typeck.c (cp_build_compound_expr): Require RHS to have a known type.
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38 #include "cgraph.h"
39 #include "tree-dump.h"
40
41 /* The number of nested classes being processed. If we are not in the
42 scope of any class, this is zero. */
43
44 int current_class_depth;
45
46 /* In order to deal with nested classes, we keep a stack of classes.
47 The topmost entry is the innermost class, and is the entry at index
48 CURRENT_CLASS_DEPTH */
49
50 typedef struct class_stack_node {
51 /* The name of the class. */
52 tree name;
53
54 /* The _TYPE node for the class. */
55 tree type;
56
57 /* The access specifier pending for new declarations in the scope of
58 this class. */
59 tree access;
60
61 /* If were defining TYPE, the names used in this class. */
62 splay_tree names_used;
63
64 /* Nonzero if this class is no longer open, because of a call to
65 push_to_top_level. */
66 size_t hidden;
67 }* class_stack_node_t;
68
69 typedef struct vtbl_init_data_s
70 {
71 /* The base for which we're building initializers. */
72 tree binfo;
73 /* The type of the most-derived type. */
74 tree derived;
75 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
76 unless ctor_vtbl_p is true. */
77 tree rtti_binfo;
78 /* The negative-index vtable initializers built up so far. These
79 are in order from least negative index to most negative index. */
80 tree inits;
81 /* The last (i.e., most negative) entry in INITS. */
82 tree* last_init;
83 /* The binfo for the virtual base for which we're building
84 vcall offset initializers. */
85 tree vbase;
86 /* The functions in vbase for which we have already provided vcall
87 offsets. */
88 VEC(tree,gc) *fns;
89 /* The vtable index of the next vcall or vbase offset. */
90 tree index;
91 /* Nonzero if we are building the initializer for the primary
92 vtable. */
93 int primary_vtbl_p;
94 /* Nonzero if we are building the initializer for a construction
95 vtable. */
96 int ctor_vtbl_p;
97 /* True when adding vcall offset entries to the vtable. False when
98 merely computing the indices. */
99 bool generate_vcall_entries;
100 } vtbl_init_data;
101
102 /* The type of a function passed to walk_subobject_offsets. */
103 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
104
105 /* The stack itself. This is a dynamically resized array. The
106 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
107 static int current_class_stack_size;
108 static class_stack_node_t current_class_stack;
109
110 /* The size of the largest empty class seen in this translation unit. */
111 static GTY (()) tree sizeof_biggest_empty_class;
112
113 /* An array of all local classes present in this translation unit, in
114 declaration order. */
115 VEC(tree,gc) *local_classes;
116
117 static tree get_vfield_name (tree);
118 static void finish_struct_anon (tree);
119 static tree get_vtable_name (tree);
120 static tree get_basefndecls (tree, tree);
121 static int build_primary_vtable (tree, tree);
122 static int build_secondary_vtable (tree);
123 static void finish_vtbls (tree);
124 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
125 static void finish_struct_bits (tree);
126 static int alter_access (tree, tree, tree);
127 static void handle_using_decl (tree, tree);
128 static tree dfs_modify_vtables (tree, void *);
129 static tree modify_all_vtables (tree, tree);
130 static void determine_primary_bases (tree);
131 static void finish_struct_methods (tree);
132 static void maybe_warn_about_overly_private_class (tree);
133 static int method_name_cmp (const void *, const void *);
134 static int resort_method_name_cmp (const void *, const void *);
135 static void add_implicitly_declared_members (tree, int, int);
136 static tree fixed_type_or_null (tree, int *, int *);
137 static tree build_simple_base_path (tree expr, tree binfo);
138 static tree build_vtbl_ref_1 (tree, tree);
139 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
140 static int count_fields (tree);
141 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
142 static bool check_bitfield_decl (tree);
143 static void check_field_decl (tree, tree, int *, int *, int *);
144 static void check_field_decls (tree, tree *, int *, int *);
145 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
146 static void build_base_fields (record_layout_info, splay_tree, tree *);
147 static void check_methods (tree);
148 static void remove_zero_width_bit_fields (tree);
149 static void check_bases (tree, int *, int *);
150 static void check_bases_and_members (tree);
151 static tree create_vtable_ptr (tree, tree *);
152 static void include_empty_classes (record_layout_info);
153 static void layout_class_type (tree, tree *);
154 static void fixup_pending_inline (tree);
155 static void fixup_inline_methods (tree);
156 static void propagate_binfo_offsets (tree, tree);
157 static void layout_virtual_bases (record_layout_info, splay_tree);
158 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
160 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
161 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
162 static void add_vcall_offset (tree, tree, vtbl_init_data *);
163 static void layout_vtable_decl (tree, int);
164 static tree dfs_find_final_overrider_pre (tree, void *);
165 static tree dfs_find_final_overrider_post (tree, void *);
166 static tree find_final_overrider (tree, tree, tree);
167 static int make_new_vtable (tree, tree);
168 static tree get_primary_binfo (tree);
169 static int maybe_indent_hierarchy (FILE *, int, int);
170 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
171 static void dump_class_hierarchy (tree);
172 static void dump_class_hierarchy_1 (FILE *, int, tree);
173 static void dump_array (FILE *, tree);
174 static void dump_vtable (tree, tree, tree);
175 static void dump_vtt (tree, tree);
176 static void dump_thunk (FILE *, int, tree);
177 static tree build_vtable (tree, tree, tree);
178 static void initialize_vtable (tree, tree);
179 static void layout_nonempty_base_or_field (record_layout_info,
180 tree, tree, splay_tree);
181 static tree end_of_class (tree, int);
182 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
183 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
184 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
185 tree);
186 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
187 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
188 static void clone_constructors_and_destructors (tree);
189 static tree build_clone (tree, tree);
190 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
191 static void build_ctor_vtbl_group (tree, tree);
192 static void build_vtt (tree);
193 static tree binfo_ctor_vtable (tree);
194 static tree *build_vtt_inits (tree, tree, tree *, tree *);
195 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
196 static tree dfs_fixup_binfo_vtbls (tree, void *);
197 static int record_subobject_offset (tree, tree, splay_tree);
198 static int check_subobject_offset (tree, tree, splay_tree);
199 static int walk_subobject_offsets (tree, subobject_offset_fn,
200 tree, splay_tree, tree, int);
201 static void record_subobject_offsets (tree, tree, splay_tree, bool);
202 static int layout_conflict_p (tree, tree, splay_tree, int);
203 static int splay_tree_compare_integer_csts (splay_tree_key k1,
204 splay_tree_key k2);
205 static void warn_about_ambiguous_bases (tree);
206 static bool type_requires_array_cookie (tree);
207 static bool contains_empty_class_p (tree);
208 static bool base_derived_from (tree, tree);
209 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
210 static tree end_of_base (tree);
211 static tree get_vcall_index (tree, tree);
212
213 /* Variables shared between class.c and call.c. */
214
215 #ifdef GATHER_STATISTICS
216 int n_vtables = 0;
217 int n_vtable_entries = 0;
218 int n_vtable_searches = 0;
219 int n_vtable_elems = 0;
220 int n_convert_harshness = 0;
221 int n_compute_conversion_costs = 0;
222 int n_inner_fields_searched = 0;
223 #endif
224
225 /* Convert to or from a base subobject. EXPR is an expression of type
226 `A' or `A*', an expression of type `B' or `B*' is returned. To
227 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
228 the B base instance within A. To convert base A to derived B, CODE
229 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
230 In this latter case, A must not be a morally virtual base of B.
231 NONNULL is true if EXPR is known to be non-NULL (this is only
232 needed when EXPR is of pointer type). CV qualifiers are preserved
233 from EXPR. */
234
235 tree
236 build_base_path (enum tree_code code,
237 tree expr,
238 tree binfo,
239 int nonnull)
240 {
241 tree v_binfo = NULL_TREE;
242 tree d_binfo = NULL_TREE;
243 tree probe;
244 tree offset;
245 tree target_type;
246 tree null_test = NULL;
247 tree ptr_target_type;
248 int fixed_type_p;
249 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
250 bool has_empty = false;
251 bool virtual_access;
252
253 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
254 return error_mark_node;
255
256 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
257 {
258 d_binfo = probe;
259 if (is_empty_class (BINFO_TYPE (probe)))
260 has_empty = true;
261 if (!v_binfo && BINFO_VIRTUAL_P (probe))
262 v_binfo = probe;
263 }
264
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
266 if (want_pointer)
267 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
268
269 gcc_assert ((code == MINUS_EXPR
270 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
271 || (code == PLUS_EXPR
272 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
273
274 if (binfo == d_binfo)
275 /* Nothing to do. */
276 return expr;
277
278 if (code == MINUS_EXPR && v_binfo)
279 {
280 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
281 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
282 return error_mark_node;
283 }
284
285 if (!want_pointer)
286 /* This must happen before the call to save_expr. */
287 expr = cp_build_unary_op (ADDR_EXPR, expr, 0, tf_warning_or_error);
288
289 offset = BINFO_OFFSET (binfo);
290 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
291 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
292
293 /* Do we need to look in the vtable for the real offset? */
294 virtual_access = (v_binfo && fixed_type_p <= 0);
295
296 /* Don't bother with the calculations inside sizeof; they'll ICE if the
297 source type is incomplete and the pointer value doesn't matter. */
298 if (skip_evaluation)
299 {
300 expr = build_nop (build_pointer_type (target_type), expr);
301 if (!want_pointer)
302 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, NULL);
303 return expr;
304 }
305
306 /* Do we need to check for a null pointer? */
307 if (want_pointer && !nonnull)
308 {
309 /* If we know the conversion will not actually change the value
310 of EXPR, then we can avoid testing the expression for NULL.
311 We have to avoid generating a COMPONENT_REF for a base class
312 field, because other parts of the compiler know that such
313 expressions are always non-NULL. */
314 if (!virtual_access && integer_zerop (offset))
315 {
316 tree class_type;
317 /* TARGET_TYPE has been extracted from BINFO, and, is
318 therefore always cv-unqualified. Extract the
319 cv-qualifiers from EXPR so that the expression returned
320 matches the input. */
321 class_type = TREE_TYPE (TREE_TYPE (expr));
322 target_type
323 = cp_build_qualified_type (target_type,
324 cp_type_quals (class_type));
325 return build_nop (build_pointer_type (target_type), expr);
326 }
327 null_test = error_mark_node;
328 }
329
330 /* Protect against multiple evaluation if necessary. */
331 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
332 expr = save_expr (expr);
333
334 /* Now that we've saved expr, build the real null test. */
335 if (null_test)
336 {
337 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
338 null_test = fold_build2 (NE_EXPR, boolean_type_node,
339 expr, zero);
340 }
341
342 /* If this is a simple base reference, express it as a COMPONENT_REF. */
343 if (code == PLUS_EXPR && !virtual_access
344 /* We don't build base fields for empty bases, and they aren't very
345 interesting to the optimizers anyway. */
346 && !has_empty)
347 {
348 expr = cp_build_indirect_ref (expr, NULL, tf_warning_or_error);
349 expr = build_simple_base_path (expr, binfo);
350 if (want_pointer)
351 expr = build_address (expr);
352 target_type = TREE_TYPE (expr);
353 goto out;
354 }
355
356 if (virtual_access)
357 {
358 /* Going via virtual base V_BINFO. We need the static offset
359 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
360 V_BINFO. That offset is an entry in D_BINFO's vtable. */
361 tree v_offset;
362
363 if (fixed_type_p < 0 && in_base_initializer)
364 {
365 /* In a base member initializer, we cannot rely on the
366 vtable being set up. We have to indirect via the
367 vtt_parm. */
368 tree t;
369
370 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
371 t = build_pointer_type (t);
372 v_offset = convert (t, current_vtt_parm);
373 v_offset = cp_build_indirect_ref (v_offset, NULL,
374 tf_warning_or_error);
375 }
376 else
377 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, NULL,
378 tf_warning_or_error),
379 TREE_TYPE (TREE_TYPE (expr)));
380
381 v_offset = build2 (POINTER_PLUS_EXPR, TREE_TYPE (v_offset),
382 v_offset, fold_convert (sizetype, BINFO_VPTR_FIELD (v_binfo)));
383 v_offset = build1 (NOP_EXPR,
384 build_pointer_type (ptrdiff_type_node),
385 v_offset);
386 v_offset = cp_build_indirect_ref (v_offset, NULL, tf_warning_or_error);
387 TREE_CONSTANT (v_offset) = 1;
388
389 offset = convert_to_integer (ptrdiff_type_node,
390 size_diffop (offset,
391 BINFO_OFFSET (v_binfo)));
392
393 if (!integer_zerop (offset))
394 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
395
396 if (fixed_type_p < 0)
397 /* Negative fixed_type_p means this is a constructor or destructor;
398 virtual base layout is fixed in in-charge [cd]tors, but not in
399 base [cd]tors. */
400 offset = build3 (COND_EXPR, ptrdiff_type_node,
401 build2 (EQ_EXPR, boolean_type_node,
402 current_in_charge_parm, integer_zero_node),
403 v_offset,
404 convert_to_integer (ptrdiff_type_node,
405 BINFO_OFFSET (binfo)));
406 else
407 offset = v_offset;
408 }
409
410 target_type = cp_build_qualified_type
411 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
412 ptr_target_type = build_pointer_type (target_type);
413 if (want_pointer)
414 target_type = ptr_target_type;
415
416 expr = build1 (NOP_EXPR, ptr_target_type, expr);
417
418 if (!integer_zerop (offset))
419 {
420 offset = fold_convert (sizetype, offset);
421 if (code == MINUS_EXPR)
422 offset = fold_build1 (NEGATE_EXPR, sizetype, offset);
423 expr = build2 (POINTER_PLUS_EXPR, ptr_target_type, expr, offset);
424 }
425 else
426 null_test = NULL;
427
428 if (!want_pointer)
429 expr = cp_build_indirect_ref (expr, NULL, tf_warning_or_error);
430
431 out:
432 if (null_test)
433 expr = fold_build3 (COND_EXPR, target_type, null_test, expr,
434 fold_build1 (NOP_EXPR, target_type,
435 integer_zero_node));
436
437 return expr;
438 }
439
440 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
441 Perform a derived-to-base conversion by recursively building up a
442 sequence of COMPONENT_REFs to the appropriate base fields. */
443
444 static tree
445 build_simple_base_path (tree expr, tree binfo)
446 {
447 tree type = BINFO_TYPE (binfo);
448 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
449 tree field;
450
451 if (d_binfo == NULL_TREE)
452 {
453 tree temp;
454
455 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
456
457 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
458 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
459 an lvalue in the front end; only _DECLs and _REFs are lvalues
460 in the back end. */
461 temp = unary_complex_lvalue (ADDR_EXPR, expr);
462 if (temp)
463 expr = cp_build_indirect_ref (temp, NULL, tf_warning_or_error);
464
465 return expr;
466 }
467
468 /* Recurse. */
469 expr = build_simple_base_path (expr, d_binfo);
470
471 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
472 field; field = TREE_CHAIN (field))
473 /* Is this the base field created by build_base_field? */
474 if (TREE_CODE (field) == FIELD_DECL
475 && DECL_FIELD_IS_BASE (field)
476 && TREE_TYPE (field) == type)
477 {
478 /* We don't use build_class_member_access_expr here, as that
479 has unnecessary checks, and more importantly results in
480 recursive calls to dfs_walk_once. */
481 int type_quals = cp_type_quals (TREE_TYPE (expr));
482
483 expr = build3 (COMPONENT_REF,
484 cp_build_qualified_type (type, type_quals),
485 expr, field, NULL_TREE);
486 expr = fold_if_not_in_template (expr);
487
488 /* Mark the expression const or volatile, as appropriate.
489 Even though we've dealt with the type above, we still have
490 to mark the expression itself. */
491 if (type_quals & TYPE_QUAL_CONST)
492 TREE_READONLY (expr) = 1;
493 if (type_quals & TYPE_QUAL_VOLATILE)
494 TREE_THIS_VOLATILE (expr) = 1;
495
496 return expr;
497 }
498
499 /* Didn't find the base field?!? */
500 gcc_unreachable ();
501 }
502
503 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
504 type is a class type or a pointer to a class type. In the former
505 case, TYPE is also a class type; in the latter it is another
506 pointer type. If CHECK_ACCESS is true, an error message is emitted
507 if TYPE is inaccessible. If OBJECT has pointer type, the value is
508 assumed to be non-NULL. */
509
510 tree
511 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
512 {
513 tree binfo;
514 tree object_type;
515
516 if (TYPE_PTR_P (TREE_TYPE (object)))
517 {
518 object_type = TREE_TYPE (TREE_TYPE (object));
519 type = TREE_TYPE (type);
520 }
521 else
522 object_type = TREE_TYPE (object);
523
524 binfo = lookup_base (object_type, type,
525 check_access ? ba_check : ba_unique,
526 NULL);
527 if (!binfo || binfo == error_mark_node)
528 return error_mark_node;
529
530 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
531 }
532
533 /* EXPR is an expression with unqualified class type. BASE is a base
534 binfo of that class type. Returns EXPR, converted to the BASE
535 type. This function assumes that EXPR is the most derived class;
536 therefore virtual bases can be found at their static offsets. */
537
538 tree
539 convert_to_base_statically (tree expr, tree base)
540 {
541 tree expr_type;
542
543 expr_type = TREE_TYPE (expr);
544 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
545 {
546 tree pointer_type;
547
548 pointer_type = build_pointer_type (expr_type);
549
550 /* We use fold_build2 and fold_convert below to simplify the trees
551 provided to the optimizers. It is not safe to call these functions
552 when processing a template because they do not handle C++-specific
553 trees. */
554 gcc_assert (!processing_template_decl);
555 expr = cp_build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1,
556 tf_warning_or_error);
557 if (!integer_zerop (BINFO_OFFSET (base)))
558 expr = fold_build2 (POINTER_PLUS_EXPR, pointer_type, expr,
559 fold_convert (sizetype, BINFO_OFFSET (base)));
560 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
561 expr = build_fold_indirect_ref (expr);
562 }
563
564 return expr;
565 }
566
567 \f
568 tree
569 build_vfield_ref (tree datum, tree type)
570 {
571 tree vfield, vcontext;
572
573 if (datum == error_mark_node)
574 return error_mark_node;
575
576 /* First, convert to the requested type. */
577 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
578 datum = convert_to_base (datum, type, /*check_access=*/false,
579 /*nonnull=*/true);
580
581 /* Second, the requested type may not be the owner of its own vptr.
582 If not, convert to the base class that owns it. We cannot use
583 convert_to_base here, because VCONTEXT may appear more than once
584 in the inheritance hierarchy of TYPE, and thus direct conversion
585 between the types may be ambiguous. Following the path back up
586 one step at a time via primary bases avoids the problem. */
587 vfield = TYPE_VFIELD (type);
588 vcontext = DECL_CONTEXT (vfield);
589 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
590 {
591 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
592 type = TREE_TYPE (datum);
593 }
594
595 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
596 }
597
598 /* Given an object INSTANCE, return an expression which yields the
599 vtable element corresponding to INDEX. There are many special
600 cases for INSTANCE which we take care of here, mainly to avoid
601 creating extra tree nodes when we don't have to. */
602
603 static tree
604 build_vtbl_ref_1 (tree instance, tree idx)
605 {
606 tree aref;
607 tree vtbl = NULL_TREE;
608
609 /* Try to figure out what a reference refers to, and
610 access its virtual function table directly. */
611
612 int cdtorp = 0;
613 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
614
615 tree basetype = non_reference (TREE_TYPE (instance));
616
617 if (fixed_type && !cdtorp)
618 {
619 tree binfo = lookup_base (fixed_type, basetype,
620 ba_unique | ba_quiet, NULL);
621 if (binfo)
622 vtbl = unshare_expr (BINFO_VTABLE (binfo));
623 }
624
625 if (!vtbl)
626 vtbl = build_vfield_ref (instance, basetype);
627
628
629 aref = build_array_ref (vtbl, idx, input_location);
630 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
631
632 return aref;
633 }
634
635 tree
636 build_vtbl_ref (tree instance, tree idx)
637 {
638 tree aref = build_vtbl_ref_1 (instance, idx);
639
640 return aref;
641 }
642
643 /* Given a stable object pointer INSTANCE_PTR, return an expression which
644 yields a function pointer corresponding to vtable element INDEX. */
645
646 tree
647 build_vfn_ref (tree instance_ptr, tree idx)
648 {
649 tree aref;
650
651 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, 0,
652 tf_warning_or_error),
653 idx);
654
655 /* When using function descriptors, the address of the
656 vtable entry is treated as a function pointer. */
657 if (TARGET_VTABLE_USES_DESCRIPTORS)
658 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
659 cp_build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1,
660 tf_warning_or_error));
661
662 /* Remember this as a method reference, for later devirtualization. */
663 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
664
665 return aref;
666 }
667
668 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
669 for the given TYPE. */
670
671 static tree
672 get_vtable_name (tree type)
673 {
674 return mangle_vtbl_for_type (type);
675 }
676
677 /* DECL is an entity associated with TYPE, like a virtual table or an
678 implicitly generated constructor. Determine whether or not DECL
679 should have external or internal linkage at the object file
680 level. This routine does not deal with COMDAT linkage and other
681 similar complexities; it simply sets TREE_PUBLIC if it possible for
682 entities in other translation units to contain copies of DECL, in
683 the abstract. */
684
685 void
686 set_linkage_according_to_type (tree type, tree decl)
687 {
688 /* If TYPE involves a local class in a function with internal
689 linkage, then DECL should have internal linkage too. Other local
690 classes have no linkage -- but if their containing functions
691 have external linkage, it makes sense for DECL to have external
692 linkage too. That will allow template definitions to be merged,
693 for example. */
694 if (no_linkage_check (type, /*relaxed_p=*/true))
695 {
696 TREE_PUBLIC (decl) = 0;
697 DECL_INTERFACE_KNOWN (decl) = 1;
698 }
699 else
700 TREE_PUBLIC (decl) = 1;
701 }
702
703 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
704 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
705 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
706
707 static tree
708 build_vtable (tree class_type, tree name, tree vtable_type)
709 {
710 tree decl;
711
712 decl = build_lang_decl (VAR_DECL, name, vtable_type);
713 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
714 now to avoid confusion in mangle_decl. */
715 SET_DECL_ASSEMBLER_NAME (decl, name);
716 DECL_CONTEXT (decl) = class_type;
717 DECL_ARTIFICIAL (decl) = 1;
718 TREE_STATIC (decl) = 1;
719 TREE_READONLY (decl) = 1;
720 DECL_VIRTUAL_P (decl) = 1;
721 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
722 DECL_VTABLE_OR_VTT_P (decl) = 1;
723 /* At one time the vtable info was grabbed 2 words at a time. This
724 fails on sparc unless you have 8-byte alignment. (tiemann) */
725 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
726 DECL_ALIGN (decl));
727 set_linkage_according_to_type (class_type, decl);
728 /* The vtable has not been defined -- yet. */
729 DECL_EXTERNAL (decl) = 1;
730 DECL_NOT_REALLY_EXTERN (decl) = 1;
731
732 /* Mark the VAR_DECL node representing the vtable itself as a
733 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
734 is rather important that such things be ignored because any
735 effort to actually generate DWARF for them will run into
736 trouble when/if we encounter code like:
737
738 #pragma interface
739 struct S { virtual void member (); };
740
741 because the artificial declaration of the vtable itself (as
742 manufactured by the g++ front end) will say that the vtable is
743 a static member of `S' but only *after* the debug output for
744 the definition of `S' has already been output. This causes
745 grief because the DWARF entry for the definition of the vtable
746 will try to refer back to an earlier *declaration* of the
747 vtable as a static member of `S' and there won't be one. We
748 might be able to arrange to have the "vtable static member"
749 attached to the member list for `S' before the debug info for
750 `S' get written (which would solve the problem) but that would
751 require more intrusive changes to the g++ front end. */
752 DECL_IGNORED_P (decl) = 1;
753
754 return decl;
755 }
756
757 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
758 or even complete. If this does not exist, create it. If COMPLETE is
759 nonzero, then complete the definition of it -- that will render it
760 impossible to actually build the vtable, but is useful to get at those
761 which are known to exist in the runtime. */
762
763 tree
764 get_vtable_decl (tree type, int complete)
765 {
766 tree decl;
767
768 if (CLASSTYPE_VTABLES (type))
769 return CLASSTYPE_VTABLES (type);
770
771 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
772 CLASSTYPE_VTABLES (type) = decl;
773
774 if (complete)
775 {
776 DECL_EXTERNAL (decl) = 1;
777 finish_decl (decl, NULL_TREE, NULL_TREE, NULL_TREE);
778 }
779
780 return decl;
781 }
782
783 /* Build the primary virtual function table for TYPE. If BINFO is
784 non-NULL, build the vtable starting with the initial approximation
785 that it is the same as the one which is the head of the association
786 list. Returns a nonzero value if a new vtable is actually
787 created. */
788
789 static int
790 build_primary_vtable (tree binfo, tree type)
791 {
792 tree decl;
793 tree virtuals;
794
795 decl = get_vtable_decl (type, /*complete=*/0);
796
797 if (binfo)
798 {
799 if (BINFO_NEW_VTABLE_MARKED (binfo))
800 /* We have already created a vtable for this base, so there's
801 no need to do it again. */
802 return 0;
803
804 virtuals = copy_list (BINFO_VIRTUALS (binfo));
805 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
806 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
807 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
808 }
809 else
810 {
811 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
812 virtuals = NULL_TREE;
813 }
814
815 #ifdef GATHER_STATISTICS
816 n_vtables += 1;
817 n_vtable_elems += list_length (virtuals);
818 #endif
819
820 /* Initialize the association list for this type, based
821 on our first approximation. */
822 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
823 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
824 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
825 return 1;
826 }
827
828 /* Give BINFO a new virtual function table which is initialized
829 with a skeleton-copy of its original initialization. The only
830 entry that changes is the `delta' entry, so we can really
831 share a lot of structure.
832
833 FOR_TYPE is the most derived type which caused this table to
834 be needed.
835
836 Returns nonzero if we haven't met BINFO before.
837
838 The order in which vtables are built (by calling this function) for
839 an object must remain the same, otherwise a binary incompatibility
840 can result. */
841
842 static int
843 build_secondary_vtable (tree binfo)
844 {
845 if (BINFO_NEW_VTABLE_MARKED (binfo))
846 /* We already created a vtable for this base. There's no need to
847 do it again. */
848 return 0;
849
850 /* Remember that we've created a vtable for this BINFO, so that we
851 don't try to do so again. */
852 SET_BINFO_NEW_VTABLE_MARKED (binfo);
853
854 /* Make fresh virtual list, so we can smash it later. */
855 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
856
857 /* Secondary vtables are laid out as part of the same structure as
858 the primary vtable. */
859 BINFO_VTABLE (binfo) = NULL_TREE;
860 return 1;
861 }
862
863 /* Create a new vtable for BINFO which is the hierarchy dominated by
864 T. Return nonzero if we actually created a new vtable. */
865
866 static int
867 make_new_vtable (tree t, tree binfo)
868 {
869 if (binfo == TYPE_BINFO (t))
870 /* In this case, it is *type*'s vtable we are modifying. We start
871 with the approximation that its vtable is that of the
872 immediate base class. */
873 return build_primary_vtable (binfo, t);
874 else
875 /* This is our very own copy of `basetype' to play with. Later,
876 we will fill in all the virtual functions that override the
877 virtual functions in these base classes which are not defined
878 by the current type. */
879 return build_secondary_vtable (binfo);
880 }
881
882 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
883 (which is in the hierarchy dominated by T) list FNDECL as its
884 BV_FN. DELTA is the required constant adjustment from the `this'
885 pointer where the vtable entry appears to the `this' required when
886 the function is actually called. */
887
888 static void
889 modify_vtable_entry (tree t,
890 tree binfo,
891 tree fndecl,
892 tree delta,
893 tree *virtuals)
894 {
895 tree v;
896
897 v = *virtuals;
898
899 if (fndecl != BV_FN (v)
900 || !tree_int_cst_equal (delta, BV_DELTA (v)))
901 {
902 /* We need a new vtable for BINFO. */
903 if (make_new_vtable (t, binfo))
904 {
905 /* If we really did make a new vtable, we also made a copy
906 of the BINFO_VIRTUALS list. Now, we have to find the
907 corresponding entry in that list. */
908 *virtuals = BINFO_VIRTUALS (binfo);
909 while (BV_FN (*virtuals) != BV_FN (v))
910 *virtuals = TREE_CHAIN (*virtuals);
911 v = *virtuals;
912 }
913
914 BV_DELTA (v) = delta;
915 BV_VCALL_INDEX (v) = NULL_TREE;
916 BV_FN (v) = fndecl;
917 }
918 }
919
920 \f
921 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
922 the USING_DECL naming METHOD. Returns true if the method could be
923 added to the method vec. */
924
925 bool
926 add_method (tree type, tree method, tree using_decl)
927 {
928 unsigned slot;
929 tree overload;
930 bool template_conv_p = false;
931 bool conv_p;
932 VEC(tree,gc) *method_vec;
933 bool complete_p;
934 bool insert_p = false;
935 tree current_fns;
936 tree fns;
937
938 if (method == error_mark_node)
939 return false;
940
941 complete_p = COMPLETE_TYPE_P (type);
942 conv_p = DECL_CONV_FN_P (method);
943 if (conv_p)
944 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
945 && DECL_TEMPLATE_CONV_FN_P (method));
946
947 method_vec = CLASSTYPE_METHOD_VEC (type);
948 if (!method_vec)
949 {
950 /* Make a new method vector. We start with 8 entries. We must
951 allocate at least two (for constructors and destructors), and
952 we're going to end up with an assignment operator at some
953 point as well. */
954 method_vec = VEC_alloc (tree, gc, 8);
955 /* Create slots for constructors and destructors. */
956 VEC_quick_push (tree, method_vec, NULL_TREE);
957 VEC_quick_push (tree, method_vec, NULL_TREE);
958 CLASSTYPE_METHOD_VEC (type) = method_vec;
959 }
960
961 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
962 grok_special_member_properties (method);
963
964 /* Constructors and destructors go in special slots. */
965 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
966 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
967 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
968 {
969 slot = CLASSTYPE_DESTRUCTOR_SLOT;
970
971 if (TYPE_FOR_JAVA (type))
972 {
973 if (!DECL_ARTIFICIAL (method))
974 error ("Java class %qT cannot have a destructor", type);
975 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
976 error ("Java class %qT cannot have an implicit non-trivial "
977 "destructor",
978 type);
979 }
980 }
981 else
982 {
983 tree m;
984
985 insert_p = true;
986 /* See if we already have an entry with this name. */
987 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
988 VEC_iterate (tree, method_vec, slot, m);
989 ++slot)
990 {
991 m = OVL_CURRENT (m);
992 if (template_conv_p)
993 {
994 if (TREE_CODE (m) == TEMPLATE_DECL
995 && DECL_TEMPLATE_CONV_FN_P (m))
996 insert_p = false;
997 break;
998 }
999 if (conv_p && !DECL_CONV_FN_P (m))
1000 break;
1001 if (DECL_NAME (m) == DECL_NAME (method))
1002 {
1003 insert_p = false;
1004 break;
1005 }
1006 if (complete_p
1007 && !DECL_CONV_FN_P (m)
1008 && DECL_NAME (m) > DECL_NAME (method))
1009 break;
1010 }
1011 }
1012 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
1013
1014 /* Check to see if we've already got this method. */
1015 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1016 {
1017 tree fn = OVL_CURRENT (fns);
1018 tree fn_type;
1019 tree method_type;
1020 tree parms1;
1021 tree parms2;
1022
1023 if (TREE_CODE (fn) != TREE_CODE (method))
1024 continue;
1025
1026 /* [over.load] Member function declarations with the
1027 same name and the same parameter types cannot be
1028 overloaded if any of them is a static member
1029 function declaration.
1030
1031 [namespace.udecl] When a using-declaration brings names
1032 from a base class into a derived class scope, member
1033 functions in the derived class override and/or hide member
1034 functions with the same name and parameter types in a base
1035 class (rather than conflicting). */
1036 fn_type = TREE_TYPE (fn);
1037 method_type = TREE_TYPE (method);
1038 parms1 = TYPE_ARG_TYPES (fn_type);
1039 parms2 = TYPE_ARG_TYPES (method_type);
1040
1041 /* Compare the quals on the 'this' parm. Don't compare
1042 the whole types, as used functions are treated as
1043 coming from the using class in overload resolution. */
1044 if (! DECL_STATIC_FUNCTION_P (fn)
1045 && ! DECL_STATIC_FUNCTION_P (method)
1046 && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
1047 && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
1048 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1049 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1050 continue;
1051
1052 /* For templates, the return type and template parameters
1053 must be identical. */
1054 if (TREE_CODE (fn) == TEMPLATE_DECL
1055 && (!same_type_p (TREE_TYPE (fn_type),
1056 TREE_TYPE (method_type))
1057 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1058 DECL_TEMPLATE_PARMS (method))))
1059 continue;
1060
1061 if (! DECL_STATIC_FUNCTION_P (fn))
1062 parms1 = TREE_CHAIN (parms1);
1063 if (! DECL_STATIC_FUNCTION_P (method))
1064 parms2 = TREE_CHAIN (parms2);
1065
1066 if (compparms (parms1, parms2)
1067 && (!DECL_CONV_FN_P (fn)
1068 || same_type_p (TREE_TYPE (fn_type),
1069 TREE_TYPE (method_type))))
1070 {
1071 if (using_decl)
1072 {
1073 if (DECL_CONTEXT (fn) == type)
1074 /* Defer to the local function. */
1075 return false;
1076 if (DECL_CONTEXT (fn) == DECL_CONTEXT (method))
1077 error ("repeated using declaration %q+D", using_decl);
1078 else
1079 error ("using declaration %q+D conflicts with a previous using declaration",
1080 using_decl);
1081 }
1082 else
1083 {
1084 error ("%q+#D cannot be overloaded", method);
1085 error ("with %q+#D", fn);
1086 }
1087
1088 /* We don't call duplicate_decls here to merge the
1089 declarations because that will confuse things if the
1090 methods have inline definitions. In particular, we
1091 will crash while processing the definitions. */
1092 return false;
1093 }
1094 }
1095
1096 /* A class should never have more than one destructor. */
1097 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1098 return false;
1099
1100 /* Add the new binding. */
1101 overload = build_overload (method, current_fns);
1102
1103 if (conv_p)
1104 TYPE_HAS_CONVERSION (type) = 1;
1105 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1106 push_class_level_binding (DECL_NAME (method), overload);
1107
1108 if (insert_p)
1109 {
1110 bool reallocated;
1111
1112 /* We only expect to add few methods in the COMPLETE_P case, so
1113 just make room for one more method in that case. */
1114 if (complete_p)
1115 reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
1116 else
1117 reallocated = VEC_reserve (tree, gc, method_vec, 1);
1118 if (reallocated)
1119 CLASSTYPE_METHOD_VEC (type) = method_vec;
1120 if (slot == VEC_length (tree, method_vec))
1121 VEC_quick_push (tree, method_vec, overload);
1122 else
1123 VEC_quick_insert (tree, method_vec, slot, overload);
1124 }
1125 else
1126 /* Replace the current slot. */
1127 VEC_replace (tree, method_vec, slot, overload);
1128 return true;
1129 }
1130
1131 /* Subroutines of finish_struct. */
1132
1133 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1134 legit, otherwise return 0. */
1135
1136 static int
1137 alter_access (tree t, tree fdecl, tree access)
1138 {
1139 tree elem;
1140
1141 if (!DECL_LANG_SPECIFIC (fdecl))
1142 retrofit_lang_decl (fdecl);
1143
1144 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1145
1146 elem = purpose_member (t, DECL_ACCESS (fdecl));
1147 if (elem)
1148 {
1149 if (TREE_VALUE (elem) != access)
1150 {
1151 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1152 error ("conflicting access specifications for method"
1153 " %q+D, ignored", TREE_TYPE (fdecl));
1154 else
1155 error ("conflicting access specifications for field %qE, ignored",
1156 DECL_NAME (fdecl));
1157 }
1158 else
1159 {
1160 /* They're changing the access to the same thing they changed
1161 it to before. That's OK. */
1162 ;
1163 }
1164 }
1165 else
1166 {
1167 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
1168 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1169 return 1;
1170 }
1171 return 0;
1172 }
1173
1174 /* Process the USING_DECL, which is a member of T. */
1175
1176 static void
1177 handle_using_decl (tree using_decl, tree t)
1178 {
1179 tree decl = USING_DECL_DECLS (using_decl);
1180 tree name = DECL_NAME (using_decl);
1181 tree access
1182 = TREE_PRIVATE (using_decl) ? access_private_node
1183 : TREE_PROTECTED (using_decl) ? access_protected_node
1184 : access_public_node;
1185 tree flist = NULL_TREE;
1186 tree old_value;
1187
1188 gcc_assert (!processing_template_decl && decl);
1189
1190 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1191 if (old_value)
1192 {
1193 if (is_overloaded_fn (old_value))
1194 old_value = OVL_CURRENT (old_value);
1195
1196 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1197 /* OK */;
1198 else
1199 old_value = NULL_TREE;
1200 }
1201
1202 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1203
1204 if (is_overloaded_fn (decl))
1205 flist = decl;
1206
1207 if (! old_value)
1208 ;
1209 else if (is_overloaded_fn (old_value))
1210 {
1211 if (flist)
1212 /* It's OK to use functions from a base when there are functions with
1213 the same name already present in the current class. */;
1214 else
1215 {
1216 error ("%q+D invalid in %q#T", using_decl, t);
1217 error (" because of local method %q+#D with same name",
1218 OVL_CURRENT (old_value));
1219 return;
1220 }
1221 }
1222 else if (!DECL_ARTIFICIAL (old_value))
1223 {
1224 error ("%q+D invalid in %q#T", using_decl, t);
1225 error (" because of local member %q+#D with same name", old_value);
1226 return;
1227 }
1228
1229 /* Make type T see field decl FDECL with access ACCESS. */
1230 if (flist)
1231 for (; flist; flist = OVL_NEXT (flist))
1232 {
1233 add_method (t, OVL_CURRENT (flist), using_decl);
1234 alter_access (t, OVL_CURRENT (flist), access);
1235 }
1236 else
1237 alter_access (t, decl, access);
1238 }
1239 \f
1240 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1241 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1242 properties of the bases. */
1243
1244 static void
1245 check_bases (tree t,
1246 int* cant_have_const_ctor_p,
1247 int* no_const_asn_ref_p)
1248 {
1249 int i;
1250 int seen_non_virtual_nearly_empty_base_p;
1251 tree base_binfo;
1252 tree binfo;
1253
1254 seen_non_virtual_nearly_empty_base_p = 0;
1255
1256 for (binfo = TYPE_BINFO (t), i = 0;
1257 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1258 {
1259 tree basetype = TREE_TYPE (base_binfo);
1260
1261 gcc_assert (COMPLETE_TYPE_P (basetype));
1262
1263 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1264 here because the case of virtual functions but non-virtual
1265 dtor is handled in finish_struct_1. */
1266 if (!TYPE_POLYMORPHIC_P (basetype))
1267 warning (OPT_Weffc__,
1268 "base class %q#T has a non-virtual destructor", basetype);
1269
1270 /* If the base class doesn't have copy constructors or
1271 assignment operators that take const references, then the
1272 derived class cannot have such a member automatically
1273 generated. */
1274 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1275 *cant_have_const_ctor_p = 1;
1276 if (TYPE_HAS_ASSIGN_REF (basetype)
1277 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1278 *no_const_asn_ref_p = 1;
1279
1280 if (BINFO_VIRTUAL_P (base_binfo))
1281 /* A virtual base does not effect nearly emptiness. */
1282 ;
1283 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1284 {
1285 if (seen_non_virtual_nearly_empty_base_p)
1286 /* And if there is more than one nearly empty base, then the
1287 derived class is not nearly empty either. */
1288 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1289 else
1290 /* Remember we've seen one. */
1291 seen_non_virtual_nearly_empty_base_p = 1;
1292 }
1293 else if (!is_empty_class (basetype))
1294 /* If the base class is not empty or nearly empty, then this
1295 class cannot be nearly empty. */
1296 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1297
1298 /* A lot of properties from the bases also apply to the derived
1299 class. */
1300 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1301 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1302 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1303 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1304 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1305 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1306 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1307 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1308 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1309 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (basetype);
1310 }
1311 }
1312
1313 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1314 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1315 that have had a nearly-empty virtual primary base stolen by some
1316 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1317 T. */
1318
1319 static void
1320 determine_primary_bases (tree t)
1321 {
1322 unsigned i;
1323 tree primary = NULL_TREE;
1324 tree type_binfo = TYPE_BINFO (t);
1325 tree base_binfo;
1326
1327 /* Determine the primary bases of our bases. */
1328 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1329 base_binfo = TREE_CHAIN (base_binfo))
1330 {
1331 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1332
1333 /* See if we're the non-virtual primary of our inheritance
1334 chain. */
1335 if (!BINFO_VIRTUAL_P (base_binfo))
1336 {
1337 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1338 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1339
1340 if (parent_primary
1341 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1342 BINFO_TYPE (parent_primary)))
1343 /* We are the primary binfo. */
1344 BINFO_PRIMARY_P (base_binfo) = 1;
1345 }
1346 /* Determine if we have a virtual primary base, and mark it so.
1347 */
1348 if (primary && BINFO_VIRTUAL_P (primary))
1349 {
1350 tree this_primary = copied_binfo (primary, base_binfo);
1351
1352 if (BINFO_PRIMARY_P (this_primary))
1353 /* Someone already claimed this base. */
1354 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1355 else
1356 {
1357 tree delta;
1358
1359 BINFO_PRIMARY_P (this_primary) = 1;
1360 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1361
1362 /* A virtual binfo might have been copied from within
1363 another hierarchy. As we're about to use it as a
1364 primary base, make sure the offsets match. */
1365 delta = size_diffop (convert (ssizetype,
1366 BINFO_OFFSET (base_binfo)),
1367 convert (ssizetype,
1368 BINFO_OFFSET (this_primary)));
1369
1370 propagate_binfo_offsets (this_primary, delta);
1371 }
1372 }
1373 }
1374
1375 /* First look for a dynamic direct non-virtual base. */
1376 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1377 {
1378 tree basetype = BINFO_TYPE (base_binfo);
1379
1380 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1381 {
1382 primary = base_binfo;
1383 goto found;
1384 }
1385 }
1386
1387 /* A "nearly-empty" virtual base class can be the primary base
1388 class, if no non-virtual polymorphic base can be found. Look for
1389 a nearly-empty virtual dynamic base that is not already a primary
1390 base of something in the hierarchy. If there is no such base,
1391 just pick the first nearly-empty virtual base. */
1392
1393 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1394 base_binfo = TREE_CHAIN (base_binfo))
1395 if (BINFO_VIRTUAL_P (base_binfo)
1396 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1397 {
1398 if (!BINFO_PRIMARY_P (base_binfo))
1399 {
1400 /* Found one that is not primary. */
1401 primary = base_binfo;
1402 goto found;
1403 }
1404 else if (!primary)
1405 /* Remember the first candidate. */
1406 primary = base_binfo;
1407 }
1408
1409 found:
1410 /* If we've got a primary base, use it. */
1411 if (primary)
1412 {
1413 tree basetype = BINFO_TYPE (primary);
1414
1415 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1416 if (BINFO_PRIMARY_P (primary))
1417 /* We are stealing a primary base. */
1418 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1419 BINFO_PRIMARY_P (primary) = 1;
1420 if (BINFO_VIRTUAL_P (primary))
1421 {
1422 tree delta;
1423
1424 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1425 /* A virtual binfo might have been copied from within
1426 another hierarchy. As we're about to use it as a primary
1427 base, make sure the offsets match. */
1428 delta = size_diffop (ssize_int (0),
1429 convert (ssizetype, BINFO_OFFSET (primary)));
1430
1431 propagate_binfo_offsets (primary, delta);
1432 }
1433
1434 primary = TYPE_BINFO (basetype);
1435
1436 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1437 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1438 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1439 }
1440 }
1441
1442 /* Update the variant types of T. */
1443
1444 void
1445 fixup_type_variants (tree t)
1446 {
1447 tree variants;
1448
1449 if (!t)
1450 return;
1451
1452 for (variants = TYPE_NEXT_VARIANT (t);
1453 variants;
1454 variants = TYPE_NEXT_VARIANT (variants))
1455 {
1456 /* These fields are in the _TYPE part of the node, not in
1457 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1458 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1459 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1460 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1461 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1462
1463 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1464
1465 TYPE_BINFO (variants) = TYPE_BINFO (t);
1466
1467 /* Copy whatever these are holding today. */
1468 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1469 TYPE_METHODS (variants) = TYPE_METHODS (t);
1470 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1471
1472 /* All variants of a class have the same attributes. */
1473 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1474 }
1475 }
1476
1477 \f
1478 /* Set memoizing fields and bits of T (and its variants) for later
1479 use. */
1480
1481 static void
1482 finish_struct_bits (tree t)
1483 {
1484 /* Fix up variants (if any). */
1485 fixup_type_variants (t);
1486
1487 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1488 /* For a class w/o baseclasses, 'finish_struct' has set
1489 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1490 Similarly for a class whose base classes do not have vtables.
1491 When neither of these is true, we might have removed abstract
1492 virtuals (by providing a definition), added some (by declaring
1493 new ones), or redeclared ones from a base class. We need to
1494 recalculate what's really an abstract virtual at this point (by
1495 looking in the vtables). */
1496 get_pure_virtuals (t);
1497
1498 /* If this type has a copy constructor or a destructor, force its
1499 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1500 nonzero. This will cause it to be passed by invisible reference
1501 and prevent it from being returned in a register. */
1502 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1503 {
1504 tree variants;
1505 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1506 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1507 {
1508 SET_TYPE_MODE (variants, BLKmode);
1509 TREE_ADDRESSABLE (variants) = 1;
1510 }
1511 }
1512 }
1513
1514 /* Issue warnings about T having private constructors, but no friends,
1515 and so forth.
1516
1517 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1518 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1519 non-private static member functions. */
1520
1521 static void
1522 maybe_warn_about_overly_private_class (tree t)
1523 {
1524 int has_member_fn = 0;
1525 int has_nonprivate_method = 0;
1526 tree fn;
1527
1528 if (!warn_ctor_dtor_privacy
1529 /* If the class has friends, those entities might create and
1530 access instances, so we should not warn. */
1531 || (CLASSTYPE_FRIEND_CLASSES (t)
1532 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1533 /* We will have warned when the template was declared; there's
1534 no need to warn on every instantiation. */
1535 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1536 /* There's no reason to even consider warning about this
1537 class. */
1538 return;
1539
1540 /* We only issue one warning, if more than one applies, because
1541 otherwise, on code like:
1542
1543 class A {
1544 // Oops - forgot `public:'
1545 A();
1546 A(const A&);
1547 ~A();
1548 };
1549
1550 we warn several times about essentially the same problem. */
1551
1552 /* Check to see if all (non-constructor, non-destructor) member
1553 functions are private. (Since there are no friends or
1554 non-private statics, we can't ever call any of the private member
1555 functions.) */
1556 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1557 /* We're not interested in compiler-generated methods; they don't
1558 provide any way to call private members. */
1559 if (!DECL_ARTIFICIAL (fn))
1560 {
1561 if (!TREE_PRIVATE (fn))
1562 {
1563 if (DECL_STATIC_FUNCTION_P (fn))
1564 /* A non-private static member function is just like a
1565 friend; it can create and invoke private member
1566 functions, and be accessed without a class
1567 instance. */
1568 return;
1569
1570 has_nonprivate_method = 1;
1571 /* Keep searching for a static member function. */
1572 }
1573 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1574 has_member_fn = 1;
1575 }
1576
1577 if (!has_nonprivate_method && has_member_fn)
1578 {
1579 /* There are no non-private methods, and there's at least one
1580 private member function that isn't a constructor or
1581 destructor. (If all the private members are
1582 constructors/destructors we want to use the code below that
1583 issues error messages specifically referring to
1584 constructors/destructors.) */
1585 unsigned i;
1586 tree binfo = TYPE_BINFO (t);
1587
1588 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1589 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1590 {
1591 has_nonprivate_method = 1;
1592 break;
1593 }
1594 if (!has_nonprivate_method)
1595 {
1596 warning (OPT_Wctor_dtor_privacy,
1597 "all member functions in class %qT are private", t);
1598 return;
1599 }
1600 }
1601
1602 /* Even if some of the member functions are non-private, the class
1603 won't be useful for much if all the constructors or destructors
1604 are private: such an object can never be created or destroyed. */
1605 fn = CLASSTYPE_DESTRUCTORS (t);
1606 if (fn && TREE_PRIVATE (fn))
1607 {
1608 warning (OPT_Wctor_dtor_privacy,
1609 "%q#T only defines a private destructor and has no friends",
1610 t);
1611 return;
1612 }
1613
1614 /* Warn about classes that have private constructors and no friends. */
1615 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1616 /* Implicitly generated constructors are always public. */
1617 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1618 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1619 {
1620 int nonprivate_ctor = 0;
1621
1622 /* If a non-template class does not define a copy
1623 constructor, one is defined for it, enabling it to avoid
1624 this warning. For a template class, this does not
1625 happen, and so we would normally get a warning on:
1626
1627 template <class T> class C { private: C(); };
1628
1629 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1630 complete non-template or fully instantiated classes have this
1631 flag set. */
1632 if (!TYPE_HAS_INIT_REF (t))
1633 nonprivate_ctor = 1;
1634 else
1635 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1636 {
1637 tree ctor = OVL_CURRENT (fn);
1638 /* Ideally, we wouldn't count copy constructors (or, in
1639 fact, any constructor that takes an argument of the
1640 class type as a parameter) because such things cannot
1641 be used to construct an instance of the class unless
1642 you already have one. But, for now at least, we're
1643 more generous. */
1644 if (! TREE_PRIVATE (ctor))
1645 {
1646 nonprivate_ctor = 1;
1647 break;
1648 }
1649 }
1650
1651 if (nonprivate_ctor == 0)
1652 {
1653 warning (OPT_Wctor_dtor_privacy,
1654 "%q#T only defines private constructors and has no friends",
1655 t);
1656 return;
1657 }
1658 }
1659 }
1660
1661 static struct {
1662 gt_pointer_operator new_value;
1663 void *cookie;
1664 } resort_data;
1665
1666 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1667
1668 static int
1669 method_name_cmp (const void* m1_p, const void* m2_p)
1670 {
1671 const tree *const m1 = (const tree *) m1_p;
1672 const tree *const m2 = (const tree *) m2_p;
1673
1674 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1675 return 0;
1676 if (*m1 == NULL_TREE)
1677 return -1;
1678 if (*m2 == NULL_TREE)
1679 return 1;
1680 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1681 return -1;
1682 return 1;
1683 }
1684
1685 /* This routine compares two fields like method_name_cmp but using the
1686 pointer operator in resort_field_decl_data. */
1687
1688 static int
1689 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1690 {
1691 const tree *const m1 = (const tree *) m1_p;
1692 const tree *const m2 = (const tree *) m2_p;
1693 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1694 return 0;
1695 if (*m1 == NULL_TREE)
1696 return -1;
1697 if (*m2 == NULL_TREE)
1698 return 1;
1699 {
1700 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1701 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1702 resort_data.new_value (&d1, resort_data.cookie);
1703 resort_data.new_value (&d2, resort_data.cookie);
1704 if (d1 < d2)
1705 return -1;
1706 }
1707 return 1;
1708 }
1709
1710 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1711
1712 void
1713 resort_type_method_vec (void* obj,
1714 void* orig_obj ATTRIBUTE_UNUSED ,
1715 gt_pointer_operator new_value,
1716 void* cookie)
1717 {
1718 VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
1719 int len = VEC_length (tree, method_vec);
1720 size_t slot;
1721 tree fn;
1722
1723 /* The type conversion ops have to live at the front of the vec, so we
1724 can't sort them. */
1725 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1726 VEC_iterate (tree, method_vec, slot, fn);
1727 ++slot)
1728 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1729 break;
1730
1731 if (len - slot > 1)
1732 {
1733 resort_data.new_value = new_value;
1734 resort_data.cookie = cookie;
1735 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1736 resort_method_name_cmp);
1737 }
1738 }
1739
1740 /* Warn about duplicate methods in fn_fields.
1741
1742 Sort methods that are not special (i.e., constructors, destructors,
1743 and type conversion operators) so that we can find them faster in
1744 search. */
1745
1746 static void
1747 finish_struct_methods (tree t)
1748 {
1749 tree fn_fields;
1750 VEC(tree,gc) *method_vec;
1751 int slot, len;
1752
1753 method_vec = CLASSTYPE_METHOD_VEC (t);
1754 if (!method_vec)
1755 return;
1756
1757 len = VEC_length (tree, method_vec);
1758
1759 /* Clear DECL_IN_AGGR_P for all functions. */
1760 for (fn_fields = TYPE_METHODS (t); fn_fields;
1761 fn_fields = TREE_CHAIN (fn_fields))
1762 DECL_IN_AGGR_P (fn_fields) = 0;
1763
1764 /* Issue warnings about private constructors and such. If there are
1765 no methods, then some public defaults are generated. */
1766 maybe_warn_about_overly_private_class (t);
1767
1768 /* The type conversion ops have to live at the front of the vec, so we
1769 can't sort them. */
1770 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1771 VEC_iterate (tree, method_vec, slot, fn_fields);
1772 ++slot)
1773 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1774 break;
1775 if (len - slot > 1)
1776 qsort (VEC_address (tree, method_vec) + slot,
1777 len-slot, sizeof (tree), method_name_cmp);
1778 }
1779
1780 /* Make BINFO's vtable have N entries, including RTTI entries,
1781 vbase and vcall offsets, etc. Set its type and call the back end
1782 to lay it out. */
1783
1784 static void
1785 layout_vtable_decl (tree binfo, int n)
1786 {
1787 tree atype;
1788 tree vtable;
1789
1790 atype = build_cplus_array_type (vtable_entry_type,
1791 build_index_type (size_int (n - 1)));
1792 layout_type (atype);
1793
1794 /* We may have to grow the vtable. */
1795 vtable = get_vtbl_decl_for_binfo (binfo);
1796 if (!same_type_p (TREE_TYPE (vtable), atype))
1797 {
1798 TREE_TYPE (vtable) = atype;
1799 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1800 layout_decl (vtable, 0);
1801 }
1802 }
1803
1804 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1805 have the same signature. */
1806
1807 int
1808 same_signature_p (const_tree fndecl, const_tree base_fndecl)
1809 {
1810 /* One destructor overrides another if they are the same kind of
1811 destructor. */
1812 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1813 && special_function_p (base_fndecl) == special_function_p (fndecl))
1814 return 1;
1815 /* But a non-destructor never overrides a destructor, nor vice
1816 versa, nor do different kinds of destructors override
1817 one-another. For example, a complete object destructor does not
1818 override a deleting destructor. */
1819 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1820 return 0;
1821
1822 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1823 || (DECL_CONV_FN_P (fndecl)
1824 && DECL_CONV_FN_P (base_fndecl)
1825 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1826 DECL_CONV_FN_TYPE (base_fndecl))))
1827 {
1828 tree types, base_types;
1829 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1830 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1831 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1832 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1833 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1834 return 1;
1835 }
1836 return 0;
1837 }
1838
1839 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1840 subobject. */
1841
1842 static bool
1843 base_derived_from (tree derived, tree base)
1844 {
1845 tree probe;
1846
1847 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1848 {
1849 if (probe == derived)
1850 return true;
1851 else if (BINFO_VIRTUAL_P (probe))
1852 /* If we meet a virtual base, we can't follow the inheritance
1853 any more. See if the complete type of DERIVED contains
1854 such a virtual base. */
1855 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1856 != NULL_TREE);
1857 }
1858 return false;
1859 }
1860
1861 typedef struct find_final_overrider_data_s {
1862 /* The function for which we are trying to find a final overrider. */
1863 tree fn;
1864 /* The base class in which the function was declared. */
1865 tree declaring_base;
1866 /* The candidate overriders. */
1867 tree candidates;
1868 /* Path to most derived. */
1869 VEC(tree,heap) *path;
1870 } find_final_overrider_data;
1871
1872 /* Add the overrider along the current path to FFOD->CANDIDATES.
1873 Returns true if an overrider was found; false otherwise. */
1874
1875 static bool
1876 dfs_find_final_overrider_1 (tree binfo,
1877 find_final_overrider_data *ffod,
1878 unsigned depth)
1879 {
1880 tree method;
1881
1882 /* If BINFO is not the most derived type, try a more derived class.
1883 A definition there will overrider a definition here. */
1884 if (depth)
1885 {
1886 depth--;
1887 if (dfs_find_final_overrider_1
1888 (VEC_index (tree, ffod->path, depth), ffod, depth))
1889 return true;
1890 }
1891
1892 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1893 if (method)
1894 {
1895 tree *candidate = &ffod->candidates;
1896
1897 /* Remove any candidates overridden by this new function. */
1898 while (*candidate)
1899 {
1900 /* If *CANDIDATE overrides METHOD, then METHOD
1901 cannot override anything else on the list. */
1902 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1903 return true;
1904 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1905 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1906 *candidate = TREE_CHAIN (*candidate);
1907 else
1908 candidate = &TREE_CHAIN (*candidate);
1909 }
1910
1911 /* Add the new function. */
1912 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1913 return true;
1914 }
1915
1916 return false;
1917 }
1918
1919 /* Called from find_final_overrider via dfs_walk. */
1920
1921 static tree
1922 dfs_find_final_overrider_pre (tree binfo, void *data)
1923 {
1924 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1925
1926 if (binfo == ffod->declaring_base)
1927 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1928 VEC_safe_push (tree, heap, ffod->path, binfo);
1929
1930 return NULL_TREE;
1931 }
1932
1933 static tree
1934 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1935 {
1936 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1937 VEC_pop (tree, ffod->path);
1938
1939 return NULL_TREE;
1940 }
1941
1942 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1943 FN and whose TREE_VALUE is the binfo for the base where the
1944 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1945 DERIVED) is the base object in which FN is declared. */
1946
1947 static tree
1948 find_final_overrider (tree derived, tree binfo, tree fn)
1949 {
1950 find_final_overrider_data ffod;
1951
1952 /* Getting this right is a little tricky. This is valid:
1953
1954 struct S { virtual void f (); };
1955 struct T { virtual void f (); };
1956 struct U : public S, public T { };
1957
1958 even though calling `f' in `U' is ambiguous. But,
1959
1960 struct R { virtual void f(); };
1961 struct S : virtual public R { virtual void f (); };
1962 struct T : virtual public R { virtual void f (); };
1963 struct U : public S, public T { };
1964
1965 is not -- there's no way to decide whether to put `S::f' or
1966 `T::f' in the vtable for `R'.
1967
1968 The solution is to look at all paths to BINFO. If we find
1969 different overriders along any two, then there is a problem. */
1970 if (DECL_THUNK_P (fn))
1971 fn = THUNK_TARGET (fn);
1972
1973 /* Determine the depth of the hierarchy. */
1974 ffod.fn = fn;
1975 ffod.declaring_base = binfo;
1976 ffod.candidates = NULL_TREE;
1977 ffod.path = VEC_alloc (tree, heap, 30);
1978
1979 dfs_walk_all (derived, dfs_find_final_overrider_pre,
1980 dfs_find_final_overrider_post, &ffod);
1981
1982 VEC_free (tree, heap, ffod.path);
1983
1984 /* If there was no winner, issue an error message. */
1985 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
1986 return error_mark_node;
1987
1988 return ffod.candidates;
1989 }
1990
1991 /* Return the index of the vcall offset for FN when TYPE is used as a
1992 virtual base. */
1993
1994 static tree
1995 get_vcall_index (tree fn, tree type)
1996 {
1997 VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
1998 tree_pair_p p;
1999 unsigned ix;
2000
2001 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
2002 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2003 || same_signature_p (fn, p->purpose))
2004 return p->value;
2005
2006 /* There should always be an appropriate index. */
2007 gcc_unreachable ();
2008 }
2009
2010 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2011 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
2012 corresponding position in the BINFO_VIRTUALS list. */
2013
2014 static void
2015 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2016 unsigned ix)
2017 {
2018 tree b;
2019 tree overrider;
2020 tree delta;
2021 tree virtual_base;
2022 tree first_defn;
2023 tree overrider_fn, overrider_target;
2024 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2025 tree over_return, base_return;
2026 bool lost = false;
2027
2028 /* Find the nearest primary base (possibly binfo itself) which defines
2029 this function; this is the class the caller will convert to when
2030 calling FN through BINFO. */
2031 for (b = binfo; ; b = get_primary_binfo (b))
2032 {
2033 gcc_assert (b);
2034 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2035 break;
2036
2037 /* The nearest definition is from a lost primary. */
2038 if (BINFO_LOST_PRIMARY_P (b))
2039 lost = true;
2040 }
2041 first_defn = b;
2042
2043 /* Find the final overrider. */
2044 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2045 if (overrider == error_mark_node)
2046 {
2047 error ("no unique final overrider for %qD in %qT", target_fn, t);
2048 return;
2049 }
2050 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2051
2052 /* Check for adjusting covariant return types. */
2053 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2054 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2055
2056 if (POINTER_TYPE_P (over_return)
2057 && TREE_CODE (over_return) == TREE_CODE (base_return)
2058 && CLASS_TYPE_P (TREE_TYPE (over_return))
2059 && CLASS_TYPE_P (TREE_TYPE (base_return))
2060 /* If the overrider is invalid, don't even try. */
2061 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2062 {
2063 /* If FN is a covariant thunk, we must figure out the adjustment
2064 to the final base FN was converting to. As OVERRIDER_TARGET might
2065 also be converting to the return type of FN, we have to
2066 combine the two conversions here. */
2067 tree fixed_offset, virtual_offset;
2068
2069 over_return = TREE_TYPE (over_return);
2070 base_return = TREE_TYPE (base_return);
2071
2072 if (DECL_THUNK_P (fn))
2073 {
2074 gcc_assert (DECL_RESULT_THUNK_P (fn));
2075 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2076 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2077 }
2078 else
2079 fixed_offset = virtual_offset = NULL_TREE;
2080
2081 if (virtual_offset)
2082 /* Find the equivalent binfo within the return type of the
2083 overriding function. We will want the vbase offset from
2084 there. */
2085 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2086 over_return);
2087 else if (!same_type_ignoring_top_level_qualifiers_p
2088 (over_return, base_return))
2089 {
2090 /* There was no existing virtual thunk (which takes
2091 precedence). So find the binfo of the base function's
2092 return type within the overriding function's return type.
2093 We cannot call lookup base here, because we're inside a
2094 dfs_walk, and will therefore clobber the BINFO_MARKED
2095 flags. Fortunately we know the covariancy is valid (it
2096 has already been checked), so we can just iterate along
2097 the binfos, which have been chained in inheritance graph
2098 order. Of course it is lame that we have to repeat the
2099 search here anyway -- we should really be caching pieces
2100 of the vtable and avoiding this repeated work. */
2101 tree thunk_binfo, base_binfo;
2102
2103 /* Find the base binfo within the overriding function's
2104 return type. We will always find a thunk_binfo, except
2105 when the covariancy is invalid (which we will have
2106 already diagnosed). */
2107 for (base_binfo = TYPE_BINFO (base_return),
2108 thunk_binfo = TYPE_BINFO (over_return);
2109 thunk_binfo;
2110 thunk_binfo = TREE_CHAIN (thunk_binfo))
2111 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2112 BINFO_TYPE (base_binfo)))
2113 break;
2114
2115 /* See if virtual inheritance is involved. */
2116 for (virtual_offset = thunk_binfo;
2117 virtual_offset;
2118 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2119 if (BINFO_VIRTUAL_P (virtual_offset))
2120 break;
2121
2122 if (virtual_offset
2123 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2124 {
2125 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2126
2127 if (virtual_offset)
2128 {
2129 /* We convert via virtual base. Adjust the fixed
2130 offset to be from there. */
2131 offset = size_diffop
2132 (offset, convert
2133 (ssizetype, BINFO_OFFSET (virtual_offset)));
2134 }
2135 if (fixed_offset)
2136 /* There was an existing fixed offset, this must be
2137 from the base just converted to, and the base the
2138 FN was thunking to. */
2139 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2140 else
2141 fixed_offset = offset;
2142 }
2143 }
2144
2145 if (fixed_offset || virtual_offset)
2146 /* Replace the overriding function with a covariant thunk. We
2147 will emit the overriding function in its own slot as
2148 well. */
2149 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2150 fixed_offset, virtual_offset);
2151 }
2152 else
2153 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2154 !DECL_THUNK_P (fn));
2155
2156 /* Assume that we will produce a thunk that convert all the way to
2157 the final overrider, and not to an intermediate virtual base. */
2158 virtual_base = NULL_TREE;
2159
2160 /* See if we can convert to an intermediate virtual base first, and then
2161 use the vcall offset located there to finish the conversion. */
2162 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2163 {
2164 /* If we find the final overrider, then we can stop
2165 walking. */
2166 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2167 BINFO_TYPE (TREE_VALUE (overrider))))
2168 break;
2169
2170 /* If we find a virtual base, and we haven't yet found the
2171 overrider, then there is a virtual base between the
2172 declaring base (first_defn) and the final overrider. */
2173 if (BINFO_VIRTUAL_P (b))
2174 {
2175 virtual_base = b;
2176 break;
2177 }
2178 }
2179
2180 if (overrider_fn != overrider_target && !virtual_base)
2181 {
2182 /* The ABI specifies that a covariant thunk includes a mangling
2183 for a this pointer adjustment. This-adjusting thunks that
2184 override a function from a virtual base have a vcall
2185 adjustment. When the virtual base in question is a primary
2186 virtual base, we know the adjustments are zero, (and in the
2187 non-covariant case, we would not use the thunk).
2188 Unfortunately we didn't notice this could happen, when
2189 designing the ABI and so never mandated that such a covariant
2190 thunk should be emitted. Because we must use the ABI mandated
2191 name, we must continue searching from the binfo where we
2192 found the most recent definition of the function, towards the
2193 primary binfo which first introduced the function into the
2194 vtable. If that enters a virtual base, we must use a vcall
2195 this-adjusting thunk. Bleah! */
2196 tree probe = first_defn;
2197
2198 while ((probe = get_primary_binfo (probe))
2199 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2200 if (BINFO_VIRTUAL_P (probe))
2201 virtual_base = probe;
2202
2203 if (virtual_base)
2204 /* Even if we find a virtual base, the correct delta is
2205 between the overrider and the binfo we're building a vtable
2206 for. */
2207 goto virtual_covariant;
2208 }
2209
2210 /* Compute the constant adjustment to the `this' pointer. The
2211 `this' pointer, when this function is called, will point at BINFO
2212 (or one of its primary bases, which are at the same offset). */
2213 if (virtual_base)
2214 /* The `this' pointer needs to be adjusted from the declaration to
2215 the nearest virtual base. */
2216 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2217 convert (ssizetype, BINFO_OFFSET (first_defn)));
2218 else if (lost)
2219 /* If the nearest definition is in a lost primary, we don't need an
2220 entry in our vtable. Except possibly in a constructor vtable,
2221 if we happen to get our primary back. In that case, the offset
2222 will be zero, as it will be a primary base. */
2223 delta = size_zero_node;
2224 else
2225 /* The `this' pointer needs to be adjusted from pointing to
2226 BINFO to pointing at the base where the final overrider
2227 appears. */
2228 virtual_covariant:
2229 delta = size_diffop (convert (ssizetype,
2230 BINFO_OFFSET (TREE_VALUE (overrider))),
2231 convert (ssizetype, BINFO_OFFSET (binfo)));
2232
2233 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2234
2235 if (virtual_base)
2236 BV_VCALL_INDEX (*virtuals)
2237 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2238 else
2239 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2240 }
2241
2242 /* Called from modify_all_vtables via dfs_walk. */
2243
2244 static tree
2245 dfs_modify_vtables (tree binfo, void* data)
2246 {
2247 tree t = (tree) data;
2248 tree virtuals;
2249 tree old_virtuals;
2250 unsigned ix;
2251
2252 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2253 /* A base without a vtable needs no modification, and its bases
2254 are uninteresting. */
2255 return dfs_skip_bases;
2256
2257 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2258 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2259 /* Don't do the primary vtable, if it's new. */
2260 return NULL_TREE;
2261
2262 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2263 /* There's no need to modify the vtable for a non-virtual primary
2264 base; we're not going to use that vtable anyhow. We do still
2265 need to do this for virtual primary bases, as they could become
2266 non-primary in a construction vtable. */
2267 return NULL_TREE;
2268
2269 make_new_vtable (t, binfo);
2270
2271 /* Now, go through each of the virtual functions in the virtual
2272 function table for BINFO. Find the final overrider, and update
2273 the BINFO_VIRTUALS list appropriately. */
2274 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2275 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2276 virtuals;
2277 ix++, virtuals = TREE_CHAIN (virtuals),
2278 old_virtuals = TREE_CHAIN (old_virtuals))
2279 update_vtable_entry_for_fn (t,
2280 binfo,
2281 BV_FN (old_virtuals),
2282 &virtuals, ix);
2283
2284 return NULL_TREE;
2285 }
2286
2287 /* Update all of the primary and secondary vtables for T. Create new
2288 vtables as required, and initialize their RTTI information. Each
2289 of the functions in VIRTUALS is declared in T and may override a
2290 virtual function from a base class; find and modify the appropriate
2291 entries to point to the overriding functions. Returns a list, in
2292 declaration order, of the virtual functions that are declared in T,
2293 but do not appear in the primary base class vtable, and which
2294 should therefore be appended to the end of the vtable for T. */
2295
2296 static tree
2297 modify_all_vtables (tree t, tree virtuals)
2298 {
2299 tree binfo = TYPE_BINFO (t);
2300 tree *fnsp;
2301
2302 /* Update all of the vtables. */
2303 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2304
2305 /* Add virtual functions not already in our primary vtable. These
2306 will be both those introduced by this class, and those overridden
2307 from secondary bases. It does not include virtuals merely
2308 inherited from secondary bases. */
2309 for (fnsp = &virtuals; *fnsp; )
2310 {
2311 tree fn = TREE_VALUE (*fnsp);
2312
2313 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2314 || DECL_VINDEX (fn) == error_mark_node)
2315 {
2316 /* We don't need to adjust the `this' pointer when
2317 calling this function. */
2318 BV_DELTA (*fnsp) = integer_zero_node;
2319 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2320
2321 /* This is a function not already in our vtable. Keep it. */
2322 fnsp = &TREE_CHAIN (*fnsp);
2323 }
2324 else
2325 /* We've already got an entry for this function. Skip it. */
2326 *fnsp = TREE_CHAIN (*fnsp);
2327 }
2328
2329 return virtuals;
2330 }
2331
2332 /* Get the base virtual function declarations in T that have the
2333 indicated NAME. */
2334
2335 static tree
2336 get_basefndecls (tree name, tree t)
2337 {
2338 tree methods;
2339 tree base_fndecls = NULL_TREE;
2340 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2341 int i;
2342
2343 /* Find virtual functions in T with the indicated NAME. */
2344 i = lookup_fnfields_1 (t, name);
2345 if (i != -1)
2346 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2347 methods;
2348 methods = OVL_NEXT (methods))
2349 {
2350 tree method = OVL_CURRENT (methods);
2351
2352 if (TREE_CODE (method) == FUNCTION_DECL
2353 && DECL_VINDEX (method))
2354 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2355 }
2356
2357 if (base_fndecls)
2358 return base_fndecls;
2359
2360 for (i = 0; i < n_baseclasses; i++)
2361 {
2362 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2363 base_fndecls = chainon (get_basefndecls (name, basetype),
2364 base_fndecls);
2365 }
2366
2367 return base_fndecls;
2368 }
2369
2370 /* If this declaration supersedes the declaration of
2371 a method declared virtual in the base class, then
2372 mark this field as being virtual as well. */
2373
2374 void
2375 check_for_override (tree decl, tree ctype)
2376 {
2377 if (TREE_CODE (decl) == TEMPLATE_DECL)
2378 /* In [temp.mem] we have:
2379
2380 A specialization of a member function template does not
2381 override a virtual function from a base class. */
2382 return;
2383 if ((DECL_DESTRUCTOR_P (decl)
2384 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2385 || DECL_CONV_FN_P (decl))
2386 && look_for_overrides (ctype, decl)
2387 && !DECL_STATIC_FUNCTION_P (decl))
2388 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2389 the error_mark_node so that we know it is an overriding
2390 function. */
2391 DECL_VINDEX (decl) = decl;
2392
2393 if (DECL_VIRTUAL_P (decl))
2394 {
2395 if (!DECL_VINDEX (decl))
2396 DECL_VINDEX (decl) = error_mark_node;
2397 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2398 }
2399 }
2400
2401 /* Warn about hidden virtual functions that are not overridden in t.
2402 We know that constructors and destructors don't apply. */
2403
2404 static void
2405 warn_hidden (tree t)
2406 {
2407 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
2408 tree fns;
2409 size_t i;
2410
2411 /* We go through each separately named virtual function. */
2412 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2413 VEC_iterate (tree, method_vec, i, fns);
2414 ++i)
2415 {
2416 tree fn;
2417 tree name;
2418 tree fndecl;
2419 tree base_fndecls;
2420 tree base_binfo;
2421 tree binfo;
2422 int j;
2423
2424 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2425 have the same name. Figure out what name that is. */
2426 name = DECL_NAME (OVL_CURRENT (fns));
2427 /* There are no possibly hidden functions yet. */
2428 base_fndecls = NULL_TREE;
2429 /* Iterate through all of the base classes looking for possibly
2430 hidden functions. */
2431 for (binfo = TYPE_BINFO (t), j = 0;
2432 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2433 {
2434 tree basetype = BINFO_TYPE (base_binfo);
2435 base_fndecls = chainon (get_basefndecls (name, basetype),
2436 base_fndecls);
2437 }
2438
2439 /* If there are no functions to hide, continue. */
2440 if (!base_fndecls)
2441 continue;
2442
2443 /* Remove any overridden functions. */
2444 for (fn = fns; fn; fn = OVL_NEXT (fn))
2445 {
2446 fndecl = OVL_CURRENT (fn);
2447 if (DECL_VINDEX (fndecl))
2448 {
2449 tree *prev = &base_fndecls;
2450
2451 while (*prev)
2452 /* If the method from the base class has the same
2453 signature as the method from the derived class, it
2454 has been overridden. */
2455 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2456 *prev = TREE_CHAIN (*prev);
2457 else
2458 prev = &TREE_CHAIN (*prev);
2459 }
2460 }
2461
2462 /* Now give a warning for all base functions without overriders,
2463 as they are hidden. */
2464 while (base_fndecls)
2465 {
2466 /* Here we know it is a hider, and no overrider exists. */
2467 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2468 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2469 base_fndecls = TREE_CHAIN (base_fndecls);
2470 }
2471 }
2472 }
2473
2474 /* Check for things that are invalid. There are probably plenty of other
2475 things we should check for also. */
2476
2477 static void
2478 finish_struct_anon (tree t)
2479 {
2480 tree field;
2481
2482 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2483 {
2484 if (TREE_STATIC (field))
2485 continue;
2486 if (TREE_CODE (field) != FIELD_DECL)
2487 continue;
2488
2489 if (DECL_NAME (field) == NULL_TREE
2490 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2491 {
2492 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2493 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2494 for (; elt; elt = TREE_CHAIN (elt))
2495 {
2496 /* We're generally only interested in entities the user
2497 declared, but we also find nested classes by noticing
2498 the TYPE_DECL that we create implicitly. You're
2499 allowed to put one anonymous union inside another,
2500 though, so we explicitly tolerate that. We use
2501 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2502 we also allow unnamed types used for defining fields. */
2503 if (DECL_ARTIFICIAL (elt)
2504 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2505 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2506 continue;
2507
2508 if (TREE_CODE (elt) != FIELD_DECL)
2509 {
2510 if (is_union)
2511 permerror (input_location, "%q+#D invalid; an anonymous union can "
2512 "only have non-static data members", elt);
2513 else
2514 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2515 "only have non-static data members", elt);
2516 continue;
2517 }
2518
2519 if (TREE_PRIVATE (elt))
2520 {
2521 if (is_union)
2522 permerror (input_location, "private member %q+#D in anonymous union", elt);
2523 else
2524 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2525 }
2526 else if (TREE_PROTECTED (elt))
2527 {
2528 if (is_union)
2529 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2530 else
2531 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2532 }
2533
2534 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2535 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2536 }
2537 }
2538 }
2539 }
2540
2541 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2542 will be used later during class template instantiation.
2543 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2544 a non-static member data (FIELD_DECL), a member function
2545 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2546 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2547 When FRIEND_P is nonzero, T is either a friend class
2548 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2549 (FUNCTION_DECL, TEMPLATE_DECL). */
2550
2551 void
2552 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2553 {
2554 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2555 if (CLASSTYPE_TEMPLATE_INFO (type))
2556 CLASSTYPE_DECL_LIST (type)
2557 = tree_cons (friend_p ? NULL_TREE : type,
2558 t, CLASSTYPE_DECL_LIST (type));
2559 }
2560
2561 /* Create default constructors, assignment operators, and so forth for
2562 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2563 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2564 the class cannot have a default constructor, copy constructor
2565 taking a const reference argument, or an assignment operator taking
2566 a const reference, respectively. */
2567
2568 static void
2569 add_implicitly_declared_members (tree t,
2570 int cant_have_const_cctor,
2571 int cant_have_const_assignment)
2572 {
2573 /* Destructor. */
2574 if (!CLASSTYPE_DESTRUCTORS (t))
2575 {
2576 /* In general, we create destructors lazily. */
2577 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2578 /* However, if the implicit destructor is non-trivial
2579 destructor, we sometimes have to create it at this point. */
2580 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2581 {
2582 bool lazy_p = true;
2583
2584 if (TYPE_FOR_JAVA (t))
2585 /* If this a Java class, any non-trivial destructor is
2586 invalid, even if compiler-generated. Therefore, if the
2587 destructor is non-trivial we create it now. */
2588 lazy_p = false;
2589 else
2590 {
2591 tree binfo;
2592 tree base_binfo;
2593 int ix;
2594
2595 /* If the implicit destructor will be virtual, then we must
2596 generate it now because (unfortunately) we do not
2597 generate virtual tables lazily. */
2598 binfo = TYPE_BINFO (t);
2599 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2600 {
2601 tree base_type;
2602 tree dtor;
2603
2604 base_type = BINFO_TYPE (base_binfo);
2605 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2606 if (dtor && DECL_VIRTUAL_P (dtor))
2607 {
2608 lazy_p = false;
2609 break;
2610 }
2611 }
2612 }
2613
2614 /* If we can't get away with being lazy, generate the destructor
2615 now. */
2616 if (!lazy_p)
2617 lazily_declare_fn (sfk_destructor, t);
2618 }
2619 }
2620
2621 /* [class.ctor]
2622
2623 If there is no user-declared constructor for a class, a default
2624 constructor is implicitly declared. */
2625 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2626 {
2627 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2628 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2629 }
2630
2631 /* [class.ctor]
2632
2633 If a class definition does not explicitly declare a copy
2634 constructor, one is declared implicitly. */
2635 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2636 {
2637 TYPE_HAS_INIT_REF (t) = 1;
2638 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2639 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2640 }
2641
2642 /* If there is no assignment operator, one will be created if and
2643 when it is needed. For now, just record whether or not the type
2644 of the parameter to the assignment operator will be a const or
2645 non-const reference. */
2646 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2647 {
2648 TYPE_HAS_ASSIGN_REF (t) = 1;
2649 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2650 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2651 }
2652 }
2653
2654 /* Subroutine of finish_struct_1. Recursively count the number of fields
2655 in TYPE, including anonymous union members. */
2656
2657 static int
2658 count_fields (tree fields)
2659 {
2660 tree x;
2661 int n_fields = 0;
2662 for (x = fields; x; x = TREE_CHAIN (x))
2663 {
2664 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2665 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2666 else
2667 n_fields += 1;
2668 }
2669 return n_fields;
2670 }
2671
2672 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2673 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2674
2675 static int
2676 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2677 {
2678 tree x;
2679 for (x = fields; x; x = TREE_CHAIN (x))
2680 {
2681 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2682 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2683 else
2684 field_vec->elts[idx++] = x;
2685 }
2686 return idx;
2687 }
2688
2689 /* FIELD is a bit-field. We are finishing the processing for its
2690 enclosing type. Issue any appropriate messages and set appropriate
2691 flags. Returns false if an error has been diagnosed. */
2692
2693 static bool
2694 check_bitfield_decl (tree field)
2695 {
2696 tree type = TREE_TYPE (field);
2697 tree w;
2698
2699 /* Extract the declared width of the bitfield, which has been
2700 temporarily stashed in DECL_INITIAL. */
2701 w = DECL_INITIAL (field);
2702 gcc_assert (w != NULL_TREE);
2703 /* Remove the bit-field width indicator so that the rest of the
2704 compiler does not treat that value as an initializer. */
2705 DECL_INITIAL (field) = NULL_TREE;
2706
2707 /* Detect invalid bit-field type. */
2708 if (!INTEGRAL_TYPE_P (type))
2709 {
2710 error ("bit-field %q+#D with non-integral type", field);
2711 w = error_mark_node;
2712 }
2713 else
2714 {
2715 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2716 STRIP_NOPS (w);
2717
2718 /* detect invalid field size. */
2719 w = integral_constant_value (w);
2720
2721 if (TREE_CODE (w) != INTEGER_CST)
2722 {
2723 error ("bit-field %q+D width not an integer constant", field);
2724 w = error_mark_node;
2725 }
2726 else if (tree_int_cst_sgn (w) < 0)
2727 {
2728 error ("negative width in bit-field %q+D", field);
2729 w = error_mark_node;
2730 }
2731 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2732 {
2733 error ("zero width for bit-field %q+D", field);
2734 w = error_mark_node;
2735 }
2736 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2737 && TREE_CODE (type) != ENUMERAL_TYPE
2738 && TREE_CODE (type) != BOOLEAN_TYPE)
2739 warning (0, "width of %q+D exceeds its type", field);
2740 else if (TREE_CODE (type) == ENUMERAL_TYPE
2741 && (0 > compare_tree_int (w,
2742 tree_int_cst_min_precision
2743 (TYPE_MIN_VALUE (type),
2744 TYPE_UNSIGNED (type)))
2745 || 0 > compare_tree_int (w,
2746 tree_int_cst_min_precision
2747 (TYPE_MAX_VALUE (type),
2748 TYPE_UNSIGNED (type)))))
2749 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
2750 }
2751
2752 if (w != error_mark_node)
2753 {
2754 DECL_SIZE (field) = convert (bitsizetype, w);
2755 DECL_BIT_FIELD (field) = 1;
2756 return true;
2757 }
2758 else
2759 {
2760 /* Non-bit-fields are aligned for their type. */
2761 DECL_BIT_FIELD (field) = 0;
2762 CLEAR_DECL_C_BIT_FIELD (field);
2763 return false;
2764 }
2765 }
2766
2767 /* FIELD is a non bit-field. We are finishing the processing for its
2768 enclosing type T. Issue any appropriate messages and set appropriate
2769 flags. */
2770
2771 static void
2772 check_field_decl (tree field,
2773 tree t,
2774 int* cant_have_const_ctor,
2775 int* no_const_asn_ref,
2776 int* any_default_members)
2777 {
2778 tree type = strip_array_types (TREE_TYPE (field));
2779
2780 /* An anonymous union cannot contain any fields which would change
2781 the settings of CANT_HAVE_CONST_CTOR and friends. */
2782 if (ANON_UNION_TYPE_P (type))
2783 ;
2784 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2785 structs. So, we recurse through their fields here. */
2786 else if (ANON_AGGR_TYPE_P (type))
2787 {
2788 tree fields;
2789
2790 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2791 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2792 check_field_decl (fields, t, cant_have_const_ctor,
2793 no_const_asn_ref, any_default_members);
2794 }
2795 /* Check members with class type for constructors, destructors,
2796 etc. */
2797 else if (CLASS_TYPE_P (type))
2798 {
2799 /* Never let anything with uninheritable virtuals
2800 make it through without complaint. */
2801 abstract_virtuals_error (field, type);
2802
2803 if (TREE_CODE (t) == UNION_TYPE)
2804 {
2805 if (TYPE_NEEDS_CONSTRUCTING (type))
2806 error ("member %q+#D with constructor not allowed in union",
2807 field);
2808 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2809 error ("member %q+#D with destructor not allowed in union", field);
2810 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2811 error ("member %q+#D with copy assignment operator not allowed in union",
2812 field);
2813 }
2814 else
2815 {
2816 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2817 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2818 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2819 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2820 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2821 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (type);
2822 }
2823
2824 if (!TYPE_HAS_CONST_INIT_REF (type))
2825 *cant_have_const_ctor = 1;
2826
2827 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2828 *no_const_asn_ref = 1;
2829 }
2830 if (DECL_INITIAL (field) != NULL_TREE)
2831 {
2832 /* `build_class_init_list' does not recognize
2833 non-FIELD_DECLs. */
2834 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2835 error ("multiple fields in union %qT initialized", t);
2836 *any_default_members = 1;
2837 }
2838 }
2839
2840 /* Check the data members (both static and non-static), class-scoped
2841 typedefs, etc., appearing in the declaration of T. Issue
2842 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2843 declaration order) of access declarations; each TREE_VALUE in this
2844 list is a USING_DECL.
2845
2846 In addition, set the following flags:
2847
2848 EMPTY_P
2849 The class is empty, i.e., contains no non-static data members.
2850
2851 CANT_HAVE_CONST_CTOR_P
2852 This class cannot have an implicitly generated copy constructor
2853 taking a const reference.
2854
2855 CANT_HAVE_CONST_ASN_REF
2856 This class cannot have an implicitly generated assignment
2857 operator taking a const reference.
2858
2859 All of these flags should be initialized before calling this
2860 function.
2861
2862 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2863 fields can be added by adding to this chain. */
2864
2865 static void
2866 check_field_decls (tree t, tree *access_decls,
2867 int *cant_have_const_ctor_p,
2868 int *no_const_asn_ref_p)
2869 {
2870 tree *field;
2871 tree *next;
2872 bool has_pointers;
2873 int any_default_members;
2874 int cant_pack = 0;
2875
2876 /* Assume there are no access declarations. */
2877 *access_decls = NULL_TREE;
2878 /* Assume this class has no pointer members. */
2879 has_pointers = false;
2880 /* Assume none of the members of this class have default
2881 initializations. */
2882 any_default_members = 0;
2883
2884 for (field = &TYPE_FIELDS (t); *field; field = next)
2885 {
2886 tree x = *field;
2887 tree type = TREE_TYPE (x);
2888
2889 next = &TREE_CHAIN (x);
2890
2891 if (TREE_CODE (x) == USING_DECL)
2892 {
2893 /* Prune the access declaration from the list of fields. */
2894 *field = TREE_CHAIN (x);
2895
2896 /* Save the access declarations for our caller. */
2897 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2898
2899 /* Since we've reset *FIELD there's no reason to skip to the
2900 next field. */
2901 next = field;
2902 continue;
2903 }
2904
2905 if (TREE_CODE (x) == TYPE_DECL
2906 || TREE_CODE (x) == TEMPLATE_DECL)
2907 continue;
2908
2909 /* If we've gotten this far, it's a data member, possibly static,
2910 or an enumerator. */
2911 DECL_CONTEXT (x) = t;
2912
2913 /* When this goes into scope, it will be a non-local reference. */
2914 DECL_NONLOCAL (x) = 1;
2915
2916 if (TREE_CODE (t) == UNION_TYPE)
2917 {
2918 /* [class.union]
2919
2920 If a union contains a static data member, or a member of
2921 reference type, the program is ill-formed. */
2922 if (TREE_CODE (x) == VAR_DECL)
2923 {
2924 error ("%q+D may not be static because it is a member of a union", x);
2925 continue;
2926 }
2927 if (TREE_CODE (type) == REFERENCE_TYPE)
2928 {
2929 error ("%q+D may not have reference type %qT because"
2930 " it is a member of a union",
2931 x, type);
2932 continue;
2933 }
2934 }
2935
2936 /* Perform error checking that did not get done in
2937 grokdeclarator. */
2938 if (TREE_CODE (type) == FUNCTION_TYPE)
2939 {
2940 error ("field %q+D invalidly declared function type", x);
2941 type = build_pointer_type (type);
2942 TREE_TYPE (x) = type;
2943 }
2944 else if (TREE_CODE (type) == METHOD_TYPE)
2945 {
2946 error ("field %q+D invalidly declared method type", x);
2947 type = build_pointer_type (type);
2948 TREE_TYPE (x) = type;
2949 }
2950
2951 if (type == error_mark_node)
2952 continue;
2953
2954 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
2955 continue;
2956
2957 /* Now it can only be a FIELD_DECL. */
2958
2959 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
2960 CLASSTYPE_NON_AGGREGATE (t) = 1;
2961
2962 /* If this is of reference type, check if it needs an init. */
2963 if (TREE_CODE (type) == REFERENCE_TYPE)
2964 {
2965 CLASSTYPE_NON_POD_P (t) = 1;
2966 if (DECL_INITIAL (x) == NULL_TREE)
2967 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2968
2969 /* ARM $12.6.2: [A member initializer list] (or, for an
2970 aggregate, initialization by a brace-enclosed list) is the
2971 only way to initialize nonstatic const and reference
2972 members. */
2973 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2974 }
2975
2976 type = strip_array_types (type);
2977
2978 if (TYPE_PACKED (t))
2979 {
2980 if (!pod_type_p (type) && !TYPE_PACKED (type))
2981 {
2982 warning
2983 (0,
2984 "ignoring packed attribute because of unpacked non-POD field %q+#D",
2985 x);
2986 cant_pack = 1;
2987 }
2988 else if (DECL_C_BIT_FIELD (x)
2989 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
2990 DECL_PACKED (x) = 1;
2991 }
2992
2993 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2994 /* We don't treat zero-width bitfields as making a class
2995 non-empty. */
2996 ;
2997 else
2998 {
2999 /* The class is non-empty. */
3000 CLASSTYPE_EMPTY_P (t) = 0;
3001 /* The class is not even nearly empty. */
3002 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3003 /* If one of the data members contains an empty class,
3004 so does T. */
3005 if (CLASS_TYPE_P (type)
3006 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3007 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3008 }
3009
3010 /* This is used by -Weffc++ (see below). Warn only for pointers
3011 to members which might hold dynamic memory. So do not warn
3012 for pointers to functions or pointers to members. */
3013 if (TYPE_PTR_P (type)
3014 && !TYPE_PTRFN_P (type)
3015 && !TYPE_PTR_TO_MEMBER_P (type))
3016 has_pointers = true;
3017
3018 if (CLASS_TYPE_P (type))
3019 {
3020 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3021 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3022 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3023 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3024 }
3025
3026 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3027 CLASSTYPE_HAS_MUTABLE (t) = 1;
3028
3029 if (! pod_type_p (type))
3030 /* DR 148 now allows pointers to members (which are POD themselves),
3031 to be allowed in POD structs. */
3032 CLASSTYPE_NON_POD_P (t) = 1;
3033
3034 if (! zero_init_p (type))
3035 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3036
3037 /* If any field is const, the structure type is pseudo-const. */
3038 if (CP_TYPE_CONST_P (type))
3039 {
3040 C_TYPE_FIELDS_READONLY (t) = 1;
3041 if (DECL_INITIAL (x) == NULL_TREE)
3042 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3043
3044 /* ARM $12.6.2: [A member initializer list] (or, for an
3045 aggregate, initialization by a brace-enclosed list) is the
3046 only way to initialize nonstatic const and reference
3047 members. */
3048 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
3049 }
3050 /* A field that is pseudo-const makes the structure likewise. */
3051 else if (CLASS_TYPE_P (type))
3052 {
3053 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3054 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3055 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3056 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3057 }
3058
3059 /* Core issue 80: A nonstatic data member is required to have a
3060 different name from the class iff the class has a
3061 user-declared constructor. */
3062 if (constructor_name_p (DECL_NAME (x), t)
3063 && TYPE_HAS_USER_CONSTRUCTOR (t))
3064 permerror (input_location, "field %q+#D with same name as class", x);
3065
3066 /* We set DECL_C_BIT_FIELD in grokbitfield.
3067 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3068 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3069 check_field_decl (x, t,
3070 cant_have_const_ctor_p,
3071 no_const_asn_ref_p,
3072 &any_default_members);
3073 }
3074
3075 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3076 it should also define a copy constructor and an assignment operator to
3077 implement the correct copy semantic (deep vs shallow, etc.). As it is
3078 not feasible to check whether the constructors do allocate dynamic memory
3079 and store it within members, we approximate the warning like this:
3080
3081 -- Warn only if there are members which are pointers
3082 -- Warn only if there is a non-trivial constructor (otherwise,
3083 there cannot be memory allocated).
3084 -- Warn only if there is a non-trivial destructor. We assume that the
3085 user at least implemented the cleanup correctly, and a destructor
3086 is needed to free dynamic memory.
3087
3088 This seems enough for practical purposes. */
3089 if (warn_ecpp
3090 && has_pointers
3091 && TYPE_HAS_USER_CONSTRUCTOR (t)
3092 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3093 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3094 {
3095 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3096
3097 if (! TYPE_HAS_INIT_REF (t))
3098 {
3099 warning (OPT_Weffc__,
3100 " but does not override %<%T(const %T&)%>", t, t);
3101 if (!TYPE_HAS_ASSIGN_REF (t))
3102 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3103 }
3104 else if (! TYPE_HAS_ASSIGN_REF (t))
3105 warning (OPT_Weffc__,
3106 " but does not override %<operator=(const %T&)%>", t);
3107 }
3108
3109 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3110 if (cant_pack)
3111 TYPE_PACKED (t) = 0;
3112
3113 /* Check anonymous struct/anonymous union fields. */
3114 finish_struct_anon (t);
3115
3116 /* We've built up the list of access declarations in reverse order.
3117 Fix that now. */
3118 *access_decls = nreverse (*access_decls);
3119 }
3120
3121 /* If TYPE is an empty class type, records its OFFSET in the table of
3122 OFFSETS. */
3123
3124 static int
3125 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3126 {
3127 splay_tree_node n;
3128
3129 if (!is_empty_class (type))
3130 return 0;
3131
3132 /* Record the location of this empty object in OFFSETS. */
3133 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3134 if (!n)
3135 n = splay_tree_insert (offsets,
3136 (splay_tree_key) offset,
3137 (splay_tree_value) NULL_TREE);
3138 n->value = ((splay_tree_value)
3139 tree_cons (NULL_TREE,
3140 type,
3141 (tree) n->value));
3142
3143 return 0;
3144 }
3145
3146 /* Returns nonzero if TYPE is an empty class type and there is
3147 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3148
3149 static int
3150 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3151 {
3152 splay_tree_node n;
3153 tree t;
3154
3155 if (!is_empty_class (type))
3156 return 0;
3157
3158 /* Record the location of this empty object in OFFSETS. */
3159 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3160 if (!n)
3161 return 0;
3162
3163 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3164 if (same_type_p (TREE_VALUE (t), type))
3165 return 1;
3166
3167 return 0;
3168 }
3169
3170 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3171 F for every subobject, passing it the type, offset, and table of
3172 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3173 be traversed.
3174
3175 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3176 than MAX_OFFSET will not be walked.
3177
3178 If F returns a nonzero value, the traversal ceases, and that value
3179 is returned. Otherwise, returns zero. */
3180
3181 static int
3182 walk_subobject_offsets (tree type,
3183 subobject_offset_fn f,
3184 tree offset,
3185 splay_tree offsets,
3186 tree max_offset,
3187 int vbases_p)
3188 {
3189 int r = 0;
3190 tree type_binfo = NULL_TREE;
3191
3192 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3193 stop. */
3194 if (max_offset && INT_CST_LT (max_offset, offset))
3195 return 0;
3196
3197 if (type == error_mark_node)
3198 return 0;
3199
3200 if (!TYPE_P (type))
3201 {
3202 if (abi_version_at_least (2))
3203 type_binfo = type;
3204 type = BINFO_TYPE (type);
3205 }
3206
3207 if (CLASS_TYPE_P (type))
3208 {
3209 tree field;
3210 tree binfo;
3211 int i;
3212
3213 /* Avoid recursing into objects that are not interesting. */
3214 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3215 return 0;
3216
3217 /* Record the location of TYPE. */
3218 r = (*f) (type, offset, offsets);
3219 if (r)
3220 return r;
3221
3222 /* Iterate through the direct base classes of TYPE. */
3223 if (!type_binfo)
3224 type_binfo = TYPE_BINFO (type);
3225 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3226 {
3227 tree binfo_offset;
3228
3229 if (abi_version_at_least (2)
3230 && BINFO_VIRTUAL_P (binfo))
3231 continue;
3232
3233 if (!vbases_p
3234 && BINFO_VIRTUAL_P (binfo)
3235 && !BINFO_PRIMARY_P (binfo))
3236 continue;
3237
3238 if (!abi_version_at_least (2))
3239 binfo_offset = size_binop (PLUS_EXPR,
3240 offset,
3241 BINFO_OFFSET (binfo));
3242 else
3243 {
3244 tree orig_binfo;
3245 /* We cannot rely on BINFO_OFFSET being set for the base
3246 class yet, but the offsets for direct non-virtual
3247 bases can be calculated by going back to the TYPE. */
3248 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3249 binfo_offset = size_binop (PLUS_EXPR,
3250 offset,
3251 BINFO_OFFSET (orig_binfo));
3252 }
3253
3254 r = walk_subobject_offsets (binfo,
3255 f,
3256 binfo_offset,
3257 offsets,
3258 max_offset,
3259 (abi_version_at_least (2)
3260 ? /*vbases_p=*/0 : vbases_p));
3261 if (r)
3262 return r;
3263 }
3264
3265 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3266 {
3267 unsigned ix;
3268 VEC(tree,gc) *vbases;
3269
3270 /* Iterate through the virtual base classes of TYPE. In G++
3271 3.2, we included virtual bases in the direct base class
3272 loop above, which results in incorrect results; the
3273 correct offsets for virtual bases are only known when
3274 working with the most derived type. */
3275 if (vbases_p)
3276 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3277 VEC_iterate (tree, vbases, ix, binfo); ix++)
3278 {
3279 r = walk_subobject_offsets (binfo,
3280 f,
3281 size_binop (PLUS_EXPR,
3282 offset,
3283 BINFO_OFFSET (binfo)),
3284 offsets,
3285 max_offset,
3286 /*vbases_p=*/0);
3287 if (r)
3288 return r;
3289 }
3290 else
3291 {
3292 /* We still have to walk the primary base, if it is
3293 virtual. (If it is non-virtual, then it was walked
3294 above.) */
3295 tree vbase = get_primary_binfo (type_binfo);
3296
3297 if (vbase && BINFO_VIRTUAL_P (vbase)
3298 && BINFO_PRIMARY_P (vbase)
3299 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3300 {
3301 r = (walk_subobject_offsets
3302 (vbase, f, offset,
3303 offsets, max_offset, /*vbases_p=*/0));
3304 if (r)
3305 return r;
3306 }
3307 }
3308 }
3309
3310 /* Iterate through the fields of TYPE. */
3311 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3312 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3313 {
3314 tree field_offset;
3315
3316 if (abi_version_at_least (2))
3317 field_offset = byte_position (field);
3318 else
3319 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3320 field_offset = DECL_FIELD_OFFSET (field);
3321
3322 r = walk_subobject_offsets (TREE_TYPE (field),
3323 f,
3324 size_binop (PLUS_EXPR,
3325 offset,
3326 field_offset),
3327 offsets,
3328 max_offset,
3329 /*vbases_p=*/1);
3330 if (r)
3331 return r;
3332 }
3333 }
3334 else if (TREE_CODE (type) == ARRAY_TYPE)
3335 {
3336 tree element_type = strip_array_types (type);
3337 tree domain = TYPE_DOMAIN (type);
3338 tree index;
3339
3340 /* Avoid recursing into objects that are not interesting. */
3341 if (!CLASS_TYPE_P (element_type)
3342 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3343 return 0;
3344
3345 /* Step through each of the elements in the array. */
3346 for (index = size_zero_node;
3347 /* G++ 3.2 had an off-by-one error here. */
3348 (abi_version_at_least (2)
3349 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3350 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3351 index = size_binop (PLUS_EXPR, index, size_one_node))
3352 {
3353 r = walk_subobject_offsets (TREE_TYPE (type),
3354 f,
3355 offset,
3356 offsets,
3357 max_offset,
3358 /*vbases_p=*/1);
3359 if (r)
3360 return r;
3361 offset = size_binop (PLUS_EXPR, offset,
3362 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3363 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3364 there's no point in iterating through the remaining
3365 elements of the array. */
3366 if (max_offset && INT_CST_LT (max_offset, offset))
3367 break;
3368 }
3369 }
3370
3371 return 0;
3372 }
3373
3374 /* Record all of the empty subobjects of TYPE (either a type or a
3375 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3376 is being placed at OFFSET; otherwise, it is a base class that is
3377 being placed at OFFSET. */
3378
3379 static void
3380 record_subobject_offsets (tree type,
3381 tree offset,
3382 splay_tree offsets,
3383 bool is_data_member)
3384 {
3385 tree max_offset;
3386 /* If recording subobjects for a non-static data member or a
3387 non-empty base class , we do not need to record offsets beyond
3388 the size of the biggest empty class. Additional data members
3389 will go at the end of the class. Additional base classes will go
3390 either at offset zero (if empty, in which case they cannot
3391 overlap with offsets past the size of the biggest empty class) or
3392 at the end of the class.
3393
3394 However, if we are placing an empty base class, then we must record
3395 all offsets, as either the empty class is at offset zero (where
3396 other empty classes might later be placed) or at the end of the
3397 class (where other objects might then be placed, so other empty
3398 subobjects might later overlap). */
3399 if (is_data_member
3400 || !is_empty_class (BINFO_TYPE (type)))
3401 max_offset = sizeof_biggest_empty_class;
3402 else
3403 max_offset = NULL_TREE;
3404 walk_subobject_offsets (type, record_subobject_offset, offset,
3405 offsets, max_offset, is_data_member);
3406 }
3407
3408 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3409 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3410 virtual bases of TYPE are examined. */
3411
3412 static int
3413 layout_conflict_p (tree type,
3414 tree offset,
3415 splay_tree offsets,
3416 int vbases_p)
3417 {
3418 splay_tree_node max_node;
3419
3420 /* Get the node in OFFSETS that indicates the maximum offset where
3421 an empty subobject is located. */
3422 max_node = splay_tree_max (offsets);
3423 /* If there aren't any empty subobjects, then there's no point in
3424 performing this check. */
3425 if (!max_node)
3426 return 0;
3427
3428 return walk_subobject_offsets (type, check_subobject_offset, offset,
3429 offsets, (tree) (max_node->key),
3430 vbases_p);
3431 }
3432
3433 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3434 non-static data member of the type indicated by RLI. BINFO is the
3435 binfo corresponding to the base subobject, OFFSETS maps offsets to
3436 types already located at those offsets. This function determines
3437 the position of the DECL. */
3438
3439 static void
3440 layout_nonempty_base_or_field (record_layout_info rli,
3441 tree decl,
3442 tree binfo,
3443 splay_tree offsets)
3444 {
3445 tree offset = NULL_TREE;
3446 bool field_p;
3447 tree type;
3448
3449 if (binfo)
3450 {
3451 /* For the purposes of determining layout conflicts, we want to
3452 use the class type of BINFO; TREE_TYPE (DECL) will be the
3453 CLASSTYPE_AS_BASE version, which does not contain entries for
3454 zero-sized bases. */
3455 type = TREE_TYPE (binfo);
3456 field_p = false;
3457 }
3458 else
3459 {
3460 type = TREE_TYPE (decl);
3461 field_p = true;
3462 }
3463
3464 /* Try to place the field. It may take more than one try if we have
3465 a hard time placing the field without putting two objects of the
3466 same type at the same address. */
3467 while (1)
3468 {
3469 struct record_layout_info_s old_rli = *rli;
3470
3471 /* Place this field. */
3472 place_field (rli, decl);
3473 offset = byte_position (decl);
3474
3475 /* We have to check to see whether or not there is already
3476 something of the same type at the offset we're about to use.
3477 For example, consider:
3478
3479 struct S {};
3480 struct T : public S { int i; };
3481 struct U : public S, public T {};
3482
3483 Here, we put S at offset zero in U. Then, we can't put T at
3484 offset zero -- its S component would be at the same address
3485 as the S we already allocated. So, we have to skip ahead.
3486 Since all data members, including those whose type is an
3487 empty class, have nonzero size, any overlap can happen only
3488 with a direct or indirect base-class -- it can't happen with
3489 a data member. */
3490 /* In a union, overlap is permitted; all members are placed at
3491 offset zero. */
3492 if (TREE_CODE (rli->t) == UNION_TYPE)
3493 break;
3494 /* G++ 3.2 did not check for overlaps when placing a non-empty
3495 virtual base. */
3496 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3497 break;
3498 if (layout_conflict_p (field_p ? type : binfo, offset,
3499 offsets, field_p))
3500 {
3501 /* Strip off the size allocated to this field. That puts us
3502 at the first place we could have put the field with
3503 proper alignment. */
3504 *rli = old_rli;
3505
3506 /* Bump up by the alignment required for the type. */
3507 rli->bitpos
3508 = size_binop (PLUS_EXPR, rli->bitpos,
3509 bitsize_int (binfo
3510 ? CLASSTYPE_ALIGN (type)
3511 : TYPE_ALIGN (type)));
3512 normalize_rli (rli);
3513 }
3514 else
3515 /* There was no conflict. We're done laying out this field. */
3516 break;
3517 }
3518
3519 /* Now that we know where it will be placed, update its
3520 BINFO_OFFSET. */
3521 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3522 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3523 this point because their BINFO_OFFSET is copied from another
3524 hierarchy. Therefore, we may not need to add the entire
3525 OFFSET. */
3526 propagate_binfo_offsets (binfo,
3527 size_diffop (convert (ssizetype, offset),
3528 convert (ssizetype,
3529 BINFO_OFFSET (binfo))));
3530 }
3531
3532 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3533
3534 static int
3535 empty_base_at_nonzero_offset_p (tree type,
3536 tree offset,
3537 splay_tree offsets ATTRIBUTE_UNUSED)
3538 {
3539 return is_empty_class (type) && !integer_zerop (offset);
3540 }
3541
3542 /* Layout the empty base BINFO. EOC indicates the byte currently just
3543 past the end of the class, and should be correctly aligned for a
3544 class of the type indicated by BINFO; OFFSETS gives the offsets of
3545 the empty bases allocated so far. T is the most derived
3546 type. Return nonzero iff we added it at the end. */
3547
3548 static bool
3549 layout_empty_base (record_layout_info rli, tree binfo,
3550 tree eoc, splay_tree offsets)
3551 {
3552 tree alignment;
3553 tree basetype = BINFO_TYPE (binfo);
3554 bool atend = false;
3555
3556 /* This routine should only be used for empty classes. */
3557 gcc_assert (is_empty_class (basetype));
3558 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3559
3560 if (!integer_zerop (BINFO_OFFSET (binfo)))
3561 {
3562 if (abi_version_at_least (2))
3563 propagate_binfo_offsets
3564 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3565 else
3566 warning (OPT_Wabi,
3567 "offset of empty base %qT may not be ABI-compliant and may"
3568 "change in a future version of GCC",
3569 BINFO_TYPE (binfo));
3570 }
3571
3572 /* This is an empty base class. We first try to put it at offset
3573 zero. */
3574 if (layout_conflict_p (binfo,
3575 BINFO_OFFSET (binfo),
3576 offsets,
3577 /*vbases_p=*/0))
3578 {
3579 /* That didn't work. Now, we move forward from the next
3580 available spot in the class. */
3581 atend = true;
3582 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3583 while (1)
3584 {
3585 if (!layout_conflict_p (binfo,
3586 BINFO_OFFSET (binfo),
3587 offsets,
3588 /*vbases_p=*/0))
3589 /* We finally found a spot where there's no overlap. */
3590 break;
3591
3592 /* There's overlap here, too. Bump along to the next spot. */
3593 propagate_binfo_offsets (binfo, alignment);
3594 }
3595 }
3596
3597 if (CLASSTYPE_USER_ALIGN (basetype))
3598 {
3599 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
3600 if (warn_packed)
3601 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
3602 TYPE_USER_ALIGN (rli->t) = 1;
3603 }
3604
3605 return atend;
3606 }
3607
3608 /* Layout the base given by BINFO in the class indicated by RLI.
3609 *BASE_ALIGN is a running maximum of the alignments of
3610 any base class. OFFSETS gives the location of empty base
3611 subobjects. T is the most derived type. Return nonzero if the new
3612 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3613 *NEXT_FIELD, unless BINFO is for an empty base class.
3614
3615 Returns the location at which the next field should be inserted. */
3616
3617 static tree *
3618 build_base_field (record_layout_info rli, tree binfo,
3619 splay_tree offsets, tree *next_field)
3620 {
3621 tree t = rli->t;
3622 tree basetype = BINFO_TYPE (binfo);
3623
3624 if (!COMPLETE_TYPE_P (basetype))
3625 /* This error is now reported in xref_tag, thus giving better
3626 location information. */
3627 return next_field;
3628
3629 /* Place the base class. */
3630 if (!is_empty_class (basetype))
3631 {
3632 tree decl;
3633
3634 /* The containing class is non-empty because it has a non-empty
3635 base class. */
3636 CLASSTYPE_EMPTY_P (t) = 0;
3637
3638 /* Create the FIELD_DECL. */
3639 decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3640 DECL_ARTIFICIAL (decl) = 1;
3641 DECL_IGNORED_P (decl) = 1;
3642 DECL_FIELD_CONTEXT (decl) = t;
3643 if (CLASSTYPE_AS_BASE (basetype))
3644 {
3645 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3646 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3647 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3648 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3649 DECL_MODE (decl) = TYPE_MODE (basetype);
3650 DECL_FIELD_IS_BASE (decl) = 1;
3651
3652 /* Try to place the field. It may take more than one try if we
3653 have a hard time placing the field without putting two
3654 objects of the same type at the same address. */
3655 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3656 /* Add the new FIELD_DECL to the list of fields for T. */
3657 TREE_CHAIN (decl) = *next_field;
3658 *next_field = decl;
3659 next_field = &TREE_CHAIN (decl);
3660 }
3661 }
3662 else
3663 {
3664 tree eoc;
3665 bool atend;
3666
3667 /* On some platforms (ARM), even empty classes will not be
3668 byte-aligned. */
3669 eoc = round_up (rli_size_unit_so_far (rli),
3670 CLASSTYPE_ALIGN_UNIT (basetype));
3671 atend = layout_empty_base (rli, binfo, eoc, offsets);
3672 /* A nearly-empty class "has no proper base class that is empty,
3673 not morally virtual, and at an offset other than zero." */
3674 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3675 {
3676 if (atend)
3677 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3678 /* The check above (used in G++ 3.2) is insufficient because
3679 an empty class placed at offset zero might itself have an
3680 empty base at a nonzero offset. */
3681 else if (walk_subobject_offsets (basetype,
3682 empty_base_at_nonzero_offset_p,
3683 size_zero_node,
3684 /*offsets=*/NULL,
3685 /*max_offset=*/NULL_TREE,
3686 /*vbases_p=*/true))
3687 {
3688 if (abi_version_at_least (2))
3689 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3690 else
3691 warning (OPT_Wabi,
3692 "class %qT will be considered nearly empty in a "
3693 "future version of GCC", t);
3694 }
3695 }
3696
3697 /* We do not create a FIELD_DECL for empty base classes because
3698 it might overlap some other field. We want to be able to
3699 create CONSTRUCTORs for the class by iterating over the
3700 FIELD_DECLs, and the back end does not handle overlapping
3701 FIELD_DECLs. */
3702
3703 /* An empty virtual base causes a class to be non-empty
3704 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3705 here because that was already done when the virtual table
3706 pointer was created. */
3707 }
3708
3709 /* Record the offsets of BINFO and its base subobjects. */
3710 record_subobject_offsets (binfo,
3711 BINFO_OFFSET (binfo),
3712 offsets,
3713 /*is_data_member=*/false);
3714
3715 return next_field;
3716 }
3717
3718 /* Layout all of the non-virtual base classes. Record empty
3719 subobjects in OFFSETS. T is the most derived type. Return nonzero
3720 if the type cannot be nearly empty. The fields created
3721 corresponding to the base classes will be inserted at
3722 *NEXT_FIELD. */
3723
3724 static void
3725 build_base_fields (record_layout_info rli,
3726 splay_tree offsets, tree *next_field)
3727 {
3728 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3729 subobjects. */
3730 tree t = rli->t;
3731 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3732 int i;
3733
3734 /* The primary base class is always allocated first. */
3735 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3736 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3737 offsets, next_field);
3738
3739 /* Now allocate the rest of the bases. */
3740 for (i = 0; i < n_baseclasses; ++i)
3741 {
3742 tree base_binfo;
3743
3744 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3745
3746 /* The primary base was already allocated above, so we don't
3747 need to allocate it again here. */
3748 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3749 continue;
3750
3751 /* Virtual bases are added at the end (a primary virtual base
3752 will have already been added). */
3753 if (BINFO_VIRTUAL_P (base_binfo))
3754 continue;
3755
3756 next_field = build_base_field (rli, base_binfo,
3757 offsets, next_field);
3758 }
3759 }
3760
3761 /* Go through the TYPE_METHODS of T issuing any appropriate
3762 diagnostics, figuring out which methods override which other
3763 methods, and so forth. */
3764
3765 static void
3766 check_methods (tree t)
3767 {
3768 tree x;
3769
3770 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3771 {
3772 check_for_override (x, t);
3773 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3774 error ("initializer specified for non-virtual method %q+D", x);
3775 /* The name of the field is the original field name
3776 Save this in auxiliary field for later overloading. */
3777 if (DECL_VINDEX (x))
3778 {
3779 TYPE_POLYMORPHIC_P (t) = 1;
3780 if (DECL_PURE_VIRTUAL_P (x))
3781 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
3782 }
3783 /* All user-provided destructors are non-trivial. */
3784 if (DECL_DESTRUCTOR_P (x) && !DECL_DEFAULTED_FN (x))
3785 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3786 }
3787 }
3788
3789 /* FN is a constructor or destructor. Clone the declaration to create
3790 a specialized in-charge or not-in-charge version, as indicated by
3791 NAME. */
3792
3793 static tree
3794 build_clone (tree fn, tree name)
3795 {
3796 tree parms;
3797 tree clone;
3798
3799 /* Copy the function. */
3800 clone = copy_decl (fn);
3801 /* Remember where this function came from. */
3802 DECL_CLONED_FUNCTION (clone) = fn;
3803 DECL_ABSTRACT_ORIGIN (clone) = fn;
3804 /* Reset the function name. */
3805 DECL_NAME (clone) = name;
3806 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3807 /* There's no pending inline data for this function. */
3808 DECL_PENDING_INLINE_INFO (clone) = NULL;
3809 DECL_PENDING_INLINE_P (clone) = 0;
3810 /* And it hasn't yet been deferred. */
3811 DECL_DEFERRED_FN (clone) = 0;
3812
3813 /* The base-class destructor is not virtual. */
3814 if (name == base_dtor_identifier)
3815 {
3816 DECL_VIRTUAL_P (clone) = 0;
3817 if (TREE_CODE (clone) != TEMPLATE_DECL)
3818 DECL_VINDEX (clone) = NULL_TREE;
3819 }
3820
3821 /* If there was an in-charge parameter, drop it from the function
3822 type. */
3823 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3824 {
3825 tree basetype;
3826 tree parmtypes;
3827 tree exceptions;
3828
3829 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3830 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3831 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3832 /* Skip the `this' parameter. */
3833 parmtypes = TREE_CHAIN (parmtypes);
3834 /* Skip the in-charge parameter. */
3835 parmtypes = TREE_CHAIN (parmtypes);
3836 /* And the VTT parm, in a complete [cd]tor. */
3837 if (DECL_HAS_VTT_PARM_P (fn)
3838 && ! DECL_NEEDS_VTT_PARM_P (clone))
3839 parmtypes = TREE_CHAIN (parmtypes);
3840 /* If this is subobject constructor or destructor, add the vtt
3841 parameter. */
3842 TREE_TYPE (clone)
3843 = build_method_type_directly (basetype,
3844 TREE_TYPE (TREE_TYPE (clone)),
3845 parmtypes);
3846 if (exceptions)
3847 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3848 exceptions);
3849 TREE_TYPE (clone)
3850 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3851 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3852 }
3853
3854 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3855 aren't function parameters; those are the template parameters. */
3856 if (TREE_CODE (clone) != TEMPLATE_DECL)
3857 {
3858 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3859 /* Remove the in-charge parameter. */
3860 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3861 {
3862 TREE_CHAIN (DECL_ARGUMENTS (clone))
3863 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3864 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3865 }
3866 /* And the VTT parm, in a complete [cd]tor. */
3867 if (DECL_HAS_VTT_PARM_P (fn))
3868 {
3869 if (DECL_NEEDS_VTT_PARM_P (clone))
3870 DECL_HAS_VTT_PARM_P (clone) = 1;
3871 else
3872 {
3873 TREE_CHAIN (DECL_ARGUMENTS (clone))
3874 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3875 DECL_HAS_VTT_PARM_P (clone) = 0;
3876 }
3877 }
3878
3879 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3880 {
3881 DECL_CONTEXT (parms) = clone;
3882 cxx_dup_lang_specific_decl (parms);
3883 }
3884 }
3885
3886 /* Create the RTL for this function. */
3887 SET_DECL_RTL (clone, NULL_RTX);
3888 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3889
3890 /* Make it easy to find the CLONE given the FN. */
3891 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3892 TREE_CHAIN (fn) = clone;
3893
3894 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3895 if (TREE_CODE (clone) == TEMPLATE_DECL)
3896 {
3897 tree result;
3898
3899 DECL_TEMPLATE_RESULT (clone)
3900 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3901 result = DECL_TEMPLATE_RESULT (clone);
3902 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3903 DECL_TI_TEMPLATE (result) = clone;
3904 }
3905 else if (pch_file)
3906 note_decl_for_pch (clone);
3907
3908 return clone;
3909 }
3910
3911 /* Produce declarations for all appropriate clones of FN. If
3912 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3913 CLASTYPE_METHOD_VEC as well. */
3914
3915 void
3916 clone_function_decl (tree fn, int update_method_vec_p)
3917 {
3918 tree clone;
3919
3920 /* Avoid inappropriate cloning. */
3921 if (TREE_CHAIN (fn)
3922 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3923 return;
3924
3925 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3926 {
3927 /* For each constructor, we need two variants: an in-charge version
3928 and a not-in-charge version. */
3929 clone = build_clone (fn, complete_ctor_identifier);
3930 if (update_method_vec_p)
3931 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3932 clone = build_clone (fn, base_ctor_identifier);
3933 if (update_method_vec_p)
3934 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3935 }
3936 else
3937 {
3938 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
3939
3940 /* For each destructor, we need three variants: an in-charge
3941 version, a not-in-charge version, and an in-charge deleting
3942 version. We clone the deleting version first because that
3943 means it will go second on the TYPE_METHODS list -- and that
3944 corresponds to the correct layout order in the virtual
3945 function table.
3946
3947 For a non-virtual destructor, we do not build a deleting
3948 destructor. */
3949 if (DECL_VIRTUAL_P (fn))
3950 {
3951 clone = build_clone (fn, deleting_dtor_identifier);
3952 if (update_method_vec_p)
3953 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3954 }
3955 clone = build_clone (fn, complete_dtor_identifier);
3956 if (update_method_vec_p)
3957 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3958 clone = build_clone (fn, base_dtor_identifier);
3959 if (update_method_vec_p)
3960 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3961 }
3962
3963 /* Note that this is an abstract function that is never emitted. */
3964 DECL_ABSTRACT (fn) = 1;
3965 }
3966
3967 /* DECL is an in charge constructor, which is being defined. This will
3968 have had an in class declaration, from whence clones were
3969 declared. An out-of-class definition can specify additional default
3970 arguments. As it is the clones that are involved in overload
3971 resolution, we must propagate the information from the DECL to its
3972 clones. */
3973
3974 void
3975 adjust_clone_args (tree decl)
3976 {
3977 tree clone;
3978
3979 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3980 clone = TREE_CHAIN (clone))
3981 {
3982 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3983 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3984 tree decl_parms, clone_parms;
3985
3986 clone_parms = orig_clone_parms;
3987
3988 /* Skip the 'this' parameter. */
3989 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3990 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3991
3992 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3993 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3994 if (DECL_HAS_VTT_PARM_P (decl))
3995 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3996
3997 clone_parms = orig_clone_parms;
3998 if (DECL_HAS_VTT_PARM_P (clone))
3999 clone_parms = TREE_CHAIN (clone_parms);
4000
4001 for (decl_parms = orig_decl_parms; decl_parms;
4002 decl_parms = TREE_CHAIN (decl_parms),
4003 clone_parms = TREE_CHAIN (clone_parms))
4004 {
4005 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4006 TREE_TYPE (clone_parms)));
4007
4008 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4009 {
4010 /* A default parameter has been added. Adjust the
4011 clone's parameters. */
4012 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4013 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4014 tree type;
4015
4016 clone_parms = orig_decl_parms;
4017
4018 if (DECL_HAS_VTT_PARM_P (clone))
4019 {
4020 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4021 TREE_VALUE (orig_clone_parms),
4022 clone_parms);
4023 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4024 }
4025 type = build_method_type_directly (basetype,
4026 TREE_TYPE (TREE_TYPE (clone)),
4027 clone_parms);
4028 if (exceptions)
4029 type = build_exception_variant (type, exceptions);
4030 TREE_TYPE (clone) = type;
4031
4032 clone_parms = NULL_TREE;
4033 break;
4034 }
4035 }
4036 gcc_assert (!clone_parms);
4037 }
4038 }
4039
4040 /* For each of the constructors and destructors in T, create an
4041 in-charge and not-in-charge variant. */
4042
4043 static void
4044 clone_constructors_and_destructors (tree t)
4045 {
4046 tree fns;
4047
4048 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4049 out now. */
4050 if (!CLASSTYPE_METHOD_VEC (t))
4051 return;
4052
4053 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4054 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4055 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4056 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4057 }
4058
4059 /* Returns true iff class T has a user-defined constructor other than
4060 the default constructor. */
4061
4062 bool
4063 type_has_user_nondefault_constructor (tree t)
4064 {
4065 tree fns;
4066
4067 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4068 return false;
4069
4070 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4071 {
4072 tree fn = OVL_CURRENT (fns);
4073 if (!DECL_ARTIFICIAL (fn)
4074 && (TREE_CODE (fn) == TEMPLATE_DECL
4075 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4076 != NULL_TREE)))
4077 return true;
4078 }
4079
4080 return false;
4081 }
4082
4083 /* Returns true iff FN is a user-provided function, i.e. user-declared
4084 and not defaulted at its first declaration. */
4085
4086 static bool
4087 user_provided_p (tree fn)
4088 {
4089 if (TREE_CODE (fn) == TEMPLATE_DECL)
4090 return true;
4091 else
4092 return (!DECL_ARTIFICIAL (fn)
4093 && !(DECL_DEFAULTED_FN (fn)
4094 && DECL_INITIALIZED_IN_CLASS_P (fn)));
4095 }
4096
4097 /* Returns true iff class T has a user-provided constructor. */
4098
4099 bool
4100 type_has_user_provided_constructor (tree t)
4101 {
4102 tree fns;
4103
4104 if (!CLASS_TYPE_P (t))
4105 return false;
4106
4107 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4108 return false;
4109
4110 /* This can happen in error cases; avoid crashing. */
4111 if (!CLASSTYPE_METHOD_VEC (t))
4112 return false;
4113
4114 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4115 if (user_provided_p (OVL_CURRENT (fns)))
4116 return true;
4117
4118 return false;
4119 }
4120
4121 /* Returns true iff class T has a user-provided default constructor. */
4122
4123 bool
4124 type_has_user_provided_default_constructor (tree t)
4125 {
4126 tree fns, args;
4127
4128 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4129 return false;
4130
4131 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4132 {
4133 tree fn = OVL_CURRENT (fns);
4134 if (TREE_CODE (fn) == FUNCTION_DECL
4135 && user_provided_p (fn))
4136 {
4137 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4138 while (args && TREE_PURPOSE (args))
4139 args = TREE_CHAIN (args);
4140 if (!args || args == void_list_node)
4141 return true;
4142 }
4143 }
4144
4145 return false;
4146 }
4147
4148 /* Returns true if FN can be explicitly defaulted. */
4149
4150 bool
4151 defaultable_fn_p (tree fn)
4152 {
4153 if (DECL_CONSTRUCTOR_P (fn))
4154 {
4155 if (FUNCTION_FIRST_USER_PARMTYPE (fn) == void_list_node)
4156 return true;
4157 else if (copy_fn_p (fn) > 0
4158 && (TREE_CHAIN (FUNCTION_FIRST_USER_PARMTYPE (fn))
4159 == void_list_node))
4160 return true;
4161 else
4162 return false;
4163 }
4164 else if (DECL_DESTRUCTOR_P (fn))
4165 return true;
4166 else if (DECL_ASSIGNMENT_OPERATOR_P (fn)
4167 && DECL_OVERLOADED_OPERATOR_P (fn) == NOP_EXPR)
4168 return copy_fn_p (fn);
4169 else
4170 return false;
4171 }
4172
4173 /* Remove all zero-width bit-fields from T. */
4174
4175 static void
4176 remove_zero_width_bit_fields (tree t)
4177 {
4178 tree *fieldsp;
4179
4180 fieldsp = &TYPE_FIELDS (t);
4181 while (*fieldsp)
4182 {
4183 if (TREE_CODE (*fieldsp) == FIELD_DECL
4184 && DECL_C_BIT_FIELD (*fieldsp)
4185 && DECL_INITIAL (*fieldsp))
4186 *fieldsp = TREE_CHAIN (*fieldsp);
4187 else
4188 fieldsp = &TREE_CHAIN (*fieldsp);
4189 }
4190 }
4191
4192 /* Returns TRUE iff we need a cookie when dynamically allocating an
4193 array whose elements have the indicated class TYPE. */
4194
4195 static bool
4196 type_requires_array_cookie (tree type)
4197 {
4198 tree fns;
4199 bool has_two_argument_delete_p = false;
4200
4201 gcc_assert (CLASS_TYPE_P (type));
4202
4203 /* If there's a non-trivial destructor, we need a cookie. In order
4204 to iterate through the array calling the destructor for each
4205 element, we'll have to know how many elements there are. */
4206 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4207 return true;
4208
4209 /* If the usual deallocation function is a two-argument whose second
4210 argument is of type `size_t', then we have to pass the size of
4211 the array to the deallocation function, so we will need to store
4212 a cookie. */
4213 fns = lookup_fnfields (TYPE_BINFO (type),
4214 ansi_opname (VEC_DELETE_EXPR),
4215 /*protect=*/0);
4216 /* If there are no `operator []' members, or the lookup is
4217 ambiguous, then we don't need a cookie. */
4218 if (!fns || fns == error_mark_node)
4219 return false;
4220 /* Loop through all of the functions. */
4221 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4222 {
4223 tree fn;
4224 tree second_parm;
4225
4226 /* Select the current function. */
4227 fn = OVL_CURRENT (fns);
4228 /* See if this function is a one-argument delete function. If
4229 it is, then it will be the usual deallocation function. */
4230 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4231 if (second_parm == void_list_node)
4232 return false;
4233 /* Do not consider this function if its second argument is an
4234 ellipsis. */
4235 if (!second_parm)
4236 continue;
4237 /* Otherwise, if we have a two-argument function and the second
4238 argument is `size_t', it will be the usual deallocation
4239 function -- unless there is one-argument function, too. */
4240 if (TREE_CHAIN (second_parm) == void_list_node
4241 && same_type_p (TREE_VALUE (second_parm), size_type_node))
4242 has_two_argument_delete_p = true;
4243 }
4244
4245 return has_two_argument_delete_p;
4246 }
4247
4248 /* Check the validity of the bases and members declared in T. Add any
4249 implicitly-generated functions (like copy-constructors and
4250 assignment operators). Compute various flag bits (like
4251 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4252 level: i.e., independently of the ABI in use. */
4253
4254 static void
4255 check_bases_and_members (tree t)
4256 {
4257 /* Nonzero if the implicitly generated copy constructor should take
4258 a non-const reference argument. */
4259 int cant_have_const_ctor;
4260 /* Nonzero if the implicitly generated assignment operator
4261 should take a non-const reference argument. */
4262 int no_const_asn_ref;
4263 tree access_decls;
4264 bool saved_complex_asn_ref;
4265 bool saved_nontrivial_dtor;
4266
4267 /* By default, we use const reference arguments and generate default
4268 constructors. */
4269 cant_have_const_ctor = 0;
4270 no_const_asn_ref = 0;
4271
4272 /* Check all the base-classes. */
4273 check_bases (t, &cant_have_const_ctor,
4274 &no_const_asn_ref);
4275
4276 /* Check all the method declarations. */
4277 check_methods (t);
4278
4279 /* Save the initial values of these flags which only indicate whether
4280 or not the class has user-provided functions. As we analyze the
4281 bases and members we can set these flags for other reasons. */
4282 saved_complex_asn_ref = TYPE_HAS_COMPLEX_ASSIGN_REF (t);
4283 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
4284
4285 /* Check all the data member declarations. We cannot call
4286 check_field_decls until we have called check_bases check_methods,
4287 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4288 being set appropriately. */
4289 check_field_decls (t, &access_decls,
4290 &cant_have_const_ctor,
4291 &no_const_asn_ref);
4292
4293 /* A nearly-empty class has to be vptr-containing; a nearly empty
4294 class contains just a vptr. */
4295 if (!TYPE_CONTAINS_VPTR_P (t))
4296 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4297
4298 /* Do some bookkeeping that will guide the generation of implicitly
4299 declared member functions. */
4300 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_CONTAINS_VPTR_P (t);
4301 /* We need to call a constructor for this class if it has a
4302 user-provided constructor, or if the default constructor is going
4303 to initialize the vptr. (This is not an if-and-only-if;
4304 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
4305 themselves need constructing.) */
4306 TYPE_NEEDS_CONSTRUCTING (t)
4307 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
4308 /* [dcl.init.aggr]
4309
4310 An aggregate is an array or a class with no user-provided
4311 constructors ... and no virtual functions.
4312
4313 Again, other conditions for being an aggregate are checked
4314 elsewhere. */
4315 CLASSTYPE_NON_AGGREGATE (t)
4316 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
4317 CLASSTYPE_NON_POD_P (t)
4318 |= (CLASSTYPE_NON_AGGREGATE (t)
4319 || saved_nontrivial_dtor || saved_complex_asn_ref);
4320 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_CONTAINS_VPTR_P (t);
4321 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
4322
4323 /* If the class has no user-declared constructor, but does have
4324 non-static const or reference data members that can never be
4325 initialized, issue a warning. */
4326 if (warn_uninitialized
4327 /* Classes with user-declared constructors are presumed to
4328 initialize these members. */
4329 && !TYPE_HAS_USER_CONSTRUCTOR (t)
4330 /* Aggregates can be initialized with brace-enclosed
4331 initializers. */
4332 && CLASSTYPE_NON_AGGREGATE (t))
4333 {
4334 tree field;
4335
4336 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4337 {
4338 tree type;
4339
4340 if (TREE_CODE (field) != FIELD_DECL)
4341 continue;
4342
4343 type = TREE_TYPE (field);
4344 if (TREE_CODE (type) == REFERENCE_TYPE)
4345 warning (OPT_Wuninitialized, "non-static reference %q+#D "
4346 "in class without a constructor", field);
4347 else if (CP_TYPE_CONST_P (type)
4348 && (!CLASS_TYPE_P (type)
4349 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
4350 warning (OPT_Wuninitialized, "non-static const member %q+#D "
4351 "in class without a constructor", field);
4352 }
4353 }
4354
4355 /* Synthesize any needed methods. */
4356 add_implicitly_declared_members (t,
4357 cant_have_const_ctor,
4358 no_const_asn_ref);
4359
4360 /* Create the in-charge and not-in-charge variants of constructors
4361 and destructors. */
4362 clone_constructors_and_destructors (t);
4363
4364 /* Process the using-declarations. */
4365 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4366 handle_using_decl (TREE_VALUE (access_decls), t);
4367
4368 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4369 finish_struct_methods (t);
4370
4371 /* Figure out whether or not we will need a cookie when dynamically
4372 allocating an array of this type. */
4373 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4374 = type_requires_array_cookie (t);
4375 }
4376
4377 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4378 accordingly. If a new vfield was created (because T doesn't have a
4379 primary base class), then the newly created field is returned. It
4380 is not added to the TYPE_FIELDS list; it is the caller's
4381 responsibility to do that. Accumulate declared virtual functions
4382 on VIRTUALS_P. */
4383
4384 static tree
4385 create_vtable_ptr (tree t, tree* virtuals_p)
4386 {
4387 tree fn;
4388
4389 /* Collect the virtual functions declared in T. */
4390 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4391 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4392 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4393 {
4394 tree new_virtual = make_node (TREE_LIST);
4395
4396 BV_FN (new_virtual) = fn;
4397 BV_DELTA (new_virtual) = integer_zero_node;
4398 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4399
4400 TREE_CHAIN (new_virtual) = *virtuals_p;
4401 *virtuals_p = new_virtual;
4402 }
4403
4404 /* If we couldn't find an appropriate base class, create a new field
4405 here. Even if there weren't any new virtual functions, we might need a
4406 new virtual function table if we're supposed to include vptrs in
4407 all classes that need them. */
4408 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4409 {
4410 /* We build this decl with vtbl_ptr_type_node, which is a
4411 `vtable_entry_type*'. It might seem more precise to use
4412 `vtable_entry_type (*)[N]' where N is the number of virtual
4413 functions. However, that would require the vtable pointer in
4414 base classes to have a different type than the vtable pointer
4415 in derived classes. We could make that happen, but that
4416 still wouldn't solve all the problems. In particular, the
4417 type-based alias analysis code would decide that assignments
4418 to the base class vtable pointer can't alias assignments to
4419 the derived class vtable pointer, since they have different
4420 types. Thus, in a derived class destructor, where the base
4421 class constructor was inlined, we could generate bad code for
4422 setting up the vtable pointer.
4423
4424 Therefore, we use one type for all vtable pointers. We still
4425 use a type-correct type; it's just doesn't indicate the array
4426 bounds. That's better than using `void*' or some such; it's
4427 cleaner, and it let's the alias analysis code know that these
4428 stores cannot alias stores to void*! */
4429 tree field;
4430
4431 field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4432 DECL_VIRTUAL_P (field) = 1;
4433 DECL_ARTIFICIAL (field) = 1;
4434 DECL_FIELD_CONTEXT (field) = t;
4435 DECL_FCONTEXT (field) = t;
4436
4437 TYPE_VFIELD (t) = field;
4438
4439 /* This class is non-empty. */
4440 CLASSTYPE_EMPTY_P (t) = 0;
4441
4442 return field;
4443 }
4444
4445 return NULL_TREE;
4446 }
4447
4448 /* Fixup the inline function given by INFO now that the class is
4449 complete. */
4450
4451 static void
4452 fixup_pending_inline (tree fn)
4453 {
4454 if (DECL_PENDING_INLINE_INFO (fn))
4455 {
4456 tree args = DECL_ARGUMENTS (fn);
4457 while (args)
4458 {
4459 DECL_CONTEXT (args) = fn;
4460 args = TREE_CHAIN (args);
4461 }
4462 }
4463 }
4464
4465 /* Fixup the inline methods and friends in TYPE now that TYPE is
4466 complete. */
4467
4468 static void
4469 fixup_inline_methods (tree type)
4470 {
4471 tree method = TYPE_METHODS (type);
4472 VEC(tree,gc) *friends;
4473 unsigned ix;
4474
4475 if (method && TREE_CODE (method) == TREE_VEC)
4476 {
4477 if (TREE_VEC_ELT (method, 1))
4478 method = TREE_VEC_ELT (method, 1);
4479 else if (TREE_VEC_ELT (method, 0))
4480 method = TREE_VEC_ELT (method, 0);
4481 else
4482 method = TREE_VEC_ELT (method, 2);
4483 }
4484
4485 /* Do inline member functions. */
4486 for (; method; method = TREE_CHAIN (method))
4487 fixup_pending_inline (method);
4488
4489 /* Do friends. */
4490 for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
4491 VEC_iterate (tree, friends, ix, method); ix++)
4492 fixup_pending_inline (method);
4493 CLASSTYPE_INLINE_FRIENDS (type) = NULL;
4494 }
4495
4496 /* Add OFFSET to all base types of BINFO which is a base in the
4497 hierarchy dominated by T.
4498
4499 OFFSET, which is a type offset, is number of bytes. */
4500
4501 static void
4502 propagate_binfo_offsets (tree binfo, tree offset)
4503 {
4504 int i;
4505 tree primary_binfo;
4506 tree base_binfo;
4507
4508 /* Update BINFO's offset. */
4509 BINFO_OFFSET (binfo)
4510 = convert (sizetype,
4511 size_binop (PLUS_EXPR,
4512 convert (ssizetype, BINFO_OFFSET (binfo)),
4513 offset));
4514
4515 /* Find the primary base class. */
4516 primary_binfo = get_primary_binfo (binfo);
4517
4518 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4519 propagate_binfo_offsets (primary_binfo, offset);
4520
4521 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4522 downwards. */
4523 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4524 {
4525 /* Don't do the primary base twice. */
4526 if (base_binfo == primary_binfo)
4527 continue;
4528
4529 if (BINFO_VIRTUAL_P (base_binfo))
4530 continue;
4531
4532 propagate_binfo_offsets (base_binfo, offset);
4533 }
4534 }
4535
4536 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4537 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4538 empty subobjects of T. */
4539
4540 static void
4541 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4542 {
4543 tree vbase;
4544 tree t = rli->t;
4545 bool first_vbase = true;
4546 tree *next_field;
4547
4548 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4549 return;
4550
4551 if (!abi_version_at_least(2))
4552 {
4553 /* In G++ 3.2, we incorrectly rounded the size before laying out
4554 the virtual bases. */
4555 finish_record_layout (rli, /*free_p=*/false);
4556 #ifdef STRUCTURE_SIZE_BOUNDARY
4557 /* Packed structures don't need to have minimum size. */
4558 if (! TYPE_PACKED (t))
4559 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4560 #endif
4561 rli->offset = TYPE_SIZE_UNIT (t);
4562 rli->bitpos = bitsize_zero_node;
4563 rli->record_align = TYPE_ALIGN (t);
4564 }
4565
4566 /* Find the last field. The artificial fields created for virtual
4567 bases will go after the last extant field to date. */
4568 next_field = &TYPE_FIELDS (t);
4569 while (*next_field)
4570 next_field = &TREE_CHAIN (*next_field);
4571
4572 /* Go through the virtual bases, allocating space for each virtual
4573 base that is not already a primary base class. These are
4574 allocated in inheritance graph order. */
4575 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4576 {
4577 if (!BINFO_VIRTUAL_P (vbase))
4578 continue;
4579
4580 if (!BINFO_PRIMARY_P (vbase))
4581 {
4582 tree basetype = TREE_TYPE (vbase);
4583
4584 /* This virtual base is not a primary base of any class in the
4585 hierarchy, so we have to add space for it. */
4586 next_field = build_base_field (rli, vbase,
4587 offsets, next_field);
4588
4589 /* If the first virtual base might have been placed at a
4590 lower address, had we started from CLASSTYPE_SIZE, rather
4591 than TYPE_SIZE, issue a warning. There can be both false
4592 positives and false negatives from this warning in rare
4593 cases; to deal with all the possibilities would probably
4594 require performing both layout algorithms and comparing
4595 the results which is not particularly tractable. */
4596 if (warn_abi
4597 && first_vbase
4598 && (tree_int_cst_lt
4599 (size_binop (CEIL_DIV_EXPR,
4600 round_up (CLASSTYPE_SIZE (t),
4601 CLASSTYPE_ALIGN (basetype)),
4602 bitsize_unit_node),
4603 BINFO_OFFSET (vbase))))
4604 warning (OPT_Wabi,
4605 "offset of virtual base %qT is not ABI-compliant and "
4606 "may change in a future version of GCC",
4607 basetype);
4608
4609 first_vbase = false;
4610 }
4611 }
4612 }
4613
4614 /* Returns the offset of the byte just past the end of the base class
4615 BINFO. */
4616
4617 static tree
4618 end_of_base (tree binfo)
4619 {
4620 tree size;
4621
4622 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
4623 size = TYPE_SIZE_UNIT (char_type_node);
4624 else if (is_empty_class (BINFO_TYPE (binfo)))
4625 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4626 allocate some space for it. It cannot have virtual bases, so
4627 TYPE_SIZE_UNIT is fine. */
4628 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4629 else
4630 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4631
4632 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4633 }
4634
4635 /* Returns the offset of the byte just past the end of the base class
4636 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4637 only non-virtual bases are included. */
4638
4639 static tree
4640 end_of_class (tree t, int include_virtuals_p)
4641 {
4642 tree result = size_zero_node;
4643 VEC(tree,gc) *vbases;
4644 tree binfo;
4645 tree base_binfo;
4646 tree offset;
4647 int i;
4648
4649 for (binfo = TYPE_BINFO (t), i = 0;
4650 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4651 {
4652 if (!include_virtuals_p
4653 && BINFO_VIRTUAL_P (base_binfo)
4654 && (!BINFO_PRIMARY_P (base_binfo)
4655 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4656 continue;
4657
4658 offset = end_of_base (base_binfo);
4659 if (INT_CST_LT_UNSIGNED (result, offset))
4660 result = offset;
4661 }
4662
4663 /* G++ 3.2 did not check indirect virtual bases. */
4664 if (abi_version_at_least (2) && include_virtuals_p)
4665 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4666 VEC_iterate (tree, vbases, i, base_binfo); i++)
4667 {
4668 offset = end_of_base (base_binfo);
4669 if (INT_CST_LT_UNSIGNED (result, offset))
4670 result = offset;
4671 }
4672
4673 return result;
4674 }
4675
4676 /* Warn about bases of T that are inaccessible because they are
4677 ambiguous. For example:
4678
4679 struct S {};
4680 struct T : public S {};
4681 struct U : public S, public T {};
4682
4683 Here, `(S*) new U' is not allowed because there are two `S'
4684 subobjects of U. */
4685
4686 static void
4687 warn_about_ambiguous_bases (tree t)
4688 {
4689 int i;
4690 VEC(tree,gc) *vbases;
4691 tree basetype;
4692 tree binfo;
4693 tree base_binfo;
4694
4695 /* If there are no repeated bases, nothing can be ambiguous. */
4696 if (!CLASSTYPE_REPEATED_BASE_P (t))
4697 return;
4698
4699 /* Check direct bases. */
4700 for (binfo = TYPE_BINFO (t), i = 0;
4701 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4702 {
4703 basetype = BINFO_TYPE (base_binfo);
4704
4705 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4706 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4707 basetype, t);
4708 }
4709
4710 /* Check for ambiguous virtual bases. */
4711 if (extra_warnings)
4712 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4713 VEC_iterate (tree, vbases, i, binfo); i++)
4714 {
4715 basetype = BINFO_TYPE (binfo);
4716
4717 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4718 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
4719 basetype, t);
4720 }
4721 }
4722
4723 /* Compare two INTEGER_CSTs K1 and K2. */
4724
4725 static int
4726 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4727 {
4728 return tree_int_cst_compare ((tree) k1, (tree) k2);
4729 }
4730
4731 /* Increase the size indicated in RLI to account for empty classes
4732 that are "off the end" of the class. */
4733
4734 static void
4735 include_empty_classes (record_layout_info rli)
4736 {
4737 tree eoc;
4738 tree rli_size;
4739
4740 /* It might be the case that we grew the class to allocate a
4741 zero-sized base class. That won't be reflected in RLI, yet,
4742 because we are willing to overlay multiple bases at the same
4743 offset. However, now we need to make sure that RLI is big enough
4744 to reflect the entire class. */
4745 eoc = end_of_class (rli->t,
4746 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4747 rli_size = rli_size_unit_so_far (rli);
4748 if (TREE_CODE (rli_size) == INTEGER_CST
4749 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4750 {
4751 if (!abi_version_at_least (2))
4752 /* In version 1 of the ABI, the size of a class that ends with
4753 a bitfield was not rounded up to a whole multiple of a
4754 byte. Because rli_size_unit_so_far returns only the number
4755 of fully allocated bytes, any extra bits were not included
4756 in the size. */
4757 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4758 else
4759 /* The size should have been rounded to a whole byte. */
4760 gcc_assert (tree_int_cst_equal
4761 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4762 rli->bitpos
4763 = size_binop (PLUS_EXPR,
4764 rli->bitpos,
4765 size_binop (MULT_EXPR,
4766 convert (bitsizetype,
4767 size_binop (MINUS_EXPR,
4768 eoc, rli_size)),
4769 bitsize_int (BITS_PER_UNIT)));
4770 normalize_rli (rli);
4771 }
4772 }
4773
4774 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4775 BINFO_OFFSETs for all of the base-classes. Position the vtable
4776 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4777
4778 static void
4779 layout_class_type (tree t, tree *virtuals_p)
4780 {
4781 tree non_static_data_members;
4782 tree field;
4783 tree vptr;
4784 record_layout_info rli;
4785 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4786 types that appear at that offset. */
4787 splay_tree empty_base_offsets;
4788 /* True if the last field layed out was a bit-field. */
4789 bool last_field_was_bitfield = false;
4790 /* The location at which the next field should be inserted. */
4791 tree *next_field;
4792 /* T, as a base class. */
4793 tree base_t;
4794
4795 /* Keep track of the first non-static data member. */
4796 non_static_data_members = TYPE_FIELDS (t);
4797
4798 /* Start laying out the record. */
4799 rli = start_record_layout (t);
4800
4801 /* Mark all the primary bases in the hierarchy. */
4802 determine_primary_bases (t);
4803
4804 /* Create a pointer to our virtual function table. */
4805 vptr = create_vtable_ptr (t, virtuals_p);
4806
4807 /* The vptr is always the first thing in the class. */
4808 if (vptr)
4809 {
4810 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4811 TYPE_FIELDS (t) = vptr;
4812 next_field = &TREE_CHAIN (vptr);
4813 place_field (rli, vptr);
4814 }
4815 else
4816 next_field = &TYPE_FIELDS (t);
4817
4818 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4819 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4820 NULL, NULL);
4821 build_base_fields (rli, empty_base_offsets, next_field);
4822
4823 /* Layout the non-static data members. */
4824 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4825 {
4826 tree type;
4827 tree padding;
4828
4829 /* We still pass things that aren't non-static data members to
4830 the back end, in case it wants to do something with them. */
4831 if (TREE_CODE (field) != FIELD_DECL)
4832 {
4833 place_field (rli, field);
4834 /* If the static data member has incomplete type, keep track
4835 of it so that it can be completed later. (The handling
4836 of pending statics in finish_record_layout is
4837 insufficient; consider:
4838
4839 struct S1;
4840 struct S2 { static S1 s1; };
4841
4842 At this point, finish_record_layout will be called, but
4843 S1 is still incomplete.) */
4844 if (TREE_CODE (field) == VAR_DECL)
4845 {
4846 maybe_register_incomplete_var (field);
4847 /* The visibility of static data members is determined
4848 at their point of declaration, not their point of
4849 definition. */
4850 determine_visibility (field);
4851 }
4852 continue;
4853 }
4854
4855 type = TREE_TYPE (field);
4856 if (type == error_mark_node)
4857 continue;
4858
4859 padding = NULL_TREE;
4860
4861 /* If this field is a bit-field whose width is greater than its
4862 type, then there are some special rules for allocating
4863 it. */
4864 if (DECL_C_BIT_FIELD (field)
4865 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4866 {
4867 integer_type_kind itk;
4868 tree integer_type;
4869 bool was_unnamed_p = false;
4870 /* We must allocate the bits as if suitably aligned for the
4871 longest integer type that fits in this many bits. type
4872 of the field. Then, we are supposed to use the left over
4873 bits as additional padding. */
4874 for (itk = itk_char; itk != itk_none; ++itk)
4875 if (INT_CST_LT (DECL_SIZE (field),
4876 TYPE_SIZE (integer_types[itk])))
4877 break;
4878
4879 /* ITK now indicates a type that is too large for the
4880 field. We have to back up by one to find the largest
4881 type that fits. */
4882 integer_type = integer_types[itk - 1];
4883
4884 /* Figure out how much additional padding is required. GCC
4885 3.2 always created a padding field, even if it had zero
4886 width. */
4887 if (!abi_version_at_least (2)
4888 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4889 {
4890 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4891 /* In a union, the padding field must have the full width
4892 of the bit-field; all fields start at offset zero. */
4893 padding = DECL_SIZE (field);
4894 else
4895 {
4896 if (TREE_CODE (t) == UNION_TYPE)
4897 warning (OPT_Wabi, "size assigned to %qT may not be "
4898 "ABI-compliant and may change in a future "
4899 "version of GCC",
4900 t);
4901 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4902 TYPE_SIZE (integer_type));
4903 }
4904 }
4905 #ifdef PCC_BITFIELD_TYPE_MATTERS
4906 /* An unnamed bitfield does not normally affect the
4907 alignment of the containing class on a target where
4908 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4909 make any exceptions for unnamed bitfields when the
4910 bitfields are longer than their types. Therefore, we
4911 temporarily give the field a name. */
4912 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4913 {
4914 was_unnamed_p = true;
4915 DECL_NAME (field) = make_anon_name ();
4916 }
4917 #endif
4918 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4919 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4920 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4921 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4922 empty_base_offsets);
4923 if (was_unnamed_p)
4924 DECL_NAME (field) = NULL_TREE;
4925 /* Now that layout has been performed, set the size of the
4926 field to the size of its declared type; the rest of the
4927 field is effectively invisible. */
4928 DECL_SIZE (field) = TYPE_SIZE (type);
4929 /* We must also reset the DECL_MODE of the field. */
4930 if (abi_version_at_least (2))
4931 DECL_MODE (field) = TYPE_MODE (type);
4932 else if (warn_abi
4933 && DECL_MODE (field) != TYPE_MODE (type))
4934 /* Versions of G++ before G++ 3.4 did not reset the
4935 DECL_MODE. */
4936 warning (OPT_Wabi,
4937 "the offset of %qD may not be ABI-compliant and may "
4938 "change in a future version of GCC", field);
4939 }
4940 else
4941 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4942 empty_base_offsets);
4943
4944 /* Remember the location of any empty classes in FIELD. */
4945 if (abi_version_at_least (2))
4946 record_subobject_offsets (TREE_TYPE (field),
4947 byte_position(field),
4948 empty_base_offsets,
4949 /*is_data_member=*/true);
4950
4951 /* If a bit-field does not immediately follow another bit-field,
4952 and yet it starts in the middle of a byte, we have failed to
4953 comply with the ABI. */
4954 if (warn_abi
4955 && DECL_C_BIT_FIELD (field)
4956 /* The TREE_NO_WARNING flag gets set by Objective-C when
4957 laying out an Objective-C class. The ObjC ABI differs
4958 from the C++ ABI, and so we do not want a warning
4959 here. */
4960 && !TREE_NO_WARNING (field)
4961 && !last_field_was_bitfield
4962 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4963 DECL_FIELD_BIT_OFFSET (field),
4964 bitsize_unit_node)))
4965 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
4966 "change in a future version of GCC", field);
4967
4968 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4969 offset of the field. */
4970 if (warn_abi
4971 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4972 byte_position (field))
4973 && contains_empty_class_p (TREE_TYPE (field)))
4974 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
4975 "classes to be placed at different locations in a "
4976 "future version of GCC", field);
4977
4978 /* The middle end uses the type of expressions to determine the
4979 possible range of expression values. In order to optimize
4980 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
4981 must be made aware of the width of "i", via its type.
4982
4983 Because C++ does not have integer types of arbitrary width,
4984 we must (for the purposes of the front end) convert from the
4985 type assigned here to the declared type of the bitfield
4986 whenever a bitfield expression is used as an rvalue.
4987 Similarly, when assigning a value to a bitfield, the value
4988 must be converted to the type given the bitfield here. */
4989 if (DECL_C_BIT_FIELD (field))
4990 {
4991 unsigned HOST_WIDE_INT width;
4992 tree ftype = TREE_TYPE (field);
4993 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
4994 if (width != TYPE_PRECISION (ftype))
4995 {
4996 TREE_TYPE (field)
4997 = c_build_bitfield_integer_type (width,
4998 TYPE_UNSIGNED (ftype));
4999 TREE_TYPE (field)
5000 = cp_build_qualified_type (TREE_TYPE (field),
5001 TYPE_QUALS (ftype));
5002 }
5003 }
5004
5005 /* If we needed additional padding after this field, add it
5006 now. */
5007 if (padding)
5008 {
5009 tree padding_field;
5010
5011 padding_field = build_decl (FIELD_DECL,
5012 NULL_TREE,
5013 char_type_node);
5014 DECL_BIT_FIELD (padding_field) = 1;
5015 DECL_SIZE (padding_field) = padding;
5016 DECL_CONTEXT (padding_field) = t;
5017 DECL_ARTIFICIAL (padding_field) = 1;
5018 DECL_IGNORED_P (padding_field) = 1;
5019 layout_nonempty_base_or_field (rli, padding_field,
5020 NULL_TREE,
5021 empty_base_offsets);
5022 }
5023
5024 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
5025 }
5026
5027 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
5028 {
5029 /* Make sure that we are on a byte boundary so that the size of
5030 the class without virtual bases will always be a round number
5031 of bytes. */
5032 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
5033 normalize_rli (rli);
5034 }
5035
5036 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
5037 padding. */
5038 if (!abi_version_at_least (2))
5039 include_empty_classes(rli);
5040
5041 /* Delete all zero-width bit-fields from the list of fields. Now
5042 that the type is laid out they are no longer important. */
5043 remove_zero_width_bit_fields (t);
5044
5045 /* Create the version of T used for virtual bases. We do not use
5046 make_class_type for this version; this is an artificial type. For
5047 a POD type, we just reuse T. */
5048 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
5049 {
5050 base_t = make_node (TREE_CODE (t));
5051
5052 /* Set the size and alignment for the new type. In G++ 3.2, all
5053 empty classes were considered to have size zero when used as
5054 base classes. */
5055 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
5056 {
5057 TYPE_SIZE (base_t) = bitsize_zero_node;
5058 TYPE_SIZE_UNIT (base_t) = size_zero_node;
5059 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
5060 warning (OPT_Wabi,
5061 "layout of classes derived from empty class %qT "
5062 "may change in a future version of GCC",
5063 t);
5064 }
5065 else
5066 {
5067 tree eoc;
5068
5069 /* If the ABI version is not at least two, and the last
5070 field was a bit-field, RLI may not be on a byte
5071 boundary. In particular, rli_size_unit_so_far might
5072 indicate the last complete byte, while rli_size_so_far
5073 indicates the total number of bits used. Therefore,
5074 rli_size_so_far, rather than rli_size_unit_so_far, is
5075 used to compute TYPE_SIZE_UNIT. */
5076 eoc = end_of_class (t, /*include_virtuals_p=*/0);
5077 TYPE_SIZE_UNIT (base_t)
5078 = size_binop (MAX_EXPR,
5079 convert (sizetype,
5080 size_binop (CEIL_DIV_EXPR,
5081 rli_size_so_far (rli),
5082 bitsize_int (BITS_PER_UNIT))),
5083 eoc);
5084 TYPE_SIZE (base_t)
5085 = size_binop (MAX_EXPR,
5086 rli_size_so_far (rli),
5087 size_binop (MULT_EXPR,
5088 convert (bitsizetype, eoc),
5089 bitsize_int (BITS_PER_UNIT)));
5090 }
5091 TYPE_ALIGN (base_t) = rli->record_align;
5092 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
5093
5094 /* Copy the fields from T. */
5095 next_field = &TYPE_FIELDS (base_t);
5096 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5097 if (TREE_CODE (field) == FIELD_DECL)
5098 {
5099 *next_field = build_decl (FIELD_DECL,
5100 DECL_NAME (field),
5101 TREE_TYPE (field));
5102 DECL_CONTEXT (*next_field) = base_t;
5103 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
5104 DECL_FIELD_BIT_OFFSET (*next_field)
5105 = DECL_FIELD_BIT_OFFSET (field);
5106 DECL_SIZE (*next_field) = DECL_SIZE (field);
5107 DECL_MODE (*next_field) = DECL_MODE (field);
5108 next_field = &TREE_CHAIN (*next_field);
5109 }
5110
5111 /* Record the base version of the type. */
5112 CLASSTYPE_AS_BASE (t) = base_t;
5113 TYPE_CONTEXT (base_t) = t;
5114 }
5115 else
5116 CLASSTYPE_AS_BASE (t) = t;
5117
5118 /* Every empty class contains an empty class. */
5119 if (CLASSTYPE_EMPTY_P (t))
5120 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
5121
5122 /* Set the TYPE_DECL for this type to contain the right
5123 value for DECL_OFFSET, so that we can use it as part
5124 of a COMPONENT_REF for multiple inheritance. */
5125 layout_decl (TYPE_MAIN_DECL (t), 0);
5126
5127 /* Now fix up any virtual base class types that we left lying
5128 around. We must get these done before we try to lay out the
5129 virtual function table. As a side-effect, this will remove the
5130 base subobject fields. */
5131 layout_virtual_bases (rli, empty_base_offsets);
5132
5133 /* Make sure that empty classes are reflected in RLI at this
5134 point. */
5135 include_empty_classes(rli);
5136
5137 /* Make sure not to create any structures with zero size. */
5138 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
5139 place_field (rli,
5140 build_decl (FIELD_DECL, NULL_TREE, char_type_node));
5141
5142 /* Let the back end lay out the type. */
5143 finish_record_layout (rli, /*free_p=*/true);
5144
5145 /* Warn about bases that can't be talked about due to ambiguity. */
5146 warn_about_ambiguous_bases (t);
5147
5148 /* Now that we're done with layout, give the base fields the real types. */
5149 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5150 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
5151 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
5152
5153 /* Clean up. */
5154 splay_tree_delete (empty_base_offsets);
5155
5156 if (CLASSTYPE_EMPTY_P (t)
5157 && tree_int_cst_lt (sizeof_biggest_empty_class,
5158 TYPE_SIZE_UNIT (t)))
5159 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
5160 }
5161
5162 /* Determine the "key method" for the class type indicated by TYPE,
5163 and set CLASSTYPE_KEY_METHOD accordingly. */
5164
5165 void
5166 determine_key_method (tree type)
5167 {
5168 tree method;
5169
5170 if (TYPE_FOR_JAVA (type)
5171 || processing_template_decl
5172 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
5173 || CLASSTYPE_INTERFACE_KNOWN (type))
5174 return;
5175
5176 /* The key method is the first non-pure virtual function that is not
5177 inline at the point of class definition. On some targets the
5178 key function may not be inline; those targets should not call
5179 this function until the end of the translation unit. */
5180 for (method = TYPE_METHODS (type); method != NULL_TREE;
5181 method = TREE_CHAIN (method))
5182 if (DECL_VINDEX (method) != NULL_TREE
5183 && ! DECL_DECLARED_INLINE_P (method)
5184 && ! DECL_PURE_VIRTUAL_P (method))
5185 {
5186 CLASSTYPE_KEY_METHOD (type) = method;
5187 break;
5188 }
5189
5190 return;
5191 }
5192
5193 /* Perform processing required when the definition of T (a class type)
5194 is complete. */
5195
5196 void
5197 finish_struct_1 (tree t)
5198 {
5199 tree x;
5200 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
5201 tree virtuals = NULL_TREE;
5202 int n_fields = 0;
5203
5204 if (COMPLETE_TYPE_P (t))
5205 {
5206 gcc_assert (MAYBE_CLASS_TYPE_P (t));
5207 error ("redefinition of %q#T", t);
5208 popclass ();
5209 return;
5210 }
5211
5212 /* If this type was previously laid out as a forward reference,
5213 make sure we lay it out again. */
5214 TYPE_SIZE (t) = NULL_TREE;
5215 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
5216
5217 fixup_inline_methods (t);
5218
5219 /* Make assumptions about the class; we'll reset the flags if
5220 necessary. */
5221 CLASSTYPE_EMPTY_P (t) = 1;
5222 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
5223 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
5224
5225 /* Do end-of-class semantic processing: checking the validity of the
5226 bases and members and add implicitly generated methods. */
5227 check_bases_and_members (t);
5228
5229 /* Find the key method. */
5230 if (TYPE_CONTAINS_VPTR_P (t))
5231 {
5232 /* The Itanium C++ ABI permits the key method to be chosen when
5233 the class is defined -- even though the key method so
5234 selected may later turn out to be an inline function. On
5235 some systems (such as ARM Symbian OS) the key method cannot
5236 be determined until the end of the translation unit. On such
5237 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
5238 will cause the class to be added to KEYED_CLASSES. Then, in
5239 finish_file we will determine the key method. */
5240 if (targetm.cxx.key_method_may_be_inline ())
5241 determine_key_method (t);
5242
5243 /* If a polymorphic class has no key method, we may emit the vtable
5244 in every translation unit where the class definition appears. */
5245 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
5246 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
5247 }
5248
5249 /* Layout the class itself. */
5250 layout_class_type (t, &virtuals);
5251 if (CLASSTYPE_AS_BASE (t) != t)
5252 /* We use the base type for trivial assignments, and hence it
5253 needs a mode. */
5254 compute_record_mode (CLASSTYPE_AS_BASE (t));
5255
5256 virtuals = modify_all_vtables (t, nreverse (virtuals));
5257
5258 /* If necessary, create the primary vtable for this class. */
5259 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
5260 {
5261 /* We must enter these virtuals into the table. */
5262 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5263 build_primary_vtable (NULL_TREE, t);
5264 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
5265 /* Here we know enough to change the type of our virtual
5266 function table, but we will wait until later this function. */
5267 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
5268 }
5269
5270 if (TYPE_CONTAINS_VPTR_P (t))
5271 {
5272 int vindex;
5273 tree fn;
5274
5275 if (BINFO_VTABLE (TYPE_BINFO (t)))
5276 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
5277 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5278 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
5279
5280 /* Add entries for virtual functions introduced by this class. */
5281 BINFO_VIRTUALS (TYPE_BINFO (t))
5282 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
5283
5284 /* Set DECL_VINDEX for all functions declared in this class. */
5285 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5286 fn;
5287 fn = TREE_CHAIN (fn),
5288 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5289 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5290 {
5291 tree fndecl = BV_FN (fn);
5292
5293 if (DECL_THUNK_P (fndecl))
5294 /* A thunk. We should never be calling this entry directly
5295 from this vtable -- we'd use the entry for the non
5296 thunk base function. */
5297 DECL_VINDEX (fndecl) = NULL_TREE;
5298 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5299 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
5300 }
5301 }
5302
5303 finish_struct_bits (t);
5304
5305 /* Complete the rtl for any static member objects of the type we're
5306 working on. */
5307 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5308 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5309 && TREE_TYPE (x) != error_mark_node
5310 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5311 DECL_MODE (x) = TYPE_MODE (t);
5312
5313 /* Done with FIELDS...now decide whether to sort these for
5314 faster lookups later.
5315
5316 We use a small number because most searches fail (succeeding
5317 ultimately as the search bores through the inheritance
5318 hierarchy), and we want this failure to occur quickly. */
5319
5320 n_fields = count_fields (TYPE_FIELDS (t));
5321 if (n_fields > 7)
5322 {
5323 struct sorted_fields_type *field_vec = GGC_NEWVAR
5324 (struct sorted_fields_type,
5325 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5326 field_vec->len = n_fields;
5327 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5328 qsort (field_vec->elts, n_fields, sizeof (tree),
5329 field_decl_cmp);
5330 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5331 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5332 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5333 }
5334
5335 /* Complain if one of the field types requires lower visibility. */
5336 constrain_class_visibility (t);
5337
5338 /* Make the rtl for any new vtables we have created, and unmark
5339 the base types we marked. */
5340 finish_vtbls (t);
5341
5342 /* Build the VTT for T. */
5343 build_vtt (t);
5344
5345 /* This warning does not make sense for Java classes, since they
5346 cannot have destructors. */
5347 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5348 {
5349 tree dtor;
5350
5351 dtor = CLASSTYPE_DESTRUCTORS (t);
5352 if (/* An implicitly declared destructor is always public. And,
5353 if it were virtual, we would have created it by now. */
5354 !dtor
5355 || (!DECL_VINDEX (dtor)
5356 && (/* public non-virtual */
5357 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
5358 || (/* non-public non-virtual with friends */
5359 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
5360 && (CLASSTYPE_FRIEND_CLASSES (t)
5361 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
5362 warning (OPT_Wnon_virtual_dtor,
5363 "%q#T has virtual functions and accessible"
5364 " non-virtual destructor", t);
5365 }
5366
5367 complete_vars (t);
5368
5369 if (warn_overloaded_virtual)
5370 warn_hidden (t);
5371
5372 /* Class layout, assignment of virtual table slots, etc., is now
5373 complete. Give the back end a chance to tweak the visibility of
5374 the class or perform any other required target modifications. */
5375 targetm.cxx.adjust_class_at_definition (t);
5376
5377 maybe_suppress_debug_info (t);
5378
5379 dump_class_hierarchy (t);
5380
5381 /* Finish debugging output for this type. */
5382 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5383 }
5384
5385 /* When T was built up, the member declarations were added in reverse
5386 order. Rearrange them to declaration order. */
5387
5388 void
5389 unreverse_member_declarations (tree t)
5390 {
5391 tree next;
5392 tree prev;
5393 tree x;
5394
5395 /* The following lists are all in reverse order. Put them in
5396 declaration order now. */
5397 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5398 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5399
5400 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5401 reverse order, so we can't just use nreverse. */
5402 prev = NULL_TREE;
5403 for (x = TYPE_FIELDS (t);
5404 x && TREE_CODE (x) != TYPE_DECL;
5405 x = next)
5406 {
5407 next = TREE_CHAIN (x);
5408 TREE_CHAIN (x) = prev;
5409 prev = x;
5410 }
5411 if (prev)
5412 {
5413 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5414 if (prev)
5415 TYPE_FIELDS (t) = prev;
5416 }
5417 }
5418
5419 tree
5420 finish_struct (tree t, tree attributes)
5421 {
5422 location_t saved_loc = input_location;
5423
5424 /* Now that we've got all the field declarations, reverse everything
5425 as necessary. */
5426 unreverse_member_declarations (t);
5427
5428 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5429
5430 /* Nadger the current location so that diagnostics point to the start of
5431 the struct, not the end. */
5432 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5433
5434 if (processing_template_decl)
5435 {
5436 tree x;
5437
5438 finish_struct_methods (t);
5439 TYPE_SIZE (t) = bitsize_zero_node;
5440 TYPE_SIZE_UNIT (t) = size_zero_node;
5441
5442 /* We need to emit an error message if this type was used as a parameter
5443 and it is an abstract type, even if it is a template. We construct
5444 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5445 account and we call complete_vars with this type, which will check
5446 the PARM_DECLS. Note that while the type is being defined,
5447 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5448 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5449 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5450 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5451 if (DECL_PURE_VIRTUAL_P (x))
5452 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
5453 complete_vars (t);
5454 }
5455 else
5456 finish_struct_1 (t);
5457
5458 input_location = saved_loc;
5459
5460 TYPE_BEING_DEFINED (t) = 0;
5461
5462 if (current_class_type)
5463 popclass ();
5464 else
5465 error ("trying to finish struct, but kicked out due to previous parse errors");
5466
5467 if (processing_template_decl && at_function_scope_p ())
5468 add_stmt (build_min (TAG_DEFN, t));
5469
5470 return t;
5471 }
5472 \f
5473 /* Return the dynamic type of INSTANCE, if known.
5474 Used to determine whether the virtual function table is needed
5475 or not.
5476
5477 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5478 of our knowledge of its type. *NONNULL should be initialized
5479 before this function is called. */
5480
5481 static tree
5482 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
5483 {
5484 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
5485
5486 switch (TREE_CODE (instance))
5487 {
5488 case INDIRECT_REF:
5489 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5490 return NULL_TREE;
5491 else
5492 return RECUR (TREE_OPERAND (instance, 0));
5493
5494 case CALL_EXPR:
5495 /* This is a call to a constructor, hence it's never zero. */
5496 if (TREE_HAS_CONSTRUCTOR (instance))
5497 {
5498 if (nonnull)
5499 *nonnull = 1;
5500 return TREE_TYPE (instance);
5501 }
5502 return NULL_TREE;
5503
5504 case SAVE_EXPR:
5505 /* This is a call to a constructor, hence it's never zero. */
5506 if (TREE_HAS_CONSTRUCTOR (instance))
5507 {
5508 if (nonnull)
5509 *nonnull = 1;
5510 return TREE_TYPE (instance);
5511 }
5512 return RECUR (TREE_OPERAND (instance, 0));
5513
5514 case POINTER_PLUS_EXPR:
5515 case PLUS_EXPR:
5516 case MINUS_EXPR:
5517 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5518 return RECUR (TREE_OPERAND (instance, 0));
5519 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5520 /* Propagate nonnull. */
5521 return RECUR (TREE_OPERAND (instance, 0));
5522
5523 return NULL_TREE;
5524
5525 CASE_CONVERT:
5526 return RECUR (TREE_OPERAND (instance, 0));
5527
5528 case ADDR_EXPR:
5529 instance = TREE_OPERAND (instance, 0);
5530 if (nonnull)
5531 {
5532 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5533 with a real object -- given &p->f, p can still be null. */
5534 tree t = get_base_address (instance);
5535 /* ??? Probably should check DECL_WEAK here. */
5536 if (t && DECL_P (t))
5537 *nonnull = 1;
5538 }
5539 return RECUR (instance);
5540
5541 case COMPONENT_REF:
5542 /* If this component is really a base class reference, then the field
5543 itself isn't definitive. */
5544 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5545 return RECUR (TREE_OPERAND (instance, 0));
5546 return RECUR (TREE_OPERAND (instance, 1));
5547
5548 case VAR_DECL:
5549 case FIELD_DECL:
5550 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5551 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
5552 {
5553 if (nonnull)
5554 *nonnull = 1;
5555 return TREE_TYPE (TREE_TYPE (instance));
5556 }
5557 /* fall through... */
5558 case TARGET_EXPR:
5559 case PARM_DECL:
5560 case RESULT_DECL:
5561 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
5562 {
5563 if (nonnull)
5564 *nonnull = 1;
5565 return TREE_TYPE (instance);
5566 }
5567 else if (instance == current_class_ptr)
5568 {
5569 if (nonnull)
5570 *nonnull = 1;
5571
5572 /* if we're in a ctor or dtor, we know our type. */
5573 if (DECL_LANG_SPECIFIC (current_function_decl)
5574 && (DECL_CONSTRUCTOR_P (current_function_decl)
5575 || DECL_DESTRUCTOR_P (current_function_decl)))
5576 {
5577 if (cdtorp)
5578 *cdtorp = 1;
5579 return TREE_TYPE (TREE_TYPE (instance));
5580 }
5581 }
5582 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5583 {
5584 /* We only need one hash table because it is always left empty. */
5585 static htab_t ht;
5586 if (!ht)
5587 ht = htab_create (37,
5588 htab_hash_pointer,
5589 htab_eq_pointer,
5590 /*htab_del=*/NULL);
5591
5592 /* Reference variables should be references to objects. */
5593 if (nonnull)
5594 *nonnull = 1;
5595
5596 /* Enter the INSTANCE in a table to prevent recursion; a
5597 variable's initializer may refer to the variable
5598 itself. */
5599 if (TREE_CODE (instance) == VAR_DECL
5600 && DECL_INITIAL (instance)
5601 && !htab_find (ht, instance))
5602 {
5603 tree type;
5604 void **slot;
5605
5606 slot = htab_find_slot (ht, instance, INSERT);
5607 *slot = instance;
5608 type = RECUR (DECL_INITIAL (instance));
5609 htab_remove_elt (ht, instance);
5610
5611 return type;
5612 }
5613 }
5614 return NULL_TREE;
5615
5616 default:
5617 return NULL_TREE;
5618 }
5619 #undef RECUR
5620 }
5621
5622 /* Return nonzero if the dynamic type of INSTANCE is known, and
5623 equivalent to the static type. We also handle the case where
5624 INSTANCE is really a pointer. Return negative if this is a
5625 ctor/dtor. There the dynamic type is known, but this might not be
5626 the most derived base of the original object, and hence virtual
5627 bases may not be layed out according to this type.
5628
5629 Used to determine whether the virtual function table is needed
5630 or not.
5631
5632 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5633 of our knowledge of its type. *NONNULL should be initialized
5634 before this function is called. */
5635
5636 int
5637 resolves_to_fixed_type_p (tree instance, int* nonnull)
5638 {
5639 tree t = TREE_TYPE (instance);
5640 int cdtorp = 0;
5641 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5642 if (fixed == NULL_TREE)
5643 return 0;
5644 if (POINTER_TYPE_P (t))
5645 t = TREE_TYPE (t);
5646 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5647 return 0;
5648 return cdtorp ? -1 : 1;
5649 }
5650
5651 \f
5652 void
5653 init_class_processing (void)
5654 {
5655 current_class_depth = 0;
5656 current_class_stack_size = 10;
5657 current_class_stack
5658 = XNEWVEC (struct class_stack_node, current_class_stack_size);
5659 local_classes = VEC_alloc (tree, gc, 8);
5660 sizeof_biggest_empty_class = size_zero_node;
5661
5662 ridpointers[(int) RID_PUBLIC] = access_public_node;
5663 ridpointers[(int) RID_PRIVATE] = access_private_node;
5664 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5665 }
5666
5667 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5668
5669 static void
5670 restore_class_cache (void)
5671 {
5672 tree type;
5673
5674 /* We are re-entering the same class we just left, so we don't
5675 have to search the whole inheritance matrix to find all the
5676 decls to bind again. Instead, we install the cached
5677 class_shadowed list and walk through it binding names. */
5678 push_binding_level (previous_class_level);
5679 class_binding_level = previous_class_level;
5680 /* Restore IDENTIFIER_TYPE_VALUE. */
5681 for (type = class_binding_level->type_shadowed;
5682 type;
5683 type = TREE_CHAIN (type))
5684 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5685 }
5686
5687 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5688 appropriate for TYPE.
5689
5690 So that we may avoid calls to lookup_name, we cache the _TYPE
5691 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5692
5693 For multiple inheritance, we perform a two-pass depth-first search
5694 of the type lattice. */
5695
5696 void
5697 pushclass (tree type)
5698 {
5699 class_stack_node_t csn;
5700
5701 type = TYPE_MAIN_VARIANT (type);
5702
5703 /* Make sure there is enough room for the new entry on the stack. */
5704 if (current_class_depth + 1 >= current_class_stack_size)
5705 {
5706 current_class_stack_size *= 2;
5707 current_class_stack
5708 = XRESIZEVEC (struct class_stack_node, current_class_stack,
5709 current_class_stack_size);
5710 }
5711
5712 /* Insert a new entry on the class stack. */
5713 csn = current_class_stack + current_class_depth;
5714 csn->name = current_class_name;
5715 csn->type = current_class_type;
5716 csn->access = current_access_specifier;
5717 csn->names_used = 0;
5718 csn->hidden = 0;
5719 current_class_depth++;
5720
5721 /* Now set up the new type. */
5722 current_class_name = TYPE_NAME (type);
5723 if (TREE_CODE (current_class_name) == TYPE_DECL)
5724 current_class_name = DECL_NAME (current_class_name);
5725 current_class_type = type;
5726
5727 /* By default, things in classes are private, while things in
5728 structures or unions are public. */
5729 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5730 ? access_private_node
5731 : access_public_node);
5732
5733 if (previous_class_level
5734 && type != previous_class_level->this_entity
5735 && current_class_depth == 1)
5736 {
5737 /* Forcibly remove any old class remnants. */
5738 invalidate_class_lookup_cache ();
5739 }
5740
5741 if (!previous_class_level
5742 || type != previous_class_level->this_entity
5743 || current_class_depth > 1)
5744 pushlevel_class ();
5745 else
5746 restore_class_cache ();
5747 }
5748
5749 /* When we exit a toplevel class scope, we save its binding level so
5750 that we can restore it quickly. Here, we've entered some other
5751 class, so we must invalidate our cache. */
5752
5753 void
5754 invalidate_class_lookup_cache (void)
5755 {
5756 previous_class_level = NULL;
5757 }
5758
5759 /* Get out of the current class scope. If we were in a class scope
5760 previously, that is the one popped to. */
5761
5762 void
5763 popclass (void)
5764 {
5765 poplevel_class ();
5766
5767 current_class_depth--;
5768 current_class_name = current_class_stack[current_class_depth].name;
5769 current_class_type = current_class_stack[current_class_depth].type;
5770 current_access_specifier = current_class_stack[current_class_depth].access;
5771 if (current_class_stack[current_class_depth].names_used)
5772 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5773 }
5774
5775 /* Mark the top of the class stack as hidden. */
5776
5777 void
5778 push_class_stack (void)
5779 {
5780 if (current_class_depth)
5781 ++current_class_stack[current_class_depth - 1].hidden;
5782 }
5783
5784 /* Mark the top of the class stack as un-hidden. */
5785
5786 void
5787 pop_class_stack (void)
5788 {
5789 if (current_class_depth)
5790 --current_class_stack[current_class_depth - 1].hidden;
5791 }
5792
5793 /* Returns 1 if the class type currently being defined is either T or
5794 a nested type of T. */
5795
5796 bool
5797 currently_open_class (tree t)
5798 {
5799 int i;
5800
5801 if (!CLASS_TYPE_P (t))
5802 return false;
5803
5804 /* We start looking from 1 because entry 0 is from global scope,
5805 and has no type. */
5806 for (i = current_class_depth; i > 0; --i)
5807 {
5808 tree c;
5809 if (i == current_class_depth)
5810 c = current_class_type;
5811 else
5812 {
5813 if (current_class_stack[i].hidden)
5814 break;
5815 c = current_class_stack[i].type;
5816 }
5817 if (!c)
5818 continue;
5819 if (same_type_p (c, t))
5820 return true;
5821 }
5822 return false;
5823 }
5824
5825 /* If either current_class_type or one of its enclosing classes are derived
5826 from T, return the appropriate type. Used to determine how we found
5827 something via unqualified lookup. */
5828
5829 tree
5830 currently_open_derived_class (tree t)
5831 {
5832 int i;
5833
5834 /* The bases of a dependent type are unknown. */
5835 if (dependent_type_p (t))
5836 return NULL_TREE;
5837
5838 if (!current_class_type)
5839 return NULL_TREE;
5840
5841 if (DERIVED_FROM_P (t, current_class_type))
5842 return current_class_type;
5843
5844 for (i = current_class_depth - 1; i > 0; --i)
5845 {
5846 if (current_class_stack[i].hidden)
5847 break;
5848 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5849 return current_class_stack[i].type;
5850 }
5851
5852 return NULL_TREE;
5853 }
5854
5855 /* When entering a class scope, all enclosing class scopes' names with
5856 static meaning (static variables, static functions, types and
5857 enumerators) have to be visible. This recursive function calls
5858 pushclass for all enclosing class contexts until global or a local
5859 scope is reached. TYPE is the enclosed class. */
5860
5861 void
5862 push_nested_class (tree type)
5863 {
5864 /* A namespace might be passed in error cases, like A::B:C. */
5865 if (type == NULL_TREE
5866 || !CLASS_TYPE_P (type))
5867 return;
5868
5869 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
5870
5871 pushclass (type);
5872 }
5873
5874 /* Undoes a push_nested_class call. */
5875
5876 void
5877 pop_nested_class (void)
5878 {
5879 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5880
5881 popclass ();
5882 if (context && CLASS_TYPE_P (context))
5883 pop_nested_class ();
5884 }
5885
5886 /* Returns the number of extern "LANG" blocks we are nested within. */
5887
5888 int
5889 current_lang_depth (void)
5890 {
5891 return VEC_length (tree, current_lang_base);
5892 }
5893
5894 /* Set global variables CURRENT_LANG_NAME to appropriate value
5895 so that behavior of name-mangling machinery is correct. */
5896
5897 void
5898 push_lang_context (tree name)
5899 {
5900 VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
5901
5902 if (name == lang_name_cplusplus)
5903 {
5904 current_lang_name = name;
5905 }
5906 else if (name == lang_name_java)
5907 {
5908 current_lang_name = name;
5909 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5910 (See record_builtin_java_type in decl.c.) However, that causes
5911 incorrect debug entries if these types are actually used.
5912 So we re-enable debug output after extern "Java". */
5913 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5914 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5915 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5916 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5917 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5918 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5919 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5920 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5921 }
5922 else if (name == lang_name_c)
5923 {
5924 current_lang_name = name;
5925 }
5926 else
5927 error ("language string %<\"%E\"%> not recognized", name);
5928 }
5929
5930 /* Get out of the current language scope. */
5931
5932 void
5933 pop_lang_context (void)
5934 {
5935 current_lang_name = VEC_pop (tree, current_lang_base);
5936 }
5937 \f
5938 /* Type instantiation routines. */
5939
5940 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5941 matches the TARGET_TYPE. If there is no satisfactory match, return
5942 error_mark_node, and issue an error & warning messages under
5943 control of FLAGS. Permit pointers to member function if FLAGS
5944 permits. If TEMPLATE_ONLY, the name of the overloaded function was
5945 a template-id, and EXPLICIT_TARGS are the explicitly provided
5946 template arguments.
5947
5948 If OVERLOAD is for one or more member functions, then ACCESS_PATH
5949 is the base path used to reference those member functions. If
5950 TF_NO_ACCESS_CONTROL is not set in FLAGS, and the address is
5951 resolved to a member function, access checks will be performed and
5952 errors issued if appropriate. */
5953
5954 static tree
5955 resolve_address_of_overloaded_function (tree target_type,
5956 tree overload,
5957 tsubst_flags_t flags,
5958 bool template_only,
5959 tree explicit_targs,
5960 tree access_path)
5961 {
5962 /* Here's what the standard says:
5963
5964 [over.over]
5965
5966 If the name is a function template, template argument deduction
5967 is done, and if the argument deduction succeeds, the deduced
5968 arguments are used to generate a single template function, which
5969 is added to the set of overloaded functions considered.
5970
5971 Non-member functions and static member functions match targets of
5972 type "pointer-to-function" or "reference-to-function." Nonstatic
5973 member functions match targets of type "pointer-to-member
5974 function;" the function type of the pointer to member is used to
5975 select the member function from the set of overloaded member
5976 functions. If a nonstatic member function is selected, the
5977 reference to the overloaded function name is required to have the
5978 form of a pointer to member as described in 5.3.1.
5979
5980 If more than one function is selected, any template functions in
5981 the set are eliminated if the set also contains a non-template
5982 function, and any given template function is eliminated if the
5983 set contains a second template function that is more specialized
5984 than the first according to the partial ordering rules 14.5.5.2.
5985 After such eliminations, if any, there shall remain exactly one
5986 selected function. */
5987
5988 int is_ptrmem = 0;
5989 int is_reference = 0;
5990 /* We store the matches in a TREE_LIST rooted here. The functions
5991 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5992 interoperability with most_specialized_instantiation. */
5993 tree matches = NULL_TREE;
5994 tree fn;
5995
5996 /* By the time we get here, we should be seeing only real
5997 pointer-to-member types, not the internal POINTER_TYPE to
5998 METHOD_TYPE representation. */
5999 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
6000 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
6001
6002 gcc_assert (is_overloaded_fn (overload));
6003
6004 /* Check that the TARGET_TYPE is reasonable. */
6005 if (TYPE_PTRFN_P (target_type))
6006 /* This is OK. */;
6007 else if (TYPE_PTRMEMFUNC_P (target_type))
6008 /* This is OK, too. */
6009 is_ptrmem = 1;
6010 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
6011 {
6012 /* This is OK, too. This comes from a conversion to reference
6013 type. */
6014 target_type = build_reference_type (target_type);
6015 is_reference = 1;
6016 }
6017 else
6018 {
6019 if (flags & tf_error)
6020 error ("cannot resolve overloaded function %qD based on"
6021 " conversion to type %qT",
6022 DECL_NAME (OVL_FUNCTION (overload)), target_type);
6023 return error_mark_node;
6024 }
6025
6026 /* If we can find a non-template function that matches, we can just
6027 use it. There's no point in generating template instantiations
6028 if we're just going to throw them out anyhow. But, of course, we
6029 can only do this when we don't *need* a template function. */
6030 if (!template_only)
6031 {
6032 tree fns;
6033
6034 for (fns = overload; fns; fns = OVL_NEXT (fns))
6035 {
6036 tree fn = OVL_CURRENT (fns);
6037 tree fntype;
6038
6039 if (TREE_CODE (fn) == TEMPLATE_DECL)
6040 /* We're not looking for templates just yet. */
6041 continue;
6042
6043 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6044 != is_ptrmem)
6045 /* We're looking for a non-static member, and this isn't
6046 one, or vice versa. */
6047 continue;
6048
6049 /* Ignore functions which haven't been explicitly
6050 declared. */
6051 if (DECL_ANTICIPATED (fn))
6052 continue;
6053
6054 /* See if there's a match. */
6055 fntype = TREE_TYPE (fn);
6056 if (is_ptrmem)
6057 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
6058 else if (!is_reference)
6059 fntype = build_pointer_type (fntype);
6060
6061 if (can_convert_arg (target_type, fntype, fn, LOOKUP_NORMAL))
6062 matches = tree_cons (fn, NULL_TREE, matches);
6063 }
6064 }
6065
6066 /* Now, if we've already got a match (or matches), there's no need
6067 to proceed to the template functions. But, if we don't have a
6068 match we need to look at them, too. */
6069 if (!matches)
6070 {
6071 tree target_fn_type;
6072 tree target_arg_types;
6073 tree target_ret_type;
6074 tree fns;
6075
6076 if (is_ptrmem)
6077 target_fn_type
6078 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
6079 else
6080 target_fn_type = TREE_TYPE (target_type);
6081 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
6082 target_ret_type = TREE_TYPE (target_fn_type);
6083
6084 /* Never do unification on the 'this' parameter. */
6085 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
6086 target_arg_types = TREE_CHAIN (target_arg_types);
6087
6088 for (fns = overload; fns; fns = OVL_NEXT (fns))
6089 {
6090 tree fn = OVL_CURRENT (fns);
6091 tree instantiation;
6092 tree instantiation_type;
6093 tree targs;
6094
6095 if (TREE_CODE (fn) != TEMPLATE_DECL)
6096 /* We're only looking for templates. */
6097 continue;
6098
6099 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6100 != is_ptrmem)
6101 /* We're not looking for a non-static member, and this is
6102 one, or vice versa. */
6103 continue;
6104
6105 /* Try to do argument deduction. */
6106 targs = make_tree_vec (DECL_NTPARMS (fn));
6107 if (fn_type_unification (fn, explicit_targs, targs,
6108 target_arg_types, target_ret_type,
6109 DEDUCE_EXACT, LOOKUP_NORMAL))
6110 /* Argument deduction failed. */
6111 continue;
6112
6113 /* Instantiate the template. */
6114 instantiation = instantiate_template (fn, targs, flags);
6115 if (instantiation == error_mark_node)
6116 /* Instantiation failed. */
6117 continue;
6118
6119 /* See if there's a match. */
6120 instantiation_type = TREE_TYPE (instantiation);
6121 if (is_ptrmem)
6122 instantiation_type =
6123 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
6124 else if (!is_reference)
6125 instantiation_type = build_pointer_type (instantiation_type);
6126 if (can_convert_arg (target_type, instantiation_type, instantiation,
6127 LOOKUP_NORMAL))
6128 matches = tree_cons (instantiation, fn, matches);
6129 }
6130
6131 /* Now, remove all but the most specialized of the matches. */
6132 if (matches)
6133 {
6134 tree match = most_specialized_instantiation (matches);
6135
6136 if (match != error_mark_node)
6137 matches = tree_cons (TREE_PURPOSE (match),
6138 NULL_TREE,
6139 NULL_TREE);
6140 }
6141 }
6142
6143 /* Now we should have exactly one function in MATCHES. */
6144 if (matches == NULL_TREE)
6145 {
6146 /* There were *no* matches. */
6147 if (flags & tf_error)
6148 {
6149 error ("no matches converting function %qD to type %q#T",
6150 DECL_NAME (OVL_CURRENT (overload)),
6151 target_type);
6152
6153 /* print_candidates expects a chain with the functions in
6154 TREE_VALUE slots, so we cons one up here (we're losing anyway,
6155 so why be clever?). */
6156 for (; overload; overload = OVL_NEXT (overload))
6157 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
6158 matches);
6159
6160 print_candidates (matches);
6161 }
6162 return error_mark_node;
6163 }
6164 else if (TREE_CHAIN (matches))
6165 {
6166 /* There were too many matches. First check if they're all
6167 the same function. */
6168 tree match;
6169
6170 fn = TREE_PURPOSE (matches);
6171 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
6172 if (!decls_match (fn, TREE_PURPOSE (matches)))
6173 break;
6174
6175 if (match)
6176 {
6177 if (flags & tf_error)
6178 {
6179 error ("converting overloaded function %qD to type %q#T is ambiguous",
6180 DECL_NAME (OVL_FUNCTION (overload)),
6181 target_type);
6182
6183 /* Since print_candidates expects the functions in the
6184 TREE_VALUE slot, we flip them here. */
6185 for (match = matches; match; match = TREE_CHAIN (match))
6186 TREE_VALUE (match) = TREE_PURPOSE (match);
6187
6188 print_candidates (matches);
6189 }
6190
6191 return error_mark_node;
6192 }
6193 }
6194
6195 /* Good, exactly one match. Now, convert it to the correct type. */
6196 fn = TREE_PURPOSE (matches);
6197
6198 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
6199 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
6200 {
6201 static int explained;
6202
6203 if (!(flags & tf_error))
6204 return error_mark_node;
6205
6206 permerror (input_location, "assuming pointer to member %qD", fn);
6207 if (!explained)
6208 {
6209 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
6210 explained = 1;
6211 }
6212 }
6213
6214 /* If we're doing overload resolution purely for the purpose of
6215 determining conversion sequences, we should not consider the
6216 function used. If this conversion sequence is selected, the
6217 function will be marked as used at this point. */
6218 if (!(flags & tf_conv))
6219 {
6220 /* Make =delete work with SFINAE. */
6221 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
6222 return error_mark_node;
6223
6224 mark_used (fn);
6225 }
6226
6227 /* We could not check access to member functions when this
6228 expression was originally created since we did not know at that
6229 time to which function the expression referred. */
6230 if (!(flags & tf_no_access_control)
6231 && DECL_FUNCTION_MEMBER_P (fn))
6232 {
6233 gcc_assert (access_path);
6234 perform_or_defer_access_check (access_path, fn, fn);
6235 }
6236
6237 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
6238 return cp_build_unary_op (ADDR_EXPR, fn, 0, flags);
6239 else
6240 {
6241 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
6242 will mark the function as addressed, but here we must do it
6243 explicitly. */
6244 cxx_mark_addressable (fn);
6245
6246 return fn;
6247 }
6248 }
6249
6250 /* This function will instantiate the type of the expression given in
6251 RHS to match the type of LHSTYPE. If errors exist, then return
6252 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
6253 we complain on errors. If we are not complaining, never modify rhs,
6254 as overload resolution wants to try many possible instantiations, in
6255 the hope that at least one will work.
6256
6257 For non-recursive calls, LHSTYPE should be a function, pointer to
6258 function, or a pointer to member function. */
6259
6260 tree
6261 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
6262 {
6263 tsubst_flags_t flags_in = flags;
6264 tree access_path = NULL_TREE;
6265
6266 flags &= ~tf_ptrmem_ok;
6267
6268 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
6269 {
6270 if (flags & tf_error)
6271 error ("not enough type information");
6272 return error_mark_node;
6273 }
6274
6275 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
6276 {
6277 if (same_type_p (lhstype, TREE_TYPE (rhs)))
6278 return rhs;
6279 if (flag_ms_extensions
6280 && TYPE_PTRMEMFUNC_P (lhstype)
6281 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
6282 /* Microsoft allows `A::f' to be resolved to a
6283 pointer-to-member. */
6284 ;
6285 else
6286 {
6287 if (flags & tf_error)
6288 error ("argument of type %qT does not match %qT",
6289 TREE_TYPE (rhs), lhstype);
6290 return error_mark_node;
6291 }
6292 }
6293
6294 if (TREE_CODE (rhs) == BASELINK)
6295 {
6296 access_path = BASELINK_ACCESS_BINFO (rhs);
6297 rhs = BASELINK_FUNCTIONS (rhs);
6298 }
6299
6300 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
6301 deduce any type information. */
6302 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
6303 {
6304 if (flags & tf_error)
6305 error ("not enough type information");
6306 return error_mark_node;
6307 }
6308
6309 /* There only a few kinds of expressions that may have a type
6310 dependent on overload resolution. */
6311 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
6312 || TREE_CODE (rhs) == COMPONENT_REF
6313 || really_overloaded_fn (rhs)
6314 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
6315
6316 /* This should really only be used when attempting to distinguish
6317 what sort of a pointer to function we have. For now, any
6318 arithmetic operation which is not supported on pointers
6319 is rejected as an error. */
6320
6321 switch (TREE_CODE (rhs))
6322 {
6323 case COMPONENT_REF:
6324 {
6325 tree member = TREE_OPERAND (rhs, 1);
6326
6327 member = instantiate_type (lhstype, member, flags);
6328 if (member != error_mark_node
6329 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
6330 /* Do not lose object's side effects. */
6331 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
6332 TREE_OPERAND (rhs, 0), member);
6333 return member;
6334 }
6335
6336 case OFFSET_REF:
6337 rhs = TREE_OPERAND (rhs, 1);
6338 if (BASELINK_P (rhs))
6339 return instantiate_type (lhstype, rhs, flags_in);
6340
6341 /* This can happen if we are forming a pointer-to-member for a
6342 member template. */
6343 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
6344
6345 /* Fall through. */
6346
6347 case TEMPLATE_ID_EXPR:
6348 {
6349 tree fns = TREE_OPERAND (rhs, 0);
6350 tree args = TREE_OPERAND (rhs, 1);
6351
6352 return
6353 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6354 /*template_only=*/true,
6355 args, access_path);
6356 }
6357
6358 case OVERLOAD:
6359 case FUNCTION_DECL:
6360 return
6361 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6362 /*template_only=*/false,
6363 /*explicit_targs=*/NULL_TREE,
6364 access_path);
6365
6366 case ADDR_EXPR:
6367 {
6368 if (PTRMEM_OK_P (rhs))
6369 flags |= tf_ptrmem_ok;
6370
6371 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6372 }
6373
6374 case ERROR_MARK:
6375 return error_mark_node;
6376
6377 default:
6378 gcc_unreachable ();
6379 }
6380 return error_mark_node;
6381 }
6382 \f
6383 /* Return the name of the virtual function pointer field
6384 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6385 this may have to look back through base types to find the
6386 ultimate field name. (For single inheritance, these could
6387 all be the same name. Who knows for multiple inheritance). */
6388
6389 static tree
6390 get_vfield_name (tree type)
6391 {
6392 tree binfo, base_binfo;
6393 char *buf;
6394
6395 for (binfo = TYPE_BINFO (type);
6396 BINFO_N_BASE_BINFOS (binfo);
6397 binfo = base_binfo)
6398 {
6399 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6400
6401 if (BINFO_VIRTUAL_P (base_binfo)
6402 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6403 break;
6404 }
6405
6406 type = BINFO_TYPE (binfo);
6407 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
6408 + TYPE_NAME_LENGTH (type) + 2);
6409 sprintf (buf, VFIELD_NAME_FORMAT,
6410 IDENTIFIER_POINTER (constructor_name (type)));
6411 return get_identifier (buf);
6412 }
6413
6414 void
6415 print_class_statistics (void)
6416 {
6417 #ifdef GATHER_STATISTICS
6418 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6419 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6420 if (n_vtables)
6421 {
6422 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6423 n_vtables, n_vtable_searches);
6424 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6425 n_vtable_entries, n_vtable_elems);
6426 }
6427 #endif
6428 }
6429
6430 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6431 according to [class]:
6432 The class-name is also inserted
6433 into the scope of the class itself. For purposes of access checking,
6434 the inserted class name is treated as if it were a public member name. */
6435
6436 void
6437 build_self_reference (void)
6438 {
6439 tree name = constructor_name (current_class_type);
6440 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6441 tree saved_cas;
6442
6443 DECL_NONLOCAL (value) = 1;
6444 DECL_CONTEXT (value) = current_class_type;
6445 DECL_ARTIFICIAL (value) = 1;
6446 SET_DECL_SELF_REFERENCE_P (value);
6447
6448 if (processing_template_decl)
6449 value = push_template_decl (value);
6450
6451 saved_cas = current_access_specifier;
6452 current_access_specifier = access_public_node;
6453 finish_member_declaration (value);
6454 current_access_specifier = saved_cas;
6455 }
6456
6457 /* Returns 1 if TYPE contains only padding bytes. */
6458
6459 int
6460 is_empty_class (tree type)
6461 {
6462 if (type == error_mark_node)
6463 return 0;
6464
6465 if (! CLASS_TYPE_P (type))
6466 return 0;
6467
6468 /* In G++ 3.2, whether or not a class was empty was determined by
6469 looking at its size. */
6470 if (abi_version_at_least (2))
6471 return CLASSTYPE_EMPTY_P (type);
6472 else
6473 return integer_zerop (CLASSTYPE_SIZE (type));
6474 }
6475
6476 /* Returns true if TYPE contains an empty class. */
6477
6478 static bool
6479 contains_empty_class_p (tree type)
6480 {
6481 if (is_empty_class (type))
6482 return true;
6483 if (CLASS_TYPE_P (type))
6484 {
6485 tree field;
6486 tree binfo;
6487 tree base_binfo;
6488 int i;
6489
6490 for (binfo = TYPE_BINFO (type), i = 0;
6491 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6492 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6493 return true;
6494 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6495 if (TREE_CODE (field) == FIELD_DECL
6496 && !DECL_ARTIFICIAL (field)
6497 && is_empty_class (TREE_TYPE (field)))
6498 return true;
6499 }
6500 else if (TREE_CODE (type) == ARRAY_TYPE)
6501 return contains_empty_class_p (TREE_TYPE (type));
6502 return false;
6503 }
6504
6505 /* Returns true if TYPE contains no actual data, just various
6506 possible combinations of empty classes. */
6507
6508 bool
6509 is_really_empty_class (tree type)
6510 {
6511 if (is_empty_class (type))
6512 return true;
6513 if (CLASS_TYPE_P (type))
6514 {
6515 tree field;
6516 tree binfo;
6517 tree base_binfo;
6518 int i;
6519
6520 for (binfo = TYPE_BINFO (type), i = 0;
6521 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6522 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
6523 return false;
6524 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6525 if (TREE_CODE (field) == FIELD_DECL
6526 && !DECL_ARTIFICIAL (field)
6527 && !is_really_empty_class (TREE_TYPE (field)))
6528 return false;
6529 return true;
6530 }
6531 else if (TREE_CODE (type) == ARRAY_TYPE)
6532 return is_really_empty_class (TREE_TYPE (type));
6533 return false;
6534 }
6535
6536 /* Note that NAME was looked up while the current class was being
6537 defined and that the result of that lookup was DECL. */
6538
6539 void
6540 maybe_note_name_used_in_class (tree name, tree decl)
6541 {
6542 splay_tree names_used;
6543
6544 /* If we're not defining a class, there's nothing to do. */
6545 if (!(innermost_scope_kind() == sk_class
6546 && TYPE_BEING_DEFINED (current_class_type)))
6547 return;
6548
6549 /* If there's already a binding for this NAME, then we don't have
6550 anything to worry about. */
6551 if (lookup_member (current_class_type, name,
6552 /*protect=*/0, /*want_type=*/false))
6553 return;
6554
6555 if (!current_class_stack[current_class_depth - 1].names_used)
6556 current_class_stack[current_class_depth - 1].names_used
6557 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6558 names_used = current_class_stack[current_class_depth - 1].names_used;
6559
6560 splay_tree_insert (names_used,
6561 (splay_tree_key) name,
6562 (splay_tree_value) decl);
6563 }
6564
6565 /* Note that NAME was declared (as DECL) in the current class. Check
6566 to see that the declaration is valid. */
6567
6568 void
6569 note_name_declared_in_class (tree name, tree decl)
6570 {
6571 splay_tree names_used;
6572 splay_tree_node n;
6573
6574 /* Look to see if we ever used this name. */
6575 names_used
6576 = current_class_stack[current_class_depth - 1].names_used;
6577 if (!names_used)
6578 return;
6579
6580 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6581 if (n)
6582 {
6583 /* [basic.scope.class]
6584
6585 A name N used in a class S shall refer to the same declaration
6586 in its context and when re-evaluated in the completed scope of
6587 S. */
6588 permerror (input_location, "declaration of %q#D", decl);
6589 permerror (input_location, "changes meaning of %qD from %q+#D",
6590 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
6591 }
6592 }
6593
6594 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6595 Secondary vtables are merged with primary vtables; this function
6596 will return the VAR_DECL for the primary vtable. */
6597
6598 tree
6599 get_vtbl_decl_for_binfo (tree binfo)
6600 {
6601 tree decl;
6602
6603 decl = BINFO_VTABLE (binfo);
6604 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
6605 {
6606 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6607 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6608 }
6609 if (decl)
6610 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6611 return decl;
6612 }
6613
6614
6615 /* Returns the binfo for the primary base of BINFO. If the resulting
6616 BINFO is a virtual base, and it is inherited elsewhere in the
6617 hierarchy, then the returned binfo might not be the primary base of
6618 BINFO in the complete object. Check BINFO_PRIMARY_P or
6619 BINFO_LOST_PRIMARY_P to be sure. */
6620
6621 static tree
6622 get_primary_binfo (tree binfo)
6623 {
6624 tree primary_base;
6625
6626 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6627 if (!primary_base)
6628 return NULL_TREE;
6629
6630 return copied_binfo (primary_base, binfo);
6631 }
6632
6633 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6634
6635 static int
6636 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6637 {
6638 if (!indented_p)
6639 fprintf (stream, "%*s", indent, "");
6640 return 1;
6641 }
6642
6643 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6644 INDENT should be zero when called from the top level; it is
6645 incremented recursively. IGO indicates the next expected BINFO in
6646 inheritance graph ordering. */
6647
6648 static tree
6649 dump_class_hierarchy_r (FILE *stream,
6650 int flags,
6651 tree binfo,
6652 tree igo,
6653 int indent)
6654 {
6655 int indented = 0;
6656 tree base_binfo;
6657 int i;
6658
6659 indented = maybe_indent_hierarchy (stream, indent, 0);
6660 fprintf (stream, "%s (0x%lx) ",
6661 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6662 (unsigned long) binfo);
6663 if (binfo != igo)
6664 {
6665 fprintf (stream, "alternative-path\n");
6666 return igo;
6667 }
6668 igo = TREE_CHAIN (binfo);
6669
6670 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6671 tree_low_cst (BINFO_OFFSET (binfo), 0));
6672 if (is_empty_class (BINFO_TYPE (binfo)))
6673 fprintf (stream, " empty");
6674 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6675 fprintf (stream, " nearly-empty");
6676 if (BINFO_VIRTUAL_P (binfo))
6677 fprintf (stream, " virtual");
6678 fprintf (stream, "\n");
6679
6680 indented = 0;
6681 if (BINFO_PRIMARY_P (binfo))
6682 {
6683 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6684 fprintf (stream, " primary-for %s (0x%lx)",
6685 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6686 TFF_PLAIN_IDENTIFIER),
6687 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6688 }
6689 if (BINFO_LOST_PRIMARY_P (binfo))
6690 {
6691 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6692 fprintf (stream, " lost-primary");
6693 }
6694 if (indented)
6695 fprintf (stream, "\n");
6696
6697 if (!(flags & TDF_SLIM))
6698 {
6699 int indented = 0;
6700
6701 if (BINFO_SUBVTT_INDEX (binfo))
6702 {
6703 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6704 fprintf (stream, " subvttidx=%s",
6705 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6706 TFF_PLAIN_IDENTIFIER));
6707 }
6708 if (BINFO_VPTR_INDEX (binfo))
6709 {
6710 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6711 fprintf (stream, " vptridx=%s",
6712 expr_as_string (BINFO_VPTR_INDEX (binfo),
6713 TFF_PLAIN_IDENTIFIER));
6714 }
6715 if (BINFO_VPTR_FIELD (binfo))
6716 {
6717 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6718 fprintf (stream, " vbaseoffset=%s",
6719 expr_as_string (BINFO_VPTR_FIELD (binfo),
6720 TFF_PLAIN_IDENTIFIER));
6721 }
6722 if (BINFO_VTABLE (binfo))
6723 {
6724 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6725 fprintf (stream, " vptr=%s",
6726 expr_as_string (BINFO_VTABLE (binfo),
6727 TFF_PLAIN_IDENTIFIER));
6728 }
6729
6730 if (indented)
6731 fprintf (stream, "\n");
6732 }
6733
6734 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6735 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6736
6737 return igo;
6738 }
6739
6740 /* Dump the BINFO hierarchy for T. */
6741
6742 static void
6743 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6744 {
6745 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6746 fprintf (stream, " size=%lu align=%lu\n",
6747 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6748 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6749 fprintf (stream, " base size=%lu base align=%lu\n",
6750 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6751 / BITS_PER_UNIT),
6752 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6753 / BITS_PER_UNIT));
6754 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6755 fprintf (stream, "\n");
6756 }
6757
6758 /* Debug interface to hierarchy dumping. */
6759
6760 void
6761 debug_class (tree t)
6762 {
6763 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6764 }
6765
6766 static void
6767 dump_class_hierarchy (tree t)
6768 {
6769 int flags;
6770 FILE *stream = dump_begin (TDI_class, &flags);
6771
6772 if (stream)
6773 {
6774 dump_class_hierarchy_1 (stream, flags, t);
6775 dump_end (TDI_class, stream);
6776 }
6777 }
6778
6779 static void
6780 dump_array (FILE * stream, tree decl)
6781 {
6782 tree value;
6783 unsigned HOST_WIDE_INT ix;
6784 HOST_WIDE_INT elt;
6785 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6786
6787 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6788 / BITS_PER_UNIT);
6789 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6790 fprintf (stream, " %s entries",
6791 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6792 TFF_PLAIN_IDENTIFIER));
6793 fprintf (stream, "\n");
6794
6795 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
6796 ix, value)
6797 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6798 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
6799 }
6800
6801 static void
6802 dump_vtable (tree t, tree binfo, tree vtable)
6803 {
6804 int flags;
6805 FILE *stream = dump_begin (TDI_class, &flags);
6806
6807 if (!stream)
6808 return;
6809
6810 if (!(flags & TDF_SLIM))
6811 {
6812 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6813
6814 fprintf (stream, "%s for %s",
6815 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6816 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6817 if (ctor_vtbl_p)
6818 {
6819 if (!BINFO_VIRTUAL_P (binfo))
6820 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6821 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6822 }
6823 fprintf (stream, "\n");
6824 dump_array (stream, vtable);
6825 fprintf (stream, "\n");
6826 }
6827
6828 dump_end (TDI_class, stream);
6829 }
6830
6831 static void
6832 dump_vtt (tree t, tree vtt)
6833 {
6834 int flags;
6835 FILE *stream = dump_begin (TDI_class, &flags);
6836
6837 if (!stream)
6838 return;
6839
6840 if (!(flags & TDF_SLIM))
6841 {
6842 fprintf (stream, "VTT for %s\n",
6843 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6844 dump_array (stream, vtt);
6845 fprintf (stream, "\n");
6846 }
6847
6848 dump_end (TDI_class, stream);
6849 }
6850
6851 /* Dump a function or thunk and its thunkees. */
6852
6853 static void
6854 dump_thunk (FILE *stream, int indent, tree thunk)
6855 {
6856 static const char spaces[] = " ";
6857 tree name = DECL_NAME (thunk);
6858 tree thunks;
6859
6860 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6861 (void *)thunk,
6862 !DECL_THUNK_P (thunk) ? "function"
6863 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6864 name ? IDENTIFIER_POINTER (name) : "<unset>");
6865 if (DECL_THUNK_P (thunk))
6866 {
6867 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6868 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6869
6870 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6871 if (!virtual_adjust)
6872 /*NOP*/;
6873 else if (DECL_THIS_THUNK_P (thunk))
6874 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6875 tree_low_cst (virtual_adjust, 0));
6876 else
6877 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6878 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6879 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6880 if (THUNK_ALIAS (thunk))
6881 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6882 }
6883 fprintf (stream, "\n");
6884 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6885 dump_thunk (stream, indent + 2, thunks);
6886 }
6887
6888 /* Dump the thunks for FN. */
6889
6890 void
6891 debug_thunks (tree fn)
6892 {
6893 dump_thunk (stderr, 0, fn);
6894 }
6895
6896 /* Virtual function table initialization. */
6897
6898 /* Create all the necessary vtables for T and its base classes. */
6899
6900 static void
6901 finish_vtbls (tree t)
6902 {
6903 tree list;
6904 tree vbase;
6905
6906 /* We lay out the primary and secondary vtables in one contiguous
6907 vtable. The primary vtable is first, followed by the non-virtual
6908 secondary vtables in inheritance graph order. */
6909 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6910 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6911 TYPE_BINFO (t), t, list);
6912
6913 /* Then come the virtual bases, also in inheritance graph order. */
6914 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6915 {
6916 if (!BINFO_VIRTUAL_P (vbase))
6917 continue;
6918 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6919 }
6920
6921 if (BINFO_VTABLE (TYPE_BINFO (t)))
6922 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6923 }
6924
6925 /* Initialize the vtable for BINFO with the INITS. */
6926
6927 static void
6928 initialize_vtable (tree binfo, tree inits)
6929 {
6930 tree decl;
6931
6932 layout_vtable_decl (binfo, list_length (inits));
6933 decl = get_vtbl_decl_for_binfo (binfo);
6934 initialize_artificial_var (decl, inits);
6935 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6936 }
6937
6938 /* Build the VTT (virtual table table) for T.
6939 A class requires a VTT if it has virtual bases.
6940
6941 This holds
6942 1 - primary virtual pointer for complete object T
6943 2 - secondary VTTs for each direct non-virtual base of T which requires a
6944 VTT
6945 3 - secondary virtual pointers for each direct or indirect base of T which
6946 has virtual bases or is reachable via a virtual path from T.
6947 4 - secondary VTTs for each direct or indirect virtual base of T.
6948
6949 Secondary VTTs look like complete object VTTs without part 4. */
6950
6951 static void
6952 build_vtt (tree t)
6953 {
6954 tree inits;
6955 tree type;
6956 tree vtt;
6957 tree index;
6958
6959 /* Build up the initializers for the VTT. */
6960 inits = NULL_TREE;
6961 index = size_zero_node;
6962 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6963
6964 /* If we didn't need a VTT, we're done. */
6965 if (!inits)
6966 return;
6967
6968 /* Figure out the type of the VTT. */
6969 type = build_index_type (size_int (list_length (inits) - 1));
6970 type = build_cplus_array_type (const_ptr_type_node, type);
6971
6972 /* Now, build the VTT object itself. */
6973 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
6974 initialize_artificial_var (vtt, inits);
6975 /* Add the VTT to the vtables list. */
6976 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6977 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6978
6979 dump_vtt (t, vtt);
6980 }
6981
6982 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6983 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6984 and CHAIN the vtable pointer for this binfo after construction is
6985 complete. VALUE can also be another BINFO, in which case we recurse. */
6986
6987 static tree
6988 binfo_ctor_vtable (tree binfo)
6989 {
6990 tree vt;
6991
6992 while (1)
6993 {
6994 vt = BINFO_VTABLE (binfo);
6995 if (TREE_CODE (vt) == TREE_LIST)
6996 vt = TREE_VALUE (vt);
6997 if (TREE_CODE (vt) == TREE_BINFO)
6998 binfo = vt;
6999 else
7000 break;
7001 }
7002
7003 return vt;
7004 }
7005
7006 /* Data for secondary VTT initialization. */
7007 typedef struct secondary_vptr_vtt_init_data_s
7008 {
7009 /* Is this the primary VTT? */
7010 bool top_level_p;
7011
7012 /* Current index into the VTT. */
7013 tree index;
7014
7015 /* TREE_LIST of initializers built up. */
7016 tree inits;
7017
7018 /* The type being constructed by this secondary VTT. */
7019 tree type_being_constructed;
7020 } secondary_vptr_vtt_init_data;
7021
7022 /* Recursively build the VTT-initializer for BINFO (which is in the
7023 hierarchy dominated by T). INITS points to the end of the initializer
7024 list to date. INDEX is the VTT index where the next element will be
7025 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
7026 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
7027 for virtual bases of T. When it is not so, we build the constructor
7028 vtables for the BINFO-in-T variant. */
7029
7030 static tree *
7031 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
7032 {
7033 int i;
7034 tree b;
7035 tree init;
7036 tree secondary_vptrs;
7037 secondary_vptr_vtt_init_data data;
7038 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7039
7040 /* We only need VTTs for subobjects with virtual bases. */
7041 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7042 return inits;
7043
7044 /* We need to use a construction vtable if this is not the primary
7045 VTT. */
7046 if (!top_level_p)
7047 {
7048 build_ctor_vtbl_group (binfo, t);
7049
7050 /* Record the offset in the VTT where this sub-VTT can be found. */
7051 BINFO_SUBVTT_INDEX (binfo) = *index;
7052 }
7053
7054 /* Add the address of the primary vtable for the complete object. */
7055 init = binfo_ctor_vtable (binfo);
7056 *inits = build_tree_list (NULL_TREE, init);
7057 inits = &TREE_CHAIN (*inits);
7058 if (top_level_p)
7059 {
7060 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7061 BINFO_VPTR_INDEX (binfo) = *index;
7062 }
7063 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
7064
7065 /* Recursively add the secondary VTTs for non-virtual bases. */
7066 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
7067 if (!BINFO_VIRTUAL_P (b))
7068 inits = build_vtt_inits (b, t, inits, index);
7069
7070 /* Add secondary virtual pointers for all subobjects of BINFO with
7071 either virtual bases or reachable along a virtual path, except
7072 subobjects that are non-virtual primary bases. */
7073 data.top_level_p = top_level_p;
7074 data.index = *index;
7075 data.inits = NULL;
7076 data.type_being_constructed = BINFO_TYPE (binfo);
7077
7078 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
7079
7080 *index = data.index;
7081
7082 /* The secondary vptrs come back in reverse order. After we reverse
7083 them, and add the INITS, the last init will be the first element
7084 of the chain. */
7085 secondary_vptrs = data.inits;
7086 if (secondary_vptrs)
7087 {
7088 *inits = nreverse (secondary_vptrs);
7089 inits = &TREE_CHAIN (secondary_vptrs);
7090 gcc_assert (*inits == NULL_TREE);
7091 }
7092
7093 if (top_level_p)
7094 /* Add the secondary VTTs for virtual bases in inheritance graph
7095 order. */
7096 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
7097 {
7098 if (!BINFO_VIRTUAL_P (b))
7099 continue;
7100
7101 inits = build_vtt_inits (b, t, inits, index);
7102 }
7103 else
7104 /* Remove the ctor vtables we created. */
7105 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
7106
7107 return inits;
7108 }
7109
7110 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
7111 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
7112
7113 static tree
7114 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
7115 {
7116 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
7117
7118 /* We don't care about bases that don't have vtables. */
7119 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
7120 return dfs_skip_bases;
7121
7122 /* We're only interested in proper subobjects of the type being
7123 constructed. */
7124 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
7125 return NULL_TREE;
7126
7127 /* We're only interested in bases with virtual bases or reachable
7128 via a virtual path from the type being constructed. */
7129 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7130 || binfo_via_virtual (binfo, data->type_being_constructed)))
7131 return dfs_skip_bases;
7132
7133 /* We're not interested in non-virtual primary bases. */
7134 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
7135 return NULL_TREE;
7136
7137 /* Record the index where this secondary vptr can be found. */
7138 if (data->top_level_p)
7139 {
7140 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7141 BINFO_VPTR_INDEX (binfo) = data->index;
7142
7143 if (BINFO_VIRTUAL_P (binfo))
7144 {
7145 /* It's a primary virtual base, and this is not a
7146 construction vtable. Find the base this is primary of in
7147 the inheritance graph, and use that base's vtable
7148 now. */
7149 while (BINFO_PRIMARY_P (binfo))
7150 binfo = BINFO_INHERITANCE_CHAIN (binfo);
7151 }
7152 }
7153
7154 /* Add the initializer for the secondary vptr itself. */
7155 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
7156
7157 /* Advance the vtt index. */
7158 data->index = size_binop (PLUS_EXPR, data->index,
7159 TYPE_SIZE_UNIT (ptr_type_node));
7160
7161 return NULL_TREE;
7162 }
7163
7164 /* Called from build_vtt_inits via dfs_walk. After building
7165 constructor vtables and generating the sub-vtt from them, we need
7166 to restore the BINFO_VTABLES that were scribbled on. DATA is the
7167 binfo of the base whose sub vtt was generated. */
7168
7169 static tree
7170 dfs_fixup_binfo_vtbls (tree binfo, void* data)
7171 {
7172 tree vtable = BINFO_VTABLE (binfo);
7173
7174 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7175 /* If this class has no vtable, none of its bases do. */
7176 return dfs_skip_bases;
7177
7178 if (!vtable)
7179 /* This might be a primary base, so have no vtable in this
7180 hierarchy. */
7181 return NULL_TREE;
7182
7183 /* If we scribbled the construction vtable vptr into BINFO, clear it
7184 out now. */
7185 if (TREE_CODE (vtable) == TREE_LIST
7186 && (TREE_PURPOSE (vtable) == (tree) data))
7187 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
7188
7189 return NULL_TREE;
7190 }
7191
7192 /* Build the construction vtable group for BINFO which is in the
7193 hierarchy dominated by T. */
7194
7195 static void
7196 build_ctor_vtbl_group (tree binfo, tree t)
7197 {
7198 tree list;
7199 tree type;
7200 tree vtbl;
7201 tree inits;
7202 tree id;
7203 tree vbase;
7204
7205 /* See if we've already created this construction vtable group. */
7206 id = mangle_ctor_vtbl_for_type (t, binfo);
7207 if (IDENTIFIER_GLOBAL_VALUE (id))
7208 return;
7209
7210 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
7211 /* Build a version of VTBL (with the wrong type) for use in
7212 constructing the addresses of secondary vtables in the
7213 construction vtable group. */
7214 vtbl = build_vtable (t, id, ptr_type_node);
7215 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
7216 list = build_tree_list (vtbl, NULL_TREE);
7217 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
7218 binfo, t, list);
7219
7220 /* Add the vtables for each of our virtual bases using the vbase in T
7221 binfo. */
7222 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7223 vbase;
7224 vbase = TREE_CHAIN (vbase))
7225 {
7226 tree b;
7227
7228 if (!BINFO_VIRTUAL_P (vbase))
7229 continue;
7230 b = copied_binfo (vbase, binfo);
7231
7232 accumulate_vtbl_inits (b, vbase, binfo, t, list);
7233 }
7234 inits = TREE_VALUE (list);
7235
7236 /* Figure out the type of the construction vtable. */
7237 type = build_index_type (size_int (list_length (inits) - 1));
7238 type = build_cplus_array_type (vtable_entry_type, type);
7239 layout_type (type);
7240 TREE_TYPE (vtbl) = type;
7241 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
7242 layout_decl (vtbl, 0);
7243
7244 /* Initialize the construction vtable. */
7245 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
7246 initialize_artificial_var (vtbl, inits);
7247 dump_vtable (t, binfo, vtbl);
7248 }
7249
7250 /* Add the vtbl initializers for BINFO (and its bases other than
7251 non-virtual primaries) to the list of INITS. BINFO is in the
7252 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
7253 the constructor the vtbl inits should be accumulated for. (If this
7254 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
7255 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
7256 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
7257 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
7258 but are not necessarily the same in terms of layout. */
7259
7260 static void
7261 accumulate_vtbl_inits (tree binfo,
7262 tree orig_binfo,
7263 tree rtti_binfo,
7264 tree t,
7265 tree inits)
7266 {
7267 int i;
7268 tree base_binfo;
7269 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7270
7271 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
7272
7273 /* If it doesn't have a vptr, we don't do anything. */
7274 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7275 return;
7276
7277 /* If we're building a construction vtable, we're not interested in
7278 subobjects that don't require construction vtables. */
7279 if (ctor_vtbl_p
7280 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7281 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
7282 return;
7283
7284 /* Build the initializers for the BINFO-in-T vtable. */
7285 TREE_VALUE (inits)
7286 = chainon (TREE_VALUE (inits),
7287 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
7288 rtti_binfo, t, inits));
7289
7290 /* Walk the BINFO and its bases. We walk in preorder so that as we
7291 initialize each vtable we can figure out at what offset the
7292 secondary vtable lies from the primary vtable. We can't use
7293 dfs_walk here because we need to iterate through bases of BINFO
7294 and RTTI_BINFO simultaneously. */
7295 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7296 {
7297 /* Skip virtual bases. */
7298 if (BINFO_VIRTUAL_P (base_binfo))
7299 continue;
7300 accumulate_vtbl_inits (base_binfo,
7301 BINFO_BASE_BINFO (orig_binfo, i),
7302 rtti_binfo, t,
7303 inits);
7304 }
7305 }
7306
7307 /* Called from accumulate_vtbl_inits. Returns the initializers for
7308 the BINFO vtable. */
7309
7310 static tree
7311 dfs_accumulate_vtbl_inits (tree binfo,
7312 tree orig_binfo,
7313 tree rtti_binfo,
7314 tree t,
7315 tree l)
7316 {
7317 tree inits = NULL_TREE;
7318 tree vtbl = NULL_TREE;
7319 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7320
7321 if (ctor_vtbl_p
7322 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7323 {
7324 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7325 primary virtual base. If it is not the same primary in
7326 the hierarchy of T, we'll need to generate a ctor vtable
7327 for it, to place at its location in T. If it is the same
7328 primary, we still need a VTT entry for the vtable, but it
7329 should point to the ctor vtable for the base it is a
7330 primary for within the sub-hierarchy of RTTI_BINFO.
7331
7332 There are three possible cases:
7333
7334 1) We are in the same place.
7335 2) We are a primary base within a lost primary virtual base of
7336 RTTI_BINFO.
7337 3) We are primary to something not a base of RTTI_BINFO. */
7338
7339 tree b;
7340 tree last = NULL_TREE;
7341
7342 /* First, look through the bases we are primary to for RTTI_BINFO
7343 or a virtual base. */
7344 b = binfo;
7345 while (BINFO_PRIMARY_P (b))
7346 {
7347 b = BINFO_INHERITANCE_CHAIN (b);
7348 last = b;
7349 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7350 goto found;
7351 }
7352 /* If we run out of primary links, keep looking down our
7353 inheritance chain; we might be an indirect primary. */
7354 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7355 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7356 break;
7357 found:
7358
7359 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7360 base B and it is a base of RTTI_BINFO, this is case 2. In
7361 either case, we share our vtable with LAST, i.e. the
7362 derived-most base within B of which we are a primary. */
7363 if (b == rtti_binfo
7364 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7365 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7366 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7367 binfo_ctor_vtable after everything's been set up. */
7368 vtbl = last;
7369
7370 /* Otherwise, this is case 3 and we get our own. */
7371 }
7372 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7373 return inits;
7374
7375 if (!vtbl)
7376 {
7377 tree index;
7378 int non_fn_entries;
7379
7380 /* Compute the initializer for this vtable. */
7381 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7382 &non_fn_entries);
7383
7384 /* Figure out the position to which the VPTR should point. */
7385 vtbl = TREE_PURPOSE (l);
7386 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7387 index = size_binop (PLUS_EXPR,
7388 size_int (non_fn_entries),
7389 size_int (list_length (TREE_VALUE (l))));
7390 index = size_binop (MULT_EXPR,
7391 TYPE_SIZE_UNIT (vtable_entry_type),
7392 index);
7393 vtbl = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7394 }
7395
7396 if (ctor_vtbl_p)
7397 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7398 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7399 straighten this out. */
7400 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7401 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7402 inits = NULL_TREE;
7403 else
7404 /* For an ordinary vtable, set BINFO_VTABLE. */
7405 BINFO_VTABLE (binfo) = vtbl;
7406
7407 return inits;
7408 }
7409
7410 static GTY(()) tree abort_fndecl_addr;
7411
7412 /* Construct the initializer for BINFO's virtual function table. BINFO
7413 is part of the hierarchy dominated by T. If we're building a
7414 construction vtable, the ORIG_BINFO is the binfo we should use to
7415 find the actual function pointers to put in the vtable - but they
7416 can be overridden on the path to most-derived in the graph that
7417 ORIG_BINFO belongs. Otherwise,
7418 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7419 BINFO that should be indicated by the RTTI information in the
7420 vtable; it will be a base class of T, rather than T itself, if we
7421 are building a construction vtable.
7422
7423 The value returned is a TREE_LIST suitable for wrapping in a
7424 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7425 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7426 number of non-function entries in the vtable.
7427
7428 It might seem that this function should never be called with a
7429 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7430 base is always subsumed by a derived class vtable. However, when
7431 we are building construction vtables, we do build vtables for
7432 primary bases; we need these while the primary base is being
7433 constructed. */
7434
7435 static tree
7436 build_vtbl_initializer (tree binfo,
7437 tree orig_binfo,
7438 tree t,
7439 tree rtti_binfo,
7440 int* non_fn_entries_p)
7441 {
7442 tree v, b;
7443 tree vfun_inits;
7444 vtbl_init_data vid;
7445 unsigned ix;
7446 tree vbinfo;
7447 VEC(tree,gc) *vbases;
7448
7449 /* Initialize VID. */
7450 memset (&vid, 0, sizeof (vid));
7451 vid.binfo = binfo;
7452 vid.derived = t;
7453 vid.rtti_binfo = rtti_binfo;
7454 vid.last_init = &vid.inits;
7455 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7456 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7457 vid.generate_vcall_entries = true;
7458 /* The first vbase or vcall offset is at index -3 in the vtable. */
7459 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7460
7461 /* Add entries to the vtable for RTTI. */
7462 build_rtti_vtbl_entries (binfo, &vid);
7463
7464 /* Create an array for keeping track of the functions we've
7465 processed. When we see multiple functions with the same
7466 signature, we share the vcall offsets. */
7467 vid.fns = VEC_alloc (tree, gc, 32);
7468 /* Add the vcall and vbase offset entries. */
7469 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7470
7471 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7472 build_vbase_offset_vtbl_entries. */
7473 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7474 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7475 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7476
7477 /* If the target requires padding between data entries, add that now. */
7478 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7479 {
7480 tree cur, *prev;
7481
7482 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7483 {
7484 tree add = cur;
7485 int i;
7486
7487 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7488 add = tree_cons (NULL_TREE,
7489 build1 (NOP_EXPR, vtable_entry_type,
7490 null_pointer_node),
7491 add);
7492 *prev = add;
7493 }
7494 }
7495
7496 if (non_fn_entries_p)
7497 *non_fn_entries_p = list_length (vid.inits);
7498
7499 /* Go through all the ordinary virtual functions, building up
7500 initializers. */
7501 vfun_inits = NULL_TREE;
7502 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7503 {
7504 tree delta;
7505 tree vcall_index;
7506 tree fn, fn_original;
7507 tree init = NULL_TREE;
7508
7509 fn = BV_FN (v);
7510 fn_original = fn;
7511 if (DECL_THUNK_P (fn))
7512 {
7513 if (!DECL_NAME (fn))
7514 finish_thunk (fn);
7515 if (THUNK_ALIAS (fn))
7516 {
7517 fn = THUNK_ALIAS (fn);
7518 BV_FN (v) = fn;
7519 }
7520 fn_original = THUNK_TARGET (fn);
7521 }
7522
7523 /* If the only definition of this function signature along our
7524 primary base chain is from a lost primary, this vtable slot will
7525 never be used, so just zero it out. This is important to avoid
7526 requiring extra thunks which cannot be generated with the function.
7527
7528 We first check this in update_vtable_entry_for_fn, so we handle
7529 restored primary bases properly; we also need to do it here so we
7530 zero out unused slots in ctor vtables, rather than filling them
7531 with erroneous values (though harmless, apart from relocation
7532 costs). */
7533 for (b = binfo; ; b = get_primary_binfo (b))
7534 {
7535 /* We found a defn before a lost primary; go ahead as normal. */
7536 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7537 break;
7538
7539 /* The nearest definition is from a lost primary; clear the
7540 slot. */
7541 if (BINFO_LOST_PRIMARY_P (b))
7542 {
7543 init = size_zero_node;
7544 break;
7545 }
7546 }
7547
7548 if (! init)
7549 {
7550 /* Pull the offset for `this', and the function to call, out of
7551 the list. */
7552 delta = BV_DELTA (v);
7553 vcall_index = BV_VCALL_INDEX (v);
7554
7555 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7556 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7557
7558 /* You can't call an abstract virtual function; it's abstract.
7559 So, we replace these functions with __pure_virtual. */
7560 if (DECL_PURE_VIRTUAL_P (fn_original))
7561 {
7562 fn = abort_fndecl;
7563 if (abort_fndecl_addr == NULL)
7564 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7565 init = abort_fndecl_addr;
7566 }
7567 else
7568 {
7569 if (!integer_zerop (delta) || vcall_index)
7570 {
7571 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7572 if (!DECL_NAME (fn))
7573 finish_thunk (fn);
7574 }
7575 /* Take the address of the function, considering it to be of an
7576 appropriate generic type. */
7577 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7578 }
7579 }
7580
7581 /* And add it to the chain of initializers. */
7582 if (TARGET_VTABLE_USES_DESCRIPTORS)
7583 {
7584 int i;
7585 if (init == size_zero_node)
7586 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7587 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7588 else
7589 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7590 {
7591 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7592 TREE_OPERAND (init, 0),
7593 build_int_cst (NULL_TREE, i));
7594 TREE_CONSTANT (fdesc) = 1;
7595
7596 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7597 }
7598 }
7599 else
7600 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7601 }
7602
7603 /* The initializers for virtual functions were built up in reverse
7604 order; straighten them out now. */
7605 vfun_inits = nreverse (vfun_inits);
7606
7607 /* The negative offset initializers are also in reverse order. */
7608 vid.inits = nreverse (vid.inits);
7609
7610 /* Chain the two together. */
7611 return chainon (vid.inits, vfun_inits);
7612 }
7613
7614 /* Adds to vid->inits the initializers for the vbase and vcall
7615 offsets in BINFO, which is in the hierarchy dominated by T. */
7616
7617 static void
7618 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7619 {
7620 tree b;
7621
7622 /* If this is a derived class, we must first create entries
7623 corresponding to the primary base class. */
7624 b = get_primary_binfo (binfo);
7625 if (b)
7626 build_vcall_and_vbase_vtbl_entries (b, vid);
7627
7628 /* Add the vbase entries for this base. */
7629 build_vbase_offset_vtbl_entries (binfo, vid);
7630 /* Add the vcall entries for this base. */
7631 build_vcall_offset_vtbl_entries (binfo, vid);
7632 }
7633
7634 /* Returns the initializers for the vbase offset entries in the vtable
7635 for BINFO (which is part of the class hierarchy dominated by T), in
7636 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7637 where the next vbase offset will go. */
7638
7639 static void
7640 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7641 {
7642 tree vbase;
7643 tree t;
7644 tree non_primary_binfo;
7645
7646 /* If there are no virtual baseclasses, then there is nothing to
7647 do. */
7648 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7649 return;
7650
7651 t = vid->derived;
7652
7653 /* We might be a primary base class. Go up the inheritance hierarchy
7654 until we find the most derived class of which we are a primary base:
7655 it is the offset of that which we need to use. */
7656 non_primary_binfo = binfo;
7657 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7658 {
7659 tree b;
7660
7661 /* If we have reached a virtual base, then it must be a primary
7662 base (possibly multi-level) of vid->binfo, or we wouldn't
7663 have called build_vcall_and_vbase_vtbl_entries for it. But it
7664 might be a lost primary, so just skip down to vid->binfo. */
7665 if (BINFO_VIRTUAL_P (non_primary_binfo))
7666 {
7667 non_primary_binfo = vid->binfo;
7668 break;
7669 }
7670
7671 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7672 if (get_primary_binfo (b) != non_primary_binfo)
7673 break;
7674 non_primary_binfo = b;
7675 }
7676
7677 /* Go through the virtual bases, adding the offsets. */
7678 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7679 vbase;
7680 vbase = TREE_CHAIN (vbase))
7681 {
7682 tree b;
7683 tree delta;
7684
7685 if (!BINFO_VIRTUAL_P (vbase))
7686 continue;
7687
7688 /* Find the instance of this virtual base in the complete
7689 object. */
7690 b = copied_binfo (vbase, binfo);
7691
7692 /* If we've already got an offset for this virtual base, we
7693 don't need another one. */
7694 if (BINFO_VTABLE_PATH_MARKED (b))
7695 continue;
7696 BINFO_VTABLE_PATH_MARKED (b) = 1;
7697
7698 /* Figure out where we can find this vbase offset. */
7699 delta = size_binop (MULT_EXPR,
7700 vid->index,
7701 convert (ssizetype,
7702 TYPE_SIZE_UNIT (vtable_entry_type)));
7703 if (vid->primary_vtbl_p)
7704 BINFO_VPTR_FIELD (b) = delta;
7705
7706 if (binfo != TYPE_BINFO (t))
7707 /* The vbase offset had better be the same. */
7708 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7709
7710 /* The next vbase will come at a more negative offset. */
7711 vid->index = size_binop (MINUS_EXPR, vid->index,
7712 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7713
7714 /* The initializer is the delta from BINFO to this virtual base.
7715 The vbase offsets go in reverse inheritance-graph order, and
7716 we are walking in inheritance graph order so these end up in
7717 the right order. */
7718 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7719
7720 *vid->last_init
7721 = build_tree_list (NULL_TREE,
7722 fold_build1 (NOP_EXPR,
7723 vtable_entry_type,
7724 delta));
7725 vid->last_init = &TREE_CHAIN (*vid->last_init);
7726 }
7727 }
7728
7729 /* Adds the initializers for the vcall offset entries in the vtable
7730 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7731 to VID->INITS. */
7732
7733 static void
7734 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7735 {
7736 /* We only need these entries if this base is a virtual base. We
7737 compute the indices -- but do not add to the vtable -- when
7738 building the main vtable for a class. */
7739 if (binfo == TYPE_BINFO (vid->derived)
7740 || (BINFO_VIRTUAL_P (binfo)
7741 /* If BINFO is RTTI_BINFO, then (since BINFO does not
7742 correspond to VID->DERIVED), we are building a primary
7743 construction virtual table. Since this is a primary
7744 virtual table, we do not need the vcall offsets for
7745 BINFO. */
7746 && binfo != vid->rtti_binfo))
7747 {
7748 /* We need a vcall offset for each of the virtual functions in this
7749 vtable. For example:
7750
7751 class A { virtual void f (); };
7752 class B1 : virtual public A { virtual void f (); };
7753 class B2 : virtual public A { virtual void f (); };
7754 class C: public B1, public B2 { virtual void f (); };
7755
7756 A C object has a primary base of B1, which has a primary base of A. A
7757 C also has a secondary base of B2, which no longer has a primary base
7758 of A. So the B2-in-C construction vtable needs a secondary vtable for
7759 A, which will adjust the A* to a B2* to call f. We have no way of
7760 knowing what (or even whether) this offset will be when we define B2,
7761 so we store this "vcall offset" in the A sub-vtable and look it up in
7762 a "virtual thunk" for B2::f.
7763
7764 We need entries for all the functions in our primary vtable and
7765 in our non-virtual bases' secondary vtables. */
7766 vid->vbase = binfo;
7767 /* If we are just computing the vcall indices -- but do not need
7768 the actual entries -- not that. */
7769 if (!BINFO_VIRTUAL_P (binfo))
7770 vid->generate_vcall_entries = false;
7771 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7772 add_vcall_offset_vtbl_entries_r (binfo, vid);
7773 }
7774 }
7775
7776 /* Build vcall offsets, starting with those for BINFO. */
7777
7778 static void
7779 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7780 {
7781 int i;
7782 tree primary_binfo;
7783 tree base_binfo;
7784
7785 /* Don't walk into virtual bases -- except, of course, for the
7786 virtual base for which we are building vcall offsets. Any
7787 primary virtual base will have already had its offsets generated
7788 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7789 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7790 return;
7791
7792 /* If BINFO has a primary base, process it first. */
7793 primary_binfo = get_primary_binfo (binfo);
7794 if (primary_binfo)
7795 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7796
7797 /* Add BINFO itself to the list. */
7798 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7799
7800 /* Scan the non-primary bases of BINFO. */
7801 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7802 if (base_binfo != primary_binfo)
7803 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7804 }
7805
7806 /* Called from build_vcall_offset_vtbl_entries_r. */
7807
7808 static void
7809 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7810 {
7811 /* Make entries for the rest of the virtuals. */
7812 if (abi_version_at_least (2))
7813 {
7814 tree orig_fn;
7815
7816 /* The ABI requires that the methods be processed in declaration
7817 order. G++ 3.2 used the order in the vtable. */
7818 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7819 orig_fn;
7820 orig_fn = TREE_CHAIN (orig_fn))
7821 if (DECL_VINDEX (orig_fn))
7822 add_vcall_offset (orig_fn, binfo, vid);
7823 }
7824 else
7825 {
7826 tree derived_virtuals;
7827 tree base_virtuals;
7828 tree orig_virtuals;
7829 /* If BINFO is a primary base, the most derived class which has
7830 BINFO as a primary base; otherwise, just BINFO. */
7831 tree non_primary_binfo;
7832
7833 /* We might be a primary base class. Go up the inheritance hierarchy
7834 until we find the most derived class of which we are a primary base:
7835 it is the BINFO_VIRTUALS there that we need to consider. */
7836 non_primary_binfo = binfo;
7837 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7838 {
7839 tree b;
7840
7841 /* If we have reached a virtual base, then it must be vid->vbase,
7842 because we ignore other virtual bases in
7843 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7844 base (possibly multi-level) of vid->binfo, or we wouldn't
7845 have called build_vcall_and_vbase_vtbl_entries for it. But it
7846 might be a lost primary, so just skip down to vid->binfo. */
7847 if (BINFO_VIRTUAL_P (non_primary_binfo))
7848 {
7849 gcc_assert (non_primary_binfo == vid->vbase);
7850 non_primary_binfo = vid->binfo;
7851 break;
7852 }
7853
7854 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7855 if (get_primary_binfo (b) != non_primary_binfo)
7856 break;
7857 non_primary_binfo = b;
7858 }
7859
7860 if (vid->ctor_vtbl_p)
7861 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7862 where rtti_binfo is the most derived type. */
7863 non_primary_binfo
7864 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7865
7866 for (base_virtuals = BINFO_VIRTUALS (binfo),
7867 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7868 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7869 base_virtuals;
7870 base_virtuals = TREE_CHAIN (base_virtuals),
7871 derived_virtuals = TREE_CHAIN (derived_virtuals),
7872 orig_virtuals = TREE_CHAIN (orig_virtuals))
7873 {
7874 tree orig_fn;
7875
7876 /* Find the declaration that originally caused this function to
7877 be present in BINFO_TYPE (binfo). */
7878 orig_fn = BV_FN (orig_virtuals);
7879
7880 /* When processing BINFO, we only want to generate vcall slots for
7881 function slots introduced in BINFO. So don't try to generate
7882 one if the function isn't even defined in BINFO. */
7883 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7884 continue;
7885
7886 add_vcall_offset (orig_fn, binfo, vid);
7887 }
7888 }
7889 }
7890
7891 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7892
7893 static void
7894 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7895 {
7896 size_t i;
7897 tree vcall_offset;
7898 tree derived_entry;
7899
7900 /* If there is already an entry for a function with the same
7901 signature as FN, then we do not need a second vcall offset.
7902 Check the list of functions already present in the derived
7903 class vtable. */
7904 for (i = 0; VEC_iterate (tree, vid->fns, i, derived_entry); ++i)
7905 {
7906 if (same_signature_p (derived_entry, orig_fn)
7907 /* We only use one vcall offset for virtual destructors,
7908 even though there are two virtual table entries. */
7909 || (DECL_DESTRUCTOR_P (derived_entry)
7910 && DECL_DESTRUCTOR_P (orig_fn)))
7911 return;
7912 }
7913
7914 /* If we are building these vcall offsets as part of building
7915 the vtable for the most derived class, remember the vcall
7916 offset. */
7917 if (vid->binfo == TYPE_BINFO (vid->derived))
7918 {
7919 tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
7920 CLASSTYPE_VCALL_INDICES (vid->derived),
7921 NULL);
7922 elt->purpose = orig_fn;
7923 elt->value = vid->index;
7924 }
7925
7926 /* The next vcall offset will be found at a more negative
7927 offset. */
7928 vid->index = size_binop (MINUS_EXPR, vid->index,
7929 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7930
7931 /* Keep track of this function. */
7932 VEC_safe_push (tree, gc, vid->fns, orig_fn);
7933
7934 if (vid->generate_vcall_entries)
7935 {
7936 tree base;
7937 tree fn;
7938
7939 /* Find the overriding function. */
7940 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7941 if (fn == error_mark_node)
7942 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7943 integer_zero_node);
7944 else
7945 {
7946 base = TREE_VALUE (fn);
7947
7948 /* The vbase we're working on is a primary base of
7949 vid->binfo. But it might be a lost primary, so its
7950 BINFO_OFFSET might be wrong, so we just use the
7951 BINFO_OFFSET from vid->binfo. */
7952 vcall_offset = size_diffop (BINFO_OFFSET (base),
7953 BINFO_OFFSET (vid->binfo));
7954 vcall_offset = fold_build1 (NOP_EXPR, vtable_entry_type,
7955 vcall_offset);
7956 }
7957 /* Add the initializer to the vtable. */
7958 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7959 vid->last_init = &TREE_CHAIN (*vid->last_init);
7960 }
7961 }
7962
7963 /* Return vtbl initializers for the RTTI entries corresponding to the
7964 BINFO's vtable. The RTTI entries should indicate the object given
7965 by VID->rtti_binfo. */
7966
7967 static void
7968 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7969 {
7970 tree b;
7971 tree t;
7972 tree basetype;
7973 tree offset;
7974 tree decl;
7975 tree init;
7976
7977 basetype = BINFO_TYPE (binfo);
7978 t = BINFO_TYPE (vid->rtti_binfo);
7979
7980 /* To find the complete object, we will first convert to our most
7981 primary base, and then add the offset in the vtbl to that value. */
7982 b = binfo;
7983 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
7984 && !BINFO_LOST_PRIMARY_P (b))
7985 {
7986 tree primary_base;
7987
7988 primary_base = get_primary_binfo (b);
7989 gcc_assert (BINFO_PRIMARY_P (primary_base)
7990 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
7991 b = primary_base;
7992 }
7993 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
7994
7995 /* The second entry is the address of the typeinfo object. */
7996 if (flag_rtti)
7997 decl = build_address (get_tinfo_decl (t));
7998 else
7999 decl = integer_zero_node;
8000
8001 /* Convert the declaration to a type that can be stored in the
8002 vtable. */
8003 init = build_nop (vfunc_ptr_type_node, decl);
8004 *vid->last_init = build_tree_list (NULL_TREE, init);
8005 vid->last_init = &TREE_CHAIN (*vid->last_init);
8006
8007 /* Add the offset-to-top entry. It comes earlier in the vtable than
8008 the typeinfo entry. Convert the offset to look like a
8009 function pointer, so that we can put it in the vtable. */
8010 init = build_nop (vfunc_ptr_type_node, offset);
8011 *vid->last_init = build_tree_list (NULL_TREE, init);
8012 vid->last_init = &TREE_CHAIN (*vid->last_init);
8013 }
8014
8015 /* Fold a OBJ_TYPE_REF expression to the address of a function.
8016 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
8017
8018 tree
8019 cp_fold_obj_type_ref (tree ref, tree known_type)
8020 {
8021 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
8022 HOST_WIDE_INT i = 0;
8023 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
8024 tree fndecl;
8025
8026 while (i != index)
8027 {
8028 i += (TARGET_VTABLE_USES_DESCRIPTORS
8029 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
8030 v = TREE_CHAIN (v);
8031 }
8032
8033 fndecl = BV_FN (v);
8034
8035 #ifdef ENABLE_CHECKING
8036 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
8037 DECL_VINDEX (fndecl)));
8038 #endif
8039
8040 cgraph_node (fndecl)->local.vtable_method = true;
8041
8042 return build_address (fndecl);
8043 }
8044
8045 #include "gt-cp-class.h"