cp-tree.h (IS_AGGR_TYPE): Rename to MAYBE_CLASS_TYPE_P.
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38 #include "cgraph.h"
39 #include "tree-dump.h"
40
41 /* The number of nested classes being processed. If we are not in the
42 scope of any class, this is zero. */
43
44 int current_class_depth;
45
46 /* In order to deal with nested classes, we keep a stack of classes.
47 The topmost entry is the innermost class, and is the entry at index
48 CURRENT_CLASS_DEPTH */
49
50 typedef struct class_stack_node {
51 /* The name of the class. */
52 tree name;
53
54 /* The _TYPE node for the class. */
55 tree type;
56
57 /* The access specifier pending for new declarations in the scope of
58 this class. */
59 tree access;
60
61 /* If were defining TYPE, the names used in this class. */
62 splay_tree names_used;
63
64 /* Nonzero if this class is no longer open, because of a call to
65 push_to_top_level. */
66 size_t hidden;
67 }* class_stack_node_t;
68
69 typedef struct vtbl_init_data_s
70 {
71 /* The base for which we're building initializers. */
72 tree binfo;
73 /* The type of the most-derived type. */
74 tree derived;
75 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
76 unless ctor_vtbl_p is true. */
77 tree rtti_binfo;
78 /* The negative-index vtable initializers built up so far. These
79 are in order from least negative index to most negative index. */
80 tree inits;
81 /* The last (i.e., most negative) entry in INITS. */
82 tree* last_init;
83 /* The binfo for the virtual base for which we're building
84 vcall offset initializers. */
85 tree vbase;
86 /* The functions in vbase for which we have already provided vcall
87 offsets. */
88 VEC(tree,gc) *fns;
89 /* The vtable index of the next vcall or vbase offset. */
90 tree index;
91 /* Nonzero if we are building the initializer for the primary
92 vtable. */
93 int primary_vtbl_p;
94 /* Nonzero if we are building the initializer for a construction
95 vtable. */
96 int ctor_vtbl_p;
97 /* True when adding vcall offset entries to the vtable. False when
98 merely computing the indices. */
99 bool generate_vcall_entries;
100 } vtbl_init_data;
101
102 /* The type of a function passed to walk_subobject_offsets. */
103 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
104
105 /* The stack itself. This is a dynamically resized array. The
106 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
107 static int current_class_stack_size;
108 static class_stack_node_t current_class_stack;
109
110 /* The size of the largest empty class seen in this translation unit. */
111 static GTY (()) tree sizeof_biggest_empty_class;
112
113 /* An array of all local classes present in this translation unit, in
114 declaration order. */
115 VEC(tree,gc) *local_classes;
116
117 static tree get_vfield_name (tree);
118 static void finish_struct_anon (tree);
119 static tree get_vtable_name (tree);
120 static tree get_basefndecls (tree, tree);
121 static int build_primary_vtable (tree, tree);
122 static int build_secondary_vtable (tree);
123 static void finish_vtbls (tree);
124 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
125 static void finish_struct_bits (tree);
126 static int alter_access (tree, tree, tree);
127 static void handle_using_decl (tree, tree);
128 static tree dfs_modify_vtables (tree, void *);
129 static tree modify_all_vtables (tree, tree);
130 static void determine_primary_bases (tree);
131 static void finish_struct_methods (tree);
132 static void maybe_warn_about_overly_private_class (tree);
133 static int method_name_cmp (const void *, const void *);
134 static int resort_method_name_cmp (const void *, const void *);
135 static void add_implicitly_declared_members (tree, int, int);
136 static tree fixed_type_or_null (tree, int *, int *);
137 static tree build_simple_base_path (tree expr, tree binfo);
138 static tree build_vtbl_ref_1 (tree, tree);
139 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
140 static int count_fields (tree);
141 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
142 static bool check_bitfield_decl (tree);
143 static void check_field_decl (tree, tree, int *, int *, int *);
144 static void check_field_decls (tree, tree *, int *, int *);
145 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
146 static void build_base_fields (record_layout_info, splay_tree, tree *);
147 static void check_methods (tree);
148 static void remove_zero_width_bit_fields (tree);
149 static void check_bases (tree, int *, int *);
150 static void check_bases_and_members (tree);
151 static tree create_vtable_ptr (tree, tree *);
152 static void include_empty_classes (record_layout_info);
153 static void layout_class_type (tree, tree *);
154 static void fixup_pending_inline (tree);
155 static void fixup_inline_methods (tree);
156 static void propagate_binfo_offsets (tree, tree);
157 static void layout_virtual_bases (record_layout_info, splay_tree);
158 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
160 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
161 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
162 static void add_vcall_offset (tree, tree, vtbl_init_data *);
163 static void layout_vtable_decl (tree, int);
164 static tree dfs_find_final_overrider_pre (tree, void *);
165 static tree dfs_find_final_overrider_post (tree, void *);
166 static tree find_final_overrider (tree, tree, tree);
167 static int make_new_vtable (tree, tree);
168 static tree get_primary_binfo (tree);
169 static int maybe_indent_hierarchy (FILE *, int, int);
170 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
171 static void dump_class_hierarchy (tree);
172 static void dump_class_hierarchy_1 (FILE *, int, tree);
173 static void dump_array (FILE *, tree);
174 static void dump_vtable (tree, tree, tree);
175 static void dump_vtt (tree, tree);
176 static void dump_thunk (FILE *, int, tree);
177 static tree build_vtable (tree, tree, tree);
178 static void initialize_vtable (tree, tree);
179 static void layout_nonempty_base_or_field (record_layout_info,
180 tree, tree, splay_tree);
181 static tree end_of_class (tree, int);
182 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
183 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
184 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
185 tree);
186 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
187 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
188 static void clone_constructors_and_destructors (tree);
189 static tree build_clone (tree, tree);
190 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
191 static void build_ctor_vtbl_group (tree, tree);
192 static void build_vtt (tree);
193 static tree binfo_ctor_vtable (tree);
194 static tree *build_vtt_inits (tree, tree, tree *, tree *);
195 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
196 static tree dfs_fixup_binfo_vtbls (tree, void *);
197 static int record_subobject_offset (tree, tree, splay_tree);
198 static int check_subobject_offset (tree, tree, splay_tree);
199 static int walk_subobject_offsets (tree, subobject_offset_fn,
200 tree, splay_tree, tree, int);
201 static void record_subobject_offsets (tree, tree, splay_tree, bool);
202 static int layout_conflict_p (tree, tree, splay_tree, int);
203 static int splay_tree_compare_integer_csts (splay_tree_key k1,
204 splay_tree_key k2);
205 static void warn_about_ambiguous_bases (tree);
206 static bool type_requires_array_cookie (tree);
207 static bool contains_empty_class_p (tree);
208 static bool base_derived_from (tree, tree);
209 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
210 static tree end_of_base (tree);
211 static tree get_vcall_index (tree, tree);
212
213 /* Variables shared between class.c and call.c. */
214
215 #ifdef GATHER_STATISTICS
216 int n_vtables = 0;
217 int n_vtable_entries = 0;
218 int n_vtable_searches = 0;
219 int n_vtable_elems = 0;
220 int n_convert_harshness = 0;
221 int n_compute_conversion_costs = 0;
222 int n_inner_fields_searched = 0;
223 #endif
224
225 /* Convert to or from a base subobject. EXPR is an expression of type
226 `A' or `A*', an expression of type `B' or `B*' is returned. To
227 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
228 the B base instance within A. To convert base A to derived B, CODE
229 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
230 In this latter case, A must not be a morally virtual base of B.
231 NONNULL is true if EXPR is known to be non-NULL (this is only
232 needed when EXPR is of pointer type). CV qualifiers are preserved
233 from EXPR. */
234
235 tree
236 build_base_path (enum tree_code code,
237 tree expr,
238 tree binfo,
239 int nonnull)
240 {
241 tree v_binfo = NULL_TREE;
242 tree d_binfo = NULL_TREE;
243 tree probe;
244 tree offset;
245 tree target_type;
246 tree null_test = NULL;
247 tree ptr_target_type;
248 int fixed_type_p;
249 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
250 bool has_empty = false;
251 bool virtual_access;
252
253 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
254 return error_mark_node;
255
256 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
257 {
258 d_binfo = probe;
259 if (is_empty_class (BINFO_TYPE (probe)))
260 has_empty = true;
261 if (!v_binfo && BINFO_VIRTUAL_P (probe))
262 v_binfo = probe;
263 }
264
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
266 if (want_pointer)
267 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
268
269 gcc_assert ((code == MINUS_EXPR
270 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
271 || (code == PLUS_EXPR
272 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
273
274 if (binfo == d_binfo)
275 /* Nothing to do. */
276 return expr;
277
278 if (code == MINUS_EXPR && v_binfo)
279 {
280 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
281 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
282 return error_mark_node;
283 }
284
285 if (!want_pointer)
286 /* This must happen before the call to save_expr. */
287 expr = build_unary_op (ADDR_EXPR, expr, 0);
288
289 offset = BINFO_OFFSET (binfo);
290 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
291 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
292
293 /* Do we need to look in the vtable for the real offset? */
294 virtual_access = (v_binfo && fixed_type_p <= 0);
295
296 /* Don't bother with the calculations inside sizeof; they'll ICE if the
297 source type is incomplete and the pointer value doesn't matter. */
298 if (skip_evaluation)
299 {
300 expr = build_nop (build_pointer_type (target_type), expr);
301 if (!want_pointer)
302 expr = build_indirect_ref (expr, NULL);
303 return expr;
304 }
305
306 /* Do we need to check for a null pointer? */
307 if (want_pointer && !nonnull)
308 {
309 /* If we know the conversion will not actually change the value
310 of EXPR, then we can avoid testing the expression for NULL.
311 We have to avoid generating a COMPONENT_REF for a base class
312 field, because other parts of the compiler know that such
313 expressions are always non-NULL. */
314 if (!virtual_access && integer_zerop (offset))
315 {
316 tree class_type;
317 /* TARGET_TYPE has been extracted from BINFO, and, is
318 therefore always cv-unqualified. Extract the
319 cv-qualifiers from EXPR so that the expression returned
320 matches the input. */
321 class_type = TREE_TYPE (TREE_TYPE (expr));
322 target_type
323 = cp_build_qualified_type (target_type,
324 cp_type_quals (class_type));
325 return build_nop (build_pointer_type (target_type), expr);
326 }
327 null_test = error_mark_node;
328 }
329
330 /* Protect against multiple evaluation if necessary. */
331 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
332 expr = save_expr (expr);
333
334 /* Now that we've saved expr, build the real null test. */
335 if (null_test)
336 {
337 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
338 null_test = fold_build2 (NE_EXPR, boolean_type_node,
339 expr, zero);
340 }
341
342 /* If this is a simple base reference, express it as a COMPONENT_REF. */
343 if (code == PLUS_EXPR && !virtual_access
344 /* We don't build base fields for empty bases, and they aren't very
345 interesting to the optimizers anyway. */
346 && !has_empty)
347 {
348 expr = build_indirect_ref (expr, NULL);
349 expr = build_simple_base_path (expr, binfo);
350 if (want_pointer)
351 expr = build_address (expr);
352 target_type = TREE_TYPE (expr);
353 goto out;
354 }
355
356 if (virtual_access)
357 {
358 /* Going via virtual base V_BINFO. We need the static offset
359 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
360 V_BINFO. That offset is an entry in D_BINFO's vtable. */
361 tree v_offset;
362
363 if (fixed_type_p < 0 && in_base_initializer)
364 {
365 /* In a base member initializer, we cannot rely on the
366 vtable being set up. We have to indirect via the
367 vtt_parm. */
368 tree t;
369
370 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
371 t = build_pointer_type (t);
372 v_offset = convert (t, current_vtt_parm);
373 v_offset = build_indirect_ref (v_offset, NULL);
374 }
375 else
376 v_offset = build_vfield_ref (build_indirect_ref (expr, NULL),
377 TREE_TYPE (TREE_TYPE (expr)));
378
379 v_offset = build2 (POINTER_PLUS_EXPR, TREE_TYPE (v_offset),
380 v_offset, fold_convert (sizetype, BINFO_VPTR_FIELD (v_binfo)));
381 v_offset = build1 (NOP_EXPR,
382 build_pointer_type (ptrdiff_type_node),
383 v_offset);
384 v_offset = build_indirect_ref (v_offset, NULL);
385 TREE_CONSTANT (v_offset) = 1;
386 TREE_INVARIANT (v_offset) = 1;
387
388 offset = convert_to_integer (ptrdiff_type_node,
389 size_diffop (offset,
390 BINFO_OFFSET (v_binfo)));
391
392 if (!integer_zerop (offset))
393 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
394
395 if (fixed_type_p < 0)
396 /* Negative fixed_type_p means this is a constructor or destructor;
397 virtual base layout is fixed in in-charge [cd]tors, but not in
398 base [cd]tors. */
399 offset = build3 (COND_EXPR, ptrdiff_type_node,
400 build2 (EQ_EXPR, boolean_type_node,
401 current_in_charge_parm, integer_zero_node),
402 v_offset,
403 convert_to_integer (ptrdiff_type_node,
404 BINFO_OFFSET (binfo)));
405 else
406 offset = v_offset;
407 }
408
409 target_type = cp_build_qualified_type
410 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
411 ptr_target_type = build_pointer_type (target_type);
412 if (want_pointer)
413 target_type = ptr_target_type;
414
415 expr = build1 (NOP_EXPR, ptr_target_type, expr);
416
417 if (!integer_zerop (offset))
418 {
419 offset = fold_convert (sizetype, offset);
420 if (code == MINUS_EXPR)
421 offset = fold_build1 (NEGATE_EXPR, sizetype, offset);
422 expr = build2 (POINTER_PLUS_EXPR, ptr_target_type, expr, offset);
423 }
424 else
425 null_test = NULL;
426
427 if (!want_pointer)
428 expr = build_indirect_ref (expr, NULL);
429
430 out:
431 if (null_test)
432 expr = fold_build3 (COND_EXPR, target_type, null_test, expr,
433 fold_build1 (NOP_EXPR, target_type,
434 integer_zero_node));
435
436 return expr;
437 }
438
439 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
440 Perform a derived-to-base conversion by recursively building up a
441 sequence of COMPONENT_REFs to the appropriate base fields. */
442
443 static tree
444 build_simple_base_path (tree expr, tree binfo)
445 {
446 tree type = BINFO_TYPE (binfo);
447 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
448 tree field;
449
450 if (d_binfo == NULL_TREE)
451 {
452 tree temp;
453
454 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
455
456 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
457 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
458 an lvalue in the front end; only _DECLs and _REFs are lvalues
459 in the back end. */
460 temp = unary_complex_lvalue (ADDR_EXPR, expr);
461 if (temp)
462 expr = build_indirect_ref (temp, NULL);
463
464 return expr;
465 }
466
467 /* Recurse. */
468 expr = build_simple_base_path (expr, d_binfo);
469
470 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
471 field; field = TREE_CHAIN (field))
472 /* Is this the base field created by build_base_field? */
473 if (TREE_CODE (field) == FIELD_DECL
474 && DECL_FIELD_IS_BASE (field)
475 && TREE_TYPE (field) == type)
476 {
477 /* We don't use build_class_member_access_expr here, as that
478 has unnecessary checks, and more importantly results in
479 recursive calls to dfs_walk_once. */
480 int type_quals = cp_type_quals (TREE_TYPE (expr));
481
482 expr = build3 (COMPONENT_REF,
483 cp_build_qualified_type (type, type_quals),
484 expr, field, NULL_TREE);
485 expr = fold_if_not_in_template (expr);
486
487 /* Mark the expression const or volatile, as appropriate.
488 Even though we've dealt with the type above, we still have
489 to mark the expression itself. */
490 if (type_quals & TYPE_QUAL_CONST)
491 TREE_READONLY (expr) = 1;
492 if (type_quals & TYPE_QUAL_VOLATILE)
493 TREE_THIS_VOLATILE (expr) = 1;
494
495 return expr;
496 }
497
498 /* Didn't find the base field?!? */
499 gcc_unreachable ();
500 }
501
502 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
503 type is a class type or a pointer to a class type. In the former
504 case, TYPE is also a class type; in the latter it is another
505 pointer type. If CHECK_ACCESS is true, an error message is emitted
506 if TYPE is inaccessible. If OBJECT has pointer type, the value is
507 assumed to be non-NULL. */
508
509 tree
510 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
511 {
512 tree binfo;
513 tree object_type;
514
515 if (TYPE_PTR_P (TREE_TYPE (object)))
516 {
517 object_type = TREE_TYPE (TREE_TYPE (object));
518 type = TREE_TYPE (type);
519 }
520 else
521 object_type = TREE_TYPE (object);
522
523 binfo = lookup_base (object_type, type,
524 check_access ? ba_check : ba_unique,
525 NULL);
526 if (!binfo || binfo == error_mark_node)
527 return error_mark_node;
528
529 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
530 }
531
532 /* EXPR is an expression with unqualified class type. BASE is a base
533 binfo of that class type. Returns EXPR, converted to the BASE
534 type. This function assumes that EXPR is the most derived class;
535 therefore virtual bases can be found at their static offsets. */
536
537 tree
538 convert_to_base_statically (tree expr, tree base)
539 {
540 tree expr_type;
541
542 expr_type = TREE_TYPE (expr);
543 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
544 {
545 tree pointer_type;
546
547 pointer_type = build_pointer_type (expr_type);
548
549 /* We use fold_build2 and fold_convert below to simplify the trees
550 provided to the optimizers. It is not safe to call these functions
551 when processing a template because they do not handle C++-specific
552 trees. */
553 gcc_assert (!processing_template_decl);
554 expr = build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1);
555 if (!integer_zerop (BINFO_OFFSET (base)))
556 expr = fold_build2 (POINTER_PLUS_EXPR, pointer_type, expr,
557 fold_convert (sizetype, BINFO_OFFSET (base)));
558 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
559 expr = build_fold_indirect_ref (expr);
560 }
561
562 return expr;
563 }
564
565 \f
566 tree
567 build_vfield_ref (tree datum, tree type)
568 {
569 tree vfield, vcontext;
570
571 if (datum == error_mark_node)
572 return error_mark_node;
573
574 /* First, convert to the requested type. */
575 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
576 datum = convert_to_base (datum, type, /*check_access=*/false,
577 /*nonnull=*/true);
578
579 /* Second, the requested type may not be the owner of its own vptr.
580 If not, convert to the base class that owns it. We cannot use
581 convert_to_base here, because VCONTEXT may appear more than once
582 in the inheritance hierarchy of TYPE, and thus direct conversion
583 between the types may be ambiguous. Following the path back up
584 one step at a time via primary bases avoids the problem. */
585 vfield = TYPE_VFIELD (type);
586 vcontext = DECL_CONTEXT (vfield);
587 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
588 {
589 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
590 type = TREE_TYPE (datum);
591 }
592
593 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
594 }
595
596 /* Given an object INSTANCE, return an expression which yields the
597 vtable element corresponding to INDEX. There are many special
598 cases for INSTANCE which we take care of here, mainly to avoid
599 creating extra tree nodes when we don't have to. */
600
601 static tree
602 build_vtbl_ref_1 (tree instance, tree idx)
603 {
604 tree aref;
605 tree vtbl = NULL_TREE;
606
607 /* Try to figure out what a reference refers to, and
608 access its virtual function table directly. */
609
610 int cdtorp = 0;
611 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
612
613 tree basetype = non_reference (TREE_TYPE (instance));
614
615 if (fixed_type && !cdtorp)
616 {
617 tree binfo = lookup_base (fixed_type, basetype,
618 ba_unique | ba_quiet, NULL);
619 if (binfo)
620 vtbl = unshare_expr (BINFO_VTABLE (binfo));
621 }
622
623 if (!vtbl)
624 vtbl = build_vfield_ref (instance, basetype);
625
626 assemble_external (vtbl);
627
628 aref = build_array_ref (vtbl, idx);
629 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
630 TREE_INVARIANT (aref) = TREE_CONSTANT (aref);
631
632 return aref;
633 }
634
635 tree
636 build_vtbl_ref (tree instance, tree idx)
637 {
638 tree aref = build_vtbl_ref_1 (instance, idx);
639
640 return aref;
641 }
642
643 /* Given a stable object pointer INSTANCE_PTR, return an expression which
644 yields a function pointer corresponding to vtable element INDEX. */
645
646 tree
647 build_vfn_ref (tree instance_ptr, tree idx)
648 {
649 tree aref;
650
651 aref = build_vtbl_ref_1 (build_indirect_ref (instance_ptr, 0), idx);
652
653 /* When using function descriptors, the address of the
654 vtable entry is treated as a function pointer. */
655 if (TARGET_VTABLE_USES_DESCRIPTORS)
656 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
657 build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1));
658
659 /* Remember this as a method reference, for later devirtualization. */
660 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
661
662 return aref;
663 }
664
665 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
666 for the given TYPE. */
667
668 static tree
669 get_vtable_name (tree type)
670 {
671 return mangle_vtbl_for_type (type);
672 }
673
674 /* DECL is an entity associated with TYPE, like a virtual table or an
675 implicitly generated constructor. Determine whether or not DECL
676 should have external or internal linkage at the object file
677 level. This routine does not deal with COMDAT linkage and other
678 similar complexities; it simply sets TREE_PUBLIC if it possible for
679 entities in other translation units to contain copies of DECL, in
680 the abstract. */
681
682 void
683 set_linkage_according_to_type (tree type, tree decl)
684 {
685 /* If TYPE involves a local class in a function with internal
686 linkage, then DECL should have internal linkage too. Other local
687 classes have no linkage -- but if their containing functions
688 have external linkage, it makes sense for DECL to have external
689 linkage too. That will allow template definitions to be merged,
690 for example. */
691 if (no_linkage_check (type, /*relaxed_p=*/true))
692 {
693 TREE_PUBLIC (decl) = 0;
694 DECL_INTERFACE_KNOWN (decl) = 1;
695 }
696 else
697 TREE_PUBLIC (decl) = 1;
698 }
699
700 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
701 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
702 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
703
704 static tree
705 build_vtable (tree class_type, tree name, tree vtable_type)
706 {
707 tree decl;
708
709 decl = build_lang_decl (VAR_DECL, name, vtable_type);
710 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
711 now to avoid confusion in mangle_decl. */
712 SET_DECL_ASSEMBLER_NAME (decl, name);
713 DECL_CONTEXT (decl) = class_type;
714 DECL_ARTIFICIAL (decl) = 1;
715 TREE_STATIC (decl) = 1;
716 TREE_READONLY (decl) = 1;
717 DECL_VIRTUAL_P (decl) = 1;
718 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
719 DECL_VTABLE_OR_VTT_P (decl) = 1;
720 /* At one time the vtable info was grabbed 2 words at a time. This
721 fails on sparc unless you have 8-byte alignment. (tiemann) */
722 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
723 DECL_ALIGN (decl));
724 set_linkage_according_to_type (class_type, decl);
725 /* The vtable has not been defined -- yet. */
726 DECL_EXTERNAL (decl) = 1;
727 DECL_NOT_REALLY_EXTERN (decl) = 1;
728
729 /* Mark the VAR_DECL node representing the vtable itself as a
730 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
731 is rather important that such things be ignored because any
732 effort to actually generate DWARF for them will run into
733 trouble when/if we encounter code like:
734
735 #pragma interface
736 struct S { virtual void member (); };
737
738 because the artificial declaration of the vtable itself (as
739 manufactured by the g++ front end) will say that the vtable is
740 a static member of `S' but only *after* the debug output for
741 the definition of `S' has already been output. This causes
742 grief because the DWARF entry for the definition of the vtable
743 will try to refer back to an earlier *declaration* of the
744 vtable as a static member of `S' and there won't be one. We
745 might be able to arrange to have the "vtable static member"
746 attached to the member list for `S' before the debug info for
747 `S' get written (which would solve the problem) but that would
748 require more intrusive changes to the g++ front end. */
749 DECL_IGNORED_P (decl) = 1;
750
751 return decl;
752 }
753
754 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
755 or even complete. If this does not exist, create it. If COMPLETE is
756 nonzero, then complete the definition of it -- that will render it
757 impossible to actually build the vtable, but is useful to get at those
758 which are known to exist in the runtime. */
759
760 tree
761 get_vtable_decl (tree type, int complete)
762 {
763 tree decl;
764
765 if (CLASSTYPE_VTABLES (type))
766 return CLASSTYPE_VTABLES (type);
767
768 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
769 CLASSTYPE_VTABLES (type) = decl;
770
771 if (complete)
772 {
773 DECL_EXTERNAL (decl) = 1;
774 finish_decl (decl, NULL_TREE, NULL_TREE);
775 }
776
777 return decl;
778 }
779
780 /* Build the primary virtual function table for TYPE. If BINFO is
781 non-NULL, build the vtable starting with the initial approximation
782 that it is the same as the one which is the head of the association
783 list. Returns a nonzero value if a new vtable is actually
784 created. */
785
786 static int
787 build_primary_vtable (tree binfo, tree type)
788 {
789 tree decl;
790 tree virtuals;
791
792 decl = get_vtable_decl (type, /*complete=*/0);
793
794 if (binfo)
795 {
796 if (BINFO_NEW_VTABLE_MARKED (binfo))
797 /* We have already created a vtable for this base, so there's
798 no need to do it again. */
799 return 0;
800
801 virtuals = copy_list (BINFO_VIRTUALS (binfo));
802 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
803 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
804 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
805 }
806 else
807 {
808 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
809 virtuals = NULL_TREE;
810 }
811
812 #ifdef GATHER_STATISTICS
813 n_vtables += 1;
814 n_vtable_elems += list_length (virtuals);
815 #endif
816
817 /* Initialize the association list for this type, based
818 on our first approximation. */
819 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
820 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
821 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
822 return 1;
823 }
824
825 /* Give BINFO a new virtual function table which is initialized
826 with a skeleton-copy of its original initialization. The only
827 entry that changes is the `delta' entry, so we can really
828 share a lot of structure.
829
830 FOR_TYPE is the most derived type which caused this table to
831 be needed.
832
833 Returns nonzero if we haven't met BINFO before.
834
835 The order in which vtables are built (by calling this function) for
836 an object must remain the same, otherwise a binary incompatibility
837 can result. */
838
839 static int
840 build_secondary_vtable (tree binfo)
841 {
842 if (BINFO_NEW_VTABLE_MARKED (binfo))
843 /* We already created a vtable for this base. There's no need to
844 do it again. */
845 return 0;
846
847 /* Remember that we've created a vtable for this BINFO, so that we
848 don't try to do so again. */
849 SET_BINFO_NEW_VTABLE_MARKED (binfo);
850
851 /* Make fresh virtual list, so we can smash it later. */
852 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
853
854 /* Secondary vtables are laid out as part of the same structure as
855 the primary vtable. */
856 BINFO_VTABLE (binfo) = NULL_TREE;
857 return 1;
858 }
859
860 /* Create a new vtable for BINFO which is the hierarchy dominated by
861 T. Return nonzero if we actually created a new vtable. */
862
863 static int
864 make_new_vtable (tree t, tree binfo)
865 {
866 if (binfo == TYPE_BINFO (t))
867 /* In this case, it is *type*'s vtable we are modifying. We start
868 with the approximation that its vtable is that of the
869 immediate base class. */
870 return build_primary_vtable (binfo, t);
871 else
872 /* This is our very own copy of `basetype' to play with. Later,
873 we will fill in all the virtual functions that override the
874 virtual functions in these base classes which are not defined
875 by the current type. */
876 return build_secondary_vtable (binfo);
877 }
878
879 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
880 (which is in the hierarchy dominated by T) list FNDECL as its
881 BV_FN. DELTA is the required constant adjustment from the `this'
882 pointer where the vtable entry appears to the `this' required when
883 the function is actually called. */
884
885 static void
886 modify_vtable_entry (tree t,
887 tree binfo,
888 tree fndecl,
889 tree delta,
890 tree *virtuals)
891 {
892 tree v;
893
894 v = *virtuals;
895
896 if (fndecl != BV_FN (v)
897 || !tree_int_cst_equal (delta, BV_DELTA (v)))
898 {
899 /* We need a new vtable for BINFO. */
900 if (make_new_vtable (t, binfo))
901 {
902 /* If we really did make a new vtable, we also made a copy
903 of the BINFO_VIRTUALS list. Now, we have to find the
904 corresponding entry in that list. */
905 *virtuals = BINFO_VIRTUALS (binfo);
906 while (BV_FN (*virtuals) != BV_FN (v))
907 *virtuals = TREE_CHAIN (*virtuals);
908 v = *virtuals;
909 }
910
911 BV_DELTA (v) = delta;
912 BV_VCALL_INDEX (v) = NULL_TREE;
913 BV_FN (v) = fndecl;
914 }
915 }
916
917 \f
918 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
919 the USING_DECL naming METHOD. Returns true if the method could be
920 added to the method vec. */
921
922 bool
923 add_method (tree type, tree method, tree using_decl)
924 {
925 unsigned slot;
926 tree overload;
927 bool template_conv_p = false;
928 bool conv_p;
929 VEC(tree,gc) *method_vec;
930 bool complete_p;
931 bool insert_p = false;
932 tree current_fns;
933 tree fns;
934
935 if (method == error_mark_node)
936 return false;
937
938 complete_p = COMPLETE_TYPE_P (type);
939 conv_p = DECL_CONV_FN_P (method);
940 if (conv_p)
941 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
942 && DECL_TEMPLATE_CONV_FN_P (method));
943
944 method_vec = CLASSTYPE_METHOD_VEC (type);
945 if (!method_vec)
946 {
947 /* Make a new method vector. We start with 8 entries. We must
948 allocate at least two (for constructors and destructors), and
949 we're going to end up with an assignment operator at some
950 point as well. */
951 method_vec = VEC_alloc (tree, gc, 8);
952 /* Create slots for constructors and destructors. */
953 VEC_quick_push (tree, method_vec, NULL_TREE);
954 VEC_quick_push (tree, method_vec, NULL_TREE);
955 CLASSTYPE_METHOD_VEC (type) = method_vec;
956 }
957
958 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
959 grok_special_member_properties (method);
960
961 /* Constructors and destructors go in special slots. */
962 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
963 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
964 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
965 {
966 slot = CLASSTYPE_DESTRUCTOR_SLOT;
967
968 if (TYPE_FOR_JAVA (type))
969 {
970 if (!DECL_ARTIFICIAL (method))
971 error ("Java class %qT cannot have a destructor", type);
972 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
973 error ("Java class %qT cannot have an implicit non-trivial "
974 "destructor",
975 type);
976 }
977 }
978 else
979 {
980 tree m;
981
982 insert_p = true;
983 /* See if we already have an entry with this name. */
984 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
985 VEC_iterate (tree, method_vec, slot, m);
986 ++slot)
987 {
988 m = OVL_CURRENT (m);
989 if (template_conv_p)
990 {
991 if (TREE_CODE (m) == TEMPLATE_DECL
992 && DECL_TEMPLATE_CONV_FN_P (m))
993 insert_p = false;
994 break;
995 }
996 if (conv_p && !DECL_CONV_FN_P (m))
997 break;
998 if (DECL_NAME (m) == DECL_NAME (method))
999 {
1000 insert_p = false;
1001 break;
1002 }
1003 if (complete_p
1004 && !DECL_CONV_FN_P (m)
1005 && DECL_NAME (m) > DECL_NAME (method))
1006 break;
1007 }
1008 }
1009 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
1010
1011 /* Check to see if we've already got this method. */
1012 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1013 {
1014 tree fn = OVL_CURRENT (fns);
1015 tree fn_type;
1016 tree method_type;
1017 tree parms1;
1018 tree parms2;
1019
1020 if (TREE_CODE (fn) != TREE_CODE (method))
1021 continue;
1022
1023 /* [over.load] Member function declarations with the
1024 same name and the same parameter types cannot be
1025 overloaded if any of them is a static member
1026 function declaration.
1027
1028 [namespace.udecl] When a using-declaration brings names
1029 from a base class into a derived class scope, member
1030 functions in the derived class override and/or hide member
1031 functions with the same name and parameter types in a base
1032 class (rather than conflicting). */
1033 fn_type = TREE_TYPE (fn);
1034 method_type = TREE_TYPE (method);
1035 parms1 = TYPE_ARG_TYPES (fn_type);
1036 parms2 = TYPE_ARG_TYPES (method_type);
1037
1038 /* Compare the quals on the 'this' parm. Don't compare
1039 the whole types, as used functions are treated as
1040 coming from the using class in overload resolution. */
1041 if (! DECL_STATIC_FUNCTION_P (fn)
1042 && ! DECL_STATIC_FUNCTION_P (method)
1043 && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
1044 && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
1045 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1046 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1047 continue;
1048
1049 /* For templates, the return type and template parameters
1050 must be identical. */
1051 if (TREE_CODE (fn) == TEMPLATE_DECL
1052 && (!same_type_p (TREE_TYPE (fn_type),
1053 TREE_TYPE (method_type))
1054 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1055 DECL_TEMPLATE_PARMS (method))))
1056 continue;
1057
1058 if (! DECL_STATIC_FUNCTION_P (fn))
1059 parms1 = TREE_CHAIN (parms1);
1060 if (! DECL_STATIC_FUNCTION_P (method))
1061 parms2 = TREE_CHAIN (parms2);
1062
1063 if (compparms (parms1, parms2)
1064 && (!DECL_CONV_FN_P (fn)
1065 || same_type_p (TREE_TYPE (fn_type),
1066 TREE_TYPE (method_type))))
1067 {
1068 if (using_decl)
1069 {
1070 if (DECL_CONTEXT (fn) == type)
1071 /* Defer to the local function. */
1072 return false;
1073 if (DECL_CONTEXT (fn) == DECL_CONTEXT (method))
1074 error ("repeated using declaration %q+D", using_decl);
1075 else
1076 error ("using declaration %q+D conflicts with a previous using declaration",
1077 using_decl);
1078 }
1079 else
1080 {
1081 error ("%q+#D cannot be overloaded", method);
1082 error ("with %q+#D", fn);
1083 }
1084
1085 /* We don't call duplicate_decls here to merge the
1086 declarations because that will confuse things if the
1087 methods have inline definitions. In particular, we
1088 will crash while processing the definitions. */
1089 return false;
1090 }
1091 }
1092
1093 /* A class should never have more than one destructor. */
1094 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1095 return false;
1096
1097 /* Add the new binding. */
1098 overload = build_overload (method, current_fns);
1099
1100 if (conv_p)
1101 TYPE_HAS_CONVERSION (type) = 1;
1102 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1103 push_class_level_binding (DECL_NAME (method), overload);
1104
1105 if (insert_p)
1106 {
1107 bool reallocated;
1108
1109 /* We only expect to add few methods in the COMPLETE_P case, so
1110 just make room for one more method in that case. */
1111 if (complete_p)
1112 reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
1113 else
1114 reallocated = VEC_reserve (tree, gc, method_vec, 1);
1115 if (reallocated)
1116 CLASSTYPE_METHOD_VEC (type) = method_vec;
1117 if (slot == VEC_length (tree, method_vec))
1118 VEC_quick_push (tree, method_vec, overload);
1119 else
1120 VEC_quick_insert (tree, method_vec, slot, overload);
1121 }
1122 else
1123 /* Replace the current slot. */
1124 VEC_replace (tree, method_vec, slot, overload);
1125 return true;
1126 }
1127
1128 /* Subroutines of finish_struct. */
1129
1130 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1131 legit, otherwise return 0. */
1132
1133 static int
1134 alter_access (tree t, tree fdecl, tree access)
1135 {
1136 tree elem;
1137
1138 if (!DECL_LANG_SPECIFIC (fdecl))
1139 retrofit_lang_decl (fdecl);
1140
1141 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1142
1143 elem = purpose_member (t, DECL_ACCESS (fdecl));
1144 if (elem)
1145 {
1146 if (TREE_VALUE (elem) != access)
1147 {
1148 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1149 error ("conflicting access specifications for method"
1150 " %q+D, ignored", TREE_TYPE (fdecl));
1151 else
1152 error ("conflicting access specifications for field %qE, ignored",
1153 DECL_NAME (fdecl));
1154 }
1155 else
1156 {
1157 /* They're changing the access to the same thing they changed
1158 it to before. That's OK. */
1159 ;
1160 }
1161 }
1162 else
1163 {
1164 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
1165 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1166 return 1;
1167 }
1168 return 0;
1169 }
1170
1171 /* Process the USING_DECL, which is a member of T. */
1172
1173 static void
1174 handle_using_decl (tree using_decl, tree t)
1175 {
1176 tree decl = USING_DECL_DECLS (using_decl);
1177 tree name = DECL_NAME (using_decl);
1178 tree access
1179 = TREE_PRIVATE (using_decl) ? access_private_node
1180 : TREE_PROTECTED (using_decl) ? access_protected_node
1181 : access_public_node;
1182 tree flist = NULL_TREE;
1183 tree old_value;
1184
1185 gcc_assert (!processing_template_decl && decl);
1186
1187 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1188 if (old_value)
1189 {
1190 if (is_overloaded_fn (old_value))
1191 old_value = OVL_CURRENT (old_value);
1192
1193 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1194 /* OK */;
1195 else
1196 old_value = NULL_TREE;
1197 }
1198
1199 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1200
1201 if (is_overloaded_fn (decl))
1202 flist = decl;
1203
1204 if (! old_value)
1205 ;
1206 else if (is_overloaded_fn (old_value))
1207 {
1208 if (flist)
1209 /* It's OK to use functions from a base when there are functions with
1210 the same name already present in the current class. */;
1211 else
1212 {
1213 error ("%q+D invalid in %q#T", using_decl, t);
1214 error (" because of local method %q+#D with same name",
1215 OVL_CURRENT (old_value));
1216 return;
1217 }
1218 }
1219 else if (!DECL_ARTIFICIAL (old_value))
1220 {
1221 error ("%q+D invalid in %q#T", using_decl, t);
1222 error (" because of local member %q+#D with same name", old_value);
1223 return;
1224 }
1225
1226 /* Make type T see field decl FDECL with access ACCESS. */
1227 if (flist)
1228 for (; flist; flist = OVL_NEXT (flist))
1229 {
1230 add_method (t, OVL_CURRENT (flist), using_decl);
1231 alter_access (t, OVL_CURRENT (flist), access);
1232 }
1233 else
1234 alter_access (t, decl, access);
1235 }
1236 \f
1237 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1238 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1239 properties of the bases. */
1240
1241 static void
1242 check_bases (tree t,
1243 int* cant_have_const_ctor_p,
1244 int* no_const_asn_ref_p)
1245 {
1246 int i;
1247 int seen_non_virtual_nearly_empty_base_p;
1248 tree base_binfo;
1249 tree binfo;
1250
1251 seen_non_virtual_nearly_empty_base_p = 0;
1252
1253 for (binfo = TYPE_BINFO (t), i = 0;
1254 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1255 {
1256 tree basetype = TREE_TYPE (base_binfo);
1257
1258 gcc_assert (COMPLETE_TYPE_P (basetype));
1259
1260 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1261 here because the case of virtual functions but non-virtual
1262 dtor is handled in finish_struct_1. */
1263 if (!TYPE_POLYMORPHIC_P (basetype))
1264 warning (OPT_Weffc__,
1265 "base class %q#T has a non-virtual destructor", basetype);
1266
1267 /* If the base class doesn't have copy constructors or
1268 assignment operators that take const references, then the
1269 derived class cannot have such a member automatically
1270 generated. */
1271 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1272 *cant_have_const_ctor_p = 1;
1273 if (TYPE_HAS_ASSIGN_REF (basetype)
1274 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1275 *no_const_asn_ref_p = 1;
1276
1277 if (BINFO_VIRTUAL_P (base_binfo))
1278 /* A virtual base does not effect nearly emptiness. */
1279 ;
1280 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1281 {
1282 if (seen_non_virtual_nearly_empty_base_p)
1283 /* And if there is more than one nearly empty base, then the
1284 derived class is not nearly empty either. */
1285 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1286 else
1287 /* Remember we've seen one. */
1288 seen_non_virtual_nearly_empty_base_p = 1;
1289 }
1290 else if (!is_empty_class (basetype))
1291 /* If the base class is not empty or nearly empty, then this
1292 class cannot be nearly empty. */
1293 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1294
1295 /* A lot of properties from the bases also apply to the derived
1296 class. */
1297 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1298 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1299 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1300 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1301 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1302 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1303 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1304 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1305 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1306 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (basetype);
1307 }
1308 }
1309
1310 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1311 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1312 that have had a nearly-empty virtual primary base stolen by some
1313 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1314 T. */
1315
1316 static void
1317 determine_primary_bases (tree t)
1318 {
1319 unsigned i;
1320 tree primary = NULL_TREE;
1321 tree type_binfo = TYPE_BINFO (t);
1322 tree base_binfo;
1323
1324 /* Determine the primary bases of our bases. */
1325 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1326 base_binfo = TREE_CHAIN (base_binfo))
1327 {
1328 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1329
1330 /* See if we're the non-virtual primary of our inheritance
1331 chain. */
1332 if (!BINFO_VIRTUAL_P (base_binfo))
1333 {
1334 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1335 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1336
1337 if (parent_primary
1338 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1339 BINFO_TYPE (parent_primary)))
1340 /* We are the primary binfo. */
1341 BINFO_PRIMARY_P (base_binfo) = 1;
1342 }
1343 /* Determine if we have a virtual primary base, and mark it so.
1344 */
1345 if (primary && BINFO_VIRTUAL_P (primary))
1346 {
1347 tree this_primary = copied_binfo (primary, base_binfo);
1348
1349 if (BINFO_PRIMARY_P (this_primary))
1350 /* Someone already claimed this base. */
1351 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1352 else
1353 {
1354 tree delta;
1355
1356 BINFO_PRIMARY_P (this_primary) = 1;
1357 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1358
1359 /* A virtual binfo might have been copied from within
1360 another hierarchy. As we're about to use it as a
1361 primary base, make sure the offsets match. */
1362 delta = size_diffop (convert (ssizetype,
1363 BINFO_OFFSET (base_binfo)),
1364 convert (ssizetype,
1365 BINFO_OFFSET (this_primary)));
1366
1367 propagate_binfo_offsets (this_primary, delta);
1368 }
1369 }
1370 }
1371
1372 /* First look for a dynamic direct non-virtual base. */
1373 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1374 {
1375 tree basetype = BINFO_TYPE (base_binfo);
1376
1377 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1378 {
1379 primary = base_binfo;
1380 goto found;
1381 }
1382 }
1383
1384 /* A "nearly-empty" virtual base class can be the primary base
1385 class, if no non-virtual polymorphic base can be found. Look for
1386 a nearly-empty virtual dynamic base that is not already a primary
1387 base of something in the hierarchy. If there is no such base,
1388 just pick the first nearly-empty virtual base. */
1389
1390 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1391 base_binfo = TREE_CHAIN (base_binfo))
1392 if (BINFO_VIRTUAL_P (base_binfo)
1393 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1394 {
1395 if (!BINFO_PRIMARY_P (base_binfo))
1396 {
1397 /* Found one that is not primary. */
1398 primary = base_binfo;
1399 goto found;
1400 }
1401 else if (!primary)
1402 /* Remember the first candidate. */
1403 primary = base_binfo;
1404 }
1405
1406 found:
1407 /* If we've got a primary base, use it. */
1408 if (primary)
1409 {
1410 tree basetype = BINFO_TYPE (primary);
1411
1412 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1413 if (BINFO_PRIMARY_P (primary))
1414 /* We are stealing a primary base. */
1415 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1416 BINFO_PRIMARY_P (primary) = 1;
1417 if (BINFO_VIRTUAL_P (primary))
1418 {
1419 tree delta;
1420
1421 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1422 /* A virtual binfo might have been copied from within
1423 another hierarchy. As we're about to use it as a primary
1424 base, make sure the offsets match. */
1425 delta = size_diffop (ssize_int (0),
1426 convert (ssizetype, BINFO_OFFSET (primary)));
1427
1428 propagate_binfo_offsets (primary, delta);
1429 }
1430
1431 primary = TYPE_BINFO (basetype);
1432
1433 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1434 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1435 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1436 }
1437 }
1438 \f
1439 /* Set memoizing fields and bits of T (and its variants) for later
1440 use. */
1441
1442 static void
1443 finish_struct_bits (tree t)
1444 {
1445 tree variants;
1446
1447 /* Fix up variants (if any). */
1448 for (variants = TYPE_NEXT_VARIANT (t);
1449 variants;
1450 variants = TYPE_NEXT_VARIANT (variants))
1451 {
1452 /* These fields are in the _TYPE part of the node, not in
1453 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1454 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1455 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1456 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1457 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1458
1459 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1460
1461 TYPE_BINFO (variants) = TYPE_BINFO (t);
1462
1463 /* Copy whatever these are holding today. */
1464 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1465 TYPE_METHODS (variants) = TYPE_METHODS (t);
1466 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1467
1468 /* All variants of a class have the same attributes. */
1469 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1470 }
1471
1472 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1473 /* For a class w/o baseclasses, 'finish_struct' has set
1474 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1475 Similarly for a class whose base classes do not have vtables.
1476 When neither of these is true, we might have removed abstract
1477 virtuals (by providing a definition), added some (by declaring
1478 new ones), or redeclared ones from a base class. We need to
1479 recalculate what's really an abstract virtual at this point (by
1480 looking in the vtables). */
1481 get_pure_virtuals (t);
1482
1483 /* If this type has a copy constructor or a destructor, force its
1484 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1485 nonzero. This will cause it to be passed by invisible reference
1486 and prevent it from being returned in a register. */
1487 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1488 {
1489 tree variants;
1490 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1491 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1492 {
1493 TYPE_MODE (variants) = BLKmode;
1494 TREE_ADDRESSABLE (variants) = 1;
1495 }
1496 }
1497 }
1498
1499 /* Issue warnings about T having private constructors, but no friends,
1500 and so forth.
1501
1502 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1503 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1504 non-private static member functions. */
1505
1506 static void
1507 maybe_warn_about_overly_private_class (tree t)
1508 {
1509 int has_member_fn = 0;
1510 int has_nonprivate_method = 0;
1511 tree fn;
1512
1513 if (!warn_ctor_dtor_privacy
1514 /* If the class has friends, those entities might create and
1515 access instances, so we should not warn. */
1516 || (CLASSTYPE_FRIEND_CLASSES (t)
1517 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1518 /* We will have warned when the template was declared; there's
1519 no need to warn on every instantiation. */
1520 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1521 /* There's no reason to even consider warning about this
1522 class. */
1523 return;
1524
1525 /* We only issue one warning, if more than one applies, because
1526 otherwise, on code like:
1527
1528 class A {
1529 // Oops - forgot `public:'
1530 A();
1531 A(const A&);
1532 ~A();
1533 };
1534
1535 we warn several times about essentially the same problem. */
1536
1537 /* Check to see if all (non-constructor, non-destructor) member
1538 functions are private. (Since there are no friends or
1539 non-private statics, we can't ever call any of the private member
1540 functions.) */
1541 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1542 /* We're not interested in compiler-generated methods; they don't
1543 provide any way to call private members. */
1544 if (!DECL_ARTIFICIAL (fn))
1545 {
1546 if (!TREE_PRIVATE (fn))
1547 {
1548 if (DECL_STATIC_FUNCTION_P (fn))
1549 /* A non-private static member function is just like a
1550 friend; it can create and invoke private member
1551 functions, and be accessed without a class
1552 instance. */
1553 return;
1554
1555 has_nonprivate_method = 1;
1556 /* Keep searching for a static member function. */
1557 }
1558 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1559 has_member_fn = 1;
1560 }
1561
1562 if (!has_nonprivate_method && has_member_fn)
1563 {
1564 /* There are no non-private methods, and there's at least one
1565 private member function that isn't a constructor or
1566 destructor. (If all the private members are
1567 constructors/destructors we want to use the code below that
1568 issues error messages specifically referring to
1569 constructors/destructors.) */
1570 unsigned i;
1571 tree binfo = TYPE_BINFO (t);
1572
1573 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1574 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1575 {
1576 has_nonprivate_method = 1;
1577 break;
1578 }
1579 if (!has_nonprivate_method)
1580 {
1581 warning (OPT_Wctor_dtor_privacy,
1582 "all member functions in class %qT are private", t);
1583 return;
1584 }
1585 }
1586
1587 /* Even if some of the member functions are non-private, the class
1588 won't be useful for much if all the constructors or destructors
1589 are private: such an object can never be created or destroyed. */
1590 fn = CLASSTYPE_DESTRUCTORS (t);
1591 if (fn && TREE_PRIVATE (fn))
1592 {
1593 warning (OPT_Wctor_dtor_privacy,
1594 "%q#T only defines a private destructor and has no friends",
1595 t);
1596 return;
1597 }
1598
1599 /* Warn about classes that have private constructors and no friends. */
1600 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1601 /* Implicitly generated constructors are always public. */
1602 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1603 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1604 {
1605 int nonprivate_ctor = 0;
1606
1607 /* If a non-template class does not define a copy
1608 constructor, one is defined for it, enabling it to avoid
1609 this warning. For a template class, this does not
1610 happen, and so we would normally get a warning on:
1611
1612 template <class T> class C { private: C(); };
1613
1614 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1615 complete non-template or fully instantiated classes have this
1616 flag set. */
1617 if (!TYPE_HAS_INIT_REF (t))
1618 nonprivate_ctor = 1;
1619 else
1620 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1621 {
1622 tree ctor = OVL_CURRENT (fn);
1623 /* Ideally, we wouldn't count copy constructors (or, in
1624 fact, any constructor that takes an argument of the
1625 class type as a parameter) because such things cannot
1626 be used to construct an instance of the class unless
1627 you already have one. But, for now at least, we're
1628 more generous. */
1629 if (! TREE_PRIVATE (ctor))
1630 {
1631 nonprivate_ctor = 1;
1632 break;
1633 }
1634 }
1635
1636 if (nonprivate_ctor == 0)
1637 {
1638 warning (OPT_Wctor_dtor_privacy,
1639 "%q#T only defines private constructors and has no friends",
1640 t);
1641 return;
1642 }
1643 }
1644 }
1645
1646 static struct {
1647 gt_pointer_operator new_value;
1648 void *cookie;
1649 } resort_data;
1650
1651 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1652
1653 static int
1654 method_name_cmp (const void* m1_p, const void* m2_p)
1655 {
1656 const tree *const m1 = (const tree *) m1_p;
1657 const tree *const m2 = (const tree *) m2_p;
1658
1659 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1660 return 0;
1661 if (*m1 == NULL_TREE)
1662 return -1;
1663 if (*m2 == NULL_TREE)
1664 return 1;
1665 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1666 return -1;
1667 return 1;
1668 }
1669
1670 /* This routine compares two fields like method_name_cmp but using the
1671 pointer operator in resort_field_decl_data. */
1672
1673 static int
1674 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1675 {
1676 const tree *const m1 = (const tree *) m1_p;
1677 const tree *const m2 = (const tree *) m2_p;
1678 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1679 return 0;
1680 if (*m1 == NULL_TREE)
1681 return -1;
1682 if (*m2 == NULL_TREE)
1683 return 1;
1684 {
1685 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1686 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1687 resort_data.new_value (&d1, resort_data.cookie);
1688 resort_data.new_value (&d2, resort_data.cookie);
1689 if (d1 < d2)
1690 return -1;
1691 }
1692 return 1;
1693 }
1694
1695 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1696
1697 void
1698 resort_type_method_vec (void* obj,
1699 void* orig_obj ATTRIBUTE_UNUSED ,
1700 gt_pointer_operator new_value,
1701 void* cookie)
1702 {
1703 VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
1704 int len = VEC_length (tree, method_vec);
1705 size_t slot;
1706 tree fn;
1707
1708 /* The type conversion ops have to live at the front of the vec, so we
1709 can't sort them. */
1710 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1711 VEC_iterate (tree, method_vec, slot, fn);
1712 ++slot)
1713 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1714 break;
1715
1716 if (len - slot > 1)
1717 {
1718 resort_data.new_value = new_value;
1719 resort_data.cookie = cookie;
1720 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1721 resort_method_name_cmp);
1722 }
1723 }
1724
1725 /* Warn about duplicate methods in fn_fields.
1726
1727 Sort methods that are not special (i.e., constructors, destructors,
1728 and type conversion operators) so that we can find them faster in
1729 search. */
1730
1731 static void
1732 finish_struct_methods (tree t)
1733 {
1734 tree fn_fields;
1735 VEC(tree,gc) *method_vec;
1736 int slot, len;
1737
1738 method_vec = CLASSTYPE_METHOD_VEC (t);
1739 if (!method_vec)
1740 return;
1741
1742 len = VEC_length (tree, method_vec);
1743
1744 /* Clear DECL_IN_AGGR_P for all functions. */
1745 for (fn_fields = TYPE_METHODS (t); fn_fields;
1746 fn_fields = TREE_CHAIN (fn_fields))
1747 DECL_IN_AGGR_P (fn_fields) = 0;
1748
1749 /* Issue warnings about private constructors and such. If there are
1750 no methods, then some public defaults are generated. */
1751 maybe_warn_about_overly_private_class (t);
1752
1753 /* The type conversion ops have to live at the front of the vec, so we
1754 can't sort them. */
1755 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1756 VEC_iterate (tree, method_vec, slot, fn_fields);
1757 ++slot)
1758 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1759 break;
1760 if (len - slot > 1)
1761 qsort (VEC_address (tree, method_vec) + slot,
1762 len-slot, sizeof (tree), method_name_cmp);
1763 }
1764
1765 /* Make BINFO's vtable have N entries, including RTTI entries,
1766 vbase and vcall offsets, etc. Set its type and call the back end
1767 to lay it out. */
1768
1769 static void
1770 layout_vtable_decl (tree binfo, int n)
1771 {
1772 tree atype;
1773 tree vtable;
1774
1775 atype = build_cplus_array_type (vtable_entry_type,
1776 build_index_type (size_int (n - 1)));
1777 layout_type (atype);
1778
1779 /* We may have to grow the vtable. */
1780 vtable = get_vtbl_decl_for_binfo (binfo);
1781 if (!same_type_p (TREE_TYPE (vtable), atype))
1782 {
1783 TREE_TYPE (vtable) = atype;
1784 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1785 layout_decl (vtable, 0);
1786 }
1787 }
1788
1789 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1790 have the same signature. */
1791
1792 int
1793 same_signature_p (const_tree fndecl, const_tree base_fndecl)
1794 {
1795 /* One destructor overrides another if they are the same kind of
1796 destructor. */
1797 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1798 && special_function_p (base_fndecl) == special_function_p (fndecl))
1799 return 1;
1800 /* But a non-destructor never overrides a destructor, nor vice
1801 versa, nor do different kinds of destructors override
1802 one-another. For example, a complete object destructor does not
1803 override a deleting destructor. */
1804 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1805 return 0;
1806
1807 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1808 || (DECL_CONV_FN_P (fndecl)
1809 && DECL_CONV_FN_P (base_fndecl)
1810 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1811 DECL_CONV_FN_TYPE (base_fndecl))))
1812 {
1813 tree types, base_types;
1814 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1815 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1816 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1817 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1818 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1819 return 1;
1820 }
1821 return 0;
1822 }
1823
1824 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1825 subobject. */
1826
1827 static bool
1828 base_derived_from (tree derived, tree base)
1829 {
1830 tree probe;
1831
1832 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1833 {
1834 if (probe == derived)
1835 return true;
1836 else if (BINFO_VIRTUAL_P (probe))
1837 /* If we meet a virtual base, we can't follow the inheritance
1838 any more. See if the complete type of DERIVED contains
1839 such a virtual base. */
1840 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1841 != NULL_TREE);
1842 }
1843 return false;
1844 }
1845
1846 typedef struct find_final_overrider_data_s {
1847 /* The function for which we are trying to find a final overrider. */
1848 tree fn;
1849 /* The base class in which the function was declared. */
1850 tree declaring_base;
1851 /* The candidate overriders. */
1852 tree candidates;
1853 /* Path to most derived. */
1854 VEC(tree,heap) *path;
1855 } find_final_overrider_data;
1856
1857 /* Add the overrider along the current path to FFOD->CANDIDATES.
1858 Returns true if an overrider was found; false otherwise. */
1859
1860 static bool
1861 dfs_find_final_overrider_1 (tree binfo,
1862 find_final_overrider_data *ffod,
1863 unsigned depth)
1864 {
1865 tree method;
1866
1867 /* If BINFO is not the most derived type, try a more derived class.
1868 A definition there will overrider a definition here. */
1869 if (depth)
1870 {
1871 depth--;
1872 if (dfs_find_final_overrider_1
1873 (VEC_index (tree, ffod->path, depth), ffod, depth))
1874 return true;
1875 }
1876
1877 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1878 if (method)
1879 {
1880 tree *candidate = &ffod->candidates;
1881
1882 /* Remove any candidates overridden by this new function. */
1883 while (*candidate)
1884 {
1885 /* If *CANDIDATE overrides METHOD, then METHOD
1886 cannot override anything else on the list. */
1887 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1888 return true;
1889 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1890 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1891 *candidate = TREE_CHAIN (*candidate);
1892 else
1893 candidate = &TREE_CHAIN (*candidate);
1894 }
1895
1896 /* Add the new function. */
1897 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1898 return true;
1899 }
1900
1901 return false;
1902 }
1903
1904 /* Called from find_final_overrider via dfs_walk. */
1905
1906 static tree
1907 dfs_find_final_overrider_pre (tree binfo, void *data)
1908 {
1909 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1910
1911 if (binfo == ffod->declaring_base)
1912 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1913 VEC_safe_push (tree, heap, ffod->path, binfo);
1914
1915 return NULL_TREE;
1916 }
1917
1918 static tree
1919 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1920 {
1921 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1922 VEC_pop (tree, ffod->path);
1923
1924 return NULL_TREE;
1925 }
1926
1927 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1928 FN and whose TREE_VALUE is the binfo for the base where the
1929 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1930 DERIVED) is the base object in which FN is declared. */
1931
1932 static tree
1933 find_final_overrider (tree derived, tree binfo, tree fn)
1934 {
1935 find_final_overrider_data ffod;
1936
1937 /* Getting this right is a little tricky. This is valid:
1938
1939 struct S { virtual void f (); };
1940 struct T { virtual void f (); };
1941 struct U : public S, public T { };
1942
1943 even though calling `f' in `U' is ambiguous. But,
1944
1945 struct R { virtual void f(); };
1946 struct S : virtual public R { virtual void f (); };
1947 struct T : virtual public R { virtual void f (); };
1948 struct U : public S, public T { };
1949
1950 is not -- there's no way to decide whether to put `S::f' or
1951 `T::f' in the vtable for `R'.
1952
1953 The solution is to look at all paths to BINFO. If we find
1954 different overriders along any two, then there is a problem. */
1955 if (DECL_THUNK_P (fn))
1956 fn = THUNK_TARGET (fn);
1957
1958 /* Determine the depth of the hierarchy. */
1959 ffod.fn = fn;
1960 ffod.declaring_base = binfo;
1961 ffod.candidates = NULL_TREE;
1962 ffod.path = VEC_alloc (tree, heap, 30);
1963
1964 dfs_walk_all (derived, dfs_find_final_overrider_pre,
1965 dfs_find_final_overrider_post, &ffod);
1966
1967 VEC_free (tree, heap, ffod.path);
1968
1969 /* If there was no winner, issue an error message. */
1970 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
1971 return error_mark_node;
1972
1973 return ffod.candidates;
1974 }
1975
1976 /* Return the index of the vcall offset for FN when TYPE is used as a
1977 virtual base. */
1978
1979 static tree
1980 get_vcall_index (tree fn, tree type)
1981 {
1982 VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
1983 tree_pair_p p;
1984 unsigned ix;
1985
1986 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
1987 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
1988 || same_signature_p (fn, p->purpose))
1989 return p->value;
1990
1991 /* There should always be an appropriate index. */
1992 gcc_unreachable ();
1993 }
1994
1995 /* Update an entry in the vtable for BINFO, which is in the hierarchy
1996 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
1997 corresponding position in the BINFO_VIRTUALS list. */
1998
1999 static void
2000 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2001 unsigned ix)
2002 {
2003 tree b;
2004 tree overrider;
2005 tree delta;
2006 tree virtual_base;
2007 tree first_defn;
2008 tree overrider_fn, overrider_target;
2009 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2010 tree over_return, base_return;
2011 bool lost = false;
2012
2013 /* Find the nearest primary base (possibly binfo itself) which defines
2014 this function; this is the class the caller will convert to when
2015 calling FN through BINFO. */
2016 for (b = binfo; ; b = get_primary_binfo (b))
2017 {
2018 gcc_assert (b);
2019 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2020 break;
2021
2022 /* The nearest definition is from a lost primary. */
2023 if (BINFO_LOST_PRIMARY_P (b))
2024 lost = true;
2025 }
2026 first_defn = b;
2027
2028 /* Find the final overrider. */
2029 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2030 if (overrider == error_mark_node)
2031 {
2032 error ("no unique final overrider for %qD in %qT", target_fn, t);
2033 return;
2034 }
2035 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2036
2037 /* Check for adjusting covariant return types. */
2038 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2039 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2040
2041 if (POINTER_TYPE_P (over_return)
2042 && TREE_CODE (over_return) == TREE_CODE (base_return)
2043 && CLASS_TYPE_P (TREE_TYPE (over_return))
2044 && CLASS_TYPE_P (TREE_TYPE (base_return))
2045 /* If the overrider is invalid, don't even try. */
2046 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2047 {
2048 /* If FN is a covariant thunk, we must figure out the adjustment
2049 to the final base FN was converting to. As OVERRIDER_TARGET might
2050 also be converting to the return type of FN, we have to
2051 combine the two conversions here. */
2052 tree fixed_offset, virtual_offset;
2053
2054 over_return = TREE_TYPE (over_return);
2055 base_return = TREE_TYPE (base_return);
2056
2057 if (DECL_THUNK_P (fn))
2058 {
2059 gcc_assert (DECL_RESULT_THUNK_P (fn));
2060 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2061 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2062 }
2063 else
2064 fixed_offset = virtual_offset = NULL_TREE;
2065
2066 if (virtual_offset)
2067 /* Find the equivalent binfo within the return type of the
2068 overriding function. We will want the vbase offset from
2069 there. */
2070 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2071 over_return);
2072 else if (!same_type_ignoring_top_level_qualifiers_p
2073 (over_return, base_return))
2074 {
2075 /* There was no existing virtual thunk (which takes
2076 precedence). So find the binfo of the base function's
2077 return type within the overriding function's return type.
2078 We cannot call lookup base here, because we're inside a
2079 dfs_walk, and will therefore clobber the BINFO_MARKED
2080 flags. Fortunately we know the covariancy is valid (it
2081 has already been checked), so we can just iterate along
2082 the binfos, which have been chained in inheritance graph
2083 order. Of course it is lame that we have to repeat the
2084 search here anyway -- we should really be caching pieces
2085 of the vtable and avoiding this repeated work. */
2086 tree thunk_binfo, base_binfo;
2087
2088 /* Find the base binfo within the overriding function's
2089 return type. We will always find a thunk_binfo, except
2090 when the covariancy is invalid (which we will have
2091 already diagnosed). */
2092 for (base_binfo = TYPE_BINFO (base_return),
2093 thunk_binfo = TYPE_BINFO (over_return);
2094 thunk_binfo;
2095 thunk_binfo = TREE_CHAIN (thunk_binfo))
2096 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2097 BINFO_TYPE (base_binfo)))
2098 break;
2099
2100 /* See if virtual inheritance is involved. */
2101 for (virtual_offset = thunk_binfo;
2102 virtual_offset;
2103 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2104 if (BINFO_VIRTUAL_P (virtual_offset))
2105 break;
2106
2107 if (virtual_offset
2108 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2109 {
2110 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2111
2112 if (virtual_offset)
2113 {
2114 /* We convert via virtual base. Adjust the fixed
2115 offset to be from there. */
2116 offset = size_diffop
2117 (offset, convert
2118 (ssizetype, BINFO_OFFSET (virtual_offset)));
2119 }
2120 if (fixed_offset)
2121 /* There was an existing fixed offset, this must be
2122 from the base just converted to, and the base the
2123 FN was thunking to. */
2124 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2125 else
2126 fixed_offset = offset;
2127 }
2128 }
2129
2130 if (fixed_offset || virtual_offset)
2131 /* Replace the overriding function with a covariant thunk. We
2132 will emit the overriding function in its own slot as
2133 well. */
2134 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2135 fixed_offset, virtual_offset);
2136 }
2137 else
2138 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2139 !DECL_THUNK_P (fn));
2140
2141 /* Assume that we will produce a thunk that convert all the way to
2142 the final overrider, and not to an intermediate virtual base. */
2143 virtual_base = NULL_TREE;
2144
2145 /* See if we can convert to an intermediate virtual base first, and then
2146 use the vcall offset located there to finish the conversion. */
2147 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2148 {
2149 /* If we find the final overrider, then we can stop
2150 walking. */
2151 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2152 BINFO_TYPE (TREE_VALUE (overrider))))
2153 break;
2154
2155 /* If we find a virtual base, and we haven't yet found the
2156 overrider, then there is a virtual base between the
2157 declaring base (first_defn) and the final overrider. */
2158 if (BINFO_VIRTUAL_P (b))
2159 {
2160 virtual_base = b;
2161 break;
2162 }
2163 }
2164
2165 if (overrider_fn != overrider_target && !virtual_base)
2166 {
2167 /* The ABI specifies that a covariant thunk includes a mangling
2168 for a this pointer adjustment. This-adjusting thunks that
2169 override a function from a virtual base have a vcall
2170 adjustment. When the virtual base in question is a primary
2171 virtual base, we know the adjustments are zero, (and in the
2172 non-covariant case, we would not use the thunk).
2173 Unfortunately we didn't notice this could happen, when
2174 designing the ABI and so never mandated that such a covariant
2175 thunk should be emitted. Because we must use the ABI mandated
2176 name, we must continue searching from the binfo where we
2177 found the most recent definition of the function, towards the
2178 primary binfo which first introduced the function into the
2179 vtable. If that enters a virtual base, we must use a vcall
2180 this-adjusting thunk. Bleah! */
2181 tree probe = first_defn;
2182
2183 while ((probe = get_primary_binfo (probe))
2184 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2185 if (BINFO_VIRTUAL_P (probe))
2186 virtual_base = probe;
2187
2188 if (virtual_base)
2189 /* Even if we find a virtual base, the correct delta is
2190 between the overrider and the binfo we're building a vtable
2191 for. */
2192 goto virtual_covariant;
2193 }
2194
2195 /* Compute the constant adjustment to the `this' pointer. The
2196 `this' pointer, when this function is called, will point at BINFO
2197 (or one of its primary bases, which are at the same offset). */
2198 if (virtual_base)
2199 /* The `this' pointer needs to be adjusted from the declaration to
2200 the nearest virtual base. */
2201 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2202 convert (ssizetype, BINFO_OFFSET (first_defn)));
2203 else if (lost)
2204 /* If the nearest definition is in a lost primary, we don't need an
2205 entry in our vtable. Except possibly in a constructor vtable,
2206 if we happen to get our primary back. In that case, the offset
2207 will be zero, as it will be a primary base. */
2208 delta = size_zero_node;
2209 else
2210 /* The `this' pointer needs to be adjusted from pointing to
2211 BINFO to pointing at the base where the final overrider
2212 appears. */
2213 virtual_covariant:
2214 delta = size_diffop (convert (ssizetype,
2215 BINFO_OFFSET (TREE_VALUE (overrider))),
2216 convert (ssizetype, BINFO_OFFSET (binfo)));
2217
2218 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2219
2220 if (virtual_base)
2221 BV_VCALL_INDEX (*virtuals)
2222 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2223 else
2224 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2225 }
2226
2227 /* Called from modify_all_vtables via dfs_walk. */
2228
2229 static tree
2230 dfs_modify_vtables (tree binfo, void* data)
2231 {
2232 tree t = (tree) data;
2233 tree virtuals;
2234 tree old_virtuals;
2235 unsigned ix;
2236
2237 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2238 /* A base without a vtable needs no modification, and its bases
2239 are uninteresting. */
2240 return dfs_skip_bases;
2241
2242 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2243 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2244 /* Don't do the primary vtable, if it's new. */
2245 return NULL_TREE;
2246
2247 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2248 /* There's no need to modify the vtable for a non-virtual primary
2249 base; we're not going to use that vtable anyhow. We do still
2250 need to do this for virtual primary bases, as they could become
2251 non-primary in a construction vtable. */
2252 return NULL_TREE;
2253
2254 make_new_vtable (t, binfo);
2255
2256 /* Now, go through each of the virtual functions in the virtual
2257 function table for BINFO. Find the final overrider, and update
2258 the BINFO_VIRTUALS list appropriately. */
2259 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2260 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2261 virtuals;
2262 ix++, virtuals = TREE_CHAIN (virtuals),
2263 old_virtuals = TREE_CHAIN (old_virtuals))
2264 update_vtable_entry_for_fn (t,
2265 binfo,
2266 BV_FN (old_virtuals),
2267 &virtuals, ix);
2268
2269 return NULL_TREE;
2270 }
2271
2272 /* Update all of the primary and secondary vtables for T. Create new
2273 vtables as required, and initialize their RTTI information. Each
2274 of the functions in VIRTUALS is declared in T and may override a
2275 virtual function from a base class; find and modify the appropriate
2276 entries to point to the overriding functions. Returns a list, in
2277 declaration order, of the virtual functions that are declared in T,
2278 but do not appear in the primary base class vtable, and which
2279 should therefore be appended to the end of the vtable for T. */
2280
2281 static tree
2282 modify_all_vtables (tree t, tree virtuals)
2283 {
2284 tree binfo = TYPE_BINFO (t);
2285 tree *fnsp;
2286
2287 /* Update all of the vtables. */
2288 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2289
2290 /* Add virtual functions not already in our primary vtable. These
2291 will be both those introduced by this class, and those overridden
2292 from secondary bases. It does not include virtuals merely
2293 inherited from secondary bases. */
2294 for (fnsp = &virtuals; *fnsp; )
2295 {
2296 tree fn = TREE_VALUE (*fnsp);
2297
2298 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2299 || DECL_VINDEX (fn) == error_mark_node)
2300 {
2301 /* We don't need to adjust the `this' pointer when
2302 calling this function. */
2303 BV_DELTA (*fnsp) = integer_zero_node;
2304 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2305
2306 /* This is a function not already in our vtable. Keep it. */
2307 fnsp = &TREE_CHAIN (*fnsp);
2308 }
2309 else
2310 /* We've already got an entry for this function. Skip it. */
2311 *fnsp = TREE_CHAIN (*fnsp);
2312 }
2313
2314 return virtuals;
2315 }
2316
2317 /* Get the base virtual function declarations in T that have the
2318 indicated NAME. */
2319
2320 static tree
2321 get_basefndecls (tree name, tree t)
2322 {
2323 tree methods;
2324 tree base_fndecls = NULL_TREE;
2325 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2326 int i;
2327
2328 /* Find virtual functions in T with the indicated NAME. */
2329 i = lookup_fnfields_1 (t, name);
2330 if (i != -1)
2331 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2332 methods;
2333 methods = OVL_NEXT (methods))
2334 {
2335 tree method = OVL_CURRENT (methods);
2336
2337 if (TREE_CODE (method) == FUNCTION_DECL
2338 && DECL_VINDEX (method))
2339 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2340 }
2341
2342 if (base_fndecls)
2343 return base_fndecls;
2344
2345 for (i = 0; i < n_baseclasses; i++)
2346 {
2347 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2348 base_fndecls = chainon (get_basefndecls (name, basetype),
2349 base_fndecls);
2350 }
2351
2352 return base_fndecls;
2353 }
2354
2355 /* If this declaration supersedes the declaration of
2356 a method declared virtual in the base class, then
2357 mark this field as being virtual as well. */
2358
2359 void
2360 check_for_override (tree decl, tree ctype)
2361 {
2362 if (TREE_CODE (decl) == TEMPLATE_DECL)
2363 /* In [temp.mem] we have:
2364
2365 A specialization of a member function template does not
2366 override a virtual function from a base class. */
2367 return;
2368 if ((DECL_DESTRUCTOR_P (decl)
2369 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2370 || DECL_CONV_FN_P (decl))
2371 && look_for_overrides (ctype, decl)
2372 && !DECL_STATIC_FUNCTION_P (decl))
2373 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2374 the error_mark_node so that we know it is an overriding
2375 function. */
2376 DECL_VINDEX (decl) = decl;
2377
2378 if (DECL_VIRTUAL_P (decl))
2379 {
2380 if (!DECL_VINDEX (decl))
2381 DECL_VINDEX (decl) = error_mark_node;
2382 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2383 }
2384 }
2385
2386 /* Warn about hidden virtual functions that are not overridden in t.
2387 We know that constructors and destructors don't apply. */
2388
2389 static void
2390 warn_hidden (tree t)
2391 {
2392 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
2393 tree fns;
2394 size_t i;
2395
2396 /* We go through each separately named virtual function. */
2397 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2398 VEC_iterate (tree, method_vec, i, fns);
2399 ++i)
2400 {
2401 tree fn;
2402 tree name;
2403 tree fndecl;
2404 tree base_fndecls;
2405 tree base_binfo;
2406 tree binfo;
2407 int j;
2408
2409 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2410 have the same name. Figure out what name that is. */
2411 name = DECL_NAME (OVL_CURRENT (fns));
2412 /* There are no possibly hidden functions yet. */
2413 base_fndecls = NULL_TREE;
2414 /* Iterate through all of the base classes looking for possibly
2415 hidden functions. */
2416 for (binfo = TYPE_BINFO (t), j = 0;
2417 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2418 {
2419 tree basetype = BINFO_TYPE (base_binfo);
2420 base_fndecls = chainon (get_basefndecls (name, basetype),
2421 base_fndecls);
2422 }
2423
2424 /* If there are no functions to hide, continue. */
2425 if (!base_fndecls)
2426 continue;
2427
2428 /* Remove any overridden functions. */
2429 for (fn = fns; fn; fn = OVL_NEXT (fn))
2430 {
2431 fndecl = OVL_CURRENT (fn);
2432 if (DECL_VINDEX (fndecl))
2433 {
2434 tree *prev = &base_fndecls;
2435
2436 while (*prev)
2437 /* If the method from the base class has the same
2438 signature as the method from the derived class, it
2439 has been overridden. */
2440 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2441 *prev = TREE_CHAIN (*prev);
2442 else
2443 prev = &TREE_CHAIN (*prev);
2444 }
2445 }
2446
2447 /* Now give a warning for all base functions without overriders,
2448 as they are hidden. */
2449 while (base_fndecls)
2450 {
2451 /* Here we know it is a hider, and no overrider exists. */
2452 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2453 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2454 base_fndecls = TREE_CHAIN (base_fndecls);
2455 }
2456 }
2457 }
2458
2459 /* Check for things that are invalid. There are probably plenty of other
2460 things we should check for also. */
2461
2462 static void
2463 finish_struct_anon (tree t)
2464 {
2465 tree field;
2466
2467 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2468 {
2469 if (TREE_STATIC (field))
2470 continue;
2471 if (TREE_CODE (field) != FIELD_DECL)
2472 continue;
2473
2474 if (DECL_NAME (field) == NULL_TREE
2475 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2476 {
2477 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2478 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2479 for (; elt; elt = TREE_CHAIN (elt))
2480 {
2481 /* We're generally only interested in entities the user
2482 declared, but we also find nested classes by noticing
2483 the TYPE_DECL that we create implicitly. You're
2484 allowed to put one anonymous union inside another,
2485 though, so we explicitly tolerate that. We use
2486 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2487 we also allow unnamed types used for defining fields. */
2488 if (DECL_ARTIFICIAL (elt)
2489 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2490 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2491 continue;
2492
2493 if (TREE_CODE (elt) != FIELD_DECL)
2494 {
2495 if (is_union)
2496 permerror ("%q+#D invalid; an anonymous union can "
2497 "only have non-static data members", elt);
2498 else
2499 permerror ("%q+#D invalid; an anonymous struct can "
2500 "only have non-static data members", elt);
2501 continue;
2502 }
2503
2504 if (TREE_PRIVATE (elt))
2505 {
2506 if (is_union)
2507 permerror ("private member %q+#D in anonymous union", elt);
2508 else
2509 permerror ("private member %q+#D in anonymous struct", elt);
2510 }
2511 else if (TREE_PROTECTED (elt))
2512 {
2513 if (is_union)
2514 permerror ("protected member %q+#D in anonymous union", elt);
2515 else
2516 permerror ("protected member %q+#D in anonymous struct", elt);
2517 }
2518
2519 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2520 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2521 }
2522 }
2523 }
2524 }
2525
2526 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2527 will be used later during class template instantiation.
2528 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2529 a non-static member data (FIELD_DECL), a member function
2530 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2531 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2532 When FRIEND_P is nonzero, T is either a friend class
2533 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2534 (FUNCTION_DECL, TEMPLATE_DECL). */
2535
2536 void
2537 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2538 {
2539 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2540 if (CLASSTYPE_TEMPLATE_INFO (type))
2541 CLASSTYPE_DECL_LIST (type)
2542 = tree_cons (friend_p ? NULL_TREE : type,
2543 t, CLASSTYPE_DECL_LIST (type));
2544 }
2545
2546 /* Create default constructors, assignment operators, and so forth for
2547 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2548 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2549 the class cannot have a default constructor, copy constructor
2550 taking a const reference argument, or an assignment operator taking
2551 a const reference, respectively. */
2552
2553 static void
2554 add_implicitly_declared_members (tree t,
2555 int cant_have_const_cctor,
2556 int cant_have_const_assignment)
2557 {
2558 /* Destructor. */
2559 if (!CLASSTYPE_DESTRUCTORS (t))
2560 {
2561 /* In general, we create destructors lazily. */
2562 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2563 /* However, if the implicit destructor is non-trivial
2564 destructor, we sometimes have to create it at this point. */
2565 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2566 {
2567 bool lazy_p = true;
2568
2569 if (TYPE_FOR_JAVA (t))
2570 /* If this a Java class, any non-trivial destructor is
2571 invalid, even if compiler-generated. Therefore, if the
2572 destructor is non-trivial we create it now. */
2573 lazy_p = false;
2574 else
2575 {
2576 tree binfo;
2577 tree base_binfo;
2578 int ix;
2579
2580 /* If the implicit destructor will be virtual, then we must
2581 generate it now because (unfortunately) we do not
2582 generate virtual tables lazily. */
2583 binfo = TYPE_BINFO (t);
2584 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2585 {
2586 tree base_type;
2587 tree dtor;
2588
2589 base_type = BINFO_TYPE (base_binfo);
2590 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2591 if (dtor && DECL_VIRTUAL_P (dtor))
2592 {
2593 lazy_p = false;
2594 break;
2595 }
2596 }
2597 }
2598
2599 /* If we can't get away with being lazy, generate the destructor
2600 now. */
2601 if (!lazy_p)
2602 lazily_declare_fn (sfk_destructor, t);
2603 }
2604 }
2605
2606 /* [class.ctor]
2607
2608 If there is no user-declared constructor for a class, a default
2609 constructor is implicitly declared. */
2610 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2611 {
2612 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2613 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2614 }
2615
2616 /* [class.ctor]
2617
2618 If a class definition does not explicitly declare a copy
2619 constructor, one is declared implicitly. */
2620 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2621 {
2622 TYPE_HAS_INIT_REF (t) = 1;
2623 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2624 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2625 }
2626
2627 /* If there is no assignment operator, one will be created if and
2628 when it is needed. For now, just record whether or not the type
2629 of the parameter to the assignment operator will be a const or
2630 non-const reference. */
2631 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2632 {
2633 TYPE_HAS_ASSIGN_REF (t) = 1;
2634 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2635 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2636 }
2637 }
2638
2639 /* Subroutine of finish_struct_1. Recursively count the number of fields
2640 in TYPE, including anonymous union members. */
2641
2642 static int
2643 count_fields (tree fields)
2644 {
2645 tree x;
2646 int n_fields = 0;
2647 for (x = fields; x; x = TREE_CHAIN (x))
2648 {
2649 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2650 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2651 else
2652 n_fields += 1;
2653 }
2654 return n_fields;
2655 }
2656
2657 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2658 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2659
2660 static int
2661 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2662 {
2663 tree x;
2664 for (x = fields; x; x = TREE_CHAIN (x))
2665 {
2666 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2667 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2668 else
2669 field_vec->elts[idx++] = x;
2670 }
2671 return idx;
2672 }
2673
2674 /* FIELD is a bit-field. We are finishing the processing for its
2675 enclosing type. Issue any appropriate messages and set appropriate
2676 flags. Returns false if an error has been diagnosed. */
2677
2678 static bool
2679 check_bitfield_decl (tree field)
2680 {
2681 tree type = TREE_TYPE (field);
2682 tree w;
2683
2684 /* Extract the declared width of the bitfield, which has been
2685 temporarily stashed in DECL_INITIAL. */
2686 w = DECL_INITIAL (field);
2687 gcc_assert (w != NULL_TREE);
2688 /* Remove the bit-field width indicator so that the rest of the
2689 compiler does not treat that value as an initializer. */
2690 DECL_INITIAL (field) = NULL_TREE;
2691
2692 /* Detect invalid bit-field type. */
2693 if (!INTEGRAL_TYPE_P (type))
2694 {
2695 error ("bit-field %q+#D with non-integral type", field);
2696 w = error_mark_node;
2697 }
2698 else
2699 {
2700 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2701 STRIP_NOPS (w);
2702
2703 /* detect invalid field size. */
2704 w = integral_constant_value (w);
2705
2706 if (TREE_CODE (w) != INTEGER_CST)
2707 {
2708 error ("bit-field %q+D width not an integer constant", field);
2709 w = error_mark_node;
2710 }
2711 else if (tree_int_cst_sgn (w) < 0)
2712 {
2713 error ("negative width in bit-field %q+D", field);
2714 w = error_mark_node;
2715 }
2716 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2717 {
2718 error ("zero width for bit-field %q+D", field);
2719 w = error_mark_node;
2720 }
2721 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2722 && TREE_CODE (type) != ENUMERAL_TYPE
2723 && TREE_CODE (type) != BOOLEAN_TYPE)
2724 warning (0, "width of %q+D exceeds its type", field);
2725 else if (TREE_CODE (type) == ENUMERAL_TYPE
2726 && (0 > compare_tree_int (w,
2727 min_precision (TYPE_MIN_VALUE (type),
2728 TYPE_UNSIGNED (type)))
2729 || 0 > compare_tree_int (w,
2730 min_precision
2731 (TYPE_MAX_VALUE (type),
2732 TYPE_UNSIGNED (type)))))
2733 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
2734 }
2735
2736 if (w != error_mark_node)
2737 {
2738 DECL_SIZE (field) = convert (bitsizetype, w);
2739 DECL_BIT_FIELD (field) = 1;
2740 return true;
2741 }
2742 else
2743 {
2744 /* Non-bit-fields are aligned for their type. */
2745 DECL_BIT_FIELD (field) = 0;
2746 CLEAR_DECL_C_BIT_FIELD (field);
2747 return false;
2748 }
2749 }
2750
2751 /* FIELD is a non bit-field. We are finishing the processing for its
2752 enclosing type T. Issue any appropriate messages and set appropriate
2753 flags. */
2754
2755 static void
2756 check_field_decl (tree field,
2757 tree t,
2758 int* cant_have_const_ctor,
2759 int* no_const_asn_ref,
2760 int* any_default_members)
2761 {
2762 tree type = strip_array_types (TREE_TYPE (field));
2763
2764 /* An anonymous union cannot contain any fields which would change
2765 the settings of CANT_HAVE_CONST_CTOR and friends. */
2766 if (ANON_UNION_TYPE_P (type))
2767 ;
2768 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2769 structs. So, we recurse through their fields here. */
2770 else if (ANON_AGGR_TYPE_P (type))
2771 {
2772 tree fields;
2773
2774 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2775 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2776 check_field_decl (fields, t, cant_have_const_ctor,
2777 no_const_asn_ref, any_default_members);
2778 }
2779 /* Check members with class type for constructors, destructors,
2780 etc. */
2781 else if (CLASS_TYPE_P (type))
2782 {
2783 /* Never let anything with uninheritable virtuals
2784 make it through without complaint. */
2785 abstract_virtuals_error (field, type);
2786
2787 if (TREE_CODE (t) == UNION_TYPE)
2788 {
2789 if (TYPE_NEEDS_CONSTRUCTING (type))
2790 error ("member %q+#D with constructor not allowed in union",
2791 field);
2792 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2793 error ("member %q+#D with destructor not allowed in union", field);
2794 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2795 error ("member %q+#D with copy assignment operator not allowed in union",
2796 field);
2797 }
2798 else
2799 {
2800 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2801 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2802 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2803 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2804 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2805 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (type);
2806 }
2807
2808 if (!TYPE_HAS_CONST_INIT_REF (type))
2809 *cant_have_const_ctor = 1;
2810
2811 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2812 *no_const_asn_ref = 1;
2813 }
2814 if (DECL_INITIAL (field) != NULL_TREE)
2815 {
2816 /* `build_class_init_list' does not recognize
2817 non-FIELD_DECLs. */
2818 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2819 error ("multiple fields in union %qT initialized", t);
2820 *any_default_members = 1;
2821 }
2822 }
2823
2824 /* Check the data members (both static and non-static), class-scoped
2825 typedefs, etc., appearing in the declaration of T. Issue
2826 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2827 declaration order) of access declarations; each TREE_VALUE in this
2828 list is a USING_DECL.
2829
2830 In addition, set the following flags:
2831
2832 EMPTY_P
2833 The class is empty, i.e., contains no non-static data members.
2834
2835 CANT_HAVE_CONST_CTOR_P
2836 This class cannot have an implicitly generated copy constructor
2837 taking a const reference.
2838
2839 CANT_HAVE_CONST_ASN_REF
2840 This class cannot have an implicitly generated assignment
2841 operator taking a const reference.
2842
2843 All of these flags should be initialized before calling this
2844 function.
2845
2846 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2847 fields can be added by adding to this chain. */
2848
2849 static void
2850 check_field_decls (tree t, tree *access_decls,
2851 int *cant_have_const_ctor_p,
2852 int *no_const_asn_ref_p)
2853 {
2854 tree *field;
2855 tree *next;
2856 bool has_pointers;
2857 int any_default_members;
2858 int cant_pack = 0;
2859
2860 /* Assume there are no access declarations. */
2861 *access_decls = NULL_TREE;
2862 /* Assume this class has no pointer members. */
2863 has_pointers = false;
2864 /* Assume none of the members of this class have default
2865 initializations. */
2866 any_default_members = 0;
2867
2868 for (field = &TYPE_FIELDS (t); *field; field = next)
2869 {
2870 tree x = *field;
2871 tree type = TREE_TYPE (x);
2872
2873 next = &TREE_CHAIN (x);
2874
2875 if (TREE_CODE (x) == USING_DECL)
2876 {
2877 /* Prune the access declaration from the list of fields. */
2878 *field = TREE_CHAIN (x);
2879
2880 /* Save the access declarations for our caller. */
2881 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2882
2883 /* Since we've reset *FIELD there's no reason to skip to the
2884 next field. */
2885 next = field;
2886 continue;
2887 }
2888
2889 if (TREE_CODE (x) == TYPE_DECL
2890 || TREE_CODE (x) == TEMPLATE_DECL)
2891 continue;
2892
2893 /* If we've gotten this far, it's a data member, possibly static,
2894 or an enumerator. */
2895 DECL_CONTEXT (x) = t;
2896
2897 /* When this goes into scope, it will be a non-local reference. */
2898 DECL_NONLOCAL (x) = 1;
2899
2900 if (TREE_CODE (t) == UNION_TYPE)
2901 {
2902 /* [class.union]
2903
2904 If a union contains a static data member, or a member of
2905 reference type, the program is ill-formed. */
2906 if (TREE_CODE (x) == VAR_DECL)
2907 {
2908 error ("%q+D may not be static because it is a member of a union", x);
2909 continue;
2910 }
2911 if (TREE_CODE (type) == REFERENCE_TYPE)
2912 {
2913 error ("%q+D may not have reference type %qT because"
2914 " it is a member of a union",
2915 x, type);
2916 continue;
2917 }
2918 }
2919
2920 /* Perform error checking that did not get done in
2921 grokdeclarator. */
2922 if (TREE_CODE (type) == FUNCTION_TYPE)
2923 {
2924 error ("field %q+D invalidly declared function type", x);
2925 type = build_pointer_type (type);
2926 TREE_TYPE (x) = type;
2927 }
2928 else if (TREE_CODE (type) == METHOD_TYPE)
2929 {
2930 error ("field %q+D invalidly declared method type", x);
2931 type = build_pointer_type (type);
2932 TREE_TYPE (x) = type;
2933 }
2934
2935 if (type == error_mark_node)
2936 continue;
2937
2938 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
2939 continue;
2940
2941 /* Now it can only be a FIELD_DECL. */
2942
2943 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
2944 CLASSTYPE_NON_AGGREGATE (t) = 1;
2945
2946 /* If this is of reference type, check if it needs an init. */
2947 if (TREE_CODE (type) == REFERENCE_TYPE)
2948 {
2949 CLASSTYPE_NON_POD_P (t) = 1;
2950 if (DECL_INITIAL (x) == NULL_TREE)
2951 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2952
2953 /* ARM $12.6.2: [A member initializer list] (or, for an
2954 aggregate, initialization by a brace-enclosed list) is the
2955 only way to initialize nonstatic const and reference
2956 members. */
2957 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2958 }
2959
2960 type = strip_array_types (type);
2961
2962 if (TYPE_PACKED (t))
2963 {
2964 if (!pod_type_p (type) && !TYPE_PACKED (type))
2965 {
2966 warning
2967 (0,
2968 "ignoring packed attribute because of unpacked non-POD field %q+#D",
2969 x);
2970 cant_pack = 1;
2971 }
2972 else if (TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
2973 DECL_PACKED (x) = 1;
2974 }
2975
2976 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2977 /* We don't treat zero-width bitfields as making a class
2978 non-empty. */
2979 ;
2980 else
2981 {
2982 /* The class is non-empty. */
2983 CLASSTYPE_EMPTY_P (t) = 0;
2984 /* The class is not even nearly empty. */
2985 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
2986 /* If one of the data members contains an empty class,
2987 so does T. */
2988 if (CLASS_TYPE_P (type)
2989 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
2990 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
2991 }
2992
2993 /* This is used by -Weffc++ (see below). Warn only for pointers
2994 to members which might hold dynamic memory. So do not warn
2995 for pointers to functions or pointers to members. */
2996 if (TYPE_PTR_P (type)
2997 && !TYPE_PTRFN_P (type)
2998 && !TYPE_PTR_TO_MEMBER_P (type))
2999 has_pointers = true;
3000
3001 if (CLASS_TYPE_P (type))
3002 {
3003 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3004 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3005 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3006 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3007 }
3008
3009 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3010 CLASSTYPE_HAS_MUTABLE (t) = 1;
3011
3012 if (! pod_type_p (type))
3013 /* DR 148 now allows pointers to members (which are POD themselves),
3014 to be allowed in POD structs. */
3015 CLASSTYPE_NON_POD_P (t) = 1;
3016
3017 if (! zero_init_p (type))
3018 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3019
3020 /* If any field is const, the structure type is pseudo-const. */
3021 if (CP_TYPE_CONST_P (type))
3022 {
3023 C_TYPE_FIELDS_READONLY (t) = 1;
3024 if (DECL_INITIAL (x) == NULL_TREE)
3025 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3026
3027 /* ARM $12.6.2: [A member initializer list] (or, for an
3028 aggregate, initialization by a brace-enclosed list) is the
3029 only way to initialize nonstatic const and reference
3030 members. */
3031 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
3032 }
3033 /* A field that is pseudo-const makes the structure likewise. */
3034 else if (CLASS_TYPE_P (type))
3035 {
3036 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3037 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3038 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3039 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3040 }
3041
3042 /* Core issue 80: A nonstatic data member is required to have a
3043 different name from the class iff the class has a
3044 user-defined constructor. */
3045 if (constructor_name_p (DECL_NAME (x), t)
3046 && TYPE_HAS_USER_CONSTRUCTOR (t))
3047 permerror ("field %q+#D with same name as class", x);
3048
3049 /* We set DECL_C_BIT_FIELD in grokbitfield.
3050 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3051 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3052 check_field_decl (x, t,
3053 cant_have_const_ctor_p,
3054 no_const_asn_ref_p,
3055 &any_default_members);
3056 }
3057
3058 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3059 it should also define a copy constructor and an assignment operator to
3060 implement the correct copy semantic (deep vs shallow, etc.). As it is
3061 not feasible to check whether the constructors do allocate dynamic memory
3062 and store it within members, we approximate the warning like this:
3063
3064 -- Warn only if there are members which are pointers
3065 -- Warn only if there is a non-trivial constructor (otherwise,
3066 there cannot be memory allocated).
3067 -- Warn only if there is a non-trivial destructor. We assume that the
3068 user at least implemented the cleanup correctly, and a destructor
3069 is needed to free dynamic memory.
3070
3071 This seems enough for practical purposes. */
3072 if (warn_ecpp
3073 && has_pointers
3074 && TYPE_HAS_USER_CONSTRUCTOR (t)
3075 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3076 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3077 {
3078 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3079
3080 if (! TYPE_HAS_INIT_REF (t))
3081 {
3082 warning (OPT_Weffc__,
3083 " but does not override %<%T(const %T&)%>", t, t);
3084 if (!TYPE_HAS_ASSIGN_REF (t))
3085 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3086 }
3087 else if (! TYPE_HAS_ASSIGN_REF (t))
3088 warning (OPT_Weffc__,
3089 " but does not override %<operator=(const %T&)%>", t);
3090 }
3091
3092 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3093 if (cant_pack)
3094 TYPE_PACKED (t) = 0;
3095
3096 /* Check anonymous struct/anonymous union fields. */
3097 finish_struct_anon (t);
3098
3099 /* We've built up the list of access declarations in reverse order.
3100 Fix that now. */
3101 *access_decls = nreverse (*access_decls);
3102 }
3103
3104 /* If TYPE is an empty class type, records its OFFSET in the table of
3105 OFFSETS. */
3106
3107 static int
3108 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3109 {
3110 splay_tree_node n;
3111
3112 if (!is_empty_class (type))
3113 return 0;
3114
3115 /* Record the location of this empty object in OFFSETS. */
3116 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3117 if (!n)
3118 n = splay_tree_insert (offsets,
3119 (splay_tree_key) offset,
3120 (splay_tree_value) NULL_TREE);
3121 n->value = ((splay_tree_value)
3122 tree_cons (NULL_TREE,
3123 type,
3124 (tree) n->value));
3125
3126 return 0;
3127 }
3128
3129 /* Returns nonzero if TYPE is an empty class type and there is
3130 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3131
3132 static int
3133 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3134 {
3135 splay_tree_node n;
3136 tree t;
3137
3138 if (!is_empty_class (type))
3139 return 0;
3140
3141 /* Record the location of this empty object in OFFSETS. */
3142 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3143 if (!n)
3144 return 0;
3145
3146 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3147 if (same_type_p (TREE_VALUE (t), type))
3148 return 1;
3149
3150 return 0;
3151 }
3152
3153 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3154 F for every subobject, passing it the type, offset, and table of
3155 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3156 be traversed.
3157
3158 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3159 than MAX_OFFSET will not be walked.
3160
3161 If F returns a nonzero value, the traversal ceases, and that value
3162 is returned. Otherwise, returns zero. */
3163
3164 static int
3165 walk_subobject_offsets (tree type,
3166 subobject_offset_fn f,
3167 tree offset,
3168 splay_tree offsets,
3169 tree max_offset,
3170 int vbases_p)
3171 {
3172 int r = 0;
3173 tree type_binfo = NULL_TREE;
3174
3175 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3176 stop. */
3177 if (max_offset && INT_CST_LT (max_offset, offset))
3178 return 0;
3179
3180 if (type == error_mark_node)
3181 return 0;
3182
3183 if (!TYPE_P (type))
3184 {
3185 if (abi_version_at_least (2))
3186 type_binfo = type;
3187 type = BINFO_TYPE (type);
3188 }
3189
3190 if (CLASS_TYPE_P (type))
3191 {
3192 tree field;
3193 tree binfo;
3194 int i;
3195
3196 /* Avoid recursing into objects that are not interesting. */
3197 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3198 return 0;
3199
3200 /* Record the location of TYPE. */
3201 r = (*f) (type, offset, offsets);
3202 if (r)
3203 return r;
3204
3205 /* Iterate through the direct base classes of TYPE. */
3206 if (!type_binfo)
3207 type_binfo = TYPE_BINFO (type);
3208 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3209 {
3210 tree binfo_offset;
3211
3212 if (abi_version_at_least (2)
3213 && BINFO_VIRTUAL_P (binfo))
3214 continue;
3215
3216 if (!vbases_p
3217 && BINFO_VIRTUAL_P (binfo)
3218 && !BINFO_PRIMARY_P (binfo))
3219 continue;
3220
3221 if (!abi_version_at_least (2))
3222 binfo_offset = size_binop (PLUS_EXPR,
3223 offset,
3224 BINFO_OFFSET (binfo));
3225 else
3226 {
3227 tree orig_binfo;
3228 /* We cannot rely on BINFO_OFFSET being set for the base
3229 class yet, but the offsets for direct non-virtual
3230 bases can be calculated by going back to the TYPE. */
3231 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3232 binfo_offset = size_binop (PLUS_EXPR,
3233 offset,
3234 BINFO_OFFSET (orig_binfo));
3235 }
3236
3237 r = walk_subobject_offsets (binfo,
3238 f,
3239 binfo_offset,
3240 offsets,
3241 max_offset,
3242 (abi_version_at_least (2)
3243 ? /*vbases_p=*/0 : vbases_p));
3244 if (r)
3245 return r;
3246 }
3247
3248 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3249 {
3250 unsigned ix;
3251 VEC(tree,gc) *vbases;
3252
3253 /* Iterate through the virtual base classes of TYPE. In G++
3254 3.2, we included virtual bases in the direct base class
3255 loop above, which results in incorrect results; the
3256 correct offsets for virtual bases are only known when
3257 working with the most derived type. */
3258 if (vbases_p)
3259 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3260 VEC_iterate (tree, vbases, ix, binfo); ix++)
3261 {
3262 r = walk_subobject_offsets (binfo,
3263 f,
3264 size_binop (PLUS_EXPR,
3265 offset,
3266 BINFO_OFFSET (binfo)),
3267 offsets,
3268 max_offset,
3269 /*vbases_p=*/0);
3270 if (r)
3271 return r;
3272 }
3273 else
3274 {
3275 /* We still have to walk the primary base, if it is
3276 virtual. (If it is non-virtual, then it was walked
3277 above.) */
3278 tree vbase = get_primary_binfo (type_binfo);
3279
3280 if (vbase && BINFO_VIRTUAL_P (vbase)
3281 && BINFO_PRIMARY_P (vbase)
3282 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3283 {
3284 r = (walk_subobject_offsets
3285 (vbase, f, offset,
3286 offsets, max_offset, /*vbases_p=*/0));
3287 if (r)
3288 return r;
3289 }
3290 }
3291 }
3292
3293 /* Iterate through the fields of TYPE. */
3294 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3295 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3296 {
3297 tree field_offset;
3298
3299 if (abi_version_at_least (2))
3300 field_offset = byte_position (field);
3301 else
3302 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3303 field_offset = DECL_FIELD_OFFSET (field);
3304
3305 r = walk_subobject_offsets (TREE_TYPE (field),
3306 f,
3307 size_binop (PLUS_EXPR,
3308 offset,
3309 field_offset),
3310 offsets,
3311 max_offset,
3312 /*vbases_p=*/1);
3313 if (r)
3314 return r;
3315 }
3316 }
3317 else if (TREE_CODE (type) == ARRAY_TYPE)
3318 {
3319 tree element_type = strip_array_types (type);
3320 tree domain = TYPE_DOMAIN (type);
3321 tree index;
3322
3323 /* Avoid recursing into objects that are not interesting. */
3324 if (!CLASS_TYPE_P (element_type)
3325 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3326 return 0;
3327
3328 /* Step through each of the elements in the array. */
3329 for (index = size_zero_node;
3330 /* G++ 3.2 had an off-by-one error here. */
3331 (abi_version_at_least (2)
3332 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3333 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3334 index = size_binop (PLUS_EXPR, index, size_one_node))
3335 {
3336 r = walk_subobject_offsets (TREE_TYPE (type),
3337 f,
3338 offset,
3339 offsets,
3340 max_offset,
3341 /*vbases_p=*/1);
3342 if (r)
3343 return r;
3344 offset = size_binop (PLUS_EXPR, offset,
3345 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3346 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3347 there's no point in iterating through the remaining
3348 elements of the array. */
3349 if (max_offset && INT_CST_LT (max_offset, offset))
3350 break;
3351 }
3352 }
3353
3354 return 0;
3355 }
3356
3357 /* Record all of the empty subobjects of TYPE (either a type or a
3358 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3359 is being placed at OFFSET; otherwise, it is a base class that is
3360 being placed at OFFSET. */
3361
3362 static void
3363 record_subobject_offsets (tree type,
3364 tree offset,
3365 splay_tree offsets,
3366 bool is_data_member)
3367 {
3368 tree max_offset;
3369 /* If recording subobjects for a non-static data member or a
3370 non-empty base class , we do not need to record offsets beyond
3371 the size of the biggest empty class. Additional data members
3372 will go at the end of the class. Additional base classes will go
3373 either at offset zero (if empty, in which case they cannot
3374 overlap with offsets past the size of the biggest empty class) or
3375 at the end of the class.
3376
3377 However, if we are placing an empty base class, then we must record
3378 all offsets, as either the empty class is at offset zero (where
3379 other empty classes might later be placed) or at the end of the
3380 class (where other objects might then be placed, so other empty
3381 subobjects might later overlap). */
3382 if (is_data_member
3383 || !is_empty_class (BINFO_TYPE (type)))
3384 max_offset = sizeof_biggest_empty_class;
3385 else
3386 max_offset = NULL_TREE;
3387 walk_subobject_offsets (type, record_subobject_offset, offset,
3388 offsets, max_offset, is_data_member);
3389 }
3390
3391 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3392 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3393 virtual bases of TYPE are examined. */
3394
3395 static int
3396 layout_conflict_p (tree type,
3397 tree offset,
3398 splay_tree offsets,
3399 int vbases_p)
3400 {
3401 splay_tree_node max_node;
3402
3403 /* Get the node in OFFSETS that indicates the maximum offset where
3404 an empty subobject is located. */
3405 max_node = splay_tree_max (offsets);
3406 /* If there aren't any empty subobjects, then there's no point in
3407 performing this check. */
3408 if (!max_node)
3409 return 0;
3410
3411 return walk_subobject_offsets (type, check_subobject_offset, offset,
3412 offsets, (tree) (max_node->key),
3413 vbases_p);
3414 }
3415
3416 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3417 non-static data member of the type indicated by RLI. BINFO is the
3418 binfo corresponding to the base subobject, OFFSETS maps offsets to
3419 types already located at those offsets. This function determines
3420 the position of the DECL. */
3421
3422 static void
3423 layout_nonempty_base_or_field (record_layout_info rli,
3424 tree decl,
3425 tree binfo,
3426 splay_tree offsets)
3427 {
3428 tree offset = NULL_TREE;
3429 bool field_p;
3430 tree type;
3431
3432 if (binfo)
3433 {
3434 /* For the purposes of determining layout conflicts, we want to
3435 use the class type of BINFO; TREE_TYPE (DECL) will be the
3436 CLASSTYPE_AS_BASE version, which does not contain entries for
3437 zero-sized bases. */
3438 type = TREE_TYPE (binfo);
3439 field_p = false;
3440 }
3441 else
3442 {
3443 type = TREE_TYPE (decl);
3444 field_p = true;
3445 }
3446
3447 /* Try to place the field. It may take more than one try if we have
3448 a hard time placing the field without putting two objects of the
3449 same type at the same address. */
3450 while (1)
3451 {
3452 struct record_layout_info_s old_rli = *rli;
3453
3454 /* Place this field. */
3455 place_field (rli, decl);
3456 offset = byte_position (decl);
3457
3458 /* We have to check to see whether or not there is already
3459 something of the same type at the offset we're about to use.
3460 For example, consider:
3461
3462 struct S {};
3463 struct T : public S { int i; };
3464 struct U : public S, public T {};
3465
3466 Here, we put S at offset zero in U. Then, we can't put T at
3467 offset zero -- its S component would be at the same address
3468 as the S we already allocated. So, we have to skip ahead.
3469 Since all data members, including those whose type is an
3470 empty class, have nonzero size, any overlap can happen only
3471 with a direct or indirect base-class -- it can't happen with
3472 a data member. */
3473 /* In a union, overlap is permitted; all members are placed at
3474 offset zero. */
3475 if (TREE_CODE (rli->t) == UNION_TYPE)
3476 break;
3477 /* G++ 3.2 did not check for overlaps when placing a non-empty
3478 virtual base. */
3479 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3480 break;
3481 if (layout_conflict_p (field_p ? type : binfo, offset,
3482 offsets, field_p))
3483 {
3484 /* Strip off the size allocated to this field. That puts us
3485 at the first place we could have put the field with
3486 proper alignment. */
3487 *rli = old_rli;
3488
3489 /* Bump up by the alignment required for the type. */
3490 rli->bitpos
3491 = size_binop (PLUS_EXPR, rli->bitpos,
3492 bitsize_int (binfo
3493 ? CLASSTYPE_ALIGN (type)
3494 : TYPE_ALIGN (type)));
3495 normalize_rli (rli);
3496 }
3497 else
3498 /* There was no conflict. We're done laying out this field. */
3499 break;
3500 }
3501
3502 /* Now that we know where it will be placed, update its
3503 BINFO_OFFSET. */
3504 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3505 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3506 this point because their BINFO_OFFSET is copied from another
3507 hierarchy. Therefore, we may not need to add the entire
3508 OFFSET. */
3509 propagate_binfo_offsets (binfo,
3510 size_diffop (convert (ssizetype, offset),
3511 convert (ssizetype,
3512 BINFO_OFFSET (binfo))));
3513 }
3514
3515 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3516
3517 static int
3518 empty_base_at_nonzero_offset_p (tree type,
3519 tree offset,
3520 splay_tree offsets ATTRIBUTE_UNUSED)
3521 {
3522 return is_empty_class (type) && !integer_zerop (offset);
3523 }
3524
3525 /* Layout the empty base BINFO. EOC indicates the byte currently just
3526 past the end of the class, and should be correctly aligned for a
3527 class of the type indicated by BINFO; OFFSETS gives the offsets of
3528 the empty bases allocated so far. T is the most derived
3529 type. Return nonzero iff we added it at the end. */
3530
3531 static bool
3532 layout_empty_base (record_layout_info rli, tree binfo,
3533 tree eoc, splay_tree offsets)
3534 {
3535 tree alignment;
3536 tree basetype = BINFO_TYPE (binfo);
3537 bool atend = false;
3538
3539 /* This routine should only be used for empty classes. */
3540 gcc_assert (is_empty_class (basetype));
3541 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3542
3543 if (!integer_zerop (BINFO_OFFSET (binfo)))
3544 {
3545 if (abi_version_at_least (2))
3546 propagate_binfo_offsets
3547 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3548 else
3549 warning (OPT_Wabi,
3550 "offset of empty base %qT may not be ABI-compliant and may"
3551 "change in a future version of GCC",
3552 BINFO_TYPE (binfo));
3553 }
3554
3555 /* This is an empty base class. We first try to put it at offset
3556 zero. */
3557 if (layout_conflict_p (binfo,
3558 BINFO_OFFSET (binfo),
3559 offsets,
3560 /*vbases_p=*/0))
3561 {
3562 /* That didn't work. Now, we move forward from the next
3563 available spot in the class. */
3564 atend = true;
3565 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3566 while (1)
3567 {
3568 if (!layout_conflict_p (binfo,
3569 BINFO_OFFSET (binfo),
3570 offsets,
3571 /*vbases_p=*/0))
3572 /* We finally found a spot where there's no overlap. */
3573 break;
3574
3575 /* There's overlap here, too. Bump along to the next spot. */
3576 propagate_binfo_offsets (binfo, alignment);
3577 }
3578 }
3579
3580 if (CLASSTYPE_USER_ALIGN (basetype))
3581 {
3582 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
3583 if (warn_packed)
3584 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
3585 TYPE_USER_ALIGN (rli->t) = 1;
3586 }
3587
3588 return atend;
3589 }
3590
3591 /* Layout the base given by BINFO in the class indicated by RLI.
3592 *BASE_ALIGN is a running maximum of the alignments of
3593 any base class. OFFSETS gives the location of empty base
3594 subobjects. T is the most derived type. Return nonzero if the new
3595 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3596 *NEXT_FIELD, unless BINFO is for an empty base class.
3597
3598 Returns the location at which the next field should be inserted. */
3599
3600 static tree *
3601 build_base_field (record_layout_info rli, tree binfo,
3602 splay_tree offsets, tree *next_field)
3603 {
3604 tree t = rli->t;
3605 tree basetype = BINFO_TYPE (binfo);
3606
3607 if (!COMPLETE_TYPE_P (basetype))
3608 /* This error is now reported in xref_tag, thus giving better
3609 location information. */
3610 return next_field;
3611
3612 /* Place the base class. */
3613 if (!is_empty_class (basetype))
3614 {
3615 tree decl;
3616
3617 /* The containing class is non-empty because it has a non-empty
3618 base class. */
3619 CLASSTYPE_EMPTY_P (t) = 0;
3620
3621 /* Create the FIELD_DECL. */
3622 decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3623 DECL_ARTIFICIAL (decl) = 1;
3624 DECL_IGNORED_P (decl) = 1;
3625 DECL_FIELD_CONTEXT (decl) = t;
3626 if (CLASSTYPE_AS_BASE (basetype))
3627 {
3628 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3629 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3630 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3631 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3632 DECL_MODE (decl) = TYPE_MODE (basetype);
3633 DECL_FIELD_IS_BASE (decl) = 1;
3634
3635 /* Try to place the field. It may take more than one try if we
3636 have a hard time placing the field without putting two
3637 objects of the same type at the same address. */
3638 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3639 /* Add the new FIELD_DECL to the list of fields for T. */
3640 TREE_CHAIN (decl) = *next_field;
3641 *next_field = decl;
3642 next_field = &TREE_CHAIN (decl);
3643 }
3644 }
3645 else
3646 {
3647 tree eoc;
3648 bool atend;
3649
3650 /* On some platforms (ARM), even empty classes will not be
3651 byte-aligned. */
3652 eoc = round_up (rli_size_unit_so_far (rli),
3653 CLASSTYPE_ALIGN_UNIT (basetype));
3654 atend = layout_empty_base (rli, binfo, eoc, offsets);
3655 /* A nearly-empty class "has no proper base class that is empty,
3656 not morally virtual, and at an offset other than zero." */
3657 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3658 {
3659 if (atend)
3660 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3661 /* The check above (used in G++ 3.2) is insufficient because
3662 an empty class placed at offset zero might itself have an
3663 empty base at a nonzero offset. */
3664 else if (walk_subobject_offsets (basetype,
3665 empty_base_at_nonzero_offset_p,
3666 size_zero_node,
3667 /*offsets=*/NULL,
3668 /*max_offset=*/NULL_TREE,
3669 /*vbases_p=*/true))
3670 {
3671 if (abi_version_at_least (2))
3672 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3673 else
3674 warning (OPT_Wabi,
3675 "class %qT will be considered nearly empty in a "
3676 "future version of GCC", t);
3677 }
3678 }
3679
3680 /* We do not create a FIELD_DECL for empty base classes because
3681 it might overlap some other field. We want to be able to
3682 create CONSTRUCTORs for the class by iterating over the
3683 FIELD_DECLs, and the back end does not handle overlapping
3684 FIELD_DECLs. */
3685
3686 /* An empty virtual base causes a class to be non-empty
3687 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3688 here because that was already done when the virtual table
3689 pointer was created. */
3690 }
3691
3692 /* Record the offsets of BINFO and its base subobjects. */
3693 record_subobject_offsets (binfo,
3694 BINFO_OFFSET (binfo),
3695 offsets,
3696 /*is_data_member=*/false);
3697
3698 return next_field;
3699 }
3700
3701 /* Layout all of the non-virtual base classes. Record empty
3702 subobjects in OFFSETS. T is the most derived type. Return nonzero
3703 if the type cannot be nearly empty. The fields created
3704 corresponding to the base classes will be inserted at
3705 *NEXT_FIELD. */
3706
3707 static void
3708 build_base_fields (record_layout_info rli,
3709 splay_tree offsets, tree *next_field)
3710 {
3711 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3712 subobjects. */
3713 tree t = rli->t;
3714 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3715 int i;
3716
3717 /* The primary base class is always allocated first. */
3718 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3719 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3720 offsets, next_field);
3721
3722 /* Now allocate the rest of the bases. */
3723 for (i = 0; i < n_baseclasses; ++i)
3724 {
3725 tree base_binfo;
3726
3727 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3728
3729 /* The primary base was already allocated above, so we don't
3730 need to allocate it again here. */
3731 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3732 continue;
3733
3734 /* Virtual bases are added at the end (a primary virtual base
3735 will have already been added). */
3736 if (BINFO_VIRTUAL_P (base_binfo))
3737 continue;
3738
3739 next_field = build_base_field (rli, base_binfo,
3740 offsets, next_field);
3741 }
3742 }
3743
3744 /* Go through the TYPE_METHODS of T issuing any appropriate
3745 diagnostics, figuring out which methods override which other
3746 methods, and so forth. */
3747
3748 static void
3749 check_methods (tree t)
3750 {
3751 tree x;
3752
3753 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3754 {
3755 check_for_override (x, t);
3756 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3757 error ("initializer specified for non-virtual method %q+D", x);
3758 /* The name of the field is the original field name
3759 Save this in auxiliary field for later overloading. */
3760 if (DECL_VINDEX (x))
3761 {
3762 TYPE_POLYMORPHIC_P (t) = 1;
3763 if (DECL_PURE_VIRTUAL_P (x))
3764 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
3765 }
3766 /* All user-declared destructors are non-trivial. */
3767 if (DECL_DESTRUCTOR_P (x))
3768 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3769 }
3770 }
3771
3772 /* FN is a constructor or destructor. Clone the declaration to create
3773 a specialized in-charge or not-in-charge version, as indicated by
3774 NAME. */
3775
3776 static tree
3777 build_clone (tree fn, tree name)
3778 {
3779 tree parms;
3780 tree clone;
3781
3782 /* Copy the function. */
3783 clone = copy_decl (fn);
3784 /* Remember where this function came from. */
3785 DECL_CLONED_FUNCTION (clone) = fn;
3786 DECL_ABSTRACT_ORIGIN (clone) = fn;
3787 /* Reset the function name. */
3788 DECL_NAME (clone) = name;
3789 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3790 /* There's no pending inline data for this function. */
3791 DECL_PENDING_INLINE_INFO (clone) = NULL;
3792 DECL_PENDING_INLINE_P (clone) = 0;
3793 /* And it hasn't yet been deferred. */
3794 DECL_DEFERRED_FN (clone) = 0;
3795
3796 /* The base-class destructor is not virtual. */
3797 if (name == base_dtor_identifier)
3798 {
3799 DECL_VIRTUAL_P (clone) = 0;
3800 if (TREE_CODE (clone) != TEMPLATE_DECL)
3801 DECL_VINDEX (clone) = NULL_TREE;
3802 }
3803
3804 /* If there was an in-charge parameter, drop it from the function
3805 type. */
3806 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3807 {
3808 tree basetype;
3809 tree parmtypes;
3810 tree exceptions;
3811
3812 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3813 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3814 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3815 /* Skip the `this' parameter. */
3816 parmtypes = TREE_CHAIN (parmtypes);
3817 /* Skip the in-charge parameter. */
3818 parmtypes = TREE_CHAIN (parmtypes);
3819 /* And the VTT parm, in a complete [cd]tor. */
3820 if (DECL_HAS_VTT_PARM_P (fn)
3821 && ! DECL_NEEDS_VTT_PARM_P (clone))
3822 parmtypes = TREE_CHAIN (parmtypes);
3823 /* If this is subobject constructor or destructor, add the vtt
3824 parameter. */
3825 TREE_TYPE (clone)
3826 = build_method_type_directly (basetype,
3827 TREE_TYPE (TREE_TYPE (clone)),
3828 parmtypes);
3829 if (exceptions)
3830 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3831 exceptions);
3832 TREE_TYPE (clone)
3833 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3834 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3835 }
3836
3837 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3838 aren't function parameters; those are the template parameters. */
3839 if (TREE_CODE (clone) != TEMPLATE_DECL)
3840 {
3841 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3842 /* Remove the in-charge parameter. */
3843 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3844 {
3845 TREE_CHAIN (DECL_ARGUMENTS (clone))
3846 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3847 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3848 }
3849 /* And the VTT parm, in a complete [cd]tor. */
3850 if (DECL_HAS_VTT_PARM_P (fn))
3851 {
3852 if (DECL_NEEDS_VTT_PARM_P (clone))
3853 DECL_HAS_VTT_PARM_P (clone) = 1;
3854 else
3855 {
3856 TREE_CHAIN (DECL_ARGUMENTS (clone))
3857 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3858 DECL_HAS_VTT_PARM_P (clone) = 0;
3859 }
3860 }
3861
3862 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3863 {
3864 DECL_CONTEXT (parms) = clone;
3865 cxx_dup_lang_specific_decl (parms);
3866 }
3867 }
3868
3869 /* Create the RTL for this function. */
3870 SET_DECL_RTL (clone, NULL_RTX);
3871 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3872
3873 /* Make it easy to find the CLONE given the FN. */
3874 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3875 TREE_CHAIN (fn) = clone;
3876
3877 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3878 if (TREE_CODE (clone) == TEMPLATE_DECL)
3879 {
3880 tree result;
3881
3882 DECL_TEMPLATE_RESULT (clone)
3883 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3884 result = DECL_TEMPLATE_RESULT (clone);
3885 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3886 DECL_TI_TEMPLATE (result) = clone;
3887 }
3888 else if (pch_file)
3889 note_decl_for_pch (clone);
3890
3891 return clone;
3892 }
3893
3894 /* Produce declarations for all appropriate clones of FN. If
3895 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3896 CLASTYPE_METHOD_VEC as well. */
3897
3898 void
3899 clone_function_decl (tree fn, int update_method_vec_p)
3900 {
3901 tree clone;
3902
3903 /* Avoid inappropriate cloning. */
3904 if (TREE_CHAIN (fn)
3905 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3906 return;
3907
3908 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3909 {
3910 /* For each constructor, we need two variants: an in-charge version
3911 and a not-in-charge version. */
3912 clone = build_clone (fn, complete_ctor_identifier);
3913 if (update_method_vec_p)
3914 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3915 clone = build_clone (fn, base_ctor_identifier);
3916 if (update_method_vec_p)
3917 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3918 }
3919 else
3920 {
3921 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
3922
3923 /* For each destructor, we need three variants: an in-charge
3924 version, a not-in-charge version, and an in-charge deleting
3925 version. We clone the deleting version first because that
3926 means it will go second on the TYPE_METHODS list -- and that
3927 corresponds to the correct layout order in the virtual
3928 function table.
3929
3930 For a non-virtual destructor, we do not build a deleting
3931 destructor. */
3932 if (DECL_VIRTUAL_P (fn))
3933 {
3934 clone = build_clone (fn, deleting_dtor_identifier);
3935 if (update_method_vec_p)
3936 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3937 }
3938 clone = build_clone (fn, complete_dtor_identifier);
3939 if (update_method_vec_p)
3940 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3941 clone = build_clone (fn, base_dtor_identifier);
3942 if (update_method_vec_p)
3943 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3944 }
3945
3946 /* Note that this is an abstract function that is never emitted. */
3947 DECL_ABSTRACT (fn) = 1;
3948 }
3949
3950 /* DECL is an in charge constructor, which is being defined. This will
3951 have had an in class declaration, from whence clones were
3952 declared. An out-of-class definition can specify additional default
3953 arguments. As it is the clones that are involved in overload
3954 resolution, we must propagate the information from the DECL to its
3955 clones. */
3956
3957 void
3958 adjust_clone_args (tree decl)
3959 {
3960 tree clone;
3961
3962 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3963 clone = TREE_CHAIN (clone))
3964 {
3965 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3966 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3967 tree decl_parms, clone_parms;
3968
3969 clone_parms = orig_clone_parms;
3970
3971 /* Skip the 'this' parameter. */
3972 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3973 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3974
3975 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3976 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3977 if (DECL_HAS_VTT_PARM_P (decl))
3978 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3979
3980 clone_parms = orig_clone_parms;
3981 if (DECL_HAS_VTT_PARM_P (clone))
3982 clone_parms = TREE_CHAIN (clone_parms);
3983
3984 for (decl_parms = orig_decl_parms; decl_parms;
3985 decl_parms = TREE_CHAIN (decl_parms),
3986 clone_parms = TREE_CHAIN (clone_parms))
3987 {
3988 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
3989 TREE_TYPE (clone_parms)));
3990
3991 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
3992 {
3993 /* A default parameter has been added. Adjust the
3994 clone's parameters. */
3995 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3996 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3997 tree type;
3998
3999 clone_parms = orig_decl_parms;
4000
4001 if (DECL_HAS_VTT_PARM_P (clone))
4002 {
4003 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4004 TREE_VALUE (orig_clone_parms),
4005 clone_parms);
4006 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4007 }
4008 type = build_method_type_directly (basetype,
4009 TREE_TYPE (TREE_TYPE (clone)),
4010 clone_parms);
4011 if (exceptions)
4012 type = build_exception_variant (type, exceptions);
4013 TREE_TYPE (clone) = type;
4014
4015 clone_parms = NULL_TREE;
4016 break;
4017 }
4018 }
4019 gcc_assert (!clone_parms);
4020 }
4021 }
4022
4023 /* For each of the constructors and destructors in T, create an
4024 in-charge and not-in-charge variant. */
4025
4026 static void
4027 clone_constructors_and_destructors (tree t)
4028 {
4029 tree fns;
4030
4031 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4032 out now. */
4033 if (!CLASSTYPE_METHOD_VEC (t))
4034 return;
4035
4036 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4037 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4038 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4039 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4040 }
4041
4042 /* Returns true iff class T has a user-defined constructor other than
4043 the default constructor. */
4044
4045 bool
4046 type_has_user_nondefault_constructor (tree t)
4047 {
4048 tree fns;
4049
4050 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4051 return false;
4052
4053 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4054 {
4055 tree fn = OVL_CURRENT (fns);
4056 if (!DECL_ARTIFICIAL (fn)
4057 && skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn)) != NULL_TREE)
4058 return true;
4059 }
4060
4061 return false;
4062 }
4063
4064 /* Remove all zero-width bit-fields from T. */
4065
4066 static void
4067 remove_zero_width_bit_fields (tree t)
4068 {
4069 tree *fieldsp;
4070
4071 fieldsp = &TYPE_FIELDS (t);
4072 while (*fieldsp)
4073 {
4074 if (TREE_CODE (*fieldsp) == FIELD_DECL
4075 && DECL_C_BIT_FIELD (*fieldsp)
4076 && DECL_INITIAL (*fieldsp))
4077 *fieldsp = TREE_CHAIN (*fieldsp);
4078 else
4079 fieldsp = &TREE_CHAIN (*fieldsp);
4080 }
4081 }
4082
4083 /* Returns TRUE iff we need a cookie when dynamically allocating an
4084 array whose elements have the indicated class TYPE. */
4085
4086 static bool
4087 type_requires_array_cookie (tree type)
4088 {
4089 tree fns;
4090 bool has_two_argument_delete_p = false;
4091
4092 gcc_assert (CLASS_TYPE_P (type));
4093
4094 /* If there's a non-trivial destructor, we need a cookie. In order
4095 to iterate through the array calling the destructor for each
4096 element, we'll have to know how many elements there are. */
4097 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4098 return true;
4099
4100 /* If the usual deallocation function is a two-argument whose second
4101 argument is of type `size_t', then we have to pass the size of
4102 the array to the deallocation function, so we will need to store
4103 a cookie. */
4104 fns = lookup_fnfields (TYPE_BINFO (type),
4105 ansi_opname (VEC_DELETE_EXPR),
4106 /*protect=*/0);
4107 /* If there are no `operator []' members, or the lookup is
4108 ambiguous, then we don't need a cookie. */
4109 if (!fns || fns == error_mark_node)
4110 return false;
4111 /* Loop through all of the functions. */
4112 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4113 {
4114 tree fn;
4115 tree second_parm;
4116
4117 /* Select the current function. */
4118 fn = OVL_CURRENT (fns);
4119 /* See if this function is a one-argument delete function. If
4120 it is, then it will be the usual deallocation function. */
4121 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4122 if (second_parm == void_list_node)
4123 return false;
4124 /* Otherwise, if we have a two-argument function and the second
4125 argument is `size_t', it will be the usual deallocation
4126 function -- unless there is one-argument function, too. */
4127 if (TREE_CHAIN (second_parm) == void_list_node
4128 && same_type_p (TREE_VALUE (second_parm), size_type_node))
4129 has_two_argument_delete_p = true;
4130 }
4131
4132 return has_two_argument_delete_p;
4133 }
4134
4135 /* Check the validity of the bases and members declared in T. Add any
4136 implicitly-generated functions (like copy-constructors and
4137 assignment operators). Compute various flag bits (like
4138 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4139 level: i.e., independently of the ABI in use. */
4140
4141 static void
4142 check_bases_and_members (tree t)
4143 {
4144 /* Nonzero if the implicitly generated copy constructor should take
4145 a non-const reference argument. */
4146 int cant_have_const_ctor;
4147 /* Nonzero if the implicitly generated assignment operator
4148 should take a non-const reference argument. */
4149 int no_const_asn_ref;
4150 tree access_decls;
4151
4152 /* By default, we use const reference arguments and generate default
4153 constructors. */
4154 cant_have_const_ctor = 0;
4155 no_const_asn_ref = 0;
4156
4157 /* Check all the base-classes. */
4158 check_bases (t, &cant_have_const_ctor,
4159 &no_const_asn_ref);
4160
4161 /* Check all the method declarations. */
4162 check_methods (t);
4163
4164 /* Check all the data member declarations. We cannot call
4165 check_field_decls until we have called check_bases check_methods,
4166 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4167 being set appropriately. */
4168 check_field_decls (t, &access_decls,
4169 &cant_have_const_ctor,
4170 &no_const_asn_ref);
4171
4172 /* A nearly-empty class has to be vptr-containing; a nearly empty
4173 class contains just a vptr. */
4174 if (!TYPE_CONTAINS_VPTR_P (t))
4175 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4176
4177 /* Do some bookkeeping that will guide the generation of implicitly
4178 declared member functions. */
4179 TYPE_HAS_COMPLEX_INIT_REF (t)
4180 |= (TYPE_HAS_INIT_REF (t) || TYPE_CONTAINS_VPTR_P (t));
4181 /* We need to call a constructor for this class if it has a
4182 user-declared constructor, or if the default constructor is going
4183 to initialize the vptr. (This is not an if-and-only-if;
4184 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
4185 themselves need constructing.) */
4186 TYPE_NEEDS_CONSTRUCTING (t)
4187 |= (TYPE_HAS_USER_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
4188 /* [dcl.init.aggr]
4189
4190 An aggregate is an arry or a class with no user-declared
4191 constructors ... and no virtual functions.
4192
4193 Again, other conditions for being an aggregate are checked
4194 elsewhere. */
4195 CLASSTYPE_NON_AGGREGATE (t)
4196 |= (TYPE_HAS_USER_CONSTRUCTOR (t) || TYPE_POLYMORPHIC_P (t));
4197 CLASSTYPE_NON_POD_P (t)
4198 |= (CLASSTYPE_NON_AGGREGATE (t)
4199 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
4200 || TYPE_HAS_ASSIGN_REF (t));
4201 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
4202 |= TYPE_HAS_ASSIGN_REF (t) || TYPE_CONTAINS_VPTR_P (t);
4203 TYPE_HAS_COMPLEX_DFLT (t)
4204 |= (TYPE_HAS_DEFAULT_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
4205
4206 /* If the class has no user-declared constructor, but does have
4207 non-static const or reference data members that can never be
4208 initialized, issue a warning. */
4209 if (extra_warnings
4210 /* Classes with user-declared constructors are presumed to
4211 initialize these members. */
4212 && !TYPE_HAS_USER_CONSTRUCTOR (t)
4213 /* Aggregates can be initialized with brace-enclosed
4214 initializers. */
4215 && CLASSTYPE_NON_AGGREGATE (t))
4216 {
4217 tree field;
4218
4219 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4220 {
4221 tree type;
4222
4223 if (TREE_CODE (field) != FIELD_DECL)
4224 continue;
4225
4226 type = TREE_TYPE (field);
4227 if (TREE_CODE (type) == REFERENCE_TYPE)
4228 warning (OPT_Wextra, "non-static reference %q+#D in class "
4229 "without a constructor", field);
4230 else if (CP_TYPE_CONST_P (type)
4231 && (!CLASS_TYPE_P (type)
4232 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
4233 warning (OPT_Wextra, "non-static const member %q+#D in class "
4234 "without a constructor", field);
4235 }
4236 }
4237
4238 /* Synthesize any needed methods. */
4239 add_implicitly_declared_members (t,
4240 cant_have_const_ctor,
4241 no_const_asn_ref);
4242
4243 /* Create the in-charge and not-in-charge variants of constructors
4244 and destructors. */
4245 clone_constructors_and_destructors (t);
4246
4247 /* Process the using-declarations. */
4248 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4249 handle_using_decl (TREE_VALUE (access_decls), t);
4250
4251 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4252 finish_struct_methods (t);
4253
4254 /* Figure out whether or not we will need a cookie when dynamically
4255 allocating an array of this type. */
4256 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4257 = type_requires_array_cookie (t);
4258 }
4259
4260 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4261 accordingly. If a new vfield was created (because T doesn't have a
4262 primary base class), then the newly created field is returned. It
4263 is not added to the TYPE_FIELDS list; it is the caller's
4264 responsibility to do that. Accumulate declared virtual functions
4265 on VIRTUALS_P. */
4266
4267 static tree
4268 create_vtable_ptr (tree t, tree* virtuals_p)
4269 {
4270 tree fn;
4271
4272 /* Collect the virtual functions declared in T. */
4273 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4274 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4275 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4276 {
4277 tree new_virtual = make_node (TREE_LIST);
4278
4279 BV_FN (new_virtual) = fn;
4280 BV_DELTA (new_virtual) = integer_zero_node;
4281 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4282
4283 TREE_CHAIN (new_virtual) = *virtuals_p;
4284 *virtuals_p = new_virtual;
4285 }
4286
4287 /* If we couldn't find an appropriate base class, create a new field
4288 here. Even if there weren't any new virtual functions, we might need a
4289 new virtual function table if we're supposed to include vptrs in
4290 all classes that need them. */
4291 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4292 {
4293 /* We build this decl with vtbl_ptr_type_node, which is a
4294 `vtable_entry_type*'. It might seem more precise to use
4295 `vtable_entry_type (*)[N]' where N is the number of virtual
4296 functions. However, that would require the vtable pointer in
4297 base classes to have a different type than the vtable pointer
4298 in derived classes. We could make that happen, but that
4299 still wouldn't solve all the problems. In particular, the
4300 type-based alias analysis code would decide that assignments
4301 to the base class vtable pointer can't alias assignments to
4302 the derived class vtable pointer, since they have different
4303 types. Thus, in a derived class destructor, where the base
4304 class constructor was inlined, we could generate bad code for
4305 setting up the vtable pointer.
4306
4307 Therefore, we use one type for all vtable pointers. We still
4308 use a type-correct type; it's just doesn't indicate the array
4309 bounds. That's better than using `void*' or some such; it's
4310 cleaner, and it let's the alias analysis code know that these
4311 stores cannot alias stores to void*! */
4312 tree field;
4313
4314 field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4315 DECL_VIRTUAL_P (field) = 1;
4316 DECL_ARTIFICIAL (field) = 1;
4317 DECL_FIELD_CONTEXT (field) = t;
4318 DECL_FCONTEXT (field) = t;
4319
4320 TYPE_VFIELD (t) = field;
4321
4322 /* This class is non-empty. */
4323 CLASSTYPE_EMPTY_P (t) = 0;
4324
4325 return field;
4326 }
4327
4328 return NULL_TREE;
4329 }
4330
4331 /* Fixup the inline function given by INFO now that the class is
4332 complete. */
4333
4334 static void
4335 fixup_pending_inline (tree fn)
4336 {
4337 if (DECL_PENDING_INLINE_INFO (fn))
4338 {
4339 tree args = DECL_ARGUMENTS (fn);
4340 while (args)
4341 {
4342 DECL_CONTEXT (args) = fn;
4343 args = TREE_CHAIN (args);
4344 }
4345 }
4346 }
4347
4348 /* Fixup the inline methods and friends in TYPE now that TYPE is
4349 complete. */
4350
4351 static void
4352 fixup_inline_methods (tree type)
4353 {
4354 tree method = TYPE_METHODS (type);
4355 VEC(tree,gc) *friends;
4356 unsigned ix;
4357
4358 if (method && TREE_CODE (method) == TREE_VEC)
4359 {
4360 if (TREE_VEC_ELT (method, 1))
4361 method = TREE_VEC_ELT (method, 1);
4362 else if (TREE_VEC_ELT (method, 0))
4363 method = TREE_VEC_ELT (method, 0);
4364 else
4365 method = TREE_VEC_ELT (method, 2);
4366 }
4367
4368 /* Do inline member functions. */
4369 for (; method; method = TREE_CHAIN (method))
4370 fixup_pending_inline (method);
4371
4372 /* Do friends. */
4373 for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
4374 VEC_iterate (tree, friends, ix, method); ix++)
4375 fixup_pending_inline (method);
4376 CLASSTYPE_INLINE_FRIENDS (type) = NULL;
4377 }
4378
4379 /* Add OFFSET to all base types of BINFO which is a base in the
4380 hierarchy dominated by T.
4381
4382 OFFSET, which is a type offset, is number of bytes. */
4383
4384 static void
4385 propagate_binfo_offsets (tree binfo, tree offset)
4386 {
4387 int i;
4388 tree primary_binfo;
4389 tree base_binfo;
4390
4391 /* Update BINFO's offset. */
4392 BINFO_OFFSET (binfo)
4393 = convert (sizetype,
4394 size_binop (PLUS_EXPR,
4395 convert (ssizetype, BINFO_OFFSET (binfo)),
4396 offset));
4397
4398 /* Find the primary base class. */
4399 primary_binfo = get_primary_binfo (binfo);
4400
4401 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4402 propagate_binfo_offsets (primary_binfo, offset);
4403
4404 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4405 downwards. */
4406 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4407 {
4408 /* Don't do the primary base twice. */
4409 if (base_binfo == primary_binfo)
4410 continue;
4411
4412 if (BINFO_VIRTUAL_P (base_binfo))
4413 continue;
4414
4415 propagate_binfo_offsets (base_binfo, offset);
4416 }
4417 }
4418
4419 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4420 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4421 empty subobjects of T. */
4422
4423 static void
4424 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4425 {
4426 tree vbase;
4427 tree t = rli->t;
4428 bool first_vbase = true;
4429 tree *next_field;
4430
4431 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4432 return;
4433
4434 if (!abi_version_at_least(2))
4435 {
4436 /* In G++ 3.2, we incorrectly rounded the size before laying out
4437 the virtual bases. */
4438 finish_record_layout (rli, /*free_p=*/false);
4439 #ifdef STRUCTURE_SIZE_BOUNDARY
4440 /* Packed structures don't need to have minimum size. */
4441 if (! TYPE_PACKED (t))
4442 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4443 #endif
4444 rli->offset = TYPE_SIZE_UNIT (t);
4445 rli->bitpos = bitsize_zero_node;
4446 rli->record_align = TYPE_ALIGN (t);
4447 }
4448
4449 /* Find the last field. The artificial fields created for virtual
4450 bases will go after the last extant field to date. */
4451 next_field = &TYPE_FIELDS (t);
4452 while (*next_field)
4453 next_field = &TREE_CHAIN (*next_field);
4454
4455 /* Go through the virtual bases, allocating space for each virtual
4456 base that is not already a primary base class. These are
4457 allocated in inheritance graph order. */
4458 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4459 {
4460 if (!BINFO_VIRTUAL_P (vbase))
4461 continue;
4462
4463 if (!BINFO_PRIMARY_P (vbase))
4464 {
4465 tree basetype = TREE_TYPE (vbase);
4466
4467 /* This virtual base is not a primary base of any class in the
4468 hierarchy, so we have to add space for it. */
4469 next_field = build_base_field (rli, vbase,
4470 offsets, next_field);
4471
4472 /* If the first virtual base might have been placed at a
4473 lower address, had we started from CLASSTYPE_SIZE, rather
4474 than TYPE_SIZE, issue a warning. There can be both false
4475 positives and false negatives from this warning in rare
4476 cases; to deal with all the possibilities would probably
4477 require performing both layout algorithms and comparing
4478 the results which is not particularly tractable. */
4479 if (warn_abi
4480 && first_vbase
4481 && (tree_int_cst_lt
4482 (size_binop (CEIL_DIV_EXPR,
4483 round_up (CLASSTYPE_SIZE (t),
4484 CLASSTYPE_ALIGN (basetype)),
4485 bitsize_unit_node),
4486 BINFO_OFFSET (vbase))))
4487 warning (OPT_Wabi,
4488 "offset of virtual base %qT is not ABI-compliant and "
4489 "may change in a future version of GCC",
4490 basetype);
4491
4492 first_vbase = false;
4493 }
4494 }
4495 }
4496
4497 /* Returns the offset of the byte just past the end of the base class
4498 BINFO. */
4499
4500 static tree
4501 end_of_base (tree binfo)
4502 {
4503 tree size;
4504
4505 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
4506 size = TYPE_SIZE_UNIT (char_type_node);
4507 else if (is_empty_class (BINFO_TYPE (binfo)))
4508 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4509 allocate some space for it. It cannot have virtual bases, so
4510 TYPE_SIZE_UNIT is fine. */
4511 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4512 else
4513 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4514
4515 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4516 }
4517
4518 /* Returns the offset of the byte just past the end of the base class
4519 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4520 only non-virtual bases are included. */
4521
4522 static tree
4523 end_of_class (tree t, int include_virtuals_p)
4524 {
4525 tree result = size_zero_node;
4526 VEC(tree,gc) *vbases;
4527 tree binfo;
4528 tree base_binfo;
4529 tree offset;
4530 int i;
4531
4532 for (binfo = TYPE_BINFO (t), i = 0;
4533 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4534 {
4535 if (!include_virtuals_p
4536 && BINFO_VIRTUAL_P (base_binfo)
4537 && (!BINFO_PRIMARY_P (base_binfo)
4538 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4539 continue;
4540
4541 offset = end_of_base (base_binfo);
4542 if (INT_CST_LT_UNSIGNED (result, offset))
4543 result = offset;
4544 }
4545
4546 /* G++ 3.2 did not check indirect virtual bases. */
4547 if (abi_version_at_least (2) && include_virtuals_p)
4548 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4549 VEC_iterate (tree, vbases, i, base_binfo); i++)
4550 {
4551 offset = end_of_base (base_binfo);
4552 if (INT_CST_LT_UNSIGNED (result, offset))
4553 result = offset;
4554 }
4555
4556 return result;
4557 }
4558
4559 /* Warn about bases of T that are inaccessible because they are
4560 ambiguous. For example:
4561
4562 struct S {};
4563 struct T : public S {};
4564 struct U : public S, public T {};
4565
4566 Here, `(S*) new U' is not allowed because there are two `S'
4567 subobjects of U. */
4568
4569 static void
4570 warn_about_ambiguous_bases (tree t)
4571 {
4572 int i;
4573 VEC(tree,gc) *vbases;
4574 tree basetype;
4575 tree binfo;
4576 tree base_binfo;
4577
4578 /* If there are no repeated bases, nothing can be ambiguous. */
4579 if (!CLASSTYPE_REPEATED_BASE_P (t))
4580 return;
4581
4582 /* Check direct bases. */
4583 for (binfo = TYPE_BINFO (t), i = 0;
4584 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4585 {
4586 basetype = BINFO_TYPE (base_binfo);
4587
4588 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4589 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4590 basetype, t);
4591 }
4592
4593 /* Check for ambiguous virtual bases. */
4594 if (extra_warnings)
4595 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4596 VEC_iterate (tree, vbases, i, binfo); i++)
4597 {
4598 basetype = BINFO_TYPE (binfo);
4599
4600 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4601 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
4602 basetype, t);
4603 }
4604 }
4605
4606 /* Compare two INTEGER_CSTs K1 and K2. */
4607
4608 static int
4609 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4610 {
4611 return tree_int_cst_compare ((tree) k1, (tree) k2);
4612 }
4613
4614 /* Increase the size indicated in RLI to account for empty classes
4615 that are "off the end" of the class. */
4616
4617 static void
4618 include_empty_classes (record_layout_info rli)
4619 {
4620 tree eoc;
4621 tree rli_size;
4622
4623 /* It might be the case that we grew the class to allocate a
4624 zero-sized base class. That won't be reflected in RLI, yet,
4625 because we are willing to overlay multiple bases at the same
4626 offset. However, now we need to make sure that RLI is big enough
4627 to reflect the entire class. */
4628 eoc = end_of_class (rli->t,
4629 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4630 rli_size = rli_size_unit_so_far (rli);
4631 if (TREE_CODE (rli_size) == INTEGER_CST
4632 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4633 {
4634 if (!abi_version_at_least (2))
4635 /* In version 1 of the ABI, the size of a class that ends with
4636 a bitfield was not rounded up to a whole multiple of a
4637 byte. Because rli_size_unit_so_far returns only the number
4638 of fully allocated bytes, any extra bits were not included
4639 in the size. */
4640 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4641 else
4642 /* The size should have been rounded to a whole byte. */
4643 gcc_assert (tree_int_cst_equal
4644 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4645 rli->bitpos
4646 = size_binop (PLUS_EXPR,
4647 rli->bitpos,
4648 size_binop (MULT_EXPR,
4649 convert (bitsizetype,
4650 size_binop (MINUS_EXPR,
4651 eoc, rli_size)),
4652 bitsize_int (BITS_PER_UNIT)));
4653 normalize_rli (rli);
4654 }
4655 }
4656
4657 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4658 BINFO_OFFSETs for all of the base-classes. Position the vtable
4659 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4660
4661 static void
4662 layout_class_type (tree t, tree *virtuals_p)
4663 {
4664 tree non_static_data_members;
4665 tree field;
4666 tree vptr;
4667 record_layout_info rli;
4668 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4669 types that appear at that offset. */
4670 splay_tree empty_base_offsets;
4671 /* True if the last field layed out was a bit-field. */
4672 bool last_field_was_bitfield = false;
4673 /* The location at which the next field should be inserted. */
4674 tree *next_field;
4675 /* T, as a base class. */
4676 tree base_t;
4677
4678 /* Keep track of the first non-static data member. */
4679 non_static_data_members = TYPE_FIELDS (t);
4680
4681 /* Start laying out the record. */
4682 rli = start_record_layout (t);
4683
4684 /* Mark all the primary bases in the hierarchy. */
4685 determine_primary_bases (t);
4686
4687 /* Create a pointer to our virtual function table. */
4688 vptr = create_vtable_ptr (t, virtuals_p);
4689
4690 /* The vptr is always the first thing in the class. */
4691 if (vptr)
4692 {
4693 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4694 TYPE_FIELDS (t) = vptr;
4695 next_field = &TREE_CHAIN (vptr);
4696 place_field (rli, vptr);
4697 }
4698 else
4699 next_field = &TYPE_FIELDS (t);
4700
4701 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4702 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4703 NULL, NULL);
4704 build_base_fields (rli, empty_base_offsets, next_field);
4705
4706 /* Layout the non-static data members. */
4707 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4708 {
4709 tree type;
4710 tree padding;
4711
4712 /* We still pass things that aren't non-static data members to
4713 the back end, in case it wants to do something with them. */
4714 if (TREE_CODE (field) != FIELD_DECL)
4715 {
4716 place_field (rli, field);
4717 /* If the static data member has incomplete type, keep track
4718 of it so that it can be completed later. (The handling
4719 of pending statics in finish_record_layout is
4720 insufficient; consider:
4721
4722 struct S1;
4723 struct S2 { static S1 s1; };
4724
4725 At this point, finish_record_layout will be called, but
4726 S1 is still incomplete.) */
4727 if (TREE_CODE (field) == VAR_DECL)
4728 {
4729 maybe_register_incomplete_var (field);
4730 /* The visibility of static data members is determined
4731 at their point of declaration, not their point of
4732 definition. */
4733 determine_visibility (field);
4734 }
4735 continue;
4736 }
4737
4738 type = TREE_TYPE (field);
4739 if (type == error_mark_node)
4740 continue;
4741
4742 padding = NULL_TREE;
4743
4744 /* If this field is a bit-field whose width is greater than its
4745 type, then there are some special rules for allocating
4746 it. */
4747 if (DECL_C_BIT_FIELD (field)
4748 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4749 {
4750 integer_type_kind itk;
4751 tree integer_type;
4752 bool was_unnamed_p = false;
4753 /* We must allocate the bits as if suitably aligned for the
4754 longest integer type that fits in this many bits. type
4755 of the field. Then, we are supposed to use the left over
4756 bits as additional padding. */
4757 for (itk = itk_char; itk != itk_none; ++itk)
4758 if (INT_CST_LT (DECL_SIZE (field),
4759 TYPE_SIZE (integer_types[itk])))
4760 break;
4761
4762 /* ITK now indicates a type that is too large for the
4763 field. We have to back up by one to find the largest
4764 type that fits. */
4765 integer_type = integer_types[itk - 1];
4766
4767 /* Figure out how much additional padding is required. GCC
4768 3.2 always created a padding field, even if it had zero
4769 width. */
4770 if (!abi_version_at_least (2)
4771 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4772 {
4773 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4774 /* In a union, the padding field must have the full width
4775 of the bit-field; all fields start at offset zero. */
4776 padding = DECL_SIZE (field);
4777 else
4778 {
4779 if (TREE_CODE (t) == UNION_TYPE)
4780 warning (OPT_Wabi, "size assigned to %qT may not be "
4781 "ABI-compliant and may change in a future "
4782 "version of GCC",
4783 t);
4784 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4785 TYPE_SIZE (integer_type));
4786 }
4787 }
4788 #ifdef PCC_BITFIELD_TYPE_MATTERS
4789 /* An unnamed bitfield does not normally affect the
4790 alignment of the containing class on a target where
4791 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4792 make any exceptions for unnamed bitfields when the
4793 bitfields are longer than their types. Therefore, we
4794 temporarily give the field a name. */
4795 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4796 {
4797 was_unnamed_p = true;
4798 DECL_NAME (field) = make_anon_name ();
4799 }
4800 #endif
4801 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4802 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4803 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4804 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4805 empty_base_offsets);
4806 if (was_unnamed_p)
4807 DECL_NAME (field) = NULL_TREE;
4808 /* Now that layout has been performed, set the size of the
4809 field to the size of its declared type; the rest of the
4810 field is effectively invisible. */
4811 DECL_SIZE (field) = TYPE_SIZE (type);
4812 /* We must also reset the DECL_MODE of the field. */
4813 if (abi_version_at_least (2))
4814 DECL_MODE (field) = TYPE_MODE (type);
4815 else if (warn_abi
4816 && DECL_MODE (field) != TYPE_MODE (type))
4817 /* Versions of G++ before G++ 3.4 did not reset the
4818 DECL_MODE. */
4819 warning (OPT_Wabi,
4820 "the offset of %qD may not be ABI-compliant and may "
4821 "change in a future version of GCC", field);
4822 }
4823 else
4824 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4825 empty_base_offsets);
4826
4827 /* Remember the location of any empty classes in FIELD. */
4828 if (abi_version_at_least (2))
4829 record_subobject_offsets (TREE_TYPE (field),
4830 byte_position(field),
4831 empty_base_offsets,
4832 /*is_data_member=*/true);
4833
4834 /* If a bit-field does not immediately follow another bit-field,
4835 and yet it starts in the middle of a byte, we have failed to
4836 comply with the ABI. */
4837 if (warn_abi
4838 && DECL_C_BIT_FIELD (field)
4839 /* The TREE_NO_WARNING flag gets set by Objective-C when
4840 laying out an Objective-C class. The ObjC ABI differs
4841 from the C++ ABI, and so we do not want a warning
4842 here. */
4843 && !TREE_NO_WARNING (field)
4844 && !last_field_was_bitfield
4845 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4846 DECL_FIELD_BIT_OFFSET (field),
4847 bitsize_unit_node)))
4848 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
4849 "change in a future version of GCC", field);
4850
4851 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4852 offset of the field. */
4853 if (warn_abi
4854 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4855 byte_position (field))
4856 && contains_empty_class_p (TREE_TYPE (field)))
4857 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
4858 "classes to be placed at different locations in a "
4859 "future version of GCC", field);
4860
4861 /* The middle end uses the type of expressions to determine the
4862 possible range of expression values. In order to optimize
4863 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
4864 must be made aware of the width of "i", via its type.
4865
4866 Because C++ does not have integer types of arbitrary width,
4867 we must (for the purposes of the front end) convert from the
4868 type assigned here to the declared type of the bitfield
4869 whenever a bitfield expression is used as an rvalue.
4870 Similarly, when assigning a value to a bitfield, the value
4871 must be converted to the type given the bitfield here. */
4872 if (DECL_C_BIT_FIELD (field))
4873 {
4874 unsigned HOST_WIDE_INT width;
4875 tree ftype = TREE_TYPE (field);
4876 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
4877 if (width != TYPE_PRECISION (ftype))
4878 {
4879 TREE_TYPE (field)
4880 = c_build_bitfield_integer_type (width,
4881 TYPE_UNSIGNED (ftype));
4882 TREE_TYPE (field)
4883 = cp_build_qualified_type (TREE_TYPE (field),
4884 TYPE_QUALS (ftype));
4885 }
4886 }
4887
4888 /* If we needed additional padding after this field, add it
4889 now. */
4890 if (padding)
4891 {
4892 tree padding_field;
4893
4894 padding_field = build_decl (FIELD_DECL,
4895 NULL_TREE,
4896 char_type_node);
4897 DECL_BIT_FIELD (padding_field) = 1;
4898 DECL_SIZE (padding_field) = padding;
4899 DECL_CONTEXT (padding_field) = t;
4900 DECL_ARTIFICIAL (padding_field) = 1;
4901 DECL_IGNORED_P (padding_field) = 1;
4902 layout_nonempty_base_or_field (rli, padding_field,
4903 NULL_TREE,
4904 empty_base_offsets);
4905 }
4906
4907 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
4908 }
4909
4910 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
4911 {
4912 /* Make sure that we are on a byte boundary so that the size of
4913 the class without virtual bases will always be a round number
4914 of bytes. */
4915 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
4916 normalize_rli (rli);
4917 }
4918
4919 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
4920 padding. */
4921 if (!abi_version_at_least (2))
4922 include_empty_classes(rli);
4923
4924 /* Delete all zero-width bit-fields from the list of fields. Now
4925 that the type is laid out they are no longer important. */
4926 remove_zero_width_bit_fields (t);
4927
4928 /* Create the version of T used for virtual bases. We do not use
4929 make_class_type for this version; this is an artificial type. For
4930 a POD type, we just reuse T. */
4931 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
4932 {
4933 base_t = make_node (TREE_CODE (t));
4934
4935 /* Set the size and alignment for the new type. In G++ 3.2, all
4936 empty classes were considered to have size zero when used as
4937 base classes. */
4938 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
4939 {
4940 TYPE_SIZE (base_t) = bitsize_zero_node;
4941 TYPE_SIZE_UNIT (base_t) = size_zero_node;
4942 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
4943 warning (OPT_Wabi,
4944 "layout of classes derived from empty class %qT "
4945 "may change in a future version of GCC",
4946 t);
4947 }
4948 else
4949 {
4950 tree eoc;
4951
4952 /* If the ABI version is not at least two, and the last
4953 field was a bit-field, RLI may not be on a byte
4954 boundary. In particular, rli_size_unit_so_far might
4955 indicate the last complete byte, while rli_size_so_far
4956 indicates the total number of bits used. Therefore,
4957 rli_size_so_far, rather than rli_size_unit_so_far, is
4958 used to compute TYPE_SIZE_UNIT. */
4959 eoc = end_of_class (t, /*include_virtuals_p=*/0);
4960 TYPE_SIZE_UNIT (base_t)
4961 = size_binop (MAX_EXPR,
4962 convert (sizetype,
4963 size_binop (CEIL_DIV_EXPR,
4964 rli_size_so_far (rli),
4965 bitsize_int (BITS_PER_UNIT))),
4966 eoc);
4967 TYPE_SIZE (base_t)
4968 = size_binop (MAX_EXPR,
4969 rli_size_so_far (rli),
4970 size_binop (MULT_EXPR,
4971 convert (bitsizetype, eoc),
4972 bitsize_int (BITS_PER_UNIT)));
4973 }
4974 TYPE_ALIGN (base_t) = rli->record_align;
4975 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
4976
4977 /* Copy the fields from T. */
4978 next_field = &TYPE_FIELDS (base_t);
4979 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4980 if (TREE_CODE (field) == FIELD_DECL)
4981 {
4982 *next_field = build_decl (FIELD_DECL,
4983 DECL_NAME (field),
4984 TREE_TYPE (field));
4985 DECL_CONTEXT (*next_field) = base_t;
4986 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
4987 DECL_FIELD_BIT_OFFSET (*next_field)
4988 = DECL_FIELD_BIT_OFFSET (field);
4989 DECL_SIZE (*next_field) = DECL_SIZE (field);
4990 DECL_MODE (*next_field) = DECL_MODE (field);
4991 next_field = &TREE_CHAIN (*next_field);
4992 }
4993
4994 /* Record the base version of the type. */
4995 CLASSTYPE_AS_BASE (t) = base_t;
4996 TYPE_CONTEXT (base_t) = t;
4997 }
4998 else
4999 CLASSTYPE_AS_BASE (t) = t;
5000
5001 /* Every empty class contains an empty class. */
5002 if (CLASSTYPE_EMPTY_P (t))
5003 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
5004
5005 /* Set the TYPE_DECL for this type to contain the right
5006 value for DECL_OFFSET, so that we can use it as part
5007 of a COMPONENT_REF for multiple inheritance. */
5008 layout_decl (TYPE_MAIN_DECL (t), 0);
5009
5010 /* Now fix up any virtual base class types that we left lying
5011 around. We must get these done before we try to lay out the
5012 virtual function table. As a side-effect, this will remove the
5013 base subobject fields. */
5014 layout_virtual_bases (rli, empty_base_offsets);
5015
5016 /* Make sure that empty classes are reflected in RLI at this
5017 point. */
5018 include_empty_classes(rli);
5019
5020 /* Make sure not to create any structures with zero size. */
5021 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
5022 place_field (rli,
5023 build_decl (FIELD_DECL, NULL_TREE, char_type_node));
5024
5025 /* Let the back end lay out the type. */
5026 finish_record_layout (rli, /*free_p=*/true);
5027
5028 /* Warn about bases that can't be talked about due to ambiguity. */
5029 warn_about_ambiguous_bases (t);
5030
5031 /* Now that we're done with layout, give the base fields the real types. */
5032 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5033 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
5034 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
5035
5036 /* Clean up. */
5037 splay_tree_delete (empty_base_offsets);
5038
5039 if (CLASSTYPE_EMPTY_P (t)
5040 && tree_int_cst_lt (sizeof_biggest_empty_class,
5041 TYPE_SIZE_UNIT (t)))
5042 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
5043 }
5044
5045 /* Determine the "key method" for the class type indicated by TYPE,
5046 and set CLASSTYPE_KEY_METHOD accordingly. */
5047
5048 void
5049 determine_key_method (tree type)
5050 {
5051 tree method;
5052
5053 if (TYPE_FOR_JAVA (type)
5054 || processing_template_decl
5055 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
5056 || CLASSTYPE_INTERFACE_KNOWN (type))
5057 return;
5058
5059 /* The key method is the first non-pure virtual function that is not
5060 inline at the point of class definition. On some targets the
5061 key function may not be inline; those targets should not call
5062 this function until the end of the translation unit. */
5063 for (method = TYPE_METHODS (type); method != NULL_TREE;
5064 method = TREE_CHAIN (method))
5065 if (DECL_VINDEX (method) != NULL_TREE
5066 && ! DECL_DECLARED_INLINE_P (method)
5067 && ! DECL_PURE_VIRTUAL_P (method))
5068 {
5069 CLASSTYPE_KEY_METHOD (type) = method;
5070 break;
5071 }
5072
5073 return;
5074 }
5075
5076 /* Perform processing required when the definition of T (a class type)
5077 is complete. */
5078
5079 void
5080 finish_struct_1 (tree t)
5081 {
5082 tree x;
5083 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
5084 tree virtuals = NULL_TREE;
5085 int n_fields = 0;
5086
5087 if (COMPLETE_TYPE_P (t))
5088 {
5089 gcc_assert (MAYBE_CLASS_TYPE_P (t));
5090 error ("redefinition of %q#T", t);
5091 popclass ();
5092 return;
5093 }
5094
5095 /* If this type was previously laid out as a forward reference,
5096 make sure we lay it out again. */
5097 TYPE_SIZE (t) = NULL_TREE;
5098 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
5099
5100 fixup_inline_methods (t);
5101
5102 /* Make assumptions about the class; we'll reset the flags if
5103 necessary. */
5104 CLASSTYPE_EMPTY_P (t) = 1;
5105 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
5106 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
5107
5108 /* Do end-of-class semantic processing: checking the validity of the
5109 bases and members and add implicitly generated methods. */
5110 check_bases_and_members (t);
5111
5112 /* Find the key method. */
5113 if (TYPE_CONTAINS_VPTR_P (t))
5114 {
5115 /* The Itanium C++ ABI permits the key method to be chosen when
5116 the class is defined -- even though the key method so
5117 selected may later turn out to be an inline function. On
5118 some systems (such as ARM Symbian OS) the key method cannot
5119 be determined until the end of the translation unit. On such
5120 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
5121 will cause the class to be added to KEYED_CLASSES. Then, in
5122 finish_file we will determine the key method. */
5123 if (targetm.cxx.key_method_may_be_inline ())
5124 determine_key_method (t);
5125
5126 /* If a polymorphic class has no key method, we may emit the vtable
5127 in every translation unit where the class definition appears. */
5128 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
5129 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
5130 }
5131
5132 /* Layout the class itself. */
5133 layout_class_type (t, &virtuals);
5134 if (CLASSTYPE_AS_BASE (t) != t)
5135 /* We use the base type for trivial assignments, and hence it
5136 needs a mode. */
5137 compute_record_mode (CLASSTYPE_AS_BASE (t));
5138
5139 virtuals = modify_all_vtables (t, nreverse (virtuals));
5140
5141 /* If necessary, create the primary vtable for this class. */
5142 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
5143 {
5144 /* We must enter these virtuals into the table. */
5145 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5146 build_primary_vtable (NULL_TREE, t);
5147 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
5148 /* Here we know enough to change the type of our virtual
5149 function table, but we will wait until later this function. */
5150 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
5151 }
5152
5153 if (TYPE_CONTAINS_VPTR_P (t))
5154 {
5155 int vindex;
5156 tree fn;
5157
5158 if (BINFO_VTABLE (TYPE_BINFO (t)))
5159 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
5160 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5161 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
5162
5163 /* Add entries for virtual functions introduced by this class. */
5164 BINFO_VIRTUALS (TYPE_BINFO (t))
5165 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
5166
5167 /* Set DECL_VINDEX for all functions declared in this class. */
5168 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5169 fn;
5170 fn = TREE_CHAIN (fn),
5171 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5172 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5173 {
5174 tree fndecl = BV_FN (fn);
5175
5176 if (DECL_THUNK_P (fndecl))
5177 /* A thunk. We should never be calling this entry directly
5178 from this vtable -- we'd use the entry for the non
5179 thunk base function. */
5180 DECL_VINDEX (fndecl) = NULL_TREE;
5181 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5182 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
5183 }
5184 }
5185
5186 finish_struct_bits (t);
5187
5188 /* Complete the rtl for any static member objects of the type we're
5189 working on. */
5190 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5191 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5192 && TREE_TYPE (x) != error_mark_node
5193 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5194 DECL_MODE (x) = TYPE_MODE (t);
5195
5196 /* Done with FIELDS...now decide whether to sort these for
5197 faster lookups later.
5198
5199 We use a small number because most searches fail (succeeding
5200 ultimately as the search bores through the inheritance
5201 hierarchy), and we want this failure to occur quickly. */
5202
5203 n_fields = count_fields (TYPE_FIELDS (t));
5204 if (n_fields > 7)
5205 {
5206 struct sorted_fields_type *field_vec = GGC_NEWVAR
5207 (struct sorted_fields_type,
5208 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5209 field_vec->len = n_fields;
5210 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5211 qsort (field_vec->elts, n_fields, sizeof (tree),
5212 field_decl_cmp);
5213 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5214 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5215 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5216 }
5217
5218 /* Complain if one of the field types requires lower visibility. */
5219 constrain_class_visibility (t);
5220
5221 /* Make the rtl for any new vtables we have created, and unmark
5222 the base types we marked. */
5223 finish_vtbls (t);
5224
5225 /* Build the VTT for T. */
5226 build_vtt (t);
5227
5228 /* This warning does not make sense for Java classes, since they
5229 cannot have destructors. */
5230 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5231 {
5232 tree dtor;
5233
5234 dtor = CLASSTYPE_DESTRUCTORS (t);
5235 if (/* An implicitly declared destructor is always public. And,
5236 if it were virtual, we would have created it by now. */
5237 !dtor
5238 || (!DECL_VINDEX (dtor)
5239 && (/* public non-virtual */
5240 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
5241 || (/* non-public non-virtual with friends */
5242 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
5243 && (CLASSTYPE_FRIEND_CLASSES (t)
5244 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
5245 warning (OPT_Wnon_virtual_dtor,
5246 "%q#T has virtual functions and accessible"
5247 " non-virtual destructor", t);
5248 }
5249
5250 complete_vars (t);
5251
5252 if (warn_overloaded_virtual)
5253 warn_hidden (t);
5254
5255 /* Class layout, assignment of virtual table slots, etc., is now
5256 complete. Give the back end a chance to tweak the visibility of
5257 the class or perform any other required target modifications. */
5258 targetm.cxx.adjust_class_at_definition (t);
5259
5260 maybe_suppress_debug_info (t);
5261
5262 dump_class_hierarchy (t);
5263
5264 /* Finish debugging output for this type. */
5265 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5266 }
5267
5268 /* When T was built up, the member declarations were added in reverse
5269 order. Rearrange them to declaration order. */
5270
5271 void
5272 unreverse_member_declarations (tree t)
5273 {
5274 tree next;
5275 tree prev;
5276 tree x;
5277
5278 /* The following lists are all in reverse order. Put them in
5279 declaration order now. */
5280 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5281 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5282
5283 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5284 reverse order, so we can't just use nreverse. */
5285 prev = NULL_TREE;
5286 for (x = TYPE_FIELDS (t);
5287 x && TREE_CODE (x) != TYPE_DECL;
5288 x = next)
5289 {
5290 next = TREE_CHAIN (x);
5291 TREE_CHAIN (x) = prev;
5292 prev = x;
5293 }
5294 if (prev)
5295 {
5296 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5297 if (prev)
5298 TYPE_FIELDS (t) = prev;
5299 }
5300 }
5301
5302 tree
5303 finish_struct (tree t, tree attributes)
5304 {
5305 location_t saved_loc = input_location;
5306
5307 /* Now that we've got all the field declarations, reverse everything
5308 as necessary. */
5309 unreverse_member_declarations (t);
5310
5311 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5312
5313 /* Nadger the current location so that diagnostics point to the start of
5314 the struct, not the end. */
5315 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5316
5317 if (processing_template_decl)
5318 {
5319 tree x;
5320
5321 finish_struct_methods (t);
5322 TYPE_SIZE (t) = bitsize_zero_node;
5323 TYPE_SIZE_UNIT (t) = size_zero_node;
5324
5325 /* We need to emit an error message if this type was used as a parameter
5326 and it is an abstract type, even if it is a template. We construct
5327 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5328 account and we call complete_vars with this type, which will check
5329 the PARM_DECLS. Note that while the type is being defined,
5330 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5331 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5332 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5333 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5334 if (DECL_PURE_VIRTUAL_P (x))
5335 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
5336 complete_vars (t);
5337 }
5338 else
5339 finish_struct_1 (t);
5340
5341 input_location = saved_loc;
5342
5343 TYPE_BEING_DEFINED (t) = 0;
5344
5345 if (current_class_type)
5346 popclass ();
5347 else
5348 error ("trying to finish struct, but kicked out due to previous parse errors");
5349
5350 if (processing_template_decl && at_function_scope_p ())
5351 add_stmt (build_min (TAG_DEFN, t));
5352
5353 return t;
5354 }
5355 \f
5356 /* Return the dynamic type of INSTANCE, if known.
5357 Used to determine whether the virtual function table is needed
5358 or not.
5359
5360 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5361 of our knowledge of its type. *NONNULL should be initialized
5362 before this function is called. */
5363
5364 static tree
5365 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
5366 {
5367 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
5368
5369 switch (TREE_CODE (instance))
5370 {
5371 case INDIRECT_REF:
5372 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5373 return NULL_TREE;
5374 else
5375 return RECUR (TREE_OPERAND (instance, 0));
5376
5377 case CALL_EXPR:
5378 /* This is a call to a constructor, hence it's never zero. */
5379 if (TREE_HAS_CONSTRUCTOR (instance))
5380 {
5381 if (nonnull)
5382 *nonnull = 1;
5383 return TREE_TYPE (instance);
5384 }
5385 return NULL_TREE;
5386
5387 case SAVE_EXPR:
5388 /* This is a call to a constructor, hence it's never zero. */
5389 if (TREE_HAS_CONSTRUCTOR (instance))
5390 {
5391 if (nonnull)
5392 *nonnull = 1;
5393 return TREE_TYPE (instance);
5394 }
5395 return RECUR (TREE_OPERAND (instance, 0));
5396
5397 case POINTER_PLUS_EXPR:
5398 case PLUS_EXPR:
5399 case MINUS_EXPR:
5400 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5401 return RECUR (TREE_OPERAND (instance, 0));
5402 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5403 /* Propagate nonnull. */
5404 return RECUR (TREE_OPERAND (instance, 0));
5405
5406 return NULL_TREE;
5407
5408 case NOP_EXPR:
5409 case CONVERT_EXPR:
5410 return RECUR (TREE_OPERAND (instance, 0));
5411
5412 case ADDR_EXPR:
5413 instance = TREE_OPERAND (instance, 0);
5414 if (nonnull)
5415 {
5416 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5417 with a real object -- given &p->f, p can still be null. */
5418 tree t = get_base_address (instance);
5419 /* ??? Probably should check DECL_WEAK here. */
5420 if (t && DECL_P (t))
5421 *nonnull = 1;
5422 }
5423 return RECUR (instance);
5424
5425 case COMPONENT_REF:
5426 /* If this component is really a base class reference, then the field
5427 itself isn't definitive. */
5428 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5429 return RECUR (TREE_OPERAND (instance, 0));
5430 return RECUR (TREE_OPERAND (instance, 1));
5431
5432 case VAR_DECL:
5433 case FIELD_DECL:
5434 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5435 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
5436 {
5437 if (nonnull)
5438 *nonnull = 1;
5439 return TREE_TYPE (TREE_TYPE (instance));
5440 }
5441 /* fall through... */
5442 case TARGET_EXPR:
5443 case PARM_DECL:
5444 case RESULT_DECL:
5445 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
5446 {
5447 if (nonnull)
5448 *nonnull = 1;
5449 return TREE_TYPE (instance);
5450 }
5451 else if (instance == current_class_ptr)
5452 {
5453 if (nonnull)
5454 *nonnull = 1;
5455
5456 /* if we're in a ctor or dtor, we know our type. */
5457 if (DECL_LANG_SPECIFIC (current_function_decl)
5458 && (DECL_CONSTRUCTOR_P (current_function_decl)
5459 || DECL_DESTRUCTOR_P (current_function_decl)))
5460 {
5461 if (cdtorp)
5462 *cdtorp = 1;
5463 return TREE_TYPE (TREE_TYPE (instance));
5464 }
5465 }
5466 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5467 {
5468 /* We only need one hash table because it is always left empty. */
5469 static htab_t ht;
5470 if (!ht)
5471 ht = htab_create (37,
5472 htab_hash_pointer,
5473 htab_eq_pointer,
5474 /*htab_del=*/NULL);
5475
5476 /* Reference variables should be references to objects. */
5477 if (nonnull)
5478 *nonnull = 1;
5479
5480 /* Enter the INSTANCE in a table to prevent recursion; a
5481 variable's initializer may refer to the variable
5482 itself. */
5483 if (TREE_CODE (instance) == VAR_DECL
5484 && DECL_INITIAL (instance)
5485 && !htab_find (ht, instance))
5486 {
5487 tree type;
5488 void **slot;
5489
5490 slot = htab_find_slot (ht, instance, INSERT);
5491 *slot = instance;
5492 type = RECUR (DECL_INITIAL (instance));
5493 htab_remove_elt (ht, instance);
5494
5495 return type;
5496 }
5497 }
5498 return NULL_TREE;
5499
5500 default:
5501 return NULL_TREE;
5502 }
5503 #undef RECUR
5504 }
5505
5506 /* Return nonzero if the dynamic type of INSTANCE is known, and
5507 equivalent to the static type. We also handle the case where
5508 INSTANCE is really a pointer. Return negative if this is a
5509 ctor/dtor. There the dynamic type is known, but this might not be
5510 the most derived base of the original object, and hence virtual
5511 bases may not be layed out according to this type.
5512
5513 Used to determine whether the virtual function table is needed
5514 or not.
5515
5516 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5517 of our knowledge of its type. *NONNULL should be initialized
5518 before this function is called. */
5519
5520 int
5521 resolves_to_fixed_type_p (tree instance, int* nonnull)
5522 {
5523 tree t = TREE_TYPE (instance);
5524 int cdtorp = 0;
5525 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5526 if (fixed == NULL_TREE)
5527 return 0;
5528 if (POINTER_TYPE_P (t))
5529 t = TREE_TYPE (t);
5530 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5531 return 0;
5532 return cdtorp ? -1 : 1;
5533 }
5534
5535 \f
5536 void
5537 init_class_processing (void)
5538 {
5539 current_class_depth = 0;
5540 current_class_stack_size = 10;
5541 current_class_stack
5542 = XNEWVEC (struct class_stack_node, current_class_stack_size);
5543 local_classes = VEC_alloc (tree, gc, 8);
5544 sizeof_biggest_empty_class = size_zero_node;
5545
5546 ridpointers[(int) RID_PUBLIC] = access_public_node;
5547 ridpointers[(int) RID_PRIVATE] = access_private_node;
5548 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5549 }
5550
5551 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5552
5553 static void
5554 restore_class_cache (void)
5555 {
5556 tree type;
5557
5558 /* We are re-entering the same class we just left, so we don't
5559 have to search the whole inheritance matrix to find all the
5560 decls to bind again. Instead, we install the cached
5561 class_shadowed list and walk through it binding names. */
5562 push_binding_level (previous_class_level);
5563 class_binding_level = previous_class_level;
5564 /* Restore IDENTIFIER_TYPE_VALUE. */
5565 for (type = class_binding_level->type_shadowed;
5566 type;
5567 type = TREE_CHAIN (type))
5568 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5569 }
5570
5571 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5572 appropriate for TYPE.
5573
5574 So that we may avoid calls to lookup_name, we cache the _TYPE
5575 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5576
5577 For multiple inheritance, we perform a two-pass depth-first search
5578 of the type lattice. */
5579
5580 void
5581 pushclass (tree type)
5582 {
5583 class_stack_node_t csn;
5584
5585 type = TYPE_MAIN_VARIANT (type);
5586
5587 /* Make sure there is enough room for the new entry on the stack. */
5588 if (current_class_depth + 1 >= current_class_stack_size)
5589 {
5590 current_class_stack_size *= 2;
5591 current_class_stack
5592 = XRESIZEVEC (struct class_stack_node, current_class_stack,
5593 current_class_stack_size);
5594 }
5595
5596 /* Insert a new entry on the class stack. */
5597 csn = current_class_stack + current_class_depth;
5598 csn->name = current_class_name;
5599 csn->type = current_class_type;
5600 csn->access = current_access_specifier;
5601 csn->names_used = 0;
5602 csn->hidden = 0;
5603 current_class_depth++;
5604
5605 /* Now set up the new type. */
5606 current_class_name = TYPE_NAME (type);
5607 if (TREE_CODE (current_class_name) == TYPE_DECL)
5608 current_class_name = DECL_NAME (current_class_name);
5609 current_class_type = type;
5610
5611 /* By default, things in classes are private, while things in
5612 structures or unions are public. */
5613 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5614 ? access_private_node
5615 : access_public_node);
5616
5617 if (previous_class_level
5618 && type != previous_class_level->this_entity
5619 && current_class_depth == 1)
5620 {
5621 /* Forcibly remove any old class remnants. */
5622 invalidate_class_lookup_cache ();
5623 }
5624
5625 if (!previous_class_level
5626 || type != previous_class_level->this_entity
5627 || current_class_depth > 1)
5628 pushlevel_class ();
5629 else
5630 restore_class_cache ();
5631 }
5632
5633 /* When we exit a toplevel class scope, we save its binding level so
5634 that we can restore it quickly. Here, we've entered some other
5635 class, so we must invalidate our cache. */
5636
5637 void
5638 invalidate_class_lookup_cache (void)
5639 {
5640 previous_class_level = NULL;
5641 }
5642
5643 /* Get out of the current class scope. If we were in a class scope
5644 previously, that is the one popped to. */
5645
5646 void
5647 popclass (void)
5648 {
5649 poplevel_class ();
5650
5651 current_class_depth--;
5652 current_class_name = current_class_stack[current_class_depth].name;
5653 current_class_type = current_class_stack[current_class_depth].type;
5654 current_access_specifier = current_class_stack[current_class_depth].access;
5655 if (current_class_stack[current_class_depth].names_used)
5656 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5657 }
5658
5659 /* Mark the top of the class stack as hidden. */
5660
5661 void
5662 push_class_stack (void)
5663 {
5664 if (current_class_depth)
5665 ++current_class_stack[current_class_depth - 1].hidden;
5666 }
5667
5668 /* Mark the top of the class stack as un-hidden. */
5669
5670 void
5671 pop_class_stack (void)
5672 {
5673 if (current_class_depth)
5674 --current_class_stack[current_class_depth - 1].hidden;
5675 }
5676
5677 /* Returns 1 if the class type currently being defined is either T or
5678 a nested type of T. */
5679
5680 bool
5681 currently_open_class (tree t)
5682 {
5683 int i;
5684
5685 /* We start looking from 1 because entry 0 is from global scope,
5686 and has no type. */
5687 for (i = current_class_depth; i > 0; --i)
5688 {
5689 tree c;
5690 if (i == current_class_depth)
5691 c = current_class_type;
5692 else
5693 {
5694 if (current_class_stack[i].hidden)
5695 break;
5696 c = current_class_stack[i].type;
5697 }
5698 if (!c)
5699 continue;
5700 if (same_type_p (c, t))
5701 return true;
5702 }
5703 return false;
5704 }
5705
5706 /* If either current_class_type or one of its enclosing classes are derived
5707 from T, return the appropriate type. Used to determine how we found
5708 something via unqualified lookup. */
5709
5710 tree
5711 currently_open_derived_class (tree t)
5712 {
5713 int i;
5714
5715 /* The bases of a dependent type are unknown. */
5716 if (dependent_type_p (t))
5717 return NULL_TREE;
5718
5719 if (!current_class_type)
5720 return NULL_TREE;
5721
5722 if (DERIVED_FROM_P (t, current_class_type))
5723 return current_class_type;
5724
5725 for (i = current_class_depth - 1; i > 0; --i)
5726 {
5727 if (current_class_stack[i].hidden)
5728 break;
5729 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5730 return current_class_stack[i].type;
5731 }
5732
5733 return NULL_TREE;
5734 }
5735
5736 /* When entering a class scope, all enclosing class scopes' names with
5737 static meaning (static variables, static functions, types and
5738 enumerators) have to be visible. This recursive function calls
5739 pushclass for all enclosing class contexts until global or a local
5740 scope is reached. TYPE is the enclosed class. */
5741
5742 void
5743 push_nested_class (tree type)
5744 {
5745 /* A namespace might be passed in error cases, like A::B:C. */
5746 if (type == NULL_TREE
5747 || !CLASS_TYPE_P (type))
5748 return;
5749
5750 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
5751
5752 pushclass (type);
5753 }
5754
5755 /* Undoes a push_nested_class call. */
5756
5757 void
5758 pop_nested_class (void)
5759 {
5760 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5761
5762 popclass ();
5763 if (context && CLASS_TYPE_P (context))
5764 pop_nested_class ();
5765 }
5766
5767 /* Returns the number of extern "LANG" blocks we are nested within. */
5768
5769 int
5770 current_lang_depth (void)
5771 {
5772 return VEC_length (tree, current_lang_base);
5773 }
5774
5775 /* Set global variables CURRENT_LANG_NAME to appropriate value
5776 so that behavior of name-mangling machinery is correct. */
5777
5778 void
5779 push_lang_context (tree name)
5780 {
5781 VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
5782
5783 if (name == lang_name_cplusplus)
5784 {
5785 current_lang_name = name;
5786 }
5787 else if (name == lang_name_java)
5788 {
5789 current_lang_name = name;
5790 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5791 (See record_builtin_java_type in decl.c.) However, that causes
5792 incorrect debug entries if these types are actually used.
5793 So we re-enable debug output after extern "Java". */
5794 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5795 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5796 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5797 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5798 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5799 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5800 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5801 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5802 }
5803 else if (name == lang_name_c)
5804 {
5805 current_lang_name = name;
5806 }
5807 else
5808 error ("language string %<\"%E\"%> not recognized", name);
5809 }
5810
5811 /* Get out of the current language scope. */
5812
5813 void
5814 pop_lang_context (void)
5815 {
5816 current_lang_name = VEC_pop (tree, current_lang_base);
5817 }
5818 \f
5819 /* Type instantiation routines. */
5820
5821 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5822 matches the TARGET_TYPE. If there is no satisfactory match, return
5823 error_mark_node, and issue an error & warning messages under
5824 control of FLAGS. Permit pointers to member function if FLAGS
5825 permits. If TEMPLATE_ONLY, the name of the overloaded function was
5826 a template-id, and EXPLICIT_TARGS are the explicitly provided
5827 template arguments. If OVERLOAD is for one or more member
5828 functions, then ACCESS_PATH is the base path used to reference
5829 those member functions. */
5830
5831 static tree
5832 resolve_address_of_overloaded_function (tree target_type,
5833 tree overload,
5834 tsubst_flags_t flags,
5835 bool template_only,
5836 tree explicit_targs,
5837 tree access_path)
5838 {
5839 /* Here's what the standard says:
5840
5841 [over.over]
5842
5843 If the name is a function template, template argument deduction
5844 is done, and if the argument deduction succeeds, the deduced
5845 arguments are used to generate a single template function, which
5846 is added to the set of overloaded functions considered.
5847
5848 Non-member functions and static member functions match targets of
5849 type "pointer-to-function" or "reference-to-function." Nonstatic
5850 member functions match targets of type "pointer-to-member
5851 function;" the function type of the pointer to member is used to
5852 select the member function from the set of overloaded member
5853 functions. If a nonstatic member function is selected, the
5854 reference to the overloaded function name is required to have the
5855 form of a pointer to member as described in 5.3.1.
5856
5857 If more than one function is selected, any template functions in
5858 the set are eliminated if the set also contains a non-template
5859 function, and any given template function is eliminated if the
5860 set contains a second template function that is more specialized
5861 than the first according to the partial ordering rules 14.5.5.2.
5862 After such eliminations, if any, there shall remain exactly one
5863 selected function. */
5864
5865 int is_ptrmem = 0;
5866 int is_reference = 0;
5867 /* We store the matches in a TREE_LIST rooted here. The functions
5868 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5869 interoperability with most_specialized_instantiation. */
5870 tree matches = NULL_TREE;
5871 tree fn;
5872
5873 /* By the time we get here, we should be seeing only real
5874 pointer-to-member types, not the internal POINTER_TYPE to
5875 METHOD_TYPE representation. */
5876 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
5877 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
5878
5879 gcc_assert (is_overloaded_fn (overload));
5880
5881 /* Check that the TARGET_TYPE is reasonable. */
5882 if (TYPE_PTRFN_P (target_type))
5883 /* This is OK. */;
5884 else if (TYPE_PTRMEMFUNC_P (target_type))
5885 /* This is OK, too. */
5886 is_ptrmem = 1;
5887 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
5888 {
5889 /* This is OK, too. This comes from a conversion to reference
5890 type. */
5891 target_type = build_reference_type (target_type);
5892 is_reference = 1;
5893 }
5894 else
5895 {
5896 if (flags & tf_error)
5897 error ("cannot resolve overloaded function %qD based on"
5898 " conversion to type %qT",
5899 DECL_NAME (OVL_FUNCTION (overload)), target_type);
5900 return error_mark_node;
5901 }
5902
5903 /* If we can find a non-template function that matches, we can just
5904 use it. There's no point in generating template instantiations
5905 if we're just going to throw them out anyhow. But, of course, we
5906 can only do this when we don't *need* a template function. */
5907 if (!template_only)
5908 {
5909 tree fns;
5910
5911 for (fns = overload; fns; fns = OVL_NEXT (fns))
5912 {
5913 tree fn = OVL_CURRENT (fns);
5914 tree fntype;
5915
5916 if (TREE_CODE (fn) == TEMPLATE_DECL)
5917 /* We're not looking for templates just yet. */
5918 continue;
5919
5920 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5921 != is_ptrmem)
5922 /* We're looking for a non-static member, and this isn't
5923 one, or vice versa. */
5924 continue;
5925
5926 /* Ignore functions which haven't been explicitly
5927 declared. */
5928 if (DECL_ANTICIPATED (fn))
5929 continue;
5930
5931 /* See if there's a match. */
5932 fntype = TREE_TYPE (fn);
5933 if (is_ptrmem)
5934 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
5935 else if (!is_reference)
5936 fntype = build_pointer_type (fntype);
5937
5938 if (can_convert_arg (target_type, fntype, fn, LOOKUP_NORMAL))
5939 matches = tree_cons (fn, NULL_TREE, matches);
5940 }
5941 }
5942
5943 /* Now, if we've already got a match (or matches), there's no need
5944 to proceed to the template functions. But, if we don't have a
5945 match we need to look at them, too. */
5946 if (!matches)
5947 {
5948 tree target_fn_type;
5949 tree target_arg_types;
5950 tree target_ret_type;
5951 tree fns;
5952
5953 if (is_ptrmem)
5954 target_fn_type
5955 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
5956 else
5957 target_fn_type = TREE_TYPE (target_type);
5958 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
5959 target_ret_type = TREE_TYPE (target_fn_type);
5960
5961 /* Never do unification on the 'this' parameter. */
5962 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
5963 target_arg_types = TREE_CHAIN (target_arg_types);
5964
5965 for (fns = overload; fns; fns = OVL_NEXT (fns))
5966 {
5967 tree fn = OVL_CURRENT (fns);
5968 tree instantiation;
5969 tree instantiation_type;
5970 tree targs;
5971
5972 if (TREE_CODE (fn) != TEMPLATE_DECL)
5973 /* We're only looking for templates. */
5974 continue;
5975
5976 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5977 != is_ptrmem)
5978 /* We're not looking for a non-static member, and this is
5979 one, or vice versa. */
5980 continue;
5981
5982 /* Try to do argument deduction. */
5983 targs = make_tree_vec (DECL_NTPARMS (fn));
5984 if (fn_type_unification (fn, explicit_targs, targs,
5985 target_arg_types, target_ret_type,
5986 DEDUCE_EXACT, LOOKUP_NORMAL))
5987 /* Argument deduction failed. */
5988 continue;
5989
5990 /* Instantiate the template. */
5991 instantiation = instantiate_template (fn, targs, flags);
5992 if (instantiation == error_mark_node)
5993 /* Instantiation failed. */
5994 continue;
5995
5996 /* See if there's a match. */
5997 instantiation_type = TREE_TYPE (instantiation);
5998 if (is_ptrmem)
5999 instantiation_type =
6000 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
6001 else if (!is_reference)
6002 instantiation_type = build_pointer_type (instantiation_type);
6003 if (can_convert_arg (target_type, instantiation_type, instantiation,
6004 LOOKUP_NORMAL))
6005 matches = tree_cons (instantiation, fn, matches);
6006 }
6007
6008 /* Now, remove all but the most specialized of the matches. */
6009 if (matches)
6010 {
6011 tree match = most_specialized_instantiation (matches);
6012
6013 if (match != error_mark_node)
6014 matches = tree_cons (TREE_PURPOSE (match),
6015 NULL_TREE,
6016 NULL_TREE);
6017 }
6018 }
6019
6020 /* Now we should have exactly one function in MATCHES. */
6021 if (matches == NULL_TREE)
6022 {
6023 /* There were *no* matches. */
6024 if (flags & tf_error)
6025 {
6026 error ("no matches converting function %qD to type %q#T",
6027 DECL_NAME (OVL_FUNCTION (overload)),
6028 target_type);
6029
6030 /* print_candidates expects a chain with the functions in
6031 TREE_VALUE slots, so we cons one up here (we're losing anyway,
6032 so why be clever?). */
6033 for (; overload; overload = OVL_NEXT (overload))
6034 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
6035 matches);
6036
6037 print_candidates (matches);
6038 }
6039 return error_mark_node;
6040 }
6041 else if (TREE_CHAIN (matches))
6042 {
6043 /* There were too many matches. */
6044
6045 if (flags & tf_error)
6046 {
6047 tree match;
6048
6049 error ("converting overloaded function %qD to type %q#T is ambiguous",
6050 DECL_NAME (OVL_FUNCTION (overload)),
6051 target_type);
6052
6053 /* Since print_candidates expects the functions in the
6054 TREE_VALUE slot, we flip them here. */
6055 for (match = matches; match; match = TREE_CHAIN (match))
6056 TREE_VALUE (match) = TREE_PURPOSE (match);
6057
6058 print_candidates (matches);
6059 }
6060
6061 return error_mark_node;
6062 }
6063
6064 /* Good, exactly one match. Now, convert it to the correct type. */
6065 fn = TREE_PURPOSE (matches);
6066
6067 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
6068 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
6069 {
6070 static int explained;
6071
6072 if (!(flags & tf_error))
6073 return error_mark_node;
6074
6075 permerror ("assuming pointer to member %qD", fn);
6076 if (!explained)
6077 {
6078 inform ("(a pointer to member can only be formed with %<&%E%>)", fn);
6079 explained = 1;
6080 }
6081 }
6082
6083 /* If we're doing overload resolution purely for the purpose of
6084 determining conversion sequences, we should not consider the
6085 function used. If this conversion sequence is selected, the
6086 function will be marked as used at this point. */
6087 if (!(flags & tf_conv))
6088 {
6089 mark_used (fn);
6090 /* We could not check access when this expression was originally
6091 created since we did not know at that time to which function
6092 the expression referred. */
6093 if (DECL_FUNCTION_MEMBER_P (fn))
6094 {
6095 gcc_assert (access_path);
6096 perform_or_defer_access_check (access_path, fn, fn);
6097 }
6098 }
6099
6100 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
6101 return build_unary_op (ADDR_EXPR, fn, 0);
6102 else
6103 {
6104 /* The target must be a REFERENCE_TYPE. Above, build_unary_op
6105 will mark the function as addressed, but here we must do it
6106 explicitly. */
6107 cxx_mark_addressable (fn);
6108
6109 return fn;
6110 }
6111 }
6112
6113 /* This function will instantiate the type of the expression given in
6114 RHS to match the type of LHSTYPE. If errors exist, then return
6115 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
6116 we complain on errors. If we are not complaining, never modify rhs,
6117 as overload resolution wants to try many possible instantiations, in
6118 the hope that at least one will work.
6119
6120 For non-recursive calls, LHSTYPE should be a function, pointer to
6121 function, or a pointer to member function. */
6122
6123 tree
6124 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
6125 {
6126 tsubst_flags_t flags_in = flags;
6127 tree access_path = NULL_TREE;
6128
6129 flags &= ~tf_ptrmem_ok;
6130
6131 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
6132 {
6133 if (flags & tf_error)
6134 error ("not enough type information");
6135 return error_mark_node;
6136 }
6137
6138 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
6139 {
6140 if (same_type_p (lhstype, TREE_TYPE (rhs)))
6141 return rhs;
6142 if (flag_ms_extensions
6143 && TYPE_PTRMEMFUNC_P (lhstype)
6144 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
6145 /* Microsoft allows `A::f' to be resolved to a
6146 pointer-to-member. */
6147 ;
6148 else
6149 {
6150 if (flags & tf_error)
6151 error ("argument of type %qT does not match %qT",
6152 TREE_TYPE (rhs), lhstype);
6153 return error_mark_node;
6154 }
6155 }
6156
6157 if (TREE_CODE (rhs) == BASELINK)
6158 {
6159 access_path = BASELINK_ACCESS_BINFO (rhs);
6160 rhs = BASELINK_FUNCTIONS (rhs);
6161 }
6162
6163 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
6164 deduce any type information. */
6165 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
6166 {
6167 if (flags & tf_error)
6168 error ("not enough type information");
6169 return error_mark_node;
6170 }
6171
6172 /* There only a few kinds of expressions that may have a type
6173 dependent on overload resolution. */
6174 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
6175 || TREE_CODE (rhs) == COMPONENT_REF
6176 || TREE_CODE (rhs) == COMPOUND_EXPR
6177 || really_overloaded_fn (rhs));
6178
6179 /* We don't overwrite rhs if it is an overloaded function.
6180 Copying it would destroy the tree link. */
6181 if (TREE_CODE (rhs) != OVERLOAD)
6182 rhs = copy_node (rhs);
6183
6184 /* This should really only be used when attempting to distinguish
6185 what sort of a pointer to function we have. For now, any
6186 arithmetic operation which is not supported on pointers
6187 is rejected as an error. */
6188
6189 switch (TREE_CODE (rhs))
6190 {
6191 case COMPONENT_REF:
6192 {
6193 tree member = TREE_OPERAND (rhs, 1);
6194
6195 member = instantiate_type (lhstype, member, flags);
6196 if (member != error_mark_node
6197 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
6198 /* Do not lose object's side effects. */
6199 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
6200 TREE_OPERAND (rhs, 0), member);
6201 return member;
6202 }
6203
6204 case OFFSET_REF:
6205 rhs = TREE_OPERAND (rhs, 1);
6206 if (BASELINK_P (rhs))
6207 return instantiate_type (lhstype, rhs, flags_in);
6208
6209 /* This can happen if we are forming a pointer-to-member for a
6210 member template. */
6211 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
6212
6213 /* Fall through. */
6214
6215 case TEMPLATE_ID_EXPR:
6216 {
6217 tree fns = TREE_OPERAND (rhs, 0);
6218 tree args = TREE_OPERAND (rhs, 1);
6219
6220 return
6221 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6222 /*template_only=*/true,
6223 args, access_path);
6224 }
6225
6226 case OVERLOAD:
6227 case FUNCTION_DECL:
6228 return
6229 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6230 /*template_only=*/false,
6231 /*explicit_targs=*/NULL_TREE,
6232 access_path);
6233
6234 case COMPOUND_EXPR:
6235 TREE_OPERAND (rhs, 0)
6236 = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6237 if (TREE_OPERAND (rhs, 0) == error_mark_node)
6238 return error_mark_node;
6239 TREE_OPERAND (rhs, 1)
6240 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6241 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6242 return error_mark_node;
6243
6244 TREE_TYPE (rhs) = lhstype;
6245 return rhs;
6246
6247 case ADDR_EXPR:
6248 {
6249 if (PTRMEM_OK_P (rhs))
6250 flags |= tf_ptrmem_ok;
6251
6252 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6253 }
6254
6255 case ERROR_MARK:
6256 return error_mark_node;
6257
6258 default:
6259 gcc_unreachable ();
6260 }
6261 return error_mark_node;
6262 }
6263 \f
6264 /* Return the name of the virtual function pointer field
6265 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6266 this may have to look back through base types to find the
6267 ultimate field name. (For single inheritance, these could
6268 all be the same name. Who knows for multiple inheritance). */
6269
6270 static tree
6271 get_vfield_name (tree type)
6272 {
6273 tree binfo, base_binfo;
6274 char *buf;
6275
6276 for (binfo = TYPE_BINFO (type);
6277 BINFO_N_BASE_BINFOS (binfo);
6278 binfo = base_binfo)
6279 {
6280 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6281
6282 if (BINFO_VIRTUAL_P (base_binfo)
6283 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6284 break;
6285 }
6286
6287 type = BINFO_TYPE (binfo);
6288 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
6289 + TYPE_NAME_LENGTH (type) + 2);
6290 sprintf (buf, VFIELD_NAME_FORMAT,
6291 IDENTIFIER_POINTER (constructor_name (type)));
6292 return get_identifier (buf);
6293 }
6294
6295 void
6296 print_class_statistics (void)
6297 {
6298 #ifdef GATHER_STATISTICS
6299 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6300 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6301 if (n_vtables)
6302 {
6303 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6304 n_vtables, n_vtable_searches);
6305 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6306 n_vtable_entries, n_vtable_elems);
6307 }
6308 #endif
6309 }
6310
6311 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6312 according to [class]:
6313 The class-name is also inserted
6314 into the scope of the class itself. For purposes of access checking,
6315 the inserted class name is treated as if it were a public member name. */
6316
6317 void
6318 build_self_reference (void)
6319 {
6320 tree name = constructor_name (current_class_type);
6321 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6322 tree saved_cas;
6323
6324 DECL_NONLOCAL (value) = 1;
6325 DECL_CONTEXT (value) = current_class_type;
6326 DECL_ARTIFICIAL (value) = 1;
6327 SET_DECL_SELF_REFERENCE_P (value);
6328
6329 if (processing_template_decl)
6330 value = push_template_decl (value);
6331
6332 saved_cas = current_access_specifier;
6333 current_access_specifier = access_public_node;
6334 finish_member_declaration (value);
6335 current_access_specifier = saved_cas;
6336 }
6337
6338 /* Returns 1 if TYPE contains only padding bytes. */
6339
6340 int
6341 is_empty_class (tree type)
6342 {
6343 if (type == error_mark_node)
6344 return 0;
6345
6346 if (! MAYBE_CLASS_TYPE_P (type))
6347 return 0;
6348
6349 /* In G++ 3.2, whether or not a class was empty was determined by
6350 looking at its size. */
6351 if (abi_version_at_least (2))
6352 return CLASSTYPE_EMPTY_P (type);
6353 else
6354 return integer_zerop (CLASSTYPE_SIZE (type));
6355 }
6356
6357 /* Returns true if TYPE contains an empty class. */
6358
6359 static bool
6360 contains_empty_class_p (tree type)
6361 {
6362 if (is_empty_class (type))
6363 return true;
6364 if (CLASS_TYPE_P (type))
6365 {
6366 tree field;
6367 tree binfo;
6368 tree base_binfo;
6369 int i;
6370
6371 for (binfo = TYPE_BINFO (type), i = 0;
6372 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6373 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6374 return true;
6375 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6376 if (TREE_CODE (field) == FIELD_DECL
6377 && !DECL_ARTIFICIAL (field)
6378 && is_empty_class (TREE_TYPE (field)))
6379 return true;
6380 }
6381 else if (TREE_CODE (type) == ARRAY_TYPE)
6382 return contains_empty_class_p (TREE_TYPE (type));
6383 return false;
6384 }
6385
6386 /* Note that NAME was looked up while the current class was being
6387 defined and that the result of that lookup was DECL. */
6388
6389 void
6390 maybe_note_name_used_in_class (tree name, tree decl)
6391 {
6392 splay_tree names_used;
6393
6394 /* If we're not defining a class, there's nothing to do. */
6395 if (!(innermost_scope_kind() == sk_class
6396 && TYPE_BEING_DEFINED (current_class_type)))
6397 return;
6398
6399 /* If there's already a binding for this NAME, then we don't have
6400 anything to worry about. */
6401 if (lookup_member (current_class_type, name,
6402 /*protect=*/0, /*want_type=*/false))
6403 return;
6404
6405 if (!current_class_stack[current_class_depth - 1].names_used)
6406 current_class_stack[current_class_depth - 1].names_used
6407 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6408 names_used = current_class_stack[current_class_depth - 1].names_used;
6409
6410 splay_tree_insert (names_used,
6411 (splay_tree_key) name,
6412 (splay_tree_value) decl);
6413 }
6414
6415 /* Note that NAME was declared (as DECL) in the current class. Check
6416 to see that the declaration is valid. */
6417
6418 void
6419 note_name_declared_in_class (tree name, tree decl)
6420 {
6421 splay_tree names_used;
6422 splay_tree_node n;
6423
6424 /* Look to see if we ever used this name. */
6425 names_used
6426 = current_class_stack[current_class_depth - 1].names_used;
6427 if (!names_used)
6428 return;
6429
6430 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6431 if (n)
6432 {
6433 /* [basic.scope.class]
6434
6435 A name N used in a class S shall refer to the same declaration
6436 in its context and when re-evaluated in the completed scope of
6437 S. */
6438 permerror ("declaration of %q#D", decl);
6439 permerror ("changes meaning of %qD from %q+#D",
6440 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
6441 }
6442 }
6443
6444 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6445 Secondary vtables are merged with primary vtables; this function
6446 will return the VAR_DECL for the primary vtable. */
6447
6448 tree
6449 get_vtbl_decl_for_binfo (tree binfo)
6450 {
6451 tree decl;
6452
6453 decl = BINFO_VTABLE (binfo);
6454 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
6455 {
6456 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6457 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6458 }
6459 if (decl)
6460 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6461 return decl;
6462 }
6463
6464
6465 /* Returns the binfo for the primary base of BINFO. If the resulting
6466 BINFO is a virtual base, and it is inherited elsewhere in the
6467 hierarchy, then the returned binfo might not be the primary base of
6468 BINFO in the complete object. Check BINFO_PRIMARY_P or
6469 BINFO_LOST_PRIMARY_P to be sure. */
6470
6471 static tree
6472 get_primary_binfo (tree binfo)
6473 {
6474 tree primary_base;
6475
6476 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6477 if (!primary_base)
6478 return NULL_TREE;
6479
6480 return copied_binfo (primary_base, binfo);
6481 }
6482
6483 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6484
6485 static int
6486 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6487 {
6488 if (!indented_p)
6489 fprintf (stream, "%*s", indent, "");
6490 return 1;
6491 }
6492
6493 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6494 INDENT should be zero when called from the top level; it is
6495 incremented recursively. IGO indicates the next expected BINFO in
6496 inheritance graph ordering. */
6497
6498 static tree
6499 dump_class_hierarchy_r (FILE *stream,
6500 int flags,
6501 tree binfo,
6502 tree igo,
6503 int indent)
6504 {
6505 int indented = 0;
6506 tree base_binfo;
6507 int i;
6508
6509 indented = maybe_indent_hierarchy (stream, indent, 0);
6510 fprintf (stream, "%s (0x%lx) ",
6511 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6512 (unsigned long) binfo);
6513 if (binfo != igo)
6514 {
6515 fprintf (stream, "alternative-path\n");
6516 return igo;
6517 }
6518 igo = TREE_CHAIN (binfo);
6519
6520 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6521 tree_low_cst (BINFO_OFFSET (binfo), 0));
6522 if (is_empty_class (BINFO_TYPE (binfo)))
6523 fprintf (stream, " empty");
6524 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6525 fprintf (stream, " nearly-empty");
6526 if (BINFO_VIRTUAL_P (binfo))
6527 fprintf (stream, " virtual");
6528 fprintf (stream, "\n");
6529
6530 indented = 0;
6531 if (BINFO_PRIMARY_P (binfo))
6532 {
6533 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6534 fprintf (stream, " primary-for %s (0x%lx)",
6535 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6536 TFF_PLAIN_IDENTIFIER),
6537 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6538 }
6539 if (BINFO_LOST_PRIMARY_P (binfo))
6540 {
6541 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6542 fprintf (stream, " lost-primary");
6543 }
6544 if (indented)
6545 fprintf (stream, "\n");
6546
6547 if (!(flags & TDF_SLIM))
6548 {
6549 int indented = 0;
6550
6551 if (BINFO_SUBVTT_INDEX (binfo))
6552 {
6553 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6554 fprintf (stream, " subvttidx=%s",
6555 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6556 TFF_PLAIN_IDENTIFIER));
6557 }
6558 if (BINFO_VPTR_INDEX (binfo))
6559 {
6560 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6561 fprintf (stream, " vptridx=%s",
6562 expr_as_string (BINFO_VPTR_INDEX (binfo),
6563 TFF_PLAIN_IDENTIFIER));
6564 }
6565 if (BINFO_VPTR_FIELD (binfo))
6566 {
6567 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6568 fprintf (stream, " vbaseoffset=%s",
6569 expr_as_string (BINFO_VPTR_FIELD (binfo),
6570 TFF_PLAIN_IDENTIFIER));
6571 }
6572 if (BINFO_VTABLE (binfo))
6573 {
6574 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6575 fprintf (stream, " vptr=%s",
6576 expr_as_string (BINFO_VTABLE (binfo),
6577 TFF_PLAIN_IDENTIFIER));
6578 }
6579
6580 if (indented)
6581 fprintf (stream, "\n");
6582 }
6583
6584 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6585 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6586
6587 return igo;
6588 }
6589
6590 /* Dump the BINFO hierarchy for T. */
6591
6592 static void
6593 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6594 {
6595 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6596 fprintf (stream, " size=%lu align=%lu\n",
6597 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6598 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6599 fprintf (stream, " base size=%lu base align=%lu\n",
6600 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6601 / BITS_PER_UNIT),
6602 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6603 / BITS_PER_UNIT));
6604 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6605 fprintf (stream, "\n");
6606 }
6607
6608 /* Debug interface to hierarchy dumping. */
6609
6610 void
6611 debug_class (tree t)
6612 {
6613 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6614 }
6615
6616 static void
6617 dump_class_hierarchy (tree t)
6618 {
6619 int flags;
6620 FILE *stream = dump_begin (TDI_class, &flags);
6621
6622 if (stream)
6623 {
6624 dump_class_hierarchy_1 (stream, flags, t);
6625 dump_end (TDI_class, stream);
6626 }
6627 }
6628
6629 static void
6630 dump_array (FILE * stream, tree decl)
6631 {
6632 tree value;
6633 unsigned HOST_WIDE_INT ix;
6634 HOST_WIDE_INT elt;
6635 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6636
6637 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6638 / BITS_PER_UNIT);
6639 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6640 fprintf (stream, " %s entries",
6641 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6642 TFF_PLAIN_IDENTIFIER));
6643 fprintf (stream, "\n");
6644
6645 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
6646 ix, value)
6647 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6648 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
6649 }
6650
6651 static void
6652 dump_vtable (tree t, tree binfo, tree vtable)
6653 {
6654 int flags;
6655 FILE *stream = dump_begin (TDI_class, &flags);
6656
6657 if (!stream)
6658 return;
6659
6660 if (!(flags & TDF_SLIM))
6661 {
6662 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6663
6664 fprintf (stream, "%s for %s",
6665 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6666 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6667 if (ctor_vtbl_p)
6668 {
6669 if (!BINFO_VIRTUAL_P (binfo))
6670 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6671 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6672 }
6673 fprintf (stream, "\n");
6674 dump_array (stream, vtable);
6675 fprintf (stream, "\n");
6676 }
6677
6678 dump_end (TDI_class, stream);
6679 }
6680
6681 static void
6682 dump_vtt (tree t, tree vtt)
6683 {
6684 int flags;
6685 FILE *stream = dump_begin (TDI_class, &flags);
6686
6687 if (!stream)
6688 return;
6689
6690 if (!(flags & TDF_SLIM))
6691 {
6692 fprintf (stream, "VTT for %s\n",
6693 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6694 dump_array (stream, vtt);
6695 fprintf (stream, "\n");
6696 }
6697
6698 dump_end (TDI_class, stream);
6699 }
6700
6701 /* Dump a function or thunk and its thunkees. */
6702
6703 static void
6704 dump_thunk (FILE *stream, int indent, tree thunk)
6705 {
6706 static const char spaces[] = " ";
6707 tree name = DECL_NAME (thunk);
6708 tree thunks;
6709
6710 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6711 (void *)thunk,
6712 !DECL_THUNK_P (thunk) ? "function"
6713 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6714 name ? IDENTIFIER_POINTER (name) : "<unset>");
6715 if (DECL_THUNK_P (thunk))
6716 {
6717 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6718 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6719
6720 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6721 if (!virtual_adjust)
6722 /*NOP*/;
6723 else if (DECL_THIS_THUNK_P (thunk))
6724 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6725 tree_low_cst (virtual_adjust, 0));
6726 else
6727 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6728 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6729 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6730 if (THUNK_ALIAS (thunk))
6731 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6732 }
6733 fprintf (stream, "\n");
6734 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6735 dump_thunk (stream, indent + 2, thunks);
6736 }
6737
6738 /* Dump the thunks for FN. */
6739
6740 void
6741 debug_thunks (tree fn)
6742 {
6743 dump_thunk (stderr, 0, fn);
6744 }
6745
6746 /* Virtual function table initialization. */
6747
6748 /* Create all the necessary vtables for T and its base classes. */
6749
6750 static void
6751 finish_vtbls (tree t)
6752 {
6753 tree list;
6754 tree vbase;
6755
6756 /* We lay out the primary and secondary vtables in one contiguous
6757 vtable. The primary vtable is first, followed by the non-virtual
6758 secondary vtables in inheritance graph order. */
6759 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6760 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6761 TYPE_BINFO (t), t, list);
6762
6763 /* Then come the virtual bases, also in inheritance graph order. */
6764 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6765 {
6766 if (!BINFO_VIRTUAL_P (vbase))
6767 continue;
6768 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6769 }
6770
6771 if (BINFO_VTABLE (TYPE_BINFO (t)))
6772 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6773 }
6774
6775 /* Initialize the vtable for BINFO with the INITS. */
6776
6777 static void
6778 initialize_vtable (tree binfo, tree inits)
6779 {
6780 tree decl;
6781
6782 layout_vtable_decl (binfo, list_length (inits));
6783 decl = get_vtbl_decl_for_binfo (binfo);
6784 initialize_artificial_var (decl, inits);
6785 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6786 }
6787
6788 /* Build the VTT (virtual table table) for T.
6789 A class requires a VTT if it has virtual bases.
6790
6791 This holds
6792 1 - primary virtual pointer for complete object T
6793 2 - secondary VTTs for each direct non-virtual base of T which requires a
6794 VTT
6795 3 - secondary virtual pointers for each direct or indirect base of T which
6796 has virtual bases or is reachable via a virtual path from T.
6797 4 - secondary VTTs for each direct or indirect virtual base of T.
6798
6799 Secondary VTTs look like complete object VTTs without part 4. */
6800
6801 static void
6802 build_vtt (tree t)
6803 {
6804 tree inits;
6805 tree type;
6806 tree vtt;
6807 tree index;
6808
6809 /* Build up the initializers for the VTT. */
6810 inits = NULL_TREE;
6811 index = size_zero_node;
6812 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6813
6814 /* If we didn't need a VTT, we're done. */
6815 if (!inits)
6816 return;
6817
6818 /* Figure out the type of the VTT. */
6819 type = build_index_type (size_int (list_length (inits) - 1));
6820 type = build_cplus_array_type (const_ptr_type_node, type);
6821
6822 /* Now, build the VTT object itself. */
6823 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
6824 initialize_artificial_var (vtt, inits);
6825 /* Add the VTT to the vtables list. */
6826 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6827 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6828
6829 dump_vtt (t, vtt);
6830 }
6831
6832 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6833 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6834 and CHAIN the vtable pointer for this binfo after construction is
6835 complete. VALUE can also be another BINFO, in which case we recurse. */
6836
6837 static tree
6838 binfo_ctor_vtable (tree binfo)
6839 {
6840 tree vt;
6841
6842 while (1)
6843 {
6844 vt = BINFO_VTABLE (binfo);
6845 if (TREE_CODE (vt) == TREE_LIST)
6846 vt = TREE_VALUE (vt);
6847 if (TREE_CODE (vt) == TREE_BINFO)
6848 binfo = vt;
6849 else
6850 break;
6851 }
6852
6853 return vt;
6854 }
6855
6856 /* Data for secondary VTT initialization. */
6857 typedef struct secondary_vptr_vtt_init_data_s
6858 {
6859 /* Is this the primary VTT? */
6860 bool top_level_p;
6861
6862 /* Current index into the VTT. */
6863 tree index;
6864
6865 /* TREE_LIST of initializers built up. */
6866 tree inits;
6867
6868 /* The type being constructed by this secondary VTT. */
6869 tree type_being_constructed;
6870 } secondary_vptr_vtt_init_data;
6871
6872 /* Recursively build the VTT-initializer for BINFO (which is in the
6873 hierarchy dominated by T). INITS points to the end of the initializer
6874 list to date. INDEX is the VTT index where the next element will be
6875 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6876 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6877 for virtual bases of T. When it is not so, we build the constructor
6878 vtables for the BINFO-in-T variant. */
6879
6880 static tree *
6881 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
6882 {
6883 int i;
6884 tree b;
6885 tree init;
6886 tree secondary_vptrs;
6887 secondary_vptr_vtt_init_data data;
6888 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
6889
6890 /* We only need VTTs for subobjects with virtual bases. */
6891 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
6892 return inits;
6893
6894 /* We need to use a construction vtable if this is not the primary
6895 VTT. */
6896 if (!top_level_p)
6897 {
6898 build_ctor_vtbl_group (binfo, t);
6899
6900 /* Record the offset in the VTT where this sub-VTT can be found. */
6901 BINFO_SUBVTT_INDEX (binfo) = *index;
6902 }
6903
6904 /* Add the address of the primary vtable for the complete object. */
6905 init = binfo_ctor_vtable (binfo);
6906 *inits = build_tree_list (NULL_TREE, init);
6907 inits = &TREE_CHAIN (*inits);
6908 if (top_level_p)
6909 {
6910 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6911 BINFO_VPTR_INDEX (binfo) = *index;
6912 }
6913 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
6914
6915 /* Recursively add the secondary VTTs for non-virtual bases. */
6916 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
6917 if (!BINFO_VIRTUAL_P (b))
6918 inits = build_vtt_inits (b, t, inits, index);
6919
6920 /* Add secondary virtual pointers for all subobjects of BINFO with
6921 either virtual bases or reachable along a virtual path, except
6922 subobjects that are non-virtual primary bases. */
6923 data.top_level_p = top_level_p;
6924 data.index = *index;
6925 data.inits = NULL;
6926 data.type_being_constructed = BINFO_TYPE (binfo);
6927
6928 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
6929
6930 *index = data.index;
6931
6932 /* The secondary vptrs come back in reverse order. After we reverse
6933 them, and add the INITS, the last init will be the first element
6934 of the chain. */
6935 secondary_vptrs = data.inits;
6936 if (secondary_vptrs)
6937 {
6938 *inits = nreverse (secondary_vptrs);
6939 inits = &TREE_CHAIN (secondary_vptrs);
6940 gcc_assert (*inits == NULL_TREE);
6941 }
6942
6943 if (top_level_p)
6944 /* Add the secondary VTTs for virtual bases in inheritance graph
6945 order. */
6946 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
6947 {
6948 if (!BINFO_VIRTUAL_P (b))
6949 continue;
6950
6951 inits = build_vtt_inits (b, t, inits, index);
6952 }
6953 else
6954 /* Remove the ctor vtables we created. */
6955 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
6956
6957 return inits;
6958 }
6959
6960 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
6961 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
6962
6963 static tree
6964 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
6965 {
6966 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
6967
6968 /* We don't care about bases that don't have vtables. */
6969 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
6970 return dfs_skip_bases;
6971
6972 /* We're only interested in proper subobjects of the type being
6973 constructed. */
6974 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
6975 return NULL_TREE;
6976
6977 /* We're only interested in bases with virtual bases or reachable
6978 via a virtual path from the type being constructed. */
6979 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
6980 || binfo_via_virtual (binfo, data->type_being_constructed)))
6981 return dfs_skip_bases;
6982
6983 /* We're not interested in non-virtual primary bases. */
6984 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
6985 return NULL_TREE;
6986
6987 /* Record the index where this secondary vptr can be found. */
6988 if (data->top_level_p)
6989 {
6990 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6991 BINFO_VPTR_INDEX (binfo) = data->index;
6992
6993 if (BINFO_VIRTUAL_P (binfo))
6994 {
6995 /* It's a primary virtual base, and this is not a
6996 construction vtable. Find the base this is primary of in
6997 the inheritance graph, and use that base's vtable
6998 now. */
6999 while (BINFO_PRIMARY_P (binfo))
7000 binfo = BINFO_INHERITANCE_CHAIN (binfo);
7001 }
7002 }
7003
7004 /* Add the initializer for the secondary vptr itself. */
7005 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
7006
7007 /* Advance the vtt index. */
7008 data->index = size_binop (PLUS_EXPR, data->index,
7009 TYPE_SIZE_UNIT (ptr_type_node));
7010
7011 return NULL_TREE;
7012 }
7013
7014 /* Called from build_vtt_inits via dfs_walk. After building
7015 constructor vtables and generating the sub-vtt from them, we need
7016 to restore the BINFO_VTABLES that were scribbled on. DATA is the
7017 binfo of the base whose sub vtt was generated. */
7018
7019 static tree
7020 dfs_fixup_binfo_vtbls (tree binfo, void* data)
7021 {
7022 tree vtable = BINFO_VTABLE (binfo);
7023
7024 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7025 /* If this class has no vtable, none of its bases do. */
7026 return dfs_skip_bases;
7027
7028 if (!vtable)
7029 /* This might be a primary base, so have no vtable in this
7030 hierarchy. */
7031 return NULL_TREE;
7032
7033 /* If we scribbled the construction vtable vptr into BINFO, clear it
7034 out now. */
7035 if (TREE_CODE (vtable) == TREE_LIST
7036 && (TREE_PURPOSE (vtable) == (tree) data))
7037 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
7038
7039 return NULL_TREE;
7040 }
7041
7042 /* Build the construction vtable group for BINFO which is in the
7043 hierarchy dominated by T. */
7044
7045 static void
7046 build_ctor_vtbl_group (tree binfo, tree t)
7047 {
7048 tree list;
7049 tree type;
7050 tree vtbl;
7051 tree inits;
7052 tree id;
7053 tree vbase;
7054
7055 /* See if we've already created this construction vtable group. */
7056 id = mangle_ctor_vtbl_for_type (t, binfo);
7057 if (IDENTIFIER_GLOBAL_VALUE (id))
7058 return;
7059
7060 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
7061 /* Build a version of VTBL (with the wrong type) for use in
7062 constructing the addresses of secondary vtables in the
7063 construction vtable group. */
7064 vtbl = build_vtable (t, id, ptr_type_node);
7065 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
7066 list = build_tree_list (vtbl, NULL_TREE);
7067 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
7068 binfo, t, list);
7069
7070 /* Add the vtables for each of our virtual bases using the vbase in T
7071 binfo. */
7072 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7073 vbase;
7074 vbase = TREE_CHAIN (vbase))
7075 {
7076 tree b;
7077
7078 if (!BINFO_VIRTUAL_P (vbase))
7079 continue;
7080 b = copied_binfo (vbase, binfo);
7081
7082 accumulate_vtbl_inits (b, vbase, binfo, t, list);
7083 }
7084 inits = TREE_VALUE (list);
7085
7086 /* Figure out the type of the construction vtable. */
7087 type = build_index_type (size_int (list_length (inits) - 1));
7088 type = build_cplus_array_type (vtable_entry_type, type);
7089 layout_type (type);
7090 TREE_TYPE (vtbl) = type;
7091 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
7092 layout_decl (vtbl, 0);
7093
7094 /* Initialize the construction vtable. */
7095 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
7096 initialize_artificial_var (vtbl, inits);
7097 dump_vtable (t, binfo, vtbl);
7098 }
7099
7100 /* Add the vtbl initializers for BINFO (and its bases other than
7101 non-virtual primaries) to the list of INITS. BINFO is in the
7102 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
7103 the constructor the vtbl inits should be accumulated for. (If this
7104 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
7105 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
7106 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
7107 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
7108 but are not necessarily the same in terms of layout. */
7109
7110 static void
7111 accumulate_vtbl_inits (tree binfo,
7112 tree orig_binfo,
7113 tree rtti_binfo,
7114 tree t,
7115 tree inits)
7116 {
7117 int i;
7118 tree base_binfo;
7119 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7120
7121 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
7122
7123 /* If it doesn't have a vptr, we don't do anything. */
7124 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7125 return;
7126
7127 /* If we're building a construction vtable, we're not interested in
7128 subobjects that don't require construction vtables. */
7129 if (ctor_vtbl_p
7130 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7131 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
7132 return;
7133
7134 /* Build the initializers for the BINFO-in-T vtable. */
7135 TREE_VALUE (inits)
7136 = chainon (TREE_VALUE (inits),
7137 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
7138 rtti_binfo, t, inits));
7139
7140 /* Walk the BINFO and its bases. We walk in preorder so that as we
7141 initialize each vtable we can figure out at what offset the
7142 secondary vtable lies from the primary vtable. We can't use
7143 dfs_walk here because we need to iterate through bases of BINFO
7144 and RTTI_BINFO simultaneously. */
7145 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7146 {
7147 /* Skip virtual bases. */
7148 if (BINFO_VIRTUAL_P (base_binfo))
7149 continue;
7150 accumulate_vtbl_inits (base_binfo,
7151 BINFO_BASE_BINFO (orig_binfo, i),
7152 rtti_binfo, t,
7153 inits);
7154 }
7155 }
7156
7157 /* Called from accumulate_vtbl_inits. Returns the initializers for
7158 the BINFO vtable. */
7159
7160 static tree
7161 dfs_accumulate_vtbl_inits (tree binfo,
7162 tree orig_binfo,
7163 tree rtti_binfo,
7164 tree t,
7165 tree l)
7166 {
7167 tree inits = NULL_TREE;
7168 tree vtbl = NULL_TREE;
7169 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7170
7171 if (ctor_vtbl_p
7172 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7173 {
7174 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7175 primary virtual base. If it is not the same primary in
7176 the hierarchy of T, we'll need to generate a ctor vtable
7177 for it, to place at its location in T. If it is the same
7178 primary, we still need a VTT entry for the vtable, but it
7179 should point to the ctor vtable for the base it is a
7180 primary for within the sub-hierarchy of RTTI_BINFO.
7181
7182 There are three possible cases:
7183
7184 1) We are in the same place.
7185 2) We are a primary base within a lost primary virtual base of
7186 RTTI_BINFO.
7187 3) We are primary to something not a base of RTTI_BINFO. */
7188
7189 tree b;
7190 tree last = NULL_TREE;
7191
7192 /* First, look through the bases we are primary to for RTTI_BINFO
7193 or a virtual base. */
7194 b = binfo;
7195 while (BINFO_PRIMARY_P (b))
7196 {
7197 b = BINFO_INHERITANCE_CHAIN (b);
7198 last = b;
7199 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7200 goto found;
7201 }
7202 /* If we run out of primary links, keep looking down our
7203 inheritance chain; we might be an indirect primary. */
7204 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7205 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7206 break;
7207 found:
7208
7209 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7210 base B and it is a base of RTTI_BINFO, this is case 2. In
7211 either case, we share our vtable with LAST, i.e. the
7212 derived-most base within B of which we are a primary. */
7213 if (b == rtti_binfo
7214 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7215 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7216 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7217 binfo_ctor_vtable after everything's been set up. */
7218 vtbl = last;
7219
7220 /* Otherwise, this is case 3 and we get our own. */
7221 }
7222 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7223 return inits;
7224
7225 if (!vtbl)
7226 {
7227 tree index;
7228 int non_fn_entries;
7229
7230 /* Compute the initializer for this vtable. */
7231 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7232 &non_fn_entries);
7233
7234 /* Figure out the position to which the VPTR should point. */
7235 vtbl = TREE_PURPOSE (l);
7236 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7237 index = size_binop (PLUS_EXPR,
7238 size_int (non_fn_entries),
7239 size_int (list_length (TREE_VALUE (l))));
7240 index = size_binop (MULT_EXPR,
7241 TYPE_SIZE_UNIT (vtable_entry_type),
7242 index);
7243 vtbl = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7244 }
7245
7246 if (ctor_vtbl_p)
7247 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7248 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7249 straighten this out. */
7250 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7251 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7252 inits = NULL_TREE;
7253 else
7254 /* For an ordinary vtable, set BINFO_VTABLE. */
7255 BINFO_VTABLE (binfo) = vtbl;
7256
7257 return inits;
7258 }
7259
7260 static GTY(()) tree abort_fndecl_addr;
7261
7262 /* Construct the initializer for BINFO's virtual function table. BINFO
7263 is part of the hierarchy dominated by T. If we're building a
7264 construction vtable, the ORIG_BINFO is the binfo we should use to
7265 find the actual function pointers to put in the vtable - but they
7266 can be overridden on the path to most-derived in the graph that
7267 ORIG_BINFO belongs. Otherwise,
7268 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7269 BINFO that should be indicated by the RTTI information in the
7270 vtable; it will be a base class of T, rather than T itself, if we
7271 are building a construction vtable.
7272
7273 The value returned is a TREE_LIST suitable for wrapping in a
7274 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7275 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7276 number of non-function entries in the vtable.
7277
7278 It might seem that this function should never be called with a
7279 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7280 base is always subsumed by a derived class vtable. However, when
7281 we are building construction vtables, we do build vtables for
7282 primary bases; we need these while the primary base is being
7283 constructed. */
7284
7285 static tree
7286 build_vtbl_initializer (tree binfo,
7287 tree orig_binfo,
7288 tree t,
7289 tree rtti_binfo,
7290 int* non_fn_entries_p)
7291 {
7292 tree v, b;
7293 tree vfun_inits;
7294 vtbl_init_data vid;
7295 unsigned ix;
7296 tree vbinfo;
7297 VEC(tree,gc) *vbases;
7298
7299 /* Initialize VID. */
7300 memset (&vid, 0, sizeof (vid));
7301 vid.binfo = binfo;
7302 vid.derived = t;
7303 vid.rtti_binfo = rtti_binfo;
7304 vid.last_init = &vid.inits;
7305 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7306 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7307 vid.generate_vcall_entries = true;
7308 /* The first vbase or vcall offset is at index -3 in the vtable. */
7309 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7310
7311 /* Add entries to the vtable for RTTI. */
7312 build_rtti_vtbl_entries (binfo, &vid);
7313
7314 /* Create an array for keeping track of the functions we've
7315 processed. When we see multiple functions with the same
7316 signature, we share the vcall offsets. */
7317 vid.fns = VEC_alloc (tree, gc, 32);
7318 /* Add the vcall and vbase offset entries. */
7319 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7320
7321 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7322 build_vbase_offset_vtbl_entries. */
7323 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7324 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7325 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7326
7327 /* If the target requires padding between data entries, add that now. */
7328 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7329 {
7330 tree cur, *prev;
7331
7332 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7333 {
7334 tree add = cur;
7335 int i;
7336
7337 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7338 add = tree_cons (NULL_TREE,
7339 build1 (NOP_EXPR, vtable_entry_type,
7340 null_pointer_node),
7341 add);
7342 *prev = add;
7343 }
7344 }
7345
7346 if (non_fn_entries_p)
7347 *non_fn_entries_p = list_length (vid.inits);
7348
7349 /* Go through all the ordinary virtual functions, building up
7350 initializers. */
7351 vfun_inits = NULL_TREE;
7352 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7353 {
7354 tree delta;
7355 tree vcall_index;
7356 tree fn, fn_original;
7357 tree init = NULL_TREE;
7358
7359 fn = BV_FN (v);
7360 fn_original = fn;
7361 if (DECL_THUNK_P (fn))
7362 {
7363 if (!DECL_NAME (fn))
7364 finish_thunk (fn);
7365 if (THUNK_ALIAS (fn))
7366 {
7367 fn = THUNK_ALIAS (fn);
7368 BV_FN (v) = fn;
7369 }
7370 fn_original = THUNK_TARGET (fn);
7371 }
7372
7373 /* If the only definition of this function signature along our
7374 primary base chain is from a lost primary, this vtable slot will
7375 never be used, so just zero it out. This is important to avoid
7376 requiring extra thunks which cannot be generated with the function.
7377
7378 We first check this in update_vtable_entry_for_fn, so we handle
7379 restored primary bases properly; we also need to do it here so we
7380 zero out unused slots in ctor vtables, rather than filling themff
7381 with erroneous values (though harmless, apart from relocation
7382 costs). */
7383 for (b = binfo; ; b = get_primary_binfo (b))
7384 {
7385 /* We found a defn before a lost primary; go ahead as normal. */
7386 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7387 break;
7388
7389 /* The nearest definition is from a lost primary; clear the
7390 slot. */
7391 if (BINFO_LOST_PRIMARY_P (b))
7392 {
7393 init = size_zero_node;
7394 break;
7395 }
7396 }
7397
7398 if (! init)
7399 {
7400 /* Pull the offset for `this', and the function to call, out of
7401 the list. */
7402 delta = BV_DELTA (v);
7403 vcall_index = BV_VCALL_INDEX (v);
7404
7405 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7406 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7407
7408 /* You can't call an abstract virtual function; it's abstract.
7409 So, we replace these functions with __pure_virtual. */
7410 if (DECL_PURE_VIRTUAL_P (fn_original))
7411 {
7412 fn = abort_fndecl;
7413 if (abort_fndecl_addr == NULL)
7414 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7415 init = abort_fndecl_addr;
7416 }
7417 else
7418 {
7419 if (!integer_zerop (delta) || vcall_index)
7420 {
7421 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7422 if (!DECL_NAME (fn))
7423 finish_thunk (fn);
7424 }
7425 /* Take the address of the function, considering it to be of an
7426 appropriate generic type. */
7427 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7428 }
7429 }
7430
7431 /* And add it to the chain of initializers. */
7432 if (TARGET_VTABLE_USES_DESCRIPTORS)
7433 {
7434 int i;
7435 if (init == size_zero_node)
7436 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7437 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7438 else
7439 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7440 {
7441 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7442 TREE_OPERAND (init, 0),
7443 build_int_cst (NULL_TREE, i));
7444 TREE_CONSTANT (fdesc) = 1;
7445 TREE_INVARIANT (fdesc) = 1;
7446
7447 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7448 }
7449 }
7450 else
7451 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7452 }
7453
7454 /* The initializers for virtual functions were built up in reverse
7455 order; straighten them out now. */
7456 vfun_inits = nreverse (vfun_inits);
7457
7458 /* The negative offset initializers are also in reverse order. */
7459 vid.inits = nreverse (vid.inits);
7460
7461 /* Chain the two together. */
7462 return chainon (vid.inits, vfun_inits);
7463 }
7464
7465 /* Adds to vid->inits the initializers for the vbase and vcall
7466 offsets in BINFO, which is in the hierarchy dominated by T. */
7467
7468 static void
7469 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7470 {
7471 tree b;
7472
7473 /* If this is a derived class, we must first create entries
7474 corresponding to the primary base class. */
7475 b = get_primary_binfo (binfo);
7476 if (b)
7477 build_vcall_and_vbase_vtbl_entries (b, vid);
7478
7479 /* Add the vbase entries for this base. */
7480 build_vbase_offset_vtbl_entries (binfo, vid);
7481 /* Add the vcall entries for this base. */
7482 build_vcall_offset_vtbl_entries (binfo, vid);
7483 }
7484
7485 /* Returns the initializers for the vbase offset entries in the vtable
7486 for BINFO (which is part of the class hierarchy dominated by T), in
7487 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7488 where the next vbase offset will go. */
7489
7490 static void
7491 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7492 {
7493 tree vbase;
7494 tree t;
7495 tree non_primary_binfo;
7496
7497 /* If there are no virtual baseclasses, then there is nothing to
7498 do. */
7499 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7500 return;
7501
7502 t = vid->derived;
7503
7504 /* We might be a primary base class. Go up the inheritance hierarchy
7505 until we find the most derived class of which we are a primary base:
7506 it is the offset of that which we need to use. */
7507 non_primary_binfo = binfo;
7508 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7509 {
7510 tree b;
7511
7512 /* If we have reached a virtual base, then it must be a primary
7513 base (possibly multi-level) of vid->binfo, or we wouldn't
7514 have called build_vcall_and_vbase_vtbl_entries for it. But it
7515 might be a lost primary, so just skip down to vid->binfo. */
7516 if (BINFO_VIRTUAL_P (non_primary_binfo))
7517 {
7518 non_primary_binfo = vid->binfo;
7519 break;
7520 }
7521
7522 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7523 if (get_primary_binfo (b) != non_primary_binfo)
7524 break;
7525 non_primary_binfo = b;
7526 }
7527
7528 /* Go through the virtual bases, adding the offsets. */
7529 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7530 vbase;
7531 vbase = TREE_CHAIN (vbase))
7532 {
7533 tree b;
7534 tree delta;
7535
7536 if (!BINFO_VIRTUAL_P (vbase))
7537 continue;
7538
7539 /* Find the instance of this virtual base in the complete
7540 object. */
7541 b = copied_binfo (vbase, binfo);
7542
7543 /* If we've already got an offset for this virtual base, we
7544 don't need another one. */
7545 if (BINFO_VTABLE_PATH_MARKED (b))
7546 continue;
7547 BINFO_VTABLE_PATH_MARKED (b) = 1;
7548
7549 /* Figure out where we can find this vbase offset. */
7550 delta = size_binop (MULT_EXPR,
7551 vid->index,
7552 convert (ssizetype,
7553 TYPE_SIZE_UNIT (vtable_entry_type)));
7554 if (vid->primary_vtbl_p)
7555 BINFO_VPTR_FIELD (b) = delta;
7556
7557 if (binfo != TYPE_BINFO (t))
7558 /* The vbase offset had better be the same. */
7559 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7560
7561 /* The next vbase will come at a more negative offset. */
7562 vid->index = size_binop (MINUS_EXPR, vid->index,
7563 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7564
7565 /* The initializer is the delta from BINFO to this virtual base.
7566 The vbase offsets go in reverse inheritance-graph order, and
7567 we are walking in inheritance graph order so these end up in
7568 the right order. */
7569 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7570
7571 *vid->last_init
7572 = build_tree_list (NULL_TREE,
7573 fold_build1 (NOP_EXPR,
7574 vtable_entry_type,
7575 delta));
7576 vid->last_init = &TREE_CHAIN (*vid->last_init);
7577 }
7578 }
7579
7580 /* Adds the initializers for the vcall offset entries in the vtable
7581 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7582 to VID->INITS. */
7583
7584 static void
7585 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7586 {
7587 /* We only need these entries if this base is a virtual base. We
7588 compute the indices -- but do not add to the vtable -- when
7589 building the main vtable for a class. */
7590 if (binfo == TYPE_BINFO (vid->derived)
7591 || (BINFO_VIRTUAL_P (binfo)
7592 /* If BINFO is RTTI_BINFO, then (since BINFO does not
7593 correspond to VID->DERIVED), we are building a primary
7594 construction virtual table. Since this is a primary
7595 virtual table, we do not need the vcall offsets for
7596 BINFO. */
7597 && binfo != vid->rtti_binfo))
7598 {
7599 /* We need a vcall offset for each of the virtual functions in this
7600 vtable. For example:
7601
7602 class A { virtual void f (); };
7603 class B1 : virtual public A { virtual void f (); };
7604 class B2 : virtual public A { virtual void f (); };
7605 class C: public B1, public B2 { virtual void f (); };
7606
7607 A C object has a primary base of B1, which has a primary base of A. A
7608 C also has a secondary base of B2, which no longer has a primary base
7609 of A. So the B2-in-C construction vtable needs a secondary vtable for
7610 A, which will adjust the A* to a B2* to call f. We have no way of
7611 knowing what (or even whether) this offset will be when we define B2,
7612 so we store this "vcall offset" in the A sub-vtable and look it up in
7613 a "virtual thunk" for B2::f.
7614
7615 We need entries for all the functions in our primary vtable and
7616 in our non-virtual bases' secondary vtables. */
7617 vid->vbase = binfo;
7618 /* If we are just computing the vcall indices -- but do not need
7619 the actual entries -- not that. */
7620 if (!BINFO_VIRTUAL_P (binfo))
7621 vid->generate_vcall_entries = false;
7622 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7623 add_vcall_offset_vtbl_entries_r (binfo, vid);
7624 }
7625 }
7626
7627 /* Build vcall offsets, starting with those for BINFO. */
7628
7629 static void
7630 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7631 {
7632 int i;
7633 tree primary_binfo;
7634 tree base_binfo;
7635
7636 /* Don't walk into virtual bases -- except, of course, for the
7637 virtual base for which we are building vcall offsets. Any
7638 primary virtual base will have already had its offsets generated
7639 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7640 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7641 return;
7642
7643 /* If BINFO has a primary base, process it first. */
7644 primary_binfo = get_primary_binfo (binfo);
7645 if (primary_binfo)
7646 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7647
7648 /* Add BINFO itself to the list. */
7649 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7650
7651 /* Scan the non-primary bases of BINFO. */
7652 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7653 if (base_binfo != primary_binfo)
7654 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7655 }
7656
7657 /* Called from build_vcall_offset_vtbl_entries_r. */
7658
7659 static void
7660 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7661 {
7662 /* Make entries for the rest of the virtuals. */
7663 if (abi_version_at_least (2))
7664 {
7665 tree orig_fn;
7666
7667 /* The ABI requires that the methods be processed in declaration
7668 order. G++ 3.2 used the order in the vtable. */
7669 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7670 orig_fn;
7671 orig_fn = TREE_CHAIN (orig_fn))
7672 if (DECL_VINDEX (orig_fn))
7673 add_vcall_offset (orig_fn, binfo, vid);
7674 }
7675 else
7676 {
7677 tree derived_virtuals;
7678 tree base_virtuals;
7679 tree orig_virtuals;
7680 /* If BINFO is a primary base, the most derived class which has
7681 BINFO as a primary base; otherwise, just BINFO. */
7682 tree non_primary_binfo;
7683
7684 /* We might be a primary base class. Go up the inheritance hierarchy
7685 until we find the most derived class of which we are a primary base:
7686 it is the BINFO_VIRTUALS there that we need to consider. */
7687 non_primary_binfo = binfo;
7688 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7689 {
7690 tree b;
7691
7692 /* If we have reached a virtual base, then it must be vid->vbase,
7693 because we ignore other virtual bases in
7694 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7695 base (possibly multi-level) of vid->binfo, or we wouldn't
7696 have called build_vcall_and_vbase_vtbl_entries for it. But it
7697 might be a lost primary, so just skip down to vid->binfo. */
7698 if (BINFO_VIRTUAL_P (non_primary_binfo))
7699 {
7700 gcc_assert (non_primary_binfo == vid->vbase);
7701 non_primary_binfo = vid->binfo;
7702 break;
7703 }
7704
7705 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7706 if (get_primary_binfo (b) != non_primary_binfo)
7707 break;
7708 non_primary_binfo = b;
7709 }
7710
7711 if (vid->ctor_vtbl_p)
7712 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7713 where rtti_binfo is the most derived type. */
7714 non_primary_binfo
7715 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7716
7717 for (base_virtuals = BINFO_VIRTUALS (binfo),
7718 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7719 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7720 base_virtuals;
7721 base_virtuals = TREE_CHAIN (base_virtuals),
7722 derived_virtuals = TREE_CHAIN (derived_virtuals),
7723 orig_virtuals = TREE_CHAIN (orig_virtuals))
7724 {
7725 tree orig_fn;
7726
7727 /* Find the declaration that originally caused this function to
7728 be present in BINFO_TYPE (binfo). */
7729 orig_fn = BV_FN (orig_virtuals);
7730
7731 /* When processing BINFO, we only want to generate vcall slots for
7732 function slots introduced in BINFO. So don't try to generate
7733 one if the function isn't even defined in BINFO. */
7734 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7735 continue;
7736
7737 add_vcall_offset (orig_fn, binfo, vid);
7738 }
7739 }
7740 }
7741
7742 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7743
7744 static void
7745 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7746 {
7747 size_t i;
7748 tree vcall_offset;
7749 tree derived_entry;
7750
7751 /* If there is already an entry for a function with the same
7752 signature as FN, then we do not need a second vcall offset.
7753 Check the list of functions already present in the derived
7754 class vtable. */
7755 for (i = 0; VEC_iterate (tree, vid->fns, i, derived_entry); ++i)
7756 {
7757 if (same_signature_p (derived_entry, orig_fn)
7758 /* We only use one vcall offset for virtual destructors,
7759 even though there are two virtual table entries. */
7760 || (DECL_DESTRUCTOR_P (derived_entry)
7761 && DECL_DESTRUCTOR_P (orig_fn)))
7762 return;
7763 }
7764
7765 /* If we are building these vcall offsets as part of building
7766 the vtable for the most derived class, remember the vcall
7767 offset. */
7768 if (vid->binfo == TYPE_BINFO (vid->derived))
7769 {
7770 tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
7771 CLASSTYPE_VCALL_INDICES (vid->derived),
7772 NULL);
7773 elt->purpose = orig_fn;
7774 elt->value = vid->index;
7775 }
7776
7777 /* The next vcall offset will be found at a more negative
7778 offset. */
7779 vid->index = size_binop (MINUS_EXPR, vid->index,
7780 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7781
7782 /* Keep track of this function. */
7783 VEC_safe_push (tree, gc, vid->fns, orig_fn);
7784
7785 if (vid->generate_vcall_entries)
7786 {
7787 tree base;
7788 tree fn;
7789
7790 /* Find the overriding function. */
7791 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7792 if (fn == error_mark_node)
7793 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7794 integer_zero_node);
7795 else
7796 {
7797 base = TREE_VALUE (fn);
7798
7799 /* The vbase we're working on is a primary base of
7800 vid->binfo. But it might be a lost primary, so its
7801 BINFO_OFFSET might be wrong, so we just use the
7802 BINFO_OFFSET from vid->binfo. */
7803 vcall_offset = size_diffop (BINFO_OFFSET (base),
7804 BINFO_OFFSET (vid->binfo));
7805 vcall_offset = fold_build1 (NOP_EXPR, vtable_entry_type,
7806 vcall_offset);
7807 }
7808 /* Add the initializer to the vtable. */
7809 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7810 vid->last_init = &TREE_CHAIN (*vid->last_init);
7811 }
7812 }
7813
7814 /* Return vtbl initializers for the RTTI entries corresponding to the
7815 BINFO's vtable. The RTTI entries should indicate the object given
7816 by VID->rtti_binfo. */
7817
7818 static void
7819 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7820 {
7821 tree b;
7822 tree t;
7823 tree basetype;
7824 tree offset;
7825 tree decl;
7826 tree init;
7827
7828 basetype = BINFO_TYPE (binfo);
7829 t = BINFO_TYPE (vid->rtti_binfo);
7830
7831 /* To find the complete object, we will first convert to our most
7832 primary base, and then add the offset in the vtbl to that value. */
7833 b = binfo;
7834 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
7835 && !BINFO_LOST_PRIMARY_P (b))
7836 {
7837 tree primary_base;
7838
7839 primary_base = get_primary_binfo (b);
7840 gcc_assert (BINFO_PRIMARY_P (primary_base)
7841 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
7842 b = primary_base;
7843 }
7844 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
7845
7846 /* The second entry is the address of the typeinfo object. */
7847 if (flag_rtti)
7848 decl = build_address (get_tinfo_decl (t));
7849 else
7850 decl = integer_zero_node;
7851
7852 /* Convert the declaration to a type that can be stored in the
7853 vtable. */
7854 init = build_nop (vfunc_ptr_type_node, decl);
7855 *vid->last_init = build_tree_list (NULL_TREE, init);
7856 vid->last_init = &TREE_CHAIN (*vid->last_init);
7857
7858 /* Add the offset-to-top entry. It comes earlier in the vtable than
7859 the typeinfo entry. Convert the offset to look like a
7860 function pointer, so that we can put it in the vtable. */
7861 init = build_nop (vfunc_ptr_type_node, offset);
7862 *vid->last_init = build_tree_list (NULL_TREE, init);
7863 vid->last_init = &TREE_CHAIN (*vid->last_init);
7864 }
7865
7866 /* Fold a OBJ_TYPE_REF expression to the address of a function.
7867 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
7868
7869 tree
7870 cp_fold_obj_type_ref (tree ref, tree known_type)
7871 {
7872 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
7873 HOST_WIDE_INT i = 0;
7874 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
7875 tree fndecl;
7876
7877 while (i != index)
7878 {
7879 i += (TARGET_VTABLE_USES_DESCRIPTORS
7880 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
7881 v = TREE_CHAIN (v);
7882 }
7883
7884 fndecl = BV_FN (v);
7885
7886 #ifdef ENABLE_CHECKING
7887 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
7888 DECL_VINDEX (fndecl)));
7889 #endif
7890
7891 cgraph_node (fndecl)->local.vtable_method = true;
7892
7893 return build_address (fndecl);
7894 }
7895
7896 #include "gt-cp-class.h"