary, we still need a VTT entry for the vtable, but it
8726 should point to the ctor vtable for the base it is a
8727 primary for within the sub-hierarchy of RTTI_BINFO.
8728
8729 There are three possible cases:
8730
8731 1) We are in the same place.
8732 2) We are a primary base within a lost primary virtual base of
8733 RTTI_BINFO.
8734 3) We are primary to something not a base of RTTI_BINFO. */
8735
8736 tree b;
8737 tree last = NULL_TREE;
8738
8739 /* First, look through the bases we are primary to for RTTI_BINFO
8740 or a virtual base. */
8741 b = binfo;
8742 while (BINFO_PRIMARY_P (b))
8743 {
8744 b = BINFO_INHERITANCE_CHAIN (b);
8745 last = b;
8746 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8747 goto found;
8748 }
8749 /* If we run out of primary links, keep looking down our
8750 inheritance chain; we might be an indirect primary. */
8751 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8752 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8753 break;
8754 found:
8755
8756 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8757 base B and it is a base of RTTI_BINFO, this is case 2. In
8758 either case, we share our vtable with LAST, i.e. the
8759 derived-most base within B of which we are a primary. */
8760 if (b == rtti_binfo
8761 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8762 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8763 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8764 binfo_ctor_vtable after everything's been set up. */
8765 vtbl = last;
8766
8767 /* Otherwise, this is case 3 and we get our own. */
8768 }
8769 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8770 return;
8771
8772 n_inits = vec_safe_length (*l);
8773
8774 if (!vtbl)
8775 {
8776 tree index;
8777 int non_fn_entries;
8778
8779 /* Add the initializer for this vtable. */
8780 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8781 &non_fn_entries, l);
8782
8783 /* Figure out the position to which the VPTR should point. */
8784 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8785 index = size_binop (MULT_EXPR,
8786 TYPE_SIZE_UNIT (vtable_entry_type),
8787 size_int (non_fn_entries + n_inits));
8788 vtbl = fold_build_pointer_plus (vtbl, index);
8789 }
8790
8791 if (ctor_vtbl_p)
8792 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8793 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8794 straighten this out. */
8795 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8796 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8797 /* Throw away any unneeded intializers. */
8798 (*l)->truncate (n_inits);
8799 else
8800 /* For an ordinary vtable, set BINFO_VTABLE. */
8801 BINFO_VTABLE (binfo) = vtbl;
8802 }
8803
8804 static GTY(()) tree abort_fndecl_addr;
8805
8806 /* Construct the initializer for BINFO's virtual function table. BINFO
8807 is part of the hierarchy dominated by T. If we're building a
8808 construction vtable, the ORIG_BINFO is the binfo we should use to
8809 find the actual function pointers to put in the vtable - but they
8810 can be overridden on the path to most-derived in the graph that
8811 ORIG_BINFO belongs. Otherwise,
8812 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8813 BINFO that should be indicated by the RTTI information in the
8814 vtable; it will be a base class of T, rather than T itself, if we
8815 are building a construction vtable.
8816
8817 The value returned is a TREE_LIST suitable for wrapping in a
8818 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8819 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8820 number of non-function entries in the vtable.
8821
8822 It might seem that this function should never be called with a
8823 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8824 base is always subsumed by a derived class vtable. However, when
8825 we are building construction vtables, we do build vtables for
8826 primary bases; we need these while the primary base is being
8827 constructed. */
8828
8829 static void
8830 build_vtbl_initializer (tree binfo,
8831 tree orig_binfo,
8832 tree t,
8833 tree rtti_binfo,
8834 int* non_fn_entries_p,
8835 vec<constructor_elt, va_gc> **inits)
8836 {
8837 tree v;
8838 vtbl_init_data vid;
8839 unsigned ix, jx;
8840 tree vbinfo;
8841 vec<tree, va_gc> *vbases;
8842 constructor_elt *e;
8843
8844 /* Initialize VID. */
8845 memset (&vid, 0, sizeof (vid));
8846 vid.binfo = binfo;
8847 vid.derived = t;
8848 vid.rtti_binfo = rtti_binfo;
8849 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8850 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8851 vid.generate_vcall_entries = true;
8852 /* The first vbase or vcall offset is at index -3 in the vtable. */
8853 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8854
8855 /* Add entries to the vtable for RTTI. */
8856 build_rtti_vtbl_entries (binfo, &vid);
8857
8858 /* Create an array for keeping track of the functions we've
8859 processed. When we see multiple functions with the same
8860 signature, we share the vcall offsets. */
8861 vec_alloc (vid.fns, 32);
8862 /* Add the vcall and vbase offset entries. */
8863 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8864
8865 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8866 build_vbase_offset_vtbl_entries. */
8867 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8868 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8869 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8870
8871 /* If the target requires padding between data entries, add that now. */
8872 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8873 {
8874 int n_entries = vec_safe_length (vid.inits);
8875
8876 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8877
8878 /* Move data entries into their new positions and add padding
8879 after the new positions. Iterate backwards so we don't
8880 overwrite entries that we would need to process later. */
8881 for (ix = n_entries - 1;
8882 vid.inits->iterate (ix, &e);
8883 ix--)
8884 {
8885 int j;
8886 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8887 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8888
8889 (*vid.inits)[new_position] = *e;
8890
8891 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8892 {
8893 constructor_elt *f = &(*vid.inits)[new_position - j];
8894 f->index = NULL_TREE;
8895 f->value = build1 (NOP_EXPR, vtable_entry_type,
8896 null_pointer_node);
8897 }
8898 }
8899 }
8900
8901 if (non_fn_entries_p)
8902 *non_fn_entries_p = vec_safe_length (vid.inits);
8903
8904 /* The initializers for virtual functions were built up in reverse
8905 order. Straighten them out and add them to the running list in one
8906 step. */
8907 jx = vec_safe_length (*inits);
8908 vec_safe_grow (*inits, jx + vid.inits->length ());
8909
8910 for (ix = vid.inits->length () - 1;
8911 vid.inits->iterate (ix, &e);
8912 ix--, jx++)
8913 (**inits)[jx] = *e;
8914
8915 /* Go through all the ordinary virtual functions, building up
8916 initializers. */
8917 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8918 {
8919 tree delta;
8920 tree vcall_index;
8921 tree fn, fn_original;
8922 tree init = NULL_TREE;
8923
8924 fn = BV_FN (v);
8925 fn_original = fn;
8926 if (DECL_THUNK_P (fn))
8927 {
8928 if (!DECL_NAME (fn))
8929 finish_thunk (fn);
8930 if (THUNK_ALIAS (fn))
8931 {
8932 fn = THUNK_ALIAS (fn);
8933 BV_FN (v) = fn;
8934 }
8935 fn_original = THUNK_TARGET (fn);
8936 }
8937
8938 /* If the only definition of this function signature along our
8939 primary base chain is from a lost primary, this vtable slot will
8940 never be used, so just zero it out. This is important to avoid
8941 requiring extra thunks which cannot be generated with the function.
8942
8943 We first check this in update_vtable_entry_for_fn, so we handle
8944 restored primary bases properly; we also need to do it here so we
8945 zero out unused slots in ctor vtables, rather than filling them
8946 with erroneous values (though harmless, apart from relocation
8947 costs). */
8948 if (BV_LOST_PRIMARY (v))
8949 init = size_zero_node;
8950
8951 if (! init)
8952 {
8953 /* Pull the offset for `this', and the function to call, out of
8954 the list. */
8955 delta = BV_DELTA (v);
8956 vcall_index = BV_VCALL_INDEX (v);
8957
8958 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8959 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8960
8961 /* You can't call an abstract virtual function; it's abstract.
8962 So, we replace these functions with __pure_virtual. */
8963 if (DECL_PURE_VIRTUAL_P (fn_original))
8964 {
8965 fn = abort_fndecl;
8966 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8967 {
8968 if (abort_fndecl_addr == NULL)
8969 abort_fndecl_addr
8970 = fold_convert (vfunc_ptr_type_node,
8971 build_fold_addr_expr (fn));
8972 init = abort_fndecl_addr;
8973 }
8974 }
8975 /* Likewise for deleted virtuals. */
8976 else if (DECL_DELETED_FN (fn_original))
8977 {
8978 fn = get_identifier ("__cxa_deleted_virtual");
8979 if (!get_global_value_if_present (fn, &fn))
8980 fn = push_library_fn (fn, (build_function_type_list
8981 (void_type_node, NULL_TREE)),
8982 NULL_TREE, ECF_NORETURN);
8983 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8984 init = fold_convert (vfunc_ptr_type_node,
8985 build_fold_addr_expr (fn));
8986 }
8987 else
8988 {
8989 if (!integer_zerop (delta) || vcall_index)
8990 {
8991 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8992 if (!DECL_NAME (fn))
8993 finish_thunk (fn);
8994 }
8995 /* Take the address of the function, considering it to be of an
8996 appropriate generic type. */
8997 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8998 init = fold_convert (vfunc_ptr_type_node,
8999 build_fold_addr_expr (fn));
9000 /* Don't refer to a virtual destructor from a constructor
9001 vtable or a vtable for an abstract class, since destroying
9002 an object under construction is undefined behavior and we
9003 don't want it to be considered a candidate for speculative
9004 devirtualization. But do create the thunk for ABI
9005 compliance. */
9006 if (DECL_DESTRUCTOR_P (fn_original)
9007 && (CLASSTYPE_PURE_VIRTUALS (DECL_CONTEXT (fn_original))
9008 || orig_binfo != binfo))
9009 init = size_zero_node;
9010 }
9011 }
9012
9013 /* And add it to the chain of initializers. */
9014 if (TARGET_VTABLE_USES_DESCRIPTORS)
9015 {
9016 int i;
9017 if (init == size_zero_node)
9018 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
9019 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
9020 else
9021 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
9022 {
9023 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
9024 fn, build_int_cst (NULL_TREE, i));
9025 TREE_CONSTANT (fdesc) = 1;
9026
9027 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
9028 }
9029 }
9030 else
9031 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
9032 }
9033 }
9034
9035 /* Adds to vid->inits the initializers for the vbase and vcall
9036 offsets in BINFO, which is in the hierarchy dominated by T. */
9037
9038 static void
9039 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
9040 {
9041 tree b;
9042
9043 /* If this is a derived class, we must first create entries
9044 corresponding to the primary base class. */
9045 b = get_primary_binfo (binfo);
9046 if (b)
9047 build_vcall_and_vbase_vtbl_entries (b, vid);
9048
9049 /* Add the vbase entries for this base. */
9050 build_vbase_offset_vtbl_entries (binfo, vid);
9051 /* Add the vcall entries for this base. */
9052 build_vcall_offset_vtbl_entries (binfo, vid);
9053 }
9054
9055 /* Returns the initializers for the vbase offset entries in the vtable
9056 for BINFO (which is part of the class hierarchy dominated by T), in
9057 reverse order. VBASE_OFFSET_INDEX gives the vtable index
9058 where the next vbase offset will go. */
9059
9060 static void
9061 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9062 {
9063 tree vbase;
9064 tree t;
9065 tree non_primary_binfo;
9066
9067 /* If there are no virtual baseclasses, then there is nothing to
9068 do. */
9069 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
9070 return;
9071
9072 t = vid->derived;
9073
9074 /* We might be a primary base class. Go up the inheritance hierarchy
9075 until we find the most derived class of which we are a primary base:
9076 it is the offset of that which we need to use. */
9077 non_primary_binfo = binfo;
9078 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9079 {
9080 tree b;
9081
9082 /* If we have reached a virtual base, then it must be a primary
9083 base (possibly multi-level) of vid->binfo, or we wouldn't
9084 have called build_vcall_and_vbase_vtbl_entries for it. But it
9085 might be a lost primary, so just skip down to vid->binfo. */
9086 if (BINFO_VIRTUAL_P (non_primary_binfo))
9087 {
9088 non_primary_binfo = vid->binfo;
9089 break;
9090 }
9091
9092 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9093 if (get_primary_binfo (b) != non_primary_binfo)
9094 break;
9095 non_primary_binfo = b;
9096 }
9097
9098 /* Go through the virtual bases, adding the offsets. */
9099 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
9100 vbase;
9101 vbase = TREE_CHAIN (vbase))
9102 {
9103 tree b;
9104 tree delta;
9105
9106 if (!BINFO_VIRTUAL_P (vbase))
9107 continue;
9108
9109 /* Find the instance of this virtual base in the complete
9110 object. */
9111 b = copied_binfo (vbase, binfo);
9112
9113 /* If we've already got an offset for this virtual base, we
9114 don't need another one. */
9115 if (BINFO_VTABLE_PATH_MARKED (b))
9116 continue;
9117 BINFO_VTABLE_PATH_MARKED (b) = 1;
9118
9119 /* Figure out where we can find this vbase offset. */
9120 delta = size_binop (MULT_EXPR,
9121 vid->index,
9122 convert (ssizetype,
9123 TYPE_SIZE_UNIT (vtable_entry_type)));
9124 if (vid->primary_vtbl_p)
9125 BINFO_VPTR_FIELD (b) = delta;
9126
9127 if (binfo != TYPE_BINFO (t))
9128 /* The vbase offset had better be the same. */
9129 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
9130
9131 /* The next vbase will come at a more negative offset. */
9132 vid->index = size_binop (MINUS_EXPR, vid->index,
9133 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9134
9135 /* The initializer is the delta from BINFO to this virtual base.
9136 The vbase offsets go in reverse inheritance-graph order, and
9137 we are walking in inheritance graph order so these end up in
9138 the right order. */
9139 delta = size_diffop_loc (input_location,
9140 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
9141
9142 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
9143 fold_build1_loc (input_location, NOP_EXPR,
9144 vtable_entry_type, delta));
9145 }
9146 }
9147
9148 /* Adds the initializers for the vcall offset entries in the vtable
9149 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9150 to VID->INITS. */
9151
9152 static void
9153 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9154 {
9155 /* We only need these entries if this base is a virtual base. We
9156 compute the indices -- but do not add to the vtable -- when
9157 building the main vtable for a class. */
9158 if (binfo == TYPE_BINFO (vid->derived)
9159 || (BINFO_VIRTUAL_P (binfo)
9160 /* If BINFO is RTTI_BINFO, then (since BINFO does not
9161 correspond to VID->DERIVED), we are building a primary
9162 construction virtual table. Since this is a primary
9163 virtual table, we do not need the vcall offsets for
9164 BINFO. */
9165 && binfo != vid->rtti_binfo))
9166 {
9167 /* We need a vcall offset for each of the virtual functions in this
9168 vtable. For example:
9169
9170 class A { virtual void f (); };
9171 class B1 : virtual public A { virtual void f (); };
9172 class B2 : virtual public A { virtual void f (); };
9173 class C: public B1, public B2 { virtual void f (); };
9174
9175 A C object has a primary base of B1, which has a primary base of A. A
9176 C also has a secondary base of B2, which no longer has a primary base
9177 of A. So the B2-in-C construction vtable needs a secondary vtable for
9178 A, which will adjust the A* to a B2* to call f. We have no way of
9179 knowing what (or even whether) this offset will be when we define B2,
9180 so we store this "vcall offset" in the A sub-vtable and look it up in
9181 a "virtual thunk" for B2::f.
9182
9183 We need entries for all the functions in our primary vtable and
9184 in our non-virtual bases' secondary vtables. */
9185 vid->vbase = binfo;
9186 /* If we are just computing the vcall indices -- but do not need
9187 the actual entries -- not that. */
9188 if (!BINFO_VIRTUAL_P (binfo))
9189 vid->generate_vcall_entries = false;
9190 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9191 add_vcall_offset_vtbl_entries_r (binfo, vid);
9192 }
9193 }
9194
9195 /* Build vcall offsets, starting with those for BINFO. */
9196
9197 static void
9198 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9199 {
9200 int i;
9201 tree primary_binfo;
9202 tree base_binfo;
9203
9204 /* Don't walk into virtual bases -- except, of course, for the
9205 virtual base for which we are building vcall offsets. Any
9206 primary virtual base will have already had its offsets generated
9207 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9208 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9209 return;
9210
9211 /* If BINFO has a primary base, process it first. */
9212 primary_binfo = get_primary_binfo (binfo);
9213 if (primary_binfo)
9214 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9215
9216 /* Add BINFO itself to the list. */
9217 add_vcall_offset_vtbl_entries_1 (binfo, vid);
9218
9219 /* Scan the non-primary bases of BINFO. */
9220 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9221 if (base_binfo != primary_binfo)
9222 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9223 }
9224
9225 /* Called from build_vcall_offset_vtbl_entries_r. */
9226
9227 static void
9228 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9229 {
9230 /* Make entries for the rest of the virtuals. */
9231 tree orig_fn;
9232
9233 /* The ABI requires that the methods be processed in declaration
9234 order. */
9235 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
9236 orig_fn;
9237 orig_fn = DECL_CHAIN (orig_fn))
9238 if (TREE_CODE (orig_fn) == FUNCTION_DECL && DECL_VINDEX (orig_fn))
9239 add_vcall_offset (orig_fn, binfo, vid);
9240 }
9241
9242 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9243
9244 static void
9245 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9246 {
9247 size_t i;
9248 tree vcall_offset;
9249 tree derived_entry;
9250
9251 /* If there is already an entry for a function with the same
9252 signature as FN, then we do not need a second vcall offset.
9253 Check the list of functions already present in the derived
9254 class vtable. */
9255 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9256 {
9257 if (same_signature_p (derived_entry, orig_fn)
9258 /* We only use one vcall offset for virtual destructors,
9259 even though there are two virtual table entries. */
9260 || (DECL_DESTRUCTOR_P (derived_entry)
9261 && DECL_DESTRUCTOR_P (orig_fn)))
9262 return;
9263 }
9264
9265 /* If we are building these vcall offsets as part of building
9266 the vtable for the most derived class, remember the vcall
9267 offset. */
9268 if (vid->binfo == TYPE_BINFO (vid->derived))
9269 {
9270 tree_pair_s elt = {orig_fn, vid->index};
9271 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9272 }
9273
9274 /* The next vcall offset will be found at a more negative
9275 offset. */
9276 vid->index = size_binop (MINUS_EXPR, vid->index,
9277 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9278
9279 /* Keep track of this function. */
9280 vec_safe_push (vid->fns, orig_fn);
9281
9282 if (vid->generate_vcall_entries)
9283 {
9284 tree base;
9285 tree fn;
9286
9287 /* Find the overriding function. */
9288 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9289 if (fn == error_mark_node)
9290 vcall_offset = build_zero_cst (vtable_entry_type);
9291 else
9292 {
9293 base = TREE_VALUE (fn);
9294
9295 /* The vbase we're working on is a primary base of
9296 vid->binfo. But it might be a lost primary, so its
9297 BINFO_OFFSET might be wrong, so we just use the
9298 BINFO_OFFSET from vid->binfo. */
9299 vcall_offset = size_diffop_loc (input_location,
9300 BINFO_OFFSET (base),
9301 BINFO_OFFSET (vid->binfo));
9302 vcall_offset = fold_build1_loc (input_location,
9303 NOP_EXPR, vtable_entry_type,
9304 vcall_offset);
9305 }
9306 /* Add the initializer to the vtable. */
9307 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9308 }
9309 }
9310
9311 /* Return vtbl initializers for the RTTI entries corresponding to the
9312 BINFO's vtable. The RTTI entries should indicate the object given
9313 by VID->rtti_binfo. */
9314
9315 static void
9316 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9317 {
9318 tree b;
9319 tree t;
9320 tree offset;
9321 tree decl;
9322 tree init;
9323
9324 t = BINFO_TYPE (vid->rtti_binfo);
9325
9326 /* To find the complete object, we will first convert to our most
9327 primary base, and then add the offset in the vtbl to that value. */
9328 b = binfo;
9329 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9330 && !BINFO_LOST_PRIMARY_P (b))
9331 {
9332 tree primary_base;
9333
9334 primary_base = get_primary_binfo (b);
9335 gcc_assert (BINFO_PRIMARY_P (primary_base)
9336 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9337 b = primary_base;
9338 }
9339 offset = size_diffop_loc (input_location,
9340 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9341
9342 /* The second entry is the address of the typeinfo object. */
9343 if (flag_rtti)
9344 decl = build_address (get_tinfo_decl (t));
9345 else
9346 decl = integer_zero_node;
9347
9348 /* Convert the declaration to a type that can be stored in the
9349 vtable. */
9350 init = build_nop (vfunc_ptr_type_node, decl);
9351 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9352
9353 /* Add the offset-to-top entry. It comes earlier in the vtable than
9354 the typeinfo entry. Convert the offset to look like a
9355 function pointer, so that we can put it in the vtable. */
9356 init = build_nop (vfunc_ptr_type_node, offset);
9357 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9358 }
9359
9360 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9361 accessibility. */
9362
9363 bool
9364 uniquely_derived_from_p (tree parent, tree type)
9365 {
9366 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9367 return base && base != error_mark_node;
9368 }
9369
9370 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9371
9372 bool
9373 publicly_uniquely_derived_p (tree parent, tree type)
9374 {
9375 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9376 NULL, tf_none);
9377 return base && base != error_mark_node;
9378 }
9379
9380 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9381 class between them, if any. */
9382
9383 tree
9384 common_enclosing_class (tree ctx1, tree ctx2)
9385 {
9386 if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
9387 return NULL_TREE;
9388 gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
9389 && ctx2 == TYPE_MAIN_VARIANT (ctx2));
9390 if (ctx1 == ctx2)
9391 return ctx1;
9392 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9393 TYPE_MARKED_P (t) = true;
9394 tree found = NULL_TREE;
9395 for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
9396 if (TYPE_MARKED_P (t))
9397 {
9398 found = t;
9399 break;
9400 }
9401 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9402 TYPE_MARKED_P (t) = false;
9403 return found;
9404 }
9405
9406 #include "gt-cp-class.h"