re PR c++/61945 (tree check fail with -Woverloaded-virtual)
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "stringpool.h"
30 #include "stor-layout.h"
31 #include "attribs.h"
32 #include "hash-table.h"
33 #include "cp-tree.h"
34 #include "flags.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38 #include "cgraph.h"
39 #include "dumpfile.h"
40 #include "splay-tree.h"
41 #include "gimplify.h"
42 #include "wide-int.h"
43
44 /* The number of nested classes being processed. If we are not in the
45 scope of any class, this is zero. */
46
47 int current_class_depth;
48
49 /* In order to deal with nested classes, we keep a stack of classes.
50 The topmost entry is the innermost class, and is the entry at index
51 CURRENT_CLASS_DEPTH */
52
53 typedef struct class_stack_node {
54 /* The name of the class. */
55 tree name;
56
57 /* The _TYPE node for the class. */
58 tree type;
59
60 /* The access specifier pending for new declarations in the scope of
61 this class. */
62 tree access;
63
64 /* If were defining TYPE, the names used in this class. */
65 splay_tree names_used;
66
67 /* Nonzero if this class is no longer open, because of a call to
68 push_to_top_level. */
69 size_t hidden;
70 }* class_stack_node_t;
71
72 typedef struct vtbl_init_data_s
73 {
74 /* The base for which we're building initializers. */
75 tree binfo;
76 /* The type of the most-derived type. */
77 tree derived;
78 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
79 unless ctor_vtbl_p is true. */
80 tree rtti_binfo;
81 /* The negative-index vtable initializers built up so far. These
82 are in order from least negative index to most negative index. */
83 vec<constructor_elt, va_gc> *inits;
84 /* The binfo for the virtual base for which we're building
85 vcall offset initializers. */
86 tree vbase;
87 /* The functions in vbase for which we have already provided vcall
88 offsets. */
89 vec<tree, va_gc> *fns;
90 /* The vtable index of the next vcall or vbase offset. */
91 tree index;
92 /* Nonzero if we are building the initializer for the primary
93 vtable. */
94 int primary_vtbl_p;
95 /* Nonzero if we are building the initializer for a construction
96 vtable. */
97 int ctor_vtbl_p;
98 /* True when adding vcall offset entries to the vtable. False when
99 merely computing the indices. */
100 bool generate_vcall_entries;
101 } vtbl_init_data;
102
103 /* The type of a function passed to walk_subobject_offsets. */
104 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
105
106 /* The stack itself. This is a dynamically resized array. The
107 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
108 static int current_class_stack_size;
109 static class_stack_node_t current_class_stack;
110
111 /* The size of the largest empty class seen in this translation unit. */
112 static GTY (()) tree sizeof_biggest_empty_class;
113
114 /* An array of all local classes present in this translation unit, in
115 declaration order. */
116 vec<tree, va_gc> *local_classes;
117
118 static tree get_vfield_name (tree);
119 static void finish_struct_anon (tree);
120 static tree get_vtable_name (tree);
121 static tree get_basefndecls (tree, tree);
122 static int build_primary_vtable (tree, tree);
123 static int build_secondary_vtable (tree);
124 static void finish_vtbls (tree);
125 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
126 static void finish_struct_bits (tree);
127 static int alter_access (tree, tree, tree);
128 static void handle_using_decl (tree, tree);
129 static tree dfs_modify_vtables (tree, void *);
130 static tree modify_all_vtables (tree, tree);
131 static void determine_primary_bases (tree);
132 static void finish_struct_methods (tree);
133 static void maybe_warn_about_overly_private_class (tree);
134 static int method_name_cmp (const void *, const void *);
135 static int resort_method_name_cmp (const void *, const void *);
136 static void add_implicitly_declared_members (tree, tree*, int, int);
137 static tree fixed_type_or_null (tree, int *, int *);
138 static tree build_simple_base_path (tree expr, tree binfo);
139 static tree build_vtbl_ref_1 (tree, tree);
140 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
141 vec<constructor_elt, va_gc> **);
142 static int count_fields (tree);
143 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
144 static void insert_into_classtype_sorted_fields (tree, tree, int);
145 static bool check_bitfield_decl (tree);
146 static void check_field_decl (tree, tree, int *, int *, int *);
147 static void check_field_decls (tree, tree *, int *, int *);
148 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
149 static void build_base_fields (record_layout_info, splay_tree, tree *);
150 static void check_methods (tree);
151 static void remove_zero_width_bit_fields (tree);
152 static bool accessible_nvdtor_p (tree);
153 static void check_bases (tree, int *, int *);
154 static void check_bases_and_members (tree);
155 static tree create_vtable_ptr (tree, tree *);
156 static void include_empty_classes (record_layout_info);
157 static void layout_class_type (tree, tree *);
158 static void propagate_binfo_offsets (tree, tree);
159 static void layout_virtual_bases (record_layout_info, splay_tree);
160 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
161 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
162 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
163 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
164 static void add_vcall_offset (tree, tree, vtbl_init_data *);
165 static void layout_vtable_decl (tree, int);
166 static tree dfs_find_final_overrider_pre (tree, void *);
167 static tree dfs_find_final_overrider_post (tree, void *);
168 static tree find_final_overrider (tree, tree, tree);
169 static int make_new_vtable (tree, tree);
170 static tree get_primary_binfo (tree);
171 static int maybe_indent_hierarchy (FILE *, int, int);
172 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
173 static void dump_class_hierarchy (tree);
174 static void dump_class_hierarchy_1 (FILE *, int, tree);
175 static void dump_array (FILE *, tree);
176 static void dump_vtable (tree, tree, tree);
177 static void dump_vtt (tree, tree);
178 static void dump_thunk (FILE *, int, tree);
179 static tree build_vtable (tree, tree, tree);
180 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
181 static void layout_nonempty_base_or_field (record_layout_info,
182 tree, tree, splay_tree);
183 static tree end_of_class (tree, int);
184 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
185 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
186 vec<constructor_elt, va_gc> **);
187 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
188 vec<constructor_elt, va_gc> **);
189 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
190 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
191 static void clone_constructors_and_destructors (tree);
192 static tree build_clone (tree, tree);
193 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
194 static void build_ctor_vtbl_group (tree, tree);
195 static void build_vtt (tree);
196 static tree binfo_ctor_vtable (tree);
197 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
198 tree *);
199 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
200 static tree dfs_fixup_binfo_vtbls (tree, void *);
201 static int record_subobject_offset (tree, tree, splay_tree);
202 static int check_subobject_offset (tree, tree, splay_tree);
203 static int walk_subobject_offsets (tree, subobject_offset_fn,
204 tree, splay_tree, tree, int);
205 static void record_subobject_offsets (tree, tree, splay_tree, bool);
206 static int layout_conflict_p (tree, tree, splay_tree, int);
207 static int splay_tree_compare_integer_csts (splay_tree_key k1,
208 splay_tree_key k2);
209 static void warn_about_ambiguous_bases (tree);
210 static bool type_requires_array_cookie (tree);
211 static bool base_derived_from (tree, tree);
212 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
213 static tree end_of_base (tree);
214 static tree get_vcall_index (tree, tree);
215
216 /* Variables shared between class.c and call.c. */
217
218 int n_vtables = 0;
219 int n_vtable_entries = 0;
220 int n_vtable_searches = 0;
221 int n_vtable_elems = 0;
222 int n_convert_harshness = 0;
223 int n_compute_conversion_costs = 0;
224 int n_inner_fields_searched = 0;
225
226 /* Convert to or from a base subobject. EXPR is an expression of type
227 `A' or `A*', an expression of type `B' or `B*' is returned. To
228 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
229 the B base instance within A. To convert base A to derived B, CODE
230 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
231 In this latter case, A must not be a morally virtual base of B.
232 NONNULL is true if EXPR is known to be non-NULL (this is only
233 needed when EXPR is of pointer type). CV qualifiers are preserved
234 from EXPR. */
235
236 tree
237 build_base_path (enum tree_code code,
238 tree expr,
239 tree binfo,
240 int nonnull,
241 tsubst_flags_t complain)
242 {
243 tree v_binfo = NULL_TREE;
244 tree d_binfo = NULL_TREE;
245 tree probe;
246 tree offset;
247 tree target_type;
248 tree null_test = NULL;
249 tree ptr_target_type;
250 int fixed_type_p;
251 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
252 bool has_empty = false;
253 bool virtual_access;
254
255 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
256 return error_mark_node;
257
258 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
259 {
260 d_binfo = probe;
261 if (is_empty_class (BINFO_TYPE (probe)))
262 has_empty = true;
263 if (!v_binfo && BINFO_VIRTUAL_P (probe))
264 v_binfo = probe;
265 }
266
267 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
268 if (want_pointer)
269 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
270
271 if (code == PLUS_EXPR
272 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
273 {
274 /* This can happen when adjust_result_of_qualified_name_lookup can't
275 find a unique base binfo in a call to a member function. We
276 couldn't give the diagnostic then since we might have been calling
277 a static member function, so we do it now. */
278 if (complain & tf_error)
279 {
280 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
281 ba_unique, NULL, complain);
282 gcc_assert (base == error_mark_node);
283 }
284 return error_mark_node;
285 }
286
287 gcc_assert ((code == MINUS_EXPR
288 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
289 || code == PLUS_EXPR);
290
291 if (binfo == d_binfo)
292 /* Nothing to do. */
293 return expr;
294
295 if (code == MINUS_EXPR && v_binfo)
296 {
297 if (complain & tf_error)
298 {
299 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo)))
300 {
301 if (want_pointer)
302 error ("cannot convert from pointer to base class %qT to "
303 "pointer to derived class %qT because the base is "
304 "virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
305 else
306 error ("cannot convert from base class %qT to derived "
307 "class %qT because the base is virtual",
308 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
309 }
310 else
311 {
312 if (want_pointer)
313 error ("cannot convert from pointer to base class %qT to "
314 "pointer to derived class %qT via virtual base %qT",
315 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
316 BINFO_TYPE (v_binfo));
317 else
318 error ("cannot convert from base class %qT to derived "
319 "class %qT via virtual base %qT", BINFO_TYPE (binfo),
320 BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
321 }
322 }
323 return error_mark_node;
324 }
325
326 if (!want_pointer)
327 /* This must happen before the call to save_expr. */
328 expr = cp_build_addr_expr (expr, complain);
329 else
330 expr = mark_rvalue_use (expr);
331
332 offset = BINFO_OFFSET (binfo);
333 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
334 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
335 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
336 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
337 expression returned matches the input. */
338 target_type = cp_build_qualified_type
339 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
340 ptr_target_type = build_pointer_type (target_type);
341
342 /* Do we need to look in the vtable for the real offset? */
343 virtual_access = (v_binfo && fixed_type_p <= 0);
344
345 /* Don't bother with the calculations inside sizeof; they'll ICE if the
346 source type is incomplete and the pointer value doesn't matter. In a
347 template (even in fold_non_dependent_expr), we don't have vtables set
348 up properly yet, and the value doesn't matter there either; we're just
349 interested in the result of overload resolution. */
350 if (cp_unevaluated_operand != 0
351 || in_template_function ())
352 {
353 expr = build_nop (ptr_target_type, expr);
354 if (!want_pointer)
355 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
356 return expr;
357 }
358
359 /* If we're in an NSDMI, we don't have the full constructor context yet
360 that we need for converting to a virtual base, so just build a stub
361 CONVERT_EXPR and expand it later in bot_replace. */
362 if (virtual_access && fixed_type_p < 0
363 && current_scope () != current_function_decl)
364 {
365 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
366 CONVERT_EXPR_VBASE_PATH (expr) = true;
367 if (!want_pointer)
368 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
369 return expr;
370 }
371
372 /* Do we need to check for a null pointer? */
373 if (want_pointer && !nonnull)
374 {
375 /* If we know the conversion will not actually change the value
376 of EXPR, then we can avoid testing the expression for NULL.
377 We have to avoid generating a COMPONENT_REF for a base class
378 field, because other parts of the compiler know that such
379 expressions are always non-NULL. */
380 if (!virtual_access && integer_zerop (offset))
381 return build_nop (ptr_target_type, expr);
382 null_test = error_mark_node;
383 }
384
385 /* Protect against multiple evaluation if necessary. */
386 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
387 expr = save_expr (expr);
388
389 /* Now that we've saved expr, build the real null test. */
390 if (null_test)
391 {
392 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
393 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
394 expr, zero);
395 }
396
397 /* If this is a simple base reference, express it as a COMPONENT_REF. */
398 if (code == PLUS_EXPR && !virtual_access
399 /* We don't build base fields for empty bases, and they aren't very
400 interesting to the optimizers anyway. */
401 && !has_empty)
402 {
403 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
404 expr = build_simple_base_path (expr, binfo);
405 if (want_pointer)
406 expr = build_address (expr);
407 target_type = TREE_TYPE (expr);
408 goto out;
409 }
410
411 if (virtual_access)
412 {
413 /* Going via virtual base V_BINFO. We need the static offset
414 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
415 V_BINFO. That offset is an entry in D_BINFO's vtable. */
416 tree v_offset;
417
418 if (fixed_type_p < 0 && in_base_initializer)
419 {
420 /* In a base member initializer, we cannot rely on the
421 vtable being set up. We have to indirect via the
422 vtt_parm. */
423 tree t;
424
425 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
426 t = build_pointer_type (t);
427 v_offset = convert (t, current_vtt_parm);
428 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
429 }
430 else
431 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
432 complain),
433 TREE_TYPE (TREE_TYPE (expr)));
434
435 if (v_offset == error_mark_node)
436 return error_mark_node;
437
438 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
439 v_offset = build1 (NOP_EXPR,
440 build_pointer_type (ptrdiff_type_node),
441 v_offset);
442 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
443 TREE_CONSTANT (v_offset) = 1;
444
445 offset = convert_to_integer (ptrdiff_type_node,
446 size_diffop_loc (input_location, offset,
447 BINFO_OFFSET (v_binfo)));
448
449 if (!integer_zerop (offset))
450 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
451
452 if (fixed_type_p < 0)
453 /* Negative fixed_type_p means this is a constructor or destructor;
454 virtual base layout is fixed in in-charge [cd]tors, but not in
455 base [cd]tors. */
456 offset = build3 (COND_EXPR, ptrdiff_type_node,
457 build2 (EQ_EXPR, boolean_type_node,
458 current_in_charge_parm, integer_zero_node),
459 v_offset,
460 convert_to_integer (ptrdiff_type_node,
461 BINFO_OFFSET (binfo)));
462 else
463 offset = v_offset;
464 }
465
466 if (want_pointer)
467 target_type = ptr_target_type;
468
469 expr = build1 (NOP_EXPR, ptr_target_type, expr);
470
471 if (!integer_zerop (offset))
472 {
473 offset = fold_convert (sizetype, offset);
474 if (code == MINUS_EXPR)
475 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
476 expr = fold_build_pointer_plus (expr, offset);
477 }
478 else
479 null_test = NULL;
480
481 if (!want_pointer)
482 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
483
484 out:
485 if (null_test)
486 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
487 build_zero_cst (target_type));
488
489 return expr;
490 }
491
492 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
493 Perform a derived-to-base conversion by recursively building up a
494 sequence of COMPONENT_REFs to the appropriate base fields. */
495
496 static tree
497 build_simple_base_path (tree expr, tree binfo)
498 {
499 tree type = BINFO_TYPE (binfo);
500 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
501 tree field;
502
503 if (d_binfo == NULL_TREE)
504 {
505 tree temp;
506
507 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
508
509 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
510 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
511 an lvalue in the front end; only _DECLs and _REFs are lvalues
512 in the back end. */
513 temp = unary_complex_lvalue (ADDR_EXPR, expr);
514 if (temp)
515 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
516
517 return expr;
518 }
519
520 /* Recurse. */
521 expr = build_simple_base_path (expr, d_binfo);
522
523 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
524 field; field = DECL_CHAIN (field))
525 /* Is this the base field created by build_base_field? */
526 if (TREE_CODE (field) == FIELD_DECL
527 && DECL_FIELD_IS_BASE (field)
528 && TREE_TYPE (field) == type
529 /* If we're looking for a field in the most-derived class,
530 also check the field offset; we can have two base fields
531 of the same type if one is an indirect virtual base and one
532 is a direct non-virtual base. */
533 && (BINFO_INHERITANCE_CHAIN (d_binfo)
534 || tree_int_cst_equal (byte_position (field),
535 BINFO_OFFSET (binfo))))
536 {
537 /* We don't use build_class_member_access_expr here, as that
538 has unnecessary checks, and more importantly results in
539 recursive calls to dfs_walk_once. */
540 int type_quals = cp_type_quals (TREE_TYPE (expr));
541
542 expr = build3 (COMPONENT_REF,
543 cp_build_qualified_type (type, type_quals),
544 expr, field, NULL_TREE);
545 expr = fold_if_not_in_template (expr);
546
547 /* Mark the expression const or volatile, as appropriate.
548 Even though we've dealt with the type above, we still have
549 to mark the expression itself. */
550 if (type_quals & TYPE_QUAL_CONST)
551 TREE_READONLY (expr) = 1;
552 if (type_quals & TYPE_QUAL_VOLATILE)
553 TREE_THIS_VOLATILE (expr) = 1;
554
555 return expr;
556 }
557
558 /* Didn't find the base field?!? */
559 gcc_unreachable ();
560 }
561
562 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
563 type is a class type or a pointer to a class type. In the former
564 case, TYPE is also a class type; in the latter it is another
565 pointer type. If CHECK_ACCESS is true, an error message is emitted
566 if TYPE is inaccessible. If OBJECT has pointer type, the value is
567 assumed to be non-NULL. */
568
569 tree
570 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
571 tsubst_flags_t complain)
572 {
573 tree binfo;
574 tree object_type;
575
576 if (TYPE_PTR_P (TREE_TYPE (object)))
577 {
578 object_type = TREE_TYPE (TREE_TYPE (object));
579 type = TREE_TYPE (type);
580 }
581 else
582 object_type = TREE_TYPE (object);
583
584 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
585 NULL, complain);
586 if (!binfo || binfo == error_mark_node)
587 return error_mark_node;
588
589 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
590 }
591
592 /* EXPR is an expression with unqualified class type. BASE is a base
593 binfo of that class type. Returns EXPR, converted to the BASE
594 type. This function assumes that EXPR is the most derived class;
595 therefore virtual bases can be found at their static offsets. */
596
597 tree
598 convert_to_base_statically (tree expr, tree base)
599 {
600 tree expr_type;
601
602 expr_type = TREE_TYPE (expr);
603 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
604 {
605 /* If this is a non-empty base, use a COMPONENT_REF. */
606 if (!is_empty_class (BINFO_TYPE (base)))
607 return build_simple_base_path (expr, base);
608
609 /* We use fold_build2 and fold_convert below to simplify the trees
610 provided to the optimizers. It is not safe to call these functions
611 when processing a template because they do not handle C++-specific
612 trees. */
613 gcc_assert (!processing_template_decl);
614 expr = cp_build_addr_expr (expr, tf_warning_or_error);
615 if (!integer_zerop (BINFO_OFFSET (base)))
616 expr = fold_build_pointer_plus_loc (input_location,
617 expr, BINFO_OFFSET (base));
618 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
619 expr = build_fold_indirect_ref_loc (input_location, expr);
620 }
621
622 return expr;
623 }
624
625 \f
626 tree
627 build_vfield_ref (tree datum, tree type)
628 {
629 tree vfield, vcontext;
630
631 if (datum == error_mark_node
632 /* Can happen in case of duplicate base types (c++/59082). */
633 || !TYPE_VFIELD (type))
634 return error_mark_node;
635
636 /* First, convert to the requested type. */
637 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
638 datum = convert_to_base (datum, type, /*check_access=*/false,
639 /*nonnull=*/true, tf_warning_or_error);
640
641 /* Second, the requested type may not be the owner of its own vptr.
642 If not, convert to the base class that owns it. We cannot use
643 convert_to_base here, because VCONTEXT may appear more than once
644 in the inheritance hierarchy of TYPE, and thus direct conversion
645 between the types may be ambiguous. Following the path back up
646 one step at a time via primary bases avoids the problem. */
647 vfield = TYPE_VFIELD (type);
648 vcontext = DECL_CONTEXT (vfield);
649 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
650 {
651 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
652 type = TREE_TYPE (datum);
653 }
654
655 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
656 }
657
658 /* Given an object INSTANCE, return an expression which yields the
659 vtable element corresponding to INDEX. There are many special
660 cases for INSTANCE which we take care of here, mainly to avoid
661 creating extra tree nodes when we don't have to. */
662
663 static tree
664 build_vtbl_ref_1 (tree instance, tree idx)
665 {
666 tree aref;
667 tree vtbl = NULL_TREE;
668
669 /* Try to figure out what a reference refers to, and
670 access its virtual function table directly. */
671
672 int cdtorp = 0;
673 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
674
675 tree basetype = non_reference (TREE_TYPE (instance));
676
677 if (fixed_type && !cdtorp)
678 {
679 tree binfo = lookup_base (fixed_type, basetype,
680 ba_unique, NULL, tf_none);
681 if (binfo && binfo != error_mark_node)
682 vtbl = unshare_expr (BINFO_VTABLE (binfo));
683 }
684
685 if (!vtbl)
686 vtbl = build_vfield_ref (instance, basetype);
687
688 aref = build_array_ref (input_location, vtbl, idx);
689 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
690
691 return aref;
692 }
693
694 tree
695 build_vtbl_ref (tree instance, tree idx)
696 {
697 tree aref = build_vtbl_ref_1 (instance, idx);
698
699 return aref;
700 }
701
702 /* Given a stable object pointer INSTANCE_PTR, return an expression which
703 yields a function pointer corresponding to vtable element INDEX. */
704
705 tree
706 build_vfn_ref (tree instance_ptr, tree idx)
707 {
708 tree aref;
709
710 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
711 tf_warning_or_error),
712 idx);
713
714 /* When using function descriptors, the address of the
715 vtable entry is treated as a function pointer. */
716 if (TARGET_VTABLE_USES_DESCRIPTORS)
717 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
718 cp_build_addr_expr (aref, tf_warning_or_error));
719
720 /* Remember this as a method reference, for later devirtualization. */
721 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
722
723 return aref;
724 }
725
726 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
727 for the given TYPE. */
728
729 static tree
730 get_vtable_name (tree type)
731 {
732 return mangle_vtbl_for_type (type);
733 }
734
735 /* DECL is an entity associated with TYPE, like a virtual table or an
736 implicitly generated constructor. Determine whether or not DECL
737 should have external or internal linkage at the object file
738 level. This routine does not deal with COMDAT linkage and other
739 similar complexities; it simply sets TREE_PUBLIC if it possible for
740 entities in other translation units to contain copies of DECL, in
741 the abstract. */
742
743 void
744 set_linkage_according_to_type (tree /*type*/, tree decl)
745 {
746 TREE_PUBLIC (decl) = 1;
747 determine_visibility (decl);
748 }
749
750 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
751 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
752 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
753
754 static tree
755 build_vtable (tree class_type, tree name, tree vtable_type)
756 {
757 tree decl;
758
759 decl = build_lang_decl (VAR_DECL, name, vtable_type);
760 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
761 now to avoid confusion in mangle_decl. */
762 SET_DECL_ASSEMBLER_NAME (decl, name);
763 DECL_CONTEXT (decl) = class_type;
764 DECL_ARTIFICIAL (decl) = 1;
765 TREE_STATIC (decl) = 1;
766 TREE_READONLY (decl) = 1;
767 DECL_VIRTUAL_P (decl) = 1;
768 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
769 DECL_USER_ALIGN (decl) = true;
770 DECL_VTABLE_OR_VTT_P (decl) = 1;
771 set_linkage_according_to_type (class_type, decl);
772 /* The vtable has not been defined -- yet. */
773 DECL_EXTERNAL (decl) = 1;
774 DECL_NOT_REALLY_EXTERN (decl) = 1;
775
776 /* Mark the VAR_DECL node representing the vtable itself as a
777 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
778 is rather important that such things be ignored because any
779 effort to actually generate DWARF for them will run into
780 trouble when/if we encounter code like:
781
782 #pragma interface
783 struct S { virtual void member (); };
784
785 because the artificial declaration of the vtable itself (as
786 manufactured by the g++ front end) will say that the vtable is
787 a static member of `S' but only *after* the debug output for
788 the definition of `S' has already been output. This causes
789 grief because the DWARF entry for the definition of the vtable
790 will try to refer back to an earlier *declaration* of the
791 vtable as a static member of `S' and there won't be one. We
792 might be able to arrange to have the "vtable static member"
793 attached to the member list for `S' before the debug info for
794 `S' get written (which would solve the problem) but that would
795 require more intrusive changes to the g++ front end. */
796 DECL_IGNORED_P (decl) = 1;
797
798 return decl;
799 }
800
801 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
802 or even complete. If this does not exist, create it. If COMPLETE is
803 nonzero, then complete the definition of it -- that will render it
804 impossible to actually build the vtable, but is useful to get at those
805 which are known to exist in the runtime. */
806
807 tree
808 get_vtable_decl (tree type, int complete)
809 {
810 tree decl;
811
812 if (CLASSTYPE_VTABLES (type))
813 return CLASSTYPE_VTABLES (type);
814
815 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
816 CLASSTYPE_VTABLES (type) = decl;
817
818 if (complete)
819 {
820 DECL_EXTERNAL (decl) = 1;
821 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
822 }
823
824 return decl;
825 }
826
827 /* Build the primary virtual function table for TYPE. If BINFO is
828 non-NULL, build the vtable starting with the initial approximation
829 that it is the same as the one which is the head of the association
830 list. Returns a nonzero value if a new vtable is actually
831 created. */
832
833 static int
834 build_primary_vtable (tree binfo, tree type)
835 {
836 tree decl;
837 tree virtuals;
838
839 decl = get_vtable_decl (type, /*complete=*/0);
840
841 if (binfo)
842 {
843 if (BINFO_NEW_VTABLE_MARKED (binfo))
844 /* We have already created a vtable for this base, so there's
845 no need to do it again. */
846 return 0;
847
848 virtuals = copy_list (BINFO_VIRTUALS (binfo));
849 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
850 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
851 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
852 }
853 else
854 {
855 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
856 virtuals = NULL_TREE;
857 }
858
859 if (GATHER_STATISTICS)
860 {
861 n_vtables += 1;
862 n_vtable_elems += list_length (virtuals);
863 }
864
865 /* Initialize the association list for this type, based
866 on our first approximation. */
867 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
868 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
869 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
870 return 1;
871 }
872
873 /* Give BINFO a new virtual function table which is initialized
874 with a skeleton-copy of its original initialization. The only
875 entry that changes is the `delta' entry, so we can really
876 share a lot of structure.
877
878 FOR_TYPE is the most derived type which caused this table to
879 be needed.
880
881 Returns nonzero if we haven't met BINFO before.
882
883 The order in which vtables are built (by calling this function) for
884 an object must remain the same, otherwise a binary incompatibility
885 can result. */
886
887 static int
888 build_secondary_vtable (tree binfo)
889 {
890 if (BINFO_NEW_VTABLE_MARKED (binfo))
891 /* We already created a vtable for this base. There's no need to
892 do it again. */
893 return 0;
894
895 /* Remember that we've created a vtable for this BINFO, so that we
896 don't try to do so again. */
897 SET_BINFO_NEW_VTABLE_MARKED (binfo);
898
899 /* Make fresh virtual list, so we can smash it later. */
900 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
901
902 /* Secondary vtables are laid out as part of the same structure as
903 the primary vtable. */
904 BINFO_VTABLE (binfo) = NULL_TREE;
905 return 1;
906 }
907
908 /* Create a new vtable for BINFO which is the hierarchy dominated by
909 T. Return nonzero if we actually created a new vtable. */
910
911 static int
912 make_new_vtable (tree t, tree binfo)
913 {
914 if (binfo == TYPE_BINFO (t))
915 /* In this case, it is *type*'s vtable we are modifying. We start
916 with the approximation that its vtable is that of the
917 immediate base class. */
918 return build_primary_vtable (binfo, t);
919 else
920 /* This is our very own copy of `basetype' to play with. Later,
921 we will fill in all the virtual functions that override the
922 virtual functions in these base classes which are not defined
923 by the current type. */
924 return build_secondary_vtable (binfo);
925 }
926
927 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
928 (which is in the hierarchy dominated by T) list FNDECL as its
929 BV_FN. DELTA is the required constant adjustment from the `this'
930 pointer where the vtable entry appears to the `this' required when
931 the function is actually called. */
932
933 static void
934 modify_vtable_entry (tree t,
935 tree binfo,
936 tree fndecl,
937 tree delta,
938 tree *virtuals)
939 {
940 tree v;
941
942 v = *virtuals;
943
944 if (fndecl != BV_FN (v)
945 || !tree_int_cst_equal (delta, BV_DELTA (v)))
946 {
947 /* We need a new vtable for BINFO. */
948 if (make_new_vtable (t, binfo))
949 {
950 /* If we really did make a new vtable, we also made a copy
951 of the BINFO_VIRTUALS list. Now, we have to find the
952 corresponding entry in that list. */
953 *virtuals = BINFO_VIRTUALS (binfo);
954 while (BV_FN (*virtuals) != BV_FN (v))
955 *virtuals = TREE_CHAIN (*virtuals);
956 v = *virtuals;
957 }
958
959 BV_DELTA (v) = delta;
960 BV_VCALL_INDEX (v) = NULL_TREE;
961 BV_FN (v) = fndecl;
962 }
963 }
964
965 \f
966 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
967 the USING_DECL naming METHOD. Returns true if the method could be
968 added to the method vec. */
969
970 bool
971 add_method (tree type, tree method, tree using_decl)
972 {
973 unsigned slot;
974 tree overload;
975 bool template_conv_p = false;
976 bool conv_p;
977 vec<tree, va_gc> *method_vec;
978 bool complete_p;
979 bool insert_p = false;
980 tree current_fns;
981 tree fns;
982
983 if (method == error_mark_node)
984 return false;
985
986 complete_p = COMPLETE_TYPE_P (type);
987 conv_p = DECL_CONV_FN_P (method);
988 if (conv_p)
989 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
990 && DECL_TEMPLATE_CONV_FN_P (method));
991
992 method_vec = CLASSTYPE_METHOD_VEC (type);
993 if (!method_vec)
994 {
995 /* Make a new method vector. We start with 8 entries. We must
996 allocate at least two (for constructors and destructors), and
997 we're going to end up with an assignment operator at some
998 point as well. */
999 vec_alloc (method_vec, 8);
1000 /* Create slots for constructors and destructors. */
1001 method_vec->quick_push (NULL_TREE);
1002 method_vec->quick_push (NULL_TREE);
1003 CLASSTYPE_METHOD_VEC (type) = method_vec;
1004 }
1005
1006 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
1007 grok_special_member_properties (method);
1008
1009 /* Constructors and destructors go in special slots. */
1010 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
1011 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
1012 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1013 {
1014 slot = CLASSTYPE_DESTRUCTOR_SLOT;
1015
1016 if (TYPE_FOR_JAVA (type))
1017 {
1018 if (!DECL_ARTIFICIAL (method))
1019 error ("Java class %qT cannot have a destructor", type);
1020 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1021 error ("Java class %qT cannot have an implicit non-trivial "
1022 "destructor",
1023 type);
1024 }
1025 }
1026 else
1027 {
1028 tree m;
1029
1030 insert_p = true;
1031 /* See if we already have an entry with this name. */
1032 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1033 vec_safe_iterate (method_vec, slot, &m);
1034 ++slot)
1035 {
1036 m = OVL_CURRENT (m);
1037 if (template_conv_p)
1038 {
1039 if (TREE_CODE (m) == TEMPLATE_DECL
1040 && DECL_TEMPLATE_CONV_FN_P (m))
1041 insert_p = false;
1042 break;
1043 }
1044 if (conv_p && !DECL_CONV_FN_P (m))
1045 break;
1046 if (DECL_NAME (m) == DECL_NAME (method))
1047 {
1048 insert_p = false;
1049 break;
1050 }
1051 if (complete_p
1052 && !DECL_CONV_FN_P (m)
1053 && DECL_NAME (m) > DECL_NAME (method))
1054 break;
1055 }
1056 }
1057 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1058
1059 /* Check to see if we've already got this method. */
1060 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1061 {
1062 tree fn = OVL_CURRENT (fns);
1063 tree fn_type;
1064 tree method_type;
1065 tree parms1;
1066 tree parms2;
1067
1068 if (TREE_CODE (fn) != TREE_CODE (method))
1069 continue;
1070
1071 /* [over.load] Member function declarations with the
1072 same name and the same parameter types cannot be
1073 overloaded if any of them is a static member
1074 function declaration.
1075
1076 [over.load] Member function declarations with the same name and
1077 the same parameter-type-list as well as member function template
1078 declarations with the same name, the same parameter-type-list, and
1079 the same template parameter lists cannot be overloaded if any of
1080 them, but not all, have a ref-qualifier.
1081
1082 [namespace.udecl] When a using-declaration brings names
1083 from a base class into a derived class scope, member
1084 functions in the derived class override and/or hide member
1085 functions with the same name and parameter types in a base
1086 class (rather than conflicting). */
1087 fn_type = TREE_TYPE (fn);
1088 method_type = TREE_TYPE (method);
1089 parms1 = TYPE_ARG_TYPES (fn_type);
1090 parms2 = TYPE_ARG_TYPES (method_type);
1091
1092 /* Compare the quals on the 'this' parm. Don't compare
1093 the whole types, as used functions are treated as
1094 coming from the using class in overload resolution. */
1095 if (! DECL_STATIC_FUNCTION_P (fn)
1096 && ! DECL_STATIC_FUNCTION_P (method)
1097 /* Either both or neither need to be ref-qualified for
1098 differing quals to allow overloading. */
1099 && (FUNCTION_REF_QUALIFIED (fn_type)
1100 == FUNCTION_REF_QUALIFIED (method_type))
1101 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1102 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1103 continue;
1104
1105 /* For templates, the return type and template parameters
1106 must be identical. */
1107 if (TREE_CODE (fn) == TEMPLATE_DECL
1108 && (!same_type_p (TREE_TYPE (fn_type),
1109 TREE_TYPE (method_type))
1110 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1111 DECL_TEMPLATE_PARMS (method))))
1112 continue;
1113
1114 if (! DECL_STATIC_FUNCTION_P (fn))
1115 parms1 = TREE_CHAIN (parms1);
1116 if (! DECL_STATIC_FUNCTION_P (method))
1117 parms2 = TREE_CHAIN (parms2);
1118
1119 if (compparms (parms1, parms2)
1120 && (!DECL_CONV_FN_P (fn)
1121 || same_type_p (TREE_TYPE (fn_type),
1122 TREE_TYPE (method_type))))
1123 {
1124 /* For function versions, their parms and types match
1125 but they are not duplicates. Record function versions
1126 as and when they are found. extern "C" functions are
1127 not treated as versions. */
1128 if (TREE_CODE (fn) == FUNCTION_DECL
1129 && TREE_CODE (method) == FUNCTION_DECL
1130 && !DECL_EXTERN_C_P (fn)
1131 && !DECL_EXTERN_C_P (method)
1132 && targetm.target_option.function_versions (fn, method))
1133 {
1134 /* Mark functions as versions if necessary. Modify the mangled
1135 decl name if necessary. */
1136 if (!DECL_FUNCTION_VERSIONED (fn))
1137 {
1138 DECL_FUNCTION_VERSIONED (fn) = 1;
1139 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1140 mangle_decl (fn);
1141 }
1142 if (!DECL_FUNCTION_VERSIONED (method))
1143 {
1144 DECL_FUNCTION_VERSIONED (method) = 1;
1145 if (DECL_ASSEMBLER_NAME_SET_P (method))
1146 mangle_decl (method);
1147 }
1148 cgraph_node::record_function_versions (fn, method);
1149 continue;
1150 }
1151 if (DECL_INHERITED_CTOR_BASE (method))
1152 {
1153 if (DECL_INHERITED_CTOR_BASE (fn))
1154 {
1155 error_at (DECL_SOURCE_LOCATION (method),
1156 "%q#D inherited from %qT", method,
1157 DECL_INHERITED_CTOR_BASE (method));
1158 error_at (DECL_SOURCE_LOCATION (fn),
1159 "conflicts with version inherited from %qT",
1160 DECL_INHERITED_CTOR_BASE (fn));
1161 }
1162 /* Otherwise defer to the other function. */
1163 return false;
1164 }
1165 if (using_decl)
1166 {
1167 if (DECL_CONTEXT (fn) == type)
1168 /* Defer to the local function. */
1169 return false;
1170 }
1171 else
1172 {
1173 error ("%q+#D cannot be overloaded", method);
1174 error ("with %q+#D", fn);
1175 }
1176
1177 /* We don't call duplicate_decls here to merge the
1178 declarations because that will confuse things if the
1179 methods have inline definitions. In particular, we
1180 will crash while processing the definitions. */
1181 return false;
1182 }
1183 }
1184
1185 /* A class should never have more than one destructor. */
1186 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1187 return false;
1188
1189 /* Add the new binding. */
1190 if (using_decl)
1191 {
1192 overload = ovl_cons (method, current_fns);
1193 OVL_USED (overload) = true;
1194 }
1195 else
1196 overload = build_overload (method, current_fns);
1197
1198 if (conv_p)
1199 TYPE_HAS_CONVERSION (type) = 1;
1200 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1201 push_class_level_binding (DECL_NAME (method), overload);
1202
1203 if (insert_p)
1204 {
1205 bool reallocated;
1206
1207 /* We only expect to add few methods in the COMPLETE_P case, so
1208 just make room for one more method in that case. */
1209 if (complete_p)
1210 reallocated = vec_safe_reserve_exact (method_vec, 1);
1211 else
1212 reallocated = vec_safe_reserve (method_vec, 1);
1213 if (reallocated)
1214 CLASSTYPE_METHOD_VEC (type) = method_vec;
1215 if (slot == method_vec->length ())
1216 method_vec->quick_push (overload);
1217 else
1218 method_vec->quick_insert (slot, overload);
1219 }
1220 else
1221 /* Replace the current slot. */
1222 (*method_vec)[slot] = overload;
1223 return true;
1224 }
1225
1226 /* Subroutines of finish_struct. */
1227
1228 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1229 legit, otherwise return 0. */
1230
1231 static int
1232 alter_access (tree t, tree fdecl, tree access)
1233 {
1234 tree elem;
1235
1236 if (!DECL_LANG_SPECIFIC (fdecl))
1237 retrofit_lang_decl (fdecl);
1238
1239 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1240
1241 elem = purpose_member (t, DECL_ACCESS (fdecl));
1242 if (elem)
1243 {
1244 if (TREE_VALUE (elem) != access)
1245 {
1246 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1247 error ("conflicting access specifications for method"
1248 " %q+D, ignored", TREE_TYPE (fdecl));
1249 else
1250 error ("conflicting access specifications for field %qE, ignored",
1251 DECL_NAME (fdecl));
1252 }
1253 else
1254 {
1255 /* They're changing the access to the same thing they changed
1256 it to before. That's OK. */
1257 ;
1258 }
1259 }
1260 else
1261 {
1262 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1263 tf_warning_or_error);
1264 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1265 return 1;
1266 }
1267 return 0;
1268 }
1269
1270 /* Process the USING_DECL, which is a member of T. */
1271
1272 static void
1273 handle_using_decl (tree using_decl, tree t)
1274 {
1275 tree decl = USING_DECL_DECLS (using_decl);
1276 tree name = DECL_NAME (using_decl);
1277 tree access
1278 = TREE_PRIVATE (using_decl) ? access_private_node
1279 : TREE_PROTECTED (using_decl) ? access_protected_node
1280 : access_public_node;
1281 tree flist = NULL_TREE;
1282 tree old_value;
1283
1284 gcc_assert (!processing_template_decl && decl);
1285
1286 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1287 tf_warning_or_error);
1288 if (old_value)
1289 {
1290 if (is_overloaded_fn (old_value))
1291 old_value = OVL_CURRENT (old_value);
1292
1293 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1294 /* OK */;
1295 else
1296 old_value = NULL_TREE;
1297 }
1298
1299 cp_emit_debug_info_for_using (decl, t);
1300
1301 if (is_overloaded_fn (decl))
1302 flist = decl;
1303
1304 if (! old_value)
1305 ;
1306 else if (is_overloaded_fn (old_value))
1307 {
1308 if (flist)
1309 /* It's OK to use functions from a base when there are functions with
1310 the same name already present in the current class. */;
1311 else
1312 {
1313 error ("%q+D invalid in %q#T", using_decl, t);
1314 error (" because of local method %q+#D with same name",
1315 OVL_CURRENT (old_value));
1316 return;
1317 }
1318 }
1319 else if (!DECL_ARTIFICIAL (old_value))
1320 {
1321 error ("%q+D invalid in %q#T", using_decl, t);
1322 error (" because of local member %q+#D with same name", old_value);
1323 return;
1324 }
1325
1326 /* Make type T see field decl FDECL with access ACCESS. */
1327 if (flist)
1328 for (; flist; flist = OVL_NEXT (flist))
1329 {
1330 add_method (t, OVL_CURRENT (flist), using_decl);
1331 alter_access (t, OVL_CURRENT (flist), access);
1332 }
1333 else
1334 alter_access (t, decl, access);
1335 }
1336 \f
1337 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1338 types with abi tags, add the corresponding identifiers to the VEC in
1339 *DATA and set IDENTIFIER_MARKED. */
1340
1341 struct abi_tag_data
1342 {
1343 tree t;
1344 tree subob;
1345 // error_mark_node to get diagnostics; otherwise collect missing tags here
1346 tree tags;
1347 };
1348
1349 static tree
1350 find_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
1351 {
1352 if (!OVERLOAD_TYPE_P (*tp))
1353 return NULL_TREE;
1354
1355 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1356 anyway, but let's make sure of it. */
1357 *walk_subtrees = false;
1358
1359 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1360 {
1361 struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1362 for (tree list = TREE_VALUE (attributes); list;
1363 list = TREE_CHAIN (list))
1364 {
1365 tree tag = TREE_VALUE (list);
1366 tree id = get_identifier (TREE_STRING_POINTER (tag));
1367 if (!IDENTIFIER_MARKED (id))
1368 {
1369 if (p->tags != error_mark_node)
1370 {
1371 /* We're collecting tags from template arguments. */
1372 tree str = build_string (IDENTIFIER_LENGTH (id),
1373 IDENTIFIER_POINTER (id));
1374 p->tags = tree_cons (NULL_TREE, str, p->tags);
1375 ABI_TAG_IMPLICIT (p->tags) = true;
1376
1377 /* Don't inherit this tag multiple times. */
1378 IDENTIFIER_MARKED (id) = true;
1379 }
1380
1381 /* Otherwise we're diagnosing missing tags. */
1382 else if (TYPE_P (p->subob))
1383 {
1384 if (warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1385 "that base %qT has", p->t, tag, p->subob))
1386 inform (location_of (p->subob), "%qT declared here",
1387 p->subob);
1388 }
1389 else
1390 {
1391 if (warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1392 "that %qT (used in the type of %qD) has",
1393 p->t, tag, *tp, p->subob))
1394 {
1395 inform (location_of (p->subob), "%qD declared here",
1396 p->subob);
1397 inform (location_of (*tp), "%qT declared here", *tp);
1398 }
1399 }
1400 }
1401 }
1402 }
1403 return NULL_TREE;
1404 }
1405
1406 /* Set IDENTIFIER_MARKED on all the ABI tags on T and its (transitively
1407 complete) template arguments. */
1408
1409 static void
1410 mark_type_abi_tags (tree t, bool val)
1411 {
1412 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1413 if (attributes)
1414 {
1415 for (tree list = TREE_VALUE (attributes); list;
1416 list = TREE_CHAIN (list))
1417 {
1418 tree tag = TREE_VALUE (list);
1419 tree id = get_identifier (TREE_STRING_POINTER (tag));
1420 IDENTIFIER_MARKED (id) = val;
1421 }
1422 }
1423 }
1424
1425 /* Check that class T has all the abi tags that subobject SUBOB has, or
1426 warn if not. */
1427
1428 static void
1429 check_abi_tags (tree t, tree subob)
1430 {
1431 mark_type_abi_tags (t, true);
1432
1433 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1434 struct abi_tag_data data = { t, subob, error_mark_node };
1435
1436 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1437
1438 mark_type_abi_tags (t, false);
1439 }
1440
1441 void
1442 inherit_targ_abi_tags (tree t)
1443 {
1444 if (!CLASS_TYPE_P (t)
1445 || CLASSTYPE_TEMPLATE_INFO (t) == NULL_TREE)
1446 return;
1447
1448 mark_type_abi_tags (t, true);
1449
1450 tree args = CLASSTYPE_TI_ARGS (t);
1451 struct abi_tag_data data = { t, NULL_TREE, NULL_TREE };
1452 for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
1453 {
1454 tree level = TMPL_ARGS_LEVEL (args, i+1);
1455 for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1456 {
1457 tree arg = TREE_VEC_ELT (level, j);
1458 data.subob = arg;
1459 cp_walk_tree_without_duplicates (&arg, find_abi_tags_r, &data);
1460 }
1461 }
1462
1463 // If we found some tags on our template arguments, add them to our
1464 // abi_tag attribute.
1465 if (data.tags)
1466 {
1467 tree attr = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1468 if (attr)
1469 TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
1470 else
1471 TYPE_ATTRIBUTES (t)
1472 = tree_cons (get_identifier ("abi_tag"), data.tags,
1473 TYPE_ATTRIBUTES (t));
1474 }
1475
1476 mark_type_abi_tags (t, false);
1477 }
1478
1479 /* Return true, iff class T has a non-virtual destructor that is
1480 accessible from outside the class heirarchy (i.e. is public, or
1481 there's a suitable friend. */
1482
1483 static bool
1484 accessible_nvdtor_p (tree t)
1485 {
1486 tree dtor = CLASSTYPE_DESTRUCTORS (t);
1487
1488 /* An implicitly declared destructor is always public. And,
1489 if it were virtual, we would have created it by now. */
1490 if (!dtor)
1491 return true;
1492
1493 if (DECL_VINDEX (dtor))
1494 return false; /* Virtual */
1495
1496 if (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
1497 return true; /* Public */
1498
1499 if (CLASSTYPE_FRIEND_CLASSES (t)
1500 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1501 return true; /* Has friends */
1502
1503 return false;
1504 }
1505
1506 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1507 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1508 properties of the bases. */
1509
1510 static void
1511 check_bases (tree t,
1512 int* cant_have_const_ctor_p,
1513 int* no_const_asn_ref_p)
1514 {
1515 int i;
1516 bool seen_non_virtual_nearly_empty_base_p = 0;
1517 int seen_tm_mask = 0;
1518 tree base_binfo;
1519 tree binfo;
1520 tree field = NULL_TREE;
1521
1522 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1523 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1524 if (TREE_CODE (field) == FIELD_DECL)
1525 break;
1526
1527 for (binfo = TYPE_BINFO (t), i = 0;
1528 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1529 {
1530 tree basetype = TREE_TYPE (base_binfo);
1531
1532 gcc_assert (COMPLETE_TYPE_P (basetype));
1533
1534 if (CLASSTYPE_FINAL (basetype))
1535 error ("cannot derive from %<final%> base %qT in derived type %qT",
1536 basetype, t);
1537
1538 /* If any base class is non-literal, so is the derived class. */
1539 if (!CLASSTYPE_LITERAL_P (basetype))
1540 CLASSTYPE_LITERAL_P (t) = false;
1541
1542 /* If the base class doesn't have copy constructors or
1543 assignment operators that take const references, then the
1544 derived class cannot have such a member automatically
1545 generated. */
1546 if (TYPE_HAS_COPY_CTOR (basetype)
1547 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1548 *cant_have_const_ctor_p = 1;
1549 if (TYPE_HAS_COPY_ASSIGN (basetype)
1550 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1551 *no_const_asn_ref_p = 1;
1552
1553 if (BINFO_VIRTUAL_P (base_binfo))
1554 /* A virtual base does not effect nearly emptiness. */
1555 ;
1556 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1557 {
1558 if (seen_non_virtual_nearly_empty_base_p)
1559 /* And if there is more than one nearly empty base, then the
1560 derived class is not nearly empty either. */
1561 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1562 else
1563 /* Remember we've seen one. */
1564 seen_non_virtual_nearly_empty_base_p = 1;
1565 }
1566 else if (!is_empty_class (basetype))
1567 /* If the base class is not empty or nearly empty, then this
1568 class cannot be nearly empty. */
1569 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1570
1571 /* A lot of properties from the bases also apply to the derived
1572 class. */
1573 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1574 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1575 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1576 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1577 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1578 || !TYPE_HAS_COPY_ASSIGN (basetype));
1579 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1580 || !TYPE_HAS_COPY_CTOR (basetype));
1581 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1582 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1583 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1584 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1585 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1586 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1587 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1588 || TYPE_HAS_COMPLEX_DFLT (basetype));
1589 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
1590 (t, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
1591 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype));
1592 SET_CLASSTYPE_REF_FIELDS_NEED_INIT
1593 (t, CLASSTYPE_REF_FIELDS_NEED_INIT (t)
1594 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype));
1595
1596 /* A standard-layout class is a class that:
1597 ...
1598 * has no non-standard-layout base classes, */
1599 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1600 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1601 {
1602 tree basefield;
1603 /* ...has no base classes of the same type as the first non-static
1604 data member... */
1605 if (field && DECL_CONTEXT (field) == t
1606 && (same_type_ignoring_top_level_qualifiers_p
1607 (TREE_TYPE (field), basetype)))
1608 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1609 else
1610 /* ...either has no non-static data members in the most-derived
1611 class and at most one base class with non-static data
1612 members, or has no base classes with non-static data
1613 members */
1614 for (basefield = TYPE_FIELDS (basetype); basefield;
1615 basefield = DECL_CHAIN (basefield))
1616 if (TREE_CODE (basefield) == FIELD_DECL)
1617 {
1618 if (field)
1619 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1620 else
1621 field = basefield;
1622 break;
1623 }
1624 }
1625
1626 /* Don't bother collecting tm attributes if transactional memory
1627 support is not enabled. */
1628 if (flag_tm)
1629 {
1630 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1631 if (tm_attr)
1632 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1633 }
1634
1635 check_abi_tags (t, basetype);
1636 }
1637
1638 /* If one of the base classes had TM attributes, and the current class
1639 doesn't define its own, then the current class inherits one. */
1640 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1641 {
1642 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1643 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1644 }
1645 }
1646
1647 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1648 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1649 that have had a nearly-empty virtual primary base stolen by some
1650 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1651 T. */
1652
1653 static void
1654 determine_primary_bases (tree t)
1655 {
1656 unsigned i;
1657 tree primary = NULL_TREE;
1658 tree type_binfo = TYPE_BINFO (t);
1659 tree base_binfo;
1660
1661 /* Determine the primary bases of our bases. */
1662 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1663 base_binfo = TREE_CHAIN (base_binfo))
1664 {
1665 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1666
1667 /* See if we're the non-virtual primary of our inheritance
1668 chain. */
1669 if (!BINFO_VIRTUAL_P (base_binfo))
1670 {
1671 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1672 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1673
1674 if (parent_primary
1675 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1676 BINFO_TYPE (parent_primary)))
1677 /* We are the primary binfo. */
1678 BINFO_PRIMARY_P (base_binfo) = 1;
1679 }
1680 /* Determine if we have a virtual primary base, and mark it so.
1681 */
1682 if (primary && BINFO_VIRTUAL_P (primary))
1683 {
1684 tree this_primary = copied_binfo (primary, base_binfo);
1685
1686 if (BINFO_PRIMARY_P (this_primary))
1687 /* Someone already claimed this base. */
1688 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1689 else
1690 {
1691 tree delta;
1692
1693 BINFO_PRIMARY_P (this_primary) = 1;
1694 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1695
1696 /* A virtual binfo might have been copied from within
1697 another hierarchy. As we're about to use it as a
1698 primary base, make sure the offsets match. */
1699 delta = size_diffop_loc (input_location,
1700 convert (ssizetype,
1701 BINFO_OFFSET (base_binfo)),
1702 convert (ssizetype,
1703 BINFO_OFFSET (this_primary)));
1704
1705 propagate_binfo_offsets (this_primary, delta);
1706 }
1707 }
1708 }
1709
1710 /* First look for a dynamic direct non-virtual base. */
1711 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1712 {
1713 tree basetype = BINFO_TYPE (base_binfo);
1714
1715 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1716 {
1717 primary = base_binfo;
1718 goto found;
1719 }
1720 }
1721
1722 /* A "nearly-empty" virtual base class can be the primary base
1723 class, if no non-virtual polymorphic base can be found. Look for
1724 a nearly-empty virtual dynamic base that is not already a primary
1725 base of something in the hierarchy. If there is no such base,
1726 just pick the first nearly-empty virtual base. */
1727
1728 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1729 base_binfo = TREE_CHAIN (base_binfo))
1730 if (BINFO_VIRTUAL_P (base_binfo)
1731 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1732 {
1733 if (!BINFO_PRIMARY_P (base_binfo))
1734 {
1735 /* Found one that is not primary. */
1736 primary = base_binfo;
1737 goto found;
1738 }
1739 else if (!primary)
1740 /* Remember the first candidate. */
1741 primary = base_binfo;
1742 }
1743
1744 found:
1745 /* If we've got a primary base, use it. */
1746 if (primary)
1747 {
1748 tree basetype = BINFO_TYPE (primary);
1749
1750 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1751 if (BINFO_PRIMARY_P (primary))
1752 /* We are stealing a primary base. */
1753 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1754 BINFO_PRIMARY_P (primary) = 1;
1755 if (BINFO_VIRTUAL_P (primary))
1756 {
1757 tree delta;
1758
1759 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1760 /* A virtual binfo might have been copied from within
1761 another hierarchy. As we're about to use it as a primary
1762 base, make sure the offsets match. */
1763 delta = size_diffop_loc (input_location, ssize_int (0),
1764 convert (ssizetype, BINFO_OFFSET (primary)));
1765
1766 propagate_binfo_offsets (primary, delta);
1767 }
1768
1769 primary = TYPE_BINFO (basetype);
1770
1771 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1772 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1773 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1774 }
1775 }
1776
1777 /* Update the variant types of T. */
1778
1779 void
1780 fixup_type_variants (tree t)
1781 {
1782 tree variants;
1783
1784 if (!t)
1785 return;
1786
1787 for (variants = TYPE_NEXT_VARIANT (t);
1788 variants;
1789 variants = TYPE_NEXT_VARIANT (variants))
1790 {
1791 /* These fields are in the _TYPE part of the node, not in
1792 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1793 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1794 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1795 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1796 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1797
1798 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1799
1800 TYPE_BINFO (variants) = TYPE_BINFO (t);
1801
1802 /* Copy whatever these are holding today. */
1803 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1804 TYPE_METHODS (variants) = TYPE_METHODS (t);
1805 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1806 }
1807 }
1808
1809 /* Early variant fixups: we apply attributes at the beginning of the class
1810 definition, and we need to fix up any variants that have already been
1811 made via elaborated-type-specifier so that check_qualified_type works. */
1812
1813 void
1814 fixup_attribute_variants (tree t)
1815 {
1816 tree variants;
1817
1818 if (!t)
1819 return;
1820
1821 for (variants = TYPE_NEXT_VARIANT (t);
1822 variants;
1823 variants = TYPE_NEXT_VARIANT (variants))
1824 {
1825 /* These are the two fields that check_qualified_type looks at and
1826 are affected by attributes. */
1827 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1828 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1829 }
1830 }
1831 \f
1832 /* Set memoizing fields and bits of T (and its variants) for later
1833 use. */
1834
1835 static void
1836 finish_struct_bits (tree t)
1837 {
1838 /* Fix up variants (if any). */
1839 fixup_type_variants (t);
1840
1841 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1842 /* For a class w/o baseclasses, 'finish_struct' has set
1843 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1844 Similarly for a class whose base classes do not have vtables.
1845 When neither of these is true, we might have removed abstract
1846 virtuals (by providing a definition), added some (by declaring
1847 new ones), or redeclared ones from a base class. We need to
1848 recalculate what's really an abstract virtual at this point (by
1849 looking in the vtables). */
1850 get_pure_virtuals (t);
1851
1852 /* If this type has a copy constructor or a destructor, force its
1853 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1854 nonzero. This will cause it to be passed by invisible reference
1855 and prevent it from being returned in a register. */
1856 if (type_has_nontrivial_copy_init (t)
1857 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1858 {
1859 tree variants;
1860 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1861 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1862 {
1863 SET_TYPE_MODE (variants, BLKmode);
1864 TREE_ADDRESSABLE (variants) = 1;
1865 }
1866 }
1867 }
1868
1869 /* Issue warnings about T having private constructors, but no friends,
1870 and so forth.
1871
1872 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1873 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1874 non-private static member functions. */
1875
1876 static void
1877 maybe_warn_about_overly_private_class (tree t)
1878 {
1879 int has_member_fn = 0;
1880 int has_nonprivate_method = 0;
1881 tree fn;
1882
1883 if (!warn_ctor_dtor_privacy
1884 /* If the class has friends, those entities might create and
1885 access instances, so we should not warn. */
1886 || (CLASSTYPE_FRIEND_CLASSES (t)
1887 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1888 /* We will have warned when the template was declared; there's
1889 no need to warn on every instantiation. */
1890 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1891 /* There's no reason to even consider warning about this
1892 class. */
1893 return;
1894
1895 /* We only issue one warning, if more than one applies, because
1896 otherwise, on code like:
1897
1898 class A {
1899 // Oops - forgot `public:'
1900 A();
1901 A(const A&);
1902 ~A();
1903 };
1904
1905 we warn several times about essentially the same problem. */
1906
1907 /* Check to see if all (non-constructor, non-destructor) member
1908 functions are private. (Since there are no friends or
1909 non-private statics, we can't ever call any of the private member
1910 functions.) */
1911 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1912 /* We're not interested in compiler-generated methods; they don't
1913 provide any way to call private members. */
1914 if (!DECL_ARTIFICIAL (fn))
1915 {
1916 if (!TREE_PRIVATE (fn))
1917 {
1918 if (DECL_STATIC_FUNCTION_P (fn))
1919 /* A non-private static member function is just like a
1920 friend; it can create and invoke private member
1921 functions, and be accessed without a class
1922 instance. */
1923 return;
1924
1925 has_nonprivate_method = 1;
1926 /* Keep searching for a static member function. */
1927 }
1928 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1929 has_member_fn = 1;
1930 }
1931
1932 if (!has_nonprivate_method && has_member_fn)
1933 {
1934 /* There are no non-private methods, and there's at least one
1935 private member function that isn't a constructor or
1936 destructor. (If all the private members are
1937 constructors/destructors we want to use the code below that
1938 issues error messages specifically referring to
1939 constructors/destructors.) */
1940 unsigned i;
1941 tree binfo = TYPE_BINFO (t);
1942
1943 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1944 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1945 {
1946 has_nonprivate_method = 1;
1947 break;
1948 }
1949 if (!has_nonprivate_method)
1950 {
1951 warning (OPT_Wctor_dtor_privacy,
1952 "all member functions in class %qT are private", t);
1953 return;
1954 }
1955 }
1956
1957 /* Even if some of the member functions are non-private, the class
1958 won't be useful for much if all the constructors or destructors
1959 are private: such an object can never be created or destroyed. */
1960 fn = CLASSTYPE_DESTRUCTORS (t);
1961 if (fn && TREE_PRIVATE (fn))
1962 {
1963 warning (OPT_Wctor_dtor_privacy,
1964 "%q#T only defines a private destructor and has no friends",
1965 t);
1966 return;
1967 }
1968
1969 /* Warn about classes that have private constructors and no friends. */
1970 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1971 /* Implicitly generated constructors are always public. */
1972 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1973 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1974 {
1975 int nonprivate_ctor = 0;
1976
1977 /* If a non-template class does not define a copy
1978 constructor, one is defined for it, enabling it to avoid
1979 this warning. For a template class, this does not
1980 happen, and so we would normally get a warning on:
1981
1982 template <class T> class C { private: C(); };
1983
1984 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1985 complete non-template or fully instantiated classes have this
1986 flag set. */
1987 if (!TYPE_HAS_COPY_CTOR (t))
1988 nonprivate_ctor = 1;
1989 else
1990 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1991 {
1992 tree ctor = OVL_CURRENT (fn);
1993 /* Ideally, we wouldn't count copy constructors (or, in
1994 fact, any constructor that takes an argument of the
1995 class type as a parameter) because such things cannot
1996 be used to construct an instance of the class unless
1997 you already have one. But, for now at least, we're
1998 more generous. */
1999 if (! TREE_PRIVATE (ctor))
2000 {
2001 nonprivate_ctor = 1;
2002 break;
2003 }
2004 }
2005
2006 if (nonprivate_ctor == 0)
2007 {
2008 warning (OPT_Wctor_dtor_privacy,
2009 "%q#T only defines private constructors and has no friends",
2010 t);
2011 return;
2012 }
2013 }
2014 }
2015
2016 static struct {
2017 gt_pointer_operator new_value;
2018 void *cookie;
2019 } resort_data;
2020
2021 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
2022
2023 static int
2024 method_name_cmp (const void* m1_p, const void* m2_p)
2025 {
2026 const tree *const m1 = (const tree *) m1_p;
2027 const tree *const m2 = (const tree *) m2_p;
2028
2029 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2030 return 0;
2031 if (*m1 == NULL_TREE)
2032 return -1;
2033 if (*m2 == NULL_TREE)
2034 return 1;
2035 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
2036 return -1;
2037 return 1;
2038 }
2039
2040 /* This routine compares two fields like method_name_cmp but using the
2041 pointer operator in resort_field_decl_data. */
2042
2043 static int
2044 resort_method_name_cmp (const void* m1_p, const void* m2_p)
2045 {
2046 const tree *const m1 = (const tree *) m1_p;
2047 const tree *const m2 = (const tree *) m2_p;
2048 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2049 return 0;
2050 if (*m1 == NULL_TREE)
2051 return -1;
2052 if (*m2 == NULL_TREE)
2053 return 1;
2054 {
2055 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
2056 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
2057 resort_data.new_value (&d1, resort_data.cookie);
2058 resort_data.new_value (&d2, resort_data.cookie);
2059 if (d1 < d2)
2060 return -1;
2061 }
2062 return 1;
2063 }
2064
2065 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
2066
2067 void
2068 resort_type_method_vec (void* obj,
2069 void* /*orig_obj*/,
2070 gt_pointer_operator new_value,
2071 void* cookie)
2072 {
2073 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
2074 int len = vec_safe_length (method_vec);
2075 size_t slot;
2076 tree fn;
2077
2078 /* The type conversion ops have to live at the front of the vec, so we
2079 can't sort them. */
2080 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2081 vec_safe_iterate (method_vec, slot, &fn);
2082 ++slot)
2083 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
2084 break;
2085
2086 if (len - slot > 1)
2087 {
2088 resort_data.new_value = new_value;
2089 resort_data.cookie = cookie;
2090 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
2091 resort_method_name_cmp);
2092 }
2093 }
2094
2095 /* Warn about duplicate methods in fn_fields.
2096
2097 Sort methods that are not special (i.e., constructors, destructors,
2098 and type conversion operators) so that we can find them faster in
2099 search. */
2100
2101 static void
2102 finish_struct_methods (tree t)
2103 {
2104 tree fn_fields;
2105 vec<tree, va_gc> *method_vec;
2106 int slot, len;
2107
2108 method_vec = CLASSTYPE_METHOD_VEC (t);
2109 if (!method_vec)
2110 return;
2111
2112 len = method_vec->length ();
2113
2114 /* Clear DECL_IN_AGGR_P for all functions. */
2115 for (fn_fields = TYPE_METHODS (t); fn_fields;
2116 fn_fields = DECL_CHAIN (fn_fields))
2117 DECL_IN_AGGR_P (fn_fields) = 0;
2118
2119 /* Issue warnings about private constructors and such. If there are
2120 no methods, then some public defaults are generated. */
2121 maybe_warn_about_overly_private_class (t);
2122
2123 /* The type conversion ops have to live at the front of the vec, so we
2124 can't sort them. */
2125 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2126 method_vec->iterate (slot, &fn_fields);
2127 ++slot)
2128 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2129 break;
2130 if (len - slot > 1)
2131 qsort (method_vec->address () + slot,
2132 len-slot, sizeof (tree), method_name_cmp);
2133 }
2134
2135 /* Make BINFO's vtable have N entries, including RTTI entries,
2136 vbase and vcall offsets, etc. Set its type and call the back end
2137 to lay it out. */
2138
2139 static void
2140 layout_vtable_decl (tree binfo, int n)
2141 {
2142 tree atype;
2143 tree vtable;
2144
2145 atype = build_array_of_n_type (vtable_entry_type, n);
2146 layout_type (atype);
2147
2148 /* We may have to grow the vtable. */
2149 vtable = get_vtbl_decl_for_binfo (binfo);
2150 if (!same_type_p (TREE_TYPE (vtable), atype))
2151 {
2152 TREE_TYPE (vtable) = atype;
2153 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2154 layout_decl (vtable, 0);
2155 }
2156 }
2157
2158 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2159 have the same signature. */
2160
2161 int
2162 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2163 {
2164 /* One destructor overrides another if they are the same kind of
2165 destructor. */
2166 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2167 && special_function_p (base_fndecl) == special_function_p (fndecl))
2168 return 1;
2169 /* But a non-destructor never overrides a destructor, nor vice
2170 versa, nor do different kinds of destructors override
2171 one-another. For example, a complete object destructor does not
2172 override a deleting destructor. */
2173 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2174 return 0;
2175
2176 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2177 || (DECL_CONV_FN_P (fndecl)
2178 && DECL_CONV_FN_P (base_fndecl)
2179 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2180 DECL_CONV_FN_TYPE (base_fndecl))))
2181 {
2182 tree fntype = TREE_TYPE (fndecl);
2183 tree base_fntype = TREE_TYPE (base_fndecl);
2184 if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2185 && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2186 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2187 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2188 return 1;
2189 }
2190 return 0;
2191 }
2192
2193 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2194 subobject. */
2195
2196 static bool
2197 base_derived_from (tree derived, tree base)
2198 {
2199 tree probe;
2200
2201 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2202 {
2203 if (probe == derived)
2204 return true;
2205 else if (BINFO_VIRTUAL_P (probe))
2206 /* If we meet a virtual base, we can't follow the inheritance
2207 any more. See if the complete type of DERIVED contains
2208 such a virtual base. */
2209 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2210 != NULL_TREE);
2211 }
2212 return false;
2213 }
2214
2215 typedef struct find_final_overrider_data_s {
2216 /* The function for which we are trying to find a final overrider. */
2217 tree fn;
2218 /* The base class in which the function was declared. */
2219 tree declaring_base;
2220 /* The candidate overriders. */
2221 tree candidates;
2222 /* Path to most derived. */
2223 vec<tree> path;
2224 } find_final_overrider_data;
2225
2226 /* Add the overrider along the current path to FFOD->CANDIDATES.
2227 Returns true if an overrider was found; false otherwise. */
2228
2229 static bool
2230 dfs_find_final_overrider_1 (tree binfo,
2231 find_final_overrider_data *ffod,
2232 unsigned depth)
2233 {
2234 tree method;
2235
2236 /* If BINFO is not the most derived type, try a more derived class.
2237 A definition there will overrider a definition here. */
2238 if (depth)
2239 {
2240 depth--;
2241 if (dfs_find_final_overrider_1
2242 (ffod->path[depth], ffod, depth))
2243 return true;
2244 }
2245
2246 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2247 if (method)
2248 {
2249 tree *candidate = &ffod->candidates;
2250
2251 /* Remove any candidates overridden by this new function. */
2252 while (*candidate)
2253 {
2254 /* If *CANDIDATE overrides METHOD, then METHOD
2255 cannot override anything else on the list. */
2256 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2257 return true;
2258 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2259 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2260 *candidate = TREE_CHAIN (*candidate);
2261 else
2262 candidate = &TREE_CHAIN (*candidate);
2263 }
2264
2265 /* Add the new function. */
2266 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2267 return true;
2268 }
2269
2270 return false;
2271 }
2272
2273 /* Called from find_final_overrider via dfs_walk. */
2274
2275 static tree
2276 dfs_find_final_overrider_pre (tree binfo, void *data)
2277 {
2278 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2279
2280 if (binfo == ffod->declaring_base)
2281 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2282 ffod->path.safe_push (binfo);
2283
2284 return NULL_TREE;
2285 }
2286
2287 static tree
2288 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2289 {
2290 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2291 ffod->path.pop ();
2292
2293 return NULL_TREE;
2294 }
2295
2296 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2297 FN and whose TREE_VALUE is the binfo for the base where the
2298 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2299 DERIVED) is the base object in which FN is declared. */
2300
2301 static tree
2302 find_final_overrider (tree derived, tree binfo, tree fn)
2303 {
2304 find_final_overrider_data ffod;
2305
2306 /* Getting this right is a little tricky. This is valid:
2307
2308 struct S { virtual void f (); };
2309 struct T { virtual void f (); };
2310 struct U : public S, public T { };
2311
2312 even though calling `f' in `U' is ambiguous. But,
2313
2314 struct R { virtual void f(); };
2315 struct S : virtual public R { virtual void f (); };
2316 struct T : virtual public R { virtual void f (); };
2317 struct U : public S, public T { };
2318
2319 is not -- there's no way to decide whether to put `S::f' or
2320 `T::f' in the vtable for `R'.
2321
2322 The solution is to look at all paths to BINFO. If we find
2323 different overriders along any two, then there is a problem. */
2324 if (DECL_THUNK_P (fn))
2325 fn = THUNK_TARGET (fn);
2326
2327 /* Determine the depth of the hierarchy. */
2328 ffod.fn = fn;
2329 ffod.declaring_base = binfo;
2330 ffod.candidates = NULL_TREE;
2331 ffod.path.create (30);
2332
2333 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2334 dfs_find_final_overrider_post, &ffod);
2335
2336 ffod.path.release ();
2337
2338 /* If there was no winner, issue an error message. */
2339 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2340 return error_mark_node;
2341
2342 return ffod.candidates;
2343 }
2344
2345 /* Return the index of the vcall offset for FN when TYPE is used as a
2346 virtual base. */
2347
2348 static tree
2349 get_vcall_index (tree fn, tree type)
2350 {
2351 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2352 tree_pair_p p;
2353 unsigned ix;
2354
2355 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2356 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2357 || same_signature_p (fn, p->purpose))
2358 return p->value;
2359
2360 /* There should always be an appropriate index. */
2361 gcc_unreachable ();
2362 }
2363
2364 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2365 dominated by T. FN is the old function; VIRTUALS points to the
2366 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2367 of that entry in the list. */
2368
2369 static void
2370 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2371 unsigned ix)
2372 {
2373 tree b;
2374 tree overrider;
2375 tree delta;
2376 tree virtual_base;
2377 tree first_defn;
2378 tree overrider_fn, overrider_target;
2379 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2380 tree over_return, base_return;
2381 bool lost = false;
2382
2383 /* Find the nearest primary base (possibly binfo itself) which defines
2384 this function; this is the class the caller will convert to when
2385 calling FN through BINFO. */
2386 for (b = binfo; ; b = get_primary_binfo (b))
2387 {
2388 gcc_assert (b);
2389 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2390 break;
2391
2392 /* The nearest definition is from a lost primary. */
2393 if (BINFO_LOST_PRIMARY_P (b))
2394 lost = true;
2395 }
2396 first_defn = b;
2397
2398 /* Find the final overrider. */
2399 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2400 if (overrider == error_mark_node)
2401 {
2402 error ("no unique final overrider for %qD in %qT", target_fn, t);
2403 return;
2404 }
2405 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2406
2407 /* Check for adjusting covariant return types. */
2408 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2409 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2410
2411 if (POINTER_TYPE_P (over_return)
2412 && TREE_CODE (over_return) == TREE_CODE (base_return)
2413 && CLASS_TYPE_P (TREE_TYPE (over_return))
2414 && CLASS_TYPE_P (TREE_TYPE (base_return))
2415 /* If the overrider is invalid, don't even try. */
2416 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2417 {
2418 /* If FN is a covariant thunk, we must figure out the adjustment
2419 to the final base FN was converting to. As OVERRIDER_TARGET might
2420 also be converting to the return type of FN, we have to
2421 combine the two conversions here. */
2422 tree fixed_offset, virtual_offset;
2423
2424 over_return = TREE_TYPE (over_return);
2425 base_return = TREE_TYPE (base_return);
2426
2427 if (DECL_THUNK_P (fn))
2428 {
2429 gcc_assert (DECL_RESULT_THUNK_P (fn));
2430 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2431 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2432 }
2433 else
2434 fixed_offset = virtual_offset = NULL_TREE;
2435
2436 if (virtual_offset)
2437 /* Find the equivalent binfo within the return type of the
2438 overriding function. We will want the vbase offset from
2439 there. */
2440 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2441 over_return);
2442 else if (!same_type_ignoring_top_level_qualifiers_p
2443 (over_return, base_return))
2444 {
2445 /* There was no existing virtual thunk (which takes
2446 precedence). So find the binfo of the base function's
2447 return type within the overriding function's return type.
2448 We cannot call lookup base here, because we're inside a
2449 dfs_walk, and will therefore clobber the BINFO_MARKED
2450 flags. Fortunately we know the covariancy is valid (it
2451 has already been checked), so we can just iterate along
2452 the binfos, which have been chained in inheritance graph
2453 order. Of course it is lame that we have to repeat the
2454 search here anyway -- we should really be caching pieces
2455 of the vtable and avoiding this repeated work. */
2456 tree thunk_binfo, base_binfo;
2457
2458 /* Find the base binfo within the overriding function's
2459 return type. We will always find a thunk_binfo, except
2460 when the covariancy is invalid (which we will have
2461 already diagnosed). */
2462 for (base_binfo = TYPE_BINFO (base_return),
2463 thunk_binfo = TYPE_BINFO (over_return);
2464 thunk_binfo;
2465 thunk_binfo = TREE_CHAIN (thunk_binfo))
2466 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2467 BINFO_TYPE (base_binfo)))
2468 break;
2469
2470 /* See if virtual inheritance is involved. */
2471 for (virtual_offset = thunk_binfo;
2472 virtual_offset;
2473 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2474 if (BINFO_VIRTUAL_P (virtual_offset))
2475 break;
2476
2477 if (virtual_offset
2478 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2479 {
2480 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2481
2482 if (virtual_offset)
2483 {
2484 /* We convert via virtual base. Adjust the fixed
2485 offset to be from there. */
2486 offset =
2487 size_diffop (offset,
2488 convert (ssizetype,
2489 BINFO_OFFSET (virtual_offset)));
2490 }
2491 if (fixed_offset)
2492 /* There was an existing fixed offset, this must be
2493 from the base just converted to, and the base the
2494 FN was thunking to. */
2495 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2496 else
2497 fixed_offset = offset;
2498 }
2499 }
2500
2501 if (fixed_offset || virtual_offset)
2502 /* Replace the overriding function with a covariant thunk. We
2503 will emit the overriding function in its own slot as
2504 well. */
2505 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2506 fixed_offset, virtual_offset);
2507 }
2508 else
2509 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2510 !DECL_THUNK_P (fn));
2511
2512 /* If we need a covariant thunk, then we may need to adjust first_defn.
2513 The ABI specifies that the thunks emitted with a function are
2514 determined by which bases the function overrides, so we need to be
2515 sure that we're using a thunk for some overridden base; even if we
2516 know that the necessary this adjustment is zero, there may not be an
2517 appropriate zero-this-adjusment thunk for us to use since thunks for
2518 overriding virtual bases always use the vcall offset.
2519
2520 Furthermore, just choosing any base that overrides this function isn't
2521 quite right, as this slot won't be used for calls through a type that
2522 puts a covariant thunk here. Calling the function through such a type
2523 will use a different slot, and that slot is the one that determines
2524 the thunk emitted for that base.
2525
2526 So, keep looking until we find the base that we're really overriding
2527 in this slot: the nearest primary base that doesn't use a covariant
2528 thunk in this slot. */
2529 if (overrider_target != overrider_fn)
2530 {
2531 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2532 /* We already know that the overrider needs a covariant thunk. */
2533 b = get_primary_binfo (b);
2534 for (; ; b = get_primary_binfo (b))
2535 {
2536 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2537 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2538 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2539 break;
2540 if (BINFO_LOST_PRIMARY_P (b))
2541 lost = true;
2542 }
2543 first_defn = b;
2544 }
2545
2546 /* Assume that we will produce a thunk that convert all the way to
2547 the final overrider, and not to an intermediate virtual base. */
2548 virtual_base = NULL_TREE;
2549
2550 /* See if we can convert to an intermediate virtual base first, and then
2551 use the vcall offset located there to finish the conversion. */
2552 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2553 {
2554 /* If we find the final overrider, then we can stop
2555 walking. */
2556 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2557 BINFO_TYPE (TREE_VALUE (overrider))))
2558 break;
2559
2560 /* If we find a virtual base, and we haven't yet found the
2561 overrider, then there is a virtual base between the
2562 declaring base (first_defn) and the final overrider. */
2563 if (BINFO_VIRTUAL_P (b))
2564 {
2565 virtual_base = b;
2566 break;
2567 }
2568 }
2569
2570 /* Compute the constant adjustment to the `this' pointer. The
2571 `this' pointer, when this function is called, will point at BINFO
2572 (or one of its primary bases, which are at the same offset). */
2573 if (virtual_base)
2574 /* The `this' pointer needs to be adjusted from the declaration to
2575 the nearest virtual base. */
2576 delta = size_diffop_loc (input_location,
2577 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2578 convert (ssizetype, BINFO_OFFSET (first_defn)));
2579 else if (lost)
2580 /* If the nearest definition is in a lost primary, we don't need an
2581 entry in our vtable. Except possibly in a constructor vtable,
2582 if we happen to get our primary back. In that case, the offset
2583 will be zero, as it will be a primary base. */
2584 delta = size_zero_node;
2585 else
2586 /* The `this' pointer needs to be adjusted from pointing to
2587 BINFO to pointing at the base where the final overrider
2588 appears. */
2589 delta = size_diffop_loc (input_location,
2590 convert (ssizetype,
2591 BINFO_OFFSET (TREE_VALUE (overrider))),
2592 convert (ssizetype, BINFO_OFFSET (binfo)));
2593
2594 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2595
2596 if (virtual_base)
2597 BV_VCALL_INDEX (*virtuals)
2598 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2599 else
2600 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2601
2602 BV_LOST_PRIMARY (*virtuals) = lost;
2603 }
2604
2605 /* Called from modify_all_vtables via dfs_walk. */
2606
2607 static tree
2608 dfs_modify_vtables (tree binfo, void* data)
2609 {
2610 tree t = (tree) data;
2611 tree virtuals;
2612 tree old_virtuals;
2613 unsigned ix;
2614
2615 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2616 /* A base without a vtable needs no modification, and its bases
2617 are uninteresting. */
2618 return dfs_skip_bases;
2619
2620 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2621 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2622 /* Don't do the primary vtable, if it's new. */
2623 return NULL_TREE;
2624
2625 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2626 /* There's no need to modify the vtable for a non-virtual primary
2627 base; we're not going to use that vtable anyhow. We do still
2628 need to do this for virtual primary bases, as they could become
2629 non-primary in a construction vtable. */
2630 return NULL_TREE;
2631
2632 make_new_vtable (t, binfo);
2633
2634 /* Now, go through each of the virtual functions in the virtual
2635 function table for BINFO. Find the final overrider, and update
2636 the BINFO_VIRTUALS list appropriately. */
2637 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2638 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2639 virtuals;
2640 ix++, virtuals = TREE_CHAIN (virtuals),
2641 old_virtuals = TREE_CHAIN (old_virtuals))
2642 update_vtable_entry_for_fn (t,
2643 binfo,
2644 BV_FN (old_virtuals),
2645 &virtuals, ix);
2646
2647 return NULL_TREE;
2648 }
2649
2650 /* Update all of the primary and secondary vtables for T. Create new
2651 vtables as required, and initialize their RTTI information. Each
2652 of the functions in VIRTUALS is declared in T and may override a
2653 virtual function from a base class; find and modify the appropriate
2654 entries to point to the overriding functions. Returns a list, in
2655 declaration order, of the virtual functions that are declared in T,
2656 but do not appear in the primary base class vtable, and which
2657 should therefore be appended to the end of the vtable for T. */
2658
2659 static tree
2660 modify_all_vtables (tree t, tree virtuals)
2661 {
2662 tree binfo = TYPE_BINFO (t);
2663 tree *fnsp;
2664
2665 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2666 if (TYPE_CONTAINS_VPTR_P (t))
2667 get_vtable_decl (t, false);
2668
2669 /* Update all of the vtables. */
2670 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2671
2672 /* Add virtual functions not already in our primary vtable. These
2673 will be both those introduced by this class, and those overridden
2674 from secondary bases. It does not include virtuals merely
2675 inherited from secondary bases. */
2676 for (fnsp = &virtuals; *fnsp; )
2677 {
2678 tree fn = TREE_VALUE (*fnsp);
2679
2680 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2681 || DECL_VINDEX (fn) == error_mark_node)
2682 {
2683 /* We don't need to adjust the `this' pointer when
2684 calling this function. */
2685 BV_DELTA (*fnsp) = integer_zero_node;
2686 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2687
2688 /* This is a function not already in our vtable. Keep it. */
2689 fnsp = &TREE_CHAIN (*fnsp);
2690 }
2691 else
2692 /* We've already got an entry for this function. Skip it. */
2693 *fnsp = TREE_CHAIN (*fnsp);
2694 }
2695
2696 return virtuals;
2697 }
2698
2699 /* Get the base virtual function declarations in T that have the
2700 indicated NAME. */
2701
2702 static tree
2703 get_basefndecls (tree name, tree t)
2704 {
2705 tree methods;
2706 tree base_fndecls = NULL_TREE;
2707 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2708 int i;
2709
2710 /* Find virtual functions in T with the indicated NAME. */
2711 i = lookup_fnfields_1 (t, name);
2712 if (i != -1)
2713 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2714 methods;
2715 methods = OVL_NEXT (methods))
2716 {
2717 tree method = OVL_CURRENT (methods);
2718
2719 if (TREE_CODE (method) == FUNCTION_DECL
2720 && DECL_VINDEX (method))
2721 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2722 }
2723
2724 if (base_fndecls)
2725 return base_fndecls;
2726
2727 for (i = 0; i < n_baseclasses; i++)
2728 {
2729 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2730 base_fndecls = chainon (get_basefndecls (name, basetype),
2731 base_fndecls);
2732 }
2733
2734 return base_fndecls;
2735 }
2736
2737 /* If this declaration supersedes the declaration of
2738 a method declared virtual in the base class, then
2739 mark this field as being virtual as well. */
2740
2741 void
2742 check_for_override (tree decl, tree ctype)
2743 {
2744 bool overrides_found = false;
2745 if (TREE_CODE (decl) == TEMPLATE_DECL)
2746 /* In [temp.mem] we have:
2747
2748 A specialization of a member function template does not
2749 override a virtual function from a base class. */
2750 return;
2751 if ((DECL_DESTRUCTOR_P (decl)
2752 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2753 || DECL_CONV_FN_P (decl))
2754 && look_for_overrides (ctype, decl)
2755 && !DECL_STATIC_FUNCTION_P (decl))
2756 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2757 the error_mark_node so that we know it is an overriding
2758 function. */
2759 {
2760 DECL_VINDEX (decl) = decl;
2761 overrides_found = true;
2762 }
2763
2764 if (DECL_VIRTUAL_P (decl))
2765 {
2766 if (!DECL_VINDEX (decl))
2767 DECL_VINDEX (decl) = error_mark_node;
2768 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2769 if (DECL_DESTRUCTOR_P (decl))
2770 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2771 }
2772 else if (DECL_FINAL_P (decl))
2773 error ("%q+#D marked %<final%>, but is not virtual", decl);
2774 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2775 error ("%q+#D marked %<override%>, but does not override", decl);
2776 }
2777
2778 /* Warn about hidden virtual functions that are not overridden in t.
2779 We know that constructors and destructors don't apply. */
2780
2781 static void
2782 warn_hidden (tree t)
2783 {
2784 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2785 tree fns;
2786 size_t i;
2787
2788 /* We go through each separately named virtual function. */
2789 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2790 vec_safe_iterate (method_vec, i, &fns);
2791 ++i)
2792 {
2793 tree fn;
2794 tree name;
2795 tree fndecl;
2796 tree base_fndecls;
2797 tree base_binfo;
2798 tree binfo;
2799 int j;
2800
2801 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2802 have the same name. Figure out what name that is. */
2803 name = DECL_NAME (OVL_CURRENT (fns));
2804 /* There are no possibly hidden functions yet. */
2805 base_fndecls = NULL_TREE;
2806 /* Iterate through all of the base classes looking for possibly
2807 hidden functions. */
2808 for (binfo = TYPE_BINFO (t), j = 0;
2809 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2810 {
2811 tree basetype = BINFO_TYPE (base_binfo);
2812 base_fndecls = chainon (get_basefndecls (name, basetype),
2813 base_fndecls);
2814 }
2815
2816 /* If there are no functions to hide, continue. */
2817 if (!base_fndecls)
2818 continue;
2819
2820 /* Remove any overridden functions. */
2821 for (fn = fns; fn; fn = OVL_NEXT (fn))
2822 {
2823 fndecl = OVL_CURRENT (fn);
2824 if (TREE_CODE (fndecl) == FUNCTION_DECL
2825 && DECL_VINDEX (fndecl))
2826 {
2827 tree *prev = &base_fndecls;
2828
2829 while (*prev)
2830 /* If the method from the base class has the same
2831 signature as the method from the derived class, it
2832 has been overridden. */
2833 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2834 *prev = TREE_CHAIN (*prev);
2835 else
2836 prev = &TREE_CHAIN (*prev);
2837 }
2838 }
2839
2840 /* Now give a warning for all base functions without overriders,
2841 as they are hidden. */
2842 while (base_fndecls)
2843 {
2844 /* Here we know it is a hider, and no overrider exists. */
2845 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2846 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2847 base_fndecls = TREE_CHAIN (base_fndecls);
2848 }
2849 }
2850 }
2851
2852 /* Recursive helper for finish_struct_anon. */
2853
2854 static void
2855 finish_struct_anon_r (tree field, bool complain)
2856 {
2857 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2858 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2859 for (; elt; elt = DECL_CHAIN (elt))
2860 {
2861 /* We're generally only interested in entities the user
2862 declared, but we also find nested classes by noticing
2863 the TYPE_DECL that we create implicitly. You're
2864 allowed to put one anonymous union inside another,
2865 though, so we explicitly tolerate that. We use
2866 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2867 we also allow unnamed types used for defining fields. */
2868 if (DECL_ARTIFICIAL (elt)
2869 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2870 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2871 continue;
2872
2873 if (TREE_CODE (elt) != FIELD_DECL)
2874 {
2875 /* We already complained about static data members in
2876 finish_static_data_member_decl. */
2877 if (complain && TREE_CODE (elt) != VAR_DECL)
2878 {
2879 if (is_union)
2880 permerror (input_location,
2881 "%q+#D invalid; an anonymous union can "
2882 "only have non-static data members", elt);
2883 else
2884 permerror (input_location,
2885 "%q+#D invalid; an anonymous struct can "
2886 "only have non-static data members", elt);
2887 }
2888 continue;
2889 }
2890
2891 if (complain)
2892 {
2893 if (TREE_PRIVATE (elt))
2894 {
2895 if (is_union)
2896 permerror (input_location,
2897 "private member %q+#D in anonymous union", elt);
2898 else
2899 permerror (input_location,
2900 "private member %q+#D in anonymous struct", elt);
2901 }
2902 else if (TREE_PROTECTED (elt))
2903 {
2904 if (is_union)
2905 permerror (input_location,
2906 "protected member %q+#D in anonymous union", elt);
2907 else
2908 permerror (input_location,
2909 "protected member %q+#D in anonymous struct", elt);
2910 }
2911 }
2912
2913 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2914 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2915
2916 /* Recurse into the anonymous aggregates to handle correctly
2917 access control (c++/24926):
2918
2919 class A {
2920 union {
2921 union {
2922 int i;
2923 };
2924 };
2925 };
2926
2927 int j=A().i; */
2928 if (DECL_NAME (elt) == NULL_TREE
2929 && ANON_AGGR_TYPE_P (TREE_TYPE (elt)))
2930 finish_struct_anon_r (elt, /*complain=*/false);
2931 }
2932 }
2933
2934 /* Check for things that are invalid. There are probably plenty of other
2935 things we should check for also. */
2936
2937 static void
2938 finish_struct_anon (tree t)
2939 {
2940 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2941 {
2942 if (TREE_STATIC (field))
2943 continue;
2944 if (TREE_CODE (field) != FIELD_DECL)
2945 continue;
2946
2947 if (DECL_NAME (field) == NULL_TREE
2948 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2949 finish_struct_anon_r (field, /*complain=*/true);
2950 }
2951 }
2952
2953 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2954 will be used later during class template instantiation.
2955 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2956 a non-static member data (FIELD_DECL), a member function
2957 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2958 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2959 When FRIEND_P is nonzero, T is either a friend class
2960 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2961 (FUNCTION_DECL, TEMPLATE_DECL). */
2962
2963 void
2964 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2965 {
2966 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2967 if (CLASSTYPE_TEMPLATE_INFO (type))
2968 CLASSTYPE_DECL_LIST (type)
2969 = tree_cons (friend_p ? NULL_TREE : type,
2970 t, CLASSTYPE_DECL_LIST (type));
2971 }
2972
2973 /* This function is called from declare_virt_assop_and_dtor via
2974 dfs_walk_all.
2975
2976 DATA is a type that direcly or indirectly inherits the base
2977 represented by BINFO. If BINFO contains a virtual assignment [copy
2978 assignment or move assigment] operator or a virtual constructor,
2979 declare that function in DATA if it hasn't been already declared. */
2980
2981 static tree
2982 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2983 {
2984 tree bv, fn, t = (tree)data;
2985 tree opname = ansi_assopname (NOP_EXPR);
2986
2987 gcc_assert (t && CLASS_TYPE_P (t));
2988 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2989
2990 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2991 /* A base without a vtable needs no modification, and its bases
2992 are uninteresting. */
2993 return dfs_skip_bases;
2994
2995 if (BINFO_PRIMARY_P (binfo))
2996 /* If this is a primary base, then we have already looked at the
2997 virtual functions of its vtable. */
2998 return NULL_TREE;
2999
3000 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
3001 {
3002 fn = BV_FN (bv);
3003
3004 if (DECL_NAME (fn) == opname)
3005 {
3006 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
3007 lazily_declare_fn (sfk_copy_assignment, t);
3008 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
3009 lazily_declare_fn (sfk_move_assignment, t);
3010 }
3011 else if (DECL_DESTRUCTOR_P (fn)
3012 && CLASSTYPE_LAZY_DESTRUCTOR (t))
3013 lazily_declare_fn (sfk_destructor, t);
3014 }
3015
3016 return NULL_TREE;
3017 }
3018
3019 /* If the class type T has a direct or indirect base that contains a
3020 virtual assignment operator or a virtual destructor, declare that
3021 function in T if it hasn't been already declared. */
3022
3023 static void
3024 declare_virt_assop_and_dtor (tree t)
3025 {
3026 if (!(TYPE_POLYMORPHIC_P (t)
3027 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
3028 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
3029 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
3030 return;
3031
3032 dfs_walk_all (TYPE_BINFO (t),
3033 dfs_declare_virt_assop_and_dtor,
3034 NULL, t);
3035 }
3036
3037 /* Declare the inheriting constructor for class T inherited from base
3038 constructor CTOR with the parameter array PARMS of size NPARMS. */
3039
3040 static void
3041 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
3042 {
3043 /* We don't declare an inheriting ctor that would be a default,
3044 copy or move ctor for derived or base. */
3045 if (nparms == 0)
3046 return;
3047 if (nparms == 1
3048 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
3049 {
3050 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
3051 if (parm == t || parm == DECL_CONTEXT (ctor))
3052 return;
3053 }
3054
3055 tree parmlist = void_list_node;
3056 for (int i = nparms - 1; i >= 0; i--)
3057 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
3058 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
3059 t, false, ctor, parmlist);
3060 if (add_method (t, fn, NULL_TREE))
3061 {
3062 DECL_CHAIN (fn) = TYPE_METHODS (t);
3063 TYPE_METHODS (t) = fn;
3064 }
3065 }
3066
3067 /* Declare all the inheriting constructors for class T inherited from base
3068 constructor CTOR. */
3069
3070 static void
3071 one_inherited_ctor (tree ctor, tree t)
3072 {
3073 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
3074
3075 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
3076 int i = 0;
3077 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
3078 {
3079 if (TREE_PURPOSE (parms))
3080 one_inheriting_sig (t, ctor, new_parms, i);
3081 new_parms[i++] = TREE_VALUE (parms);
3082 }
3083 one_inheriting_sig (t, ctor, new_parms, i);
3084 if (parms == NULL_TREE)
3085 {
3086 if (warning (OPT_Winherited_variadic_ctor,
3087 "the ellipsis in %qD is not inherited", ctor))
3088 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
3089 }
3090 }
3091
3092 /* Create default constructors, assignment operators, and so forth for
3093 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
3094 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
3095 the class cannot have a default constructor, copy constructor
3096 taking a const reference argument, or an assignment operator taking
3097 a const reference, respectively. */
3098
3099 static void
3100 add_implicitly_declared_members (tree t, tree* access_decls,
3101 int cant_have_const_cctor,
3102 int cant_have_const_assignment)
3103 {
3104 bool move_ok = false;
3105
3106 if (cxx_dialect >= cxx11 && !CLASSTYPE_DESTRUCTORS (t)
3107 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
3108 && !type_has_move_constructor (t) && !type_has_move_assign (t))
3109 move_ok = true;
3110
3111 /* Destructor. */
3112 if (!CLASSTYPE_DESTRUCTORS (t))
3113 {
3114 /* In general, we create destructors lazily. */
3115 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
3116
3117 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3118 && TYPE_FOR_JAVA (t))
3119 /* But if this is a Java class, any non-trivial destructor is
3120 invalid, even if compiler-generated. Therefore, if the
3121 destructor is non-trivial we create it now. */
3122 lazily_declare_fn (sfk_destructor, t);
3123 }
3124
3125 /* [class.ctor]
3126
3127 If there is no user-declared constructor for a class, a default
3128 constructor is implicitly declared. */
3129 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
3130 {
3131 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
3132 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
3133 if (cxx_dialect >= cxx11)
3134 TYPE_HAS_CONSTEXPR_CTOR (t)
3135 /* This might force the declaration. */
3136 = type_has_constexpr_default_constructor (t);
3137 }
3138
3139 /* [class.ctor]
3140
3141 If a class definition does not explicitly declare a copy
3142 constructor, one is declared implicitly. */
3143 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
3144 {
3145 TYPE_HAS_COPY_CTOR (t) = 1;
3146 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
3147 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3148 if (move_ok)
3149 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3150 }
3151
3152 /* If there is no assignment operator, one will be created if and
3153 when it is needed. For now, just record whether or not the type
3154 of the parameter to the assignment operator will be a const or
3155 non-const reference. */
3156 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3157 {
3158 TYPE_HAS_COPY_ASSIGN (t) = 1;
3159 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3160 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3161 if (move_ok)
3162 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3163 }
3164
3165 /* We can't be lazy about declaring functions that might override
3166 a virtual function from a base class. */
3167 declare_virt_assop_and_dtor (t);
3168
3169 while (*access_decls)
3170 {
3171 tree using_decl = TREE_VALUE (*access_decls);
3172 tree decl = USING_DECL_DECLS (using_decl);
3173 if (DECL_NAME (using_decl) == ctor_identifier)
3174 {
3175 /* declare, then remove the decl */
3176 tree ctor_list = decl;
3177 location_t loc = input_location;
3178 input_location = DECL_SOURCE_LOCATION (using_decl);
3179 if (ctor_list)
3180 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3181 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3182 *access_decls = TREE_CHAIN (*access_decls);
3183 input_location = loc;
3184 }
3185 else
3186 access_decls = &TREE_CHAIN (*access_decls);
3187 }
3188 }
3189
3190 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3191 count the number of fields in TYPE, including anonymous union
3192 members. */
3193
3194 static int
3195 count_fields (tree fields)
3196 {
3197 tree x;
3198 int n_fields = 0;
3199 for (x = fields; x; x = DECL_CHAIN (x))
3200 {
3201 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3202 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3203 else
3204 n_fields += 1;
3205 }
3206 return n_fields;
3207 }
3208
3209 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3210 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3211 elts, starting at offset IDX. */
3212
3213 static int
3214 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3215 {
3216 tree x;
3217 for (x = fields; x; x = DECL_CHAIN (x))
3218 {
3219 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3220 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3221 else
3222 field_vec->elts[idx++] = x;
3223 }
3224 return idx;
3225 }
3226
3227 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3228 starting at offset IDX. */
3229
3230 static int
3231 add_enum_fields_to_record_type (tree enumtype,
3232 struct sorted_fields_type *field_vec,
3233 int idx)
3234 {
3235 tree values;
3236 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3237 field_vec->elts[idx++] = TREE_VALUE (values);
3238 return idx;
3239 }
3240
3241 /* FIELD is a bit-field. We are finishing the processing for its
3242 enclosing type. Issue any appropriate messages and set appropriate
3243 flags. Returns false if an error has been diagnosed. */
3244
3245 static bool
3246 check_bitfield_decl (tree field)
3247 {
3248 tree type = TREE_TYPE (field);
3249 tree w;
3250
3251 /* Extract the declared width of the bitfield, which has been
3252 temporarily stashed in DECL_INITIAL. */
3253 w = DECL_INITIAL (field);
3254 gcc_assert (w != NULL_TREE);
3255 /* Remove the bit-field width indicator so that the rest of the
3256 compiler does not treat that value as an initializer. */
3257 DECL_INITIAL (field) = NULL_TREE;
3258
3259 /* Detect invalid bit-field type. */
3260 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3261 {
3262 error ("bit-field %q+#D with non-integral type", field);
3263 w = error_mark_node;
3264 }
3265 else
3266 {
3267 location_t loc = input_location;
3268 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3269 STRIP_NOPS (w);
3270
3271 /* detect invalid field size. */
3272 input_location = DECL_SOURCE_LOCATION (field);
3273 w = cxx_constant_value (w);
3274 input_location = loc;
3275
3276 if (TREE_CODE (w) != INTEGER_CST)
3277 {
3278 error ("bit-field %q+D width not an integer constant", field);
3279 w = error_mark_node;
3280 }
3281 else if (tree_int_cst_sgn (w) < 0)
3282 {
3283 error ("negative width in bit-field %q+D", field);
3284 w = error_mark_node;
3285 }
3286 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3287 {
3288 error ("zero width for bit-field %q+D", field);
3289 w = error_mark_node;
3290 }
3291 else if ((TREE_CODE (type) != ENUMERAL_TYPE
3292 && TREE_CODE (type) != BOOLEAN_TYPE
3293 && compare_tree_int (w, TYPE_PRECISION (type)) > 0)
3294 || ((TREE_CODE (type) == ENUMERAL_TYPE
3295 || TREE_CODE (type) == BOOLEAN_TYPE)
3296 && tree_int_cst_lt (TYPE_SIZE (type), w)))
3297 warning (0, "width of %q+D exceeds its type", field);
3298 else if (TREE_CODE (type) == ENUMERAL_TYPE
3299 && (0 > (compare_tree_int
3300 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3301 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3302 }
3303
3304 if (w != error_mark_node)
3305 {
3306 DECL_SIZE (field) = convert (bitsizetype, w);
3307 DECL_BIT_FIELD (field) = 1;
3308 return true;
3309 }
3310 else
3311 {
3312 /* Non-bit-fields are aligned for their type. */
3313 DECL_BIT_FIELD (field) = 0;
3314 CLEAR_DECL_C_BIT_FIELD (field);
3315 return false;
3316 }
3317 }
3318
3319 /* FIELD is a non bit-field. We are finishing the processing for its
3320 enclosing type T. Issue any appropriate messages and set appropriate
3321 flags. */
3322
3323 static void
3324 check_field_decl (tree field,
3325 tree t,
3326 int* cant_have_const_ctor,
3327 int* no_const_asn_ref,
3328 int* any_default_members)
3329 {
3330 tree type = strip_array_types (TREE_TYPE (field));
3331
3332 /* In C++98 an anonymous union cannot contain any fields which would change
3333 the settings of CANT_HAVE_CONST_CTOR and friends. */
3334 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11)
3335 ;
3336 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3337 structs. So, we recurse through their fields here. */
3338 else if (ANON_AGGR_TYPE_P (type))
3339 {
3340 tree fields;
3341
3342 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3343 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3344 check_field_decl (fields, t, cant_have_const_ctor,
3345 no_const_asn_ref, any_default_members);
3346 }
3347 /* Check members with class type for constructors, destructors,
3348 etc. */
3349 else if (CLASS_TYPE_P (type))
3350 {
3351 /* Never let anything with uninheritable virtuals
3352 make it through without complaint. */
3353 abstract_virtuals_error (field, type);
3354
3355 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11)
3356 {
3357 static bool warned;
3358 int oldcount = errorcount;
3359 if (TYPE_NEEDS_CONSTRUCTING (type))
3360 error ("member %q+#D with constructor not allowed in union",
3361 field);
3362 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3363 error ("member %q+#D with destructor not allowed in union", field);
3364 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3365 error ("member %q+#D with copy assignment operator not allowed in union",
3366 field);
3367 if (!warned && errorcount > oldcount)
3368 {
3369 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3370 "only available with -std=c++11 or -std=gnu++11");
3371 warned = true;
3372 }
3373 }
3374 else
3375 {
3376 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3377 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3378 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3379 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3380 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3381 || !TYPE_HAS_COPY_ASSIGN (type));
3382 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3383 || !TYPE_HAS_COPY_CTOR (type));
3384 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3385 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3386 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3387 || TYPE_HAS_COMPLEX_DFLT (type));
3388 }
3389
3390 if (TYPE_HAS_COPY_CTOR (type)
3391 && !TYPE_HAS_CONST_COPY_CTOR (type))
3392 *cant_have_const_ctor = 1;
3393
3394 if (TYPE_HAS_COPY_ASSIGN (type)
3395 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3396 *no_const_asn_ref = 1;
3397 }
3398
3399 check_abi_tags (t, field);
3400
3401 if (DECL_INITIAL (field) != NULL_TREE)
3402 {
3403 /* `build_class_init_list' does not recognize
3404 non-FIELD_DECLs. */
3405 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3406 error ("multiple fields in union %qT initialized", t);
3407 *any_default_members = 1;
3408 }
3409 }
3410
3411 /* Check the data members (both static and non-static), class-scoped
3412 typedefs, etc., appearing in the declaration of T. Issue
3413 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3414 declaration order) of access declarations; each TREE_VALUE in this
3415 list is a USING_DECL.
3416
3417 In addition, set the following flags:
3418
3419 EMPTY_P
3420 The class is empty, i.e., contains no non-static data members.
3421
3422 CANT_HAVE_CONST_CTOR_P
3423 This class cannot have an implicitly generated copy constructor
3424 taking a const reference.
3425
3426 CANT_HAVE_CONST_ASN_REF
3427 This class cannot have an implicitly generated assignment
3428 operator taking a const reference.
3429
3430 All of these flags should be initialized before calling this
3431 function.
3432
3433 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3434 fields can be added by adding to this chain. */
3435
3436 static void
3437 check_field_decls (tree t, tree *access_decls,
3438 int *cant_have_const_ctor_p,
3439 int *no_const_asn_ref_p)
3440 {
3441 tree *field;
3442 tree *next;
3443 bool has_pointers;
3444 int any_default_members;
3445 int cant_pack = 0;
3446 int field_access = -1;
3447
3448 /* Assume there are no access declarations. */
3449 *access_decls = NULL_TREE;
3450 /* Assume this class has no pointer members. */
3451 has_pointers = false;
3452 /* Assume none of the members of this class have default
3453 initializations. */
3454 any_default_members = 0;
3455
3456 for (field = &TYPE_FIELDS (t); *field; field = next)
3457 {
3458 tree x = *field;
3459 tree type = TREE_TYPE (x);
3460 int this_field_access;
3461
3462 next = &DECL_CHAIN (x);
3463
3464 if (TREE_CODE (x) == USING_DECL)
3465 {
3466 /* Save the access declarations for our caller. */
3467 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3468 continue;
3469 }
3470
3471 if (TREE_CODE (x) == TYPE_DECL
3472 || TREE_CODE (x) == TEMPLATE_DECL)
3473 continue;
3474
3475 /* If we've gotten this far, it's a data member, possibly static,
3476 or an enumerator. */
3477 if (TREE_CODE (x) != CONST_DECL)
3478 DECL_CONTEXT (x) = t;
3479
3480 /* When this goes into scope, it will be a non-local reference. */
3481 DECL_NONLOCAL (x) = 1;
3482
3483 if (TREE_CODE (t) == UNION_TYPE
3484 && cxx_dialect < cxx11)
3485 {
3486 /* [class.union] (C++98)
3487
3488 If a union contains a static data member, or a member of
3489 reference type, the program is ill-formed.
3490
3491 In C++11 this limitation doesn't exist anymore. */
3492 if (VAR_P (x))
3493 {
3494 error ("in C++98 %q+D may not be static because it is "
3495 "a member of a union", x);
3496 continue;
3497 }
3498 if (TREE_CODE (type) == REFERENCE_TYPE)
3499 {
3500 error ("in C++98 %q+D may not have reference type %qT "
3501 "because it is a member of a union", x, type);
3502 continue;
3503 }
3504 }
3505
3506 /* Perform error checking that did not get done in
3507 grokdeclarator. */
3508 if (TREE_CODE (type) == FUNCTION_TYPE)
3509 {
3510 error ("field %q+D invalidly declared function type", x);
3511 type = build_pointer_type (type);
3512 TREE_TYPE (x) = type;
3513 }
3514 else if (TREE_CODE (type) == METHOD_TYPE)
3515 {
3516 error ("field %q+D invalidly declared method type", x);
3517 type = build_pointer_type (type);
3518 TREE_TYPE (x) = type;
3519 }
3520
3521 if (type == error_mark_node)
3522 continue;
3523
3524 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3525 continue;
3526
3527 /* Now it can only be a FIELD_DECL. */
3528
3529 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3530 CLASSTYPE_NON_AGGREGATE (t) = 1;
3531
3532 /* If at least one non-static data member is non-literal, the whole
3533 class becomes non-literal. Per Core/1453, volatile non-static
3534 data members and base classes are also not allowed.
3535 Note: if the type is incomplete we will complain later on. */
3536 if (COMPLETE_TYPE_P (type)
3537 && (!literal_type_p (type) || CP_TYPE_VOLATILE_P (type)))
3538 CLASSTYPE_LITERAL_P (t) = false;
3539
3540 /* A standard-layout class is a class that:
3541 ...
3542 has the same access control (Clause 11) for all non-static data members,
3543 ... */
3544 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3545 if (field_access == -1)
3546 field_access = this_field_access;
3547 else if (this_field_access != field_access)
3548 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3549
3550 /* If this is of reference type, check if it needs an init. */
3551 if (TREE_CODE (type) == REFERENCE_TYPE)
3552 {
3553 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3554 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3555 if (DECL_INITIAL (x) == NULL_TREE)
3556 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3557
3558 /* ARM $12.6.2: [A member initializer list] (or, for an
3559 aggregate, initialization by a brace-enclosed list) is the
3560 only way to initialize nonstatic const and reference
3561 members. */
3562 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3563 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3564 }
3565
3566 type = strip_array_types (type);
3567
3568 if (TYPE_PACKED (t))
3569 {
3570 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3571 {
3572 warning
3573 (0,
3574 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3575 x);
3576 cant_pack = 1;
3577 }
3578 else if (DECL_C_BIT_FIELD (x)
3579 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3580 DECL_PACKED (x) = 1;
3581 }
3582
3583 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3584 /* We don't treat zero-width bitfields as making a class
3585 non-empty. */
3586 ;
3587 else
3588 {
3589 /* The class is non-empty. */
3590 CLASSTYPE_EMPTY_P (t) = 0;
3591 /* The class is not even nearly empty. */
3592 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3593 /* If one of the data members contains an empty class,
3594 so does T. */
3595 if (CLASS_TYPE_P (type)
3596 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3597 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3598 }
3599
3600 /* This is used by -Weffc++ (see below). Warn only for pointers
3601 to members which might hold dynamic memory. So do not warn
3602 for pointers to functions or pointers to members. */
3603 if (TYPE_PTR_P (type)
3604 && !TYPE_PTRFN_P (type))
3605 has_pointers = true;
3606
3607 if (CLASS_TYPE_P (type))
3608 {
3609 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3610 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3611 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3612 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3613 }
3614
3615 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3616 CLASSTYPE_HAS_MUTABLE (t) = 1;
3617
3618 if (DECL_MUTABLE_P (x))
3619 {
3620 if (CP_TYPE_CONST_P (type))
3621 {
3622 error ("member %q+D cannot be declared both %<const%> "
3623 "and %<mutable%>", x);
3624 continue;
3625 }
3626 if (TREE_CODE (type) == REFERENCE_TYPE)
3627 {
3628 error ("member %q+D cannot be declared as a %<mutable%> "
3629 "reference", x);
3630 continue;
3631 }
3632 }
3633
3634 if (! layout_pod_type_p (type))
3635 /* DR 148 now allows pointers to members (which are POD themselves),
3636 to be allowed in POD structs. */
3637 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3638
3639 if (!std_layout_type_p (type))
3640 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3641
3642 if (! zero_init_p (type))
3643 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3644
3645 /* We set DECL_C_BIT_FIELD in grokbitfield.
3646 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3647 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3648 check_field_decl (x, t,
3649 cant_have_const_ctor_p,
3650 no_const_asn_ref_p,
3651 &any_default_members);
3652
3653 /* Now that we've removed bit-field widths from DECL_INITIAL,
3654 anything left in DECL_INITIAL is an NSDMI that makes the class
3655 non-aggregate. */
3656 if (DECL_INITIAL (x))
3657 CLASSTYPE_NON_AGGREGATE (t) = true;
3658
3659 /* If any field is const, the structure type is pseudo-const. */
3660 if (CP_TYPE_CONST_P (type))
3661 {
3662 C_TYPE_FIELDS_READONLY (t) = 1;
3663 if (DECL_INITIAL (x) == NULL_TREE)
3664 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3665
3666 /* ARM $12.6.2: [A member initializer list] (or, for an
3667 aggregate, initialization by a brace-enclosed list) is the
3668 only way to initialize nonstatic const and reference
3669 members. */
3670 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3671 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3672 }
3673 /* A field that is pseudo-const makes the structure likewise. */
3674 else if (CLASS_TYPE_P (type))
3675 {
3676 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3677 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3678 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3679 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3680 }
3681
3682 /* Core issue 80: A nonstatic data member is required to have a
3683 different name from the class iff the class has a
3684 user-declared constructor. */
3685 if (constructor_name_p (DECL_NAME (x), t)
3686 && TYPE_HAS_USER_CONSTRUCTOR (t))
3687 permerror (input_location, "field %q+#D with same name as class", x);
3688 }
3689
3690 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3691 it should also define a copy constructor and an assignment operator to
3692 implement the correct copy semantic (deep vs shallow, etc.). As it is
3693 not feasible to check whether the constructors do allocate dynamic memory
3694 and store it within members, we approximate the warning like this:
3695
3696 -- Warn only if there are members which are pointers
3697 -- Warn only if there is a non-trivial constructor (otherwise,
3698 there cannot be memory allocated).
3699 -- Warn only if there is a non-trivial destructor. We assume that the
3700 user at least implemented the cleanup correctly, and a destructor
3701 is needed to free dynamic memory.
3702
3703 This seems enough for practical purposes. */
3704 if (warn_ecpp
3705 && has_pointers
3706 && TYPE_HAS_USER_CONSTRUCTOR (t)
3707 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3708 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3709 {
3710 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3711
3712 if (! TYPE_HAS_COPY_CTOR (t))
3713 {
3714 warning (OPT_Weffc__,
3715 " but does not override %<%T(const %T&)%>", t, t);
3716 if (!TYPE_HAS_COPY_ASSIGN (t))
3717 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3718 }
3719 else if (! TYPE_HAS_COPY_ASSIGN (t))
3720 warning (OPT_Weffc__,
3721 " but does not override %<operator=(const %T&)%>", t);
3722 }
3723
3724 /* Non-static data member initializers make the default constructor
3725 non-trivial. */
3726 if (any_default_members)
3727 {
3728 TYPE_NEEDS_CONSTRUCTING (t) = true;
3729 TYPE_HAS_COMPLEX_DFLT (t) = true;
3730 }
3731
3732 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3733 if (cant_pack)
3734 TYPE_PACKED (t) = 0;
3735
3736 /* Check anonymous struct/anonymous union fields. */
3737 finish_struct_anon (t);
3738
3739 /* We've built up the list of access declarations in reverse order.
3740 Fix that now. */
3741 *access_decls = nreverse (*access_decls);
3742 }
3743
3744 /* If TYPE is an empty class type, records its OFFSET in the table of
3745 OFFSETS. */
3746
3747 static int
3748 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3749 {
3750 splay_tree_node n;
3751
3752 if (!is_empty_class (type))
3753 return 0;
3754
3755 /* Record the location of this empty object in OFFSETS. */
3756 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3757 if (!n)
3758 n = splay_tree_insert (offsets,
3759 (splay_tree_key) offset,
3760 (splay_tree_value) NULL_TREE);
3761 n->value = ((splay_tree_value)
3762 tree_cons (NULL_TREE,
3763 type,
3764 (tree) n->value));
3765
3766 return 0;
3767 }
3768
3769 /* Returns nonzero if TYPE is an empty class type and there is
3770 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3771
3772 static int
3773 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3774 {
3775 splay_tree_node n;
3776 tree t;
3777
3778 if (!is_empty_class (type))
3779 return 0;
3780
3781 /* Record the location of this empty object in OFFSETS. */
3782 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3783 if (!n)
3784 return 0;
3785
3786 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3787 if (same_type_p (TREE_VALUE (t), type))
3788 return 1;
3789
3790 return 0;
3791 }
3792
3793 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3794 F for every subobject, passing it the type, offset, and table of
3795 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3796 be traversed.
3797
3798 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3799 than MAX_OFFSET will not be walked.
3800
3801 If F returns a nonzero value, the traversal ceases, and that value
3802 is returned. Otherwise, returns zero. */
3803
3804 static int
3805 walk_subobject_offsets (tree type,
3806 subobject_offset_fn f,
3807 tree offset,
3808 splay_tree offsets,
3809 tree max_offset,
3810 int vbases_p)
3811 {
3812 int r = 0;
3813 tree type_binfo = NULL_TREE;
3814
3815 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3816 stop. */
3817 if (max_offset && tree_int_cst_lt (max_offset, offset))
3818 return 0;
3819
3820 if (type == error_mark_node)
3821 return 0;
3822
3823 if (!TYPE_P (type))
3824 {
3825 type_binfo = type;
3826 type = BINFO_TYPE (type);
3827 }
3828
3829 if (CLASS_TYPE_P (type))
3830 {
3831 tree field;
3832 tree binfo;
3833 int i;
3834
3835 /* Avoid recursing into objects that are not interesting. */
3836 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3837 return 0;
3838
3839 /* Record the location of TYPE. */
3840 r = (*f) (type, offset, offsets);
3841 if (r)
3842 return r;
3843
3844 /* Iterate through the direct base classes of TYPE. */
3845 if (!type_binfo)
3846 type_binfo = TYPE_BINFO (type);
3847 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3848 {
3849 tree binfo_offset;
3850
3851 if (BINFO_VIRTUAL_P (binfo))
3852 continue;
3853
3854 tree orig_binfo;
3855 /* We cannot rely on BINFO_OFFSET being set for the base
3856 class yet, but the offsets for direct non-virtual
3857 bases can be calculated by going back to the TYPE. */
3858 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3859 binfo_offset = size_binop (PLUS_EXPR,
3860 offset,
3861 BINFO_OFFSET (orig_binfo));
3862
3863 r = walk_subobject_offsets (binfo,
3864 f,
3865 binfo_offset,
3866 offsets,
3867 max_offset,
3868 /*vbases_p=*/0);
3869 if (r)
3870 return r;
3871 }
3872
3873 if (CLASSTYPE_VBASECLASSES (type))
3874 {
3875 unsigned ix;
3876 vec<tree, va_gc> *vbases;
3877
3878 /* Iterate through the virtual base classes of TYPE. In G++
3879 3.2, we included virtual bases in the direct base class
3880 loop above, which results in incorrect results; the
3881 correct offsets for virtual bases are only known when
3882 working with the most derived type. */
3883 if (vbases_p)
3884 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3885 vec_safe_iterate (vbases, ix, &binfo); ix++)
3886 {
3887 r = walk_subobject_offsets (binfo,
3888 f,
3889 size_binop (PLUS_EXPR,
3890 offset,
3891 BINFO_OFFSET (binfo)),
3892 offsets,
3893 max_offset,
3894 /*vbases_p=*/0);
3895 if (r)
3896 return r;
3897 }
3898 else
3899 {
3900 /* We still have to walk the primary base, if it is
3901 virtual. (If it is non-virtual, then it was walked
3902 above.) */
3903 tree vbase = get_primary_binfo (type_binfo);
3904
3905 if (vbase && BINFO_VIRTUAL_P (vbase)
3906 && BINFO_PRIMARY_P (vbase)
3907 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3908 {
3909 r = (walk_subobject_offsets
3910 (vbase, f, offset,
3911 offsets, max_offset, /*vbases_p=*/0));
3912 if (r)
3913 return r;
3914 }
3915 }
3916 }
3917
3918 /* Iterate through the fields of TYPE. */
3919 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3920 if (TREE_CODE (field) == FIELD_DECL
3921 && TREE_TYPE (field) != error_mark_node
3922 && !DECL_ARTIFICIAL (field))
3923 {
3924 tree field_offset;
3925
3926 field_offset = byte_position (field);
3927
3928 r = walk_subobject_offsets (TREE_TYPE (field),
3929 f,
3930 size_binop (PLUS_EXPR,
3931 offset,
3932 field_offset),
3933 offsets,
3934 max_offset,
3935 /*vbases_p=*/1);
3936 if (r)
3937 return r;
3938 }
3939 }
3940 else if (TREE_CODE (type) == ARRAY_TYPE)
3941 {
3942 tree element_type = strip_array_types (type);
3943 tree domain = TYPE_DOMAIN (type);
3944 tree index;
3945
3946 /* Avoid recursing into objects that are not interesting. */
3947 if (!CLASS_TYPE_P (element_type)
3948 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3949 return 0;
3950
3951 /* Step through each of the elements in the array. */
3952 for (index = size_zero_node;
3953 !tree_int_cst_lt (TYPE_MAX_VALUE (domain), index);
3954 index = size_binop (PLUS_EXPR, index, size_one_node))
3955 {
3956 r = walk_subobject_offsets (TREE_TYPE (type),
3957 f,
3958 offset,
3959 offsets,
3960 max_offset,
3961 /*vbases_p=*/1);
3962 if (r)
3963 return r;
3964 offset = size_binop (PLUS_EXPR, offset,
3965 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3966 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3967 there's no point in iterating through the remaining
3968 elements of the array. */
3969 if (max_offset && tree_int_cst_lt (max_offset, offset))
3970 break;
3971 }
3972 }
3973
3974 return 0;
3975 }
3976
3977 /* Record all of the empty subobjects of TYPE (either a type or a
3978 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3979 is being placed at OFFSET; otherwise, it is a base class that is
3980 being placed at OFFSET. */
3981
3982 static void
3983 record_subobject_offsets (tree type,
3984 tree offset,
3985 splay_tree offsets,
3986 bool is_data_member)
3987 {
3988 tree max_offset;
3989 /* If recording subobjects for a non-static data member or a
3990 non-empty base class , we do not need to record offsets beyond
3991 the size of the biggest empty class. Additional data members
3992 will go at the end of the class. Additional base classes will go
3993 either at offset zero (if empty, in which case they cannot
3994 overlap with offsets past the size of the biggest empty class) or
3995 at the end of the class.
3996
3997 However, if we are placing an empty base class, then we must record
3998 all offsets, as either the empty class is at offset zero (where
3999 other empty classes might later be placed) or at the end of the
4000 class (where other objects might then be placed, so other empty
4001 subobjects might later overlap). */
4002 if (is_data_member
4003 || !is_empty_class (BINFO_TYPE (type)))
4004 max_offset = sizeof_biggest_empty_class;
4005 else
4006 max_offset = NULL_TREE;
4007 walk_subobject_offsets (type, record_subobject_offset, offset,
4008 offsets, max_offset, is_data_member);
4009 }
4010
4011 /* Returns nonzero if any of the empty subobjects of TYPE (located at
4012 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
4013 virtual bases of TYPE are examined. */
4014
4015 static int
4016 layout_conflict_p (tree type,
4017 tree offset,
4018 splay_tree offsets,
4019 int vbases_p)
4020 {
4021 splay_tree_node max_node;
4022
4023 /* Get the node in OFFSETS that indicates the maximum offset where
4024 an empty subobject is located. */
4025 max_node = splay_tree_max (offsets);
4026 /* If there aren't any empty subobjects, then there's no point in
4027 performing this check. */
4028 if (!max_node)
4029 return 0;
4030
4031 return walk_subobject_offsets (type, check_subobject_offset, offset,
4032 offsets, (tree) (max_node->key),
4033 vbases_p);
4034 }
4035
4036 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
4037 non-static data member of the type indicated by RLI. BINFO is the
4038 binfo corresponding to the base subobject, OFFSETS maps offsets to
4039 types already located at those offsets. This function determines
4040 the position of the DECL. */
4041
4042 static void
4043 layout_nonempty_base_or_field (record_layout_info rli,
4044 tree decl,
4045 tree binfo,
4046 splay_tree offsets)
4047 {
4048 tree offset = NULL_TREE;
4049 bool field_p;
4050 tree type;
4051
4052 if (binfo)
4053 {
4054 /* For the purposes of determining layout conflicts, we want to
4055 use the class type of BINFO; TREE_TYPE (DECL) will be the
4056 CLASSTYPE_AS_BASE version, which does not contain entries for
4057 zero-sized bases. */
4058 type = TREE_TYPE (binfo);
4059 field_p = false;
4060 }
4061 else
4062 {
4063 type = TREE_TYPE (decl);
4064 field_p = true;
4065 }
4066
4067 /* Try to place the field. It may take more than one try if we have
4068 a hard time placing the field without putting two objects of the
4069 same type at the same address. */
4070 while (1)
4071 {
4072 struct record_layout_info_s old_rli = *rli;
4073
4074 /* Place this field. */
4075 place_field (rli, decl);
4076 offset = byte_position (decl);
4077
4078 /* We have to check to see whether or not there is already
4079 something of the same type at the offset we're about to use.
4080 For example, consider:
4081
4082 struct S {};
4083 struct T : public S { int i; };
4084 struct U : public S, public T {};
4085
4086 Here, we put S at offset zero in U. Then, we can't put T at
4087 offset zero -- its S component would be at the same address
4088 as the S we already allocated. So, we have to skip ahead.
4089 Since all data members, including those whose type is an
4090 empty class, have nonzero size, any overlap can happen only
4091 with a direct or indirect base-class -- it can't happen with
4092 a data member. */
4093 /* In a union, overlap is permitted; all members are placed at
4094 offset zero. */
4095 if (TREE_CODE (rli->t) == UNION_TYPE)
4096 break;
4097 if (layout_conflict_p (field_p ? type : binfo, offset,
4098 offsets, field_p))
4099 {
4100 /* Strip off the size allocated to this field. That puts us
4101 at the first place we could have put the field with
4102 proper alignment. */
4103 *rli = old_rli;
4104
4105 /* Bump up by the alignment required for the type. */
4106 rli->bitpos
4107 = size_binop (PLUS_EXPR, rli->bitpos,
4108 bitsize_int (binfo
4109 ? CLASSTYPE_ALIGN (type)
4110 : TYPE_ALIGN (type)));
4111 normalize_rli (rli);
4112 }
4113 else
4114 /* There was no conflict. We're done laying out this field. */
4115 break;
4116 }
4117
4118 /* Now that we know where it will be placed, update its
4119 BINFO_OFFSET. */
4120 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
4121 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4122 this point because their BINFO_OFFSET is copied from another
4123 hierarchy. Therefore, we may not need to add the entire
4124 OFFSET. */
4125 propagate_binfo_offsets (binfo,
4126 size_diffop_loc (input_location,
4127 convert (ssizetype, offset),
4128 convert (ssizetype,
4129 BINFO_OFFSET (binfo))));
4130 }
4131
4132 /* Returns true if TYPE is empty and OFFSET is nonzero. */
4133
4134 static int
4135 empty_base_at_nonzero_offset_p (tree type,
4136 tree offset,
4137 splay_tree /*offsets*/)
4138 {
4139 return is_empty_class (type) && !integer_zerop (offset);
4140 }
4141
4142 /* Layout the empty base BINFO. EOC indicates the byte currently just
4143 past the end of the class, and should be correctly aligned for a
4144 class of the type indicated by BINFO; OFFSETS gives the offsets of
4145 the empty bases allocated so far. T is the most derived
4146 type. Return nonzero iff we added it at the end. */
4147
4148 static bool
4149 layout_empty_base (record_layout_info rli, tree binfo,
4150 tree eoc, splay_tree offsets)
4151 {
4152 tree alignment;
4153 tree basetype = BINFO_TYPE (binfo);
4154 bool atend = false;
4155
4156 /* This routine should only be used for empty classes. */
4157 gcc_assert (is_empty_class (basetype));
4158 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4159
4160 if (!integer_zerop (BINFO_OFFSET (binfo)))
4161 propagate_binfo_offsets
4162 (binfo, size_diffop_loc (input_location,
4163 size_zero_node, BINFO_OFFSET (binfo)));
4164
4165 /* This is an empty base class. We first try to put it at offset
4166 zero. */
4167 if (layout_conflict_p (binfo,
4168 BINFO_OFFSET (binfo),
4169 offsets,
4170 /*vbases_p=*/0))
4171 {
4172 /* That didn't work. Now, we move forward from the next
4173 available spot in the class. */
4174 atend = true;
4175 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4176 while (1)
4177 {
4178 if (!layout_conflict_p (binfo,
4179 BINFO_OFFSET (binfo),
4180 offsets,
4181 /*vbases_p=*/0))
4182 /* We finally found a spot where there's no overlap. */
4183 break;
4184
4185 /* There's overlap here, too. Bump along to the next spot. */
4186 propagate_binfo_offsets (binfo, alignment);
4187 }
4188 }
4189
4190 if (CLASSTYPE_USER_ALIGN (basetype))
4191 {
4192 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4193 if (warn_packed)
4194 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4195 TYPE_USER_ALIGN (rli->t) = 1;
4196 }
4197
4198 return atend;
4199 }
4200
4201 /* Layout the base given by BINFO in the class indicated by RLI.
4202 *BASE_ALIGN is a running maximum of the alignments of
4203 any base class. OFFSETS gives the location of empty base
4204 subobjects. T is the most derived type. Return nonzero if the new
4205 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4206 *NEXT_FIELD, unless BINFO is for an empty base class.
4207
4208 Returns the location at which the next field should be inserted. */
4209
4210 static tree *
4211 build_base_field (record_layout_info rli, tree binfo,
4212 splay_tree offsets, tree *next_field)
4213 {
4214 tree t = rli->t;
4215 tree basetype = BINFO_TYPE (binfo);
4216
4217 if (!COMPLETE_TYPE_P (basetype))
4218 /* This error is now reported in xref_tag, thus giving better
4219 location information. */
4220 return next_field;
4221
4222 /* Place the base class. */
4223 if (!is_empty_class (basetype))
4224 {
4225 tree decl;
4226
4227 /* The containing class is non-empty because it has a non-empty
4228 base class. */
4229 CLASSTYPE_EMPTY_P (t) = 0;
4230
4231 /* Create the FIELD_DECL. */
4232 decl = build_decl (input_location,
4233 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4234 DECL_ARTIFICIAL (decl) = 1;
4235 DECL_IGNORED_P (decl) = 1;
4236 DECL_FIELD_CONTEXT (decl) = t;
4237 if (CLASSTYPE_AS_BASE (basetype))
4238 {
4239 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4240 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4241 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4242 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4243 DECL_MODE (decl) = TYPE_MODE (basetype);
4244 DECL_FIELD_IS_BASE (decl) = 1;
4245
4246 /* Try to place the field. It may take more than one try if we
4247 have a hard time placing the field without putting two
4248 objects of the same type at the same address. */
4249 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4250 /* Add the new FIELD_DECL to the list of fields for T. */
4251 DECL_CHAIN (decl) = *next_field;
4252 *next_field = decl;
4253 next_field = &DECL_CHAIN (decl);
4254 }
4255 }
4256 else
4257 {
4258 tree eoc;
4259 bool atend;
4260
4261 /* On some platforms (ARM), even empty classes will not be
4262 byte-aligned. */
4263 eoc = round_up_loc (input_location,
4264 rli_size_unit_so_far (rli),
4265 CLASSTYPE_ALIGN_UNIT (basetype));
4266 atend = layout_empty_base (rli, binfo, eoc, offsets);
4267 /* A nearly-empty class "has no proper base class that is empty,
4268 not morally virtual, and at an offset other than zero." */
4269 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4270 {
4271 if (atend)
4272 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4273 /* The check above (used in G++ 3.2) is insufficient because
4274 an empty class placed at offset zero might itself have an
4275 empty base at a nonzero offset. */
4276 else if (walk_subobject_offsets (basetype,
4277 empty_base_at_nonzero_offset_p,
4278 size_zero_node,
4279 /*offsets=*/NULL,
4280 /*max_offset=*/NULL_TREE,
4281 /*vbases_p=*/true))
4282 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4283 }
4284
4285 /* We do not create a FIELD_DECL for empty base classes because
4286 it might overlap some other field. We want to be able to
4287 create CONSTRUCTORs for the class by iterating over the
4288 FIELD_DECLs, and the back end does not handle overlapping
4289 FIELD_DECLs. */
4290
4291 /* An empty virtual base causes a class to be non-empty
4292 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4293 here because that was already done when the virtual table
4294 pointer was created. */
4295 }
4296
4297 /* Record the offsets of BINFO and its base subobjects. */
4298 record_subobject_offsets (binfo,
4299 BINFO_OFFSET (binfo),
4300 offsets,
4301 /*is_data_member=*/false);
4302
4303 return next_field;
4304 }
4305
4306 /* Layout all of the non-virtual base classes. Record empty
4307 subobjects in OFFSETS. T is the most derived type. Return nonzero
4308 if the type cannot be nearly empty. The fields created
4309 corresponding to the base classes will be inserted at
4310 *NEXT_FIELD. */
4311
4312 static void
4313 build_base_fields (record_layout_info rli,
4314 splay_tree offsets, tree *next_field)
4315 {
4316 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4317 subobjects. */
4318 tree t = rli->t;
4319 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4320 int i;
4321
4322 /* The primary base class is always allocated first. */
4323 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4324 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4325 offsets, next_field);
4326
4327 /* Now allocate the rest of the bases. */
4328 for (i = 0; i < n_baseclasses; ++i)
4329 {
4330 tree base_binfo;
4331
4332 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4333
4334 /* The primary base was already allocated above, so we don't
4335 need to allocate it again here. */
4336 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4337 continue;
4338
4339 /* Virtual bases are added at the end (a primary virtual base
4340 will have already been added). */
4341 if (BINFO_VIRTUAL_P (base_binfo))
4342 continue;
4343
4344 next_field = build_base_field (rli, base_binfo,
4345 offsets, next_field);
4346 }
4347 }
4348
4349 /* Go through the TYPE_METHODS of T issuing any appropriate
4350 diagnostics, figuring out which methods override which other
4351 methods, and so forth. */
4352
4353 static void
4354 check_methods (tree t)
4355 {
4356 tree x;
4357
4358 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4359 {
4360 check_for_override (x, t);
4361 if (DECL_PURE_VIRTUAL_P (x) && (TREE_CODE (x) != FUNCTION_DECL || ! DECL_VINDEX (x)))
4362 error ("initializer specified for non-virtual method %q+D", x);
4363 /* The name of the field is the original field name
4364 Save this in auxiliary field for later overloading. */
4365 if (TREE_CODE (x) == FUNCTION_DECL && DECL_VINDEX (x))
4366 {
4367 TYPE_POLYMORPHIC_P (t) = 1;
4368 if (DECL_PURE_VIRTUAL_P (x))
4369 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4370 }
4371 /* All user-provided destructors are non-trivial.
4372 Constructors and assignment ops are handled in
4373 grok_special_member_properties. */
4374 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4375 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4376 }
4377 }
4378
4379 /* FN is a constructor or destructor. Clone the declaration to create
4380 a specialized in-charge or not-in-charge version, as indicated by
4381 NAME. */
4382
4383 static tree
4384 build_clone (tree fn, tree name)
4385 {
4386 tree parms;
4387 tree clone;
4388
4389 /* Copy the function. */
4390 clone = copy_decl (fn);
4391 /* Reset the function name. */
4392 DECL_NAME (clone) = name;
4393 /* Remember where this function came from. */
4394 DECL_ABSTRACT_ORIGIN (clone) = fn;
4395 /* Make it easy to find the CLONE given the FN. */
4396 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4397 DECL_CHAIN (fn) = clone;
4398
4399 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4400 if (TREE_CODE (clone) == TEMPLATE_DECL)
4401 {
4402 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4403 DECL_TEMPLATE_RESULT (clone) = result;
4404 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4405 DECL_TI_TEMPLATE (result) = clone;
4406 TREE_TYPE (clone) = TREE_TYPE (result);
4407 return clone;
4408 }
4409
4410 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4411 DECL_CLONED_FUNCTION (clone) = fn;
4412 /* There's no pending inline data for this function. */
4413 DECL_PENDING_INLINE_INFO (clone) = NULL;
4414 DECL_PENDING_INLINE_P (clone) = 0;
4415
4416 /* The base-class destructor is not virtual. */
4417 if (name == base_dtor_identifier)
4418 {
4419 DECL_VIRTUAL_P (clone) = 0;
4420 if (TREE_CODE (clone) != TEMPLATE_DECL)
4421 DECL_VINDEX (clone) = NULL_TREE;
4422 }
4423
4424 /* If there was an in-charge parameter, drop it from the function
4425 type. */
4426 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4427 {
4428 tree basetype;
4429 tree parmtypes;
4430 tree exceptions;
4431
4432 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4433 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4434 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4435 /* Skip the `this' parameter. */
4436 parmtypes = TREE_CHAIN (parmtypes);
4437 /* Skip the in-charge parameter. */
4438 parmtypes = TREE_CHAIN (parmtypes);
4439 /* And the VTT parm, in a complete [cd]tor. */
4440 if (DECL_HAS_VTT_PARM_P (fn)
4441 && ! DECL_NEEDS_VTT_PARM_P (clone))
4442 parmtypes = TREE_CHAIN (parmtypes);
4443 /* If this is subobject constructor or destructor, add the vtt
4444 parameter. */
4445 TREE_TYPE (clone)
4446 = build_method_type_directly (basetype,
4447 TREE_TYPE (TREE_TYPE (clone)),
4448 parmtypes);
4449 if (exceptions)
4450 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4451 exceptions);
4452 TREE_TYPE (clone)
4453 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4454 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4455 }
4456
4457 /* Copy the function parameters. */
4458 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4459 /* Remove the in-charge parameter. */
4460 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4461 {
4462 DECL_CHAIN (DECL_ARGUMENTS (clone))
4463 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4464 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4465 }
4466 /* And the VTT parm, in a complete [cd]tor. */
4467 if (DECL_HAS_VTT_PARM_P (fn))
4468 {
4469 if (DECL_NEEDS_VTT_PARM_P (clone))
4470 DECL_HAS_VTT_PARM_P (clone) = 1;
4471 else
4472 {
4473 DECL_CHAIN (DECL_ARGUMENTS (clone))
4474 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4475 DECL_HAS_VTT_PARM_P (clone) = 0;
4476 }
4477 }
4478
4479 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4480 {
4481 DECL_CONTEXT (parms) = clone;
4482 cxx_dup_lang_specific_decl (parms);
4483 }
4484
4485 /* Create the RTL for this function. */
4486 SET_DECL_RTL (clone, NULL);
4487 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4488
4489 if (pch_file)
4490 note_decl_for_pch (clone);
4491
4492 return clone;
4493 }
4494
4495 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4496 not invoke this function directly.
4497
4498 For a non-thunk function, returns the address of the slot for storing
4499 the function it is a clone of. Otherwise returns NULL_TREE.
4500
4501 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4502 cloned_function is unset. This is to support the separate
4503 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4504 on a template makes sense, but not the former. */
4505
4506 tree *
4507 decl_cloned_function_p (const_tree decl, bool just_testing)
4508 {
4509 tree *ptr;
4510 if (just_testing)
4511 decl = STRIP_TEMPLATE (decl);
4512
4513 if (TREE_CODE (decl) != FUNCTION_DECL
4514 || !DECL_LANG_SPECIFIC (decl)
4515 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4516 {
4517 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4518 if (!just_testing)
4519 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4520 else
4521 #endif
4522 return NULL;
4523 }
4524
4525 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4526 if (just_testing && *ptr == NULL_TREE)
4527 return NULL;
4528 else
4529 return ptr;
4530 }
4531
4532 /* Produce declarations for all appropriate clones of FN. If
4533 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4534 CLASTYPE_METHOD_VEC as well. */
4535
4536 void
4537 clone_function_decl (tree fn, int update_method_vec_p)
4538 {
4539 tree clone;
4540
4541 /* Avoid inappropriate cloning. */
4542 if (DECL_CHAIN (fn)
4543 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4544 return;
4545
4546 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4547 {
4548 /* For each constructor, we need two variants: an in-charge version
4549 and a not-in-charge version. */
4550 clone = build_clone (fn, complete_ctor_identifier);
4551 if (update_method_vec_p)
4552 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4553 clone = build_clone (fn, base_ctor_identifier);
4554 if (update_method_vec_p)
4555 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4556 }
4557 else
4558 {
4559 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4560
4561 /* For each destructor, we need three variants: an in-charge
4562 version, a not-in-charge version, and an in-charge deleting
4563 version. We clone the deleting version first because that
4564 means it will go second on the TYPE_METHODS list -- and that
4565 corresponds to the correct layout order in the virtual
4566 function table.
4567
4568 For a non-virtual destructor, we do not build a deleting
4569 destructor. */
4570 if (DECL_VIRTUAL_P (fn))
4571 {
4572 clone = build_clone (fn, deleting_dtor_identifier);
4573 if (update_method_vec_p)
4574 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4575 }
4576 clone = build_clone (fn, complete_dtor_identifier);
4577 if (update_method_vec_p)
4578 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4579 clone = build_clone (fn, base_dtor_identifier);
4580 if (update_method_vec_p)
4581 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4582 }
4583
4584 /* Note that this is an abstract function that is never emitted. */
4585 DECL_ABSTRACT_P (fn) = true;
4586 }
4587
4588 /* DECL is an in charge constructor, which is being defined. This will
4589 have had an in class declaration, from whence clones were
4590 declared. An out-of-class definition can specify additional default
4591 arguments. As it is the clones that are involved in overload
4592 resolution, we must propagate the information from the DECL to its
4593 clones. */
4594
4595 void
4596 adjust_clone_args (tree decl)
4597 {
4598 tree clone;
4599
4600 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4601 clone = DECL_CHAIN (clone))
4602 {
4603 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4604 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4605 tree decl_parms, clone_parms;
4606
4607 clone_parms = orig_clone_parms;
4608
4609 /* Skip the 'this' parameter. */
4610 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4611 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4612
4613 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4614 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4615 if (DECL_HAS_VTT_PARM_P (decl))
4616 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4617
4618 clone_parms = orig_clone_parms;
4619 if (DECL_HAS_VTT_PARM_P (clone))
4620 clone_parms = TREE_CHAIN (clone_parms);
4621
4622 for (decl_parms = orig_decl_parms; decl_parms;
4623 decl_parms = TREE_CHAIN (decl_parms),
4624 clone_parms = TREE_CHAIN (clone_parms))
4625 {
4626 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4627 TREE_TYPE (clone_parms)));
4628
4629 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4630 {
4631 /* A default parameter has been added. Adjust the
4632 clone's parameters. */
4633 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4634 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4635 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4636 tree type;
4637
4638 clone_parms = orig_decl_parms;
4639
4640 if (DECL_HAS_VTT_PARM_P (clone))
4641 {
4642 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4643 TREE_VALUE (orig_clone_parms),
4644 clone_parms);
4645 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4646 }
4647 type = build_method_type_directly (basetype,
4648 TREE_TYPE (TREE_TYPE (clone)),
4649 clone_parms);
4650 if (exceptions)
4651 type = build_exception_variant (type, exceptions);
4652 if (attrs)
4653 type = cp_build_type_attribute_variant (type, attrs);
4654 TREE_TYPE (clone) = type;
4655
4656 clone_parms = NULL_TREE;
4657 break;
4658 }
4659 }
4660 gcc_assert (!clone_parms);
4661 }
4662 }
4663
4664 /* For each of the constructors and destructors in T, create an
4665 in-charge and not-in-charge variant. */
4666
4667 static void
4668 clone_constructors_and_destructors (tree t)
4669 {
4670 tree fns;
4671
4672 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4673 out now. */
4674 if (!CLASSTYPE_METHOD_VEC (t))
4675 return;
4676
4677 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4678 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4679 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4680 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4681 }
4682
4683 /* Deduce noexcept for a destructor DTOR. */
4684
4685 void
4686 deduce_noexcept_on_destructor (tree dtor)
4687 {
4688 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4689 {
4690 tree eh_spec = unevaluated_noexcept_spec ();
4691 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4692 }
4693 }
4694
4695 /* For each destructor in T, deduce noexcept:
4696
4697 12.4/3: A declaration of a destructor that does not have an
4698 exception-specification is implicitly considered to have the
4699 same exception-specification as an implicit declaration (15.4). */
4700
4701 static void
4702 deduce_noexcept_on_destructors (tree t)
4703 {
4704 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4705 out now. */
4706 if (!CLASSTYPE_METHOD_VEC (t))
4707 return;
4708
4709 for (tree fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4710 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4711 }
4712
4713 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4714 of TYPE for virtual functions which FNDECL overrides. Return a
4715 mask of the tm attributes found therein. */
4716
4717 static int
4718 look_for_tm_attr_overrides (tree type, tree fndecl)
4719 {
4720 tree binfo = TYPE_BINFO (type);
4721 tree base_binfo;
4722 int ix, found = 0;
4723
4724 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4725 {
4726 tree o, basetype = BINFO_TYPE (base_binfo);
4727
4728 if (!TYPE_POLYMORPHIC_P (basetype))
4729 continue;
4730
4731 o = look_for_overrides_here (basetype, fndecl);
4732 if (o)
4733 found |= tm_attr_to_mask (find_tm_attribute
4734 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4735 else
4736 found |= look_for_tm_attr_overrides (basetype, fndecl);
4737 }
4738
4739 return found;
4740 }
4741
4742 /* Subroutine of set_method_tm_attributes. Handle the checks and
4743 inheritance for one virtual method FNDECL. */
4744
4745 static void
4746 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4747 {
4748 tree tm_attr;
4749 int found, have;
4750
4751 found = look_for_tm_attr_overrides (type, fndecl);
4752
4753 /* If FNDECL doesn't actually override anything (i.e. T is the
4754 class that first declares FNDECL virtual), then we're done. */
4755 if (found == 0)
4756 return;
4757
4758 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4759 have = tm_attr_to_mask (tm_attr);
4760
4761 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4762 tm_pure must match exactly, otherwise no weakening of
4763 tm_safe > tm_callable > nothing. */
4764 /* ??? The tm_pure attribute didn't make the transition to the
4765 multivendor language spec. */
4766 if (have == TM_ATTR_PURE)
4767 {
4768 if (found != TM_ATTR_PURE)
4769 {
4770 found &= -found;
4771 goto err_override;
4772 }
4773 }
4774 /* If the overridden function is tm_pure, then FNDECL must be. */
4775 else if (found == TM_ATTR_PURE && tm_attr)
4776 goto err_override;
4777 /* Look for base class combinations that cannot be satisfied. */
4778 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4779 {
4780 found &= ~TM_ATTR_PURE;
4781 found &= -found;
4782 error_at (DECL_SOURCE_LOCATION (fndecl),
4783 "method overrides both %<transaction_pure%> and %qE methods",
4784 tm_mask_to_attr (found));
4785 }
4786 /* If FNDECL did not declare an attribute, then inherit the most
4787 restrictive one. */
4788 else if (tm_attr == NULL)
4789 {
4790 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4791 }
4792 /* Otherwise validate that we're not weaker than a function
4793 that is being overridden. */
4794 else
4795 {
4796 found &= -found;
4797 if (found <= TM_ATTR_CALLABLE && have > found)
4798 goto err_override;
4799 }
4800 return;
4801
4802 err_override:
4803 error_at (DECL_SOURCE_LOCATION (fndecl),
4804 "method declared %qE overriding %qE method",
4805 tm_attr, tm_mask_to_attr (found));
4806 }
4807
4808 /* For each of the methods in T, propagate a class-level tm attribute. */
4809
4810 static void
4811 set_method_tm_attributes (tree t)
4812 {
4813 tree class_tm_attr, fndecl;
4814
4815 /* Don't bother collecting tm attributes if transactional memory
4816 support is not enabled. */
4817 if (!flag_tm)
4818 return;
4819
4820 /* Process virtual methods first, as they inherit directly from the
4821 base virtual function and also require validation of new attributes. */
4822 if (TYPE_CONTAINS_VPTR_P (t))
4823 {
4824 tree vchain;
4825 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4826 vchain = TREE_CHAIN (vchain))
4827 {
4828 fndecl = BV_FN (vchain);
4829 if (DECL_THUNK_P (fndecl))
4830 fndecl = THUNK_TARGET (fndecl);
4831 set_one_vmethod_tm_attributes (t, fndecl);
4832 }
4833 }
4834
4835 /* If the class doesn't have an attribute, nothing more to do. */
4836 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4837 if (class_tm_attr == NULL)
4838 return;
4839
4840 /* Any method that does not yet have a tm attribute inherits
4841 the one from the class. */
4842 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4843 {
4844 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4845 apply_tm_attr (fndecl, class_tm_attr);
4846 }
4847 }
4848
4849 /* Returns true iff class T has a user-defined constructor other than
4850 the default constructor. */
4851
4852 bool
4853 type_has_user_nondefault_constructor (tree t)
4854 {
4855 tree fns;
4856
4857 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4858 return false;
4859
4860 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4861 {
4862 tree fn = OVL_CURRENT (fns);
4863 if (!DECL_ARTIFICIAL (fn)
4864 && (TREE_CODE (fn) == TEMPLATE_DECL
4865 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4866 != NULL_TREE)))
4867 return true;
4868 }
4869
4870 return false;
4871 }
4872
4873 /* Returns the defaulted constructor if T has one. Otherwise, returns
4874 NULL_TREE. */
4875
4876 tree
4877 in_class_defaulted_default_constructor (tree t)
4878 {
4879 tree fns, args;
4880
4881 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4882 return NULL_TREE;
4883
4884 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4885 {
4886 tree fn = OVL_CURRENT (fns);
4887
4888 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4889 {
4890 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4891 while (args && TREE_PURPOSE (args))
4892 args = TREE_CHAIN (args);
4893 if (!args || args == void_list_node)
4894 return fn;
4895 }
4896 }
4897
4898 return NULL_TREE;
4899 }
4900
4901 /* Returns true iff FN is a user-provided function, i.e. user-declared
4902 and not defaulted at its first declaration; or explicit, private,
4903 protected, or non-const. */
4904
4905 bool
4906 user_provided_p (tree fn)
4907 {
4908 if (TREE_CODE (fn) == TEMPLATE_DECL)
4909 return true;
4910 else
4911 return (!DECL_ARTIFICIAL (fn)
4912 && !(DECL_INITIALIZED_IN_CLASS_P (fn)
4913 && (DECL_DEFAULTED_FN (fn) || DECL_DELETED_FN (fn))));
4914 }
4915
4916 /* Returns true iff class T has a user-provided constructor. */
4917
4918 bool
4919 type_has_user_provided_constructor (tree t)
4920 {
4921 tree fns;
4922
4923 if (!CLASS_TYPE_P (t))
4924 return false;
4925
4926 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4927 return false;
4928
4929 /* This can happen in error cases; avoid crashing. */
4930 if (!CLASSTYPE_METHOD_VEC (t))
4931 return false;
4932
4933 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4934 if (user_provided_p (OVL_CURRENT (fns)))
4935 return true;
4936
4937 return false;
4938 }
4939
4940 /* Returns true iff class T has a user-provided default constructor. */
4941
4942 bool
4943 type_has_user_provided_default_constructor (tree t)
4944 {
4945 tree fns;
4946
4947 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4948 return false;
4949
4950 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4951 {
4952 tree fn = OVL_CURRENT (fns);
4953 if (TREE_CODE (fn) == FUNCTION_DECL
4954 && user_provided_p (fn)
4955 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4956 return true;
4957 }
4958
4959 return false;
4960 }
4961
4962 /* TYPE is being used as a virtual base, and has a non-trivial move
4963 assignment. Return true if this is due to there being a user-provided
4964 move assignment in TYPE or one of its subobjects; if there isn't, then
4965 multiple move assignment can't cause any harm. */
4966
4967 bool
4968 vbase_has_user_provided_move_assign (tree type)
4969 {
4970 /* Does the type itself have a user-provided move assignment operator? */
4971 for (tree fns
4972 = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR));
4973 fns; fns = OVL_NEXT (fns))
4974 {
4975 tree fn = OVL_CURRENT (fns);
4976 if (move_fn_p (fn) && user_provided_p (fn))
4977 return true;
4978 }
4979
4980 /* Do any of its bases? */
4981 tree binfo = TYPE_BINFO (type);
4982 tree base_binfo;
4983 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4984 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
4985 return true;
4986
4987 /* Or non-static data members? */
4988 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4989 {
4990 if (TREE_CODE (field) == FIELD_DECL
4991 && CLASS_TYPE_P (TREE_TYPE (field))
4992 && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
4993 return true;
4994 }
4995
4996 /* Seems not. */
4997 return false;
4998 }
4999
5000 /* If default-initialization leaves part of TYPE uninitialized, returns
5001 a DECL for the field or TYPE itself (DR 253). */
5002
5003 tree
5004 default_init_uninitialized_part (tree type)
5005 {
5006 tree t, r, binfo;
5007 int i;
5008
5009 type = strip_array_types (type);
5010 if (!CLASS_TYPE_P (type))
5011 return type;
5012 if (type_has_user_provided_default_constructor (type))
5013 return NULL_TREE;
5014 for (binfo = TYPE_BINFO (type), i = 0;
5015 BINFO_BASE_ITERATE (binfo, i, t); ++i)
5016 {
5017 r = default_init_uninitialized_part (BINFO_TYPE (t));
5018 if (r)
5019 return r;
5020 }
5021 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
5022 if (TREE_CODE (t) == FIELD_DECL
5023 && !DECL_ARTIFICIAL (t)
5024 && !DECL_INITIAL (t))
5025 {
5026 r = default_init_uninitialized_part (TREE_TYPE (t));
5027 if (r)
5028 return DECL_P (r) ? r : t;
5029 }
5030
5031 return NULL_TREE;
5032 }
5033
5034 /* Returns true iff for class T, a trivial synthesized default constructor
5035 would be constexpr. */
5036
5037 bool
5038 trivial_default_constructor_is_constexpr (tree t)
5039 {
5040 /* A defaulted trivial default constructor is constexpr
5041 if there is nothing to initialize. */
5042 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
5043 return is_really_empty_class (t);
5044 }
5045
5046 /* Returns true iff class T has a constexpr default constructor. */
5047
5048 bool
5049 type_has_constexpr_default_constructor (tree t)
5050 {
5051 tree fns;
5052
5053 if (!CLASS_TYPE_P (t))
5054 {
5055 /* The caller should have stripped an enclosing array. */
5056 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
5057 return false;
5058 }
5059 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5060 {
5061 if (!TYPE_HAS_COMPLEX_DFLT (t))
5062 return trivial_default_constructor_is_constexpr (t);
5063 /* Non-trivial, we need to check subobject constructors. */
5064 lazily_declare_fn (sfk_constructor, t);
5065 }
5066 fns = locate_ctor (t);
5067 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
5068 }
5069
5070 /* Returns true iff class TYPE has a virtual destructor. */
5071
5072 bool
5073 type_has_virtual_destructor (tree type)
5074 {
5075 tree dtor;
5076
5077 if (!CLASS_TYPE_P (type))
5078 return false;
5079
5080 gcc_assert (COMPLETE_TYPE_P (type));
5081 dtor = CLASSTYPE_DESTRUCTORS (type);
5082 return (dtor && DECL_VIRTUAL_P (dtor));
5083 }
5084
5085 /* Returns true iff class T has a move constructor. */
5086
5087 bool
5088 type_has_move_constructor (tree t)
5089 {
5090 tree fns;
5091
5092 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5093 {
5094 gcc_assert (COMPLETE_TYPE_P (t));
5095 lazily_declare_fn (sfk_move_constructor, t);
5096 }
5097
5098 if (!CLASSTYPE_METHOD_VEC (t))
5099 return false;
5100
5101 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5102 if (move_fn_p (OVL_CURRENT (fns)))
5103 return true;
5104
5105 return false;
5106 }
5107
5108 /* Returns true iff class T has a move assignment operator. */
5109
5110 bool
5111 type_has_move_assign (tree t)
5112 {
5113 tree fns;
5114
5115 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5116 {
5117 gcc_assert (COMPLETE_TYPE_P (t));
5118 lazily_declare_fn (sfk_move_assignment, t);
5119 }
5120
5121 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5122 fns; fns = OVL_NEXT (fns))
5123 if (move_fn_p (OVL_CURRENT (fns)))
5124 return true;
5125
5126 return false;
5127 }
5128
5129 /* Returns true iff class T has a move constructor that was explicitly
5130 declared in the class body. Note that this is different from
5131 "user-provided", which doesn't include functions that are defaulted in
5132 the class. */
5133
5134 bool
5135 type_has_user_declared_move_constructor (tree t)
5136 {
5137 tree fns;
5138
5139 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5140 return false;
5141
5142 if (!CLASSTYPE_METHOD_VEC (t))
5143 return false;
5144
5145 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5146 {
5147 tree fn = OVL_CURRENT (fns);
5148 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5149 return true;
5150 }
5151
5152 return false;
5153 }
5154
5155 /* Returns true iff class T has a move assignment operator that was
5156 explicitly declared in the class body. */
5157
5158 bool
5159 type_has_user_declared_move_assign (tree t)
5160 {
5161 tree fns;
5162
5163 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5164 return false;
5165
5166 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5167 fns; fns = OVL_NEXT (fns))
5168 {
5169 tree fn = OVL_CURRENT (fns);
5170 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5171 return true;
5172 }
5173
5174 return false;
5175 }
5176
5177 /* Nonzero if we need to build up a constructor call when initializing an
5178 object of this class, either because it has a user-declared constructor
5179 or because it doesn't have a default constructor (so we need to give an
5180 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5181 what you care about is whether or not an object can be produced by a
5182 constructor (e.g. so we don't set TREE_READONLY on const variables of
5183 such type); use this function when what you care about is whether or not
5184 to try to call a constructor to create an object. The latter case is
5185 the former plus some cases of constructors that cannot be called. */
5186
5187 bool
5188 type_build_ctor_call (tree t)
5189 {
5190 tree inner;
5191 if (TYPE_NEEDS_CONSTRUCTING (t))
5192 return true;
5193 inner = strip_array_types (t);
5194 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner))
5195 return false;
5196 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner))
5197 return true;
5198 if (cxx_dialect < cxx11)
5199 return false;
5200 /* A user-declared constructor might be private, and a constructor might
5201 be trivial but deleted. */
5202 for (tree fns = lookup_fnfields_slot (inner, complete_ctor_identifier);
5203 fns; fns = OVL_NEXT (fns))
5204 {
5205 tree fn = OVL_CURRENT (fns);
5206 if (!DECL_ARTIFICIAL (fn)
5207 || DECL_DELETED_FN (fn))
5208 return true;
5209 }
5210 return false;
5211 }
5212
5213 /* Like type_build_ctor_call, but for destructors. */
5214
5215 bool
5216 type_build_dtor_call (tree t)
5217 {
5218 tree inner;
5219 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5220 return true;
5221 inner = strip_array_types (t);
5222 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner)
5223 || !COMPLETE_TYPE_P (inner))
5224 return false;
5225 if (cxx_dialect < cxx11)
5226 return false;
5227 /* A user-declared destructor might be private, and a destructor might
5228 be trivial but deleted. */
5229 for (tree fns = lookup_fnfields_slot (inner, complete_dtor_identifier);
5230 fns; fns = OVL_NEXT (fns))
5231 {
5232 tree fn = OVL_CURRENT (fns);
5233 if (!DECL_ARTIFICIAL (fn)
5234 || DECL_DELETED_FN (fn))
5235 return true;
5236 }
5237 return false;
5238 }
5239
5240 /* Remove all zero-width bit-fields from T. */
5241
5242 static void
5243 remove_zero_width_bit_fields (tree t)
5244 {
5245 tree *fieldsp;
5246
5247 fieldsp = &TYPE_FIELDS (t);
5248 while (*fieldsp)
5249 {
5250 if (TREE_CODE (*fieldsp) == FIELD_DECL
5251 && DECL_C_BIT_FIELD (*fieldsp)
5252 /* We should not be confused by the fact that grokbitfield
5253 temporarily sets the width of the bit field into
5254 DECL_INITIAL (*fieldsp).
5255 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5256 to that width. */
5257 && integer_zerop (DECL_SIZE (*fieldsp)))
5258 *fieldsp = DECL_CHAIN (*fieldsp);
5259 else
5260 fieldsp = &DECL_CHAIN (*fieldsp);
5261 }
5262 }
5263
5264 /* Returns TRUE iff we need a cookie when dynamically allocating an
5265 array whose elements have the indicated class TYPE. */
5266
5267 static bool
5268 type_requires_array_cookie (tree type)
5269 {
5270 tree fns;
5271 bool has_two_argument_delete_p = false;
5272
5273 gcc_assert (CLASS_TYPE_P (type));
5274
5275 /* If there's a non-trivial destructor, we need a cookie. In order
5276 to iterate through the array calling the destructor for each
5277 element, we'll have to know how many elements there are. */
5278 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5279 return true;
5280
5281 /* If the usual deallocation function is a two-argument whose second
5282 argument is of type `size_t', then we have to pass the size of
5283 the array to the deallocation function, so we will need to store
5284 a cookie. */
5285 fns = lookup_fnfields (TYPE_BINFO (type),
5286 ansi_opname (VEC_DELETE_EXPR),
5287 /*protect=*/0);
5288 /* If there are no `operator []' members, or the lookup is
5289 ambiguous, then we don't need a cookie. */
5290 if (!fns || fns == error_mark_node)
5291 return false;
5292 /* Loop through all of the functions. */
5293 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5294 {
5295 tree fn;
5296 tree second_parm;
5297
5298 /* Select the current function. */
5299 fn = OVL_CURRENT (fns);
5300 /* See if this function is a one-argument delete function. If
5301 it is, then it will be the usual deallocation function. */
5302 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5303 if (second_parm == void_list_node)
5304 return false;
5305 /* Do not consider this function if its second argument is an
5306 ellipsis. */
5307 if (!second_parm)
5308 continue;
5309 /* Otherwise, if we have a two-argument function and the second
5310 argument is `size_t', it will be the usual deallocation
5311 function -- unless there is one-argument function, too. */
5312 if (TREE_CHAIN (second_parm) == void_list_node
5313 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5314 has_two_argument_delete_p = true;
5315 }
5316
5317 return has_two_argument_delete_p;
5318 }
5319
5320 /* Finish computing the `literal type' property of class type T.
5321
5322 At this point, we have already processed base classes and
5323 non-static data members. We need to check whether the copy
5324 constructor is trivial, the destructor is trivial, and there
5325 is a trivial default constructor or at least one constexpr
5326 constructor other than the copy constructor. */
5327
5328 static void
5329 finalize_literal_type_property (tree t)
5330 {
5331 tree fn;
5332
5333 if (cxx_dialect < cxx11
5334 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5335 CLASSTYPE_LITERAL_P (t) = false;
5336 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5337 && CLASSTYPE_NON_AGGREGATE (t)
5338 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5339 CLASSTYPE_LITERAL_P (t) = false;
5340
5341 if (!CLASSTYPE_LITERAL_P (t))
5342 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5343 if (DECL_DECLARED_CONSTEXPR_P (fn)
5344 && TREE_CODE (fn) != TEMPLATE_DECL
5345 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5346 && !DECL_CONSTRUCTOR_P (fn))
5347 {
5348 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5349 if (!DECL_GENERATED_P (fn))
5350 {
5351 error ("enclosing class of constexpr non-static member "
5352 "function %q+#D is not a literal type", fn);
5353 explain_non_literal_class (t);
5354 }
5355 }
5356 }
5357
5358 /* T is a non-literal type used in a context which requires a constant
5359 expression. Explain why it isn't literal. */
5360
5361 void
5362 explain_non_literal_class (tree t)
5363 {
5364 static hash_set<tree> *diagnosed;
5365
5366 if (!CLASS_TYPE_P (t))
5367 return;
5368 t = TYPE_MAIN_VARIANT (t);
5369
5370 if (diagnosed == NULL)
5371 diagnosed = new hash_set<tree>;
5372 if (diagnosed->add (t))
5373 /* Already explained. */
5374 return;
5375
5376 inform (0, "%q+T is not literal because:", t);
5377 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5378 inform (0, " %q+T has a non-trivial destructor", t);
5379 else if (CLASSTYPE_NON_AGGREGATE (t)
5380 && !TYPE_HAS_TRIVIAL_DFLT (t)
5381 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5382 {
5383 inform (0, " %q+T is not an aggregate, does not have a trivial "
5384 "default constructor, and has no constexpr constructor that "
5385 "is not a copy or move constructor", t);
5386 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5387 && !type_has_user_provided_default_constructor (t))
5388 {
5389 /* Note that we can't simply call locate_ctor because when the
5390 constructor is deleted it just returns NULL_TREE. */
5391 tree fns;
5392 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5393 {
5394 tree fn = OVL_CURRENT (fns);
5395 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5396
5397 parms = skip_artificial_parms_for (fn, parms);
5398
5399 if (sufficient_parms_p (parms))
5400 {
5401 if (DECL_DELETED_FN (fn))
5402 maybe_explain_implicit_delete (fn);
5403 else
5404 explain_invalid_constexpr_fn (fn);
5405 break;
5406 }
5407 }
5408 }
5409 }
5410 else
5411 {
5412 tree binfo, base_binfo, field; int i;
5413 for (binfo = TYPE_BINFO (t), i = 0;
5414 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5415 {
5416 tree basetype = TREE_TYPE (base_binfo);
5417 if (!CLASSTYPE_LITERAL_P (basetype))
5418 {
5419 inform (0, " base class %qT of %q+T is non-literal",
5420 basetype, t);
5421 explain_non_literal_class (basetype);
5422 return;
5423 }
5424 }
5425 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5426 {
5427 tree ftype;
5428 if (TREE_CODE (field) != FIELD_DECL)
5429 continue;
5430 ftype = TREE_TYPE (field);
5431 if (!literal_type_p (ftype))
5432 {
5433 inform (0, " non-static data member %q+D has "
5434 "non-literal type", field);
5435 if (CLASS_TYPE_P (ftype))
5436 explain_non_literal_class (ftype);
5437 }
5438 if (CP_TYPE_VOLATILE_P (ftype))
5439 inform (0, " non-static data member %q+D has "
5440 "volatile type", field);
5441 }
5442 }
5443 }
5444
5445 /* Check the validity of the bases and members declared in T. Add any
5446 implicitly-generated functions (like copy-constructors and
5447 assignment operators). Compute various flag bits (like
5448 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5449 level: i.e., independently of the ABI in use. */
5450
5451 static void
5452 check_bases_and_members (tree t)
5453 {
5454 /* Nonzero if the implicitly generated copy constructor should take
5455 a non-const reference argument. */
5456 int cant_have_const_ctor;
5457 /* Nonzero if the implicitly generated assignment operator
5458 should take a non-const reference argument. */
5459 int no_const_asn_ref;
5460 tree access_decls;
5461 bool saved_complex_asn_ref;
5462 bool saved_nontrivial_dtor;
5463 tree fn;
5464
5465 /* By default, we use const reference arguments and generate default
5466 constructors. */
5467 cant_have_const_ctor = 0;
5468 no_const_asn_ref = 0;
5469
5470 /* Check all the base-classes. */
5471 check_bases (t, &cant_have_const_ctor,
5472 &no_const_asn_ref);
5473
5474 /* Deduce noexcept on destructors. This needs to happen after we've set
5475 triviality flags appropriately for our bases. */
5476 if (cxx_dialect >= cxx11)
5477 deduce_noexcept_on_destructors (t);
5478
5479 /* Check all the method declarations. */
5480 check_methods (t);
5481
5482 /* Save the initial values of these flags which only indicate whether
5483 or not the class has user-provided functions. As we analyze the
5484 bases and members we can set these flags for other reasons. */
5485 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5486 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5487
5488 /* Check all the data member declarations. We cannot call
5489 check_field_decls until we have called check_bases check_methods,
5490 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5491 being set appropriately. */
5492 check_field_decls (t, &access_decls,
5493 &cant_have_const_ctor,
5494 &no_const_asn_ref);
5495
5496 /* A nearly-empty class has to be vptr-containing; a nearly empty
5497 class contains just a vptr. */
5498 if (!TYPE_CONTAINS_VPTR_P (t))
5499 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5500
5501 /* Do some bookkeeping that will guide the generation of implicitly
5502 declared member functions. */
5503 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5504 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5505 /* We need to call a constructor for this class if it has a
5506 user-provided constructor, or if the default constructor is going
5507 to initialize the vptr. (This is not an if-and-only-if;
5508 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5509 themselves need constructing.) */
5510 TYPE_NEEDS_CONSTRUCTING (t)
5511 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5512 /* [dcl.init.aggr]
5513
5514 An aggregate is an array or a class with no user-provided
5515 constructors ... and no virtual functions.
5516
5517 Again, other conditions for being an aggregate are checked
5518 elsewhere. */
5519 CLASSTYPE_NON_AGGREGATE (t)
5520 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5521 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5522 retain the old definition internally for ABI reasons. */
5523 CLASSTYPE_NON_LAYOUT_POD_P (t)
5524 |= (CLASSTYPE_NON_AGGREGATE (t)
5525 || saved_nontrivial_dtor || saved_complex_asn_ref);
5526 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5527 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5528 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5529 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5530
5531 /* Warn if a public base of a polymorphic type has an accessible
5532 non-virtual destructor. It is only now that we know the class is
5533 polymorphic. Although a polymorphic base will have a already
5534 been diagnosed during its definition, we warn on use too. */
5535 if (TYPE_POLYMORPHIC_P (t) && warn_nonvdtor)
5536 {
5537 tree binfo = TYPE_BINFO (t);
5538 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
5539 tree base_binfo;
5540 unsigned i;
5541
5542 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5543 {
5544 tree basetype = TREE_TYPE (base_binfo);
5545
5546 if ((*accesses)[i] == access_public_node
5547 && (TYPE_POLYMORPHIC_P (basetype) || warn_ecpp)
5548 && accessible_nvdtor_p (basetype))
5549 warning (OPT_Wnon_virtual_dtor,
5550 "base class %q#T has accessible non-virtual destructor",
5551 basetype);
5552 }
5553 }
5554
5555 /* If the class has no user-declared constructor, but does have
5556 non-static const or reference data members that can never be
5557 initialized, issue a warning. */
5558 if (warn_uninitialized
5559 /* Classes with user-declared constructors are presumed to
5560 initialize these members. */
5561 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5562 /* Aggregates can be initialized with brace-enclosed
5563 initializers. */
5564 && CLASSTYPE_NON_AGGREGATE (t))
5565 {
5566 tree field;
5567
5568 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5569 {
5570 tree type;
5571
5572 if (TREE_CODE (field) != FIELD_DECL
5573 || DECL_INITIAL (field) != NULL_TREE)
5574 continue;
5575
5576 type = TREE_TYPE (field);
5577 if (TREE_CODE (type) == REFERENCE_TYPE)
5578 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5579 "in class without a constructor", field);
5580 else if (CP_TYPE_CONST_P (type)
5581 && (!CLASS_TYPE_P (type)
5582 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5583 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5584 "in class without a constructor", field);
5585 }
5586 }
5587
5588 /* Synthesize any needed methods. */
5589 add_implicitly_declared_members (t, &access_decls,
5590 cant_have_const_ctor,
5591 no_const_asn_ref);
5592
5593 /* Check defaulted declarations here so we have cant_have_const_ctor
5594 and don't need to worry about clones. */
5595 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5596 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5597 {
5598 int copy = copy_fn_p (fn);
5599 if (copy > 0)
5600 {
5601 bool imp_const_p
5602 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5603 : !no_const_asn_ref);
5604 bool fn_const_p = (copy == 2);
5605
5606 if (fn_const_p && !imp_const_p)
5607 /* If the function is defaulted outside the class, we just
5608 give the synthesis error. */
5609 error ("%q+D declared to take const reference, but implicit "
5610 "declaration would take non-const", fn);
5611 }
5612 defaulted_late_check (fn);
5613 }
5614
5615 if (LAMBDA_TYPE_P (t))
5616 {
5617 /* "The closure type associated with a lambda-expression has a deleted
5618 default constructor and a deleted copy assignment operator." */
5619 TYPE_NEEDS_CONSTRUCTING (t) = 1;
5620 TYPE_HAS_COMPLEX_DFLT (t) = 1;
5621 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
5622 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
5623
5624 /* "This class type is not an aggregate." */
5625 CLASSTYPE_NON_AGGREGATE (t) = 1;
5626 }
5627
5628 /* Compute the 'literal type' property before we
5629 do anything with non-static member functions. */
5630 finalize_literal_type_property (t);
5631
5632 /* Create the in-charge and not-in-charge variants of constructors
5633 and destructors. */
5634 clone_constructors_and_destructors (t);
5635
5636 /* Process the using-declarations. */
5637 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5638 handle_using_decl (TREE_VALUE (access_decls), t);
5639
5640 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5641 finish_struct_methods (t);
5642
5643 /* Figure out whether or not we will need a cookie when dynamically
5644 allocating an array of this type. */
5645 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5646 = type_requires_array_cookie (t);
5647 }
5648
5649 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5650 accordingly. If a new vfield was created (because T doesn't have a
5651 primary base class), then the newly created field is returned. It
5652 is not added to the TYPE_FIELDS list; it is the caller's
5653 responsibility to do that. Accumulate declared virtual functions
5654 on VIRTUALS_P. */
5655
5656 static tree
5657 create_vtable_ptr (tree t, tree* virtuals_p)
5658 {
5659 tree fn;
5660
5661 /* Collect the virtual functions declared in T. */
5662 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5663 if (TREE_CODE (fn) == FUNCTION_DECL
5664 && DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5665 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5666 {
5667 tree new_virtual = make_node (TREE_LIST);
5668
5669 BV_FN (new_virtual) = fn;
5670 BV_DELTA (new_virtual) = integer_zero_node;
5671 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5672
5673 TREE_CHAIN (new_virtual) = *virtuals_p;
5674 *virtuals_p = new_virtual;
5675 }
5676
5677 /* If we couldn't find an appropriate base class, create a new field
5678 here. Even if there weren't any new virtual functions, we might need a
5679 new virtual function table if we're supposed to include vptrs in
5680 all classes that need them. */
5681 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5682 {
5683 /* We build this decl with vtbl_ptr_type_node, which is a
5684 `vtable_entry_type*'. It might seem more precise to use
5685 `vtable_entry_type (*)[N]' where N is the number of virtual
5686 functions. However, that would require the vtable pointer in
5687 base classes to have a different type than the vtable pointer
5688 in derived classes. We could make that happen, but that
5689 still wouldn't solve all the problems. In particular, the
5690 type-based alias analysis code would decide that assignments
5691 to the base class vtable pointer can't alias assignments to
5692 the derived class vtable pointer, since they have different
5693 types. Thus, in a derived class destructor, where the base
5694 class constructor was inlined, we could generate bad code for
5695 setting up the vtable pointer.
5696
5697 Therefore, we use one type for all vtable pointers. We still
5698 use a type-correct type; it's just doesn't indicate the array
5699 bounds. That's better than using `void*' or some such; it's
5700 cleaner, and it let's the alias analysis code know that these
5701 stores cannot alias stores to void*! */
5702 tree field;
5703
5704 field = build_decl (input_location,
5705 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5706 DECL_VIRTUAL_P (field) = 1;
5707 DECL_ARTIFICIAL (field) = 1;
5708 DECL_FIELD_CONTEXT (field) = t;
5709 DECL_FCONTEXT (field) = t;
5710 if (TYPE_PACKED (t))
5711 DECL_PACKED (field) = 1;
5712
5713 TYPE_VFIELD (t) = field;
5714
5715 /* This class is non-empty. */
5716 CLASSTYPE_EMPTY_P (t) = 0;
5717
5718 return field;
5719 }
5720
5721 return NULL_TREE;
5722 }
5723
5724 /* Add OFFSET to all base types of BINFO which is a base in the
5725 hierarchy dominated by T.
5726
5727 OFFSET, which is a type offset, is number of bytes. */
5728
5729 static void
5730 propagate_binfo_offsets (tree binfo, tree offset)
5731 {
5732 int i;
5733 tree primary_binfo;
5734 tree base_binfo;
5735
5736 /* Update BINFO's offset. */
5737 BINFO_OFFSET (binfo)
5738 = convert (sizetype,
5739 size_binop (PLUS_EXPR,
5740 convert (ssizetype, BINFO_OFFSET (binfo)),
5741 offset));
5742
5743 /* Find the primary base class. */
5744 primary_binfo = get_primary_binfo (binfo);
5745
5746 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5747 propagate_binfo_offsets (primary_binfo, offset);
5748
5749 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5750 downwards. */
5751 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5752 {
5753 /* Don't do the primary base twice. */
5754 if (base_binfo == primary_binfo)
5755 continue;
5756
5757 if (BINFO_VIRTUAL_P (base_binfo))
5758 continue;
5759
5760 propagate_binfo_offsets (base_binfo, offset);
5761 }
5762 }
5763
5764 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5765 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5766 empty subobjects of T. */
5767
5768 static void
5769 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5770 {
5771 tree vbase;
5772 tree t = rli->t;
5773 tree *next_field;
5774
5775 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5776 return;
5777
5778 /* Find the last field. The artificial fields created for virtual
5779 bases will go after the last extant field to date. */
5780 next_field = &TYPE_FIELDS (t);
5781 while (*next_field)
5782 next_field = &DECL_CHAIN (*next_field);
5783
5784 /* Go through the virtual bases, allocating space for each virtual
5785 base that is not already a primary base class. These are
5786 allocated in inheritance graph order. */
5787 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5788 {
5789 if (!BINFO_VIRTUAL_P (vbase))
5790 continue;
5791
5792 if (!BINFO_PRIMARY_P (vbase))
5793 {
5794 /* This virtual base is not a primary base of any class in the
5795 hierarchy, so we have to add space for it. */
5796 next_field = build_base_field (rli, vbase,
5797 offsets, next_field);
5798 }
5799 }
5800 }
5801
5802 /* Returns the offset of the byte just past the end of the base class
5803 BINFO. */
5804
5805 static tree
5806 end_of_base (tree binfo)
5807 {
5808 tree size;
5809
5810 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5811 size = TYPE_SIZE_UNIT (char_type_node);
5812 else if (is_empty_class (BINFO_TYPE (binfo)))
5813 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5814 allocate some space for it. It cannot have virtual bases, so
5815 TYPE_SIZE_UNIT is fine. */
5816 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5817 else
5818 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5819
5820 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5821 }
5822
5823 /* Returns the offset of the byte just past the end of the base class
5824 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5825 only non-virtual bases are included. */
5826
5827 static tree
5828 end_of_class (tree t, int include_virtuals_p)
5829 {
5830 tree result = size_zero_node;
5831 vec<tree, va_gc> *vbases;
5832 tree binfo;
5833 tree base_binfo;
5834 tree offset;
5835 int i;
5836
5837 for (binfo = TYPE_BINFO (t), i = 0;
5838 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5839 {
5840 if (!include_virtuals_p
5841 && BINFO_VIRTUAL_P (base_binfo)
5842 && (!BINFO_PRIMARY_P (base_binfo)
5843 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5844 continue;
5845
5846 offset = end_of_base (base_binfo);
5847 if (tree_int_cst_lt (result, offset))
5848 result = offset;
5849 }
5850
5851 if (include_virtuals_p)
5852 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5853 vec_safe_iterate (vbases, i, &base_binfo); i++)
5854 {
5855 offset = end_of_base (base_binfo);
5856 if (tree_int_cst_lt (result, offset))
5857 result = offset;
5858 }
5859
5860 return result;
5861 }
5862
5863 /* Warn about bases of T that are inaccessible because they are
5864 ambiguous. For example:
5865
5866 struct S {};
5867 struct T : public S {};
5868 struct U : public S, public T {};
5869
5870 Here, `(S*) new U' is not allowed because there are two `S'
5871 subobjects of U. */
5872
5873 static void
5874 warn_about_ambiguous_bases (tree t)
5875 {
5876 int i;
5877 vec<tree, va_gc> *vbases;
5878 tree basetype;
5879 tree binfo;
5880 tree base_binfo;
5881
5882 /* If there are no repeated bases, nothing can be ambiguous. */
5883 if (!CLASSTYPE_REPEATED_BASE_P (t))
5884 return;
5885
5886 /* Check direct bases. */
5887 for (binfo = TYPE_BINFO (t), i = 0;
5888 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5889 {
5890 basetype = BINFO_TYPE (base_binfo);
5891
5892 if (!uniquely_derived_from_p (basetype, t))
5893 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5894 basetype, t);
5895 }
5896
5897 /* Check for ambiguous virtual bases. */
5898 if (extra_warnings)
5899 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5900 vec_safe_iterate (vbases, i, &binfo); i++)
5901 {
5902 basetype = BINFO_TYPE (binfo);
5903
5904 if (!uniquely_derived_from_p (basetype, t))
5905 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5906 "to ambiguity", basetype, t);
5907 }
5908 }
5909
5910 /* Compare two INTEGER_CSTs K1 and K2. */
5911
5912 static int
5913 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5914 {
5915 return tree_int_cst_compare ((tree) k1, (tree) k2);
5916 }
5917
5918 /* Increase the size indicated in RLI to account for empty classes
5919 that are "off the end" of the class. */
5920
5921 static void
5922 include_empty_classes (record_layout_info rli)
5923 {
5924 tree eoc;
5925 tree rli_size;
5926
5927 /* It might be the case that we grew the class to allocate a
5928 zero-sized base class. That won't be reflected in RLI, yet,
5929 because we are willing to overlay multiple bases at the same
5930 offset. However, now we need to make sure that RLI is big enough
5931 to reflect the entire class. */
5932 eoc = end_of_class (rli->t,
5933 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5934 rli_size = rli_size_unit_so_far (rli);
5935 if (TREE_CODE (rli_size) == INTEGER_CST
5936 && tree_int_cst_lt (rli_size, eoc))
5937 {
5938 /* The size should have been rounded to a whole byte. */
5939 gcc_assert (tree_int_cst_equal
5940 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5941 rli->bitpos
5942 = size_binop (PLUS_EXPR,
5943 rli->bitpos,
5944 size_binop (MULT_EXPR,
5945 convert (bitsizetype,
5946 size_binop (MINUS_EXPR,
5947 eoc, rli_size)),
5948 bitsize_int (BITS_PER_UNIT)));
5949 normalize_rli (rli);
5950 }
5951 }
5952
5953 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5954 BINFO_OFFSETs for all of the base-classes. Position the vtable
5955 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5956
5957 static void
5958 layout_class_type (tree t, tree *virtuals_p)
5959 {
5960 tree non_static_data_members;
5961 tree field;
5962 tree vptr;
5963 record_layout_info rli;
5964 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
5965 types that appear at that offset. */
5966 splay_tree empty_base_offsets;
5967 /* True if the last field laid out was a bit-field. */
5968 bool last_field_was_bitfield = false;
5969 /* The location at which the next field should be inserted. */
5970 tree *next_field;
5971 /* T, as a base class. */
5972 tree base_t;
5973
5974 /* Keep track of the first non-static data member. */
5975 non_static_data_members = TYPE_FIELDS (t);
5976
5977 /* Start laying out the record. */
5978 rli = start_record_layout (t);
5979
5980 /* Mark all the primary bases in the hierarchy. */
5981 determine_primary_bases (t);
5982
5983 /* Create a pointer to our virtual function table. */
5984 vptr = create_vtable_ptr (t, virtuals_p);
5985
5986 /* The vptr is always the first thing in the class. */
5987 if (vptr)
5988 {
5989 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
5990 TYPE_FIELDS (t) = vptr;
5991 next_field = &DECL_CHAIN (vptr);
5992 place_field (rli, vptr);
5993 }
5994 else
5995 next_field = &TYPE_FIELDS (t);
5996
5997 /* Build FIELD_DECLs for all of the non-virtual base-types. */
5998 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5999 NULL, NULL);
6000 build_base_fields (rli, empty_base_offsets, next_field);
6001
6002 /* Layout the non-static data members. */
6003 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
6004 {
6005 tree type;
6006 tree padding;
6007
6008 /* We still pass things that aren't non-static data members to
6009 the back end, in case it wants to do something with them. */
6010 if (TREE_CODE (field) != FIELD_DECL)
6011 {
6012 place_field (rli, field);
6013 /* If the static data member has incomplete type, keep track
6014 of it so that it can be completed later. (The handling
6015 of pending statics in finish_record_layout is
6016 insufficient; consider:
6017
6018 struct S1;
6019 struct S2 { static S1 s1; };
6020
6021 At this point, finish_record_layout will be called, but
6022 S1 is still incomplete.) */
6023 if (VAR_P (field))
6024 {
6025 maybe_register_incomplete_var (field);
6026 /* The visibility of static data members is determined
6027 at their point of declaration, not their point of
6028 definition. */
6029 determine_visibility (field);
6030 }
6031 continue;
6032 }
6033
6034 type = TREE_TYPE (field);
6035 if (type == error_mark_node)
6036 continue;
6037
6038 padding = NULL_TREE;
6039
6040 /* If this field is a bit-field whose width is greater than its
6041 type, then there are some special rules for allocating
6042 it. */
6043 if (DECL_C_BIT_FIELD (field)
6044 && tree_int_cst_lt (TYPE_SIZE (type), DECL_SIZE (field)))
6045 {
6046 unsigned int itk;
6047 tree integer_type;
6048 bool was_unnamed_p = false;
6049 /* We must allocate the bits as if suitably aligned for the
6050 longest integer type that fits in this many bits. type
6051 of the field. Then, we are supposed to use the left over
6052 bits as additional padding. */
6053 for (itk = itk_char; itk != itk_none; ++itk)
6054 if (integer_types[itk] != NULL_TREE
6055 && (tree_int_cst_lt (size_int (MAX_FIXED_MODE_SIZE),
6056 TYPE_SIZE (integer_types[itk]))
6057 || tree_int_cst_lt (DECL_SIZE (field),
6058 TYPE_SIZE (integer_types[itk]))))
6059 break;
6060
6061 /* ITK now indicates a type that is too large for the
6062 field. We have to back up by one to find the largest
6063 type that fits. */
6064 do
6065 {
6066 --itk;
6067 integer_type = integer_types[itk];
6068 } while (itk > 0 && integer_type == NULL_TREE);
6069
6070 /* Figure out how much additional padding is required. */
6071 if (tree_int_cst_lt (TYPE_SIZE (integer_type), DECL_SIZE (field)))
6072 {
6073 if (TREE_CODE (t) == UNION_TYPE)
6074 /* In a union, the padding field must have the full width
6075 of the bit-field; all fields start at offset zero. */
6076 padding = DECL_SIZE (field);
6077 else
6078 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
6079 TYPE_SIZE (integer_type));
6080 }
6081 #ifdef PCC_BITFIELD_TYPE_MATTERS
6082 /* An unnamed bitfield does not normally affect the
6083 alignment of the containing class on a target where
6084 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
6085 make any exceptions for unnamed bitfields when the
6086 bitfields are longer than their types. Therefore, we
6087 temporarily give the field a name. */
6088 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
6089 {
6090 was_unnamed_p = true;
6091 DECL_NAME (field) = make_anon_name ();
6092 }
6093 #endif
6094 DECL_SIZE (field) = TYPE_SIZE (integer_type);
6095 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
6096 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
6097 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6098 empty_base_offsets);
6099 if (was_unnamed_p)
6100 DECL_NAME (field) = NULL_TREE;
6101 /* Now that layout has been performed, set the size of the
6102 field to the size of its declared type; the rest of the
6103 field is effectively invisible. */
6104 DECL_SIZE (field) = TYPE_SIZE (type);
6105 /* We must also reset the DECL_MODE of the field. */
6106 DECL_MODE (field) = TYPE_MODE (type);
6107 }
6108 else
6109 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6110 empty_base_offsets);
6111
6112 /* Remember the location of any empty classes in FIELD. */
6113 record_subobject_offsets (TREE_TYPE (field),
6114 byte_position(field),
6115 empty_base_offsets,
6116 /*is_data_member=*/true);
6117
6118 /* If a bit-field does not immediately follow another bit-field,
6119 and yet it starts in the middle of a byte, we have failed to
6120 comply with the ABI. */
6121 if (warn_abi
6122 && DECL_C_BIT_FIELD (field)
6123 /* The TREE_NO_WARNING flag gets set by Objective-C when
6124 laying out an Objective-C class. The ObjC ABI differs
6125 from the C++ ABI, and so we do not want a warning
6126 here. */
6127 && !TREE_NO_WARNING (field)
6128 && !last_field_was_bitfield
6129 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6130 DECL_FIELD_BIT_OFFSET (field),
6131 bitsize_unit_node)))
6132 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
6133 "change in a future version of GCC", field);
6134
6135 /* The middle end uses the type of expressions to determine the
6136 possible range of expression values. In order to optimize
6137 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6138 must be made aware of the width of "i", via its type.
6139
6140 Because C++ does not have integer types of arbitrary width,
6141 we must (for the purposes of the front end) convert from the
6142 type assigned here to the declared type of the bitfield
6143 whenever a bitfield expression is used as an rvalue.
6144 Similarly, when assigning a value to a bitfield, the value
6145 must be converted to the type given the bitfield here. */
6146 if (DECL_C_BIT_FIELD (field))
6147 {
6148 unsigned HOST_WIDE_INT width;
6149 tree ftype = TREE_TYPE (field);
6150 width = tree_to_uhwi (DECL_SIZE (field));
6151 if (width != TYPE_PRECISION (ftype))
6152 {
6153 TREE_TYPE (field)
6154 = c_build_bitfield_integer_type (width,
6155 TYPE_UNSIGNED (ftype));
6156 TREE_TYPE (field)
6157 = cp_build_qualified_type (TREE_TYPE (field),
6158 cp_type_quals (ftype));
6159 }
6160 }
6161
6162 /* If we needed additional padding after this field, add it
6163 now. */
6164 if (padding)
6165 {
6166 tree padding_field;
6167
6168 padding_field = build_decl (input_location,
6169 FIELD_DECL,
6170 NULL_TREE,
6171 char_type_node);
6172 DECL_BIT_FIELD (padding_field) = 1;
6173 DECL_SIZE (padding_field) = padding;
6174 DECL_CONTEXT (padding_field) = t;
6175 DECL_ARTIFICIAL (padding_field) = 1;
6176 DECL_IGNORED_P (padding_field) = 1;
6177 layout_nonempty_base_or_field (rli, padding_field,
6178 NULL_TREE,
6179 empty_base_offsets);
6180 }
6181
6182 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6183 }
6184
6185 if (!integer_zerop (rli->bitpos))
6186 {
6187 /* Make sure that we are on a byte boundary so that the size of
6188 the class without virtual bases will always be a round number
6189 of bytes. */
6190 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6191 normalize_rli (rli);
6192 }
6193
6194 /* Delete all zero-width bit-fields from the list of fields. Now
6195 that the type is laid out they are no longer important. */
6196 remove_zero_width_bit_fields (t);
6197
6198 /* Create the version of T used for virtual bases. We do not use
6199 make_class_type for this version; this is an artificial type. For
6200 a POD type, we just reuse T. */
6201 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6202 {
6203 base_t = make_node (TREE_CODE (t));
6204
6205 /* Set the size and alignment for the new type. */
6206 tree eoc;
6207
6208 /* If the ABI version is not at least two, and the last
6209 field was a bit-field, RLI may not be on a byte
6210 boundary. In particular, rli_size_unit_so_far might
6211 indicate the last complete byte, while rli_size_so_far
6212 indicates the total number of bits used. Therefore,
6213 rli_size_so_far, rather than rli_size_unit_so_far, is
6214 used to compute TYPE_SIZE_UNIT. */
6215 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6216 TYPE_SIZE_UNIT (base_t)
6217 = size_binop (MAX_EXPR,
6218 convert (sizetype,
6219 size_binop (CEIL_DIV_EXPR,
6220 rli_size_so_far (rli),
6221 bitsize_int (BITS_PER_UNIT))),
6222 eoc);
6223 TYPE_SIZE (base_t)
6224 = size_binop (MAX_EXPR,
6225 rli_size_so_far (rli),
6226 size_binop (MULT_EXPR,
6227 convert (bitsizetype, eoc),
6228 bitsize_int (BITS_PER_UNIT)));
6229 TYPE_ALIGN (base_t) = rli->record_align;
6230 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6231
6232 /* Copy the fields from T. */
6233 next_field = &TYPE_FIELDS (base_t);
6234 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6235 if (TREE_CODE (field) == FIELD_DECL)
6236 {
6237 *next_field = build_decl (input_location,
6238 FIELD_DECL,
6239 DECL_NAME (field),
6240 TREE_TYPE (field));
6241 DECL_CONTEXT (*next_field) = base_t;
6242 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6243 DECL_FIELD_BIT_OFFSET (*next_field)
6244 = DECL_FIELD_BIT_OFFSET (field);
6245 DECL_SIZE (*next_field) = DECL_SIZE (field);
6246 DECL_MODE (*next_field) = DECL_MODE (field);
6247 next_field = &DECL_CHAIN (*next_field);
6248 }
6249
6250 /* Record the base version of the type. */
6251 CLASSTYPE_AS_BASE (t) = base_t;
6252 TYPE_CONTEXT (base_t) = t;
6253 }
6254 else
6255 CLASSTYPE_AS_BASE (t) = t;
6256
6257 /* Every empty class contains an empty class. */
6258 if (CLASSTYPE_EMPTY_P (t))
6259 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6260
6261 /* Set the TYPE_DECL for this type to contain the right
6262 value for DECL_OFFSET, so that we can use it as part
6263 of a COMPONENT_REF for multiple inheritance. */
6264 layout_decl (TYPE_MAIN_DECL (t), 0);
6265
6266 /* Now fix up any virtual base class types that we left lying
6267 around. We must get these done before we try to lay out the
6268 virtual function table. As a side-effect, this will remove the
6269 base subobject fields. */
6270 layout_virtual_bases (rli, empty_base_offsets);
6271
6272 /* Make sure that empty classes are reflected in RLI at this
6273 point. */
6274 include_empty_classes(rli);
6275
6276 /* Make sure not to create any structures with zero size. */
6277 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6278 place_field (rli,
6279 build_decl (input_location,
6280 FIELD_DECL, NULL_TREE, char_type_node));
6281
6282 /* If this is a non-POD, declaring it packed makes a difference to how it
6283 can be used as a field; don't let finalize_record_size undo it. */
6284 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6285 rli->packed_maybe_necessary = true;
6286
6287 /* Let the back end lay out the type. */
6288 finish_record_layout (rli, /*free_p=*/true);
6289
6290 if (TYPE_SIZE_UNIT (t)
6291 && TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST
6292 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t))
6293 && !valid_constant_size_p (TYPE_SIZE_UNIT (t)))
6294 error ("type %qT is too large", t);
6295
6296 /* Warn about bases that can't be talked about due to ambiguity. */
6297 warn_about_ambiguous_bases (t);
6298
6299 /* Now that we're done with layout, give the base fields the real types. */
6300 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6301 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6302 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6303
6304 /* Clean up. */
6305 splay_tree_delete (empty_base_offsets);
6306
6307 if (CLASSTYPE_EMPTY_P (t)
6308 && tree_int_cst_lt (sizeof_biggest_empty_class,
6309 TYPE_SIZE_UNIT (t)))
6310 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6311 }
6312
6313 /* Determine the "key method" for the class type indicated by TYPE,
6314 and set CLASSTYPE_KEY_METHOD accordingly. */
6315
6316 void
6317 determine_key_method (tree type)
6318 {
6319 tree method;
6320
6321 if (TYPE_FOR_JAVA (type)
6322 || processing_template_decl
6323 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6324 || CLASSTYPE_INTERFACE_KNOWN (type))
6325 return;
6326
6327 /* The key method is the first non-pure virtual function that is not
6328 inline at the point of class definition. On some targets the
6329 key function may not be inline; those targets should not call
6330 this function until the end of the translation unit. */
6331 for (method = TYPE_METHODS (type); method != NULL_TREE;
6332 method = DECL_CHAIN (method))
6333 if (TREE_CODE (method) == FUNCTION_DECL
6334 && DECL_VINDEX (method) != NULL_TREE
6335 && ! DECL_DECLARED_INLINE_P (method)
6336 && ! DECL_PURE_VIRTUAL_P (method))
6337 {
6338 CLASSTYPE_KEY_METHOD (type) = method;
6339 break;
6340 }
6341
6342 return;
6343 }
6344
6345
6346 /* Allocate and return an instance of struct sorted_fields_type with
6347 N fields. */
6348
6349 static struct sorted_fields_type *
6350 sorted_fields_type_new (int n)
6351 {
6352 struct sorted_fields_type *sft;
6353 sft = (sorted_fields_type *) ggc_internal_alloc (sizeof (sorted_fields_type)
6354 + n * sizeof (tree));
6355 sft->len = n;
6356
6357 return sft;
6358 }
6359
6360
6361 /* Perform processing required when the definition of T (a class type)
6362 is complete. */
6363
6364 void
6365 finish_struct_1 (tree t)
6366 {
6367 tree x;
6368 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6369 tree virtuals = NULL_TREE;
6370
6371 if (COMPLETE_TYPE_P (t))
6372 {
6373 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6374 error ("redefinition of %q#T", t);
6375 popclass ();
6376 return;
6377 }
6378
6379 /* If this type was previously laid out as a forward reference,
6380 make sure we lay it out again. */
6381 TYPE_SIZE (t) = NULL_TREE;
6382 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6383
6384 /* Make assumptions about the class; we'll reset the flags if
6385 necessary. */
6386 CLASSTYPE_EMPTY_P (t) = 1;
6387 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6388 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6389 CLASSTYPE_LITERAL_P (t) = true;
6390
6391 /* Do end-of-class semantic processing: checking the validity of the
6392 bases and members and add implicitly generated methods. */
6393 check_bases_and_members (t);
6394
6395 /* Find the key method. */
6396 if (TYPE_CONTAINS_VPTR_P (t))
6397 {
6398 /* The Itanium C++ ABI permits the key method to be chosen when
6399 the class is defined -- even though the key method so
6400 selected may later turn out to be an inline function. On
6401 some systems (such as ARM Symbian OS) the key method cannot
6402 be determined until the end of the translation unit. On such
6403 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6404 will cause the class to be added to KEYED_CLASSES. Then, in
6405 finish_file we will determine the key method. */
6406 if (targetm.cxx.key_method_may_be_inline ())
6407 determine_key_method (t);
6408
6409 /* If a polymorphic class has no key method, we may emit the vtable
6410 in every translation unit where the class definition appears. If
6411 we're devirtualizing, we can look into the vtable even if we
6412 aren't emitting it. */
6413 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6414 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6415 }
6416
6417 /* Layout the class itself. */
6418 layout_class_type (t, &virtuals);
6419 if (CLASSTYPE_AS_BASE (t) != t)
6420 /* We use the base type for trivial assignments, and hence it
6421 needs a mode. */
6422 compute_record_mode (CLASSTYPE_AS_BASE (t));
6423
6424 virtuals = modify_all_vtables (t, nreverse (virtuals));
6425
6426 /* If necessary, create the primary vtable for this class. */
6427 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6428 {
6429 /* We must enter these virtuals into the table. */
6430 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6431 build_primary_vtable (NULL_TREE, t);
6432 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6433 /* Here we know enough to change the type of our virtual
6434 function table, but we will wait until later this function. */
6435 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6436
6437 /* If we're warning about ABI tags, check the types of the new
6438 virtual functions. */
6439 if (warn_abi_tag)
6440 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6441 check_abi_tags (t, TREE_VALUE (v));
6442 }
6443
6444 if (TYPE_CONTAINS_VPTR_P (t))
6445 {
6446 int vindex;
6447 tree fn;
6448
6449 if (BINFO_VTABLE (TYPE_BINFO (t)))
6450 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6451 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6452 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6453
6454 /* Add entries for virtual functions introduced by this class. */
6455 BINFO_VIRTUALS (TYPE_BINFO (t))
6456 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6457
6458 /* Set DECL_VINDEX for all functions declared in this class. */
6459 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6460 fn;
6461 fn = TREE_CHAIN (fn),
6462 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6463 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6464 {
6465 tree fndecl = BV_FN (fn);
6466
6467 if (DECL_THUNK_P (fndecl))
6468 /* A thunk. We should never be calling this entry directly
6469 from this vtable -- we'd use the entry for the non
6470 thunk base function. */
6471 DECL_VINDEX (fndecl) = NULL_TREE;
6472 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6473 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6474 }
6475 }
6476
6477 finish_struct_bits (t);
6478 set_method_tm_attributes (t);
6479
6480 /* Complete the rtl for any static member objects of the type we're
6481 working on. */
6482 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6483 if (VAR_P (x) && TREE_STATIC (x)
6484 && TREE_TYPE (x) != error_mark_node
6485 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6486 DECL_MODE (x) = TYPE_MODE (t);
6487
6488 /* Done with FIELDS...now decide whether to sort these for
6489 faster lookups later.
6490
6491 We use a small number because most searches fail (succeeding
6492 ultimately as the search bores through the inheritance
6493 hierarchy), and we want this failure to occur quickly. */
6494
6495 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6496
6497 /* Complain if one of the field types requires lower visibility. */
6498 constrain_class_visibility (t);
6499
6500 /* Make the rtl for any new vtables we have created, and unmark
6501 the base types we marked. */
6502 finish_vtbls (t);
6503
6504 /* Build the VTT for T. */
6505 build_vtt (t);
6506
6507 /* This warning does not make sense for Java classes, since they
6508 cannot have destructors. */
6509 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor
6510 && TYPE_POLYMORPHIC_P (t) && accessible_nvdtor_p (t)
6511 && !CLASSTYPE_FINAL (t))
6512 warning (OPT_Wnon_virtual_dtor,
6513 "%q#T has virtual functions and accessible"
6514 " non-virtual destructor", t);
6515
6516 complete_vars (t);
6517
6518 if (warn_overloaded_virtual)
6519 warn_hidden (t);
6520
6521 /* Class layout, assignment of virtual table slots, etc., is now
6522 complete. Give the back end a chance to tweak the visibility of
6523 the class or perform any other required target modifications. */
6524 targetm.cxx.adjust_class_at_definition (t);
6525
6526 maybe_suppress_debug_info (t);
6527
6528 if (flag_vtable_verify)
6529 vtv_save_class_info (t);
6530
6531 dump_class_hierarchy (t);
6532
6533 /* Finish debugging output for this type. */
6534 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6535
6536 if (TYPE_TRANSPARENT_AGGR (t))
6537 {
6538 tree field = first_field (t);
6539 if (field == NULL_TREE || error_operand_p (field))
6540 {
6541 error ("type transparent %q#T does not have any fields", t);
6542 TYPE_TRANSPARENT_AGGR (t) = 0;
6543 }
6544 else if (DECL_ARTIFICIAL (field))
6545 {
6546 if (DECL_FIELD_IS_BASE (field))
6547 error ("type transparent class %qT has base classes", t);
6548 else
6549 {
6550 gcc_checking_assert (DECL_VIRTUAL_P (field));
6551 error ("type transparent class %qT has virtual functions", t);
6552 }
6553 TYPE_TRANSPARENT_AGGR (t) = 0;
6554 }
6555 else if (TYPE_MODE (t) != DECL_MODE (field))
6556 {
6557 error ("type transparent %q#T cannot be made transparent because "
6558 "the type of the first field has a different ABI from the "
6559 "class overall", t);
6560 TYPE_TRANSPARENT_AGGR (t) = 0;
6561 }
6562 }
6563 }
6564
6565 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6566 equal to THRESHOLD or greater than THRESHOLD. */
6567
6568 static void
6569 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6570 {
6571 int n_fields = count_fields (fields);
6572 if (n_fields >= threshold)
6573 {
6574 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6575 add_fields_to_record_type (fields, field_vec, 0);
6576 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6577 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6578 }
6579 }
6580
6581 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6582
6583 void
6584 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6585 {
6586 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6587 if (sorted_fields)
6588 {
6589 int i;
6590 int n_fields
6591 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6592 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6593
6594 for (i = 0; i < sorted_fields->len; ++i)
6595 field_vec->elts[i] = sorted_fields->elts[i];
6596
6597 add_enum_fields_to_record_type (enumtype, field_vec,
6598 sorted_fields->len);
6599 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6600 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6601 }
6602 }
6603
6604 /* When T was built up, the member declarations were added in reverse
6605 order. Rearrange them to declaration order. */
6606
6607 void
6608 unreverse_member_declarations (tree t)
6609 {
6610 tree next;
6611 tree prev;
6612 tree x;
6613
6614 /* The following lists are all in reverse order. Put them in
6615 declaration order now. */
6616 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6617 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6618
6619 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6620 reverse order, so we can't just use nreverse. */
6621 prev = NULL_TREE;
6622 for (x = TYPE_FIELDS (t);
6623 x && TREE_CODE (x) != TYPE_DECL;
6624 x = next)
6625 {
6626 next = DECL_CHAIN (x);
6627 DECL_CHAIN (x) = prev;
6628 prev = x;
6629 }
6630 if (prev)
6631 {
6632 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6633 if (prev)
6634 TYPE_FIELDS (t) = prev;
6635 }
6636 }
6637
6638 tree
6639 finish_struct (tree t, tree attributes)
6640 {
6641 location_t saved_loc = input_location;
6642
6643 /* Now that we've got all the field declarations, reverse everything
6644 as necessary. */
6645 unreverse_member_declarations (t);
6646
6647 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6648
6649 /* Nadger the current location so that diagnostics point to the start of
6650 the struct, not the end. */
6651 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6652
6653 if (processing_template_decl)
6654 {
6655 tree x;
6656
6657 finish_struct_methods (t);
6658 TYPE_SIZE (t) = bitsize_zero_node;
6659 TYPE_SIZE_UNIT (t) = size_zero_node;
6660
6661 /* We need to emit an error message if this type was used as a parameter
6662 and it is an abstract type, even if it is a template. We construct
6663 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6664 account and we call complete_vars with this type, which will check
6665 the PARM_DECLS. Note that while the type is being defined,
6666 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6667 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6668 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6669 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6670 if (DECL_PURE_VIRTUAL_P (x))
6671 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6672 complete_vars (t);
6673 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6674 an enclosing scope is a template class, so that this function be
6675 found by lookup_fnfields_1 when the using declaration is not
6676 instantiated yet. */
6677 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6678 if (TREE_CODE (x) == USING_DECL)
6679 {
6680 tree fn = strip_using_decl (x);
6681 if (is_overloaded_fn (fn))
6682 for (; fn; fn = OVL_NEXT (fn))
6683 add_method (t, OVL_CURRENT (fn), x);
6684 }
6685
6686 /* Remember current #pragma pack value. */
6687 TYPE_PRECISION (t) = maximum_field_alignment;
6688
6689 /* Fix up any variants we've already built. */
6690 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6691 {
6692 TYPE_SIZE (x) = TYPE_SIZE (t);
6693 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6694 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6695 TYPE_METHODS (x) = TYPE_METHODS (t);
6696 }
6697 }
6698 else
6699 finish_struct_1 (t);
6700
6701 if (is_std_init_list (t))
6702 {
6703 /* People keep complaining that the compiler crashes on an invalid
6704 definition of initializer_list, so I guess we should explicitly
6705 reject it. What the compiler internals care about is that it's a
6706 template and has a pointer field followed by an integer field. */
6707 bool ok = false;
6708 if (processing_template_decl)
6709 {
6710 tree f = next_initializable_field (TYPE_FIELDS (t));
6711 if (f && TREE_CODE (TREE_TYPE (f)) == POINTER_TYPE)
6712 {
6713 f = next_initializable_field (DECL_CHAIN (f));
6714 if (f && TREE_CODE (TREE_TYPE (f)) == INTEGER_TYPE)
6715 ok = true;
6716 }
6717 }
6718 if (!ok)
6719 fatal_error ("definition of std::initializer_list does not match "
6720 "#include <initializer_list>");
6721 }
6722
6723 input_location = saved_loc;
6724
6725 TYPE_BEING_DEFINED (t) = 0;
6726
6727 if (current_class_type)
6728 popclass ();
6729 else
6730 error ("trying to finish struct, but kicked out due to previous parse errors");
6731
6732 if (processing_template_decl && at_function_scope_p ()
6733 /* Lambdas are defined by the LAMBDA_EXPR. */
6734 && !LAMBDA_TYPE_P (t))
6735 add_stmt (build_min (TAG_DEFN, t));
6736
6737 return t;
6738 }
6739 \f
6740 /* Hash table to avoid endless recursion when handling references. */
6741 static hash_table<pointer_hash<tree_node> > *fixed_type_or_null_ref_ht;
6742
6743 /* Return the dynamic type of INSTANCE, if known.
6744 Used to determine whether the virtual function table is needed
6745 or not.
6746
6747 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6748 of our knowledge of its type. *NONNULL should be initialized
6749 before this function is called. */
6750
6751 static tree
6752 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6753 {
6754 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6755
6756 switch (TREE_CODE (instance))
6757 {
6758 case INDIRECT_REF:
6759 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6760 return NULL_TREE;
6761 else
6762 return RECUR (TREE_OPERAND (instance, 0));
6763
6764 case CALL_EXPR:
6765 /* This is a call to a constructor, hence it's never zero. */
6766 if (TREE_HAS_CONSTRUCTOR (instance))
6767 {
6768 if (nonnull)
6769 *nonnull = 1;
6770 return TREE_TYPE (instance);
6771 }
6772 return NULL_TREE;
6773
6774 case SAVE_EXPR:
6775 /* This is a call to a constructor, hence it's never zero. */
6776 if (TREE_HAS_CONSTRUCTOR (instance))
6777 {
6778 if (nonnull)
6779 *nonnull = 1;
6780 return TREE_TYPE (instance);
6781 }
6782 return RECUR (TREE_OPERAND (instance, 0));
6783
6784 case POINTER_PLUS_EXPR:
6785 case PLUS_EXPR:
6786 case MINUS_EXPR:
6787 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6788 return RECUR (TREE_OPERAND (instance, 0));
6789 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6790 /* Propagate nonnull. */
6791 return RECUR (TREE_OPERAND (instance, 0));
6792
6793 return NULL_TREE;
6794
6795 CASE_CONVERT:
6796 return RECUR (TREE_OPERAND (instance, 0));
6797
6798 case ADDR_EXPR:
6799 instance = TREE_OPERAND (instance, 0);
6800 if (nonnull)
6801 {
6802 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6803 with a real object -- given &p->f, p can still be null. */
6804 tree t = get_base_address (instance);
6805 /* ??? Probably should check DECL_WEAK here. */
6806 if (t && DECL_P (t))
6807 *nonnull = 1;
6808 }
6809 return RECUR (instance);
6810
6811 case COMPONENT_REF:
6812 /* If this component is really a base class reference, then the field
6813 itself isn't definitive. */
6814 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6815 return RECUR (TREE_OPERAND (instance, 0));
6816 return RECUR (TREE_OPERAND (instance, 1));
6817
6818 case VAR_DECL:
6819 case FIELD_DECL:
6820 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6821 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6822 {
6823 if (nonnull)
6824 *nonnull = 1;
6825 return TREE_TYPE (TREE_TYPE (instance));
6826 }
6827 /* fall through... */
6828 case TARGET_EXPR:
6829 case PARM_DECL:
6830 case RESULT_DECL:
6831 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6832 {
6833 if (nonnull)
6834 *nonnull = 1;
6835 return TREE_TYPE (instance);
6836 }
6837 else if (instance == current_class_ptr)
6838 {
6839 if (nonnull)
6840 *nonnull = 1;
6841
6842 /* if we're in a ctor or dtor, we know our type. If
6843 current_class_ptr is set but we aren't in a function, we're in
6844 an NSDMI (and therefore a constructor). */
6845 if (current_scope () != current_function_decl
6846 || (DECL_LANG_SPECIFIC (current_function_decl)
6847 && (DECL_CONSTRUCTOR_P (current_function_decl)
6848 || DECL_DESTRUCTOR_P (current_function_decl))))
6849 {
6850 if (cdtorp)
6851 *cdtorp = 1;
6852 return TREE_TYPE (TREE_TYPE (instance));
6853 }
6854 }
6855 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6856 {
6857 /* We only need one hash table because it is always left empty. */
6858 if (!fixed_type_or_null_ref_ht)
6859 fixed_type_or_null_ref_ht
6860 = new hash_table<pointer_hash<tree_node> > (37);
6861
6862 /* Reference variables should be references to objects. */
6863 if (nonnull)
6864 *nonnull = 1;
6865
6866 /* Enter the INSTANCE in a table to prevent recursion; a
6867 variable's initializer may refer to the variable
6868 itself. */
6869 if (VAR_P (instance)
6870 && DECL_INITIAL (instance)
6871 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6872 && !fixed_type_or_null_ref_ht->find (instance))
6873 {
6874 tree type;
6875 tree_node **slot;
6876
6877 slot = fixed_type_or_null_ref_ht->find_slot (instance, INSERT);
6878 *slot = instance;
6879 type = RECUR (DECL_INITIAL (instance));
6880 fixed_type_or_null_ref_ht->remove_elt (instance);
6881
6882 return type;
6883 }
6884 }
6885 return NULL_TREE;
6886
6887 default:
6888 return NULL_TREE;
6889 }
6890 #undef RECUR
6891 }
6892
6893 /* Return nonzero if the dynamic type of INSTANCE is known, and
6894 equivalent to the static type. We also handle the case where
6895 INSTANCE is really a pointer. Return negative if this is a
6896 ctor/dtor. There the dynamic type is known, but this might not be
6897 the most derived base of the original object, and hence virtual
6898 bases may not be laid out according to this type.
6899
6900 Used to determine whether the virtual function table is needed
6901 or not.
6902
6903 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6904 of our knowledge of its type. *NONNULL should be initialized
6905 before this function is called. */
6906
6907 int
6908 resolves_to_fixed_type_p (tree instance, int* nonnull)
6909 {
6910 tree t = TREE_TYPE (instance);
6911 int cdtorp = 0;
6912 tree fixed;
6913
6914 /* processing_template_decl can be false in a template if we're in
6915 fold_non_dependent_expr, but we still want to suppress this check. */
6916 if (in_template_function ())
6917 {
6918 /* In a template we only care about the type of the result. */
6919 if (nonnull)
6920 *nonnull = true;
6921 return true;
6922 }
6923
6924 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6925 if (fixed == NULL_TREE)
6926 return 0;
6927 if (POINTER_TYPE_P (t))
6928 t = TREE_TYPE (t);
6929 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6930 return 0;
6931 return cdtorp ? -1 : 1;
6932 }
6933
6934 \f
6935 void
6936 init_class_processing (void)
6937 {
6938 current_class_depth = 0;
6939 current_class_stack_size = 10;
6940 current_class_stack
6941 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6942 vec_alloc (local_classes, 8);
6943 sizeof_biggest_empty_class = size_zero_node;
6944
6945 ridpointers[(int) RID_PUBLIC] = access_public_node;
6946 ridpointers[(int) RID_PRIVATE] = access_private_node;
6947 ridpointers[(int) RID_PROTECTED] = access_protected_node;
6948 }
6949
6950 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
6951
6952 static void
6953 restore_class_cache (void)
6954 {
6955 tree type;
6956
6957 /* We are re-entering the same class we just left, so we don't
6958 have to search the whole inheritance matrix to find all the
6959 decls to bind again. Instead, we install the cached
6960 class_shadowed list and walk through it binding names. */
6961 push_binding_level (previous_class_level);
6962 class_binding_level = previous_class_level;
6963 /* Restore IDENTIFIER_TYPE_VALUE. */
6964 for (type = class_binding_level->type_shadowed;
6965 type;
6966 type = TREE_CHAIN (type))
6967 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
6968 }
6969
6970 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
6971 appropriate for TYPE.
6972
6973 So that we may avoid calls to lookup_name, we cache the _TYPE
6974 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
6975
6976 For multiple inheritance, we perform a two-pass depth-first search
6977 of the type lattice. */
6978
6979 void
6980 pushclass (tree type)
6981 {
6982 class_stack_node_t csn;
6983
6984 type = TYPE_MAIN_VARIANT (type);
6985
6986 /* Make sure there is enough room for the new entry on the stack. */
6987 if (current_class_depth + 1 >= current_class_stack_size)
6988 {
6989 current_class_stack_size *= 2;
6990 current_class_stack
6991 = XRESIZEVEC (struct class_stack_node, current_class_stack,
6992 current_class_stack_size);
6993 }
6994
6995 /* Insert a new entry on the class stack. */
6996 csn = current_class_stack + current_class_depth;
6997 csn->name = current_class_name;
6998 csn->type = current_class_type;
6999 csn->access = current_access_specifier;
7000 csn->names_used = 0;
7001 csn->hidden = 0;
7002 current_class_depth++;
7003
7004 /* Now set up the new type. */
7005 current_class_name = TYPE_NAME (type);
7006 if (TREE_CODE (current_class_name) == TYPE_DECL)
7007 current_class_name = DECL_NAME (current_class_name);
7008 current_class_type = type;
7009
7010 /* By default, things in classes are private, while things in
7011 structures or unions are public. */
7012 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
7013 ? access_private_node
7014 : access_public_node);
7015
7016 if (previous_class_level
7017 && type != previous_class_level->this_entity
7018 && current_class_depth == 1)
7019 {
7020 /* Forcibly remove any old class remnants. */
7021 invalidate_class_lookup_cache ();
7022 }
7023
7024 if (!previous_class_level
7025 || type != previous_class_level->this_entity
7026 || current_class_depth > 1)
7027 pushlevel_class ();
7028 else
7029 restore_class_cache ();
7030 }
7031
7032 /* When we exit a toplevel class scope, we save its binding level so
7033 that we can restore it quickly. Here, we've entered some other
7034 class, so we must invalidate our cache. */
7035
7036 void
7037 invalidate_class_lookup_cache (void)
7038 {
7039 previous_class_level = NULL;
7040 }
7041
7042 /* Get out of the current class scope. If we were in a class scope
7043 previously, that is the one popped to. */
7044
7045 void
7046 popclass (void)
7047 {
7048 poplevel_class ();
7049
7050 current_class_depth--;
7051 current_class_name = current_class_stack[current_class_depth].name;
7052 current_class_type = current_class_stack[current_class_depth].type;
7053 current_access_specifier = current_class_stack[current_class_depth].access;
7054 if (current_class_stack[current_class_depth].names_used)
7055 splay_tree_delete (current_class_stack[current_class_depth].names_used);
7056 }
7057
7058 /* Mark the top of the class stack as hidden. */
7059
7060 void
7061 push_class_stack (void)
7062 {
7063 if (current_class_depth)
7064 ++current_class_stack[current_class_depth - 1].hidden;
7065 }
7066
7067 /* Mark the top of the class stack as un-hidden. */
7068
7069 void
7070 pop_class_stack (void)
7071 {
7072 if (current_class_depth)
7073 --current_class_stack[current_class_depth - 1].hidden;
7074 }
7075
7076 /* Returns 1 if the class type currently being defined is either T or
7077 a nested type of T. */
7078
7079 bool
7080 currently_open_class (tree t)
7081 {
7082 int i;
7083
7084 if (!CLASS_TYPE_P (t))
7085 return false;
7086
7087 t = TYPE_MAIN_VARIANT (t);
7088
7089 /* We start looking from 1 because entry 0 is from global scope,
7090 and has no type. */
7091 for (i = current_class_depth; i > 0; --i)
7092 {
7093 tree c;
7094 if (i == current_class_depth)
7095 c = current_class_type;
7096 else
7097 {
7098 if (current_class_stack[i].hidden)
7099 break;
7100 c = current_class_stack[i].type;
7101 }
7102 if (!c)
7103 continue;
7104 if (same_type_p (c, t))
7105 return true;
7106 }
7107 return false;
7108 }
7109
7110 /* If either current_class_type or one of its enclosing classes are derived
7111 from T, return the appropriate type. Used to determine how we found
7112 something via unqualified lookup. */
7113
7114 tree
7115 currently_open_derived_class (tree t)
7116 {
7117 int i;
7118
7119 /* The bases of a dependent type are unknown. */
7120 if (dependent_type_p (t))
7121 return NULL_TREE;
7122
7123 if (!current_class_type)
7124 return NULL_TREE;
7125
7126 if (DERIVED_FROM_P (t, current_class_type))
7127 return current_class_type;
7128
7129 for (i = current_class_depth - 1; i > 0; --i)
7130 {
7131 if (current_class_stack[i].hidden)
7132 break;
7133 if (DERIVED_FROM_P (t, current_class_stack[i].type))
7134 return current_class_stack[i].type;
7135 }
7136
7137 return NULL_TREE;
7138 }
7139
7140 /* Return the outermost enclosing class type that is still open, or
7141 NULL_TREE. */
7142
7143 tree
7144 outermost_open_class (void)
7145 {
7146 if (!current_class_type)
7147 return NULL_TREE;
7148 tree r = NULL_TREE;
7149 if (TYPE_BEING_DEFINED (current_class_type))
7150 r = current_class_type;
7151 for (int i = current_class_depth - 1; i > 0; --i)
7152 {
7153 if (current_class_stack[i].hidden)
7154 break;
7155 tree t = current_class_stack[i].type;
7156 if (!TYPE_BEING_DEFINED (t))
7157 break;
7158 r = t;
7159 }
7160 return r;
7161 }
7162
7163 /* Returns the innermost class type which is not a lambda closure type. */
7164
7165 tree
7166 current_nonlambda_class_type (void)
7167 {
7168 int i;
7169
7170 /* We start looking from 1 because entry 0 is from global scope,
7171 and has no type. */
7172 for (i = current_class_depth; i > 0; --i)
7173 {
7174 tree c;
7175 if (i == current_class_depth)
7176 c = current_class_type;
7177 else
7178 {
7179 if (current_class_stack[i].hidden)
7180 break;
7181 c = current_class_stack[i].type;
7182 }
7183 if (!c)
7184 continue;
7185 if (!LAMBDA_TYPE_P (c))
7186 return c;
7187 }
7188 return NULL_TREE;
7189 }
7190
7191 /* When entering a class scope, all enclosing class scopes' names with
7192 static meaning (static variables, static functions, types and
7193 enumerators) have to be visible. This recursive function calls
7194 pushclass for all enclosing class contexts until global or a local
7195 scope is reached. TYPE is the enclosed class. */
7196
7197 void
7198 push_nested_class (tree type)
7199 {
7200 /* A namespace might be passed in error cases, like A::B:C. */
7201 if (type == NULL_TREE
7202 || !CLASS_TYPE_P (type))
7203 return;
7204
7205 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7206
7207 pushclass (type);
7208 }
7209
7210 /* Undoes a push_nested_class call. */
7211
7212 void
7213 pop_nested_class (void)
7214 {
7215 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7216
7217 popclass ();
7218 if (context && CLASS_TYPE_P (context))
7219 pop_nested_class ();
7220 }
7221
7222 /* Returns the number of extern "LANG" blocks we are nested within. */
7223
7224 int
7225 current_lang_depth (void)
7226 {
7227 return vec_safe_length (current_lang_base);
7228 }
7229
7230 /* Set global variables CURRENT_LANG_NAME to appropriate value
7231 so that behavior of name-mangling machinery is correct. */
7232
7233 void
7234 push_lang_context (tree name)
7235 {
7236 vec_safe_push (current_lang_base, current_lang_name);
7237
7238 if (name == lang_name_cplusplus)
7239 {
7240 current_lang_name = name;
7241 }
7242 else if (name == lang_name_java)
7243 {
7244 current_lang_name = name;
7245 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7246 (See record_builtin_java_type in decl.c.) However, that causes
7247 incorrect debug entries if these types are actually used.
7248 So we re-enable debug output after extern "Java". */
7249 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7250 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7251 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7252 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7253 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7254 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7255 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7256 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7257 }
7258 else if (name == lang_name_c)
7259 {
7260 current_lang_name = name;
7261 }
7262 else
7263 error ("language string %<\"%E\"%> not recognized", name);
7264 }
7265
7266 /* Get out of the current language scope. */
7267
7268 void
7269 pop_lang_context (void)
7270 {
7271 current_lang_name = current_lang_base->pop ();
7272 }
7273 \f
7274 /* Type instantiation routines. */
7275
7276 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7277 matches the TARGET_TYPE. If there is no satisfactory match, return
7278 error_mark_node, and issue an error & warning messages under
7279 control of FLAGS. Permit pointers to member function if FLAGS
7280 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7281 a template-id, and EXPLICIT_TARGS are the explicitly provided
7282 template arguments.
7283
7284 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7285 is the base path used to reference those member functions. If
7286 the address is resolved to a member function, access checks will be
7287 performed and errors issued if appropriate. */
7288
7289 static tree
7290 resolve_address_of_overloaded_function (tree target_type,
7291 tree overload,
7292 tsubst_flags_t flags,
7293 bool template_only,
7294 tree explicit_targs,
7295 tree access_path)
7296 {
7297 /* Here's what the standard says:
7298
7299 [over.over]
7300
7301 If the name is a function template, template argument deduction
7302 is done, and if the argument deduction succeeds, the deduced
7303 arguments are used to generate a single template function, which
7304 is added to the set of overloaded functions considered.
7305
7306 Non-member functions and static member functions match targets of
7307 type "pointer-to-function" or "reference-to-function." Nonstatic
7308 member functions match targets of type "pointer-to-member
7309 function;" the function type of the pointer to member is used to
7310 select the member function from the set of overloaded member
7311 functions. If a nonstatic member function is selected, the
7312 reference to the overloaded function name is required to have the
7313 form of a pointer to member as described in 5.3.1.
7314
7315 If more than one function is selected, any template functions in
7316 the set are eliminated if the set also contains a non-template
7317 function, and any given template function is eliminated if the
7318 set contains a second template function that is more specialized
7319 than the first according to the partial ordering rules 14.5.5.2.
7320 After such eliminations, if any, there shall remain exactly one
7321 selected function. */
7322
7323 int is_ptrmem = 0;
7324 /* We store the matches in a TREE_LIST rooted here. The functions
7325 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7326 interoperability with most_specialized_instantiation. */
7327 tree matches = NULL_TREE;
7328 tree fn;
7329 tree target_fn_type;
7330
7331 /* By the time we get here, we should be seeing only real
7332 pointer-to-member types, not the internal POINTER_TYPE to
7333 METHOD_TYPE representation. */
7334 gcc_assert (!TYPE_PTR_P (target_type)
7335 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7336
7337 gcc_assert (is_overloaded_fn (overload));
7338
7339 /* Check that the TARGET_TYPE is reasonable. */
7340 if (TYPE_PTRFN_P (target_type)
7341 || TYPE_REFFN_P (target_type))
7342 /* This is OK. */;
7343 else if (TYPE_PTRMEMFUNC_P (target_type))
7344 /* This is OK, too. */
7345 is_ptrmem = 1;
7346 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7347 /* This is OK, too. This comes from a conversion to reference
7348 type. */
7349 target_type = build_reference_type (target_type);
7350 else
7351 {
7352 if (flags & tf_error)
7353 error ("cannot resolve overloaded function %qD based on"
7354 " conversion to type %qT",
7355 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7356 return error_mark_node;
7357 }
7358
7359 /* Non-member functions and static member functions match targets of type
7360 "pointer-to-function" or "reference-to-function." Nonstatic member
7361 functions match targets of type "pointer-to-member-function;" the
7362 function type of the pointer to member is used to select the member
7363 function from the set of overloaded member functions.
7364
7365 So figure out the FUNCTION_TYPE that we want to match against. */
7366 target_fn_type = static_fn_type (target_type);
7367
7368 /* If we can find a non-template function that matches, we can just
7369 use it. There's no point in generating template instantiations
7370 if we're just going to throw them out anyhow. But, of course, we
7371 can only do this when we don't *need* a template function. */
7372 if (!template_only)
7373 {
7374 tree fns;
7375
7376 for (fns = overload; fns; fns = OVL_NEXT (fns))
7377 {
7378 tree fn = OVL_CURRENT (fns);
7379
7380 if (TREE_CODE (fn) == TEMPLATE_DECL)
7381 /* We're not looking for templates just yet. */
7382 continue;
7383
7384 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7385 != is_ptrmem)
7386 /* We're looking for a non-static member, and this isn't
7387 one, or vice versa. */
7388 continue;
7389
7390 /* Ignore functions which haven't been explicitly
7391 declared. */
7392 if (DECL_ANTICIPATED (fn))
7393 continue;
7394
7395 /* See if there's a match. */
7396 if (same_type_p (target_fn_type, static_fn_type (fn)))
7397 matches = tree_cons (fn, NULL_TREE, matches);
7398 }
7399 }
7400
7401 /* Now, if we've already got a match (or matches), there's no need
7402 to proceed to the template functions. But, if we don't have a
7403 match we need to look at them, too. */
7404 if (!matches)
7405 {
7406 tree target_arg_types;
7407 tree target_ret_type;
7408 tree fns;
7409 tree *args;
7410 unsigned int nargs, ia;
7411 tree arg;
7412
7413 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7414 target_ret_type = TREE_TYPE (target_fn_type);
7415
7416 nargs = list_length (target_arg_types);
7417 args = XALLOCAVEC (tree, nargs);
7418 for (arg = target_arg_types, ia = 0;
7419 arg != NULL_TREE && arg != void_list_node;
7420 arg = TREE_CHAIN (arg), ++ia)
7421 args[ia] = TREE_VALUE (arg);
7422 nargs = ia;
7423
7424 for (fns = overload; fns; fns = OVL_NEXT (fns))
7425 {
7426 tree fn = OVL_CURRENT (fns);
7427 tree instantiation;
7428 tree targs;
7429
7430 if (TREE_CODE (fn) != TEMPLATE_DECL)
7431 /* We're only looking for templates. */
7432 continue;
7433
7434 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7435 != is_ptrmem)
7436 /* We're not looking for a non-static member, and this is
7437 one, or vice versa. */
7438 continue;
7439
7440 tree ret = target_ret_type;
7441
7442 /* If the template has a deduced return type, don't expose it to
7443 template argument deduction. */
7444 if (undeduced_auto_decl (fn))
7445 ret = NULL_TREE;
7446
7447 /* Try to do argument deduction. */
7448 targs = make_tree_vec (DECL_NTPARMS (fn));
7449 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7450 nargs, ret,
7451 DEDUCE_EXACT, LOOKUP_NORMAL,
7452 false, false);
7453 if (instantiation == error_mark_node)
7454 /* Instantiation failed. */
7455 continue;
7456
7457 /* And now force instantiation to do return type deduction. */
7458 if (undeduced_auto_decl (instantiation))
7459 {
7460 ++function_depth;
7461 instantiate_decl (instantiation, /*defer*/false, /*class*/false);
7462 --function_depth;
7463
7464 require_deduced_type (instantiation);
7465 }
7466
7467 /* See if there's a match. */
7468 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7469 matches = tree_cons (instantiation, fn, matches);
7470 }
7471
7472 /* Now, remove all but the most specialized of the matches. */
7473 if (matches)
7474 {
7475 tree match = most_specialized_instantiation (matches);
7476
7477 if (match != error_mark_node)
7478 matches = tree_cons (TREE_PURPOSE (match),
7479 NULL_TREE,
7480 NULL_TREE);
7481 }
7482 }
7483
7484 /* Now we should have exactly one function in MATCHES. */
7485 if (matches == NULL_TREE)
7486 {
7487 /* There were *no* matches. */
7488 if (flags & tf_error)
7489 {
7490 error ("no matches converting function %qD to type %q#T",
7491 DECL_NAME (OVL_CURRENT (overload)),
7492 target_type);
7493
7494 print_candidates (overload);
7495 }
7496 return error_mark_node;
7497 }
7498 else if (TREE_CHAIN (matches))
7499 {
7500 /* There were too many matches. First check if they're all
7501 the same function. */
7502 tree match = NULL_TREE;
7503
7504 fn = TREE_PURPOSE (matches);
7505
7506 /* For multi-versioned functions, more than one match is just fine and
7507 decls_match will return false as they are different. */
7508 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7509 if (!decls_match (fn, TREE_PURPOSE (match))
7510 && !targetm.target_option.function_versions
7511 (fn, TREE_PURPOSE (match)))
7512 break;
7513
7514 if (match)
7515 {
7516 if (flags & tf_error)
7517 {
7518 error ("converting overloaded function %qD to type %q#T is ambiguous",
7519 DECL_NAME (OVL_FUNCTION (overload)),
7520 target_type);
7521
7522 /* Since print_candidates expects the functions in the
7523 TREE_VALUE slot, we flip them here. */
7524 for (match = matches; match; match = TREE_CHAIN (match))
7525 TREE_VALUE (match) = TREE_PURPOSE (match);
7526
7527 print_candidates (matches);
7528 }
7529
7530 return error_mark_node;
7531 }
7532 }
7533
7534 /* Good, exactly one match. Now, convert it to the correct type. */
7535 fn = TREE_PURPOSE (matches);
7536
7537 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7538 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7539 {
7540 static int explained;
7541
7542 if (!(flags & tf_error))
7543 return error_mark_node;
7544
7545 permerror (input_location, "assuming pointer to member %qD", fn);
7546 if (!explained)
7547 {
7548 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7549 explained = 1;
7550 }
7551 }
7552
7553 /* If a pointer to a function that is multi-versioned is requested, the
7554 pointer to the dispatcher function is returned instead. This works
7555 well because indirectly calling the function will dispatch the right
7556 function version at run-time. */
7557 if (DECL_FUNCTION_VERSIONED (fn))
7558 {
7559 fn = get_function_version_dispatcher (fn);
7560 if (fn == NULL)
7561 return error_mark_node;
7562 /* Mark all the versions corresponding to the dispatcher as used. */
7563 if (!(flags & tf_conv))
7564 mark_versions_used (fn);
7565 }
7566
7567 /* If we're doing overload resolution purely for the purpose of
7568 determining conversion sequences, we should not consider the
7569 function used. If this conversion sequence is selected, the
7570 function will be marked as used at this point. */
7571 if (!(flags & tf_conv))
7572 {
7573 /* Make =delete work with SFINAE. */
7574 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7575 return error_mark_node;
7576
7577 mark_used (fn);
7578 }
7579
7580 /* We could not check access to member functions when this
7581 expression was originally created since we did not know at that
7582 time to which function the expression referred. */
7583 if (DECL_FUNCTION_MEMBER_P (fn))
7584 {
7585 gcc_assert (access_path);
7586 perform_or_defer_access_check (access_path, fn, fn, flags);
7587 }
7588
7589 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7590 return cp_build_addr_expr (fn, flags);
7591 else
7592 {
7593 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7594 will mark the function as addressed, but here we must do it
7595 explicitly. */
7596 cxx_mark_addressable (fn);
7597
7598 return fn;
7599 }
7600 }
7601
7602 /* This function will instantiate the type of the expression given in
7603 RHS to match the type of LHSTYPE. If errors exist, then return
7604 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7605 we complain on errors. If we are not complaining, never modify rhs,
7606 as overload resolution wants to try many possible instantiations, in
7607 the hope that at least one will work.
7608
7609 For non-recursive calls, LHSTYPE should be a function, pointer to
7610 function, or a pointer to member function. */
7611
7612 tree
7613 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7614 {
7615 tsubst_flags_t flags_in = flags;
7616 tree access_path = NULL_TREE;
7617
7618 flags &= ~tf_ptrmem_ok;
7619
7620 if (lhstype == unknown_type_node)
7621 {
7622 if (flags & tf_error)
7623 error ("not enough type information");
7624 return error_mark_node;
7625 }
7626
7627 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7628 {
7629 tree fntype = non_reference (lhstype);
7630 if (same_type_p (fntype, TREE_TYPE (rhs)))
7631 return rhs;
7632 if (flag_ms_extensions
7633 && TYPE_PTRMEMFUNC_P (fntype)
7634 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7635 /* Microsoft allows `A::f' to be resolved to a
7636 pointer-to-member. */
7637 ;
7638 else
7639 {
7640 if (flags & tf_error)
7641 error ("cannot convert %qE from type %qT to type %qT",
7642 rhs, TREE_TYPE (rhs), fntype);
7643 return error_mark_node;
7644 }
7645 }
7646
7647 if (BASELINK_P (rhs))
7648 {
7649 access_path = BASELINK_ACCESS_BINFO (rhs);
7650 rhs = BASELINK_FUNCTIONS (rhs);
7651 }
7652
7653 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7654 deduce any type information. */
7655 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7656 {
7657 if (flags & tf_error)
7658 error ("not enough type information");
7659 return error_mark_node;
7660 }
7661
7662 /* There only a few kinds of expressions that may have a type
7663 dependent on overload resolution. */
7664 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7665 || TREE_CODE (rhs) == COMPONENT_REF
7666 || is_overloaded_fn (rhs)
7667 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7668
7669 /* This should really only be used when attempting to distinguish
7670 what sort of a pointer to function we have. For now, any
7671 arithmetic operation which is not supported on pointers
7672 is rejected as an error. */
7673
7674 switch (TREE_CODE (rhs))
7675 {
7676 case COMPONENT_REF:
7677 {
7678 tree member = TREE_OPERAND (rhs, 1);
7679
7680 member = instantiate_type (lhstype, member, flags);
7681 if (member != error_mark_node
7682 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7683 /* Do not lose object's side effects. */
7684 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7685 TREE_OPERAND (rhs, 0), member);
7686 return member;
7687 }
7688
7689 case OFFSET_REF:
7690 rhs = TREE_OPERAND (rhs, 1);
7691 if (BASELINK_P (rhs))
7692 return instantiate_type (lhstype, rhs, flags_in);
7693
7694 /* This can happen if we are forming a pointer-to-member for a
7695 member template. */
7696 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7697
7698 /* Fall through. */
7699
7700 case TEMPLATE_ID_EXPR:
7701 {
7702 tree fns = TREE_OPERAND (rhs, 0);
7703 tree args = TREE_OPERAND (rhs, 1);
7704
7705 return
7706 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7707 /*template_only=*/true,
7708 args, access_path);
7709 }
7710
7711 case OVERLOAD:
7712 case FUNCTION_DECL:
7713 return
7714 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7715 /*template_only=*/false,
7716 /*explicit_targs=*/NULL_TREE,
7717 access_path);
7718
7719 case ADDR_EXPR:
7720 {
7721 if (PTRMEM_OK_P (rhs))
7722 flags |= tf_ptrmem_ok;
7723
7724 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7725 }
7726
7727 case ERROR_MARK:
7728 return error_mark_node;
7729
7730 default:
7731 gcc_unreachable ();
7732 }
7733 return error_mark_node;
7734 }
7735 \f
7736 /* Return the name of the virtual function pointer field
7737 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7738 this may have to look back through base types to find the
7739 ultimate field name. (For single inheritance, these could
7740 all be the same name. Who knows for multiple inheritance). */
7741
7742 static tree
7743 get_vfield_name (tree type)
7744 {
7745 tree binfo, base_binfo;
7746 char *buf;
7747
7748 for (binfo = TYPE_BINFO (type);
7749 BINFO_N_BASE_BINFOS (binfo);
7750 binfo = base_binfo)
7751 {
7752 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7753
7754 if (BINFO_VIRTUAL_P (base_binfo)
7755 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7756 break;
7757 }
7758
7759 type = BINFO_TYPE (binfo);
7760 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7761 + TYPE_NAME_LENGTH (type) + 2);
7762 sprintf (buf, VFIELD_NAME_FORMAT,
7763 IDENTIFIER_POINTER (constructor_name (type)));
7764 return get_identifier (buf);
7765 }
7766
7767 void
7768 print_class_statistics (void)
7769 {
7770 if (! GATHER_STATISTICS)
7771 return;
7772
7773 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7774 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7775 if (n_vtables)
7776 {
7777 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7778 n_vtables, n_vtable_searches);
7779 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7780 n_vtable_entries, n_vtable_elems);
7781 }
7782 }
7783
7784 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7785 according to [class]:
7786 The class-name is also inserted
7787 into the scope of the class itself. For purposes of access checking,
7788 the inserted class name is treated as if it were a public member name. */
7789
7790 void
7791 build_self_reference (void)
7792 {
7793 tree name = constructor_name (current_class_type);
7794 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7795 tree saved_cas;
7796
7797 DECL_NONLOCAL (value) = 1;
7798 DECL_CONTEXT (value) = current_class_type;
7799 DECL_ARTIFICIAL (value) = 1;
7800 SET_DECL_SELF_REFERENCE_P (value);
7801 set_underlying_type (value);
7802
7803 if (processing_template_decl)
7804 value = push_template_decl (value);
7805
7806 saved_cas = current_access_specifier;
7807 current_access_specifier = access_public_node;
7808 finish_member_declaration (value);
7809 current_access_specifier = saved_cas;
7810 }
7811
7812 /* Returns 1 if TYPE contains only padding bytes. */
7813
7814 int
7815 is_empty_class (tree type)
7816 {
7817 if (type == error_mark_node)
7818 return 0;
7819
7820 if (! CLASS_TYPE_P (type))
7821 return 0;
7822
7823 return CLASSTYPE_EMPTY_P (type);
7824 }
7825
7826 /* Returns true if TYPE contains no actual data, just various
7827 possible combinations of empty classes and possibly a vptr. */
7828
7829 bool
7830 is_really_empty_class (tree type)
7831 {
7832 if (CLASS_TYPE_P (type))
7833 {
7834 tree field;
7835 tree binfo;
7836 tree base_binfo;
7837 int i;
7838
7839 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7840 out, but we'd like to be able to check this before then. */
7841 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7842 return true;
7843
7844 for (binfo = TYPE_BINFO (type), i = 0;
7845 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7846 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7847 return false;
7848 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7849 if (TREE_CODE (field) == FIELD_DECL
7850 && !DECL_ARTIFICIAL (field)
7851 && !is_really_empty_class (TREE_TYPE (field)))
7852 return false;
7853 return true;
7854 }
7855 else if (TREE_CODE (type) == ARRAY_TYPE)
7856 return is_really_empty_class (TREE_TYPE (type));
7857 return false;
7858 }
7859
7860 /* Note that NAME was looked up while the current class was being
7861 defined and that the result of that lookup was DECL. */
7862
7863 void
7864 maybe_note_name_used_in_class (tree name, tree decl)
7865 {
7866 splay_tree names_used;
7867
7868 /* If we're not defining a class, there's nothing to do. */
7869 if (!(innermost_scope_kind() == sk_class
7870 && TYPE_BEING_DEFINED (current_class_type)
7871 && !LAMBDA_TYPE_P (current_class_type)))
7872 return;
7873
7874 /* If there's already a binding for this NAME, then we don't have
7875 anything to worry about. */
7876 if (lookup_member (current_class_type, name,
7877 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7878 return;
7879
7880 if (!current_class_stack[current_class_depth - 1].names_used)
7881 current_class_stack[current_class_depth - 1].names_used
7882 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7883 names_used = current_class_stack[current_class_depth - 1].names_used;
7884
7885 splay_tree_insert (names_used,
7886 (splay_tree_key) name,
7887 (splay_tree_value) decl);
7888 }
7889
7890 /* Note that NAME was declared (as DECL) in the current class. Check
7891 to see that the declaration is valid. */
7892
7893 void
7894 note_name_declared_in_class (tree name, tree decl)
7895 {
7896 splay_tree names_used;
7897 splay_tree_node n;
7898
7899 /* Look to see if we ever used this name. */
7900 names_used
7901 = current_class_stack[current_class_depth - 1].names_used;
7902 if (!names_used)
7903 return;
7904 /* The C language allows members to be declared with a type of the same
7905 name, and the C++ standard says this diagnostic is not required. So
7906 allow it in extern "C" blocks unless predantic is specified.
7907 Allow it in all cases if -ms-extensions is specified. */
7908 if ((!pedantic && current_lang_name == lang_name_c)
7909 || flag_ms_extensions)
7910 return;
7911 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7912 if (n)
7913 {
7914 /* [basic.scope.class]
7915
7916 A name N used in a class S shall refer to the same declaration
7917 in its context and when re-evaluated in the completed scope of
7918 S. */
7919 permerror (input_location, "declaration of %q#D", decl);
7920 permerror (input_location, "changes meaning of %qD from %q+#D",
7921 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7922 }
7923 }
7924
7925 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7926 Secondary vtables are merged with primary vtables; this function
7927 will return the VAR_DECL for the primary vtable. */
7928
7929 tree
7930 get_vtbl_decl_for_binfo (tree binfo)
7931 {
7932 tree decl;
7933
7934 decl = BINFO_VTABLE (binfo);
7935 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7936 {
7937 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7938 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7939 }
7940 if (decl)
7941 gcc_assert (VAR_P (decl));
7942 return decl;
7943 }
7944
7945
7946 /* Returns the binfo for the primary base of BINFO. If the resulting
7947 BINFO is a virtual base, and it is inherited elsewhere in the
7948 hierarchy, then the returned binfo might not be the primary base of
7949 BINFO in the complete object. Check BINFO_PRIMARY_P or
7950 BINFO_LOST_PRIMARY_P to be sure. */
7951
7952 static tree
7953 get_primary_binfo (tree binfo)
7954 {
7955 tree primary_base;
7956
7957 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
7958 if (!primary_base)
7959 return NULL_TREE;
7960
7961 return copied_binfo (primary_base, binfo);
7962 }
7963
7964 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
7965
7966 static int
7967 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
7968 {
7969 if (!indented_p)
7970 fprintf (stream, "%*s", indent, "");
7971 return 1;
7972 }
7973
7974 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
7975 INDENT should be zero when called from the top level; it is
7976 incremented recursively. IGO indicates the next expected BINFO in
7977 inheritance graph ordering. */
7978
7979 static tree
7980 dump_class_hierarchy_r (FILE *stream,
7981 int flags,
7982 tree binfo,
7983 tree igo,
7984 int indent)
7985 {
7986 int indented = 0;
7987 tree base_binfo;
7988 int i;
7989
7990 indented = maybe_indent_hierarchy (stream, indent, 0);
7991 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
7992 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
7993 (HOST_WIDE_INT) (uintptr_t) binfo);
7994 if (binfo != igo)
7995 {
7996 fprintf (stream, "alternative-path\n");
7997 return igo;
7998 }
7999 igo = TREE_CHAIN (binfo);
8000
8001 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
8002 tree_to_shwi (BINFO_OFFSET (binfo)));
8003 if (is_empty_class (BINFO_TYPE (binfo)))
8004 fprintf (stream, " empty");
8005 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
8006 fprintf (stream, " nearly-empty");
8007 if (BINFO_VIRTUAL_P (binfo))
8008 fprintf (stream, " virtual");
8009 fprintf (stream, "\n");
8010
8011 indented = 0;
8012 if (BINFO_PRIMARY_P (binfo))
8013 {
8014 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8015 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
8016 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
8017 TFF_PLAIN_IDENTIFIER),
8018 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
8019 }
8020 if (BINFO_LOST_PRIMARY_P (binfo))
8021 {
8022 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8023 fprintf (stream, " lost-primary");
8024 }
8025 if (indented)
8026 fprintf (stream, "\n");
8027
8028 if (!(flags & TDF_SLIM))
8029 {
8030 int indented = 0;
8031
8032 if (BINFO_SUBVTT_INDEX (binfo))
8033 {
8034 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8035 fprintf (stream, " subvttidx=%s",
8036 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
8037 TFF_PLAIN_IDENTIFIER));
8038 }
8039 if (BINFO_VPTR_INDEX (binfo))
8040 {
8041 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8042 fprintf (stream, " vptridx=%s",
8043 expr_as_string (BINFO_VPTR_INDEX (binfo),
8044 TFF_PLAIN_IDENTIFIER));
8045 }
8046 if (BINFO_VPTR_FIELD (binfo))
8047 {
8048 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8049 fprintf (stream, " vbaseoffset=%s",
8050 expr_as_string (BINFO_VPTR_FIELD (binfo),
8051 TFF_PLAIN_IDENTIFIER));
8052 }
8053 if (BINFO_VTABLE (binfo))
8054 {
8055 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8056 fprintf (stream, " vptr=%s",
8057 expr_as_string (BINFO_VTABLE (binfo),
8058 TFF_PLAIN_IDENTIFIER));
8059 }
8060
8061 if (indented)
8062 fprintf (stream, "\n");
8063 }
8064
8065 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
8066 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
8067
8068 return igo;
8069 }
8070
8071 /* Dump the BINFO hierarchy for T. */
8072
8073 static void
8074 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
8075 {
8076 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8077 fprintf (stream, " size=%lu align=%lu\n",
8078 (unsigned long)(tree_to_shwi (TYPE_SIZE (t)) / BITS_PER_UNIT),
8079 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
8080 fprintf (stream, " base size=%lu base align=%lu\n",
8081 (unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t)))
8082 / BITS_PER_UNIT),
8083 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
8084 / BITS_PER_UNIT));
8085 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
8086 fprintf (stream, "\n");
8087 }
8088
8089 /* Debug interface to hierarchy dumping. */
8090
8091 void
8092 debug_class (tree t)
8093 {
8094 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
8095 }
8096
8097 static void
8098 dump_class_hierarchy (tree t)
8099 {
8100 int flags;
8101 FILE *stream = get_dump_info (TDI_class, &flags);
8102
8103 if (stream)
8104 {
8105 dump_class_hierarchy_1 (stream, flags, t);
8106 }
8107 }
8108
8109 static void
8110 dump_array (FILE * stream, tree decl)
8111 {
8112 tree value;
8113 unsigned HOST_WIDE_INT ix;
8114 HOST_WIDE_INT elt;
8115 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8116
8117 elt = (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))))
8118 / BITS_PER_UNIT);
8119 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8120 fprintf (stream, " %s entries",
8121 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8122 TFF_PLAIN_IDENTIFIER));
8123 fprintf (stream, "\n");
8124
8125 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8126 ix, value)
8127 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
8128 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8129 }
8130
8131 static void
8132 dump_vtable (tree t, tree binfo, tree vtable)
8133 {
8134 int flags;
8135 FILE *stream = get_dump_info (TDI_class, &flags);
8136
8137 if (!stream)
8138 return;
8139
8140 if (!(flags & TDF_SLIM))
8141 {
8142 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8143
8144 fprintf (stream, "%s for %s",
8145 ctor_vtbl_p ? "Construction vtable" : "Vtable",
8146 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8147 if (ctor_vtbl_p)
8148 {
8149 if (!BINFO_VIRTUAL_P (binfo))
8150 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8151 (HOST_WIDE_INT) (uintptr_t) binfo);
8152 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8153 }
8154 fprintf (stream, "\n");
8155 dump_array (stream, vtable);
8156 fprintf (stream, "\n");
8157 }
8158 }
8159
8160 static void
8161 dump_vtt (tree t, tree vtt)
8162 {
8163 int flags;
8164 FILE *stream = get_dump_info (TDI_class, &flags);
8165
8166 if (!stream)
8167 return;
8168
8169 if (!(flags & TDF_SLIM))
8170 {
8171 fprintf (stream, "VTT for %s\n",
8172 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8173 dump_array (stream, vtt);
8174 fprintf (stream, "\n");
8175 }
8176 }
8177
8178 /* Dump a function or thunk and its thunkees. */
8179
8180 static void
8181 dump_thunk (FILE *stream, int indent, tree thunk)
8182 {
8183 static const char spaces[] = " ";
8184 tree name = DECL_NAME (thunk);
8185 tree thunks;
8186
8187 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8188 (void *)thunk,
8189 !DECL_THUNK_P (thunk) ? "function"
8190 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8191 name ? IDENTIFIER_POINTER (name) : "<unset>");
8192 if (DECL_THUNK_P (thunk))
8193 {
8194 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8195 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8196
8197 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8198 if (!virtual_adjust)
8199 /*NOP*/;
8200 else if (DECL_THIS_THUNK_P (thunk))
8201 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8202 tree_to_shwi (virtual_adjust));
8203 else
8204 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8205 tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust)),
8206 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8207 if (THUNK_ALIAS (thunk))
8208 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8209 }
8210 fprintf (stream, "\n");
8211 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8212 dump_thunk (stream, indent + 2, thunks);
8213 }
8214
8215 /* Dump the thunks for FN. */
8216
8217 void
8218 debug_thunks (tree fn)
8219 {
8220 dump_thunk (stderr, 0, fn);
8221 }
8222
8223 /* Virtual function table initialization. */
8224
8225 /* Create all the necessary vtables for T and its base classes. */
8226
8227 static void
8228 finish_vtbls (tree t)
8229 {
8230 tree vbase;
8231 vec<constructor_elt, va_gc> *v = NULL;
8232 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8233
8234 /* We lay out the primary and secondary vtables in one contiguous
8235 vtable. The primary vtable is first, followed by the non-virtual
8236 secondary vtables in inheritance graph order. */
8237 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8238 vtable, t, &v);
8239
8240 /* Then come the virtual bases, also in inheritance graph order. */
8241 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8242 {
8243 if (!BINFO_VIRTUAL_P (vbase))
8244 continue;
8245 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8246 }
8247
8248 if (BINFO_VTABLE (TYPE_BINFO (t)))
8249 initialize_vtable (TYPE_BINFO (t), v);
8250 }
8251
8252 /* Initialize the vtable for BINFO with the INITS. */
8253
8254 static void
8255 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8256 {
8257 tree decl;
8258
8259 layout_vtable_decl (binfo, vec_safe_length (inits));
8260 decl = get_vtbl_decl_for_binfo (binfo);
8261 initialize_artificial_var (decl, inits);
8262 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8263 }
8264
8265 /* Build the VTT (virtual table table) for T.
8266 A class requires a VTT if it has virtual bases.
8267
8268 This holds
8269 1 - primary virtual pointer for complete object T
8270 2 - secondary VTTs for each direct non-virtual base of T which requires a
8271 VTT
8272 3 - secondary virtual pointers for each direct or indirect base of T which
8273 has virtual bases or is reachable via a virtual path from T.
8274 4 - secondary VTTs for each direct or indirect virtual base of T.
8275
8276 Secondary VTTs look like complete object VTTs without part 4. */
8277
8278 static void
8279 build_vtt (tree t)
8280 {
8281 tree type;
8282 tree vtt;
8283 tree index;
8284 vec<constructor_elt, va_gc> *inits;
8285
8286 /* Build up the initializers for the VTT. */
8287 inits = NULL;
8288 index = size_zero_node;
8289 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8290
8291 /* If we didn't need a VTT, we're done. */
8292 if (!inits)
8293 return;
8294
8295 /* Figure out the type of the VTT. */
8296 type = build_array_of_n_type (const_ptr_type_node,
8297 inits->length ());
8298
8299 /* Now, build the VTT object itself. */
8300 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8301 initialize_artificial_var (vtt, inits);
8302 /* Add the VTT to the vtables list. */
8303 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8304 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8305
8306 dump_vtt (t, vtt);
8307 }
8308
8309 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8310 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8311 and CHAIN the vtable pointer for this binfo after construction is
8312 complete. VALUE can also be another BINFO, in which case we recurse. */
8313
8314 static tree
8315 binfo_ctor_vtable (tree binfo)
8316 {
8317 tree vt;
8318
8319 while (1)
8320 {
8321 vt = BINFO_VTABLE (binfo);
8322 if (TREE_CODE (vt) == TREE_LIST)
8323 vt = TREE_VALUE (vt);
8324 if (TREE_CODE (vt) == TREE_BINFO)
8325 binfo = vt;
8326 else
8327 break;
8328 }
8329
8330 return vt;
8331 }
8332
8333 /* Data for secondary VTT initialization. */
8334 typedef struct secondary_vptr_vtt_init_data_s
8335 {
8336 /* Is this the primary VTT? */
8337 bool top_level_p;
8338
8339 /* Current index into the VTT. */
8340 tree index;
8341
8342 /* Vector of initializers built up. */
8343 vec<constructor_elt, va_gc> *inits;
8344
8345 /* The type being constructed by this secondary VTT. */
8346 tree type_being_constructed;
8347 } secondary_vptr_vtt_init_data;
8348
8349 /* Recursively build the VTT-initializer for BINFO (which is in the
8350 hierarchy dominated by T). INITS points to the end of the initializer
8351 list to date. INDEX is the VTT index where the next element will be
8352 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8353 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8354 for virtual bases of T. When it is not so, we build the constructor
8355 vtables for the BINFO-in-T variant. */
8356
8357 static void
8358 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8359 tree *index)
8360 {
8361 int i;
8362 tree b;
8363 tree init;
8364 secondary_vptr_vtt_init_data data;
8365 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8366
8367 /* We only need VTTs for subobjects with virtual bases. */
8368 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8369 return;
8370
8371 /* We need to use a construction vtable if this is not the primary
8372 VTT. */
8373 if (!top_level_p)
8374 {
8375 build_ctor_vtbl_group (binfo, t);
8376
8377 /* Record the offset in the VTT where this sub-VTT can be found. */
8378 BINFO_SUBVTT_INDEX (binfo) = *index;
8379 }
8380
8381 /* Add the address of the primary vtable for the complete object. */
8382 init = binfo_ctor_vtable (binfo);
8383 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8384 if (top_level_p)
8385 {
8386 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8387 BINFO_VPTR_INDEX (binfo) = *index;
8388 }
8389 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8390
8391 /* Recursively add the secondary VTTs for non-virtual bases. */
8392 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8393 if (!BINFO_VIRTUAL_P (b))
8394 build_vtt_inits (b, t, inits, index);
8395
8396 /* Add secondary virtual pointers for all subobjects of BINFO with
8397 either virtual bases or reachable along a virtual path, except
8398 subobjects that are non-virtual primary bases. */
8399 data.top_level_p = top_level_p;
8400 data.index = *index;
8401 data.inits = *inits;
8402 data.type_being_constructed = BINFO_TYPE (binfo);
8403
8404 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8405
8406 *index = data.index;
8407
8408 /* data.inits might have grown as we added secondary virtual pointers.
8409 Make sure our caller knows about the new vector. */
8410 *inits = data.inits;
8411
8412 if (top_level_p)
8413 /* Add the secondary VTTs for virtual bases in inheritance graph
8414 order. */
8415 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8416 {
8417 if (!BINFO_VIRTUAL_P (b))
8418 continue;
8419
8420 build_vtt_inits (b, t, inits, index);
8421 }
8422 else
8423 /* Remove the ctor vtables we created. */
8424 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8425 }
8426
8427 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8428 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8429
8430 static tree
8431 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8432 {
8433 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8434
8435 /* We don't care about bases that don't have vtables. */
8436 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8437 return dfs_skip_bases;
8438
8439 /* We're only interested in proper subobjects of the type being
8440 constructed. */
8441 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8442 return NULL_TREE;
8443
8444 /* We're only interested in bases with virtual bases or reachable
8445 via a virtual path from the type being constructed. */
8446 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8447 || binfo_via_virtual (binfo, data->type_being_constructed)))
8448 return dfs_skip_bases;
8449
8450 /* We're not interested in non-virtual primary bases. */
8451 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8452 return NULL_TREE;
8453
8454 /* Record the index where this secondary vptr can be found. */
8455 if (data->top_level_p)
8456 {
8457 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8458 BINFO_VPTR_INDEX (binfo) = data->index;
8459
8460 if (BINFO_VIRTUAL_P (binfo))
8461 {
8462 /* It's a primary virtual base, and this is not a
8463 construction vtable. Find the base this is primary of in
8464 the inheritance graph, and use that base's vtable
8465 now. */
8466 while (BINFO_PRIMARY_P (binfo))
8467 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8468 }
8469 }
8470
8471 /* Add the initializer for the secondary vptr itself. */
8472 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8473
8474 /* Advance the vtt index. */
8475 data->index = size_binop (PLUS_EXPR, data->index,
8476 TYPE_SIZE_UNIT (ptr_type_node));
8477
8478 return NULL_TREE;
8479 }
8480
8481 /* Called from build_vtt_inits via dfs_walk. After building
8482 constructor vtables and generating the sub-vtt from them, we need
8483 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8484 binfo of the base whose sub vtt was generated. */
8485
8486 static tree
8487 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8488 {
8489 tree vtable = BINFO_VTABLE (binfo);
8490
8491 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8492 /* If this class has no vtable, none of its bases do. */
8493 return dfs_skip_bases;
8494
8495 if (!vtable)
8496 /* This might be a primary base, so have no vtable in this
8497 hierarchy. */
8498 return NULL_TREE;
8499
8500 /* If we scribbled the construction vtable vptr into BINFO, clear it
8501 out now. */
8502 if (TREE_CODE (vtable) == TREE_LIST
8503 && (TREE_PURPOSE (vtable) == (tree) data))
8504 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8505
8506 return NULL_TREE;
8507 }
8508
8509 /* Build the construction vtable group for BINFO which is in the
8510 hierarchy dominated by T. */
8511
8512 static void
8513 build_ctor_vtbl_group (tree binfo, tree t)
8514 {
8515 tree type;
8516 tree vtbl;
8517 tree id;
8518 tree vbase;
8519 vec<constructor_elt, va_gc> *v;
8520
8521 /* See if we've already created this construction vtable group. */
8522 id = mangle_ctor_vtbl_for_type (t, binfo);
8523 if (IDENTIFIER_GLOBAL_VALUE (id))
8524 return;
8525
8526 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8527 /* Build a version of VTBL (with the wrong type) for use in
8528 constructing the addresses of secondary vtables in the
8529 construction vtable group. */
8530 vtbl = build_vtable (t, id, ptr_type_node);
8531 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8532 /* Don't export construction vtables from shared libraries. Even on
8533 targets that don't support hidden visibility, this tells
8534 can_refer_decl_in_current_unit_p not to assume that it's safe to
8535 access from a different compilation unit (bz 54314). */
8536 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8537 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8538
8539 v = NULL;
8540 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8541 binfo, vtbl, t, &v);
8542
8543 /* Add the vtables for each of our virtual bases using the vbase in T
8544 binfo. */
8545 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8546 vbase;
8547 vbase = TREE_CHAIN (vbase))
8548 {
8549 tree b;
8550
8551 if (!BINFO_VIRTUAL_P (vbase))
8552 continue;
8553 b = copied_binfo (vbase, binfo);
8554
8555 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8556 }
8557
8558 /* Figure out the type of the construction vtable. */
8559 type = build_array_of_n_type (vtable_entry_type, v->length ());
8560 layout_type (type);
8561 TREE_TYPE (vtbl) = type;
8562 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8563 layout_decl (vtbl, 0);
8564
8565 /* Initialize the construction vtable. */
8566 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8567 initialize_artificial_var (vtbl, v);
8568 dump_vtable (t, binfo, vtbl);
8569 }
8570
8571 /* Add the vtbl initializers for BINFO (and its bases other than
8572 non-virtual primaries) to the list of INITS. BINFO is in the
8573 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8574 the constructor the vtbl inits should be accumulated for. (If this
8575 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8576 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8577 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8578 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8579 but are not necessarily the same in terms of layout. */
8580
8581 static void
8582 accumulate_vtbl_inits (tree binfo,
8583 tree orig_binfo,
8584 tree rtti_binfo,
8585 tree vtbl,
8586 tree t,
8587 vec<constructor_elt, va_gc> **inits)
8588 {
8589 int i;
8590 tree base_binfo;
8591 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8592
8593 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8594
8595 /* If it doesn't have a vptr, we don't do anything. */
8596 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8597 return;
8598
8599 /* If we're building a construction vtable, we're not interested in
8600 subobjects that don't require construction vtables. */
8601 if (ctor_vtbl_p
8602 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8603 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8604 return;
8605
8606 /* Build the initializers for the BINFO-in-T vtable. */
8607 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8608
8609 /* Walk the BINFO and its bases. We walk in preorder so that as we
8610 initialize each vtable we can figure out at what offset the
8611 secondary vtable lies from the primary vtable. We can't use
8612 dfs_walk here because we need to iterate through bases of BINFO
8613 and RTTI_BINFO simultaneously. */
8614 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8615 {
8616 /* Skip virtual bases. */
8617 if (BINFO_VIRTUAL_P (base_binfo))
8618 continue;
8619 accumulate_vtbl_inits (base_binfo,
8620 BINFO_BASE_BINFO (orig_binfo, i),
8621 rtti_binfo, vtbl, t,
8622 inits);
8623 }
8624 }
8625
8626 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8627 BINFO vtable to L. */
8628
8629 static void
8630 dfs_accumulate_vtbl_inits (tree binfo,
8631 tree orig_binfo,
8632 tree rtti_binfo,
8633 tree orig_vtbl,
8634 tree t,
8635 vec<constructor_elt, va_gc> **l)
8636 {
8637 tree vtbl = NULL_TREE;
8638 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8639 int n_inits;
8640
8641 if (ctor_vtbl_p
8642 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8643 {
8644 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8645 primary virtual base. If it is not the same primary in
8646 the hierarchy of T, we'll need to generate a ctor vtable
8647 for it, to place at its location in T. If it is the same
8648 primary, we still need a VTT entry for the vtable, but it
8649 should point to the ctor vtable for the base it is a
8650 primary for within the sub-hierarchy of RTTI_BINFO.
8651
8652 There are three possible cases:
8653
8654 1) We are in the same place.
8655 2) We are a primary base within a lost primary virtual base of
8656 RTTI_BINFO.
8657 3) We are primary to something not a base of RTTI_BINFO. */
8658
8659 tree b;
8660 tree last = NULL_TREE;
8661
8662 /* First, look through the bases we are primary to for RTTI_BINFO
8663 or a virtual base. */
8664 b = binfo;
8665 while (BINFO_PRIMARY_P (b))
8666 {
8667 b = BINFO_INHERITANCE_CHAIN (b);
8668 last = b;
8669 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8670 goto found;
8671 }
8672 /* If we run out of primary links, keep looking down our
8673 inheritance chain; we might be an indirect primary. */
8674 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8675 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8676 break;
8677 found:
8678
8679 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8680 base B and it is a base of RTTI_BINFO, this is case 2. In
8681 either case, we share our vtable with LAST, i.e. the
8682 derived-most base within B of which we are a primary. */
8683 if (b == rtti_binfo
8684 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8685 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8686 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8687 binfo_ctor_vtable after everything's been set up. */
8688 vtbl = last;
8689
8690 /* Otherwise, this is case 3 and we get our own. */
8691 }
8692 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8693 return;
8694
8695 n_inits = vec_safe_length (*l);
8696
8697 if (!vtbl)
8698 {
8699 tree index;
8700 int non_fn_entries;
8701
8702 /* Add the initializer for this vtable. */
8703 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8704 &non_fn_entries, l);
8705
8706 /* Figure out the position to which the VPTR should point. */
8707 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8708 index = size_binop (MULT_EXPR,
8709 TYPE_SIZE_UNIT (vtable_entry_type),
8710 size_int (non_fn_entries + n_inits));
8711 vtbl = fold_build_pointer_plus (vtbl, index);
8712 }
8713
8714 if (ctor_vtbl_p)
8715 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8716 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8717 straighten this out. */
8718 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8719 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8720 /* Throw away any unneeded intializers. */
8721 (*l)->truncate (n_inits);
8722 else
8723 /* For an ordinary vtable, set BINFO_VTABLE. */
8724 BINFO_VTABLE (binfo) = vtbl;
8725 }
8726
8727 static GTY(()) tree abort_fndecl_addr;
8728
8729 /* Construct the initializer for BINFO's virtual function table. BINFO
8730 is part of the hierarchy dominated by T. If we're building a
8731 construction vtable, the ORIG_BINFO is the binfo we should use to
8732 find the actual function pointers to put in the vtable - but they
8733 can be overridden on the path to most-derived in the graph that
8734 ORIG_BINFO belongs. Otherwise,
8735 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8736 BINFO that should be indicated by the RTTI information in the
8737 vtable; it will be a base class of T, rather than T itself, if we
8738 are building a construction vtable.
8739
8740 The value returned is a TREE_LIST suitable for wrapping in a
8741 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8742 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8743 number of non-function entries in the vtable.
8744
8745 It might seem that this function should never be called with a
8746 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8747 base is always subsumed by a derived class vtable. However, when
8748 we are building construction vtables, we do build vtables for
8749 primary bases; we need these while the primary base is being
8750 constructed. */
8751
8752 static void
8753 build_vtbl_initializer (tree binfo,
8754 tree orig_binfo,
8755 tree t,
8756 tree rtti_binfo,
8757 int* non_fn_entries_p,
8758 vec<constructor_elt, va_gc> **inits)
8759 {
8760 tree v;
8761 vtbl_init_data vid;
8762 unsigned ix, jx;
8763 tree vbinfo;
8764 vec<tree, va_gc> *vbases;
8765 constructor_elt *e;
8766
8767 /* Initialize VID. */
8768 memset (&vid, 0, sizeof (vid));
8769 vid.binfo = binfo;
8770 vid.derived = t;
8771 vid.rtti_binfo = rtti_binfo;
8772 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8773 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8774 vid.generate_vcall_entries = true;
8775 /* The first vbase or vcall offset is at index -3 in the vtable. */
8776 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8777
8778 /* Add entries to the vtable for RTTI. */
8779 build_rtti_vtbl_entries (binfo, &vid);
8780
8781 /* Create an array for keeping track of the functions we've
8782 processed. When we see multiple functions with the same
8783 signature, we share the vcall offsets. */
8784 vec_alloc (vid.fns, 32);
8785 /* Add the vcall and vbase offset entries. */
8786 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8787
8788 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8789 build_vbase_offset_vtbl_entries. */
8790 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8791 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8792 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8793
8794 /* If the target requires padding between data entries, add that now. */
8795 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8796 {
8797 int n_entries = vec_safe_length (vid.inits);
8798
8799 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8800
8801 /* Move data entries into their new positions and add padding
8802 after the new positions. Iterate backwards so we don't
8803 overwrite entries that we would need to process later. */
8804 for (ix = n_entries - 1;
8805 vid.inits->iterate (ix, &e);
8806 ix--)
8807 {
8808 int j;
8809 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8810 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8811
8812 (*vid.inits)[new_position] = *e;
8813
8814 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8815 {
8816 constructor_elt *f = &(*vid.inits)[new_position - j];
8817 f->index = NULL_TREE;
8818 f->value = build1 (NOP_EXPR, vtable_entry_type,
8819 null_pointer_node);
8820 }
8821 }
8822 }
8823
8824 if (non_fn_entries_p)
8825 *non_fn_entries_p = vec_safe_length (vid.inits);
8826
8827 /* The initializers for virtual functions were built up in reverse
8828 order. Straighten them out and add them to the running list in one
8829 step. */
8830 jx = vec_safe_length (*inits);
8831 vec_safe_grow (*inits, jx + vid.inits->length ());
8832
8833 for (ix = vid.inits->length () - 1;
8834 vid.inits->iterate (ix, &e);
8835 ix--, jx++)
8836 (**inits)[jx] = *e;
8837
8838 /* Go through all the ordinary virtual functions, building up
8839 initializers. */
8840 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8841 {
8842 tree delta;
8843 tree vcall_index;
8844 tree fn, fn_original;
8845 tree init = NULL_TREE;
8846
8847 fn = BV_FN (v);
8848 fn_original = fn;
8849 if (DECL_THUNK_P (fn))
8850 {
8851 if (!DECL_NAME (fn))
8852 finish_thunk (fn);
8853 if (THUNK_ALIAS (fn))
8854 {
8855 fn = THUNK_ALIAS (fn);
8856 BV_FN (v) = fn;
8857 }
8858 fn_original = THUNK_TARGET (fn);
8859 }
8860
8861 /* If the only definition of this function signature along our
8862 primary base chain is from a lost primary, this vtable slot will
8863 never be used, so just zero it out. This is important to avoid
8864 requiring extra thunks which cannot be generated with the function.
8865
8866 We first check this in update_vtable_entry_for_fn, so we handle
8867 restored primary bases properly; we also need to do it here so we
8868 zero out unused slots in ctor vtables, rather than filling them
8869 with erroneous values (though harmless, apart from relocation
8870 costs). */
8871 if (BV_LOST_PRIMARY (v))
8872 init = size_zero_node;
8873
8874 if (! init)
8875 {
8876 /* Pull the offset for `this', and the function to call, out of
8877 the list. */
8878 delta = BV_DELTA (v);
8879 vcall_index = BV_VCALL_INDEX (v);
8880
8881 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8882 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8883
8884 /* You can't call an abstract virtual function; it's abstract.
8885 So, we replace these functions with __pure_virtual. */
8886 if (DECL_PURE_VIRTUAL_P (fn_original))
8887 {
8888 fn = abort_fndecl;
8889 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8890 {
8891 if (abort_fndecl_addr == NULL)
8892 abort_fndecl_addr
8893 = fold_convert (vfunc_ptr_type_node,
8894 build_fold_addr_expr (fn));
8895 init = abort_fndecl_addr;
8896 }
8897 }
8898 /* Likewise for deleted virtuals. */
8899 else if (DECL_DELETED_FN (fn_original))
8900 {
8901 fn = get_identifier ("__cxa_deleted_virtual");
8902 if (!get_global_value_if_present (fn, &fn))
8903 fn = push_library_fn (fn, (build_function_type_list
8904 (void_type_node, NULL_TREE)),
8905 NULL_TREE, ECF_NORETURN);
8906 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8907 init = fold_convert (vfunc_ptr_type_node,
8908 build_fold_addr_expr (fn));
8909 }
8910 else
8911 {
8912 if (!integer_zerop (delta) || vcall_index)
8913 {
8914 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8915 if (!DECL_NAME (fn))
8916 finish_thunk (fn);
8917 }
8918 /* Take the address of the function, considering it to be of an
8919 appropriate generic type. */
8920 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8921 init = fold_convert (vfunc_ptr_type_node,
8922 build_fold_addr_expr (fn));
8923 /* Don't refer to a virtual destructor from a constructor
8924 vtable or a vtable for an abstract class, since destroying
8925 an object under construction is undefined behavior and we
8926 don't want it to be considered a candidate for speculative
8927 devirtualization. But do create the thunk for ABI
8928 compliance. */
8929 if (DECL_DESTRUCTOR_P (fn_original)
8930 && (CLASSTYPE_PURE_VIRTUALS (DECL_CONTEXT (fn_original))
8931 || orig_binfo != binfo))
8932 init = size_zero_node;
8933 }
8934 }
8935
8936 /* And add it to the chain of initializers. */
8937 if (TARGET_VTABLE_USES_DESCRIPTORS)
8938 {
8939 int i;
8940 if (init == size_zero_node)
8941 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8942 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8943 else
8944 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8945 {
8946 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
8947 fn, build_int_cst (NULL_TREE, i));
8948 TREE_CONSTANT (fdesc) = 1;
8949
8950 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
8951 }
8952 }
8953 else
8954 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8955 }
8956 }
8957
8958 /* Adds to vid->inits the initializers for the vbase and vcall
8959 offsets in BINFO, which is in the hierarchy dominated by T. */
8960
8961 static void
8962 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
8963 {
8964 tree b;
8965
8966 /* If this is a derived class, we must first create entries
8967 corresponding to the primary base class. */
8968 b = get_primary_binfo (binfo);
8969 if (b)
8970 build_vcall_and_vbase_vtbl_entries (b, vid);
8971
8972 /* Add the vbase entries for this base. */
8973 build_vbase_offset_vtbl_entries (binfo, vid);
8974 /* Add the vcall entries for this base. */
8975 build_vcall_offset_vtbl_entries (binfo, vid);
8976 }
8977
8978 /* Returns the initializers for the vbase offset entries in the vtable
8979 for BINFO (which is part of the class hierarchy dominated by T), in
8980 reverse order. VBASE_OFFSET_INDEX gives the vtable index
8981 where the next vbase offset will go. */
8982
8983 static void
8984 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8985 {
8986 tree vbase;
8987 tree t;
8988 tree non_primary_binfo;
8989
8990 /* If there are no virtual baseclasses, then there is nothing to
8991 do. */
8992 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8993 return;
8994
8995 t = vid->derived;
8996
8997 /* We might be a primary base class. Go up the inheritance hierarchy
8998 until we find the most derived class of which we are a primary base:
8999 it is the offset of that which we need to use. */
9000 non_primary_binfo = binfo;
9001 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9002 {
9003 tree b;
9004
9005 /* If we have reached a virtual base, then it must be a primary
9006 base (possibly multi-level) of vid->binfo, or we wouldn't
9007 have called build_vcall_and_vbase_vtbl_entries for it. But it
9008 might be a lost primary, so just skip down to vid->binfo. */
9009 if (BINFO_VIRTUAL_P (non_primary_binfo))
9010 {
9011 non_primary_binfo = vid->binfo;
9012 break;
9013 }
9014
9015 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9016 if (get_primary_binfo (b) != non_primary_binfo)
9017 break;
9018 non_primary_binfo = b;
9019 }
9020
9021 /* Go through the virtual bases, adding the offsets. */
9022 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
9023 vbase;
9024 vbase = TREE_CHAIN (vbase))
9025 {
9026 tree b;
9027 tree delta;
9028
9029 if (!BINFO_VIRTUAL_P (vbase))
9030 continue;
9031
9032 /* Find the instance of this virtual base in the complete
9033 object. */
9034 b = copied_binfo (vbase, binfo);
9035
9036 /* If we've already got an offset for this virtual base, we
9037 don't need another one. */
9038 if (BINFO_VTABLE_PATH_MARKED (b))
9039 continue;
9040 BINFO_VTABLE_PATH_MARKED (b) = 1;
9041
9042 /* Figure out where we can find this vbase offset. */
9043 delta = size_binop (MULT_EXPR,
9044 vid->index,
9045 convert (ssizetype,
9046 TYPE_SIZE_UNIT (vtable_entry_type)));
9047 if (vid->primary_vtbl_p)
9048 BINFO_VPTR_FIELD (b) = delta;
9049
9050 if (binfo != TYPE_BINFO (t))
9051 /* The vbase offset had better be the same. */
9052 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
9053
9054 /* The next vbase will come at a more negative offset. */
9055 vid->index = size_binop (MINUS_EXPR, vid->index,
9056 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9057
9058 /* The initializer is the delta from BINFO to this virtual base.
9059 The vbase offsets go in reverse inheritance-graph order, and
9060 we are walking in inheritance graph order so these end up in
9061 the right order. */
9062 delta = size_diffop_loc (input_location,
9063 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
9064
9065 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
9066 fold_build1_loc (input_location, NOP_EXPR,
9067 vtable_entry_type, delta));
9068 }
9069 }
9070
9071 /* Adds the initializers for the vcall offset entries in the vtable
9072 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9073 to VID->INITS. */
9074
9075 static void
9076 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9077 {
9078 /* We only need these entries if this base is a virtual base. We
9079 compute the indices -- but do not add to the vtable -- when
9080 building the main vtable for a class. */
9081 if (binfo == TYPE_BINFO (vid->derived)
9082 || (BINFO_VIRTUAL_P (binfo)
9083 /* If BINFO is RTTI_BINFO, then (since BINFO does not
9084 correspond to VID->DERIVED), we are building a primary
9085 construction virtual table. Since this is a primary
9086 virtual table, we do not need the vcall offsets for
9087 BINFO. */
9088 && binfo != vid->rtti_binfo))
9089 {
9090 /* We need a vcall offset for each of the virtual functions in this
9091 vtable. For example:
9092
9093 class A { virtual void f (); };
9094 class B1 : virtual public A { virtual void f (); };
9095 class B2 : virtual public A { virtual void f (); };
9096 class C: public B1, public B2 { virtual void f (); };
9097
9098 A C object has a primary base of B1, which has a primary base of A. A
9099 C also has a secondary base of B2, which no longer has a primary base
9100 of A. So the B2-in-C construction vtable needs a secondary vtable for
9101 A, which will adjust the A* to a B2* to call f. We have no way of
9102 knowing what (or even whether) this offset will be when we define B2,
9103 so we store this "vcall offset" in the A sub-vtable and look it up in
9104 a "virtual thunk" for B2::f.
9105
9106 We need entries for all the functions in our primary vtable and
9107 in our non-virtual bases' secondary vtables. */
9108 vid->vbase = binfo;
9109 /* If we are just computing the vcall indices -- but do not need
9110 the actual entries -- not that. */
9111 if (!BINFO_VIRTUAL_P (binfo))
9112 vid->generate_vcall_entries = false;
9113 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9114 add_vcall_offset_vtbl_entries_r (binfo, vid);
9115 }
9116 }
9117
9118 /* Build vcall offsets, starting with those for BINFO. */
9119
9120 static void
9121 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9122 {
9123 int i;
9124 tree primary_binfo;
9125 tree base_binfo;
9126
9127 /* Don't walk into virtual bases -- except, of course, for the
9128 virtual base for which we are building vcall offsets. Any
9129 primary virtual base will have already had its offsets generated
9130 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9131 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9132 return;
9133
9134 /* If BINFO has a primary base, process it first. */
9135 primary_binfo = get_primary_binfo (binfo);
9136 if (primary_binfo)
9137 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9138
9139 /* Add BINFO itself to the list. */
9140 add_vcall_offset_vtbl_entries_1 (binfo, vid);
9141
9142 /* Scan the non-primary bases of BINFO. */
9143 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9144 if (base_binfo != primary_binfo)
9145 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9146 }
9147
9148 /* Called from build_vcall_offset_vtbl_entries_r. */
9149
9150 static void
9151 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9152 {
9153 /* Make entries for the rest of the virtuals. */
9154 tree orig_fn;
9155
9156 /* The ABI requires that the methods be processed in declaration
9157 order. */
9158 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
9159 orig_fn;
9160 orig_fn = DECL_CHAIN (orig_fn))
9161 if (TREE_CODE (orig_fn) == FUNCTION_DECL && DECL_VINDEX (orig_fn))
9162 add_vcall_offset (orig_fn, binfo, vid);
9163 }
9164
9165 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9166
9167 static void
9168 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9169 {
9170 size_t i;
9171 tree vcall_offset;
9172 tree derived_entry;
9173
9174 /* If there is already an entry for a function with the same
9175 signature as FN, then we do not need a second vcall offset.
9176 Check the list of functions already present in the derived
9177 class vtable. */
9178 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9179 {
9180 if (same_signature_p (derived_entry, orig_fn)
9181 /* We only use one vcall offset for virtual destructors,
9182 even though there are two virtual table entries. */
9183 || (DECL_DESTRUCTOR_P (derived_entry)
9184 && DECL_DESTRUCTOR_P (orig_fn)))
9185 return;
9186 }
9187
9188 /* If we are building these vcall offsets as part of building
9189 the vtable for the most derived class, remember the vcall
9190 offset. */
9191 if (vid->binfo == TYPE_BINFO (vid->derived))
9192 {
9193 tree_pair_s elt = {orig_fn, vid->index};
9194 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9195 }
9196
9197 /* The next vcall offset will be found at a more negative
9198 offset. */
9199 vid->index = size_binop (MINUS_EXPR, vid->index,
9200 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9201
9202 /* Keep track of this function. */
9203 vec_safe_push (vid->fns, orig_fn);
9204
9205 if (vid->generate_vcall_entries)
9206 {
9207 tree base;
9208 tree fn;
9209
9210 /* Find the overriding function. */
9211 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9212 if (fn == error_mark_node)
9213 vcall_offset = build_zero_cst (vtable_entry_type);
9214 else
9215 {
9216 base = TREE_VALUE (fn);
9217
9218 /* The vbase we're working on is a primary base of
9219 vid->binfo. But it might be a lost primary, so its
9220 BINFO_OFFSET might be wrong, so we just use the
9221 BINFO_OFFSET from vid->binfo. */
9222 vcall_offset = size_diffop_loc (input_location,
9223 BINFO_OFFSET (base),
9224 BINFO_OFFSET (vid->binfo));
9225 vcall_offset = fold_build1_loc (input_location,
9226 NOP_EXPR, vtable_entry_type,
9227 vcall_offset);
9228 }
9229 /* Add the initializer to the vtable. */
9230 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9231 }
9232 }
9233
9234 /* Return vtbl initializers for the RTTI entries corresponding to the
9235 BINFO's vtable. The RTTI entries should indicate the object given
9236 by VID->rtti_binfo. */
9237
9238 static void
9239 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9240 {
9241 tree b;
9242 tree t;
9243 tree offset;
9244 tree decl;
9245 tree init;
9246
9247 t = BINFO_TYPE (vid->rtti_binfo);
9248
9249 /* To find the complete object, we will first convert to our most
9250 primary base, and then add the offset in the vtbl to that value. */
9251 b = binfo;
9252 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9253 && !BINFO_LOST_PRIMARY_P (b))
9254 {
9255 tree primary_base;
9256
9257 primary_base = get_primary_binfo (b);
9258 gcc_assert (BINFO_PRIMARY_P (primary_base)
9259 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9260 b = primary_base;
9261 }
9262 offset = size_diffop_loc (input_location,
9263 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9264
9265 /* The second entry is the address of the typeinfo object. */
9266 if (flag_rtti)
9267 decl = build_address (get_tinfo_decl (t));
9268 else
9269 decl = integer_zero_node;
9270
9271 /* Convert the declaration to a type that can be stored in the
9272 vtable. */
9273 init = build_nop (vfunc_ptr_type_node, decl);
9274 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9275
9276 /* Add the offset-to-top entry. It comes earlier in the vtable than
9277 the typeinfo entry. Convert the offset to look like a
9278 function pointer, so that we can put it in the vtable. */
9279 init = build_nop (vfunc_ptr_type_node, offset);
9280 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9281 }
9282
9283 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9284 accessibility. */
9285
9286 bool
9287 uniquely_derived_from_p (tree parent, tree type)
9288 {
9289 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9290 return base && base != error_mark_node;
9291 }
9292
9293 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9294
9295 bool
9296 publicly_uniquely_derived_p (tree parent, tree type)
9297 {
9298 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9299 NULL, tf_none);
9300 return base && base != error_mark_node;
9301 }
9302
9303 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9304 class between them, if any. */
9305
9306 tree
9307 common_enclosing_class (tree ctx1, tree ctx2)
9308 {
9309 if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
9310 return NULL_TREE;
9311 gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
9312 && ctx2 == TYPE_MAIN_VARIANT (ctx2));
9313 if (ctx1 == ctx2)
9314 return ctx1;
9315 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9316 TYPE_MARKED_P (t) = true;
9317 tree found = NULL_TREE;
9318 for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
9319 if (TYPE_MARKED_P (t))
9320 {
9321 found = t;
9322 break;
9323 }
9324 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9325 TYPE_MARKED_P (t) = false;
9326 return found;
9327 }
9328
9329 #include "gt-cp-class.h"