re PR c++/52377 (C++11 non-static initializers in unions are not used)
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "cp-tree.h"
30 #include "flags.h"
31 #include "toplev.h"
32 #include "target.h"
33 #include "convert.h"
34 #include "cgraph.h"
35 #include "dumpfile.h"
36 #include "splay-tree.h"
37 #include "pointer-set.h"
38 #include "hash-table.h"
39
40 /* The number of nested classes being processed. If we are not in the
41 scope of any class, this is zero. */
42
43 int current_class_depth;
44
45 /* In order to deal with nested classes, we keep a stack of classes.
46 The topmost entry is the innermost class, and is the entry at index
47 CURRENT_CLASS_DEPTH */
48
49 typedef struct class_stack_node {
50 /* The name of the class. */
51 tree name;
52
53 /* The _TYPE node for the class. */
54 tree type;
55
56 /* The access specifier pending for new declarations in the scope of
57 this class. */
58 tree access;
59
60 /* If were defining TYPE, the names used in this class. */
61 splay_tree names_used;
62
63 /* Nonzero if this class is no longer open, because of a call to
64 push_to_top_level. */
65 size_t hidden;
66 }* class_stack_node_t;
67
68 typedef struct vtbl_init_data_s
69 {
70 /* The base for which we're building initializers. */
71 tree binfo;
72 /* The type of the most-derived type. */
73 tree derived;
74 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
75 unless ctor_vtbl_p is true. */
76 tree rtti_binfo;
77 /* The negative-index vtable initializers built up so far. These
78 are in order from least negative index to most negative index. */
79 vec<constructor_elt, va_gc> *inits;
80 /* The binfo for the virtual base for which we're building
81 vcall offset initializers. */
82 tree vbase;
83 /* The functions in vbase for which we have already provided vcall
84 offsets. */
85 vec<tree, va_gc> *fns;
86 /* The vtable index of the next vcall or vbase offset. */
87 tree index;
88 /* Nonzero if we are building the initializer for the primary
89 vtable. */
90 int primary_vtbl_p;
91 /* Nonzero if we are building the initializer for a construction
92 vtable. */
93 int ctor_vtbl_p;
94 /* True when adding vcall offset entries to the vtable. False when
95 merely computing the indices. */
96 bool generate_vcall_entries;
97 } vtbl_init_data;
98
99 /* The type of a function passed to walk_subobject_offsets. */
100 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
101
102 /* The stack itself. This is a dynamically resized array. The
103 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
104 static int current_class_stack_size;
105 static class_stack_node_t current_class_stack;
106
107 /* The size of the largest empty class seen in this translation unit. */
108 static GTY (()) tree sizeof_biggest_empty_class;
109
110 /* An array of all local classes present in this translation unit, in
111 declaration order. */
112 vec<tree, va_gc> *local_classes;
113
114 static tree get_vfield_name (tree);
115 static void finish_struct_anon (tree);
116 static tree get_vtable_name (tree);
117 static tree get_basefndecls (tree, tree);
118 static int build_primary_vtable (tree, tree);
119 static int build_secondary_vtable (tree);
120 static void finish_vtbls (tree);
121 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
122 static void finish_struct_bits (tree);
123 static int alter_access (tree, tree, tree);
124 static void handle_using_decl (tree, tree);
125 static tree dfs_modify_vtables (tree, void *);
126 static tree modify_all_vtables (tree, tree);
127 static void determine_primary_bases (tree);
128 static void finish_struct_methods (tree);
129 static void maybe_warn_about_overly_private_class (tree);
130 static int method_name_cmp (const void *, const void *);
131 static int resort_method_name_cmp (const void *, const void *);
132 static void add_implicitly_declared_members (tree, tree*, int, int);
133 static tree fixed_type_or_null (tree, int *, int *);
134 static tree build_simple_base_path (tree expr, tree binfo);
135 static tree build_vtbl_ref_1 (tree, tree);
136 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
137 vec<constructor_elt, va_gc> **);
138 static int count_fields (tree);
139 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
140 static void insert_into_classtype_sorted_fields (tree, tree, int);
141 static bool check_bitfield_decl (tree);
142 static void check_field_decl (tree, tree, int *, int *, int *);
143 static void check_field_decls (tree, tree *, int *, int *);
144 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
145 static void build_base_fields (record_layout_info, splay_tree, tree *);
146 static void check_methods (tree);
147 static void remove_zero_width_bit_fields (tree);
148 static void check_bases (tree, int *, int *);
149 static void check_bases_and_members (tree);
150 static tree create_vtable_ptr (tree, tree *);
151 static void include_empty_classes (record_layout_info);
152 static void layout_class_type (tree, tree *);
153 static void propagate_binfo_offsets (tree, tree);
154 static void layout_virtual_bases (record_layout_info, splay_tree);
155 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
156 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
157 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
158 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset (tree, tree, vtbl_init_data *);
160 static void layout_vtable_decl (tree, int);
161 static tree dfs_find_final_overrider_pre (tree, void *);
162 static tree dfs_find_final_overrider_post (tree, void *);
163 static tree find_final_overrider (tree, tree, tree);
164 static int make_new_vtable (tree, tree);
165 static tree get_primary_binfo (tree);
166 static int maybe_indent_hierarchy (FILE *, int, int);
167 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
168 static void dump_class_hierarchy (tree);
169 static void dump_class_hierarchy_1 (FILE *, int, tree);
170 static void dump_array (FILE *, tree);
171 static void dump_vtable (tree, tree, tree);
172 static void dump_vtt (tree, tree);
173 static void dump_thunk (FILE *, int, tree);
174 static tree build_vtable (tree, tree, tree);
175 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
176 static void layout_nonempty_base_or_field (record_layout_info,
177 tree, tree, splay_tree);
178 static tree end_of_class (tree, int);
179 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
180 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
181 vec<constructor_elt, va_gc> **);
182 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
183 vec<constructor_elt, va_gc> **);
184 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
185 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
186 static void clone_constructors_and_destructors (tree);
187 static tree build_clone (tree, tree);
188 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
189 static void build_ctor_vtbl_group (tree, tree);
190 static void build_vtt (tree);
191 static tree binfo_ctor_vtable (tree);
192 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
193 tree *);
194 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
195 static tree dfs_fixup_binfo_vtbls (tree, void *);
196 static int record_subobject_offset (tree, tree, splay_tree);
197 static int check_subobject_offset (tree, tree, splay_tree);
198 static int walk_subobject_offsets (tree, subobject_offset_fn,
199 tree, splay_tree, tree, int);
200 static void record_subobject_offsets (tree, tree, splay_tree, bool);
201 static int layout_conflict_p (tree, tree, splay_tree, int);
202 static int splay_tree_compare_integer_csts (splay_tree_key k1,
203 splay_tree_key k2);
204 static void warn_about_ambiguous_bases (tree);
205 static bool type_requires_array_cookie (tree);
206 static bool contains_empty_class_p (tree);
207 static bool base_derived_from (tree, tree);
208 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
209 static tree end_of_base (tree);
210 static tree get_vcall_index (tree, tree);
211
212 /* Variables shared between class.c and call.c. */
213
214 int n_vtables = 0;
215 int n_vtable_entries = 0;
216 int n_vtable_searches = 0;
217 int n_vtable_elems = 0;
218 int n_convert_harshness = 0;
219 int n_compute_conversion_costs = 0;
220 int n_inner_fields_searched = 0;
221
222 /* Convert to or from a base subobject. EXPR is an expression of type
223 `A' or `A*', an expression of type `B' or `B*' is returned. To
224 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
225 the B base instance within A. To convert base A to derived B, CODE
226 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
227 In this latter case, A must not be a morally virtual base of B.
228 NONNULL is true if EXPR is known to be non-NULL (this is only
229 needed when EXPR is of pointer type). CV qualifiers are preserved
230 from EXPR. */
231
232 tree
233 build_base_path (enum tree_code code,
234 tree expr,
235 tree binfo,
236 int nonnull,
237 tsubst_flags_t complain)
238 {
239 tree v_binfo = NULL_TREE;
240 tree d_binfo = NULL_TREE;
241 tree probe;
242 tree offset;
243 tree target_type;
244 tree null_test = NULL;
245 tree ptr_target_type;
246 int fixed_type_p;
247 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
248 bool has_empty = false;
249 bool virtual_access;
250
251 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
252 return error_mark_node;
253
254 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
255 {
256 d_binfo = probe;
257 if (is_empty_class (BINFO_TYPE (probe)))
258 has_empty = true;
259 if (!v_binfo && BINFO_VIRTUAL_P (probe))
260 v_binfo = probe;
261 }
262
263 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
264 if (want_pointer)
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
266
267 if (code == PLUS_EXPR
268 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
269 {
270 /* This can happen when adjust_result_of_qualified_name_lookup can't
271 find a unique base binfo in a call to a member function. We
272 couldn't give the diagnostic then since we might have been calling
273 a static member function, so we do it now. */
274 if (complain & tf_error)
275 {
276 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
277 ba_unique, NULL, complain);
278 gcc_assert (base == error_mark_node);
279 }
280 return error_mark_node;
281 }
282
283 gcc_assert ((code == MINUS_EXPR
284 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
285 || code == PLUS_EXPR);
286
287 if (binfo == d_binfo)
288 /* Nothing to do. */
289 return expr;
290
291 if (code == MINUS_EXPR && v_binfo)
292 {
293 if (complain & tf_error)
294 error ("cannot convert from base %qT to derived type %qT via "
295 "virtual base %qT", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
296 BINFO_TYPE (v_binfo));
297 return error_mark_node;
298 }
299
300 if (!want_pointer)
301 /* This must happen before the call to save_expr. */
302 expr = cp_build_addr_expr (expr, complain);
303 else
304 expr = mark_rvalue_use (expr);
305
306 offset = BINFO_OFFSET (binfo);
307 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
308 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
309 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
310 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
311 expression returned matches the input. */
312 target_type = cp_build_qualified_type
313 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
314 ptr_target_type = build_pointer_type (target_type);
315
316 /* Do we need to look in the vtable for the real offset? */
317 virtual_access = (v_binfo && fixed_type_p <= 0);
318
319 /* Don't bother with the calculations inside sizeof; they'll ICE if the
320 source type is incomplete and the pointer value doesn't matter. In a
321 template (even in fold_non_dependent_expr), we don't have vtables set
322 up properly yet, and the value doesn't matter there either; we're just
323 interested in the result of overload resolution. */
324 if (cp_unevaluated_operand != 0
325 || in_template_function ())
326 {
327 expr = build_nop (ptr_target_type, expr);
328 if (!want_pointer)
329 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
330 return expr;
331 }
332
333 /* If we're in an NSDMI, we don't have the full constructor context yet
334 that we need for converting to a virtual base, so just build a stub
335 CONVERT_EXPR and expand it later in bot_replace. */
336 if (virtual_access && fixed_type_p < 0
337 && current_scope () != current_function_decl)
338 {
339 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
340 CONVERT_EXPR_VBASE_PATH (expr) = true;
341 if (!want_pointer)
342 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
343 return expr;
344 }
345
346 /* Do we need to check for a null pointer? */
347 if (want_pointer && !nonnull)
348 {
349 /* If we know the conversion will not actually change the value
350 of EXPR, then we can avoid testing the expression for NULL.
351 We have to avoid generating a COMPONENT_REF for a base class
352 field, because other parts of the compiler know that such
353 expressions are always non-NULL. */
354 if (!virtual_access && integer_zerop (offset))
355 return build_nop (ptr_target_type, expr);
356 null_test = error_mark_node;
357 }
358
359 /* Protect against multiple evaluation if necessary. */
360 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
361 expr = save_expr (expr);
362
363 /* Now that we've saved expr, build the real null test. */
364 if (null_test)
365 {
366 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
367 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
368 expr, zero);
369 }
370
371 /* If this is a simple base reference, express it as a COMPONENT_REF. */
372 if (code == PLUS_EXPR && !virtual_access
373 /* We don't build base fields for empty bases, and they aren't very
374 interesting to the optimizers anyway. */
375 && !has_empty)
376 {
377 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
378 expr = build_simple_base_path (expr, binfo);
379 if (want_pointer)
380 expr = build_address (expr);
381 target_type = TREE_TYPE (expr);
382 goto out;
383 }
384
385 if (virtual_access)
386 {
387 /* Going via virtual base V_BINFO. We need the static offset
388 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
389 V_BINFO. That offset is an entry in D_BINFO's vtable. */
390 tree v_offset;
391
392 if (fixed_type_p < 0 && in_base_initializer)
393 {
394 /* In a base member initializer, we cannot rely on the
395 vtable being set up. We have to indirect via the
396 vtt_parm. */
397 tree t;
398
399 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
400 t = build_pointer_type (t);
401 v_offset = convert (t, current_vtt_parm);
402 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
403 }
404 else
405 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
406 complain),
407 TREE_TYPE (TREE_TYPE (expr)));
408
409 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
410 v_offset = build1 (NOP_EXPR,
411 build_pointer_type (ptrdiff_type_node),
412 v_offset);
413 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
414 TREE_CONSTANT (v_offset) = 1;
415
416 offset = convert_to_integer (ptrdiff_type_node,
417 size_diffop_loc (input_location, offset,
418 BINFO_OFFSET (v_binfo)));
419
420 if (!integer_zerop (offset))
421 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
422
423 if (fixed_type_p < 0)
424 /* Negative fixed_type_p means this is a constructor or destructor;
425 virtual base layout is fixed in in-charge [cd]tors, but not in
426 base [cd]tors. */
427 offset = build3 (COND_EXPR, ptrdiff_type_node,
428 build2 (EQ_EXPR, boolean_type_node,
429 current_in_charge_parm, integer_zero_node),
430 v_offset,
431 convert_to_integer (ptrdiff_type_node,
432 BINFO_OFFSET (binfo)));
433 else
434 offset = v_offset;
435 }
436
437 if (want_pointer)
438 target_type = ptr_target_type;
439
440 expr = build1 (NOP_EXPR, ptr_target_type, expr);
441
442 if (!integer_zerop (offset))
443 {
444 offset = fold_convert (sizetype, offset);
445 if (code == MINUS_EXPR)
446 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
447 expr = fold_build_pointer_plus (expr, offset);
448 }
449 else
450 null_test = NULL;
451
452 if (!want_pointer)
453 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
454
455 out:
456 if (null_test)
457 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
458 build_zero_cst (target_type));
459
460 return expr;
461 }
462
463 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
464 Perform a derived-to-base conversion by recursively building up a
465 sequence of COMPONENT_REFs to the appropriate base fields. */
466
467 static tree
468 build_simple_base_path (tree expr, tree binfo)
469 {
470 tree type = BINFO_TYPE (binfo);
471 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
472 tree field;
473
474 if (d_binfo == NULL_TREE)
475 {
476 tree temp;
477
478 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
479
480 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
481 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
482 an lvalue in the front end; only _DECLs and _REFs are lvalues
483 in the back end. */
484 temp = unary_complex_lvalue (ADDR_EXPR, expr);
485 if (temp)
486 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
487
488 return expr;
489 }
490
491 /* Recurse. */
492 expr = build_simple_base_path (expr, d_binfo);
493
494 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
495 field; field = DECL_CHAIN (field))
496 /* Is this the base field created by build_base_field? */
497 if (TREE_CODE (field) == FIELD_DECL
498 && DECL_FIELD_IS_BASE (field)
499 && TREE_TYPE (field) == type
500 /* If we're looking for a field in the most-derived class,
501 also check the field offset; we can have two base fields
502 of the same type if one is an indirect virtual base and one
503 is a direct non-virtual base. */
504 && (BINFO_INHERITANCE_CHAIN (d_binfo)
505 || tree_int_cst_equal (byte_position (field),
506 BINFO_OFFSET (binfo))))
507 {
508 /* We don't use build_class_member_access_expr here, as that
509 has unnecessary checks, and more importantly results in
510 recursive calls to dfs_walk_once. */
511 int type_quals = cp_type_quals (TREE_TYPE (expr));
512
513 expr = build3 (COMPONENT_REF,
514 cp_build_qualified_type (type, type_quals),
515 expr, field, NULL_TREE);
516 expr = fold_if_not_in_template (expr);
517
518 /* Mark the expression const or volatile, as appropriate.
519 Even though we've dealt with the type above, we still have
520 to mark the expression itself. */
521 if (type_quals & TYPE_QUAL_CONST)
522 TREE_READONLY (expr) = 1;
523 if (type_quals & TYPE_QUAL_VOLATILE)
524 TREE_THIS_VOLATILE (expr) = 1;
525
526 return expr;
527 }
528
529 /* Didn't find the base field?!? */
530 gcc_unreachable ();
531 }
532
533 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
534 type is a class type or a pointer to a class type. In the former
535 case, TYPE is also a class type; in the latter it is another
536 pointer type. If CHECK_ACCESS is true, an error message is emitted
537 if TYPE is inaccessible. If OBJECT has pointer type, the value is
538 assumed to be non-NULL. */
539
540 tree
541 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
542 tsubst_flags_t complain)
543 {
544 tree binfo;
545 tree object_type;
546
547 if (TYPE_PTR_P (TREE_TYPE (object)))
548 {
549 object_type = TREE_TYPE (TREE_TYPE (object));
550 type = TREE_TYPE (type);
551 }
552 else
553 object_type = TREE_TYPE (object);
554
555 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
556 NULL, complain);
557 if (!binfo || binfo == error_mark_node)
558 return error_mark_node;
559
560 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
561 }
562
563 /* EXPR is an expression with unqualified class type. BASE is a base
564 binfo of that class type. Returns EXPR, converted to the BASE
565 type. This function assumes that EXPR is the most derived class;
566 therefore virtual bases can be found at their static offsets. */
567
568 tree
569 convert_to_base_statically (tree expr, tree base)
570 {
571 tree expr_type;
572
573 expr_type = TREE_TYPE (expr);
574 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
575 {
576 /* If this is a non-empty base, use a COMPONENT_REF. */
577 if (!is_empty_class (BINFO_TYPE (base)))
578 return build_simple_base_path (expr, base);
579
580 /* We use fold_build2 and fold_convert below to simplify the trees
581 provided to the optimizers. It is not safe to call these functions
582 when processing a template because they do not handle C++-specific
583 trees. */
584 gcc_assert (!processing_template_decl);
585 expr = cp_build_addr_expr (expr, tf_warning_or_error);
586 if (!integer_zerop (BINFO_OFFSET (base)))
587 expr = fold_build_pointer_plus_loc (input_location,
588 expr, BINFO_OFFSET (base));
589 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
590 expr = build_fold_indirect_ref_loc (input_location, expr);
591 }
592
593 return expr;
594 }
595
596 \f
597 tree
598 build_vfield_ref (tree datum, tree type)
599 {
600 tree vfield, vcontext;
601
602 if (datum == error_mark_node)
603 return error_mark_node;
604
605 /* First, convert to the requested type. */
606 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
607 datum = convert_to_base (datum, type, /*check_access=*/false,
608 /*nonnull=*/true, tf_warning_or_error);
609
610 /* Second, the requested type may not be the owner of its own vptr.
611 If not, convert to the base class that owns it. We cannot use
612 convert_to_base here, because VCONTEXT may appear more than once
613 in the inheritance hierarchy of TYPE, and thus direct conversion
614 between the types may be ambiguous. Following the path back up
615 one step at a time via primary bases avoids the problem. */
616 vfield = TYPE_VFIELD (type);
617 vcontext = DECL_CONTEXT (vfield);
618 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
619 {
620 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
621 type = TREE_TYPE (datum);
622 }
623
624 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
625 }
626
627 /* Given an object INSTANCE, return an expression which yields the
628 vtable element corresponding to INDEX. There are many special
629 cases for INSTANCE which we take care of here, mainly to avoid
630 creating extra tree nodes when we don't have to. */
631
632 static tree
633 build_vtbl_ref_1 (tree instance, tree idx)
634 {
635 tree aref;
636 tree vtbl = NULL_TREE;
637
638 /* Try to figure out what a reference refers to, and
639 access its virtual function table directly. */
640
641 int cdtorp = 0;
642 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
643
644 tree basetype = non_reference (TREE_TYPE (instance));
645
646 if (fixed_type && !cdtorp)
647 {
648 tree binfo = lookup_base (fixed_type, basetype,
649 ba_unique, NULL, tf_none);
650 if (binfo && binfo != error_mark_node)
651 vtbl = unshare_expr (BINFO_VTABLE (binfo));
652 }
653
654 if (!vtbl)
655 vtbl = build_vfield_ref (instance, basetype);
656
657 aref = build_array_ref (input_location, vtbl, idx);
658 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
659
660 return aref;
661 }
662
663 tree
664 build_vtbl_ref (tree instance, tree idx)
665 {
666 tree aref = build_vtbl_ref_1 (instance, idx);
667
668 return aref;
669 }
670
671 /* Given a stable object pointer INSTANCE_PTR, return an expression which
672 yields a function pointer corresponding to vtable element INDEX. */
673
674 tree
675 build_vfn_ref (tree instance_ptr, tree idx)
676 {
677 tree aref;
678
679 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
680 tf_warning_or_error),
681 idx);
682
683 /* When using function descriptors, the address of the
684 vtable entry is treated as a function pointer. */
685 if (TARGET_VTABLE_USES_DESCRIPTORS)
686 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
687 cp_build_addr_expr (aref, tf_warning_or_error));
688
689 /* Remember this as a method reference, for later devirtualization. */
690 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
691
692 return aref;
693 }
694
695 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
696 for the given TYPE. */
697
698 static tree
699 get_vtable_name (tree type)
700 {
701 return mangle_vtbl_for_type (type);
702 }
703
704 /* DECL is an entity associated with TYPE, like a virtual table or an
705 implicitly generated constructor. Determine whether or not DECL
706 should have external or internal linkage at the object file
707 level. This routine does not deal with COMDAT linkage and other
708 similar complexities; it simply sets TREE_PUBLIC if it possible for
709 entities in other translation units to contain copies of DECL, in
710 the abstract. */
711
712 void
713 set_linkage_according_to_type (tree /*type*/, tree decl)
714 {
715 TREE_PUBLIC (decl) = 1;
716 determine_visibility (decl);
717 }
718
719 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
720 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
721 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
722
723 static tree
724 build_vtable (tree class_type, tree name, tree vtable_type)
725 {
726 tree decl;
727
728 decl = build_lang_decl (VAR_DECL, name, vtable_type);
729 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
730 now to avoid confusion in mangle_decl. */
731 SET_DECL_ASSEMBLER_NAME (decl, name);
732 DECL_CONTEXT (decl) = class_type;
733 DECL_ARTIFICIAL (decl) = 1;
734 TREE_STATIC (decl) = 1;
735 TREE_READONLY (decl) = 1;
736 DECL_VIRTUAL_P (decl) = 1;
737 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
738 DECL_VTABLE_OR_VTT_P (decl) = 1;
739 /* At one time the vtable info was grabbed 2 words at a time. This
740 fails on sparc unless you have 8-byte alignment. (tiemann) */
741 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
742 DECL_ALIGN (decl));
743 set_linkage_according_to_type (class_type, decl);
744 /* The vtable has not been defined -- yet. */
745 DECL_EXTERNAL (decl) = 1;
746 DECL_NOT_REALLY_EXTERN (decl) = 1;
747
748 /* Mark the VAR_DECL node representing the vtable itself as a
749 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
750 is rather important that such things be ignored because any
751 effort to actually generate DWARF for them will run into
752 trouble when/if we encounter code like:
753
754 #pragma interface
755 struct S { virtual void member (); };
756
757 because the artificial declaration of the vtable itself (as
758 manufactured by the g++ front end) will say that the vtable is
759 a static member of `S' but only *after* the debug output for
760 the definition of `S' has already been output. This causes
761 grief because the DWARF entry for the definition of the vtable
762 will try to refer back to an earlier *declaration* of the
763 vtable as a static member of `S' and there won't be one. We
764 might be able to arrange to have the "vtable static member"
765 attached to the member list for `S' before the debug info for
766 `S' get written (which would solve the problem) but that would
767 require more intrusive changes to the g++ front end. */
768 DECL_IGNORED_P (decl) = 1;
769
770 return decl;
771 }
772
773 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
774 or even complete. If this does not exist, create it. If COMPLETE is
775 nonzero, then complete the definition of it -- that will render it
776 impossible to actually build the vtable, but is useful to get at those
777 which are known to exist in the runtime. */
778
779 tree
780 get_vtable_decl (tree type, int complete)
781 {
782 tree decl;
783
784 if (CLASSTYPE_VTABLES (type))
785 return CLASSTYPE_VTABLES (type);
786
787 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
788 CLASSTYPE_VTABLES (type) = decl;
789
790 if (complete)
791 {
792 DECL_EXTERNAL (decl) = 1;
793 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
794 }
795
796 return decl;
797 }
798
799 /* Build the primary virtual function table for TYPE. If BINFO is
800 non-NULL, build the vtable starting with the initial approximation
801 that it is the same as the one which is the head of the association
802 list. Returns a nonzero value if a new vtable is actually
803 created. */
804
805 static int
806 build_primary_vtable (tree binfo, tree type)
807 {
808 tree decl;
809 tree virtuals;
810
811 decl = get_vtable_decl (type, /*complete=*/0);
812
813 if (binfo)
814 {
815 if (BINFO_NEW_VTABLE_MARKED (binfo))
816 /* We have already created a vtable for this base, so there's
817 no need to do it again. */
818 return 0;
819
820 virtuals = copy_list (BINFO_VIRTUALS (binfo));
821 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
822 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
823 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
824 }
825 else
826 {
827 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
828 virtuals = NULL_TREE;
829 }
830
831 if (GATHER_STATISTICS)
832 {
833 n_vtables += 1;
834 n_vtable_elems += list_length (virtuals);
835 }
836
837 /* Initialize the association list for this type, based
838 on our first approximation. */
839 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
840 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
841 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
842 return 1;
843 }
844
845 /* Give BINFO a new virtual function table which is initialized
846 with a skeleton-copy of its original initialization. The only
847 entry that changes is the `delta' entry, so we can really
848 share a lot of structure.
849
850 FOR_TYPE is the most derived type which caused this table to
851 be needed.
852
853 Returns nonzero if we haven't met BINFO before.
854
855 The order in which vtables are built (by calling this function) for
856 an object must remain the same, otherwise a binary incompatibility
857 can result. */
858
859 static int
860 build_secondary_vtable (tree binfo)
861 {
862 if (BINFO_NEW_VTABLE_MARKED (binfo))
863 /* We already created a vtable for this base. There's no need to
864 do it again. */
865 return 0;
866
867 /* Remember that we've created a vtable for this BINFO, so that we
868 don't try to do so again. */
869 SET_BINFO_NEW_VTABLE_MARKED (binfo);
870
871 /* Make fresh virtual list, so we can smash it later. */
872 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
873
874 /* Secondary vtables are laid out as part of the same structure as
875 the primary vtable. */
876 BINFO_VTABLE (binfo) = NULL_TREE;
877 return 1;
878 }
879
880 /* Create a new vtable for BINFO which is the hierarchy dominated by
881 T. Return nonzero if we actually created a new vtable. */
882
883 static int
884 make_new_vtable (tree t, tree binfo)
885 {
886 if (binfo == TYPE_BINFO (t))
887 /* In this case, it is *type*'s vtable we are modifying. We start
888 with the approximation that its vtable is that of the
889 immediate base class. */
890 return build_primary_vtable (binfo, t);
891 else
892 /* This is our very own copy of `basetype' to play with. Later,
893 we will fill in all the virtual functions that override the
894 virtual functions in these base classes which are not defined
895 by the current type. */
896 return build_secondary_vtable (binfo);
897 }
898
899 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
900 (which is in the hierarchy dominated by T) list FNDECL as its
901 BV_FN. DELTA is the required constant adjustment from the `this'
902 pointer where the vtable entry appears to the `this' required when
903 the function is actually called. */
904
905 static void
906 modify_vtable_entry (tree t,
907 tree binfo,
908 tree fndecl,
909 tree delta,
910 tree *virtuals)
911 {
912 tree v;
913
914 v = *virtuals;
915
916 if (fndecl != BV_FN (v)
917 || !tree_int_cst_equal (delta, BV_DELTA (v)))
918 {
919 /* We need a new vtable for BINFO. */
920 if (make_new_vtable (t, binfo))
921 {
922 /* If we really did make a new vtable, we also made a copy
923 of the BINFO_VIRTUALS list. Now, we have to find the
924 corresponding entry in that list. */
925 *virtuals = BINFO_VIRTUALS (binfo);
926 while (BV_FN (*virtuals) != BV_FN (v))
927 *virtuals = TREE_CHAIN (*virtuals);
928 v = *virtuals;
929 }
930
931 BV_DELTA (v) = delta;
932 BV_VCALL_INDEX (v) = NULL_TREE;
933 BV_FN (v) = fndecl;
934 }
935 }
936
937 \f
938 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
939 the USING_DECL naming METHOD. Returns true if the method could be
940 added to the method vec. */
941
942 bool
943 add_method (tree type, tree method, tree using_decl)
944 {
945 unsigned slot;
946 tree overload;
947 bool template_conv_p = false;
948 bool conv_p;
949 vec<tree, va_gc> *method_vec;
950 bool complete_p;
951 bool insert_p = false;
952 tree current_fns;
953 tree fns;
954
955 if (method == error_mark_node)
956 return false;
957
958 complete_p = COMPLETE_TYPE_P (type);
959 conv_p = DECL_CONV_FN_P (method);
960 if (conv_p)
961 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
962 && DECL_TEMPLATE_CONV_FN_P (method));
963
964 method_vec = CLASSTYPE_METHOD_VEC (type);
965 if (!method_vec)
966 {
967 /* Make a new method vector. We start with 8 entries. We must
968 allocate at least two (for constructors and destructors), and
969 we're going to end up with an assignment operator at some
970 point as well. */
971 vec_alloc (method_vec, 8);
972 /* Create slots for constructors and destructors. */
973 method_vec->quick_push (NULL_TREE);
974 method_vec->quick_push (NULL_TREE);
975 CLASSTYPE_METHOD_VEC (type) = method_vec;
976 }
977
978 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
979 grok_special_member_properties (method);
980
981 /* Constructors and destructors go in special slots. */
982 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
983 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
984 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
985 {
986 slot = CLASSTYPE_DESTRUCTOR_SLOT;
987
988 if (TYPE_FOR_JAVA (type))
989 {
990 if (!DECL_ARTIFICIAL (method))
991 error ("Java class %qT cannot have a destructor", type);
992 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
993 error ("Java class %qT cannot have an implicit non-trivial "
994 "destructor",
995 type);
996 }
997 }
998 else
999 {
1000 tree m;
1001
1002 insert_p = true;
1003 /* See if we already have an entry with this name. */
1004 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1005 vec_safe_iterate (method_vec, slot, &m);
1006 ++slot)
1007 {
1008 m = OVL_CURRENT (m);
1009 if (template_conv_p)
1010 {
1011 if (TREE_CODE (m) == TEMPLATE_DECL
1012 && DECL_TEMPLATE_CONV_FN_P (m))
1013 insert_p = false;
1014 break;
1015 }
1016 if (conv_p && !DECL_CONV_FN_P (m))
1017 break;
1018 if (DECL_NAME (m) == DECL_NAME (method))
1019 {
1020 insert_p = false;
1021 break;
1022 }
1023 if (complete_p
1024 && !DECL_CONV_FN_P (m)
1025 && DECL_NAME (m) > DECL_NAME (method))
1026 break;
1027 }
1028 }
1029 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1030
1031 /* Check to see if we've already got this method. */
1032 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1033 {
1034 tree fn = OVL_CURRENT (fns);
1035 tree fn_type;
1036 tree method_type;
1037 tree parms1;
1038 tree parms2;
1039
1040 if (TREE_CODE (fn) != TREE_CODE (method))
1041 continue;
1042
1043 /* [over.load] Member function declarations with the
1044 same name and the same parameter types cannot be
1045 overloaded if any of them is a static member
1046 function declaration.
1047
1048 [over.load] Member function declarations with the same name and
1049 the same parameter-type-list as well as member function template
1050 declarations with the same name, the same parameter-type-list, and
1051 the same template parameter lists cannot be overloaded if any of
1052 them, but not all, have a ref-qualifier.
1053
1054 [namespace.udecl] When a using-declaration brings names
1055 from a base class into a derived class scope, member
1056 functions in the derived class override and/or hide member
1057 functions with the same name and parameter types in a base
1058 class (rather than conflicting). */
1059 fn_type = TREE_TYPE (fn);
1060 method_type = TREE_TYPE (method);
1061 parms1 = TYPE_ARG_TYPES (fn_type);
1062 parms2 = TYPE_ARG_TYPES (method_type);
1063
1064 /* Compare the quals on the 'this' parm. Don't compare
1065 the whole types, as used functions are treated as
1066 coming from the using class in overload resolution. */
1067 if (! DECL_STATIC_FUNCTION_P (fn)
1068 && ! DECL_STATIC_FUNCTION_P (method)
1069 /* Either both or neither need to be ref-qualified for
1070 differing quals to allow overloading. */
1071 && (FUNCTION_REF_QUALIFIED (fn_type)
1072 == FUNCTION_REF_QUALIFIED (method_type))
1073 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1074 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1075 continue;
1076
1077 /* For templates, the return type and template parameters
1078 must be identical. */
1079 if (TREE_CODE (fn) == TEMPLATE_DECL
1080 && (!same_type_p (TREE_TYPE (fn_type),
1081 TREE_TYPE (method_type))
1082 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1083 DECL_TEMPLATE_PARMS (method))))
1084 continue;
1085
1086 if (! DECL_STATIC_FUNCTION_P (fn))
1087 parms1 = TREE_CHAIN (parms1);
1088 if (! DECL_STATIC_FUNCTION_P (method))
1089 parms2 = TREE_CHAIN (parms2);
1090
1091 if (compparms (parms1, parms2)
1092 && (!DECL_CONV_FN_P (fn)
1093 || same_type_p (TREE_TYPE (fn_type),
1094 TREE_TYPE (method_type))))
1095 {
1096 /* For function versions, their parms and types match
1097 but they are not duplicates. Record function versions
1098 as and when they are found. extern "C" functions are
1099 not treated as versions. */
1100 if (TREE_CODE (fn) == FUNCTION_DECL
1101 && TREE_CODE (method) == FUNCTION_DECL
1102 && !DECL_EXTERN_C_P (fn)
1103 && !DECL_EXTERN_C_P (method)
1104 && targetm.target_option.function_versions (fn, method))
1105 {
1106 /* Mark functions as versions if necessary. Modify the mangled
1107 decl name if necessary. */
1108 if (!DECL_FUNCTION_VERSIONED (fn))
1109 {
1110 DECL_FUNCTION_VERSIONED (fn) = 1;
1111 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1112 mangle_decl (fn);
1113 }
1114 if (!DECL_FUNCTION_VERSIONED (method))
1115 {
1116 DECL_FUNCTION_VERSIONED (method) = 1;
1117 if (DECL_ASSEMBLER_NAME_SET_P (method))
1118 mangle_decl (method);
1119 }
1120 record_function_versions (fn, method);
1121 continue;
1122 }
1123 if (DECL_INHERITED_CTOR_BASE (method))
1124 {
1125 if (DECL_INHERITED_CTOR_BASE (fn))
1126 {
1127 error_at (DECL_SOURCE_LOCATION (method),
1128 "%q#D inherited from %qT", method,
1129 DECL_INHERITED_CTOR_BASE (method));
1130 error_at (DECL_SOURCE_LOCATION (fn),
1131 "conflicts with version inherited from %qT",
1132 DECL_INHERITED_CTOR_BASE (fn));
1133 }
1134 /* Otherwise defer to the other function. */
1135 return false;
1136 }
1137 if (using_decl)
1138 {
1139 if (DECL_CONTEXT (fn) == type)
1140 /* Defer to the local function. */
1141 return false;
1142 }
1143 else
1144 {
1145 error ("%q+#D cannot be overloaded", method);
1146 error ("with %q+#D", fn);
1147 }
1148
1149 /* We don't call duplicate_decls here to merge the
1150 declarations because that will confuse things if the
1151 methods have inline definitions. In particular, we
1152 will crash while processing the definitions. */
1153 return false;
1154 }
1155 }
1156
1157 /* A class should never have more than one destructor. */
1158 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1159 return false;
1160
1161 /* Add the new binding. */
1162 if (using_decl)
1163 {
1164 overload = ovl_cons (method, current_fns);
1165 OVL_USED (overload) = true;
1166 }
1167 else
1168 overload = build_overload (method, current_fns);
1169
1170 if (conv_p)
1171 TYPE_HAS_CONVERSION (type) = 1;
1172 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1173 push_class_level_binding (DECL_NAME (method), overload);
1174
1175 if (insert_p)
1176 {
1177 bool reallocated;
1178
1179 /* We only expect to add few methods in the COMPLETE_P case, so
1180 just make room for one more method in that case. */
1181 if (complete_p)
1182 reallocated = vec_safe_reserve_exact (method_vec, 1);
1183 else
1184 reallocated = vec_safe_reserve (method_vec, 1);
1185 if (reallocated)
1186 CLASSTYPE_METHOD_VEC (type) = method_vec;
1187 if (slot == method_vec->length ())
1188 method_vec->quick_push (overload);
1189 else
1190 method_vec->quick_insert (slot, overload);
1191 }
1192 else
1193 /* Replace the current slot. */
1194 (*method_vec)[slot] = overload;
1195 return true;
1196 }
1197
1198 /* Subroutines of finish_struct. */
1199
1200 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1201 legit, otherwise return 0. */
1202
1203 static int
1204 alter_access (tree t, tree fdecl, tree access)
1205 {
1206 tree elem;
1207
1208 if (!DECL_LANG_SPECIFIC (fdecl))
1209 retrofit_lang_decl (fdecl);
1210
1211 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1212
1213 elem = purpose_member (t, DECL_ACCESS (fdecl));
1214 if (elem)
1215 {
1216 if (TREE_VALUE (elem) != access)
1217 {
1218 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1219 error ("conflicting access specifications for method"
1220 " %q+D, ignored", TREE_TYPE (fdecl));
1221 else
1222 error ("conflicting access specifications for field %qE, ignored",
1223 DECL_NAME (fdecl));
1224 }
1225 else
1226 {
1227 /* They're changing the access to the same thing they changed
1228 it to before. That's OK. */
1229 ;
1230 }
1231 }
1232 else
1233 {
1234 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1235 tf_warning_or_error);
1236 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1237 return 1;
1238 }
1239 return 0;
1240 }
1241
1242 /* Process the USING_DECL, which is a member of T. */
1243
1244 static void
1245 handle_using_decl (tree using_decl, tree t)
1246 {
1247 tree decl = USING_DECL_DECLS (using_decl);
1248 tree name = DECL_NAME (using_decl);
1249 tree access
1250 = TREE_PRIVATE (using_decl) ? access_private_node
1251 : TREE_PROTECTED (using_decl) ? access_protected_node
1252 : access_public_node;
1253 tree flist = NULL_TREE;
1254 tree old_value;
1255
1256 gcc_assert (!processing_template_decl && decl);
1257
1258 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1259 tf_warning_or_error);
1260 if (old_value)
1261 {
1262 if (is_overloaded_fn (old_value))
1263 old_value = OVL_CURRENT (old_value);
1264
1265 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1266 /* OK */;
1267 else
1268 old_value = NULL_TREE;
1269 }
1270
1271 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1272
1273 if (is_overloaded_fn (decl))
1274 flist = decl;
1275
1276 if (! old_value)
1277 ;
1278 else if (is_overloaded_fn (old_value))
1279 {
1280 if (flist)
1281 /* It's OK to use functions from a base when there are functions with
1282 the same name already present in the current class. */;
1283 else
1284 {
1285 error ("%q+D invalid in %q#T", using_decl, t);
1286 error (" because of local method %q+#D with same name",
1287 OVL_CURRENT (old_value));
1288 return;
1289 }
1290 }
1291 else if (!DECL_ARTIFICIAL (old_value))
1292 {
1293 error ("%q+D invalid in %q#T", using_decl, t);
1294 error (" because of local member %q+#D with same name", old_value);
1295 return;
1296 }
1297
1298 /* Make type T see field decl FDECL with access ACCESS. */
1299 if (flist)
1300 for (; flist; flist = OVL_NEXT (flist))
1301 {
1302 add_method (t, OVL_CURRENT (flist), using_decl);
1303 alter_access (t, OVL_CURRENT (flist), access);
1304 }
1305 else
1306 alter_access (t, decl, access);
1307 }
1308 \f
1309 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1310 types with abi tags, add the corresponding identifiers to the VEC in
1311 *DATA and set IDENTIFIER_MARKED. */
1312
1313 struct abi_tag_data
1314 {
1315 tree t;
1316 tree subob;
1317 };
1318
1319 static tree
1320 find_abi_tags_r (tree *tp, int */*walk_subtrees*/, void *data)
1321 {
1322 if (!OVERLOAD_TYPE_P (*tp))
1323 return NULL_TREE;
1324
1325 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1326 {
1327 struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1328 for (tree list = TREE_VALUE (attributes); list;
1329 list = TREE_CHAIN (list))
1330 {
1331 tree tag = TREE_VALUE (list);
1332 tree id = get_identifier (TREE_STRING_POINTER (tag));
1333 if (!IDENTIFIER_MARKED (id))
1334 {
1335 if (TYPE_P (p->subob))
1336 {
1337 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1338 "that base %qT has", p->t, tag, p->subob);
1339 inform (location_of (p->subob), "%qT declared here",
1340 p->subob);
1341 }
1342 else
1343 {
1344 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1345 "that %qT (used in the type of %qD) has",
1346 p->t, tag, *tp, p->subob);
1347 inform (location_of (p->subob), "%qD declared here",
1348 p->subob);
1349 inform (location_of (*tp), "%qT declared here", *tp);
1350 }
1351 }
1352 }
1353 }
1354 return NULL_TREE;
1355 }
1356
1357 /* Check that class T has all the abi tags that subobject SUBOB has, or
1358 warn if not. */
1359
1360 static void
1361 check_abi_tags (tree t, tree subob)
1362 {
1363 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1364 if (attributes)
1365 {
1366 for (tree list = TREE_VALUE (attributes); list;
1367 list = TREE_CHAIN (list))
1368 {
1369 tree tag = TREE_VALUE (list);
1370 tree id = get_identifier (TREE_STRING_POINTER (tag));
1371 IDENTIFIER_MARKED (id) = true;
1372 }
1373 }
1374
1375 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1376 struct abi_tag_data data = { t, subob };
1377
1378 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1379
1380 if (attributes)
1381 {
1382 for (tree list = TREE_VALUE (attributes); list;
1383 list = TREE_CHAIN (list))
1384 {
1385 tree tag = TREE_VALUE (list);
1386 tree id = get_identifier (TREE_STRING_POINTER (tag));
1387 IDENTIFIER_MARKED (id) = false;
1388 }
1389 }
1390 }
1391
1392 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1393 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1394 properties of the bases. */
1395
1396 static void
1397 check_bases (tree t,
1398 int* cant_have_const_ctor_p,
1399 int* no_const_asn_ref_p)
1400 {
1401 int i;
1402 bool seen_non_virtual_nearly_empty_base_p = 0;
1403 int seen_tm_mask = 0;
1404 tree base_binfo;
1405 tree binfo;
1406 tree field = NULL_TREE;
1407
1408 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1409 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1410 if (TREE_CODE (field) == FIELD_DECL)
1411 break;
1412
1413 for (binfo = TYPE_BINFO (t), i = 0;
1414 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1415 {
1416 tree basetype = TREE_TYPE (base_binfo);
1417
1418 gcc_assert (COMPLETE_TYPE_P (basetype));
1419
1420 if (CLASSTYPE_FINAL (basetype))
1421 error ("cannot derive from %<final%> base %qT in derived type %qT",
1422 basetype, t);
1423
1424 /* If any base class is non-literal, so is the derived class. */
1425 if (!CLASSTYPE_LITERAL_P (basetype))
1426 CLASSTYPE_LITERAL_P (t) = false;
1427
1428 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1429 here because the case of virtual functions but non-virtual
1430 dtor is handled in finish_struct_1. */
1431 if (!TYPE_POLYMORPHIC_P (basetype))
1432 warning (OPT_Weffc__,
1433 "base class %q#T has a non-virtual destructor", basetype);
1434
1435 /* If the base class doesn't have copy constructors or
1436 assignment operators that take const references, then the
1437 derived class cannot have such a member automatically
1438 generated. */
1439 if (TYPE_HAS_COPY_CTOR (basetype)
1440 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1441 *cant_have_const_ctor_p = 1;
1442 if (TYPE_HAS_COPY_ASSIGN (basetype)
1443 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1444 *no_const_asn_ref_p = 1;
1445
1446 if (BINFO_VIRTUAL_P (base_binfo))
1447 /* A virtual base does not effect nearly emptiness. */
1448 ;
1449 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1450 {
1451 if (seen_non_virtual_nearly_empty_base_p)
1452 /* And if there is more than one nearly empty base, then the
1453 derived class is not nearly empty either. */
1454 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1455 else
1456 /* Remember we've seen one. */
1457 seen_non_virtual_nearly_empty_base_p = 1;
1458 }
1459 else if (!is_empty_class (basetype))
1460 /* If the base class is not empty or nearly empty, then this
1461 class cannot be nearly empty. */
1462 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1463
1464 /* A lot of properties from the bases also apply to the derived
1465 class. */
1466 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1467 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1468 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1469 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1470 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1471 || !TYPE_HAS_COPY_ASSIGN (basetype));
1472 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1473 || !TYPE_HAS_COPY_CTOR (basetype));
1474 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1475 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1476 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1477 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1478 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1479 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1480 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1481 || TYPE_HAS_COMPLEX_DFLT (basetype));
1482
1483 /* A standard-layout class is a class that:
1484 ...
1485 * has no non-standard-layout base classes, */
1486 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1487 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1488 {
1489 tree basefield;
1490 /* ...has no base classes of the same type as the first non-static
1491 data member... */
1492 if (field && DECL_CONTEXT (field) == t
1493 && (same_type_ignoring_top_level_qualifiers_p
1494 (TREE_TYPE (field), basetype)))
1495 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1496 else
1497 /* ...either has no non-static data members in the most-derived
1498 class and at most one base class with non-static data
1499 members, or has no base classes with non-static data
1500 members */
1501 for (basefield = TYPE_FIELDS (basetype); basefield;
1502 basefield = DECL_CHAIN (basefield))
1503 if (TREE_CODE (basefield) == FIELD_DECL)
1504 {
1505 if (field)
1506 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1507 else
1508 field = basefield;
1509 break;
1510 }
1511 }
1512
1513 /* Don't bother collecting tm attributes if transactional memory
1514 support is not enabled. */
1515 if (flag_tm)
1516 {
1517 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1518 if (tm_attr)
1519 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1520 }
1521
1522 check_abi_tags (t, basetype);
1523 }
1524
1525 /* If one of the base classes had TM attributes, and the current class
1526 doesn't define its own, then the current class inherits one. */
1527 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1528 {
1529 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1530 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1531 }
1532 }
1533
1534 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1535 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1536 that have had a nearly-empty virtual primary base stolen by some
1537 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1538 T. */
1539
1540 static void
1541 determine_primary_bases (tree t)
1542 {
1543 unsigned i;
1544 tree primary = NULL_TREE;
1545 tree type_binfo = TYPE_BINFO (t);
1546 tree base_binfo;
1547
1548 /* Determine the primary bases of our bases. */
1549 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1550 base_binfo = TREE_CHAIN (base_binfo))
1551 {
1552 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1553
1554 /* See if we're the non-virtual primary of our inheritance
1555 chain. */
1556 if (!BINFO_VIRTUAL_P (base_binfo))
1557 {
1558 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1559 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1560
1561 if (parent_primary
1562 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1563 BINFO_TYPE (parent_primary)))
1564 /* We are the primary binfo. */
1565 BINFO_PRIMARY_P (base_binfo) = 1;
1566 }
1567 /* Determine if we have a virtual primary base, and mark it so.
1568 */
1569 if (primary && BINFO_VIRTUAL_P (primary))
1570 {
1571 tree this_primary = copied_binfo (primary, base_binfo);
1572
1573 if (BINFO_PRIMARY_P (this_primary))
1574 /* Someone already claimed this base. */
1575 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1576 else
1577 {
1578 tree delta;
1579
1580 BINFO_PRIMARY_P (this_primary) = 1;
1581 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1582
1583 /* A virtual binfo might have been copied from within
1584 another hierarchy. As we're about to use it as a
1585 primary base, make sure the offsets match. */
1586 delta = size_diffop_loc (input_location,
1587 convert (ssizetype,
1588 BINFO_OFFSET (base_binfo)),
1589 convert (ssizetype,
1590 BINFO_OFFSET (this_primary)));
1591
1592 propagate_binfo_offsets (this_primary, delta);
1593 }
1594 }
1595 }
1596
1597 /* First look for a dynamic direct non-virtual base. */
1598 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1599 {
1600 tree basetype = BINFO_TYPE (base_binfo);
1601
1602 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1603 {
1604 primary = base_binfo;
1605 goto found;
1606 }
1607 }
1608
1609 /* A "nearly-empty" virtual base class can be the primary base
1610 class, if no non-virtual polymorphic base can be found. Look for
1611 a nearly-empty virtual dynamic base that is not already a primary
1612 base of something in the hierarchy. If there is no such base,
1613 just pick the first nearly-empty virtual base. */
1614
1615 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1616 base_binfo = TREE_CHAIN (base_binfo))
1617 if (BINFO_VIRTUAL_P (base_binfo)
1618 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1619 {
1620 if (!BINFO_PRIMARY_P (base_binfo))
1621 {
1622 /* Found one that is not primary. */
1623 primary = base_binfo;
1624 goto found;
1625 }
1626 else if (!primary)
1627 /* Remember the first candidate. */
1628 primary = base_binfo;
1629 }
1630
1631 found:
1632 /* If we've got a primary base, use it. */
1633 if (primary)
1634 {
1635 tree basetype = BINFO_TYPE (primary);
1636
1637 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1638 if (BINFO_PRIMARY_P (primary))
1639 /* We are stealing a primary base. */
1640 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1641 BINFO_PRIMARY_P (primary) = 1;
1642 if (BINFO_VIRTUAL_P (primary))
1643 {
1644 tree delta;
1645
1646 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1647 /* A virtual binfo might have been copied from within
1648 another hierarchy. As we're about to use it as a primary
1649 base, make sure the offsets match. */
1650 delta = size_diffop_loc (input_location, ssize_int (0),
1651 convert (ssizetype, BINFO_OFFSET (primary)));
1652
1653 propagate_binfo_offsets (primary, delta);
1654 }
1655
1656 primary = TYPE_BINFO (basetype);
1657
1658 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1659 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1660 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1661 }
1662 }
1663
1664 /* Update the variant types of T. */
1665
1666 void
1667 fixup_type_variants (tree t)
1668 {
1669 tree variants;
1670
1671 if (!t)
1672 return;
1673
1674 for (variants = TYPE_NEXT_VARIANT (t);
1675 variants;
1676 variants = TYPE_NEXT_VARIANT (variants))
1677 {
1678 /* These fields are in the _TYPE part of the node, not in
1679 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1680 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1681 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1682 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1683 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1684
1685 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1686
1687 TYPE_BINFO (variants) = TYPE_BINFO (t);
1688
1689 /* Copy whatever these are holding today. */
1690 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1691 TYPE_METHODS (variants) = TYPE_METHODS (t);
1692 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1693 }
1694 }
1695
1696 /* Early variant fixups: we apply attributes at the beginning of the class
1697 definition, and we need to fix up any variants that have already been
1698 made via elaborated-type-specifier so that check_qualified_type works. */
1699
1700 void
1701 fixup_attribute_variants (tree t)
1702 {
1703 tree variants;
1704
1705 if (!t)
1706 return;
1707
1708 for (variants = TYPE_NEXT_VARIANT (t);
1709 variants;
1710 variants = TYPE_NEXT_VARIANT (variants))
1711 {
1712 /* These are the two fields that check_qualified_type looks at and
1713 are affected by attributes. */
1714 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1715 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1716 }
1717 }
1718 \f
1719 /* Set memoizing fields and bits of T (and its variants) for later
1720 use. */
1721
1722 static void
1723 finish_struct_bits (tree t)
1724 {
1725 /* Fix up variants (if any). */
1726 fixup_type_variants (t);
1727
1728 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1729 /* For a class w/o baseclasses, 'finish_struct' has set
1730 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1731 Similarly for a class whose base classes do not have vtables.
1732 When neither of these is true, we might have removed abstract
1733 virtuals (by providing a definition), added some (by declaring
1734 new ones), or redeclared ones from a base class. We need to
1735 recalculate what's really an abstract virtual at this point (by
1736 looking in the vtables). */
1737 get_pure_virtuals (t);
1738
1739 /* If this type has a copy constructor or a destructor, force its
1740 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1741 nonzero. This will cause it to be passed by invisible reference
1742 and prevent it from being returned in a register. */
1743 if (type_has_nontrivial_copy_init (t)
1744 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1745 {
1746 tree variants;
1747 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1748 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1749 {
1750 SET_TYPE_MODE (variants, BLKmode);
1751 TREE_ADDRESSABLE (variants) = 1;
1752 }
1753 }
1754 }
1755
1756 /* Issue warnings about T having private constructors, but no friends,
1757 and so forth.
1758
1759 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1760 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1761 non-private static member functions. */
1762
1763 static void
1764 maybe_warn_about_overly_private_class (tree t)
1765 {
1766 int has_member_fn = 0;
1767 int has_nonprivate_method = 0;
1768 tree fn;
1769
1770 if (!warn_ctor_dtor_privacy
1771 /* If the class has friends, those entities might create and
1772 access instances, so we should not warn. */
1773 || (CLASSTYPE_FRIEND_CLASSES (t)
1774 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1775 /* We will have warned when the template was declared; there's
1776 no need to warn on every instantiation. */
1777 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1778 /* There's no reason to even consider warning about this
1779 class. */
1780 return;
1781
1782 /* We only issue one warning, if more than one applies, because
1783 otherwise, on code like:
1784
1785 class A {
1786 // Oops - forgot `public:'
1787 A();
1788 A(const A&);
1789 ~A();
1790 };
1791
1792 we warn several times about essentially the same problem. */
1793
1794 /* Check to see if all (non-constructor, non-destructor) member
1795 functions are private. (Since there are no friends or
1796 non-private statics, we can't ever call any of the private member
1797 functions.) */
1798 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1799 /* We're not interested in compiler-generated methods; they don't
1800 provide any way to call private members. */
1801 if (!DECL_ARTIFICIAL (fn))
1802 {
1803 if (!TREE_PRIVATE (fn))
1804 {
1805 if (DECL_STATIC_FUNCTION_P (fn))
1806 /* A non-private static member function is just like a
1807 friend; it can create and invoke private member
1808 functions, and be accessed without a class
1809 instance. */
1810 return;
1811
1812 has_nonprivate_method = 1;
1813 /* Keep searching for a static member function. */
1814 }
1815 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1816 has_member_fn = 1;
1817 }
1818
1819 if (!has_nonprivate_method && has_member_fn)
1820 {
1821 /* There are no non-private methods, and there's at least one
1822 private member function that isn't a constructor or
1823 destructor. (If all the private members are
1824 constructors/destructors we want to use the code below that
1825 issues error messages specifically referring to
1826 constructors/destructors.) */
1827 unsigned i;
1828 tree binfo = TYPE_BINFO (t);
1829
1830 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1831 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1832 {
1833 has_nonprivate_method = 1;
1834 break;
1835 }
1836 if (!has_nonprivate_method)
1837 {
1838 warning (OPT_Wctor_dtor_privacy,
1839 "all member functions in class %qT are private", t);
1840 return;
1841 }
1842 }
1843
1844 /* Even if some of the member functions are non-private, the class
1845 won't be useful for much if all the constructors or destructors
1846 are private: such an object can never be created or destroyed. */
1847 fn = CLASSTYPE_DESTRUCTORS (t);
1848 if (fn && TREE_PRIVATE (fn))
1849 {
1850 warning (OPT_Wctor_dtor_privacy,
1851 "%q#T only defines a private destructor and has no friends",
1852 t);
1853 return;
1854 }
1855
1856 /* Warn about classes that have private constructors and no friends. */
1857 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1858 /* Implicitly generated constructors are always public. */
1859 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1860 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1861 {
1862 int nonprivate_ctor = 0;
1863
1864 /* If a non-template class does not define a copy
1865 constructor, one is defined for it, enabling it to avoid
1866 this warning. For a template class, this does not
1867 happen, and so we would normally get a warning on:
1868
1869 template <class T> class C { private: C(); };
1870
1871 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1872 complete non-template or fully instantiated classes have this
1873 flag set. */
1874 if (!TYPE_HAS_COPY_CTOR (t))
1875 nonprivate_ctor = 1;
1876 else
1877 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1878 {
1879 tree ctor = OVL_CURRENT (fn);
1880 /* Ideally, we wouldn't count copy constructors (or, in
1881 fact, any constructor that takes an argument of the
1882 class type as a parameter) because such things cannot
1883 be used to construct an instance of the class unless
1884 you already have one. But, for now at least, we're
1885 more generous. */
1886 if (! TREE_PRIVATE (ctor))
1887 {
1888 nonprivate_ctor = 1;
1889 break;
1890 }
1891 }
1892
1893 if (nonprivate_ctor == 0)
1894 {
1895 warning (OPT_Wctor_dtor_privacy,
1896 "%q#T only defines private constructors and has no friends",
1897 t);
1898 return;
1899 }
1900 }
1901 }
1902
1903 static struct {
1904 gt_pointer_operator new_value;
1905 void *cookie;
1906 } resort_data;
1907
1908 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1909
1910 static int
1911 method_name_cmp (const void* m1_p, const void* m2_p)
1912 {
1913 const tree *const m1 = (const tree *) m1_p;
1914 const tree *const m2 = (const tree *) m2_p;
1915
1916 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1917 return 0;
1918 if (*m1 == NULL_TREE)
1919 return -1;
1920 if (*m2 == NULL_TREE)
1921 return 1;
1922 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1923 return -1;
1924 return 1;
1925 }
1926
1927 /* This routine compares two fields like method_name_cmp but using the
1928 pointer operator in resort_field_decl_data. */
1929
1930 static int
1931 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1932 {
1933 const tree *const m1 = (const tree *) m1_p;
1934 const tree *const m2 = (const tree *) m2_p;
1935 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1936 return 0;
1937 if (*m1 == NULL_TREE)
1938 return -1;
1939 if (*m2 == NULL_TREE)
1940 return 1;
1941 {
1942 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1943 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1944 resort_data.new_value (&d1, resort_data.cookie);
1945 resort_data.new_value (&d2, resort_data.cookie);
1946 if (d1 < d2)
1947 return -1;
1948 }
1949 return 1;
1950 }
1951
1952 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1953
1954 void
1955 resort_type_method_vec (void* obj,
1956 void* /*orig_obj*/,
1957 gt_pointer_operator new_value,
1958 void* cookie)
1959 {
1960 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
1961 int len = vec_safe_length (method_vec);
1962 size_t slot;
1963 tree fn;
1964
1965 /* The type conversion ops have to live at the front of the vec, so we
1966 can't sort them. */
1967 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1968 vec_safe_iterate (method_vec, slot, &fn);
1969 ++slot)
1970 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1971 break;
1972
1973 if (len - slot > 1)
1974 {
1975 resort_data.new_value = new_value;
1976 resort_data.cookie = cookie;
1977 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
1978 resort_method_name_cmp);
1979 }
1980 }
1981
1982 /* Warn about duplicate methods in fn_fields.
1983
1984 Sort methods that are not special (i.e., constructors, destructors,
1985 and type conversion operators) so that we can find them faster in
1986 search. */
1987
1988 static void
1989 finish_struct_methods (tree t)
1990 {
1991 tree fn_fields;
1992 vec<tree, va_gc> *method_vec;
1993 int slot, len;
1994
1995 method_vec = CLASSTYPE_METHOD_VEC (t);
1996 if (!method_vec)
1997 return;
1998
1999 len = method_vec->length ();
2000
2001 /* Clear DECL_IN_AGGR_P for all functions. */
2002 for (fn_fields = TYPE_METHODS (t); fn_fields;
2003 fn_fields = DECL_CHAIN (fn_fields))
2004 DECL_IN_AGGR_P (fn_fields) = 0;
2005
2006 /* Issue warnings about private constructors and such. If there are
2007 no methods, then some public defaults are generated. */
2008 maybe_warn_about_overly_private_class (t);
2009
2010 /* The type conversion ops have to live at the front of the vec, so we
2011 can't sort them. */
2012 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2013 method_vec->iterate (slot, &fn_fields);
2014 ++slot)
2015 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2016 break;
2017 if (len - slot > 1)
2018 qsort (method_vec->address () + slot,
2019 len-slot, sizeof (tree), method_name_cmp);
2020 }
2021
2022 /* Make BINFO's vtable have N entries, including RTTI entries,
2023 vbase and vcall offsets, etc. Set its type and call the back end
2024 to lay it out. */
2025
2026 static void
2027 layout_vtable_decl (tree binfo, int n)
2028 {
2029 tree atype;
2030 tree vtable;
2031
2032 atype = build_array_of_n_type (vtable_entry_type, n);
2033 layout_type (atype);
2034
2035 /* We may have to grow the vtable. */
2036 vtable = get_vtbl_decl_for_binfo (binfo);
2037 if (!same_type_p (TREE_TYPE (vtable), atype))
2038 {
2039 TREE_TYPE (vtable) = atype;
2040 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2041 layout_decl (vtable, 0);
2042 }
2043 }
2044
2045 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2046 have the same signature. */
2047
2048 int
2049 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2050 {
2051 /* One destructor overrides another if they are the same kind of
2052 destructor. */
2053 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2054 && special_function_p (base_fndecl) == special_function_p (fndecl))
2055 return 1;
2056 /* But a non-destructor never overrides a destructor, nor vice
2057 versa, nor do different kinds of destructors override
2058 one-another. For example, a complete object destructor does not
2059 override a deleting destructor. */
2060 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2061 return 0;
2062
2063 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2064 || (DECL_CONV_FN_P (fndecl)
2065 && DECL_CONV_FN_P (base_fndecl)
2066 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2067 DECL_CONV_FN_TYPE (base_fndecl))))
2068 {
2069 tree fntype = TREE_TYPE (fndecl);
2070 tree base_fntype = TREE_TYPE (base_fndecl);
2071 if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2072 && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2073 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2074 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2075 return 1;
2076 }
2077 return 0;
2078 }
2079
2080 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2081 subobject. */
2082
2083 static bool
2084 base_derived_from (tree derived, tree base)
2085 {
2086 tree probe;
2087
2088 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2089 {
2090 if (probe == derived)
2091 return true;
2092 else if (BINFO_VIRTUAL_P (probe))
2093 /* If we meet a virtual base, we can't follow the inheritance
2094 any more. See if the complete type of DERIVED contains
2095 such a virtual base. */
2096 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2097 != NULL_TREE);
2098 }
2099 return false;
2100 }
2101
2102 typedef struct find_final_overrider_data_s {
2103 /* The function for which we are trying to find a final overrider. */
2104 tree fn;
2105 /* The base class in which the function was declared. */
2106 tree declaring_base;
2107 /* The candidate overriders. */
2108 tree candidates;
2109 /* Path to most derived. */
2110 vec<tree> path;
2111 } find_final_overrider_data;
2112
2113 /* Add the overrider along the current path to FFOD->CANDIDATES.
2114 Returns true if an overrider was found; false otherwise. */
2115
2116 static bool
2117 dfs_find_final_overrider_1 (tree binfo,
2118 find_final_overrider_data *ffod,
2119 unsigned depth)
2120 {
2121 tree method;
2122
2123 /* If BINFO is not the most derived type, try a more derived class.
2124 A definition there will overrider a definition here. */
2125 if (depth)
2126 {
2127 depth--;
2128 if (dfs_find_final_overrider_1
2129 (ffod->path[depth], ffod, depth))
2130 return true;
2131 }
2132
2133 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2134 if (method)
2135 {
2136 tree *candidate = &ffod->candidates;
2137
2138 /* Remove any candidates overridden by this new function. */
2139 while (*candidate)
2140 {
2141 /* If *CANDIDATE overrides METHOD, then METHOD
2142 cannot override anything else on the list. */
2143 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2144 return true;
2145 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2146 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2147 *candidate = TREE_CHAIN (*candidate);
2148 else
2149 candidate = &TREE_CHAIN (*candidate);
2150 }
2151
2152 /* Add the new function. */
2153 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2154 return true;
2155 }
2156
2157 return false;
2158 }
2159
2160 /* Called from find_final_overrider via dfs_walk. */
2161
2162 static tree
2163 dfs_find_final_overrider_pre (tree binfo, void *data)
2164 {
2165 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2166
2167 if (binfo == ffod->declaring_base)
2168 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2169 ffod->path.safe_push (binfo);
2170
2171 return NULL_TREE;
2172 }
2173
2174 static tree
2175 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2176 {
2177 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2178 ffod->path.pop ();
2179
2180 return NULL_TREE;
2181 }
2182
2183 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2184 FN and whose TREE_VALUE is the binfo for the base where the
2185 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2186 DERIVED) is the base object in which FN is declared. */
2187
2188 static tree
2189 find_final_overrider (tree derived, tree binfo, tree fn)
2190 {
2191 find_final_overrider_data ffod;
2192
2193 /* Getting this right is a little tricky. This is valid:
2194
2195 struct S { virtual void f (); };
2196 struct T { virtual void f (); };
2197 struct U : public S, public T { };
2198
2199 even though calling `f' in `U' is ambiguous. But,
2200
2201 struct R { virtual void f(); };
2202 struct S : virtual public R { virtual void f (); };
2203 struct T : virtual public R { virtual void f (); };
2204 struct U : public S, public T { };
2205
2206 is not -- there's no way to decide whether to put `S::f' or
2207 `T::f' in the vtable for `R'.
2208
2209 The solution is to look at all paths to BINFO. If we find
2210 different overriders along any two, then there is a problem. */
2211 if (DECL_THUNK_P (fn))
2212 fn = THUNK_TARGET (fn);
2213
2214 /* Determine the depth of the hierarchy. */
2215 ffod.fn = fn;
2216 ffod.declaring_base = binfo;
2217 ffod.candidates = NULL_TREE;
2218 ffod.path.create (30);
2219
2220 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2221 dfs_find_final_overrider_post, &ffod);
2222
2223 ffod.path.release ();
2224
2225 /* If there was no winner, issue an error message. */
2226 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2227 return error_mark_node;
2228
2229 return ffod.candidates;
2230 }
2231
2232 /* Return the index of the vcall offset for FN when TYPE is used as a
2233 virtual base. */
2234
2235 static tree
2236 get_vcall_index (tree fn, tree type)
2237 {
2238 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2239 tree_pair_p p;
2240 unsigned ix;
2241
2242 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2243 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2244 || same_signature_p (fn, p->purpose))
2245 return p->value;
2246
2247 /* There should always be an appropriate index. */
2248 gcc_unreachable ();
2249 }
2250
2251 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2252 dominated by T. FN is the old function; VIRTUALS points to the
2253 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2254 of that entry in the list. */
2255
2256 static void
2257 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2258 unsigned ix)
2259 {
2260 tree b;
2261 tree overrider;
2262 tree delta;
2263 tree virtual_base;
2264 tree first_defn;
2265 tree overrider_fn, overrider_target;
2266 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2267 tree over_return, base_return;
2268 bool lost = false;
2269
2270 /* Find the nearest primary base (possibly binfo itself) which defines
2271 this function; this is the class the caller will convert to when
2272 calling FN through BINFO. */
2273 for (b = binfo; ; b = get_primary_binfo (b))
2274 {
2275 gcc_assert (b);
2276 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2277 break;
2278
2279 /* The nearest definition is from a lost primary. */
2280 if (BINFO_LOST_PRIMARY_P (b))
2281 lost = true;
2282 }
2283 first_defn = b;
2284
2285 /* Find the final overrider. */
2286 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2287 if (overrider == error_mark_node)
2288 {
2289 error ("no unique final overrider for %qD in %qT", target_fn, t);
2290 return;
2291 }
2292 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2293
2294 /* Check for adjusting covariant return types. */
2295 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2296 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2297
2298 if (POINTER_TYPE_P (over_return)
2299 && TREE_CODE (over_return) == TREE_CODE (base_return)
2300 && CLASS_TYPE_P (TREE_TYPE (over_return))
2301 && CLASS_TYPE_P (TREE_TYPE (base_return))
2302 /* If the overrider is invalid, don't even try. */
2303 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2304 {
2305 /* If FN is a covariant thunk, we must figure out the adjustment
2306 to the final base FN was converting to. As OVERRIDER_TARGET might
2307 also be converting to the return type of FN, we have to
2308 combine the two conversions here. */
2309 tree fixed_offset, virtual_offset;
2310
2311 over_return = TREE_TYPE (over_return);
2312 base_return = TREE_TYPE (base_return);
2313
2314 if (DECL_THUNK_P (fn))
2315 {
2316 gcc_assert (DECL_RESULT_THUNK_P (fn));
2317 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2318 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2319 }
2320 else
2321 fixed_offset = virtual_offset = NULL_TREE;
2322
2323 if (virtual_offset)
2324 /* Find the equivalent binfo within the return type of the
2325 overriding function. We will want the vbase offset from
2326 there. */
2327 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2328 over_return);
2329 else if (!same_type_ignoring_top_level_qualifiers_p
2330 (over_return, base_return))
2331 {
2332 /* There was no existing virtual thunk (which takes
2333 precedence). So find the binfo of the base function's
2334 return type within the overriding function's return type.
2335 We cannot call lookup base here, because we're inside a
2336 dfs_walk, and will therefore clobber the BINFO_MARKED
2337 flags. Fortunately we know the covariancy is valid (it
2338 has already been checked), so we can just iterate along
2339 the binfos, which have been chained in inheritance graph
2340 order. Of course it is lame that we have to repeat the
2341 search here anyway -- we should really be caching pieces
2342 of the vtable and avoiding this repeated work. */
2343 tree thunk_binfo, base_binfo;
2344
2345 /* Find the base binfo within the overriding function's
2346 return type. We will always find a thunk_binfo, except
2347 when the covariancy is invalid (which we will have
2348 already diagnosed). */
2349 for (base_binfo = TYPE_BINFO (base_return),
2350 thunk_binfo = TYPE_BINFO (over_return);
2351 thunk_binfo;
2352 thunk_binfo = TREE_CHAIN (thunk_binfo))
2353 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2354 BINFO_TYPE (base_binfo)))
2355 break;
2356
2357 /* See if virtual inheritance is involved. */
2358 for (virtual_offset = thunk_binfo;
2359 virtual_offset;
2360 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2361 if (BINFO_VIRTUAL_P (virtual_offset))
2362 break;
2363
2364 if (virtual_offset
2365 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2366 {
2367 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2368
2369 if (virtual_offset)
2370 {
2371 /* We convert via virtual base. Adjust the fixed
2372 offset to be from there. */
2373 offset =
2374 size_diffop (offset,
2375 convert (ssizetype,
2376 BINFO_OFFSET (virtual_offset)));
2377 }
2378 if (fixed_offset)
2379 /* There was an existing fixed offset, this must be
2380 from the base just converted to, and the base the
2381 FN was thunking to. */
2382 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2383 else
2384 fixed_offset = offset;
2385 }
2386 }
2387
2388 if (fixed_offset || virtual_offset)
2389 /* Replace the overriding function with a covariant thunk. We
2390 will emit the overriding function in its own slot as
2391 well. */
2392 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2393 fixed_offset, virtual_offset);
2394 }
2395 else
2396 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2397 !DECL_THUNK_P (fn));
2398
2399 /* If we need a covariant thunk, then we may need to adjust first_defn.
2400 The ABI specifies that the thunks emitted with a function are
2401 determined by which bases the function overrides, so we need to be
2402 sure that we're using a thunk for some overridden base; even if we
2403 know that the necessary this adjustment is zero, there may not be an
2404 appropriate zero-this-adjusment thunk for us to use since thunks for
2405 overriding virtual bases always use the vcall offset.
2406
2407 Furthermore, just choosing any base that overrides this function isn't
2408 quite right, as this slot won't be used for calls through a type that
2409 puts a covariant thunk here. Calling the function through such a type
2410 will use a different slot, and that slot is the one that determines
2411 the thunk emitted for that base.
2412
2413 So, keep looking until we find the base that we're really overriding
2414 in this slot: the nearest primary base that doesn't use a covariant
2415 thunk in this slot. */
2416 if (overrider_target != overrider_fn)
2417 {
2418 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2419 /* We already know that the overrider needs a covariant thunk. */
2420 b = get_primary_binfo (b);
2421 for (; ; b = get_primary_binfo (b))
2422 {
2423 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2424 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2425 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2426 break;
2427 if (BINFO_LOST_PRIMARY_P (b))
2428 lost = true;
2429 }
2430 first_defn = b;
2431 }
2432
2433 /* Assume that we will produce a thunk that convert all the way to
2434 the final overrider, and not to an intermediate virtual base. */
2435 virtual_base = NULL_TREE;
2436
2437 /* See if we can convert to an intermediate virtual base first, and then
2438 use the vcall offset located there to finish the conversion. */
2439 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2440 {
2441 /* If we find the final overrider, then we can stop
2442 walking. */
2443 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2444 BINFO_TYPE (TREE_VALUE (overrider))))
2445 break;
2446
2447 /* If we find a virtual base, and we haven't yet found the
2448 overrider, then there is a virtual base between the
2449 declaring base (first_defn) and the final overrider. */
2450 if (BINFO_VIRTUAL_P (b))
2451 {
2452 virtual_base = b;
2453 break;
2454 }
2455 }
2456
2457 /* Compute the constant adjustment to the `this' pointer. The
2458 `this' pointer, when this function is called, will point at BINFO
2459 (or one of its primary bases, which are at the same offset). */
2460 if (virtual_base)
2461 /* The `this' pointer needs to be adjusted from the declaration to
2462 the nearest virtual base. */
2463 delta = size_diffop_loc (input_location,
2464 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2465 convert (ssizetype, BINFO_OFFSET (first_defn)));
2466 else if (lost)
2467 /* If the nearest definition is in a lost primary, we don't need an
2468 entry in our vtable. Except possibly in a constructor vtable,
2469 if we happen to get our primary back. In that case, the offset
2470 will be zero, as it will be a primary base. */
2471 delta = size_zero_node;
2472 else
2473 /* The `this' pointer needs to be adjusted from pointing to
2474 BINFO to pointing at the base where the final overrider
2475 appears. */
2476 delta = size_diffop_loc (input_location,
2477 convert (ssizetype,
2478 BINFO_OFFSET (TREE_VALUE (overrider))),
2479 convert (ssizetype, BINFO_OFFSET (binfo)));
2480
2481 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2482
2483 if (virtual_base)
2484 BV_VCALL_INDEX (*virtuals)
2485 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2486 else
2487 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2488
2489 BV_LOST_PRIMARY (*virtuals) = lost;
2490 }
2491
2492 /* Called from modify_all_vtables via dfs_walk. */
2493
2494 static tree
2495 dfs_modify_vtables (tree binfo, void* data)
2496 {
2497 tree t = (tree) data;
2498 tree virtuals;
2499 tree old_virtuals;
2500 unsigned ix;
2501
2502 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2503 /* A base without a vtable needs no modification, and its bases
2504 are uninteresting. */
2505 return dfs_skip_bases;
2506
2507 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2508 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2509 /* Don't do the primary vtable, if it's new. */
2510 return NULL_TREE;
2511
2512 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2513 /* There's no need to modify the vtable for a non-virtual primary
2514 base; we're not going to use that vtable anyhow. We do still
2515 need to do this for virtual primary bases, as they could become
2516 non-primary in a construction vtable. */
2517 return NULL_TREE;
2518
2519 make_new_vtable (t, binfo);
2520
2521 /* Now, go through each of the virtual functions in the virtual
2522 function table for BINFO. Find the final overrider, and update
2523 the BINFO_VIRTUALS list appropriately. */
2524 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2525 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2526 virtuals;
2527 ix++, virtuals = TREE_CHAIN (virtuals),
2528 old_virtuals = TREE_CHAIN (old_virtuals))
2529 update_vtable_entry_for_fn (t,
2530 binfo,
2531 BV_FN (old_virtuals),
2532 &virtuals, ix);
2533
2534 return NULL_TREE;
2535 }
2536
2537 /* Update all of the primary and secondary vtables for T. Create new
2538 vtables as required, and initialize their RTTI information. Each
2539 of the functions in VIRTUALS is declared in T and may override a
2540 virtual function from a base class; find and modify the appropriate
2541 entries to point to the overriding functions. Returns a list, in
2542 declaration order, of the virtual functions that are declared in T,
2543 but do not appear in the primary base class vtable, and which
2544 should therefore be appended to the end of the vtable for T. */
2545
2546 static tree
2547 modify_all_vtables (tree t, tree virtuals)
2548 {
2549 tree binfo = TYPE_BINFO (t);
2550 tree *fnsp;
2551
2552 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2553 if (TYPE_CONTAINS_VPTR_P (t))
2554 get_vtable_decl (t, false);
2555
2556 /* Update all of the vtables. */
2557 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2558
2559 /* Add virtual functions not already in our primary vtable. These
2560 will be both those introduced by this class, and those overridden
2561 from secondary bases. It does not include virtuals merely
2562 inherited from secondary bases. */
2563 for (fnsp = &virtuals; *fnsp; )
2564 {
2565 tree fn = TREE_VALUE (*fnsp);
2566
2567 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2568 || DECL_VINDEX (fn) == error_mark_node)
2569 {
2570 /* We don't need to adjust the `this' pointer when
2571 calling this function. */
2572 BV_DELTA (*fnsp) = integer_zero_node;
2573 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2574
2575 /* This is a function not already in our vtable. Keep it. */
2576 fnsp = &TREE_CHAIN (*fnsp);
2577 }
2578 else
2579 /* We've already got an entry for this function. Skip it. */
2580 *fnsp = TREE_CHAIN (*fnsp);
2581 }
2582
2583 return virtuals;
2584 }
2585
2586 /* Get the base virtual function declarations in T that have the
2587 indicated NAME. */
2588
2589 static tree
2590 get_basefndecls (tree name, tree t)
2591 {
2592 tree methods;
2593 tree base_fndecls = NULL_TREE;
2594 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2595 int i;
2596
2597 /* Find virtual functions in T with the indicated NAME. */
2598 i = lookup_fnfields_1 (t, name);
2599 if (i != -1)
2600 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2601 methods;
2602 methods = OVL_NEXT (methods))
2603 {
2604 tree method = OVL_CURRENT (methods);
2605
2606 if (TREE_CODE (method) == FUNCTION_DECL
2607 && DECL_VINDEX (method))
2608 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2609 }
2610
2611 if (base_fndecls)
2612 return base_fndecls;
2613
2614 for (i = 0; i < n_baseclasses; i++)
2615 {
2616 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2617 base_fndecls = chainon (get_basefndecls (name, basetype),
2618 base_fndecls);
2619 }
2620
2621 return base_fndecls;
2622 }
2623
2624 /* If this declaration supersedes the declaration of
2625 a method declared virtual in the base class, then
2626 mark this field as being virtual as well. */
2627
2628 void
2629 check_for_override (tree decl, tree ctype)
2630 {
2631 bool overrides_found = false;
2632 if (TREE_CODE (decl) == TEMPLATE_DECL)
2633 /* In [temp.mem] we have:
2634
2635 A specialization of a member function template does not
2636 override a virtual function from a base class. */
2637 return;
2638 if ((DECL_DESTRUCTOR_P (decl)
2639 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2640 || DECL_CONV_FN_P (decl))
2641 && look_for_overrides (ctype, decl)
2642 && !DECL_STATIC_FUNCTION_P (decl))
2643 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2644 the error_mark_node so that we know it is an overriding
2645 function. */
2646 {
2647 DECL_VINDEX (decl) = decl;
2648 overrides_found = true;
2649 }
2650
2651 if (DECL_VIRTUAL_P (decl))
2652 {
2653 if (!DECL_VINDEX (decl))
2654 DECL_VINDEX (decl) = error_mark_node;
2655 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2656 if (DECL_DESTRUCTOR_P (decl))
2657 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2658 }
2659 else if (DECL_FINAL_P (decl))
2660 error ("%q+#D marked final, but is not virtual", decl);
2661 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2662 error ("%q+#D marked override, but does not override", decl);
2663 }
2664
2665 /* Warn about hidden virtual functions that are not overridden in t.
2666 We know that constructors and destructors don't apply. */
2667
2668 static void
2669 warn_hidden (tree t)
2670 {
2671 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2672 tree fns;
2673 size_t i;
2674
2675 /* We go through each separately named virtual function. */
2676 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2677 vec_safe_iterate (method_vec, i, &fns);
2678 ++i)
2679 {
2680 tree fn;
2681 tree name;
2682 tree fndecl;
2683 tree base_fndecls;
2684 tree base_binfo;
2685 tree binfo;
2686 int j;
2687
2688 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2689 have the same name. Figure out what name that is. */
2690 name = DECL_NAME (OVL_CURRENT (fns));
2691 /* There are no possibly hidden functions yet. */
2692 base_fndecls = NULL_TREE;
2693 /* Iterate through all of the base classes looking for possibly
2694 hidden functions. */
2695 for (binfo = TYPE_BINFO (t), j = 0;
2696 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2697 {
2698 tree basetype = BINFO_TYPE (base_binfo);
2699 base_fndecls = chainon (get_basefndecls (name, basetype),
2700 base_fndecls);
2701 }
2702
2703 /* If there are no functions to hide, continue. */
2704 if (!base_fndecls)
2705 continue;
2706
2707 /* Remove any overridden functions. */
2708 for (fn = fns; fn; fn = OVL_NEXT (fn))
2709 {
2710 fndecl = OVL_CURRENT (fn);
2711 if (DECL_VINDEX (fndecl))
2712 {
2713 tree *prev = &base_fndecls;
2714
2715 while (*prev)
2716 /* If the method from the base class has the same
2717 signature as the method from the derived class, it
2718 has been overridden. */
2719 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2720 *prev = TREE_CHAIN (*prev);
2721 else
2722 prev = &TREE_CHAIN (*prev);
2723 }
2724 }
2725
2726 /* Now give a warning for all base functions without overriders,
2727 as they are hidden. */
2728 while (base_fndecls)
2729 {
2730 /* Here we know it is a hider, and no overrider exists. */
2731 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2732 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2733 base_fndecls = TREE_CHAIN (base_fndecls);
2734 }
2735 }
2736 }
2737
2738 /* Check for things that are invalid. There are probably plenty of other
2739 things we should check for also. */
2740
2741 static void
2742 finish_struct_anon (tree t)
2743 {
2744 tree field;
2745
2746 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2747 {
2748 if (TREE_STATIC (field))
2749 continue;
2750 if (TREE_CODE (field) != FIELD_DECL)
2751 continue;
2752
2753 if (DECL_NAME (field) == NULL_TREE
2754 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2755 {
2756 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2757 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2758 for (; elt; elt = DECL_CHAIN (elt))
2759 {
2760 /* We're generally only interested in entities the user
2761 declared, but we also find nested classes by noticing
2762 the TYPE_DECL that we create implicitly. You're
2763 allowed to put one anonymous union inside another,
2764 though, so we explicitly tolerate that. We use
2765 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2766 we also allow unnamed types used for defining fields. */
2767 if (DECL_ARTIFICIAL (elt)
2768 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2769 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2770 continue;
2771
2772 if (TREE_CODE (elt) != FIELD_DECL)
2773 {
2774 if (is_union)
2775 permerror (input_location, "%q+#D invalid; an anonymous union can "
2776 "only have non-static data members", elt);
2777 else
2778 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2779 "only have non-static data members", elt);
2780 continue;
2781 }
2782
2783 if (TREE_PRIVATE (elt))
2784 {
2785 if (is_union)
2786 permerror (input_location, "private member %q+#D in anonymous union", elt);
2787 else
2788 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2789 }
2790 else if (TREE_PROTECTED (elt))
2791 {
2792 if (is_union)
2793 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2794 else
2795 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2796 }
2797
2798 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2799 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2800 }
2801 }
2802 }
2803 }
2804
2805 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2806 will be used later during class template instantiation.
2807 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2808 a non-static member data (FIELD_DECL), a member function
2809 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2810 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2811 When FRIEND_P is nonzero, T is either a friend class
2812 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2813 (FUNCTION_DECL, TEMPLATE_DECL). */
2814
2815 void
2816 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2817 {
2818 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2819 if (CLASSTYPE_TEMPLATE_INFO (type))
2820 CLASSTYPE_DECL_LIST (type)
2821 = tree_cons (friend_p ? NULL_TREE : type,
2822 t, CLASSTYPE_DECL_LIST (type));
2823 }
2824
2825 /* This function is called from declare_virt_assop_and_dtor via
2826 dfs_walk_all.
2827
2828 DATA is a type that direcly or indirectly inherits the base
2829 represented by BINFO. If BINFO contains a virtual assignment [copy
2830 assignment or move assigment] operator or a virtual constructor,
2831 declare that function in DATA if it hasn't been already declared. */
2832
2833 static tree
2834 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2835 {
2836 tree bv, fn, t = (tree)data;
2837 tree opname = ansi_assopname (NOP_EXPR);
2838
2839 gcc_assert (t && CLASS_TYPE_P (t));
2840 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2841
2842 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2843 /* A base without a vtable needs no modification, and its bases
2844 are uninteresting. */
2845 return dfs_skip_bases;
2846
2847 if (BINFO_PRIMARY_P (binfo))
2848 /* If this is a primary base, then we have already looked at the
2849 virtual functions of its vtable. */
2850 return NULL_TREE;
2851
2852 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
2853 {
2854 fn = BV_FN (bv);
2855
2856 if (DECL_NAME (fn) == opname)
2857 {
2858 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
2859 lazily_declare_fn (sfk_copy_assignment, t);
2860 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
2861 lazily_declare_fn (sfk_move_assignment, t);
2862 }
2863 else if (DECL_DESTRUCTOR_P (fn)
2864 && CLASSTYPE_LAZY_DESTRUCTOR (t))
2865 lazily_declare_fn (sfk_destructor, t);
2866 }
2867
2868 return NULL_TREE;
2869 }
2870
2871 /* If the class type T has a direct or indirect base that contains a
2872 virtual assignment operator or a virtual destructor, declare that
2873 function in T if it hasn't been already declared. */
2874
2875 static void
2876 declare_virt_assop_and_dtor (tree t)
2877 {
2878 if (!(TYPE_POLYMORPHIC_P (t)
2879 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
2880 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
2881 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
2882 return;
2883
2884 dfs_walk_all (TYPE_BINFO (t),
2885 dfs_declare_virt_assop_and_dtor,
2886 NULL, t);
2887 }
2888
2889 /* Declare the inheriting constructor for class T inherited from base
2890 constructor CTOR with the parameter array PARMS of size NPARMS. */
2891
2892 static void
2893 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
2894 {
2895 /* We don't declare an inheriting ctor that would be a default,
2896 copy or move ctor for derived or base. */
2897 if (nparms == 0)
2898 return;
2899 if (nparms == 1
2900 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
2901 {
2902 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
2903 if (parm == t || parm == DECL_CONTEXT (ctor))
2904 return;
2905 }
2906
2907 tree parmlist = void_list_node;
2908 for (int i = nparms - 1; i >= 0; i--)
2909 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
2910 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
2911 t, false, ctor, parmlist);
2912 if (add_method (t, fn, NULL_TREE))
2913 {
2914 DECL_CHAIN (fn) = TYPE_METHODS (t);
2915 TYPE_METHODS (t) = fn;
2916 }
2917 }
2918
2919 /* Declare all the inheriting constructors for class T inherited from base
2920 constructor CTOR. */
2921
2922 static void
2923 one_inherited_ctor (tree ctor, tree t)
2924 {
2925 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
2926
2927 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
2928 int i = 0;
2929 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
2930 {
2931 if (TREE_PURPOSE (parms))
2932 one_inheriting_sig (t, ctor, new_parms, i);
2933 new_parms[i++] = TREE_VALUE (parms);
2934 }
2935 one_inheriting_sig (t, ctor, new_parms, i);
2936 if (parms == NULL_TREE)
2937 {
2938 warning (OPT_Winherited_variadic_ctor,
2939 "the ellipsis in %qD is not inherited", ctor);
2940 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
2941 }
2942 }
2943
2944 /* Create default constructors, assignment operators, and so forth for
2945 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2946 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2947 the class cannot have a default constructor, copy constructor
2948 taking a const reference argument, or an assignment operator taking
2949 a const reference, respectively. */
2950
2951 static void
2952 add_implicitly_declared_members (tree t, tree* access_decls,
2953 int cant_have_const_cctor,
2954 int cant_have_const_assignment)
2955 {
2956 bool move_ok = false;
2957
2958 if (cxx_dialect >= cxx0x && !CLASSTYPE_DESTRUCTORS (t)
2959 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
2960 && !type_has_move_constructor (t) && !type_has_move_assign (t))
2961 move_ok = true;
2962
2963 /* Destructor. */
2964 if (!CLASSTYPE_DESTRUCTORS (t))
2965 {
2966 /* In general, we create destructors lazily. */
2967 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2968
2969 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2970 && TYPE_FOR_JAVA (t))
2971 /* But if this is a Java class, any non-trivial destructor is
2972 invalid, even if compiler-generated. Therefore, if the
2973 destructor is non-trivial we create it now. */
2974 lazily_declare_fn (sfk_destructor, t);
2975 }
2976
2977 /* [class.ctor]
2978
2979 If there is no user-declared constructor for a class, a default
2980 constructor is implicitly declared. */
2981 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2982 {
2983 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2984 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2985 if (cxx_dialect >= cxx0x)
2986 TYPE_HAS_CONSTEXPR_CTOR (t)
2987 /* This might force the declaration. */
2988 = type_has_constexpr_default_constructor (t);
2989 }
2990
2991 /* [class.ctor]
2992
2993 If a class definition does not explicitly declare a copy
2994 constructor, one is declared implicitly. */
2995 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
2996 {
2997 TYPE_HAS_COPY_CTOR (t) = 1;
2998 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
2999 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3000 if (move_ok)
3001 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3002 }
3003
3004 /* If there is no assignment operator, one will be created if and
3005 when it is needed. For now, just record whether or not the type
3006 of the parameter to the assignment operator will be a const or
3007 non-const reference. */
3008 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3009 {
3010 TYPE_HAS_COPY_ASSIGN (t) = 1;
3011 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3012 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3013 if (move_ok)
3014 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3015 }
3016
3017 /* We can't be lazy about declaring functions that might override
3018 a virtual function from a base class. */
3019 declare_virt_assop_and_dtor (t);
3020
3021 while (*access_decls)
3022 {
3023 tree using_decl = TREE_VALUE (*access_decls);
3024 tree decl = USING_DECL_DECLS (using_decl);
3025 if (DECL_NAME (using_decl) == ctor_identifier)
3026 {
3027 /* declare, then remove the decl */
3028 tree ctor_list = decl;
3029 location_t loc = input_location;
3030 input_location = DECL_SOURCE_LOCATION (using_decl);
3031 if (ctor_list)
3032 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3033 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3034 *access_decls = TREE_CHAIN (*access_decls);
3035 input_location = loc;
3036 }
3037 else
3038 access_decls = &TREE_CHAIN (*access_decls);
3039 }
3040 }
3041
3042 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3043 count the number of fields in TYPE, including anonymous union
3044 members. */
3045
3046 static int
3047 count_fields (tree fields)
3048 {
3049 tree x;
3050 int n_fields = 0;
3051 for (x = fields; x; x = DECL_CHAIN (x))
3052 {
3053 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3054 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3055 else
3056 n_fields += 1;
3057 }
3058 return n_fields;
3059 }
3060
3061 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3062 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3063 elts, starting at offset IDX. */
3064
3065 static int
3066 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3067 {
3068 tree x;
3069 for (x = fields; x; x = DECL_CHAIN (x))
3070 {
3071 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3072 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3073 else
3074 field_vec->elts[idx++] = x;
3075 }
3076 return idx;
3077 }
3078
3079 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3080 starting at offset IDX. */
3081
3082 static int
3083 add_enum_fields_to_record_type (tree enumtype,
3084 struct sorted_fields_type *field_vec,
3085 int idx)
3086 {
3087 tree values;
3088 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3089 field_vec->elts[idx++] = TREE_VALUE (values);
3090 return idx;
3091 }
3092
3093 /* FIELD is a bit-field. We are finishing the processing for its
3094 enclosing type. Issue any appropriate messages and set appropriate
3095 flags. Returns false if an error has been diagnosed. */
3096
3097 static bool
3098 check_bitfield_decl (tree field)
3099 {
3100 tree type = TREE_TYPE (field);
3101 tree w;
3102
3103 /* Extract the declared width of the bitfield, which has been
3104 temporarily stashed in DECL_INITIAL. */
3105 w = DECL_INITIAL (field);
3106 gcc_assert (w != NULL_TREE);
3107 /* Remove the bit-field width indicator so that the rest of the
3108 compiler does not treat that value as an initializer. */
3109 DECL_INITIAL (field) = NULL_TREE;
3110
3111 /* Detect invalid bit-field type. */
3112 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3113 {
3114 error ("bit-field %q+#D with non-integral type", field);
3115 w = error_mark_node;
3116 }
3117 else
3118 {
3119 location_t loc = input_location;
3120 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3121 STRIP_NOPS (w);
3122
3123 /* detect invalid field size. */
3124 input_location = DECL_SOURCE_LOCATION (field);
3125 w = cxx_constant_value (w);
3126 input_location = loc;
3127
3128 if (TREE_CODE (w) != INTEGER_CST)
3129 {
3130 error ("bit-field %q+D width not an integer constant", field);
3131 w = error_mark_node;
3132 }
3133 else if (tree_int_cst_sgn (w) < 0)
3134 {
3135 error ("negative width in bit-field %q+D", field);
3136 w = error_mark_node;
3137 }
3138 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3139 {
3140 error ("zero width for bit-field %q+D", field);
3141 w = error_mark_node;
3142 }
3143 else if ((TREE_CODE (type) != ENUMERAL_TYPE
3144 && TREE_CODE (type) != BOOLEAN_TYPE
3145 && compare_tree_int (w, TYPE_PRECISION (type)) > 0)
3146 || ((TREE_CODE (type) == ENUMERAL_TYPE
3147 || TREE_CODE (type) == BOOLEAN_TYPE)
3148 && tree_int_cst_lt (TYPE_SIZE (type), w)))
3149 warning (0, "width of %q+D exceeds its type", field);
3150 else if (TREE_CODE (type) == ENUMERAL_TYPE
3151 && (0 > (compare_tree_int
3152 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3153 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3154 }
3155
3156 if (w != error_mark_node)
3157 {
3158 DECL_SIZE (field) = convert (bitsizetype, w);
3159 DECL_BIT_FIELD (field) = 1;
3160 return true;
3161 }
3162 else
3163 {
3164 /* Non-bit-fields are aligned for their type. */
3165 DECL_BIT_FIELD (field) = 0;
3166 CLEAR_DECL_C_BIT_FIELD (field);
3167 return false;
3168 }
3169 }
3170
3171 /* FIELD is a non bit-field. We are finishing the processing for its
3172 enclosing type T. Issue any appropriate messages and set appropriate
3173 flags. */
3174
3175 static void
3176 check_field_decl (tree field,
3177 tree t,
3178 int* cant_have_const_ctor,
3179 int* no_const_asn_ref,
3180 int* any_default_members)
3181 {
3182 tree type = strip_array_types (TREE_TYPE (field));
3183
3184 /* In C++98 an anonymous union cannot contain any fields which would change
3185 the settings of CANT_HAVE_CONST_CTOR and friends. */
3186 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx0x)
3187 ;
3188 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3189 structs. So, we recurse through their fields here. */
3190 else if (ANON_AGGR_TYPE_P (type))
3191 {
3192 tree fields;
3193
3194 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3195 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3196 check_field_decl (fields, t, cant_have_const_ctor,
3197 no_const_asn_ref, any_default_members);
3198 }
3199 /* Check members with class type for constructors, destructors,
3200 etc. */
3201 else if (CLASS_TYPE_P (type))
3202 {
3203 /* Never let anything with uninheritable virtuals
3204 make it through without complaint. */
3205 abstract_virtuals_error (field, type);
3206
3207 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx0x)
3208 {
3209 static bool warned;
3210 int oldcount = errorcount;
3211 if (TYPE_NEEDS_CONSTRUCTING (type))
3212 error ("member %q+#D with constructor not allowed in union",
3213 field);
3214 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3215 error ("member %q+#D with destructor not allowed in union", field);
3216 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3217 error ("member %q+#D with copy assignment operator not allowed in union",
3218 field);
3219 if (!warned && errorcount > oldcount)
3220 {
3221 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3222 "only available with -std=c++11 or -std=gnu++11");
3223 warned = true;
3224 }
3225 }
3226 else
3227 {
3228 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3229 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3230 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3231 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3232 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3233 || !TYPE_HAS_COPY_ASSIGN (type));
3234 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3235 || !TYPE_HAS_COPY_CTOR (type));
3236 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3237 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3238 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3239 || TYPE_HAS_COMPLEX_DFLT (type));
3240 }
3241
3242 if (TYPE_HAS_COPY_CTOR (type)
3243 && !TYPE_HAS_CONST_COPY_CTOR (type))
3244 *cant_have_const_ctor = 1;
3245
3246 if (TYPE_HAS_COPY_ASSIGN (type)
3247 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3248 *no_const_asn_ref = 1;
3249 }
3250
3251 check_abi_tags (t, field);
3252
3253 if (DECL_INITIAL (field) != NULL_TREE)
3254 {
3255 /* `build_class_init_list' does not recognize
3256 non-FIELD_DECLs. */
3257 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3258 error ("multiple fields in union %qT initialized", t);
3259 *any_default_members = 1;
3260 }
3261 }
3262
3263 /* Check the data members (both static and non-static), class-scoped
3264 typedefs, etc., appearing in the declaration of T. Issue
3265 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3266 declaration order) of access declarations; each TREE_VALUE in this
3267 list is a USING_DECL.
3268
3269 In addition, set the following flags:
3270
3271 EMPTY_P
3272 The class is empty, i.e., contains no non-static data members.
3273
3274 CANT_HAVE_CONST_CTOR_P
3275 This class cannot have an implicitly generated copy constructor
3276 taking a const reference.
3277
3278 CANT_HAVE_CONST_ASN_REF
3279 This class cannot have an implicitly generated assignment
3280 operator taking a const reference.
3281
3282 All of these flags should be initialized before calling this
3283 function.
3284
3285 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3286 fields can be added by adding to this chain. */
3287
3288 static void
3289 check_field_decls (tree t, tree *access_decls,
3290 int *cant_have_const_ctor_p,
3291 int *no_const_asn_ref_p)
3292 {
3293 tree *field;
3294 tree *next;
3295 bool has_pointers;
3296 int any_default_members;
3297 int cant_pack = 0;
3298 int field_access = -1;
3299
3300 /* Assume there are no access declarations. */
3301 *access_decls = NULL_TREE;
3302 /* Assume this class has no pointer members. */
3303 has_pointers = false;
3304 /* Assume none of the members of this class have default
3305 initializations. */
3306 any_default_members = 0;
3307
3308 for (field = &TYPE_FIELDS (t); *field; field = next)
3309 {
3310 tree x = *field;
3311 tree type = TREE_TYPE (x);
3312 int this_field_access;
3313
3314 next = &DECL_CHAIN (x);
3315
3316 if (TREE_CODE (x) == USING_DECL)
3317 {
3318 /* Save the access declarations for our caller. */
3319 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3320 continue;
3321 }
3322
3323 if (TREE_CODE (x) == TYPE_DECL
3324 || TREE_CODE (x) == TEMPLATE_DECL)
3325 continue;
3326
3327 /* If we've gotten this far, it's a data member, possibly static,
3328 or an enumerator. */
3329 if (TREE_CODE (x) != CONST_DECL)
3330 DECL_CONTEXT (x) = t;
3331
3332 /* When this goes into scope, it will be a non-local reference. */
3333 DECL_NONLOCAL (x) = 1;
3334
3335 if (TREE_CODE (t) == UNION_TYPE)
3336 {
3337 /* [class.union]
3338
3339 If a union contains a static data member, or a member of
3340 reference type, the program is ill-formed. */
3341 if (VAR_P (x))
3342 {
3343 error ("%q+D may not be static because it is a member of a union", x);
3344 continue;
3345 }
3346 if (TREE_CODE (type) == REFERENCE_TYPE)
3347 {
3348 error ("%q+D may not have reference type %qT because"
3349 " it is a member of a union",
3350 x, type);
3351 continue;
3352 }
3353 }
3354
3355 /* Perform error checking that did not get done in
3356 grokdeclarator. */
3357 if (TREE_CODE (type) == FUNCTION_TYPE)
3358 {
3359 error ("field %q+D invalidly declared function type", x);
3360 type = build_pointer_type (type);
3361 TREE_TYPE (x) = type;
3362 }
3363 else if (TREE_CODE (type) == METHOD_TYPE)
3364 {
3365 error ("field %q+D invalidly declared method type", x);
3366 type = build_pointer_type (type);
3367 TREE_TYPE (x) = type;
3368 }
3369
3370 if (type == error_mark_node)
3371 continue;
3372
3373 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3374 continue;
3375
3376 /* Now it can only be a FIELD_DECL. */
3377
3378 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3379 CLASSTYPE_NON_AGGREGATE (t) = 1;
3380
3381 /* If at least one non-static data member is non-literal, the whole
3382 class becomes non-literal. Note: if the type is incomplete we
3383 will complain later on. */
3384 if (COMPLETE_TYPE_P (type) && !literal_type_p (type))
3385 CLASSTYPE_LITERAL_P (t) = false;
3386
3387 /* A standard-layout class is a class that:
3388 ...
3389 has the same access control (Clause 11) for all non-static data members,
3390 ... */
3391 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3392 if (field_access == -1)
3393 field_access = this_field_access;
3394 else if (this_field_access != field_access)
3395 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3396
3397 /* If this is of reference type, check if it needs an init. */
3398 if (TREE_CODE (type) == REFERENCE_TYPE)
3399 {
3400 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3401 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3402 if (DECL_INITIAL (x) == NULL_TREE)
3403 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3404
3405 /* ARM $12.6.2: [A member initializer list] (or, for an
3406 aggregate, initialization by a brace-enclosed list) is the
3407 only way to initialize nonstatic const and reference
3408 members. */
3409 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3410 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3411 }
3412
3413 type = strip_array_types (type);
3414
3415 if (TYPE_PACKED (t))
3416 {
3417 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3418 {
3419 warning
3420 (0,
3421 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3422 x);
3423 cant_pack = 1;
3424 }
3425 else if (DECL_C_BIT_FIELD (x)
3426 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3427 DECL_PACKED (x) = 1;
3428 }
3429
3430 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3431 /* We don't treat zero-width bitfields as making a class
3432 non-empty. */
3433 ;
3434 else
3435 {
3436 /* The class is non-empty. */
3437 CLASSTYPE_EMPTY_P (t) = 0;
3438 /* The class is not even nearly empty. */
3439 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3440 /* If one of the data members contains an empty class,
3441 so does T. */
3442 if (CLASS_TYPE_P (type)
3443 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3444 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3445 }
3446
3447 /* This is used by -Weffc++ (see below). Warn only for pointers
3448 to members which might hold dynamic memory. So do not warn
3449 for pointers to functions or pointers to members. */
3450 if (TYPE_PTR_P (type)
3451 && !TYPE_PTRFN_P (type))
3452 has_pointers = true;
3453
3454 if (CLASS_TYPE_P (type))
3455 {
3456 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3457 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3458 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3459 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3460 }
3461
3462 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3463 CLASSTYPE_HAS_MUTABLE (t) = 1;
3464
3465 if (! layout_pod_type_p (type))
3466 /* DR 148 now allows pointers to members (which are POD themselves),
3467 to be allowed in POD structs. */
3468 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3469
3470 if (!std_layout_type_p (type))
3471 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3472
3473 if (! zero_init_p (type))
3474 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3475
3476 /* We set DECL_C_BIT_FIELD in grokbitfield.
3477 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3478 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3479 check_field_decl (x, t,
3480 cant_have_const_ctor_p,
3481 no_const_asn_ref_p,
3482 &any_default_members);
3483
3484 /* Now that we've removed bit-field widths from DECL_INITIAL,
3485 anything left in DECL_INITIAL is an NSDMI that makes the class
3486 non-aggregate. */
3487 if (DECL_INITIAL (x))
3488 CLASSTYPE_NON_AGGREGATE (t) = true;
3489
3490 /* If any field is const, the structure type is pseudo-const. */
3491 if (CP_TYPE_CONST_P (type))
3492 {
3493 C_TYPE_FIELDS_READONLY (t) = 1;
3494 if (DECL_INITIAL (x) == NULL_TREE)
3495 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3496
3497 /* ARM $12.6.2: [A member initializer list] (or, for an
3498 aggregate, initialization by a brace-enclosed list) is the
3499 only way to initialize nonstatic const and reference
3500 members. */
3501 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3502 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3503 }
3504 /* A field that is pseudo-const makes the structure likewise. */
3505 else if (CLASS_TYPE_P (type))
3506 {
3507 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3508 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3509 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3510 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3511 }
3512
3513 /* Core issue 80: A nonstatic data member is required to have a
3514 different name from the class iff the class has a
3515 user-declared constructor. */
3516 if (constructor_name_p (DECL_NAME (x), t)
3517 && TYPE_HAS_USER_CONSTRUCTOR (t))
3518 permerror (input_location, "field %q+#D with same name as class", x);
3519 }
3520
3521 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3522 it should also define a copy constructor and an assignment operator to
3523 implement the correct copy semantic (deep vs shallow, etc.). As it is
3524 not feasible to check whether the constructors do allocate dynamic memory
3525 and store it within members, we approximate the warning like this:
3526
3527 -- Warn only if there are members which are pointers
3528 -- Warn only if there is a non-trivial constructor (otherwise,
3529 there cannot be memory allocated).
3530 -- Warn only if there is a non-trivial destructor. We assume that the
3531 user at least implemented the cleanup correctly, and a destructor
3532 is needed to free dynamic memory.
3533
3534 This seems enough for practical purposes. */
3535 if (warn_ecpp
3536 && has_pointers
3537 && TYPE_HAS_USER_CONSTRUCTOR (t)
3538 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3539 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3540 {
3541 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3542
3543 if (! TYPE_HAS_COPY_CTOR (t))
3544 {
3545 warning (OPT_Weffc__,
3546 " but does not override %<%T(const %T&)%>", t, t);
3547 if (!TYPE_HAS_COPY_ASSIGN (t))
3548 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3549 }
3550 else if (! TYPE_HAS_COPY_ASSIGN (t))
3551 warning (OPT_Weffc__,
3552 " but does not override %<operator=(const %T&)%>", t);
3553 }
3554
3555 /* Non-static data member initializers make the default constructor
3556 non-trivial. */
3557 if (any_default_members)
3558 {
3559 TYPE_NEEDS_CONSTRUCTING (t) = true;
3560 TYPE_HAS_COMPLEX_DFLT (t) = true;
3561 }
3562
3563 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3564 if (cant_pack)
3565 TYPE_PACKED (t) = 0;
3566
3567 /* Check anonymous struct/anonymous union fields. */
3568 finish_struct_anon (t);
3569
3570 /* We've built up the list of access declarations in reverse order.
3571 Fix that now. */
3572 *access_decls = nreverse (*access_decls);
3573 }
3574
3575 /* If TYPE is an empty class type, records its OFFSET in the table of
3576 OFFSETS. */
3577
3578 static int
3579 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3580 {
3581 splay_tree_node n;
3582
3583 if (!is_empty_class (type))
3584 return 0;
3585
3586 /* Record the location of this empty object in OFFSETS. */
3587 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3588 if (!n)
3589 n = splay_tree_insert (offsets,
3590 (splay_tree_key) offset,
3591 (splay_tree_value) NULL_TREE);
3592 n->value = ((splay_tree_value)
3593 tree_cons (NULL_TREE,
3594 type,
3595 (tree) n->value));
3596
3597 return 0;
3598 }
3599
3600 /* Returns nonzero if TYPE is an empty class type and there is
3601 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3602
3603 static int
3604 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3605 {
3606 splay_tree_node n;
3607 tree t;
3608
3609 if (!is_empty_class (type))
3610 return 0;
3611
3612 /* Record the location of this empty object in OFFSETS. */
3613 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3614 if (!n)
3615 return 0;
3616
3617 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3618 if (same_type_p (TREE_VALUE (t), type))
3619 return 1;
3620
3621 return 0;
3622 }
3623
3624 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3625 F for every subobject, passing it the type, offset, and table of
3626 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3627 be traversed.
3628
3629 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3630 than MAX_OFFSET will not be walked.
3631
3632 If F returns a nonzero value, the traversal ceases, and that value
3633 is returned. Otherwise, returns zero. */
3634
3635 static int
3636 walk_subobject_offsets (tree type,
3637 subobject_offset_fn f,
3638 tree offset,
3639 splay_tree offsets,
3640 tree max_offset,
3641 int vbases_p)
3642 {
3643 int r = 0;
3644 tree type_binfo = NULL_TREE;
3645
3646 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3647 stop. */
3648 if (max_offset && INT_CST_LT (max_offset, offset))
3649 return 0;
3650
3651 if (type == error_mark_node)
3652 return 0;
3653
3654 if (!TYPE_P (type))
3655 {
3656 if (abi_version_at_least (2))
3657 type_binfo = type;
3658 type = BINFO_TYPE (type);
3659 }
3660
3661 if (CLASS_TYPE_P (type))
3662 {
3663 tree field;
3664 tree binfo;
3665 int i;
3666
3667 /* Avoid recursing into objects that are not interesting. */
3668 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3669 return 0;
3670
3671 /* Record the location of TYPE. */
3672 r = (*f) (type, offset, offsets);
3673 if (r)
3674 return r;
3675
3676 /* Iterate through the direct base classes of TYPE. */
3677 if (!type_binfo)
3678 type_binfo = TYPE_BINFO (type);
3679 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3680 {
3681 tree binfo_offset;
3682
3683 if (abi_version_at_least (2)
3684 && BINFO_VIRTUAL_P (binfo))
3685 continue;
3686
3687 if (!vbases_p
3688 && BINFO_VIRTUAL_P (binfo)
3689 && !BINFO_PRIMARY_P (binfo))
3690 continue;
3691
3692 if (!abi_version_at_least (2))
3693 binfo_offset = size_binop (PLUS_EXPR,
3694 offset,
3695 BINFO_OFFSET (binfo));
3696 else
3697 {
3698 tree orig_binfo;
3699 /* We cannot rely on BINFO_OFFSET being set for the base
3700 class yet, but the offsets for direct non-virtual
3701 bases can be calculated by going back to the TYPE. */
3702 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3703 binfo_offset = size_binop (PLUS_EXPR,
3704 offset,
3705 BINFO_OFFSET (orig_binfo));
3706 }
3707
3708 r = walk_subobject_offsets (binfo,
3709 f,
3710 binfo_offset,
3711 offsets,
3712 max_offset,
3713 (abi_version_at_least (2)
3714 ? /*vbases_p=*/0 : vbases_p));
3715 if (r)
3716 return r;
3717 }
3718
3719 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3720 {
3721 unsigned ix;
3722 vec<tree, va_gc> *vbases;
3723
3724 /* Iterate through the virtual base classes of TYPE. In G++
3725 3.2, we included virtual bases in the direct base class
3726 loop above, which results in incorrect results; the
3727 correct offsets for virtual bases are only known when
3728 working with the most derived type. */
3729 if (vbases_p)
3730 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3731 vec_safe_iterate (vbases, ix, &binfo); ix++)
3732 {
3733 r = walk_subobject_offsets (binfo,
3734 f,
3735 size_binop (PLUS_EXPR,
3736 offset,
3737 BINFO_OFFSET (binfo)),
3738 offsets,
3739 max_offset,
3740 /*vbases_p=*/0);
3741 if (r)
3742 return r;
3743 }
3744 else
3745 {
3746 /* We still have to walk the primary base, if it is
3747 virtual. (If it is non-virtual, then it was walked
3748 above.) */
3749 tree vbase = get_primary_binfo (type_binfo);
3750
3751 if (vbase && BINFO_VIRTUAL_P (vbase)
3752 && BINFO_PRIMARY_P (vbase)
3753 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3754 {
3755 r = (walk_subobject_offsets
3756 (vbase, f, offset,
3757 offsets, max_offset, /*vbases_p=*/0));
3758 if (r)
3759 return r;
3760 }
3761 }
3762 }
3763
3764 /* Iterate through the fields of TYPE. */
3765 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3766 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3767 {
3768 tree field_offset;
3769
3770 if (abi_version_at_least (2))
3771 field_offset = byte_position (field);
3772 else
3773 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3774 field_offset = DECL_FIELD_OFFSET (field);
3775
3776 r = walk_subobject_offsets (TREE_TYPE (field),
3777 f,
3778 size_binop (PLUS_EXPR,
3779 offset,
3780 field_offset),
3781 offsets,
3782 max_offset,
3783 /*vbases_p=*/1);
3784 if (r)
3785 return r;
3786 }
3787 }
3788 else if (TREE_CODE (type) == ARRAY_TYPE)
3789 {
3790 tree element_type = strip_array_types (type);
3791 tree domain = TYPE_DOMAIN (type);
3792 tree index;
3793
3794 /* Avoid recursing into objects that are not interesting. */
3795 if (!CLASS_TYPE_P (element_type)
3796 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3797 return 0;
3798
3799 /* Step through each of the elements in the array. */
3800 for (index = size_zero_node;
3801 /* G++ 3.2 had an off-by-one error here. */
3802 (abi_version_at_least (2)
3803 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3804 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3805 index = size_binop (PLUS_EXPR, index, size_one_node))
3806 {
3807 r = walk_subobject_offsets (TREE_TYPE (type),
3808 f,
3809 offset,
3810 offsets,
3811 max_offset,
3812 /*vbases_p=*/1);
3813 if (r)
3814 return r;
3815 offset = size_binop (PLUS_EXPR, offset,
3816 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3817 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3818 there's no point in iterating through the remaining
3819 elements of the array. */
3820 if (max_offset && INT_CST_LT (max_offset, offset))
3821 break;
3822 }
3823 }
3824
3825 return 0;
3826 }
3827
3828 /* Record all of the empty subobjects of TYPE (either a type or a
3829 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3830 is being placed at OFFSET; otherwise, it is a base class that is
3831 being placed at OFFSET. */
3832
3833 static void
3834 record_subobject_offsets (tree type,
3835 tree offset,
3836 splay_tree offsets,
3837 bool is_data_member)
3838 {
3839 tree max_offset;
3840 /* If recording subobjects for a non-static data member or a
3841 non-empty base class , we do not need to record offsets beyond
3842 the size of the biggest empty class. Additional data members
3843 will go at the end of the class. Additional base classes will go
3844 either at offset zero (if empty, in which case they cannot
3845 overlap with offsets past the size of the biggest empty class) or
3846 at the end of the class.
3847
3848 However, if we are placing an empty base class, then we must record
3849 all offsets, as either the empty class is at offset zero (where
3850 other empty classes might later be placed) or at the end of the
3851 class (where other objects might then be placed, so other empty
3852 subobjects might later overlap). */
3853 if (is_data_member
3854 || !is_empty_class (BINFO_TYPE (type)))
3855 max_offset = sizeof_biggest_empty_class;
3856 else
3857 max_offset = NULL_TREE;
3858 walk_subobject_offsets (type, record_subobject_offset, offset,
3859 offsets, max_offset, is_data_member);
3860 }
3861
3862 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3863 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3864 virtual bases of TYPE are examined. */
3865
3866 static int
3867 layout_conflict_p (tree type,
3868 tree offset,
3869 splay_tree offsets,
3870 int vbases_p)
3871 {
3872 splay_tree_node max_node;
3873
3874 /* Get the node in OFFSETS that indicates the maximum offset where
3875 an empty subobject is located. */
3876 max_node = splay_tree_max (offsets);
3877 /* If there aren't any empty subobjects, then there's no point in
3878 performing this check. */
3879 if (!max_node)
3880 return 0;
3881
3882 return walk_subobject_offsets (type, check_subobject_offset, offset,
3883 offsets, (tree) (max_node->key),
3884 vbases_p);
3885 }
3886
3887 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3888 non-static data member of the type indicated by RLI. BINFO is the
3889 binfo corresponding to the base subobject, OFFSETS maps offsets to
3890 types already located at those offsets. This function determines
3891 the position of the DECL. */
3892
3893 static void
3894 layout_nonempty_base_or_field (record_layout_info rli,
3895 tree decl,
3896 tree binfo,
3897 splay_tree offsets)
3898 {
3899 tree offset = NULL_TREE;
3900 bool field_p;
3901 tree type;
3902
3903 if (binfo)
3904 {
3905 /* For the purposes of determining layout conflicts, we want to
3906 use the class type of BINFO; TREE_TYPE (DECL) will be the
3907 CLASSTYPE_AS_BASE version, which does not contain entries for
3908 zero-sized bases. */
3909 type = TREE_TYPE (binfo);
3910 field_p = false;
3911 }
3912 else
3913 {
3914 type = TREE_TYPE (decl);
3915 field_p = true;
3916 }
3917
3918 /* Try to place the field. It may take more than one try if we have
3919 a hard time placing the field without putting two objects of the
3920 same type at the same address. */
3921 while (1)
3922 {
3923 struct record_layout_info_s old_rli = *rli;
3924
3925 /* Place this field. */
3926 place_field (rli, decl);
3927 offset = byte_position (decl);
3928
3929 /* We have to check to see whether or not there is already
3930 something of the same type at the offset we're about to use.
3931 For example, consider:
3932
3933 struct S {};
3934 struct T : public S { int i; };
3935 struct U : public S, public T {};
3936
3937 Here, we put S at offset zero in U. Then, we can't put T at
3938 offset zero -- its S component would be at the same address
3939 as the S we already allocated. So, we have to skip ahead.
3940 Since all data members, including those whose type is an
3941 empty class, have nonzero size, any overlap can happen only
3942 with a direct or indirect base-class -- it can't happen with
3943 a data member. */
3944 /* In a union, overlap is permitted; all members are placed at
3945 offset zero. */
3946 if (TREE_CODE (rli->t) == UNION_TYPE)
3947 break;
3948 /* G++ 3.2 did not check for overlaps when placing a non-empty
3949 virtual base. */
3950 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3951 break;
3952 if (layout_conflict_p (field_p ? type : binfo, offset,
3953 offsets, field_p))
3954 {
3955 /* Strip off the size allocated to this field. That puts us
3956 at the first place we could have put the field with
3957 proper alignment. */
3958 *rli = old_rli;
3959
3960 /* Bump up by the alignment required for the type. */
3961 rli->bitpos
3962 = size_binop (PLUS_EXPR, rli->bitpos,
3963 bitsize_int (binfo
3964 ? CLASSTYPE_ALIGN (type)
3965 : TYPE_ALIGN (type)));
3966 normalize_rli (rli);
3967 }
3968 else
3969 /* There was no conflict. We're done laying out this field. */
3970 break;
3971 }
3972
3973 /* Now that we know where it will be placed, update its
3974 BINFO_OFFSET. */
3975 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3976 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3977 this point because their BINFO_OFFSET is copied from another
3978 hierarchy. Therefore, we may not need to add the entire
3979 OFFSET. */
3980 propagate_binfo_offsets (binfo,
3981 size_diffop_loc (input_location,
3982 convert (ssizetype, offset),
3983 convert (ssizetype,
3984 BINFO_OFFSET (binfo))));
3985 }
3986
3987 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3988
3989 static int
3990 empty_base_at_nonzero_offset_p (tree type,
3991 tree offset,
3992 splay_tree /*offsets*/)
3993 {
3994 return is_empty_class (type) && !integer_zerop (offset);
3995 }
3996
3997 /* Layout the empty base BINFO. EOC indicates the byte currently just
3998 past the end of the class, and should be correctly aligned for a
3999 class of the type indicated by BINFO; OFFSETS gives the offsets of
4000 the empty bases allocated so far. T is the most derived
4001 type. Return nonzero iff we added it at the end. */
4002
4003 static bool
4004 layout_empty_base (record_layout_info rli, tree binfo,
4005 tree eoc, splay_tree offsets)
4006 {
4007 tree alignment;
4008 tree basetype = BINFO_TYPE (binfo);
4009 bool atend = false;
4010
4011 /* This routine should only be used for empty classes. */
4012 gcc_assert (is_empty_class (basetype));
4013 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4014
4015 if (!integer_zerop (BINFO_OFFSET (binfo)))
4016 {
4017 if (abi_version_at_least (2))
4018 propagate_binfo_offsets
4019 (binfo, size_diffop_loc (input_location,
4020 size_zero_node, BINFO_OFFSET (binfo)));
4021 else
4022 warning (OPT_Wabi,
4023 "offset of empty base %qT may not be ABI-compliant and may"
4024 "change in a future version of GCC",
4025 BINFO_TYPE (binfo));
4026 }
4027
4028 /* This is an empty base class. We first try to put it at offset
4029 zero. */
4030 if (layout_conflict_p (binfo,
4031 BINFO_OFFSET (binfo),
4032 offsets,
4033 /*vbases_p=*/0))
4034 {
4035 /* That didn't work. Now, we move forward from the next
4036 available spot in the class. */
4037 atend = true;
4038 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4039 while (1)
4040 {
4041 if (!layout_conflict_p (binfo,
4042 BINFO_OFFSET (binfo),
4043 offsets,
4044 /*vbases_p=*/0))
4045 /* We finally found a spot where there's no overlap. */
4046 break;
4047
4048 /* There's overlap here, too. Bump along to the next spot. */
4049 propagate_binfo_offsets (binfo, alignment);
4050 }
4051 }
4052
4053 if (CLASSTYPE_USER_ALIGN (basetype))
4054 {
4055 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4056 if (warn_packed)
4057 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4058 TYPE_USER_ALIGN (rli->t) = 1;
4059 }
4060
4061 return atend;
4062 }
4063
4064 /* Layout the base given by BINFO in the class indicated by RLI.
4065 *BASE_ALIGN is a running maximum of the alignments of
4066 any base class. OFFSETS gives the location of empty base
4067 subobjects. T is the most derived type. Return nonzero if the new
4068 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4069 *NEXT_FIELD, unless BINFO is for an empty base class.
4070
4071 Returns the location at which the next field should be inserted. */
4072
4073 static tree *
4074 build_base_field (record_layout_info rli, tree binfo,
4075 splay_tree offsets, tree *next_field)
4076 {
4077 tree t = rli->t;
4078 tree basetype = BINFO_TYPE (binfo);
4079
4080 if (!COMPLETE_TYPE_P (basetype))
4081 /* This error is now reported in xref_tag, thus giving better
4082 location information. */
4083 return next_field;
4084
4085 /* Place the base class. */
4086 if (!is_empty_class (basetype))
4087 {
4088 tree decl;
4089
4090 /* The containing class is non-empty because it has a non-empty
4091 base class. */
4092 CLASSTYPE_EMPTY_P (t) = 0;
4093
4094 /* Create the FIELD_DECL. */
4095 decl = build_decl (input_location,
4096 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4097 DECL_ARTIFICIAL (decl) = 1;
4098 DECL_IGNORED_P (decl) = 1;
4099 DECL_FIELD_CONTEXT (decl) = t;
4100 if (CLASSTYPE_AS_BASE (basetype))
4101 {
4102 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4103 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4104 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4105 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4106 DECL_MODE (decl) = TYPE_MODE (basetype);
4107 DECL_FIELD_IS_BASE (decl) = 1;
4108
4109 /* Try to place the field. It may take more than one try if we
4110 have a hard time placing the field without putting two
4111 objects of the same type at the same address. */
4112 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4113 /* Add the new FIELD_DECL to the list of fields for T. */
4114 DECL_CHAIN (decl) = *next_field;
4115 *next_field = decl;
4116 next_field = &DECL_CHAIN (decl);
4117 }
4118 }
4119 else
4120 {
4121 tree eoc;
4122 bool atend;
4123
4124 /* On some platforms (ARM), even empty classes will not be
4125 byte-aligned. */
4126 eoc = round_up_loc (input_location,
4127 rli_size_unit_so_far (rli),
4128 CLASSTYPE_ALIGN_UNIT (basetype));
4129 atend = layout_empty_base (rli, binfo, eoc, offsets);
4130 /* A nearly-empty class "has no proper base class that is empty,
4131 not morally virtual, and at an offset other than zero." */
4132 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4133 {
4134 if (atend)
4135 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4136 /* The check above (used in G++ 3.2) is insufficient because
4137 an empty class placed at offset zero might itself have an
4138 empty base at a nonzero offset. */
4139 else if (walk_subobject_offsets (basetype,
4140 empty_base_at_nonzero_offset_p,
4141 size_zero_node,
4142 /*offsets=*/NULL,
4143 /*max_offset=*/NULL_TREE,
4144 /*vbases_p=*/true))
4145 {
4146 if (abi_version_at_least (2))
4147 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4148 else
4149 warning (OPT_Wabi,
4150 "class %qT will be considered nearly empty in a "
4151 "future version of GCC", t);
4152 }
4153 }
4154
4155 /* We do not create a FIELD_DECL for empty base classes because
4156 it might overlap some other field. We want to be able to
4157 create CONSTRUCTORs for the class by iterating over the
4158 FIELD_DECLs, and the back end does not handle overlapping
4159 FIELD_DECLs. */
4160
4161 /* An empty virtual base causes a class to be non-empty
4162 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4163 here because that was already done when the virtual table
4164 pointer was created. */
4165 }
4166
4167 /* Record the offsets of BINFO and its base subobjects. */
4168 record_subobject_offsets (binfo,
4169 BINFO_OFFSET (binfo),
4170 offsets,
4171 /*is_data_member=*/false);
4172
4173 return next_field;
4174 }
4175
4176 /* Layout all of the non-virtual base classes. Record empty
4177 subobjects in OFFSETS. T is the most derived type. Return nonzero
4178 if the type cannot be nearly empty. The fields created
4179 corresponding to the base classes will be inserted at
4180 *NEXT_FIELD. */
4181
4182 static void
4183 build_base_fields (record_layout_info rli,
4184 splay_tree offsets, tree *next_field)
4185 {
4186 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4187 subobjects. */
4188 tree t = rli->t;
4189 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4190 int i;
4191
4192 /* The primary base class is always allocated first. */
4193 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4194 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4195 offsets, next_field);
4196
4197 /* Now allocate the rest of the bases. */
4198 for (i = 0; i < n_baseclasses; ++i)
4199 {
4200 tree base_binfo;
4201
4202 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4203
4204 /* The primary base was already allocated above, so we don't
4205 need to allocate it again here. */
4206 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4207 continue;
4208
4209 /* Virtual bases are added at the end (a primary virtual base
4210 will have already been added). */
4211 if (BINFO_VIRTUAL_P (base_binfo))
4212 continue;
4213
4214 next_field = build_base_field (rli, base_binfo,
4215 offsets, next_field);
4216 }
4217 }
4218
4219 /* Go through the TYPE_METHODS of T issuing any appropriate
4220 diagnostics, figuring out which methods override which other
4221 methods, and so forth. */
4222
4223 static void
4224 check_methods (tree t)
4225 {
4226 tree x;
4227
4228 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4229 {
4230 check_for_override (x, t);
4231 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
4232 error ("initializer specified for non-virtual method %q+D", x);
4233 /* The name of the field is the original field name
4234 Save this in auxiliary field for later overloading. */
4235 if (DECL_VINDEX (x))
4236 {
4237 TYPE_POLYMORPHIC_P (t) = 1;
4238 if (DECL_PURE_VIRTUAL_P (x))
4239 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4240 }
4241 /* All user-provided destructors are non-trivial.
4242 Constructors and assignment ops are handled in
4243 grok_special_member_properties. */
4244 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4245 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4246 }
4247 }
4248
4249 /* FN is a constructor or destructor. Clone the declaration to create
4250 a specialized in-charge or not-in-charge version, as indicated by
4251 NAME. */
4252
4253 static tree
4254 build_clone (tree fn, tree name)
4255 {
4256 tree parms;
4257 tree clone;
4258
4259 /* Copy the function. */
4260 clone = copy_decl (fn);
4261 /* Reset the function name. */
4262 DECL_NAME (clone) = name;
4263 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4264 /* Remember where this function came from. */
4265 DECL_ABSTRACT_ORIGIN (clone) = fn;
4266 /* Make it easy to find the CLONE given the FN. */
4267 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4268 DECL_CHAIN (fn) = clone;
4269
4270 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4271 if (TREE_CODE (clone) == TEMPLATE_DECL)
4272 {
4273 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4274 DECL_TEMPLATE_RESULT (clone) = result;
4275 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4276 DECL_TI_TEMPLATE (result) = clone;
4277 TREE_TYPE (clone) = TREE_TYPE (result);
4278 return clone;
4279 }
4280
4281 DECL_CLONED_FUNCTION (clone) = fn;
4282 /* There's no pending inline data for this function. */
4283 DECL_PENDING_INLINE_INFO (clone) = NULL;
4284 DECL_PENDING_INLINE_P (clone) = 0;
4285
4286 /* The base-class destructor is not virtual. */
4287 if (name == base_dtor_identifier)
4288 {
4289 DECL_VIRTUAL_P (clone) = 0;
4290 if (TREE_CODE (clone) != TEMPLATE_DECL)
4291 DECL_VINDEX (clone) = NULL_TREE;
4292 }
4293
4294 /* If there was an in-charge parameter, drop it from the function
4295 type. */
4296 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4297 {
4298 tree basetype;
4299 tree parmtypes;
4300 tree exceptions;
4301
4302 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4303 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4304 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4305 /* Skip the `this' parameter. */
4306 parmtypes = TREE_CHAIN (parmtypes);
4307 /* Skip the in-charge parameter. */
4308 parmtypes = TREE_CHAIN (parmtypes);
4309 /* And the VTT parm, in a complete [cd]tor. */
4310 if (DECL_HAS_VTT_PARM_P (fn)
4311 && ! DECL_NEEDS_VTT_PARM_P (clone))
4312 parmtypes = TREE_CHAIN (parmtypes);
4313 /* If this is subobject constructor or destructor, add the vtt
4314 parameter. */
4315 TREE_TYPE (clone)
4316 = build_method_type_directly (basetype,
4317 TREE_TYPE (TREE_TYPE (clone)),
4318 parmtypes);
4319 if (exceptions)
4320 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4321 exceptions);
4322 TREE_TYPE (clone)
4323 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4324 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4325 }
4326
4327 /* Copy the function parameters. */
4328 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4329 /* Remove the in-charge parameter. */
4330 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4331 {
4332 DECL_CHAIN (DECL_ARGUMENTS (clone))
4333 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4334 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4335 }
4336 /* And the VTT parm, in a complete [cd]tor. */
4337 if (DECL_HAS_VTT_PARM_P (fn))
4338 {
4339 if (DECL_NEEDS_VTT_PARM_P (clone))
4340 DECL_HAS_VTT_PARM_P (clone) = 1;
4341 else
4342 {
4343 DECL_CHAIN (DECL_ARGUMENTS (clone))
4344 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4345 DECL_HAS_VTT_PARM_P (clone) = 0;
4346 }
4347 }
4348
4349 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4350 {
4351 DECL_CONTEXT (parms) = clone;
4352 cxx_dup_lang_specific_decl (parms);
4353 }
4354
4355 /* Create the RTL for this function. */
4356 SET_DECL_RTL (clone, NULL);
4357 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4358
4359 if (pch_file)
4360 note_decl_for_pch (clone);
4361
4362 return clone;
4363 }
4364
4365 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4366 not invoke this function directly.
4367
4368 For a non-thunk function, returns the address of the slot for storing
4369 the function it is a clone of. Otherwise returns NULL_TREE.
4370
4371 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4372 cloned_function is unset. This is to support the separate
4373 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4374 on a template makes sense, but not the former. */
4375
4376 tree *
4377 decl_cloned_function_p (const_tree decl, bool just_testing)
4378 {
4379 tree *ptr;
4380 if (just_testing)
4381 decl = STRIP_TEMPLATE (decl);
4382
4383 if (TREE_CODE (decl) != FUNCTION_DECL
4384 || !DECL_LANG_SPECIFIC (decl)
4385 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4386 {
4387 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4388 if (!just_testing)
4389 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4390 else
4391 #endif
4392 return NULL;
4393 }
4394
4395 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4396 if (just_testing && *ptr == NULL_TREE)
4397 return NULL;
4398 else
4399 return ptr;
4400 }
4401
4402 /* Produce declarations for all appropriate clones of FN. If
4403 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4404 CLASTYPE_METHOD_VEC as well. */
4405
4406 void
4407 clone_function_decl (tree fn, int update_method_vec_p)
4408 {
4409 tree clone;
4410
4411 /* Avoid inappropriate cloning. */
4412 if (DECL_CHAIN (fn)
4413 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4414 return;
4415
4416 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4417 {
4418 /* For each constructor, we need two variants: an in-charge version
4419 and a not-in-charge version. */
4420 clone = build_clone (fn, complete_ctor_identifier);
4421 if (update_method_vec_p)
4422 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4423 clone = build_clone (fn, base_ctor_identifier);
4424 if (update_method_vec_p)
4425 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4426 }
4427 else
4428 {
4429 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4430
4431 /* For each destructor, we need three variants: an in-charge
4432 version, a not-in-charge version, and an in-charge deleting
4433 version. We clone the deleting version first because that
4434 means it will go second on the TYPE_METHODS list -- and that
4435 corresponds to the correct layout order in the virtual
4436 function table.
4437
4438 For a non-virtual destructor, we do not build a deleting
4439 destructor. */
4440 if (DECL_VIRTUAL_P (fn))
4441 {
4442 clone = build_clone (fn, deleting_dtor_identifier);
4443 if (update_method_vec_p)
4444 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4445 }
4446 clone = build_clone (fn, complete_dtor_identifier);
4447 if (update_method_vec_p)
4448 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4449 clone = build_clone (fn, base_dtor_identifier);
4450 if (update_method_vec_p)
4451 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4452 }
4453
4454 /* Note that this is an abstract function that is never emitted. */
4455 DECL_ABSTRACT (fn) = 1;
4456 }
4457
4458 /* DECL is an in charge constructor, which is being defined. This will
4459 have had an in class declaration, from whence clones were
4460 declared. An out-of-class definition can specify additional default
4461 arguments. As it is the clones that are involved in overload
4462 resolution, we must propagate the information from the DECL to its
4463 clones. */
4464
4465 void
4466 adjust_clone_args (tree decl)
4467 {
4468 tree clone;
4469
4470 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4471 clone = DECL_CHAIN (clone))
4472 {
4473 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4474 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4475 tree decl_parms, clone_parms;
4476
4477 clone_parms = orig_clone_parms;
4478
4479 /* Skip the 'this' parameter. */
4480 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4481 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4482
4483 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4484 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4485 if (DECL_HAS_VTT_PARM_P (decl))
4486 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4487
4488 clone_parms = orig_clone_parms;
4489 if (DECL_HAS_VTT_PARM_P (clone))
4490 clone_parms = TREE_CHAIN (clone_parms);
4491
4492 for (decl_parms = orig_decl_parms; decl_parms;
4493 decl_parms = TREE_CHAIN (decl_parms),
4494 clone_parms = TREE_CHAIN (clone_parms))
4495 {
4496 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4497 TREE_TYPE (clone_parms)));
4498
4499 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4500 {
4501 /* A default parameter has been added. Adjust the
4502 clone's parameters. */
4503 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4504 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4505 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4506 tree type;
4507
4508 clone_parms = orig_decl_parms;
4509
4510 if (DECL_HAS_VTT_PARM_P (clone))
4511 {
4512 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4513 TREE_VALUE (orig_clone_parms),
4514 clone_parms);
4515 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4516 }
4517 type = build_method_type_directly (basetype,
4518 TREE_TYPE (TREE_TYPE (clone)),
4519 clone_parms);
4520 if (exceptions)
4521 type = build_exception_variant (type, exceptions);
4522 if (attrs)
4523 type = cp_build_type_attribute_variant (type, attrs);
4524 TREE_TYPE (clone) = type;
4525
4526 clone_parms = NULL_TREE;
4527 break;
4528 }
4529 }
4530 gcc_assert (!clone_parms);
4531 }
4532 }
4533
4534 /* For each of the constructors and destructors in T, create an
4535 in-charge and not-in-charge variant. */
4536
4537 static void
4538 clone_constructors_and_destructors (tree t)
4539 {
4540 tree fns;
4541
4542 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4543 out now. */
4544 if (!CLASSTYPE_METHOD_VEC (t))
4545 return;
4546
4547 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4548 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4549 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4550 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4551 }
4552
4553 /* Deduce noexcept for a destructor DTOR. */
4554
4555 void
4556 deduce_noexcept_on_destructor (tree dtor)
4557 {
4558 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4559 {
4560 tree ctx = DECL_CONTEXT (dtor);
4561 tree implicit_fn = implicitly_declare_fn (sfk_destructor, ctx,
4562 /*const_p=*/false,
4563 NULL, NULL);
4564 tree eh_spec = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (implicit_fn));
4565 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4566 }
4567 }
4568
4569 /* For each destructor in T, deduce noexcept:
4570
4571 12.4/3: A declaration of a destructor that does not have an
4572 exception-specification is implicitly considered to have the
4573 same exception-specification as an implicit declaration (15.4). */
4574
4575 static void
4576 deduce_noexcept_on_destructors (tree t)
4577 {
4578 tree fns;
4579
4580 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4581 out now. */
4582 if (!CLASSTYPE_METHOD_VEC (t))
4583 return;
4584
4585 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4586 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4587 }
4588
4589 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4590 of TYPE for virtual functions which FNDECL overrides. Return a
4591 mask of the tm attributes found therein. */
4592
4593 static int
4594 look_for_tm_attr_overrides (tree type, tree fndecl)
4595 {
4596 tree binfo = TYPE_BINFO (type);
4597 tree base_binfo;
4598 int ix, found = 0;
4599
4600 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4601 {
4602 tree o, basetype = BINFO_TYPE (base_binfo);
4603
4604 if (!TYPE_POLYMORPHIC_P (basetype))
4605 continue;
4606
4607 o = look_for_overrides_here (basetype, fndecl);
4608 if (o)
4609 found |= tm_attr_to_mask (find_tm_attribute
4610 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4611 else
4612 found |= look_for_tm_attr_overrides (basetype, fndecl);
4613 }
4614
4615 return found;
4616 }
4617
4618 /* Subroutine of set_method_tm_attributes. Handle the checks and
4619 inheritance for one virtual method FNDECL. */
4620
4621 static void
4622 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4623 {
4624 tree tm_attr;
4625 int found, have;
4626
4627 found = look_for_tm_attr_overrides (type, fndecl);
4628
4629 /* If FNDECL doesn't actually override anything (i.e. T is the
4630 class that first declares FNDECL virtual), then we're done. */
4631 if (found == 0)
4632 return;
4633
4634 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4635 have = tm_attr_to_mask (tm_attr);
4636
4637 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4638 tm_pure must match exactly, otherwise no weakening of
4639 tm_safe > tm_callable > nothing. */
4640 /* ??? The tm_pure attribute didn't make the transition to the
4641 multivendor language spec. */
4642 if (have == TM_ATTR_PURE)
4643 {
4644 if (found != TM_ATTR_PURE)
4645 {
4646 found &= -found;
4647 goto err_override;
4648 }
4649 }
4650 /* If the overridden function is tm_pure, then FNDECL must be. */
4651 else if (found == TM_ATTR_PURE && tm_attr)
4652 goto err_override;
4653 /* Look for base class combinations that cannot be satisfied. */
4654 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4655 {
4656 found &= ~TM_ATTR_PURE;
4657 found &= -found;
4658 error_at (DECL_SOURCE_LOCATION (fndecl),
4659 "method overrides both %<transaction_pure%> and %qE methods",
4660 tm_mask_to_attr (found));
4661 }
4662 /* If FNDECL did not declare an attribute, then inherit the most
4663 restrictive one. */
4664 else if (tm_attr == NULL)
4665 {
4666 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4667 }
4668 /* Otherwise validate that we're not weaker than a function
4669 that is being overridden. */
4670 else
4671 {
4672 found &= -found;
4673 if (found <= TM_ATTR_CALLABLE && have > found)
4674 goto err_override;
4675 }
4676 return;
4677
4678 err_override:
4679 error_at (DECL_SOURCE_LOCATION (fndecl),
4680 "method declared %qE overriding %qE method",
4681 tm_attr, tm_mask_to_attr (found));
4682 }
4683
4684 /* For each of the methods in T, propagate a class-level tm attribute. */
4685
4686 static void
4687 set_method_tm_attributes (tree t)
4688 {
4689 tree class_tm_attr, fndecl;
4690
4691 /* Don't bother collecting tm attributes if transactional memory
4692 support is not enabled. */
4693 if (!flag_tm)
4694 return;
4695
4696 /* Process virtual methods first, as they inherit directly from the
4697 base virtual function and also require validation of new attributes. */
4698 if (TYPE_CONTAINS_VPTR_P (t))
4699 {
4700 tree vchain;
4701 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4702 vchain = TREE_CHAIN (vchain))
4703 {
4704 fndecl = BV_FN (vchain);
4705 if (DECL_THUNK_P (fndecl))
4706 fndecl = THUNK_TARGET (fndecl);
4707 set_one_vmethod_tm_attributes (t, fndecl);
4708 }
4709 }
4710
4711 /* If the class doesn't have an attribute, nothing more to do. */
4712 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4713 if (class_tm_attr == NULL)
4714 return;
4715
4716 /* Any method that does not yet have a tm attribute inherits
4717 the one from the class. */
4718 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4719 {
4720 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4721 apply_tm_attr (fndecl, class_tm_attr);
4722 }
4723 }
4724
4725 /* Returns true iff class T has a user-defined constructor other than
4726 the default constructor. */
4727
4728 bool
4729 type_has_user_nondefault_constructor (tree t)
4730 {
4731 tree fns;
4732
4733 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4734 return false;
4735
4736 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4737 {
4738 tree fn = OVL_CURRENT (fns);
4739 if (!DECL_ARTIFICIAL (fn)
4740 && (TREE_CODE (fn) == TEMPLATE_DECL
4741 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4742 != NULL_TREE)))
4743 return true;
4744 }
4745
4746 return false;
4747 }
4748
4749 /* Returns the defaulted constructor if T has one. Otherwise, returns
4750 NULL_TREE. */
4751
4752 tree
4753 in_class_defaulted_default_constructor (tree t)
4754 {
4755 tree fns, args;
4756
4757 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4758 return NULL_TREE;
4759
4760 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4761 {
4762 tree fn = OVL_CURRENT (fns);
4763
4764 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4765 {
4766 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4767 while (args && TREE_PURPOSE (args))
4768 args = TREE_CHAIN (args);
4769 if (!args || args == void_list_node)
4770 return fn;
4771 }
4772 }
4773
4774 return NULL_TREE;
4775 }
4776
4777 /* Returns true iff FN is a user-provided function, i.e. user-declared
4778 and not defaulted at its first declaration; or explicit, private,
4779 protected, or non-const. */
4780
4781 bool
4782 user_provided_p (tree fn)
4783 {
4784 if (TREE_CODE (fn) == TEMPLATE_DECL)
4785 return true;
4786 else
4787 return (!DECL_ARTIFICIAL (fn)
4788 && !DECL_DEFAULTED_IN_CLASS_P (fn));
4789 }
4790
4791 /* Returns true iff class T has a user-provided constructor. */
4792
4793 bool
4794 type_has_user_provided_constructor (tree t)
4795 {
4796 tree fns;
4797
4798 if (!CLASS_TYPE_P (t))
4799 return false;
4800
4801 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4802 return false;
4803
4804 /* This can happen in error cases; avoid crashing. */
4805 if (!CLASSTYPE_METHOD_VEC (t))
4806 return false;
4807
4808 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4809 if (user_provided_p (OVL_CURRENT (fns)))
4810 return true;
4811
4812 return false;
4813 }
4814
4815 /* Returns true iff class T has a user-provided default constructor. */
4816
4817 bool
4818 type_has_user_provided_default_constructor (tree t)
4819 {
4820 tree fns;
4821
4822 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4823 return false;
4824
4825 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4826 {
4827 tree fn = OVL_CURRENT (fns);
4828 if (TREE_CODE (fn) == FUNCTION_DECL
4829 && user_provided_p (fn)
4830 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4831 return true;
4832 }
4833
4834 return false;
4835 }
4836
4837 /* TYPE is being used as a virtual base, and has a non-trivial move
4838 assignment. Return true if this is due to there being a user-provided
4839 move assignment in TYPE or one of its subobjects; if there isn't, then
4840 multiple move assignment can't cause any harm. */
4841
4842 bool
4843 vbase_has_user_provided_move_assign (tree type)
4844 {
4845 /* Does the type itself have a user-provided move assignment operator? */
4846 for (tree fns
4847 = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR));
4848 fns; fns = OVL_NEXT (fns))
4849 {
4850 tree fn = OVL_CURRENT (fns);
4851 if (move_fn_p (fn) && user_provided_p (fn))
4852 return true;
4853 }
4854
4855 /* Do any of its bases? */
4856 tree binfo = TYPE_BINFO (type);
4857 tree base_binfo;
4858 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4859 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
4860 return true;
4861
4862 /* Or non-static data members? */
4863 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4864 {
4865 if (TREE_CODE (field) == FIELD_DECL
4866 && CLASS_TYPE_P (TREE_TYPE (field))
4867 && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
4868 return true;
4869 }
4870
4871 /* Seems not. */
4872 return false;
4873 }
4874
4875 /* If default-initialization leaves part of TYPE uninitialized, returns
4876 a DECL for the field or TYPE itself (DR 253). */
4877
4878 tree
4879 default_init_uninitialized_part (tree type)
4880 {
4881 tree t, r, binfo;
4882 int i;
4883
4884 type = strip_array_types (type);
4885 if (!CLASS_TYPE_P (type))
4886 return type;
4887 if (type_has_user_provided_default_constructor (type))
4888 return NULL_TREE;
4889 for (binfo = TYPE_BINFO (type), i = 0;
4890 BINFO_BASE_ITERATE (binfo, i, t); ++i)
4891 {
4892 r = default_init_uninitialized_part (BINFO_TYPE (t));
4893 if (r)
4894 return r;
4895 }
4896 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
4897 if (TREE_CODE (t) == FIELD_DECL
4898 && !DECL_ARTIFICIAL (t)
4899 && !DECL_INITIAL (t))
4900 {
4901 r = default_init_uninitialized_part (TREE_TYPE (t));
4902 if (r)
4903 return DECL_P (r) ? r : t;
4904 }
4905
4906 return NULL_TREE;
4907 }
4908
4909 /* Returns true iff for class T, a trivial synthesized default constructor
4910 would be constexpr. */
4911
4912 bool
4913 trivial_default_constructor_is_constexpr (tree t)
4914 {
4915 /* A defaulted trivial default constructor is constexpr
4916 if there is nothing to initialize. */
4917 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
4918 return is_really_empty_class (t);
4919 }
4920
4921 /* Returns true iff class T has a constexpr default constructor. */
4922
4923 bool
4924 type_has_constexpr_default_constructor (tree t)
4925 {
4926 tree fns;
4927
4928 if (!CLASS_TYPE_P (t))
4929 {
4930 /* The caller should have stripped an enclosing array. */
4931 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
4932 return false;
4933 }
4934 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
4935 {
4936 if (!TYPE_HAS_COMPLEX_DFLT (t))
4937 return trivial_default_constructor_is_constexpr (t);
4938 /* Non-trivial, we need to check subobject constructors. */
4939 lazily_declare_fn (sfk_constructor, t);
4940 }
4941 fns = locate_ctor (t);
4942 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
4943 }
4944
4945 /* Returns true iff class TYPE has a virtual destructor. */
4946
4947 bool
4948 type_has_virtual_destructor (tree type)
4949 {
4950 tree dtor;
4951
4952 if (!CLASS_TYPE_P (type))
4953 return false;
4954
4955 gcc_assert (COMPLETE_TYPE_P (type));
4956 dtor = CLASSTYPE_DESTRUCTORS (type);
4957 return (dtor && DECL_VIRTUAL_P (dtor));
4958 }
4959
4960 /* Returns true iff class T has a move constructor. */
4961
4962 bool
4963 type_has_move_constructor (tree t)
4964 {
4965 tree fns;
4966
4967 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
4968 {
4969 gcc_assert (COMPLETE_TYPE_P (t));
4970 lazily_declare_fn (sfk_move_constructor, t);
4971 }
4972
4973 if (!CLASSTYPE_METHOD_VEC (t))
4974 return false;
4975
4976 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4977 if (move_fn_p (OVL_CURRENT (fns)))
4978 return true;
4979
4980 return false;
4981 }
4982
4983 /* Returns true iff class T has a move assignment operator. */
4984
4985 bool
4986 type_has_move_assign (tree t)
4987 {
4988 tree fns;
4989
4990 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
4991 {
4992 gcc_assert (COMPLETE_TYPE_P (t));
4993 lazily_declare_fn (sfk_move_assignment, t);
4994 }
4995
4996 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
4997 fns; fns = OVL_NEXT (fns))
4998 if (move_fn_p (OVL_CURRENT (fns)))
4999 return true;
5000
5001 return false;
5002 }
5003
5004 /* Returns true iff class T has a move constructor that was explicitly
5005 declared in the class body. Note that this is different from
5006 "user-provided", which doesn't include functions that are defaulted in
5007 the class. */
5008
5009 bool
5010 type_has_user_declared_move_constructor (tree t)
5011 {
5012 tree fns;
5013
5014 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5015 return false;
5016
5017 if (!CLASSTYPE_METHOD_VEC (t))
5018 return false;
5019
5020 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5021 {
5022 tree fn = OVL_CURRENT (fns);
5023 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5024 return true;
5025 }
5026
5027 return false;
5028 }
5029
5030 /* Returns true iff class T has a move assignment operator that was
5031 explicitly declared in the class body. */
5032
5033 bool
5034 type_has_user_declared_move_assign (tree t)
5035 {
5036 tree fns;
5037
5038 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5039 return false;
5040
5041 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5042 fns; fns = OVL_NEXT (fns))
5043 {
5044 tree fn = OVL_CURRENT (fns);
5045 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5046 return true;
5047 }
5048
5049 return false;
5050 }
5051
5052 /* Nonzero if we need to build up a constructor call when initializing an
5053 object of this class, either because it has a user-provided constructor
5054 or because it doesn't have a default constructor (so we need to give an
5055 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5056 what you care about is whether or not an object can be produced by a
5057 constructor (e.g. so we don't set TREE_READONLY on const variables of
5058 such type); use this function when what you care about is whether or not
5059 to try to call a constructor to create an object. The latter case is
5060 the former plus some cases of constructors that cannot be called. */
5061
5062 bool
5063 type_build_ctor_call (tree t)
5064 {
5065 tree inner;
5066 if (TYPE_NEEDS_CONSTRUCTING (t))
5067 return true;
5068 inner = strip_array_types (t);
5069 return (CLASS_TYPE_P (inner) && !TYPE_HAS_DEFAULT_CONSTRUCTOR (inner)
5070 && !ANON_AGGR_TYPE_P (inner));
5071 }
5072
5073 /* Remove all zero-width bit-fields from T. */
5074
5075 static void
5076 remove_zero_width_bit_fields (tree t)
5077 {
5078 tree *fieldsp;
5079
5080 fieldsp = &TYPE_FIELDS (t);
5081 while (*fieldsp)
5082 {
5083 if (TREE_CODE (*fieldsp) == FIELD_DECL
5084 && DECL_C_BIT_FIELD (*fieldsp)
5085 /* We should not be confused by the fact that grokbitfield
5086 temporarily sets the width of the bit field into
5087 DECL_INITIAL (*fieldsp).
5088 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5089 to that width. */
5090 && integer_zerop (DECL_SIZE (*fieldsp)))
5091 *fieldsp = DECL_CHAIN (*fieldsp);
5092 else
5093 fieldsp = &DECL_CHAIN (*fieldsp);
5094 }
5095 }
5096
5097 /* Returns TRUE iff we need a cookie when dynamically allocating an
5098 array whose elements have the indicated class TYPE. */
5099
5100 static bool
5101 type_requires_array_cookie (tree type)
5102 {
5103 tree fns;
5104 bool has_two_argument_delete_p = false;
5105
5106 gcc_assert (CLASS_TYPE_P (type));
5107
5108 /* If there's a non-trivial destructor, we need a cookie. In order
5109 to iterate through the array calling the destructor for each
5110 element, we'll have to know how many elements there are. */
5111 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5112 return true;
5113
5114 /* If the usual deallocation function is a two-argument whose second
5115 argument is of type `size_t', then we have to pass the size of
5116 the array to the deallocation function, so we will need to store
5117 a cookie. */
5118 fns = lookup_fnfields (TYPE_BINFO (type),
5119 ansi_opname (VEC_DELETE_EXPR),
5120 /*protect=*/0);
5121 /* If there are no `operator []' members, or the lookup is
5122 ambiguous, then we don't need a cookie. */
5123 if (!fns || fns == error_mark_node)
5124 return false;
5125 /* Loop through all of the functions. */
5126 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5127 {
5128 tree fn;
5129 tree second_parm;
5130
5131 /* Select the current function. */
5132 fn = OVL_CURRENT (fns);
5133 /* See if this function is a one-argument delete function. If
5134 it is, then it will be the usual deallocation function. */
5135 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5136 if (second_parm == void_list_node)
5137 return false;
5138 /* Do not consider this function if its second argument is an
5139 ellipsis. */
5140 if (!second_parm)
5141 continue;
5142 /* Otherwise, if we have a two-argument function and the second
5143 argument is `size_t', it will be the usual deallocation
5144 function -- unless there is one-argument function, too. */
5145 if (TREE_CHAIN (second_parm) == void_list_node
5146 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5147 has_two_argument_delete_p = true;
5148 }
5149
5150 return has_two_argument_delete_p;
5151 }
5152
5153 /* Finish computing the `literal type' property of class type T.
5154
5155 At this point, we have already processed base classes and
5156 non-static data members. We need to check whether the copy
5157 constructor is trivial, the destructor is trivial, and there
5158 is a trivial default constructor or at least one constexpr
5159 constructor other than the copy constructor. */
5160
5161 static void
5162 finalize_literal_type_property (tree t)
5163 {
5164 tree fn;
5165
5166 if (cxx_dialect < cxx0x
5167 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5168 CLASSTYPE_LITERAL_P (t) = false;
5169 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5170 && CLASSTYPE_NON_AGGREGATE (t)
5171 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5172 CLASSTYPE_LITERAL_P (t) = false;
5173
5174 if (!CLASSTYPE_LITERAL_P (t))
5175 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5176 if (DECL_DECLARED_CONSTEXPR_P (fn)
5177 && TREE_CODE (fn) != TEMPLATE_DECL
5178 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5179 && !DECL_CONSTRUCTOR_P (fn))
5180 {
5181 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5182 if (!DECL_GENERATED_P (fn))
5183 {
5184 error ("enclosing class of constexpr non-static member "
5185 "function %q+#D is not a literal type", fn);
5186 explain_non_literal_class (t);
5187 }
5188 }
5189 }
5190
5191 /* T is a non-literal type used in a context which requires a constant
5192 expression. Explain why it isn't literal. */
5193
5194 void
5195 explain_non_literal_class (tree t)
5196 {
5197 static struct pointer_set_t *diagnosed;
5198
5199 if (!CLASS_TYPE_P (t))
5200 return;
5201 t = TYPE_MAIN_VARIANT (t);
5202
5203 if (diagnosed == NULL)
5204 diagnosed = pointer_set_create ();
5205 if (pointer_set_insert (diagnosed, t) != 0)
5206 /* Already explained. */
5207 return;
5208
5209 inform (0, "%q+T is not literal because:", t);
5210 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5211 inform (0, " %q+T has a non-trivial destructor", t);
5212 else if (CLASSTYPE_NON_AGGREGATE (t)
5213 && !TYPE_HAS_TRIVIAL_DFLT (t)
5214 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5215 {
5216 inform (0, " %q+T is not an aggregate, does not have a trivial "
5217 "default constructor, and has no constexpr constructor that "
5218 "is not a copy or move constructor", t);
5219 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5220 && !type_has_user_provided_default_constructor (t))
5221 {
5222 /* Note that we can't simply call locate_ctor because when the
5223 constructor is deleted it just returns NULL_TREE. */
5224 tree fns;
5225 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5226 {
5227 tree fn = OVL_CURRENT (fns);
5228 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5229
5230 parms = skip_artificial_parms_for (fn, parms);
5231
5232 if (sufficient_parms_p (parms))
5233 {
5234 if (DECL_DELETED_FN (fn))
5235 maybe_explain_implicit_delete (fn);
5236 else
5237 explain_invalid_constexpr_fn (fn);
5238 break;
5239 }
5240 }
5241 }
5242 }
5243 else
5244 {
5245 tree binfo, base_binfo, field; int i;
5246 for (binfo = TYPE_BINFO (t), i = 0;
5247 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5248 {
5249 tree basetype = TREE_TYPE (base_binfo);
5250 if (!CLASSTYPE_LITERAL_P (basetype))
5251 {
5252 inform (0, " base class %qT of %q+T is non-literal",
5253 basetype, t);
5254 explain_non_literal_class (basetype);
5255 return;
5256 }
5257 }
5258 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5259 {
5260 tree ftype;
5261 if (TREE_CODE (field) != FIELD_DECL)
5262 continue;
5263 ftype = TREE_TYPE (field);
5264 if (!literal_type_p (ftype))
5265 {
5266 inform (0, " non-static data member %q+D has "
5267 "non-literal type", field);
5268 if (CLASS_TYPE_P (ftype))
5269 explain_non_literal_class (ftype);
5270 }
5271 }
5272 }
5273 }
5274
5275 /* Check the validity of the bases and members declared in T. Add any
5276 implicitly-generated functions (like copy-constructors and
5277 assignment operators). Compute various flag bits (like
5278 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5279 level: i.e., independently of the ABI in use. */
5280
5281 static void
5282 check_bases_and_members (tree t)
5283 {
5284 /* Nonzero if the implicitly generated copy constructor should take
5285 a non-const reference argument. */
5286 int cant_have_const_ctor;
5287 /* Nonzero if the implicitly generated assignment operator
5288 should take a non-const reference argument. */
5289 int no_const_asn_ref;
5290 tree access_decls;
5291 bool saved_complex_asn_ref;
5292 bool saved_nontrivial_dtor;
5293 tree fn;
5294
5295 /* By default, we use const reference arguments and generate default
5296 constructors. */
5297 cant_have_const_ctor = 0;
5298 no_const_asn_ref = 0;
5299
5300 /* Check all the base-classes. */
5301 check_bases (t, &cant_have_const_ctor,
5302 &no_const_asn_ref);
5303
5304 /* Deduce noexcept on destructors. This needs to happen after we've set
5305 triviality flags appropriately for our bases. */
5306 if (cxx_dialect >= cxx0x)
5307 deduce_noexcept_on_destructors (t);
5308
5309 /* Check all the method declarations. */
5310 check_methods (t);
5311
5312 /* Save the initial values of these flags which only indicate whether
5313 or not the class has user-provided functions. As we analyze the
5314 bases and members we can set these flags for other reasons. */
5315 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5316 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5317
5318 /* Check all the data member declarations. We cannot call
5319 check_field_decls until we have called check_bases check_methods,
5320 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5321 being set appropriately. */
5322 check_field_decls (t, &access_decls,
5323 &cant_have_const_ctor,
5324 &no_const_asn_ref);
5325
5326 /* A nearly-empty class has to be vptr-containing; a nearly empty
5327 class contains just a vptr. */
5328 if (!TYPE_CONTAINS_VPTR_P (t))
5329 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5330
5331 /* Do some bookkeeping that will guide the generation of implicitly
5332 declared member functions. */
5333 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5334 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5335 /* We need to call a constructor for this class if it has a
5336 user-provided constructor, or if the default constructor is going
5337 to initialize the vptr. (This is not an if-and-only-if;
5338 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5339 themselves need constructing.) */
5340 TYPE_NEEDS_CONSTRUCTING (t)
5341 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5342 /* [dcl.init.aggr]
5343
5344 An aggregate is an array or a class with no user-provided
5345 constructors ... and no virtual functions.
5346
5347 Again, other conditions for being an aggregate are checked
5348 elsewhere. */
5349 CLASSTYPE_NON_AGGREGATE (t)
5350 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5351 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5352 retain the old definition internally for ABI reasons. */
5353 CLASSTYPE_NON_LAYOUT_POD_P (t)
5354 |= (CLASSTYPE_NON_AGGREGATE (t)
5355 || saved_nontrivial_dtor || saved_complex_asn_ref);
5356 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5357 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5358 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5359 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5360
5361 /* If the class has no user-declared constructor, but does have
5362 non-static const or reference data members that can never be
5363 initialized, issue a warning. */
5364 if (warn_uninitialized
5365 /* Classes with user-declared constructors are presumed to
5366 initialize these members. */
5367 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5368 /* Aggregates can be initialized with brace-enclosed
5369 initializers. */
5370 && CLASSTYPE_NON_AGGREGATE (t))
5371 {
5372 tree field;
5373
5374 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5375 {
5376 tree type;
5377
5378 if (TREE_CODE (field) != FIELD_DECL
5379 || DECL_INITIAL (field) != NULL_TREE)
5380 continue;
5381
5382 type = TREE_TYPE (field);
5383 if (TREE_CODE (type) == REFERENCE_TYPE)
5384 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5385 "in class without a constructor", field);
5386 else if (CP_TYPE_CONST_P (type)
5387 && (!CLASS_TYPE_P (type)
5388 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5389 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5390 "in class without a constructor", field);
5391 }
5392 }
5393
5394 /* Synthesize any needed methods. */
5395 add_implicitly_declared_members (t, &access_decls,
5396 cant_have_const_ctor,
5397 no_const_asn_ref);
5398
5399 /* Check defaulted declarations here so we have cant_have_const_ctor
5400 and don't need to worry about clones. */
5401 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5402 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5403 {
5404 int copy = copy_fn_p (fn);
5405 if (copy > 0)
5406 {
5407 bool imp_const_p
5408 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5409 : !no_const_asn_ref);
5410 bool fn_const_p = (copy == 2);
5411
5412 if (fn_const_p && !imp_const_p)
5413 /* If the function is defaulted outside the class, we just
5414 give the synthesis error. */
5415 error ("%q+D declared to take const reference, but implicit "
5416 "declaration would take non-const", fn);
5417 }
5418 defaulted_late_check (fn);
5419 }
5420
5421 if (LAMBDA_TYPE_P (t))
5422 {
5423 /* "The closure type associated with a lambda-expression has a deleted
5424 default constructor and a deleted copy assignment operator." */
5425 TYPE_NEEDS_CONSTRUCTING (t) = 1;
5426 TYPE_HAS_COMPLEX_DFLT (t) = 1;
5427 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
5428 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
5429
5430 /* "This class type is not an aggregate." */
5431 CLASSTYPE_NON_AGGREGATE (t) = 1;
5432 }
5433
5434 /* Compute the 'literal type' property before we
5435 do anything with non-static member functions. */
5436 finalize_literal_type_property (t);
5437
5438 /* Create the in-charge and not-in-charge variants of constructors
5439 and destructors. */
5440 clone_constructors_and_destructors (t);
5441
5442 /* Process the using-declarations. */
5443 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5444 handle_using_decl (TREE_VALUE (access_decls), t);
5445
5446 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5447 finish_struct_methods (t);
5448
5449 /* Figure out whether or not we will need a cookie when dynamically
5450 allocating an array of this type. */
5451 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5452 = type_requires_array_cookie (t);
5453 }
5454
5455 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5456 accordingly. If a new vfield was created (because T doesn't have a
5457 primary base class), then the newly created field is returned. It
5458 is not added to the TYPE_FIELDS list; it is the caller's
5459 responsibility to do that. Accumulate declared virtual functions
5460 on VIRTUALS_P. */
5461
5462 static tree
5463 create_vtable_ptr (tree t, tree* virtuals_p)
5464 {
5465 tree fn;
5466
5467 /* Collect the virtual functions declared in T. */
5468 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5469 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5470 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5471 {
5472 tree new_virtual = make_node (TREE_LIST);
5473
5474 BV_FN (new_virtual) = fn;
5475 BV_DELTA (new_virtual) = integer_zero_node;
5476 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5477
5478 TREE_CHAIN (new_virtual) = *virtuals_p;
5479 *virtuals_p = new_virtual;
5480 }
5481
5482 /* If we couldn't find an appropriate base class, create a new field
5483 here. Even if there weren't any new virtual functions, we might need a
5484 new virtual function table if we're supposed to include vptrs in
5485 all classes that need them. */
5486 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5487 {
5488 /* We build this decl with vtbl_ptr_type_node, which is a
5489 `vtable_entry_type*'. It might seem more precise to use
5490 `vtable_entry_type (*)[N]' where N is the number of virtual
5491 functions. However, that would require the vtable pointer in
5492 base classes to have a different type than the vtable pointer
5493 in derived classes. We could make that happen, but that
5494 still wouldn't solve all the problems. In particular, the
5495 type-based alias analysis code would decide that assignments
5496 to the base class vtable pointer can't alias assignments to
5497 the derived class vtable pointer, since they have different
5498 types. Thus, in a derived class destructor, where the base
5499 class constructor was inlined, we could generate bad code for
5500 setting up the vtable pointer.
5501
5502 Therefore, we use one type for all vtable pointers. We still
5503 use a type-correct type; it's just doesn't indicate the array
5504 bounds. That's better than using `void*' or some such; it's
5505 cleaner, and it let's the alias analysis code know that these
5506 stores cannot alias stores to void*! */
5507 tree field;
5508
5509 field = build_decl (input_location,
5510 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5511 DECL_VIRTUAL_P (field) = 1;
5512 DECL_ARTIFICIAL (field) = 1;
5513 DECL_FIELD_CONTEXT (field) = t;
5514 DECL_FCONTEXT (field) = t;
5515 if (TYPE_PACKED (t))
5516 DECL_PACKED (field) = 1;
5517
5518 TYPE_VFIELD (t) = field;
5519
5520 /* This class is non-empty. */
5521 CLASSTYPE_EMPTY_P (t) = 0;
5522
5523 return field;
5524 }
5525
5526 return NULL_TREE;
5527 }
5528
5529 /* Add OFFSET to all base types of BINFO which is a base in the
5530 hierarchy dominated by T.
5531
5532 OFFSET, which is a type offset, is number of bytes. */
5533
5534 static void
5535 propagate_binfo_offsets (tree binfo, tree offset)
5536 {
5537 int i;
5538 tree primary_binfo;
5539 tree base_binfo;
5540
5541 /* Update BINFO's offset. */
5542 BINFO_OFFSET (binfo)
5543 = convert (sizetype,
5544 size_binop (PLUS_EXPR,
5545 convert (ssizetype, BINFO_OFFSET (binfo)),
5546 offset));
5547
5548 /* Find the primary base class. */
5549 primary_binfo = get_primary_binfo (binfo);
5550
5551 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5552 propagate_binfo_offsets (primary_binfo, offset);
5553
5554 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5555 downwards. */
5556 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5557 {
5558 /* Don't do the primary base twice. */
5559 if (base_binfo == primary_binfo)
5560 continue;
5561
5562 if (BINFO_VIRTUAL_P (base_binfo))
5563 continue;
5564
5565 propagate_binfo_offsets (base_binfo, offset);
5566 }
5567 }
5568
5569 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5570 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5571 empty subobjects of T. */
5572
5573 static void
5574 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5575 {
5576 tree vbase;
5577 tree t = rli->t;
5578 bool first_vbase = true;
5579 tree *next_field;
5580
5581 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5582 return;
5583
5584 if (!abi_version_at_least(2))
5585 {
5586 /* In G++ 3.2, we incorrectly rounded the size before laying out
5587 the virtual bases. */
5588 finish_record_layout (rli, /*free_p=*/false);
5589 #ifdef STRUCTURE_SIZE_BOUNDARY
5590 /* Packed structures don't need to have minimum size. */
5591 if (! TYPE_PACKED (t))
5592 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
5593 #endif
5594 rli->offset = TYPE_SIZE_UNIT (t);
5595 rli->bitpos = bitsize_zero_node;
5596 rli->record_align = TYPE_ALIGN (t);
5597 }
5598
5599 /* Find the last field. The artificial fields created for virtual
5600 bases will go after the last extant field to date. */
5601 next_field = &TYPE_FIELDS (t);
5602 while (*next_field)
5603 next_field = &DECL_CHAIN (*next_field);
5604
5605 /* Go through the virtual bases, allocating space for each virtual
5606 base that is not already a primary base class. These are
5607 allocated in inheritance graph order. */
5608 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5609 {
5610 if (!BINFO_VIRTUAL_P (vbase))
5611 continue;
5612
5613 if (!BINFO_PRIMARY_P (vbase))
5614 {
5615 tree basetype = TREE_TYPE (vbase);
5616
5617 /* This virtual base is not a primary base of any class in the
5618 hierarchy, so we have to add space for it. */
5619 next_field = build_base_field (rli, vbase,
5620 offsets, next_field);
5621
5622 /* If the first virtual base might have been placed at a
5623 lower address, had we started from CLASSTYPE_SIZE, rather
5624 than TYPE_SIZE, issue a warning. There can be both false
5625 positives and false negatives from this warning in rare
5626 cases; to deal with all the possibilities would probably
5627 require performing both layout algorithms and comparing
5628 the results which is not particularly tractable. */
5629 if (warn_abi
5630 && first_vbase
5631 && (tree_int_cst_lt
5632 (size_binop (CEIL_DIV_EXPR,
5633 round_up_loc (input_location,
5634 CLASSTYPE_SIZE (t),
5635 CLASSTYPE_ALIGN (basetype)),
5636 bitsize_unit_node),
5637 BINFO_OFFSET (vbase))))
5638 warning (OPT_Wabi,
5639 "offset of virtual base %qT is not ABI-compliant and "
5640 "may change in a future version of GCC",
5641 basetype);
5642
5643 first_vbase = false;
5644 }
5645 }
5646 }
5647
5648 /* Returns the offset of the byte just past the end of the base class
5649 BINFO. */
5650
5651 static tree
5652 end_of_base (tree binfo)
5653 {
5654 tree size;
5655
5656 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5657 size = TYPE_SIZE_UNIT (char_type_node);
5658 else if (is_empty_class (BINFO_TYPE (binfo)))
5659 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5660 allocate some space for it. It cannot have virtual bases, so
5661 TYPE_SIZE_UNIT is fine. */
5662 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5663 else
5664 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5665
5666 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5667 }
5668
5669 /* Returns the offset of the byte just past the end of the base class
5670 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5671 only non-virtual bases are included. */
5672
5673 static tree
5674 end_of_class (tree t, int include_virtuals_p)
5675 {
5676 tree result = size_zero_node;
5677 vec<tree, va_gc> *vbases;
5678 tree binfo;
5679 tree base_binfo;
5680 tree offset;
5681 int i;
5682
5683 for (binfo = TYPE_BINFO (t), i = 0;
5684 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5685 {
5686 if (!include_virtuals_p
5687 && BINFO_VIRTUAL_P (base_binfo)
5688 && (!BINFO_PRIMARY_P (base_binfo)
5689 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5690 continue;
5691
5692 offset = end_of_base (base_binfo);
5693 if (INT_CST_LT_UNSIGNED (result, offset))
5694 result = offset;
5695 }
5696
5697 /* G++ 3.2 did not check indirect virtual bases. */
5698 if (abi_version_at_least (2) && include_virtuals_p)
5699 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5700 vec_safe_iterate (vbases, i, &base_binfo); i++)
5701 {
5702 offset = end_of_base (base_binfo);
5703 if (INT_CST_LT_UNSIGNED (result, offset))
5704 result = offset;
5705 }
5706
5707 return result;
5708 }
5709
5710 /* Warn about bases of T that are inaccessible because they are
5711 ambiguous. For example:
5712
5713 struct S {};
5714 struct T : public S {};
5715 struct U : public S, public T {};
5716
5717 Here, `(S*) new U' is not allowed because there are two `S'
5718 subobjects of U. */
5719
5720 static void
5721 warn_about_ambiguous_bases (tree t)
5722 {
5723 int i;
5724 vec<tree, va_gc> *vbases;
5725 tree basetype;
5726 tree binfo;
5727 tree base_binfo;
5728
5729 /* If there are no repeated bases, nothing can be ambiguous. */
5730 if (!CLASSTYPE_REPEATED_BASE_P (t))
5731 return;
5732
5733 /* Check direct bases. */
5734 for (binfo = TYPE_BINFO (t), i = 0;
5735 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5736 {
5737 basetype = BINFO_TYPE (base_binfo);
5738
5739 if (!uniquely_derived_from_p (basetype, t))
5740 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5741 basetype, t);
5742 }
5743
5744 /* Check for ambiguous virtual bases. */
5745 if (extra_warnings)
5746 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5747 vec_safe_iterate (vbases, i, &binfo); i++)
5748 {
5749 basetype = BINFO_TYPE (binfo);
5750
5751 if (!uniquely_derived_from_p (basetype, t))
5752 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5753 "to ambiguity", basetype, t);
5754 }
5755 }
5756
5757 /* Compare two INTEGER_CSTs K1 and K2. */
5758
5759 static int
5760 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5761 {
5762 return tree_int_cst_compare ((tree) k1, (tree) k2);
5763 }
5764
5765 /* Increase the size indicated in RLI to account for empty classes
5766 that are "off the end" of the class. */
5767
5768 static void
5769 include_empty_classes (record_layout_info rli)
5770 {
5771 tree eoc;
5772 tree rli_size;
5773
5774 /* It might be the case that we grew the class to allocate a
5775 zero-sized base class. That won't be reflected in RLI, yet,
5776 because we are willing to overlay multiple bases at the same
5777 offset. However, now we need to make sure that RLI is big enough
5778 to reflect the entire class. */
5779 eoc = end_of_class (rli->t,
5780 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5781 rli_size = rli_size_unit_so_far (rli);
5782 if (TREE_CODE (rli_size) == INTEGER_CST
5783 && INT_CST_LT_UNSIGNED (rli_size, eoc))
5784 {
5785 if (!abi_version_at_least (2))
5786 /* In version 1 of the ABI, the size of a class that ends with
5787 a bitfield was not rounded up to a whole multiple of a
5788 byte. Because rli_size_unit_so_far returns only the number
5789 of fully allocated bytes, any extra bits were not included
5790 in the size. */
5791 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
5792 else
5793 /* The size should have been rounded to a whole byte. */
5794 gcc_assert (tree_int_cst_equal
5795 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5796 rli->bitpos
5797 = size_binop (PLUS_EXPR,
5798 rli->bitpos,
5799 size_binop (MULT_EXPR,
5800 convert (bitsizetype,
5801 size_binop (MINUS_EXPR,
5802 eoc, rli_size)),
5803 bitsize_int (BITS_PER_UNIT)));
5804 normalize_rli (rli);
5805 }
5806 }
5807
5808 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5809 BINFO_OFFSETs for all of the base-classes. Position the vtable
5810 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5811
5812 static void
5813 layout_class_type (tree t, tree *virtuals_p)
5814 {
5815 tree non_static_data_members;
5816 tree field;
5817 tree vptr;
5818 record_layout_info rli;
5819 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
5820 types that appear at that offset. */
5821 splay_tree empty_base_offsets;
5822 /* True if the last field layed out was a bit-field. */
5823 bool last_field_was_bitfield = false;
5824 /* The location at which the next field should be inserted. */
5825 tree *next_field;
5826 /* T, as a base class. */
5827 tree base_t;
5828
5829 /* Keep track of the first non-static data member. */
5830 non_static_data_members = TYPE_FIELDS (t);
5831
5832 /* Start laying out the record. */
5833 rli = start_record_layout (t);
5834
5835 /* Mark all the primary bases in the hierarchy. */
5836 determine_primary_bases (t);
5837
5838 /* Create a pointer to our virtual function table. */
5839 vptr = create_vtable_ptr (t, virtuals_p);
5840
5841 /* The vptr is always the first thing in the class. */
5842 if (vptr)
5843 {
5844 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
5845 TYPE_FIELDS (t) = vptr;
5846 next_field = &DECL_CHAIN (vptr);
5847 place_field (rli, vptr);
5848 }
5849 else
5850 next_field = &TYPE_FIELDS (t);
5851
5852 /* Build FIELD_DECLs for all of the non-virtual base-types. */
5853 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5854 NULL, NULL);
5855 build_base_fields (rli, empty_base_offsets, next_field);
5856
5857 /* Layout the non-static data members. */
5858 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
5859 {
5860 tree type;
5861 tree padding;
5862
5863 /* We still pass things that aren't non-static data members to
5864 the back end, in case it wants to do something with them. */
5865 if (TREE_CODE (field) != FIELD_DECL)
5866 {
5867 place_field (rli, field);
5868 /* If the static data member has incomplete type, keep track
5869 of it so that it can be completed later. (The handling
5870 of pending statics in finish_record_layout is
5871 insufficient; consider:
5872
5873 struct S1;
5874 struct S2 { static S1 s1; };
5875
5876 At this point, finish_record_layout will be called, but
5877 S1 is still incomplete.) */
5878 if (VAR_P (field))
5879 {
5880 maybe_register_incomplete_var (field);
5881 /* The visibility of static data members is determined
5882 at their point of declaration, not their point of
5883 definition. */
5884 determine_visibility (field);
5885 }
5886 continue;
5887 }
5888
5889 type = TREE_TYPE (field);
5890 if (type == error_mark_node)
5891 continue;
5892
5893 padding = NULL_TREE;
5894
5895 /* If this field is a bit-field whose width is greater than its
5896 type, then there are some special rules for allocating
5897 it. */
5898 if (DECL_C_BIT_FIELD (field)
5899 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
5900 {
5901 unsigned int itk;
5902 tree integer_type;
5903 bool was_unnamed_p = false;
5904 /* We must allocate the bits as if suitably aligned for the
5905 longest integer type that fits in this many bits. type
5906 of the field. Then, we are supposed to use the left over
5907 bits as additional padding. */
5908 for (itk = itk_char; itk != itk_none; ++itk)
5909 if (integer_types[itk] != NULL_TREE
5910 && (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE),
5911 TYPE_SIZE (integer_types[itk]))
5912 || INT_CST_LT (DECL_SIZE (field),
5913 TYPE_SIZE (integer_types[itk]))))
5914 break;
5915
5916 /* ITK now indicates a type that is too large for the
5917 field. We have to back up by one to find the largest
5918 type that fits. */
5919 do
5920 {
5921 --itk;
5922 integer_type = integer_types[itk];
5923 } while (itk > 0 && integer_type == NULL_TREE);
5924
5925 /* Figure out how much additional padding is required. GCC
5926 3.2 always created a padding field, even if it had zero
5927 width. */
5928 if (!abi_version_at_least (2)
5929 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
5930 {
5931 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
5932 /* In a union, the padding field must have the full width
5933 of the bit-field; all fields start at offset zero. */
5934 padding = DECL_SIZE (field);
5935 else
5936 {
5937 if (TREE_CODE (t) == UNION_TYPE)
5938 warning (OPT_Wabi, "size assigned to %qT may not be "
5939 "ABI-compliant and may change in a future "
5940 "version of GCC",
5941 t);
5942 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
5943 TYPE_SIZE (integer_type));
5944 }
5945 }
5946 #ifdef PCC_BITFIELD_TYPE_MATTERS
5947 /* An unnamed bitfield does not normally affect the
5948 alignment of the containing class on a target where
5949 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
5950 make any exceptions for unnamed bitfields when the
5951 bitfields are longer than their types. Therefore, we
5952 temporarily give the field a name. */
5953 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
5954 {
5955 was_unnamed_p = true;
5956 DECL_NAME (field) = make_anon_name ();
5957 }
5958 #endif
5959 DECL_SIZE (field) = TYPE_SIZE (integer_type);
5960 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
5961 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
5962 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5963 empty_base_offsets);
5964 if (was_unnamed_p)
5965 DECL_NAME (field) = NULL_TREE;
5966 /* Now that layout has been performed, set the size of the
5967 field to the size of its declared type; the rest of the
5968 field is effectively invisible. */
5969 DECL_SIZE (field) = TYPE_SIZE (type);
5970 /* We must also reset the DECL_MODE of the field. */
5971 if (abi_version_at_least (2))
5972 DECL_MODE (field) = TYPE_MODE (type);
5973 else if (warn_abi
5974 && DECL_MODE (field) != TYPE_MODE (type))
5975 /* Versions of G++ before G++ 3.4 did not reset the
5976 DECL_MODE. */
5977 warning (OPT_Wabi,
5978 "the offset of %qD may not be ABI-compliant and may "
5979 "change in a future version of GCC", field);
5980 }
5981 else
5982 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5983 empty_base_offsets);
5984
5985 /* Remember the location of any empty classes in FIELD. */
5986 if (abi_version_at_least (2))
5987 record_subobject_offsets (TREE_TYPE (field),
5988 byte_position(field),
5989 empty_base_offsets,
5990 /*is_data_member=*/true);
5991
5992 /* If a bit-field does not immediately follow another bit-field,
5993 and yet it starts in the middle of a byte, we have failed to
5994 comply with the ABI. */
5995 if (warn_abi
5996 && DECL_C_BIT_FIELD (field)
5997 /* The TREE_NO_WARNING flag gets set by Objective-C when
5998 laying out an Objective-C class. The ObjC ABI differs
5999 from the C++ ABI, and so we do not want a warning
6000 here. */
6001 && !TREE_NO_WARNING (field)
6002 && !last_field_was_bitfield
6003 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6004 DECL_FIELD_BIT_OFFSET (field),
6005 bitsize_unit_node)))
6006 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
6007 "change in a future version of GCC", field);
6008
6009 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
6010 offset of the field. */
6011 if (warn_abi
6012 && !abi_version_at_least (2)
6013 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
6014 byte_position (field))
6015 && contains_empty_class_p (TREE_TYPE (field)))
6016 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
6017 "classes to be placed at different locations in a "
6018 "future version of GCC", field);
6019
6020 /* The middle end uses the type of expressions to determine the
6021 possible range of expression values. In order to optimize
6022 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6023 must be made aware of the width of "i", via its type.
6024
6025 Because C++ does not have integer types of arbitrary width,
6026 we must (for the purposes of the front end) convert from the
6027 type assigned here to the declared type of the bitfield
6028 whenever a bitfield expression is used as an rvalue.
6029 Similarly, when assigning a value to a bitfield, the value
6030 must be converted to the type given the bitfield here. */
6031 if (DECL_C_BIT_FIELD (field))
6032 {
6033 unsigned HOST_WIDE_INT width;
6034 tree ftype = TREE_TYPE (field);
6035 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
6036 if (width != TYPE_PRECISION (ftype))
6037 {
6038 TREE_TYPE (field)
6039 = c_build_bitfield_integer_type (width,
6040 TYPE_UNSIGNED (ftype));
6041 TREE_TYPE (field)
6042 = cp_build_qualified_type (TREE_TYPE (field),
6043 cp_type_quals (ftype));
6044 }
6045 }
6046
6047 /* If we needed additional padding after this field, add it
6048 now. */
6049 if (padding)
6050 {
6051 tree padding_field;
6052
6053 padding_field = build_decl (input_location,
6054 FIELD_DECL,
6055 NULL_TREE,
6056 char_type_node);
6057 DECL_BIT_FIELD (padding_field) = 1;
6058 DECL_SIZE (padding_field) = padding;
6059 DECL_CONTEXT (padding_field) = t;
6060 DECL_ARTIFICIAL (padding_field) = 1;
6061 DECL_IGNORED_P (padding_field) = 1;
6062 layout_nonempty_base_or_field (rli, padding_field,
6063 NULL_TREE,
6064 empty_base_offsets);
6065 }
6066
6067 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6068 }
6069
6070 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
6071 {
6072 /* Make sure that we are on a byte boundary so that the size of
6073 the class without virtual bases will always be a round number
6074 of bytes. */
6075 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6076 normalize_rli (rli);
6077 }
6078
6079 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
6080 padding. */
6081 if (!abi_version_at_least (2))
6082 include_empty_classes(rli);
6083
6084 /* Delete all zero-width bit-fields from the list of fields. Now
6085 that the type is laid out they are no longer important. */
6086 remove_zero_width_bit_fields (t);
6087
6088 /* Create the version of T used for virtual bases. We do not use
6089 make_class_type for this version; this is an artificial type. For
6090 a POD type, we just reuse T. */
6091 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6092 {
6093 base_t = make_node (TREE_CODE (t));
6094
6095 /* Set the size and alignment for the new type. In G++ 3.2, all
6096 empty classes were considered to have size zero when used as
6097 base classes. */
6098 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
6099 {
6100 TYPE_SIZE (base_t) = bitsize_zero_node;
6101 TYPE_SIZE_UNIT (base_t) = size_zero_node;
6102 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
6103 warning (OPT_Wabi,
6104 "layout of classes derived from empty class %qT "
6105 "may change in a future version of GCC",
6106 t);
6107 }
6108 else
6109 {
6110 tree eoc;
6111
6112 /* If the ABI version is not at least two, and the last
6113 field was a bit-field, RLI may not be on a byte
6114 boundary. In particular, rli_size_unit_so_far might
6115 indicate the last complete byte, while rli_size_so_far
6116 indicates the total number of bits used. Therefore,
6117 rli_size_so_far, rather than rli_size_unit_so_far, is
6118 used to compute TYPE_SIZE_UNIT. */
6119 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6120 TYPE_SIZE_UNIT (base_t)
6121 = size_binop (MAX_EXPR,
6122 convert (sizetype,
6123 size_binop (CEIL_DIV_EXPR,
6124 rli_size_so_far (rli),
6125 bitsize_int (BITS_PER_UNIT))),
6126 eoc);
6127 TYPE_SIZE (base_t)
6128 = size_binop (MAX_EXPR,
6129 rli_size_so_far (rli),
6130 size_binop (MULT_EXPR,
6131 convert (bitsizetype, eoc),
6132 bitsize_int (BITS_PER_UNIT)));
6133 }
6134 TYPE_ALIGN (base_t) = rli->record_align;
6135 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6136
6137 /* Copy the fields from T. */
6138 next_field = &TYPE_FIELDS (base_t);
6139 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6140 if (TREE_CODE (field) == FIELD_DECL)
6141 {
6142 *next_field = build_decl (input_location,
6143 FIELD_DECL,
6144 DECL_NAME (field),
6145 TREE_TYPE (field));
6146 DECL_CONTEXT (*next_field) = base_t;
6147 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6148 DECL_FIELD_BIT_OFFSET (*next_field)
6149 = DECL_FIELD_BIT_OFFSET (field);
6150 DECL_SIZE (*next_field) = DECL_SIZE (field);
6151 DECL_MODE (*next_field) = DECL_MODE (field);
6152 next_field = &DECL_CHAIN (*next_field);
6153 }
6154
6155 /* Record the base version of the type. */
6156 CLASSTYPE_AS_BASE (t) = base_t;
6157 TYPE_CONTEXT (base_t) = t;
6158 }
6159 else
6160 CLASSTYPE_AS_BASE (t) = t;
6161
6162 /* Every empty class contains an empty class. */
6163 if (CLASSTYPE_EMPTY_P (t))
6164 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6165
6166 /* Set the TYPE_DECL for this type to contain the right
6167 value for DECL_OFFSET, so that we can use it as part
6168 of a COMPONENT_REF for multiple inheritance. */
6169 layout_decl (TYPE_MAIN_DECL (t), 0);
6170
6171 /* Now fix up any virtual base class types that we left lying
6172 around. We must get these done before we try to lay out the
6173 virtual function table. As a side-effect, this will remove the
6174 base subobject fields. */
6175 layout_virtual_bases (rli, empty_base_offsets);
6176
6177 /* Make sure that empty classes are reflected in RLI at this
6178 point. */
6179 include_empty_classes(rli);
6180
6181 /* Make sure not to create any structures with zero size. */
6182 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6183 place_field (rli,
6184 build_decl (input_location,
6185 FIELD_DECL, NULL_TREE, char_type_node));
6186
6187 /* If this is a non-POD, declaring it packed makes a difference to how it
6188 can be used as a field; don't let finalize_record_size undo it. */
6189 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6190 rli->packed_maybe_necessary = true;
6191
6192 /* Let the back end lay out the type. */
6193 finish_record_layout (rli, /*free_p=*/true);
6194
6195 /* Warn about bases that can't be talked about due to ambiguity. */
6196 warn_about_ambiguous_bases (t);
6197
6198 /* Now that we're done with layout, give the base fields the real types. */
6199 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6200 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6201 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6202
6203 /* Clean up. */
6204 splay_tree_delete (empty_base_offsets);
6205
6206 if (CLASSTYPE_EMPTY_P (t)
6207 && tree_int_cst_lt (sizeof_biggest_empty_class,
6208 TYPE_SIZE_UNIT (t)))
6209 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6210 }
6211
6212 /* Determine the "key method" for the class type indicated by TYPE,
6213 and set CLASSTYPE_KEY_METHOD accordingly. */
6214
6215 void
6216 determine_key_method (tree type)
6217 {
6218 tree method;
6219
6220 if (TYPE_FOR_JAVA (type)
6221 || processing_template_decl
6222 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6223 || CLASSTYPE_INTERFACE_KNOWN (type))
6224 return;
6225
6226 /* The key method is the first non-pure virtual function that is not
6227 inline at the point of class definition. On some targets the
6228 key function may not be inline; those targets should not call
6229 this function until the end of the translation unit. */
6230 for (method = TYPE_METHODS (type); method != NULL_TREE;
6231 method = DECL_CHAIN (method))
6232 if (DECL_VINDEX (method) != NULL_TREE
6233 && ! DECL_DECLARED_INLINE_P (method)
6234 && ! DECL_PURE_VIRTUAL_P (method))
6235 {
6236 CLASSTYPE_KEY_METHOD (type) = method;
6237 break;
6238 }
6239
6240 return;
6241 }
6242
6243
6244 /* Allocate and return an instance of struct sorted_fields_type with
6245 N fields. */
6246
6247 static struct sorted_fields_type *
6248 sorted_fields_type_new (int n)
6249 {
6250 struct sorted_fields_type *sft;
6251 sft = ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type)
6252 + n * sizeof (tree));
6253 sft->len = n;
6254
6255 return sft;
6256 }
6257
6258
6259 /* Perform processing required when the definition of T (a class type)
6260 is complete. */
6261
6262 void
6263 finish_struct_1 (tree t)
6264 {
6265 tree x;
6266 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6267 tree virtuals = NULL_TREE;
6268
6269 if (COMPLETE_TYPE_P (t))
6270 {
6271 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6272 error ("redefinition of %q#T", t);
6273 popclass ();
6274 return;
6275 }
6276
6277 /* If this type was previously laid out as a forward reference,
6278 make sure we lay it out again. */
6279 TYPE_SIZE (t) = NULL_TREE;
6280 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6281
6282 /* Make assumptions about the class; we'll reset the flags if
6283 necessary. */
6284 CLASSTYPE_EMPTY_P (t) = 1;
6285 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6286 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6287 CLASSTYPE_LITERAL_P (t) = true;
6288
6289 /* Do end-of-class semantic processing: checking the validity of the
6290 bases and members and add implicitly generated methods. */
6291 check_bases_and_members (t);
6292
6293 /* Find the key method. */
6294 if (TYPE_CONTAINS_VPTR_P (t))
6295 {
6296 /* The Itanium C++ ABI permits the key method to be chosen when
6297 the class is defined -- even though the key method so
6298 selected may later turn out to be an inline function. On
6299 some systems (such as ARM Symbian OS) the key method cannot
6300 be determined until the end of the translation unit. On such
6301 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6302 will cause the class to be added to KEYED_CLASSES. Then, in
6303 finish_file we will determine the key method. */
6304 if (targetm.cxx.key_method_may_be_inline ())
6305 determine_key_method (t);
6306
6307 /* If a polymorphic class has no key method, we may emit the vtable
6308 in every translation unit where the class definition appears. */
6309 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6310 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6311 }
6312
6313 /* Layout the class itself. */
6314 layout_class_type (t, &virtuals);
6315 if (CLASSTYPE_AS_BASE (t) != t)
6316 /* We use the base type for trivial assignments, and hence it
6317 needs a mode. */
6318 compute_record_mode (CLASSTYPE_AS_BASE (t));
6319
6320 virtuals = modify_all_vtables (t, nreverse (virtuals));
6321
6322 /* If necessary, create the primary vtable for this class. */
6323 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6324 {
6325 /* We must enter these virtuals into the table. */
6326 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6327 build_primary_vtable (NULL_TREE, t);
6328 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6329 /* Here we know enough to change the type of our virtual
6330 function table, but we will wait until later this function. */
6331 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6332
6333 /* If we're warning about ABI tags, check the types of the new
6334 virtual functions. */
6335 if (warn_abi_tag)
6336 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6337 check_abi_tags (t, TREE_VALUE (v));
6338 }
6339
6340 if (TYPE_CONTAINS_VPTR_P (t))
6341 {
6342 int vindex;
6343 tree fn;
6344
6345 if (BINFO_VTABLE (TYPE_BINFO (t)))
6346 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6347 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6348 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6349
6350 /* Add entries for virtual functions introduced by this class. */
6351 BINFO_VIRTUALS (TYPE_BINFO (t))
6352 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6353
6354 /* Set DECL_VINDEX for all functions declared in this class. */
6355 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6356 fn;
6357 fn = TREE_CHAIN (fn),
6358 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6359 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6360 {
6361 tree fndecl = BV_FN (fn);
6362
6363 if (DECL_THUNK_P (fndecl))
6364 /* A thunk. We should never be calling this entry directly
6365 from this vtable -- we'd use the entry for the non
6366 thunk base function. */
6367 DECL_VINDEX (fndecl) = NULL_TREE;
6368 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6369 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6370 }
6371 }
6372
6373 finish_struct_bits (t);
6374 set_method_tm_attributes (t);
6375
6376 /* Complete the rtl for any static member objects of the type we're
6377 working on. */
6378 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6379 if (VAR_P (x) && TREE_STATIC (x)
6380 && TREE_TYPE (x) != error_mark_node
6381 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6382 DECL_MODE (x) = TYPE_MODE (t);
6383
6384 /* Done with FIELDS...now decide whether to sort these for
6385 faster lookups later.
6386
6387 We use a small number because most searches fail (succeeding
6388 ultimately as the search bores through the inheritance
6389 hierarchy), and we want this failure to occur quickly. */
6390
6391 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6392
6393 /* Complain if one of the field types requires lower visibility. */
6394 constrain_class_visibility (t);
6395
6396 /* Make the rtl for any new vtables we have created, and unmark
6397 the base types we marked. */
6398 finish_vtbls (t);
6399
6400 /* Build the VTT for T. */
6401 build_vtt (t);
6402
6403 /* This warning does not make sense for Java classes, since they
6404 cannot have destructors. */
6405 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
6406 {
6407 tree dtor;
6408
6409 dtor = CLASSTYPE_DESTRUCTORS (t);
6410 if (/* An implicitly declared destructor is always public. And,
6411 if it were virtual, we would have created it by now. */
6412 !dtor
6413 || (!DECL_VINDEX (dtor)
6414 && (/* public non-virtual */
6415 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
6416 || (/* non-public non-virtual with friends */
6417 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
6418 && (CLASSTYPE_FRIEND_CLASSES (t)
6419 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
6420 warning (OPT_Wnon_virtual_dtor,
6421 "%q#T has virtual functions and accessible"
6422 " non-virtual destructor", t);
6423 }
6424
6425 complete_vars (t);
6426
6427 if (warn_overloaded_virtual)
6428 warn_hidden (t);
6429
6430 /* Class layout, assignment of virtual table slots, etc., is now
6431 complete. Give the back end a chance to tweak the visibility of
6432 the class or perform any other required target modifications. */
6433 targetm.cxx.adjust_class_at_definition (t);
6434
6435 maybe_suppress_debug_info (t);
6436
6437 dump_class_hierarchy (t);
6438
6439 /* Finish debugging output for this type. */
6440 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6441
6442 if (TYPE_TRANSPARENT_AGGR (t))
6443 {
6444 tree field = first_field (t);
6445 if (field == NULL_TREE || error_operand_p (field))
6446 {
6447 error ("type transparent %q#T does not have any fields", t);
6448 TYPE_TRANSPARENT_AGGR (t) = 0;
6449 }
6450 else if (DECL_ARTIFICIAL (field))
6451 {
6452 if (DECL_FIELD_IS_BASE (field))
6453 error ("type transparent class %qT has base classes", t);
6454 else
6455 {
6456 gcc_checking_assert (DECL_VIRTUAL_P (field));
6457 error ("type transparent class %qT has virtual functions", t);
6458 }
6459 TYPE_TRANSPARENT_AGGR (t) = 0;
6460 }
6461 else if (TYPE_MODE (t) != DECL_MODE (field))
6462 {
6463 error ("type transparent %q#T cannot be made transparent because "
6464 "the type of the first field has a different ABI from the "
6465 "class overall", t);
6466 TYPE_TRANSPARENT_AGGR (t) = 0;
6467 }
6468 }
6469 }
6470
6471 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6472 equal to THRESHOLD or greater than THRESHOLD. */
6473
6474 static void
6475 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6476 {
6477 int n_fields = count_fields (fields);
6478 if (n_fields >= threshold)
6479 {
6480 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6481 add_fields_to_record_type (fields, field_vec, 0);
6482 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6483 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6484 }
6485 }
6486
6487 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6488
6489 void
6490 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6491 {
6492 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6493 if (sorted_fields)
6494 {
6495 int i;
6496 int n_fields
6497 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6498 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6499
6500 for (i = 0; i < sorted_fields->len; ++i)
6501 field_vec->elts[i] = sorted_fields->elts[i];
6502
6503 add_enum_fields_to_record_type (enumtype, field_vec,
6504 sorted_fields->len);
6505 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6506 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6507 }
6508 }
6509
6510 /* When T was built up, the member declarations were added in reverse
6511 order. Rearrange them to declaration order. */
6512
6513 void
6514 unreverse_member_declarations (tree t)
6515 {
6516 tree next;
6517 tree prev;
6518 tree x;
6519
6520 /* The following lists are all in reverse order. Put them in
6521 declaration order now. */
6522 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6523 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6524
6525 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6526 reverse order, so we can't just use nreverse. */
6527 prev = NULL_TREE;
6528 for (x = TYPE_FIELDS (t);
6529 x && TREE_CODE (x) != TYPE_DECL;
6530 x = next)
6531 {
6532 next = DECL_CHAIN (x);
6533 DECL_CHAIN (x) = prev;
6534 prev = x;
6535 }
6536 if (prev)
6537 {
6538 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6539 if (prev)
6540 TYPE_FIELDS (t) = prev;
6541 }
6542 }
6543
6544 tree
6545 finish_struct (tree t, tree attributes)
6546 {
6547 location_t saved_loc = input_location;
6548
6549 /* Now that we've got all the field declarations, reverse everything
6550 as necessary. */
6551 unreverse_member_declarations (t);
6552
6553 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6554
6555 /* Nadger the current location so that diagnostics point to the start of
6556 the struct, not the end. */
6557 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6558
6559 if (processing_template_decl)
6560 {
6561 tree x;
6562
6563 finish_struct_methods (t);
6564 TYPE_SIZE (t) = bitsize_zero_node;
6565 TYPE_SIZE_UNIT (t) = size_zero_node;
6566
6567 /* We need to emit an error message if this type was used as a parameter
6568 and it is an abstract type, even if it is a template. We construct
6569 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6570 account and we call complete_vars with this type, which will check
6571 the PARM_DECLS. Note that while the type is being defined,
6572 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6573 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6574 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6575 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6576 if (DECL_PURE_VIRTUAL_P (x))
6577 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6578 complete_vars (t);
6579 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6580 an enclosing scope is a template class, so that this function be
6581 found by lookup_fnfields_1 when the using declaration is not
6582 instantiated yet. */
6583 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6584 if (TREE_CODE (x) == USING_DECL)
6585 {
6586 tree fn = strip_using_decl (x);
6587 if (is_overloaded_fn (fn))
6588 for (; fn; fn = OVL_NEXT (fn))
6589 add_method (t, OVL_CURRENT (fn), x);
6590 }
6591
6592 /* Remember current #pragma pack value. */
6593 TYPE_PRECISION (t) = maximum_field_alignment;
6594
6595 /* Fix up any variants we've already built. */
6596 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6597 {
6598 TYPE_SIZE (x) = TYPE_SIZE (t);
6599 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6600 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6601 TYPE_METHODS (x) = TYPE_METHODS (t);
6602 }
6603 }
6604 else
6605 finish_struct_1 (t);
6606
6607 input_location = saved_loc;
6608
6609 TYPE_BEING_DEFINED (t) = 0;
6610
6611 if (current_class_type)
6612 popclass ();
6613 else
6614 error ("trying to finish struct, but kicked out due to previous parse errors");
6615
6616 if (processing_template_decl && at_function_scope_p ()
6617 /* Lambdas are defined by the LAMBDA_EXPR. */
6618 && !LAMBDA_TYPE_P (t))
6619 add_stmt (build_min (TAG_DEFN, t));
6620
6621 return t;
6622 }
6623 \f
6624 /* Hash table to avoid endless recursion when handling references. */
6625 static hash_table <pointer_hash <tree_node> > fixed_type_or_null_ref_ht;
6626
6627 /* Return the dynamic type of INSTANCE, if known.
6628 Used to determine whether the virtual function table is needed
6629 or not.
6630
6631 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6632 of our knowledge of its type. *NONNULL should be initialized
6633 before this function is called. */
6634
6635 static tree
6636 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6637 {
6638 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6639
6640 switch (TREE_CODE (instance))
6641 {
6642 case INDIRECT_REF:
6643 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6644 return NULL_TREE;
6645 else
6646 return RECUR (TREE_OPERAND (instance, 0));
6647
6648 case CALL_EXPR:
6649 /* This is a call to a constructor, hence it's never zero. */
6650 if (TREE_HAS_CONSTRUCTOR (instance))
6651 {
6652 if (nonnull)
6653 *nonnull = 1;
6654 return TREE_TYPE (instance);
6655 }
6656 return NULL_TREE;
6657
6658 case SAVE_EXPR:
6659 /* This is a call to a constructor, hence it's never zero. */
6660 if (TREE_HAS_CONSTRUCTOR (instance))
6661 {
6662 if (nonnull)
6663 *nonnull = 1;
6664 return TREE_TYPE (instance);
6665 }
6666 return RECUR (TREE_OPERAND (instance, 0));
6667
6668 case POINTER_PLUS_EXPR:
6669 case PLUS_EXPR:
6670 case MINUS_EXPR:
6671 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6672 return RECUR (TREE_OPERAND (instance, 0));
6673 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6674 /* Propagate nonnull. */
6675 return RECUR (TREE_OPERAND (instance, 0));
6676
6677 return NULL_TREE;
6678
6679 CASE_CONVERT:
6680 return RECUR (TREE_OPERAND (instance, 0));
6681
6682 case ADDR_EXPR:
6683 instance = TREE_OPERAND (instance, 0);
6684 if (nonnull)
6685 {
6686 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6687 with a real object -- given &p->f, p can still be null. */
6688 tree t = get_base_address (instance);
6689 /* ??? Probably should check DECL_WEAK here. */
6690 if (t && DECL_P (t))
6691 *nonnull = 1;
6692 }
6693 return RECUR (instance);
6694
6695 case COMPONENT_REF:
6696 /* If this component is really a base class reference, then the field
6697 itself isn't definitive. */
6698 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6699 return RECUR (TREE_OPERAND (instance, 0));
6700 return RECUR (TREE_OPERAND (instance, 1));
6701
6702 case VAR_DECL:
6703 case FIELD_DECL:
6704 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6705 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6706 {
6707 if (nonnull)
6708 *nonnull = 1;
6709 return TREE_TYPE (TREE_TYPE (instance));
6710 }
6711 /* fall through... */
6712 case TARGET_EXPR:
6713 case PARM_DECL:
6714 case RESULT_DECL:
6715 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6716 {
6717 if (nonnull)
6718 *nonnull = 1;
6719 return TREE_TYPE (instance);
6720 }
6721 else if (instance == current_class_ptr)
6722 {
6723 if (nonnull)
6724 *nonnull = 1;
6725
6726 /* if we're in a ctor or dtor, we know our type. If
6727 current_class_ptr is set but we aren't in a function, we're in
6728 an NSDMI (and therefore a constructor). */
6729 if (current_scope () != current_function_decl
6730 || (DECL_LANG_SPECIFIC (current_function_decl)
6731 && (DECL_CONSTRUCTOR_P (current_function_decl)
6732 || DECL_DESTRUCTOR_P (current_function_decl))))
6733 {
6734 if (cdtorp)
6735 *cdtorp = 1;
6736 return TREE_TYPE (TREE_TYPE (instance));
6737 }
6738 }
6739 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6740 {
6741 /* We only need one hash table because it is always left empty. */
6742 if (!fixed_type_or_null_ref_ht.is_created ())
6743 fixed_type_or_null_ref_ht.create (37);
6744
6745 /* Reference variables should be references to objects. */
6746 if (nonnull)
6747 *nonnull = 1;
6748
6749 /* Enter the INSTANCE in a table to prevent recursion; a
6750 variable's initializer may refer to the variable
6751 itself. */
6752 if (VAR_P (instance)
6753 && DECL_INITIAL (instance)
6754 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6755 && !fixed_type_or_null_ref_ht.find (instance))
6756 {
6757 tree type;
6758 tree_node **slot;
6759
6760 slot = fixed_type_or_null_ref_ht.find_slot (instance, INSERT);
6761 *slot = instance;
6762 type = RECUR (DECL_INITIAL (instance));
6763 fixed_type_or_null_ref_ht.remove_elt (instance);
6764
6765 return type;
6766 }
6767 }
6768 return NULL_TREE;
6769
6770 default:
6771 return NULL_TREE;
6772 }
6773 #undef RECUR
6774 }
6775
6776 /* Return nonzero if the dynamic type of INSTANCE is known, and
6777 equivalent to the static type. We also handle the case where
6778 INSTANCE is really a pointer. Return negative if this is a
6779 ctor/dtor. There the dynamic type is known, but this might not be
6780 the most derived base of the original object, and hence virtual
6781 bases may not be layed out according to this type.
6782
6783 Used to determine whether the virtual function table is needed
6784 or not.
6785
6786 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6787 of our knowledge of its type. *NONNULL should be initialized
6788 before this function is called. */
6789
6790 int
6791 resolves_to_fixed_type_p (tree instance, int* nonnull)
6792 {
6793 tree t = TREE_TYPE (instance);
6794 int cdtorp = 0;
6795 tree fixed;
6796
6797 /* processing_template_decl can be false in a template if we're in
6798 fold_non_dependent_expr, but we still want to suppress this check. */
6799 if (in_template_function ())
6800 {
6801 /* In a template we only care about the type of the result. */
6802 if (nonnull)
6803 *nonnull = true;
6804 return true;
6805 }
6806
6807 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6808 if (fixed == NULL_TREE)
6809 return 0;
6810 if (POINTER_TYPE_P (t))
6811 t = TREE_TYPE (t);
6812 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6813 return 0;
6814 return cdtorp ? -1 : 1;
6815 }
6816
6817 \f
6818 void
6819 init_class_processing (void)
6820 {
6821 current_class_depth = 0;
6822 current_class_stack_size = 10;
6823 current_class_stack
6824 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6825 vec_alloc (local_classes, 8);
6826 sizeof_biggest_empty_class = size_zero_node;
6827
6828 ridpointers[(int) RID_PUBLIC] = access_public_node;
6829 ridpointers[(int) RID_PRIVATE] = access_private_node;
6830 ridpointers[(int) RID_PROTECTED] = access_protected_node;
6831 }
6832
6833 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
6834
6835 static void
6836 restore_class_cache (void)
6837 {
6838 tree type;
6839
6840 /* We are re-entering the same class we just left, so we don't
6841 have to search the whole inheritance matrix to find all the
6842 decls to bind again. Instead, we install the cached
6843 class_shadowed list and walk through it binding names. */
6844 push_binding_level (previous_class_level);
6845 class_binding_level = previous_class_level;
6846 /* Restore IDENTIFIER_TYPE_VALUE. */
6847 for (type = class_binding_level->type_shadowed;
6848 type;
6849 type = TREE_CHAIN (type))
6850 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
6851 }
6852
6853 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
6854 appropriate for TYPE.
6855
6856 So that we may avoid calls to lookup_name, we cache the _TYPE
6857 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
6858
6859 For multiple inheritance, we perform a two-pass depth-first search
6860 of the type lattice. */
6861
6862 void
6863 pushclass (tree type)
6864 {
6865 class_stack_node_t csn;
6866
6867 type = TYPE_MAIN_VARIANT (type);
6868
6869 /* Make sure there is enough room for the new entry on the stack. */
6870 if (current_class_depth + 1 >= current_class_stack_size)
6871 {
6872 current_class_stack_size *= 2;
6873 current_class_stack
6874 = XRESIZEVEC (struct class_stack_node, current_class_stack,
6875 current_class_stack_size);
6876 }
6877
6878 /* Insert a new entry on the class stack. */
6879 csn = current_class_stack + current_class_depth;
6880 csn->name = current_class_name;
6881 csn->type = current_class_type;
6882 csn->access = current_access_specifier;
6883 csn->names_used = 0;
6884 csn->hidden = 0;
6885 current_class_depth++;
6886
6887 /* Now set up the new type. */
6888 current_class_name = TYPE_NAME (type);
6889 if (TREE_CODE (current_class_name) == TYPE_DECL)
6890 current_class_name = DECL_NAME (current_class_name);
6891 current_class_type = type;
6892
6893 /* By default, things in classes are private, while things in
6894 structures or unions are public. */
6895 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
6896 ? access_private_node
6897 : access_public_node);
6898
6899 if (previous_class_level
6900 && type != previous_class_level->this_entity
6901 && current_class_depth == 1)
6902 {
6903 /* Forcibly remove any old class remnants. */
6904 invalidate_class_lookup_cache ();
6905 }
6906
6907 if (!previous_class_level
6908 || type != previous_class_level->this_entity
6909 || current_class_depth > 1)
6910 pushlevel_class ();
6911 else
6912 restore_class_cache ();
6913 }
6914
6915 /* When we exit a toplevel class scope, we save its binding level so
6916 that we can restore it quickly. Here, we've entered some other
6917 class, so we must invalidate our cache. */
6918
6919 void
6920 invalidate_class_lookup_cache (void)
6921 {
6922 previous_class_level = NULL;
6923 }
6924
6925 /* Get out of the current class scope. If we were in a class scope
6926 previously, that is the one popped to. */
6927
6928 void
6929 popclass (void)
6930 {
6931 poplevel_class ();
6932
6933 current_class_depth--;
6934 current_class_name = current_class_stack[current_class_depth].name;
6935 current_class_type = current_class_stack[current_class_depth].type;
6936 current_access_specifier = current_class_stack[current_class_depth].access;
6937 if (current_class_stack[current_class_depth].names_used)
6938 splay_tree_delete (current_class_stack[current_class_depth].names_used);
6939 }
6940
6941 /* Mark the top of the class stack as hidden. */
6942
6943 void
6944 push_class_stack (void)
6945 {
6946 if (current_class_depth)
6947 ++current_class_stack[current_class_depth - 1].hidden;
6948 }
6949
6950 /* Mark the top of the class stack as un-hidden. */
6951
6952 void
6953 pop_class_stack (void)
6954 {
6955 if (current_class_depth)
6956 --current_class_stack[current_class_depth - 1].hidden;
6957 }
6958
6959 /* Returns 1 if the class type currently being defined is either T or
6960 a nested type of T. */
6961
6962 bool
6963 currently_open_class (tree t)
6964 {
6965 int i;
6966
6967 if (!CLASS_TYPE_P (t))
6968 return false;
6969
6970 t = TYPE_MAIN_VARIANT (t);
6971
6972 /* We start looking from 1 because entry 0 is from global scope,
6973 and has no type. */
6974 for (i = current_class_depth; i > 0; --i)
6975 {
6976 tree c;
6977 if (i == current_class_depth)
6978 c = current_class_type;
6979 else
6980 {
6981 if (current_class_stack[i].hidden)
6982 break;
6983 c = current_class_stack[i].type;
6984 }
6985 if (!c)
6986 continue;
6987 if (same_type_p (c, t))
6988 return true;
6989 }
6990 return false;
6991 }
6992
6993 /* If either current_class_type or one of its enclosing classes are derived
6994 from T, return the appropriate type. Used to determine how we found
6995 something via unqualified lookup. */
6996
6997 tree
6998 currently_open_derived_class (tree t)
6999 {
7000 int i;
7001
7002 /* The bases of a dependent type are unknown. */
7003 if (dependent_type_p (t))
7004 return NULL_TREE;
7005
7006 if (!current_class_type)
7007 return NULL_TREE;
7008
7009 if (DERIVED_FROM_P (t, current_class_type))
7010 return current_class_type;
7011
7012 for (i = current_class_depth - 1; i > 0; --i)
7013 {
7014 if (current_class_stack[i].hidden)
7015 break;
7016 if (DERIVED_FROM_P (t, current_class_stack[i].type))
7017 return current_class_stack[i].type;
7018 }
7019
7020 return NULL_TREE;
7021 }
7022
7023 /* Returns the innermost class type which is not a lambda closure type. */
7024
7025 tree
7026 current_nonlambda_class_type (void)
7027 {
7028 int i;
7029
7030 /* We start looking from 1 because entry 0 is from global scope,
7031 and has no type. */
7032 for (i = current_class_depth; i > 0; --i)
7033 {
7034 tree c;
7035 if (i == current_class_depth)
7036 c = current_class_type;
7037 else
7038 {
7039 if (current_class_stack[i].hidden)
7040 break;
7041 c = current_class_stack[i].type;
7042 }
7043 if (!c)
7044 continue;
7045 if (!LAMBDA_TYPE_P (c))
7046 return c;
7047 }
7048 return NULL_TREE;
7049 }
7050
7051 /* When entering a class scope, all enclosing class scopes' names with
7052 static meaning (static variables, static functions, types and
7053 enumerators) have to be visible. This recursive function calls
7054 pushclass for all enclosing class contexts until global or a local
7055 scope is reached. TYPE is the enclosed class. */
7056
7057 void
7058 push_nested_class (tree type)
7059 {
7060 /* A namespace might be passed in error cases, like A::B:C. */
7061 if (type == NULL_TREE
7062 || !CLASS_TYPE_P (type))
7063 return;
7064
7065 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7066
7067 pushclass (type);
7068 }
7069
7070 /* Undoes a push_nested_class call. */
7071
7072 void
7073 pop_nested_class (void)
7074 {
7075 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7076
7077 popclass ();
7078 if (context && CLASS_TYPE_P (context))
7079 pop_nested_class ();
7080 }
7081
7082 /* Returns the number of extern "LANG" blocks we are nested within. */
7083
7084 int
7085 current_lang_depth (void)
7086 {
7087 return vec_safe_length (current_lang_base);
7088 }
7089
7090 /* Set global variables CURRENT_LANG_NAME to appropriate value
7091 so that behavior of name-mangling machinery is correct. */
7092
7093 void
7094 push_lang_context (tree name)
7095 {
7096 vec_safe_push (current_lang_base, current_lang_name);
7097
7098 if (name == lang_name_cplusplus)
7099 {
7100 current_lang_name = name;
7101 }
7102 else if (name == lang_name_java)
7103 {
7104 current_lang_name = name;
7105 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7106 (See record_builtin_java_type in decl.c.) However, that causes
7107 incorrect debug entries if these types are actually used.
7108 So we re-enable debug output after extern "Java". */
7109 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7110 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7111 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7112 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7113 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7114 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7115 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7116 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7117 }
7118 else if (name == lang_name_c)
7119 {
7120 current_lang_name = name;
7121 }
7122 else
7123 error ("language string %<\"%E\"%> not recognized", name);
7124 }
7125
7126 /* Get out of the current language scope. */
7127
7128 void
7129 pop_lang_context (void)
7130 {
7131 current_lang_name = current_lang_base->pop ();
7132 }
7133 \f
7134 /* Type instantiation routines. */
7135
7136 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7137 matches the TARGET_TYPE. If there is no satisfactory match, return
7138 error_mark_node, and issue an error & warning messages under
7139 control of FLAGS. Permit pointers to member function if FLAGS
7140 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7141 a template-id, and EXPLICIT_TARGS are the explicitly provided
7142 template arguments.
7143
7144 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7145 is the base path used to reference those member functions. If
7146 the address is resolved to a member function, access checks will be
7147 performed and errors issued if appropriate. */
7148
7149 static tree
7150 resolve_address_of_overloaded_function (tree target_type,
7151 tree overload,
7152 tsubst_flags_t flags,
7153 bool template_only,
7154 tree explicit_targs,
7155 tree access_path)
7156 {
7157 /* Here's what the standard says:
7158
7159 [over.over]
7160
7161 If the name is a function template, template argument deduction
7162 is done, and if the argument deduction succeeds, the deduced
7163 arguments are used to generate a single template function, which
7164 is added to the set of overloaded functions considered.
7165
7166 Non-member functions and static member functions match targets of
7167 type "pointer-to-function" or "reference-to-function." Nonstatic
7168 member functions match targets of type "pointer-to-member
7169 function;" the function type of the pointer to member is used to
7170 select the member function from the set of overloaded member
7171 functions. If a nonstatic member function is selected, the
7172 reference to the overloaded function name is required to have the
7173 form of a pointer to member as described in 5.3.1.
7174
7175 If more than one function is selected, any template functions in
7176 the set are eliminated if the set also contains a non-template
7177 function, and any given template function is eliminated if the
7178 set contains a second template function that is more specialized
7179 than the first according to the partial ordering rules 14.5.5.2.
7180 After such eliminations, if any, there shall remain exactly one
7181 selected function. */
7182
7183 int is_ptrmem = 0;
7184 /* We store the matches in a TREE_LIST rooted here. The functions
7185 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7186 interoperability with most_specialized_instantiation. */
7187 tree matches = NULL_TREE;
7188 tree fn;
7189 tree target_fn_type;
7190
7191 /* By the time we get here, we should be seeing only real
7192 pointer-to-member types, not the internal POINTER_TYPE to
7193 METHOD_TYPE representation. */
7194 gcc_assert (!TYPE_PTR_P (target_type)
7195 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7196
7197 gcc_assert (is_overloaded_fn (overload));
7198
7199 /* Check that the TARGET_TYPE is reasonable. */
7200 if (TYPE_PTRFN_P (target_type)
7201 || TYPE_REFFN_P (target_type))
7202 /* This is OK. */;
7203 else if (TYPE_PTRMEMFUNC_P (target_type))
7204 /* This is OK, too. */
7205 is_ptrmem = 1;
7206 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7207 /* This is OK, too. This comes from a conversion to reference
7208 type. */
7209 target_type = build_reference_type (target_type);
7210 else
7211 {
7212 if (flags & tf_error)
7213 error ("cannot resolve overloaded function %qD based on"
7214 " conversion to type %qT",
7215 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7216 return error_mark_node;
7217 }
7218
7219 /* Non-member functions and static member functions match targets of type
7220 "pointer-to-function" or "reference-to-function." Nonstatic member
7221 functions match targets of type "pointer-to-member-function;" the
7222 function type of the pointer to member is used to select the member
7223 function from the set of overloaded member functions.
7224
7225 So figure out the FUNCTION_TYPE that we want to match against. */
7226 target_fn_type = static_fn_type (target_type);
7227
7228 /* If we can find a non-template function that matches, we can just
7229 use it. There's no point in generating template instantiations
7230 if we're just going to throw them out anyhow. But, of course, we
7231 can only do this when we don't *need* a template function. */
7232 if (!template_only)
7233 {
7234 tree fns;
7235
7236 for (fns = overload; fns; fns = OVL_NEXT (fns))
7237 {
7238 tree fn = OVL_CURRENT (fns);
7239
7240 if (TREE_CODE (fn) == TEMPLATE_DECL)
7241 /* We're not looking for templates just yet. */
7242 continue;
7243
7244 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7245 != is_ptrmem)
7246 /* We're looking for a non-static member, and this isn't
7247 one, or vice versa. */
7248 continue;
7249
7250 /* Ignore functions which haven't been explicitly
7251 declared. */
7252 if (DECL_ANTICIPATED (fn))
7253 continue;
7254
7255 /* See if there's a match. */
7256 if (same_type_p (target_fn_type, static_fn_type (fn)))
7257 matches = tree_cons (fn, NULL_TREE, matches);
7258 }
7259 }
7260
7261 /* Now, if we've already got a match (or matches), there's no need
7262 to proceed to the template functions. But, if we don't have a
7263 match we need to look at them, too. */
7264 if (!matches)
7265 {
7266 tree target_arg_types;
7267 tree target_ret_type;
7268 tree fns;
7269 tree *args;
7270 unsigned int nargs, ia;
7271 tree arg;
7272
7273 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7274 target_ret_type = TREE_TYPE (target_fn_type);
7275
7276 nargs = list_length (target_arg_types);
7277 args = XALLOCAVEC (tree, nargs);
7278 for (arg = target_arg_types, ia = 0;
7279 arg != NULL_TREE && arg != void_list_node;
7280 arg = TREE_CHAIN (arg), ++ia)
7281 args[ia] = TREE_VALUE (arg);
7282 nargs = ia;
7283
7284 for (fns = overload; fns; fns = OVL_NEXT (fns))
7285 {
7286 tree fn = OVL_CURRENT (fns);
7287 tree instantiation;
7288 tree targs;
7289
7290 if (TREE_CODE (fn) != TEMPLATE_DECL)
7291 /* We're only looking for templates. */
7292 continue;
7293
7294 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7295 != is_ptrmem)
7296 /* We're not looking for a non-static member, and this is
7297 one, or vice versa. */
7298 continue;
7299
7300 tree ret = target_ret_type;
7301
7302 /* If the template has a deduced return type, don't expose it to
7303 template argument deduction. */
7304 if (undeduced_auto_decl (fn))
7305 ret = NULL_TREE;
7306
7307 /* Try to do argument deduction. */
7308 targs = make_tree_vec (DECL_NTPARMS (fn));
7309 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7310 nargs, ret,
7311 DEDUCE_EXACT, LOOKUP_NORMAL,
7312 false, false);
7313 if (instantiation == error_mark_node)
7314 /* Instantiation failed. */
7315 continue;
7316
7317 /* And now force instantiation to do return type deduction. */
7318 if (undeduced_auto_decl (instantiation))
7319 {
7320 ++function_depth;
7321 instantiate_decl (instantiation, /*defer*/false, /*class*/false);
7322 --function_depth;
7323
7324 require_deduced_type (instantiation);
7325 }
7326
7327 /* See if there's a match. */
7328 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7329 matches = tree_cons (instantiation, fn, matches);
7330
7331 ggc_free (targs);
7332 }
7333
7334 /* Now, remove all but the most specialized of the matches. */
7335 if (matches)
7336 {
7337 tree match = most_specialized_instantiation (matches);
7338
7339 if (match != error_mark_node)
7340 matches = tree_cons (TREE_PURPOSE (match),
7341 NULL_TREE,
7342 NULL_TREE);
7343 }
7344 }
7345
7346 /* Now we should have exactly one function in MATCHES. */
7347 if (matches == NULL_TREE)
7348 {
7349 /* There were *no* matches. */
7350 if (flags & tf_error)
7351 {
7352 error ("no matches converting function %qD to type %q#T",
7353 DECL_NAME (OVL_CURRENT (overload)),
7354 target_type);
7355
7356 print_candidates (overload);
7357 }
7358 return error_mark_node;
7359 }
7360 else if (TREE_CHAIN (matches))
7361 {
7362 /* There were too many matches. First check if they're all
7363 the same function. */
7364 tree match = NULL_TREE;
7365
7366 fn = TREE_PURPOSE (matches);
7367
7368 /* For multi-versioned functions, more than one match is just fine and
7369 decls_match will return false as they are different. */
7370 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7371 if (!decls_match (fn, TREE_PURPOSE (match))
7372 && !targetm.target_option.function_versions
7373 (fn, TREE_PURPOSE (match)))
7374 break;
7375
7376 if (match)
7377 {
7378 if (flags & tf_error)
7379 {
7380 error ("converting overloaded function %qD to type %q#T is ambiguous",
7381 DECL_NAME (OVL_FUNCTION (overload)),
7382 target_type);
7383
7384 /* Since print_candidates expects the functions in the
7385 TREE_VALUE slot, we flip them here. */
7386 for (match = matches; match; match = TREE_CHAIN (match))
7387 TREE_VALUE (match) = TREE_PURPOSE (match);
7388
7389 print_candidates (matches);
7390 }
7391
7392 return error_mark_node;
7393 }
7394 }
7395
7396 /* Good, exactly one match. Now, convert it to the correct type. */
7397 fn = TREE_PURPOSE (matches);
7398
7399 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7400 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7401 {
7402 static int explained;
7403
7404 if (!(flags & tf_error))
7405 return error_mark_node;
7406
7407 permerror (input_location, "assuming pointer to member %qD", fn);
7408 if (!explained)
7409 {
7410 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7411 explained = 1;
7412 }
7413 }
7414
7415 /* If a pointer to a function that is multi-versioned is requested, the
7416 pointer to the dispatcher function is returned instead. This works
7417 well because indirectly calling the function will dispatch the right
7418 function version at run-time. */
7419 if (DECL_FUNCTION_VERSIONED (fn))
7420 {
7421 fn = get_function_version_dispatcher (fn);
7422 if (fn == NULL)
7423 return error_mark_node;
7424 /* Mark all the versions corresponding to the dispatcher as used. */
7425 if (!(flags & tf_conv))
7426 mark_versions_used (fn);
7427 }
7428
7429 /* If we're doing overload resolution purely for the purpose of
7430 determining conversion sequences, we should not consider the
7431 function used. If this conversion sequence is selected, the
7432 function will be marked as used at this point. */
7433 if (!(flags & tf_conv))
7434 {
7435 /* Make =delete work with SFINAE. */
7436 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7437 return error_mark_node;
7438
7439 mark_used (fn);
7440 }
7441
7442 /* We could not check access to member functions when this
7443 expression was originally created since we did not know at that
7444 time to which function the expression referred. */
7445 if (DECL_FUNCTION_MEMBER_P (fn))
7446 {
7447 gcc_assert (access_path);
7448 perform_or_defer_access_check (access_path, fn, fn, flags);
7449 }
7450
7451 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7452 return cp_build_addr_expr (fn, flags);
7453 else
7454 {
7455 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7456 will mark the function as addressed, but here we must do it
7457 explicitly. */
7458 cxx_mark_addressable (fn);
7459
7460 return fn;
7461 }
7462 }
7463
7464 /* This function will instantiate the type of the expression given in
7465 RHS to match the type of LHSTYPE. If errors exist, then return
7466 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7467 we complain on errors. If we are not complaining, never modify rhs,
7468 as overload resolution wants to try many possible instantiations, in
7469 the hope that at least one will work.
7470
7471 For non-recursive calls, LHSTYPE should be a function, pointer to
7472 function, or a pointer to member function. */
7473
7474 tree
7475 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7476 {
7477 tsubst_flags_t flags_in = flags;
7478 tree access_path = NULL_TREE;
7479
7480 flags &= ~tf_ptrmem_ok;
7481
7482 if (lhstype == unknown_type_node)
7483 {
7484 if (flags & tf_error)
7485 error ("not enough type information");
7486 return error_mark_node;
7487 }
7488
7489 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7490 {
7491 tree fntype = non_reference (lhstype);
7492 if (same_type_p (fntype, TREE_TYPE (rhs)))
7493 return rhs;
7494 if (flag_ms_extensions
7495 && TYPE_PTRMEMFUNC_P (fntype)
7496 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7497 /* Microsoft allows `A::f' to be resolved to a
7498 pointer-to-member. */
7499 ;
7500 else
7501 {
7502 if (flags & tf_error)
7503 error ("cannot convert %qE from type %qT to type %qT",
7504 rhs, TREE_TYPE (rhs), fntype);
7505 return error_mark_node;
7506 }
7507 }
7508
7509 if (BASELINK_P (rhs))
7510 {
7511 access_path = BASELINK_ACCESS_BINFO (rhs);
7512 rhs = BASELINK_FUNCTIONS (rhs);
7513 }
7514
7515 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7516 deduce any type information. */
7517 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7518 {
7519 if (flags & tf_error)
7520 error ("not enough type information");
7521 return error_mark_node;
7522 }
7523
7524 /* There only a few kinds of expressions that may have a type
7525 dependent on overload resolution. */
7526 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7527 || TREE_CODE (rhs) == COMPONENT_REF
7528 || really_overloaded_fn (rhs)
7529 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7530
7531 /* This should really only be used when attempting to distinguish
7532 what sort of a pointer to function we have. For now, any
7533 arithmetic operation which is not supported on pointers
7534 is rejected as an error. */
7535
7536 switch (TREE_CODE (rhs))
7537 {
7538 case COMPONENT_REF:
7539 {
7540 tree member = TREE_OPERAND (rhs, 1);
7541
7542 member = instantiate_type (lhstype, member, flags);
7543 if (member != error_mark_node
7544 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7545 /* Do not lose object's side effects. */
7546 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7547 TREE_OPERAND (rhs, 0), member);
7548 return member;
7549 }
7550
7551 case OFFSET_REF:
7552 rhs = TREE_OPERAND (rhs, 1);
7553 if (BASELINK_P (rhs))
7554 return instantiate_type (lhstype, rhs, flags_in);
7555
7556 /* This can happen if we are forming a pointer-to-member for a
7557 member template. */
7558 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7559
7560 /* Fall through. */
7561
7562 case TEMPLATE_ID_EXPR:
7563 {
7564 tree fns = TREE_OPERAND (rhs, 0);
7565 tree args = TREE_OPERAND (rhs, 1);
7566
7567 return
7568 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7569 /*template_only=*/true,
7570 args, access_path);
7571 }
7572
7573 case OVERLOAD:
7574 case FUNCTION_DECL:
7575 return
7576 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7577 /*template_only=*/false,
7578 /*explicit_targs=*/NULL_TREE,
7579 access_path);
7580
7581 case ADDR_EXPR:
7582 {
7583 if (PTRMEM_OK_P (rhs))
7584 flags |= tf_ptrmem_ok;
7585
7586 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7587 }
7588
7589 case ERROR_MARK:
7590 return error_mark_node;
7591
7592 default:
7593 gcc_unreachable ();
7594 }
7595 return error_mark_node;
7596 }
7597 \f
7598 /* Return the name of the virtual function pointer field
7599 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7600 this may have to look back through base types to find the
7601 ultimate field name. (For single inheritance, these could
7602 all be the same name. Who knows for multiple inheritance). */
7603
7604 static tree
7605 get_vfield_name (tree type)
7606 {
7607 tree binfo, base_binfo;
7608 char *buf;
7609
7610 for (binfo = TYPE_BINFO (type);
7611 BINFO_N_BASE_BINFOS (binfo);
7612 binfo = base_binfo)
7613 {
7614 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7615
7616 if (BINFO_VIRTUAL_P (base_binfo)
7617 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7618 break;
7619 }
7620
7621 type = BINFO_TYPE (binfo);
7622 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7623 + TYPE_NAME_LENGTH (type) + 2);
7624 sprintf (buf, VFIELD_NAME_FORMAT,
7625 IDENTIFIER_POINTER (constructor_name (type)));
7626 return get_identifier (buf);
7627 }
7628
7629 void
7630 print_class_statistics (void)
7631 {
7632 if (! GATHER_STATISTICS)
7633 return;
7634
7635 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7636 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7637 if (n_vtables)
7638 {
7639 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7640 n_vtables, n_vtable_searches);
7641 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7642 n_vtable_entries, n_vtable_elems);
7643 }
7644 }
7645
7646 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7647 according to [class]:
7648 The class-name is also inserted
7649 into the scope of the class itself. For purposes of access checking,
7650 the inserted class name is treated as if it were a public member name. */
7651
7652 void
7653 build_self_reference (void)
7654 {
7655 tree name = constructor_name (current_class_type);
7656 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7657 tree saved_cas;
7658
7659 DECL_NONLOCAL (value) = 1;
7660 DECL_CONTEXT (value) = current_class_type;
7661 DECL_ARTIFICIAL (value) = 1;
7662 SET_DECL_SELF_REFERENCE_P (value);
7663 set_underlying_type (value);
7664
7665 if (processing_template_decl)
7666 value = push_template_decl (value);
7667
7668 saved_cas = current_access_specifier;
7669 current_access_specifier = access_public_node;
7670 finish_member_declaration (value);
7671 current_access_specifier = saved_cas;
7672 }
7673
7674 /* Returns 1 if TYPE contains only padding bytes. */
7675
7676 int
7677 is_empty_class (tree type)
7678 {
7679 if (type == error_mark_node)
7680 return 0;
7681
7682 if (! CLASS_TYPE_P (type))
7683 return 0;
7684
7685 /* In G++ 3.2, whether or not a class was empty was determined by
7686 looking at its size. */
7687 if (abi_version_at_least (2))
7688 return CLASSTYPE_EMPTY_P (type);
7689 else
7690 return integer_zerop (CLASSTYPE_SIZE (type));
7691 }
7692
7693 /* Returns true if TYPE contains an empty class. */
7694
7695 static bool
7696 contains_empty_class_p (tree type)
7697 {
7698 if (is_empty_class (type))
7699 return true;
7700 if (CLASS_TYPE_P (type))
7701 {
7702 tree field;
7703 tree binfo;
7704 tree base_binfo;
7705 int i;
7706
7707 for (binfo = TYPE_BINFO (type), i = 0;
7708 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7709 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
7710 return true;
7711 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
7712 if (TREE_CODE (field) == FIELD_DECL
7713 && !DECL_ARTIFICIAL (field)
7714 && is_empty_class (TREE_TYPE (field)))
7715 return true;
7716 }
7717 else if (TREE_CODE (type) == ARRAY_TYPE)
7718 return contains_empty_class_p (TREE_TYPE (type));
7719 return false;
7720 }
7721
7722 /* Returns true if TYPE contains no actual data, just various
7723 possible combinations of empty classes and possibly a vptr. */
7724
7725 bool
7726 is_really_empty_class (tree type)
7727 {
7728 if (CLASS_TYPE_P (type))
7729 {
7730 tree field;
7731 tree binfo;
7732 tree base_binfo;
7733 int i;
7734
7735 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7736 out, but we'd like to be able to check this before then. */
7737 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7738 return true;
7739
7740 for (binfo = TYPE_BINFO (type), i = 0;
7741 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7742 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7743 return false;
7744 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7745 if (TREE_CODE (field) == FIELD_DECL
7746 && !DECL_ARTIFICIAL (field)
7747 && !is_really_empty_class (TREE_TYPE (field)))
7748 return false;
7749 return true;
7750 }
7751 else if (TREE_CODE (type) == ARRAY_TYPE)
7752 return is_really_empty_class (TREE_TYPE (type));
7753 return false;
7754 }
7755
7756 /* Note that NAME was looked up while the current class was being
7757 defined and that the result of that lookup was DECL. */
7758
7759 void
7760 maybe_note_name_used_in_class (tree name, tree decl)
7761 {
7762 splay_tree names_used;
7763
7764 /* If we're not defining a class, there's nothing to do. */
7765 if (!(innermost_scope_kind() == sk_class
7766 && TYPE_BEING_DEFINED (current_class_type)
7767 && !LAMBDA_TYPE_P (current_class_type)))
7768 return;
7769
7770 /* If there's already a binding for this NAME, then we don't have
7771 anything to worry about. */
7772 if (lookup_member (current_class_type, name,
7773 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7774 return;
7775
7776 if (!current_class_stack[current_class_depth - 1].names_used)
7777 current_class_stack[current_class_depth - 1].names_used
7778 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7779 names_used = current_class_stack[current_class_depth - 1].names_used;
7780
7781 splay_tree_insert (names_used,
7782 (splay_tree_key) name,
7783 (splay_tree_value) decl);
7784 }
7785
7786 /* Note that NAME was declared (as DECL) in the current class. Check
7787 to see that the declaration is valid. */
7788
7789 void
7790 note_name_declared_in_class (tree name, tree decl)
7791 {
7792 splay_tree names_used;
7793 splay_tree_node n;
7794
7795 /* Look to see if we ever used this name. */
7796 names_used
7797 = current_class_stack[current_class_depth - 1].names_used;
7798 if (!names_used)
7799 return;
7800 /* The C language allows members to be declared with a type of the same
7801 name, and the C++ standard says this diagnostic is not required. So
7802 allow it in extern "C" blocks unless predantic is specified.
7803 Allow it in all cases if -ms-extensions is specified. */
7804 if ((!pedantic && current_lang_name == lang_name_c)
7805 || flag_ms_extensions)
7806 return;
7807 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7808 if (n)
7809 {
7810 /* [basic.scope.class]
7811
7812 A name N used in a class S shall refer to the same declaration
7813 in its context and when re-evaluated in the completed scope of
7814 S. */
7815 permerror (input_location, "declaration of %q#D", decl);
7816 permerror (input_location, "changes meaning of %qD from %q+#D",
7817 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7818 }
7819 }
7820
7821 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7822 Secondary vtables are merged with primary vtables; this function
7823 will return the VAR_DECL for the primary vtable. */
7824
7825 tree
7826 get_vtbl_decl_for_binfo (tree binfo)
7827 {
7828 tree decl;
7829
7830 decl = BINFO_VTABLE (binfo);
7831 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7832 {
7833 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7834 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7835 }
7836 if (decl)
7837 gcc_assert (VAR_P (decl));
7838 return decl;
7839 }
7840
7841
7842 /* Returns the binfo for the primary base of BINFO. If the resulting
7843 BINFO is a virtual base, and it is inherited elsewhere in the
7844 hierarchy, then the returned binfo might not be the primary base of
7845 BINFO in the complete object. Check BINFO_PRIMARY_P or
7846 BINFO_LOST_PRIMARY_P to be sure. */
7847
7848 static tree
7849 get_primary_binfo (tree binfo)
7850 {
7851 tree primary_base;
7852
7853 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
7854 if (!primary_base)
7855 return NULL_TREE;
7856
7857 return copied_binfo (primary_base, binfo);
7858 }
7859
7860 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
7861
7862 static int
7863 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
7864 {
7865 if (!indented_p)
7866 fprintf (stream, "%*s", indent, "");
7867 return 1;
7868 }
7869
7870 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
7871 INDENT should be zero when called from the top level; it is
7872 incremented recursively. IGO indicates the next expected BINFO in
7873 inheritance graph ordering. */
7874
7875 static tree
7876 dump_class_hierarchy_r (FILE *stream,
7877 int flags,
7878 tree binfo,
7879 tree igo,
7880 int indent)
7881 {
7882 int indented = 0;
7883 tree base_binfo;
7884 int i;
7885
7886 indented = maybe_indent_hierarchy (stream, indent, 0);
7887 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
7888 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
7889 (HOST_WIDE_INT) (uintptr_t) binfo);
7890 if (binfo != igo)
7891 {
7892 fprintf (stream, "alternative-path\n");
7893 return igo;
7894 }
7895 igo = TREE_CHAIN (binfo);
7896
7897 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
7898 tree_low_cst (BINFO_OFFSET (binfo), 0));
7899 if (is_empty_class (BINFO_TYPE (binfo)))
7900 fprintf (stream, " empty");
7901 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
7902 fprintf (stream, " nearly-empty");
7903 if (BINFO_VIRTUAL_P (binfo))
7904 fprintf (stream, " virtual");
7905 fprintf (stream, "\n");
7906
7907 indented = 0;
7908 if (BINFO_PRIMARY_P (binfo))
7909 {
7910 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7911 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
7912 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
7913 TFF_PLAIN_IDENTIFIER),
7914 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
7915 }
7916 if (BINFO_LOST_PRIMARY_P (binfo))
7917 {
7918 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7919 fprintf (stream, " lost-primary");
7920 }
7921 if (indented)
7922 fprintf (stream, "\n");
7923
7924 if (!(flags & TDF_SLIM))
7925 {
7926 int indented = 0;
7927
7928 if (BINFO_SUBVTT_INDEX (binfo))
7929 {
7930 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7931 fprintf (stream, " subvttidx=%s",
7932 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
7933 TFF_PLAIN_IDENTIFIER));
7934 }
7935 if (BINFO_VPTR_INDEX (binfo))
7936 {
7937 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7938 fprintf (stream, " vptridx=%s",
7939 expr_as_string (BINFO_VPTR_INDEX (binfo),
7940 TFF_PLAIN_IDENTIFIER));
7941 }
7942 if (BINFO_VPTR_FIELD (binfo))
7943 {
7944 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7945 fprintf (stream, " vbaseoffset=%s",
7946 expr_as_string (BINFO_VPTR_FIELD (binfo),
7947 TFF_PLAIN_IDENTIFIER));
7948 }
7949 if (BINFO_VTABLE (binfo))
7950 {
7951 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7952 fprintf (stream, " vptr=%s",
7953 expr_as_string (BINFO_VTABLE (binfo),
7954 TFF_PLAIN_IDENTIFIER));
7955 }
7956
7957 if (indented)
7958 fprintf (stream, "\n");
7959 }
7960
7961 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
7962 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
7963
7964 return igo;
7965 }
7966
7967 /* Dump the BINFO hierarchy for T. */
7968
7969 static void
7970 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
7971 {
7972 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
7973 fprintf (stream, " size=%lu align=%lu\n",
7974 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
7975 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
7976 fprintf (stream, " base size=%lu base align=%lu\n",
7977 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
7978 / BITS_PER_UNIT),
7979 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
7980 / BITS_PER_UNIT));
7981 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
7982 fprintf (stream, "\n");
7983 }
7984
7985 /* Debug interface to hierarchy dumping. */
7986
7987 void
7988 debug_class (tree t)
7989 {
7990 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
7991 }
7992
7993 static void
7994 dump_class_hierarchy (tree t)
7995 {
7996 int flags;
7997 FILE *stream = dump_begin (TDI_class, &flags);
7998
7999 if (stream)
8000 {
8001 dump_class_hierarchy_1 (stream, flags, t);
8002 dump_end (TDI_class, stream);
8003 }
8004 }
8005
8006 static void
8007 dump_array (FILE * stream, tree decl)
8008 {
8009 tree value;
8010 unsigned HOST_WIDE_INT ix;
8011 HOST_WIDE_INT elt;
8012 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8013
8014 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
8015 / BITS_PER_UNIT);
8016 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8017 fprintf (stream, " %s entries",
8018 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8019 TFF_PLAIN_IDENTIFIER));
8020 fprintf (stream, "\n");
8021
8022 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8023 ix, value)
8024 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
8025 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8026 }
8027
8028 static void
8029 dump_vtable (tree t, tree binfo, tree vtable)
8030 {
8031 int flags;
8032 FILE *stream = dump_begin (TDI_class, &flags);
8033
8034 if (!stream)
8035 return;
8036
8037 if (!(flags & TDF_SLIM))
8038 {
8039 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8040
8041 fprintf (stream, "%s for %s",
8042 ctor_vtbl_p ? "Construction vtable" : "Vtable",
8043 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8044 if (ctor_vtbl_p)
8045 {
8046 if (!BINFO_VIRTUAL_P (binfo))
8047 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8048 (HOST_WIDE_INT) (uintptr_t) binfo);
8049 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8050 }
8051 fprintf (stream, "\n");
8052 dump_array (stream, vtable);
8053 fprintf (stream, "\n");
8054 }
8055
8056 dump_end (TDI_class, stream);
8057 }
8058
8059 static void
8060 dump_vtt (tree t, tree vtt)
8061 {
8062 int flags;
8063 FILE *stream = dump_begin (TDI_class, &flags);
8064
8065 if (!stream)
8066 return;
8067
8068 if (!(flags & TDF_SLIM))
8069 {
8070 fprintf (stream, "VTT for %s\n",
8071 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8072 dump_array (stream, vtt);
8073 fprintf (stream, "\n");
8074 }
8075
8076 dump_end (TDI_class, stream);
8077 }
8078
8079 /* Dump a function or thunk and its thunkees. */
8080
8081 static void
8082 dump_thunk (FILE *stream, int indent, tree thunk)
8083 {
8084 static const char spaces[] = " ";
8085 tree name = DECL_NAME (thunk);
8086 tree thunks;
8087
8088 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8089 (void *)thunk,
8090 !DECL_THUNK_P (thunk) ? "function"
8091 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8092 name ? IDENTIFIER_POINTER (name) : "<unset>");
8093 if (DECL_THUNK_P (thunk))
8094 {
8095 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8096 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8097
8098 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8099 if (!virtual_adjust)
8100 /*NOP*/;
8101 else if (DECL_THIS_THUNK_P (thunk))
8102 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8103 tree_low_cst (virtual_adjust, 0));
8104 else
8105 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8106 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
8107 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8108 if (THUNK_ALIAS (thunk))
8109 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8110 }
8111 fprintf (stream, "\n");
8112 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8113 dump_thunk (stream, indent + 2, thunks);
8114 }
8115
8116 /* Dump the thunks for FN. */
8117
8118 void
8119 debug_thunks (tree fn)
8120 {
8121 dump_thunk (stderr, 0, fn);
8122 }
8123
8124 /* Virtual function table initialization. */
8125
8126 /* Create all the necessary vtables for T and its base classes. */
8127
8128 static void
8129 finish_vtbls (tree t)
8130 {
8131 tree vbase;
8132 vec<constructor_elt, va_gc> *v = NULL;
8133 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8134
8135 /* We lay out the primary and secondary vtables in one contiguous
8136 vtable. The primary vtable is first, followed by the non-virtual
8137 secondary vtables in inheritance graph order. */
8138 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8139 vtable, t, &v);
8140
8141 /* Then come the virtual bases, also in inheritance graph order. */
8142 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8143 {
8144 if (!BINFO_VIRTUAL_P (vbase))
8145 continue;
8146 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8147 }
8148
8149 if (BINFO_VTABLE (TYPE_BINFO (t)))
8150 initialize_vtable (TYPE_BINFO (t), v);
8151 }
8152
8153 /* Initialize the vtable for BINFO with the INITS. */
8154
8155 static void
8156 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8157 {
8158 tree decl;
8159
8160 layout_vtable_decl (binfo, vec_safe_length (inits));
8161 decl = get_vtbl_decl_for_binfo (binfo);
8162 initialize_artificial_var (decl, inits);
8163 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8164 }
8165
8166 /* Build the VTT (virtual table table) for T.
8167 A class requires a VTT if it has virtual bases.
8168
8169 This holds
8170 1 - primary virtual pointer for complete object T
8171 2 - secondary VTTs for each direct non-virtual base of T which requires a
8172 VTT
8173 3 - secondary virtual pointers for each direct or indirect base of T which
8174 has virtual bases or is reachable via a virtual path from T.
8175 4 - secondary VTTs for each direct or indirect virtual base of T.
8176
8177 Secondary VTTs look like complete object VTTs without part 4. */
8178
8179 static void
8180 build_vtt (tree t)
8181 {
8182 tree type;
8183 tree vtt;
8184 tree index;
8185 vec<constructor_elt, va_gc> *inits;
8186
8187 /* Build up the initializers for the VTT. */
8188 inits = NULL;
8189 index = size_zero_node;
8190 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8191
8192 /* If we didn't need a VTT, we're done. */
8193 if (!inits)
8194 return;
8195
8196 /* Figure out the type of the VTT. */
8197 type = build_array_of_n_type (const_ptr_type_node,
8198 inits->length ());
8199
8200 /* Now, build the VTT object itself. */
8201 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8202 initialize_artificial_var (vtt, inits);
8203 /* Add the VTT to the vtables list. */
8204 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8205 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8206
8207 dump_vtt (t, vtt);
8208 }
8209
8210 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8211 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8212 and CHAIN the vtable pointer for this binfo after construction is
8213 complete. VALUE can also be another BINFO, in which case we recurse. */
8214
8215 static tree
8216 binfo_ctor_vtable (tree binfo)
8217 {
8218 tree vt;
8219
8220 while (1)
8221 {
8222 vt = BINFO_VTABLE (binfo);
8223 if (TREE_CODE (vt) == TREE_LIST)
8224 vt = TREE_VALUE (vt);
8225 if (TREE_CODE (vt) == TREE_BINFO)
8226 binfo = vt;
8227 else
8228 break;
8229 }
8230
8231 return vt;
8232 }
8233
8234 /* Data for secondary VTT initialization. */
8235 typedef struct secondary_vptr_vtt_init_data_s
8236 {
8237 /* Is this the primary VTT? */
8238 bool top_level_p;
8239
8240 /* Current index into the VTT. */
8241 tree index;
8242
8243 /* Vector of initializers built up. */
8244 vec<constructor_elt, va_gc> *inits;
8245
8246 /* The type being constructed by this secondary VTT. */
8247 tree type_being_constructed;
8248 } secondary_vptr_vtt_init_data;
8249
8250 /* Recursively build the VTT-initializer for BINFO (which is in the
8251 hierarchy dominated by T). INITS points to the end of the initializer
8252 list to date. INDEX is the VTT index where the next element will be
8253 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8254 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8255 for virtual bases of T. When it is not so, we build the constructor
8256 vtables for the BINFO-in-T variant. */
8257
8258 static void
8259 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8260 tree *index)
8261 {
8262 int i;
8263 tree b;
8264 tree init;
8265 secondary_vptr_vtt_init_data data;
8266 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8267
8268 /* We only need VTTs for subobjects with virtual bases. */
8269 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8270 return;
8271
8272 /* We need to use a construction vtable if this is not the primary
8273 VTT. */
8274 if (!top_level_p)
8275 {
8276 build_ctor_vtbl_group (binfo, t);
8277
8278 /* Record the offset in the VTT where this sub-VTT can be found. */
8279 BINFO_SUBVTT_INDEX (binfo) = *index;
8280 }
8281
8282 /* Add the address of the primary vtable for the complete object. */
8283 init = binfo_ctor_vtable (binfo);
8284 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8285 if (top_level_p)
8286 {
8287 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8288 BINFO_VPTR_INDEX (binfo) = *index;
8289 }
8290 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8291
8292 /* Recursively add the secondary VTTs for non-virtual bases. */
8293 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8294 if (!BINFO_VIRTUAL_P (b))
8295 build_vtt_inits (b, t, inits, index);
8296
8297 /* Add secondary virtual pointers for all subobjects of BINFO with
8298 either virtual bases or reachable along a virtual path, except
8299 subobjects that are non-virtual primary bases. */
8300 data.top_level_p = top_level_p;
8301 data.index = *index;
8302 data.inits = *inits;
8303 data.type_being_constructed = BINFO_TYPE (binfo);
8304
8305 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8306
8307 *index = data.index;
8308
8309 /* data.inits might have grown as we added secondary virtual pointers.
8310 Make sure our caller knows about the new vector. */
8311 *inits = data.inits;
8312
8313 if (top_level_p)
8314 /* Add the secondary VTTs for virtual bases in inheritance graph
8315 order. */
8316 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8317 {
8318 if (!BINFO_VIRTUAL_P (b))
8319 continue;
8320
8321 build_vtt_inits (b, t, inits, index);
8322 }
8323 else
8324 /* Remove the ctor vtables we created. */
8325 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8326 }
8327
8328 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8329 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8330
8331 static tree
8332 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8333 {
8334 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8335
8336 /* We don't care about bases that don't have vtables. */
8337 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8338 return dfs_skip_bases;
8339
8340 /* We're only interested in proper subobjects of the type being
8341 constructed. */
8342 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8343 return NULL_TREE;
8344
8345 /* We're only interested in bases with virtual bases or reachable
8346 via a virtual path from the type being constructed. */
8347 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8348 || binfo_via_virtual (binfo, data->type_being_constructed)))
8349 return dfs_skip_bases;
8350
8351 /* We're not interested in non-virtual primary bases. */
8352 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8353 return NULL_TREE;
8354
8355 /* Record the index where this secondary vptr can be found. */
8356 if (data->top_level_p)
8357 {
8358 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8359 BINFO_VPTR_INDEX (binfo) = data->index;
8360
8361 if (BINFO_VIRTUAL_P (binfo))
8362 {
8363 /* It's a primary virtual base, and this is not a
8364 construction vtable. Find the base this is primary of in
8365 the inheritance graph, and use that base's vtable
8366 now. */
8367 while (BINFO_PRIMARY_P (binfo))
8368 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8369 }
8370 }
8371
8372 /* Add the initializer for the secondary vptr itself. */
8373 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8374
8375 /* Advance the vtt index. */
8376 data->index = size_binop (PLUS_EXPR, data->index,
8377 TYPE_SIZE_UNIT (ptr_type_node));
8378
8379 return NULL_TREE;
8380 }
8381
8382 /* Called from build_vtt_inits via dfs_walk. After building
8383 constructor vtables and generating the sub-vtt from them, we need
8384 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8385 binfo of the base whose sub vtt was generated. */
8386
8387 static tree
8388 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8389 {
8390 tree vtable = BINFO_VTABLE (binfo);
8391
8392 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8393 /* If this class has no vtable, none of its bases do. */
8394 return dfs_skip_bases;
8395
8396 if (!vtable)
8397 /* This might be a primary base, so have no vtable in this
8398 hierarchy. */
8399 return NULL_TREE;
8400
8401 /* If we scribbled the construction vtable vptr into BINFO, clear it
8402 out now. */
8403 if (TREE_CODE (vtable) == TREE_LIST
8404 && (TREE_PURPOSE (vtable) == (tree) data))
8405 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8406
8407 return NULL_TREE;
8408 }
8409
8410 /* Build the construction vtable group for BINFO which is in the
8411 hierarchy dominated by T. */
8412
8413 static void
8414 build_ctor_vtbl_group (tree binfo, tree t)
8415 {
8416 tree type;
8417 tree vtbl;
8418 tree id;
8419 tree vbase;
8420 vec<constructor_elt, va_gc> *v;
8421
8422 /* See if we've already created this construction vtable group. */
8423 id = mangle_ctor_vtbl_for_type (t, binfo);
8424 if (IDENTIFIER_GLOBAL_VALUE (id))
8425 return;
8426
8427 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8428 /* Build a version of VTBL (with the wrong type) for use in
8429 constructing the addresses of secondary vtables in the
8430 construction vtable group. */
8431 vtbl = build_vtable (t, id, ptr_type_node);
8432 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8433 /* Don't export construction vtables from shared libraries. Even on
8434 targets that don't support hidden visibility, this tells
8435 can_refer_decl_in_current_unit_p not to assume that it's safe to
8436 access from a different compilation unit (bz 54314). */
8437 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8438 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8439
8440 v = NULL;
8441 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8442 binfo, vtbl, t, &v);
8443
8444 /* Add the vtables for each of our virtual bases using the vbase in T
8445 binfo. */
8446 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8447 vbase;
8448 vbase = TREE_CHAIN (vbase))
8449 {
8450 tree b;
8451
8452 if (!BINFO_VIRTUAL_P (vbase))
8453 continue;
8454 b = copied_binfo (vbase, binfo);
8455
8456 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8457 }
8458
8459 /* Figure out the type of the construction vtable. */
8460 type = build_array_of_n_type (vtable_entry_type, v->length ());
8461 layout_type (type);
8462 TREE_TYPE (vtbl) = type;
8463 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8464 layout_decl (vtbl, 0);
8465
8466 /* Initialize the construction vtable. */
8467 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8468 initialize_artificial_var (vtbl, v);
8469 dump_vtable (t, binfo, vtbl);
8470 }
8471
8472 /* Add the vtbl initializers for BINFO (and its bases other than
8473 non-virtual primaries) to the list of INITS. BINFO is in the
8474 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8475 the constructor the vtbl inits should be accumulated for. (If this
8476 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8477 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8478 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8479 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8480 but are not necessarily the same in terms of layout. */
8481
8482 static void
8483 accumulate_vtbl_inits (tree binfo,
8484 tree orig_binfo,
8485 tree rtti_binfo,
8486 tree vtbl,
8487 tree t,
8488 vec<constructor_elt, va_gc> **inits)
8489 {
8490 int i;
8491 tree base_binfo;
8492 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8493
8494 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8495
8496 /* If it doesn't have a vptr, we don't do anything. */
8497 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8498 return;
8499
8500 /* If we're building a construction vtable, we're not interested in
8501 subobjects that don't require construction vtables. */
8502 if (ctor_vtbl_p
8503 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8504 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8505 return;
8506
8507 /* Build the initializers for the BINFO-in-T vtable. */
8508 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8509
8510 /* Walk the BINFO and its bases. We walk in preorder so that as we
8511 initialize each vtable we can figure out at what offset the
8512 secondary vtable lies from the primary vtable. We can't use
8513 dfs_walk here because we need to iterate through bases of BINFO
8514 and RTTI_BINFO simultaneously. */
8515 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8516 {
8517 /* Skip virtual bases. */
8518 if (BINFO_VIRTUAL_P (base_binfo))
8519 continue;
8520 accumulate_vtbl_inits (base_binfo,
8521 BINFO_BASE_BINFO (orig_binfo, i),
8522 rtti_binfo, vtbl, t,
8523 inits);
8524 }
8525 }
8526
8527 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8528 BINFO vtable to L. */
8529
8530 static void
8531 dfs_accumulate_vtbl_inits (tree binfo,
8532 tree orig_binfo,
8533 tree rtti_binfo,
8534 tree orig_vtbl,
8535 tree t,
8536 vec<constructor_elt, va_gc> **l)
8537 {
8538 tree vtbl = NULL_TREE;
8539 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8540 int n_inits;
8541
8542 if (ctor_vtbl_p
8543 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8544 {
8545 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8546 primary virtual base. If it is not the same primary in
8547 the hierarchy of T, we'll need to generate a ctor vtable
8548 for it, to place at its location in T. If it is the same
8549 primary, we still need a VTT entry for the vtable, but it
8550 should point to the ctor vtable for the base it is a
8551 primary for within the sub-hierarchy of RTTI_BINFO.
8552
8553 There are three possible cases:
8554
8555 1) We are in the same place.
8556 2) We are a primary base within a lost primary virtual base of
8557 RTTI_BINFO.
8558 3) We are primary to something not a base of RTTI_BINFO. */
8559
8560 tree b;
8561 tree last = NULL_TREE;
8562
8563 /* First, look through the bases we are primary to for RTTI_BINFO
8564 or a virtual base. */
8565 b = binfo;
8566 while (BINFO_PRIMARY_P (b))
8567 {
8568 b = BINFO_INHERITANCE_CHAIN (b);
8569 last = b;
8570 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8571 goto found;
8572 }
8573 /* If we run out of primary links, keep looking down our
8574 inheritance chain; we might be an indirect primary. */
8575 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8576 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8577 break;
8578 found:
8579
8580 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8581 base B and it is a base of RTTI_BINFO, this is case 2. In
8582 either case, we share our vtable with LAST, i.e. the
8583 derived-most base within B of which we are a primary. */
8584 if (b == rtti_binfo
8585 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8586 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8587 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8588 binfo_ctor_vtable after everything's been set up. */
8589 vtbl = last;
8590
8591 /* Otherwise, this is case 3 and we get our own. */
8592 }
8593 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8594 return;
8595
8596 n_inits = vec_safe_length (*l);
8597
8598 if (!vtbl)
8599 {
8600 tree index;
8601 int non_fn_entries;
8602
8603 /* Add the initializer for this vtable. */
8604 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8605 &non_fn_entries, l);
8606
8607 /* Figure out the position to which the VPTR should point. */
8608 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8609 index = size_binop (MULT_EXPR,
8610 TYPE_SIZE_UNIT (vtable_entry_type),
8611 size_int (non_fn_entries + n_inits));
8612 vtbl = fold_build_pointer_plus (vtbl, index);
8613 }
8614
8615 if (ctor_vtbl_p)
8616 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8617 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8618 straighten this out. */
8619 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8620 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8621 /* Throw away any unneeded intializers. */
8622 (*l)->truncate (n_inits);
8623 else
8624 /* For an ordinary vtable, set BINFO_VTABLE. */
8625 BINFO_VTABLE (binfo) = vtbl;
8626 }
8627
8628 static GTY(()) tree abort_fndecl_addr;
8629
8630 /* Construct the initializer for BINFO's virtual function table. BINFO
8631 is part of the hierarchy dominated by T. If we're building a
8632 construction vtable, the ORIG_BINFO is the binfo we should use to
8633 find the actual function pointers to put in the vtable - but they
8634 can be overridden on the path to most-derived in the graph that
8635 ORIG_BINFO belongs. Otherwise,
8636 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8637 BINFO that should be indicated by the RTTI information in the
8638 vtable; it will be a base class of T, rather than T itself, if we
8639 are building a construction vtable.
8640
8641 The value returned is a TREE_LIST suitable for wrapping in a
8642 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8643 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8644 number of non-function entries in the vtable.
8645
8646 It might seem that this function should never be called with a
8647 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8648 base is always subsumed by a derived class vtable. However, when
8649 we are building construction vtables, we do build vtables for
8650 primary bases; we need these while the primary base is being
8651 constructed. */
8652
8653 static void
8654 build_vtbl_initializer (tree binfo,
8655 tree orig_binfo,
8656 tree t,
8657 tree rtti_binfo,
8658 int* non_fn_entries_p,
8659 vec<constructor_elt, va_gc> **inits)
8660 {
8661 tree v;
8662 vtbl_init_data vid;
8663 unsigned ix, jx;
8664 tree vbinfo;
8665 vec<tree, va_gc> *vbases;
8666 constructor_elt *e;
8667
8668 /* Initialize VID. */
8669 memset (&vid, 0, sizeof (vid));
8670 vid.binfo = binfo;
8671 vid.derived = t;
8672 vid.rtti_binfo = rtti_binfo;
8673 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8674 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8675 vid.generate_vcall_entries = true;
8676 /* The first vbase or vcall offset is at index -3 in the vtable. */
8677 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8678
8679 /* Add entries to the vtable for RTTI. */
8680 build_rtti_vtbl_entries (binfo, &vid);
8681
8682 /* Create an array for keeping track of the functions we've
8683 processed. When we see multiple functions with the same
8684 signature, we share the vcall offsets. */
8685 vec_alloc (vid.fns, 32);
8686 /* Add the vcall and vbase offset entries. */
8687 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8688
8689 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8690 build_vbase_offset_vtbl_entries. */
8691 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8692 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8693 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8694
8695 /* If the target requires padding between data entries, add that now. */
8696 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8697 {
8698 int n_entries = vec_safe_length (vid.inits);
8699
8700 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8701
8702 /* Move data entries into their new positions and add padding
8703 after the new positions. Iterate backwards so we don't
8704 overwrite entries that we would need to process later. */
8705 for (ix = n_entries - 1;
8706 vid.inits->iterate (ix, &e);
8707 ix--)
8708 {
8709 int j;
8710 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8711 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8712
8713 (*vid.inits)[new_position] = *e;
8714
8715 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8716 {
8717 constructor_elt *f = &(*vid.inits)[new_position - j];
8718 f->index = NULL_TREE;
8719 f->value = build1 (NOP_EXPR, vtable_entry_type,
8720 null_pointer_node);
8721 }
8722 }
8723 }
8724
8725 if (non_fn_entries_p)
8726 *non_fn_entries_p = vec_safe_length (vid.inits);
8727
8728 /* The initializers for virtual functions were built up in reverse
8729 order. Straighten them out and add them to the running list in one
8730 step. */
8731 jx = vec_safe_length (*inits);
8732 vec_safe_grow (*inits, jx + vid.inits->length ());
8733
8734 for (ix = vid.inits->length () - 1;
8735 vid.inits->iterate (ix, &e);
8736 ix--, jx++)
8737 (**inits)[jx] = *e;
8738
8739 /* Go through all the ordinary virtual functions, building up
8740 initializers. */
8741 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8742 {
8743 tree delta;
8744 tree vcall_index;
8745 tree fn, fn_original;
8746 tree init = NULL_TREE;
8747
8748 fn = BV_FN (v);
8749 fn_original = fn;
8750 if (DECL_THUNK_P (fn))
8751 {
8752 if (!DECL_NAME (fn))
8753 finish_thunk (fn);
8754 if (THUNK_ALIAS (fn))
8755 {
8756 fn = THUNK_ALIAS (fn);
8757 BV_FN (v) = fn;
8758 }
8759 fn_original = THUNK_TARGET (fn);
8760 }
8761
8762 /* If the only definition of this function signature along our
8763 primary base chain is from a lost primary, this vtable slot will
8764 never be used, so just zero it out. This is important to avoid
8765 requiring extra thunks which cannot be generated with the function.
8766
8767 We first check this in update_vtable_entry_for_fn, so we handle
8768 restored primary bases properly; we also need to do it here so we
8769 zero out unused slots in ctor vtables, rather than filling them
8770 with erroneous values (though harmless, apart from relocation
8771 costs). */
8772 if (BV_LOST_PRIMARY (v))
8773 init = size_zero_node;
8774
8775 if (! init)
8776 {
8777 /* Pull the offset for `this', and the function to call, out of
8778 the list. */
8779 delta = BV_DELTA (v);
8780 vcall_index = BV_VCALL_INDEX (v);
8781
8782 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8783 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8784
8785 /* You can't call an abstract virtual function; it's abstract.
8786 So, we replace these functions with __pure_virtual. */
8787 if (DECL_PURE_VIRTUAL_P (fn_original))
8788 {
8789 fn = abort_fndecl;
8790 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8791 {
8792 if (abort_fndecl_addr == NULL)
8793 abort_fndecl_addr
8794 = fold_convert (vfunc_ptr_type_node,
8795 build_fold_addr_expr (fn));
8796 init = abort_fndecl_addr;
8797 }
8798 }
8799 /* Likewise for deleted virtuals. */
8800 else if (DECL_DELETED_FN (fn_original))
8801 {
8802 fn = get_identifier ("__cxa_deleted_virtual");
8803 if (!get_global_value_if_present (fn, &fn))
8804 fn = push_library_fn (fn, (build_function_type_list
8805 (void_type_node, NULL_TREE)),
8806 NULL_TREE);
8807 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8808 init = fold_convert (vfunc_ptr_type_node,
8809 build_fold_addr_expr (fn));
8810 }
8811 else
8812 {
8813 if (!integer_zerop (delta) || vcall_index)
8814 {
8815 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8816 if (!DECL_NAME (fn))
8817 finish_thunk (fn);
8818 }
8819 /* Take the address of the function, considering it to be of an
8820 appropriate generic type. */
8821 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8822 init = fold_convert (vfunc_ptr_type_node,
8823 build_fold_addr_expr (fn));
8824 }
8825 }
8826
8827 /* And add it to the chain of initializers. */
8828 if (TARGET_VTABLE_USES_DESCRIPTORS)
8829 {
8830 int i;
8831 if (init == size_zero_node)
8832 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8833 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8834 else
8835 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8836 {
8837 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
8838 fn, build_int_cst (NULL_TREE, i));
8839 TREE_CONSTANT (fdesc) = 1;
8840
8841 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
8842 }
8843 }
8844 else
8845 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8846 }
8847 }
8848
8849 /* Adds to vid->inits the initializers for the vbase and vcall
8850 offsets in BINFO, which is in the hierarchy dominated by T. */
8851
8852 static void
8853 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
8854 {
8855 tree b;
8856
8857 /* If this is a derived class, we must first create entries
8858 corresponding to the primary base class. */
8859 b = get_primary_binfo (binfo);
8860 if (b)
8861 build_vcall_and_vbase_vtbl_entries (b, vid);
8862
8863 /* Add the vbase entries for this base. */
8864 build_vbase_offset_vtbl_entries (binfo, vid);
8865 /* Add the vcall entries for this base. */
8866 build_vcall_offset_vtbl_entries (binfo, vid);
8867 }
8868
8869 /* Returns the initializers for the vbase offset entries in the vtable
8870 for BINFO (which is part of the class hierarchy dominated by T), in
8871 reverse order. VBASE_OFFSET_INDEX gives the vtable index
8872 where the next vbase offset will go. */
8873
8874 static void
8875 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8876 {
8877 tree vbase;
8878 tree t;
8879 tree non_primary_binfo;
8880
8881 /* If there are no virtual baseclasses, then there is nothing to
8882 do. */
8883 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8884 return;
8885
8886 t = vid->derived;
8887
8888 /* We might be a primary base class. Go up the inheritance hierarchy
8889 until we find the most derived class of which we are a primary base:
8890 it is the offset of that which we need to use. */
8891 non_primary_binfo = binfo;
8892 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
8893 {
8894 tree b;
8895
8896 /* If we have reached a virtual base, then it must be a primary
8897 base (possibly multi-level) of vid->binfo, or we wouldn't
8898 have called build_vcall_and_vbase_vtbl_entries for it. But it
8899 might be a lost primary, so just skip down to vid->binfo. */
8900 if (BINFO_VIRTUAL_P (non_primary_binfo))
8901 {
8902 non_primary_binfo = vid->binfo;
8903 break;
8904 }
8905
8906 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
8907 if (get_primary_binfo (b) != non_primary_binfo)
8908 break;
8909 non_primary_binfo = b;
8910 }
8911
8912 /* Go through the virtual bases, adding the offsets. */
8913 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8914 vbase;
8915 vbase = TREE_CHAIN (vbase))
8916 {
8917 tree b;
8918 tree delta;
8919
8920 if (!BINFO_VIRTUAL_P (vbase))
8921 continue;
8922
8923 /* Find the instance of this virtual base in the complete
8924 object. */
8925 b = copied_binfo (vbase, binfo);
8926
8927 /* If we've already got an offset for this virtual base, we
8928 don't need another one. */
8929 if (BINFO_VTABLE_PATH_MARKED (b))
8930 continue;
8931 BINFO_VTABLE_PATH_MARKED (b) = 1;
8932
8933 /* Figure out where we can find this vbase offset. */
8934 delta = size_binop (MULT_EXPR,
8935 vid->index,
8936 convert (ssizetype,
8937 TYPE_SIZE_UNIT (vtable_entry_type)));
8938 if (vid->primary_vtbl_p)
8939 BINFO_VPTR_FIELD (b) = delta;
8940
8941 if (binfo != TYPE_BINFO (t))
8942 /* The vbase offset had better be the same. */
8943 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
8944
8945 /* The next vbase will come at a more negative offset. */
8946 vid->index = size_binop (MINUS_EXPR, vid->index,
8947 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
8948
8949 /* The initializer is the delta from BINFO to this virtual base.
8950 The vbase offsets go in reverse inheritance-graph order, and
8951 we are walking in inheritance graph order so these end up in
8952 the right order. */
8953 delta = size_diffop_loc (input_location,
8954 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
8955
8956 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
8957 fold_build1_loc (input_location, NOP_EXPR,
8958 vtable_entry_type, delta));
8959 }
8960 }
8961
8962 /* Adds the initializers for the vcall offset entries in the vtable
8963 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
8964 to VID->INITS. */
8965
8966 static void
8967 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8968 {
8969 /* We only need these entries if this base is a virtual base. We
8970 compute the indices -- but do not add to the vtable -- when
8971 building the main vtable for a class. */
8972 if (binfo == TYPE_BINFO (vid->derived)
8973 || (BINFO_VIRTUAL_P (binfo)
8974 /* If BINFO is RTTI_BINFO, then (since BINFO does not
8975 correspond to VID->DERIVED), we are building a primary
8976 construction virtual table. Since this is a primary
8977 virtual table, we do not need the vcall offsets for
8978 BINFO. */
8979 && binfo != vid->rtti_binfo))
8980 {
8981 /* We need a vcall offset for each of the virtual functions in this
8982 vtable. For example:
8983
8984 class A { virtual void f (); };
8985 class B1 : virtual public A { virtual void f (); };
8986 class B2 : virtual public A { virtual void f (); };
8987 class C: public B1, public B2 { virtual void f (); };
8988
8989 A C object has a primary base of B1, which has a primary base of A. A
8990 C also has a secondary base of B2, which no longer has a primary base
8991 of A. So the B2-in-C construction vtable needs a secondary vtable for
8992 A, which will adjust the A* to a B2* to call f. We have no way of
8993 knowing what (or even whether) this offset will be when we define B2,
8994 so we store this "vcall offset" in the A sub-vtable and look it up in
8995 a "virtual thunk" for B2::f.
8996
8997 We need entries for all the functions in our primary vtable and
8998 in our non-virtual bases' secondary vtables. */
8999 vid->vbase = binfo;
9000 /* If we are just computing the vcall indices -- but do not need
9001 the actual entries -- not that. */
9002 if (!BINFO_VIRTUAL_P (binfo))
9003 vid->generate_vcall_entries = false;
9004 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9005 add_vcall_offset_vtbl_entries_r (binfo, vid);
9006 }
9007 }
9008
9009 /* Build vcall offsets, starting with those for BINFO. */
9010
9011 static void
9012 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9013 {
9014 int i;
9015 tree primary_binfo;
9016 tree base_binfo;
9017
9018 /* Don't walk into virtual bases -- except, of course, for the
9019 virtual base for which we are building vcall offsets. Any
9020 primary virtual base will have already had its offsets generated
9021 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9022 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9023 return;
9024
9025 /* If BINFO has a primary base, process it first. */
9026 primary_binfo = get_primary_binfo (binfo);
9027 if (primary_binfo)
9028 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9029
9030 /* Add BINFO itself to the list. */
9031 add_vcall_offset_vtbl_entries_1 (binfo, vid);
9032
9033 /* Scan the non-primary bases of BINFO. */
9034 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9035 if (base_binfo != primary_binfo)
9036 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9037 }
9038
9039 /* Called from build_vcall_offset_vtbl_entries_r. */
9040
9041 static void
9042 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9043 {
9044 /* Make entries for the rest of the virtuals. */
9045 if (abi_version_at_least (2))
9046 {
9047 tree orig_fn;
9048
9049 /* The ABI requires that the methods be processed in declaration
9050 order. G++ 3.2 used the order in the vtable. */
9051 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
9052 orig_fn;
9053 orig_fn = DECL_CHAIN (orig_fn))
9054 if (DECL_VINDEX (orig_fn))
9055 add_vcall_offset (orig_fn, binfo, vid);
9056 }
9057 else
9058 {
9059 tree derived_virtuals;
9060 tree base_virtuals;
9061 tree orig_virtuals;
9062 /* If BINFO is a primary base, the most derived class which has
9063 BINFO as a primary base; otherwise, just BINFO. */
9064 tree non_primary_binfo;
9065
9066 /* We might be a primary base class. Go up the inheritance hierarchy
9067 until we find the most derived class of which we are a primary base:
9068 it is the BINFO_VIRTUALS there that we need to consider. */
9069 non_primary_binfo = binfo;
9070 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9071 {
9072 tree b;
9073
9074 /* If we have reached a virtual base, then it must be vid->vbase,
9075 because we ignore other virtual bases in
9076 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
9077 base (possibly multi-level) of vid->binfo, or we wouldn't
9078 have called build_vcall_and_vbase_vtbl_entries for it. But it
9079 might be a lost primary, so just skip down to vid->binfo. */
9080 if (BINFO_VIRTUAL_P (non_primary_binfo))
9081 {
9082 gcc_assert (non_primary_binfo == vid->vbase);
9083 non_primary_binfo = vid->binfo;
9084 break;
9085 }
9086
9087 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9088 if (get_primary_binfo (b) != non_primary_binfo)
9089 break;
9090 non_primary_binfo = b;
9091 }
9092
9093 if (vid->ctor_vtbl_p)
9094 /* For a ctor vtable we need the equivalent binfo within the hierarchy
9095 where rtti_binfo is the most derived type. */
9096 non_primary_binfo
9097 = original_binfo (non_primary_binfo, vid->rtti_binfo);
9098
9099 for (base_virtuals = BINFO_VIRTUALS (binfo),
9100 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
9101 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
9102 base_virtuals;
9103 base_virtuals = TREE_CHAIN (base_virtuals),
9104 derived_virtuals = TREE_CHAIN (derived_virtuals),
9105 orig_virtuals = TREE_CHAIN (orig_virtuals))
9106 {
9107 tree orig_fn;
9108
9109 /* Find the declaration that originally caused this function to
9110 be present in BINFO_TYPE (binfo). */
9111 orig_fn = BV_FN (orig_virtuals);
9112
9113 /* When processing BINFO, we only want to generate vcall slots for
9114 function slots introduced in BINFO. So don't try to generate
9115 one if the function isn't even defined in BINFO. */
9116 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
9117 continue;
9118
9119 add_vcall_offset (orig_fn, binfo, vid);
9120 }
9121 }
9122 }
9123
9124 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9125
9126 static void
9127 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9128 {
9129 size_t i;
9130 tree vcall_offset;
9131 tree derived_entry;
9132
9133 /* If there is already an entry for a function with the same
9134 signature as FN, then we do not need a second vcall offset.
9135 Check the list of functions already present in the derived
9136 class vtable. */
9137 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9138 {
9139 if (same_signature_p (derived_entry, orig_fn)
9140 /* We only use one vcall offset for virtual destructors,
9141 even though there are two virtual table entries. */
9142 || (DECL_DESTRUCTOR_P (derived_entry)
9143 && DECL_DESTRUCTOR_P (orig_fn)))
9144 return;
9145 }
9146
9147 /* If we are building these vcall offsets as part of building
9148 the vtable for the most derived class, remember the vcall
9149 offset. */
9150 if (vid->binfo == TYPE_BINFO (vid->derived))
9151 {
9152 tree_pair_s elt = {orig_fn, vid->index};
9153 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9154 }
9155
9156 /* The next vcall offset will be found at a more negative
9157 offset. */
9158 vid->index = size_binop (MINUS_EXPR, vid->index,
9159 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9160
9161 /* Keep track of this function. */
9162 vec_safe_push (vid->fns, orig_fn);
9163
9164 if (vid->generate_vcall_entries)
9165 {
9166 tree base;
9167 tree fn;
9168
9169 /* Find the overriding function. */
9170 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9171 if (fn == error_mark_node)
9172 vcall_offset = build_zero_cst (vtable_entry_type);
9173 else
9174 {
9175 base = TREE_VALUE (fn);
9176
9177 /* The vbase we're working on is a primary base of
9178 vid->binfo. But it might be a lost primary, so its
9179 BINFO_OFFSET might be wrong, so we just use the
9180 BINFO_OFFSET from vid->binfo. */
9181 vcall_offset = size_diffop_loc (input_location,
9182 BINFO_OFFSET (base),
9183 BINFO_OFFSET (vid->binfo));
9184 vcall_offset = fold_build1_loc (input_location,
9185 NOP_EXPR, vtable_entry_type,
9186 vcall_offset);
9187 }
9188 /* Add the initializer to the vtable. */
9189 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9190 }
9191 }
9192
9193 /* Return vtbl initializers for the RTTI entries corresponding to the
9194 BINFO's vtable. The RTTI entries should indicate the object given
9195 by VID->rtti_binfo. */
9196
9197 static void
9198 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9199 {
9200 tree b;
9201 tree t;
9202 tree offset;
9203 tree decl;
9204 tree init;
9205
9206 t = BINFO_TYPE (vid->rtti_binfo);
9207
9208 /* To find the complete object, we will first convert to our most
9209 primary base, and then add the offset in the vtbl to that value. */
9210 b = binfo;
9211 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9212 && !BINFO_LOST_PRIMARY_P (b))
9213 {
9214 tree primary_base;
9215
9216 primary_base = get_primary_binfo (b);
9217 gcc_assert (BINFO_PRIMARY_P (primary_base)
9218 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9219 b = primary_base;
9220 }
9221 offset = size_diffop_loc (input_location,
9222 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9223
9224 /* The second entry is the address of the typeinfo object. */
9225 if (flag_rtti)
9226 decl = build_address (get_tinfo_decl (t));
9227 else
9228 decl = integer_zero_node;
9229
9230 /* Convert the declaration to a type that can be stored in the
9231 vtable. */
9232 init = build_nop (vfunc_ptr_type_node, decl);
9233 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9234
9235 /* Add the offset-to-top entry. It comes earlier in the vtable than
9236 the typeinfo entry. Convert the offset to look like a
9237 function pointer, so that we can put it in the vtable. */
9238 init = build_nop (vfunc_ptr_type_node, offset);
9239 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9240 }
9241
9242 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9243 accessibility. */
9244
9245 bool
9246 uniquely_derived_from_p (tree parent, tree type)
9247 {
9248 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9249 return base && base != error_mark_node;
9250 }
9251
9252 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9253
9254 bool
9255 publicly_uniquely_derived_p (tree parent, tree type)
9256 {
9257 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9258 NULL, tf_none);
9259 return base && base != error_mark_node;
9260 }
9261
9262 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9263 class between them, if any. */
9264
9265 tree
9266 common_enclosing_class (tree ctx1, tree ctx2)
9267 {
9268 if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
9269 return NULL_TREE;
9270 gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
9271 && ctx2 == TYPE_MAIN_VARIANT (ctx2));
9272 if (ctx1 == ctx2)
9273 return ctx1;
9274 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9275 TYPE_MARKED_P (t) = true;
9276 tree found = NULL_TREE;
9277 for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
9278 if (TYPE_MARKED_P (t))
9279 {
9280 found = t;
9281 break;
9282 }
9283 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9284 TYPE_MARKED_P (t) = false;
9285 return found;
9286 }
9287
9288 #include "gt-cp-class.h"