Remove a layer of indirection from hash_table
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "stringpool.h"
30 #include "stor-layout.h"
31 #include "attribs.h"
32 #include "pointer-set.h"
33 #include "hash-table.h"
34 #include "cp-tree.h"
35 #include "flags.h"
36 #include "toplev.h"
37 #include "target.h"
38 #include "convert.h"
39 #include "cgraph.h"
40 #include "dumpfile.h"
41 #include "splay-tree.h"
42 #include "gimplify.h"
43 #include "wide-int.h"
44
45 /* The number of nested classes being processed. If we are not in the
46 scope of any class, this is zero. */
47
48 int current_class_depth;
49
50 /* In order to deal with nested classes, we keep a stack of classes.
51 The topmost entry is the innermost class, and is the entry at index
52 CURRENT_CLASS_DEPTH */
53
54 typedef struct class_stack_node {
55 /* The name of the class. */
56 tree name;
57
58 /* The _TYPE node for the class. */
59 tree type;
60
61 /* The access specifier pending for new declarations in the scope of
62 this class. */
63 tree access;
64
65 /* If were defining TYPE, the names used in this class. */
66 splay_tree names_used;
67
68 /* Nonzero if this class is no longer open, because of a call to
69 push_to_top_level. */
70 size_t hidden;
71 }* class_stack_node_t;
72
73 typedef struct vtbl_init_data_s
74 {
75 /* The base for which we're building initializers. */
76 tree binfo;
77 /* The type of the most-derived type. */
78 tree derived;
79 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
80 unless ctor_vtbl_p is true. */
81 tree rtti_binfo;
82 /* The negative-index vtable initializers built up so far. These
83 are in order from least negative index to most negative index. */
84 vec<constructor_elt, va_gc> *inits;
85 /* The binfo for the virtual base for which we're building
86 vcall offset initializers. */
87 tree vbase;
88 /* The functions in vbase for which we have already provided vcall
89 offsets. */
90 vec<tree, va_gc> *fns;
91 /* The vtable index of the next vcall or vbase offset. */
92 tree index;
93 /* Nonzero if we are building the initializer for the primary
94 vtable. */
95 int primary_vtbl_p;
96 /* Nonzero if we are building the initializer for a construction
97 vtable. */
98 int ctor_vtbl_p;
99 /* True when adding vcall offset entries to the vtable. False when
100 merely computing the indices. */
101 bool generate_vcall_entries;
102 } vtbl_init_data;
103
104 /* The type of a function passed to walk_subobject_offsets. */
105 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
106
107 /* The stack itself. This is a dynamically resized array. The
108 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
109 static int current_class_stack_size;
110 static class_stack_node_t current_class_stack;
111
112 /* The size of the largest empty class seen in this translation unit. */
113 static GTY (()) tree sizeof_biggest_empty_class;
114
115 /* An array of all local classes present in this translation unit, in
116 declaration order. */
117 vec<tree, va_gc> *local_classes;
118
119 static tree get_vfield_name (tree);
120 static void finish_struct_anon (tree);
121 static tree get_vtable_name (tree);
122 static tree get_basefndecls (tree, tree);
123 static int build_primary_vtable (tree, tree);
124 static int build_secondary_vtable (tree);
125 static void finish_vtbls (tree);
126 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
127 static void finish_struct_bits (tree);
128 static int alter_access (tree, tree, tree);
129 static void handle_using_decl (tree, tree);
130 static tree dfs_modify_vtables (tree, void *);
131 static tree modify_all_vtables (tree, tree);
132 static void determine_primary_bases (tree);
133 static void finish_struct_methods (tree);
134 static void maybe_warn_about_overly_private_class (tree);
135 static int method_name_cmp (const void *, const void *);
136 static int resort_method_name_cmp (const void *, const void *);
137 static void add_implicitly_declared_members (tree, tree*, int, int);
138 static tree fixed_type_or_null (tree, int *, int *);
139 static tree build_simple_base_path (tree expr, tree binfo);
140 static tree build_vtbl_ref_1 (tree, tree);
141 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
142 vec<constructor_elt, va_gc> **);
143 static int count_fields (tree);
144 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
145 static void insert_into_classtype_sorted_fields (tree, tree, int);
146 static bool check_bitfield_decl (tree);
147 static void check_field_decl (tree, tree, int *, int *, int *);
148 static void check_field_decls (tree, tree *, int *, int *);
149 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
150 static void build_base_fields (record_layout_info, splay_tree, tree *);
151 static void check_methods (tree);
152 static void remove_zero_width_bit_fields (tree);
153 static bool accessible_nvdtor_p (tree);
154 static void check_bases (tree, int *, int *);
155 static void check_bases_and_members (tree);
156 static tree create_vtable_ptr (tree, tree *);
157 static void include_empty_classes (record_layout_info);
158 static void layout_class_type (tree, tree *);
159 static void propagate_binfo_offsets (tree, tree);
160 static void layout_virtual_bases (record_layout_info, splay_tree);
161 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
162 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
163 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
164 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
165 static void add_vcall_offset (tree, tree, vtbl_init_data *);
166 static void layout_vtable_decl (tree, int);
167 static tree dfs_find_final_overrider_pre (tree, void *);
168 static tree dfs_find_final_overrider_post (tree, void *);
169 static tree find_final_overrider (tree, tree, tree);
170 static int make_new_vtable (tree, tree);
171 static tree get_primary_binfo (tree);
172 static int maybe_indent_hierarchy (FILE *, int, int);
173 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
174 static void dump_class_hierarchy (tree);
175 static void dump_class_hierarchy_1 (FILE *, int, tree);
176 static void dump_array (FILE *, tree);
177 static void dump_vtable (tree, tree, tree);
178 static void dump_vtt (tree, tree);
179 static void dump_thunk (FILE *, int, tree);
180 static tree build_vtable (tree, tree, tree);
181 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
182 static void layout_nonempty_base_or_field (record_layout_info,
183 tree, tree, splay_tree);
184 static tree end_of_class (tree, int);
185 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
186 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
187 vec<constructor_elt, va_gc> **);
188 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
189 vec<constructor_elt, va_gc> **);
190 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
191 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
192 static void clone_constructors_and_destructors (tree);
193 static tree build_clone (tree, tree);
194 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
195 static void build_ctor_vtbl_group (tree, tree);
196 static void build_vtt (tree);
197 static tree binfo_ctor_vtable (tree);
198 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
199 tree *);
200 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
201 static tree dfs_fixup_binfo_vtbls (tree, void *);
202 static int record_subobject_offset (tree, tree, splay_tree);
203 static int check_subobject_offset (tree, tree, splay_tree);
204 static int walk_subobject_offsets (tree, subobject_offset_fn,
205 tree, splay_tree, tree, int);
206 static void record_subobject_offsets (tree, tree, splay_tree, bool);
207 static int layout_conflict_p (tree, tree, splay_tree, int);
208 static int splay_tree_compare_integer_csts (splay_tree_key k1,
209 splay_tree_key k2);
210 static void warn_about_ambiguous_bases (tree);
211 static bool type_requires_array_cookie (tree);
212 static bool contains_empty_class_p (tree);
213 static bool base_derived_from (tree, tree);
214 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
215 static tree end_of_base (tree);
216 static tree get_vcall_index (tree, tree);
217
218 /* Variables shared between class.c and call.c. */
219
220 int n_vtables = 0;
221 int n_vtable_entries = 0;
222 int n_vtable_searches = 0;
223 int n_vtable_elems = 0;
224 int n_convert_harshness = 0;
225 int n_compute_conversion_costs = 0;
226 int n_inner_fields_searched = 0;
227
228 /* Convert to or from a base subobject. EXPR is an expression of type
229 `A' or `A*', an expression of type `B' or `B*' is returned. To
230 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
231 the B base instance within A. To convert base A to derived B, CODE
232 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
233 In this latter case, A must not be a morally virtual base of B.
234 NONNULL is true if EXPR is known to be non-NULL (this is only
235 needed when EXPR is of pointer type). CV qualifiers are preserved
236 from EXPR. */
237
238 tree
239 build_base_path (enum tree_code code,
240 tree expr,
241 tree binfo,
242 int nonnull,
243 tsubst_flags_t complain)
244 {
245 tree v_binfo = NULL_TREE;
246 tree d_binfo = NULL_TREE;
247 tree probe;
248 tree offset;
249 tree target_type;
250 tree null_test = NULL;
251 tree ptr_target_type;
252 int fixed_type_p;
253 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
254 bool has_empty = false;
255 bool virtual_access;
256
257 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
258 return error_mark_node;
259
260 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
261 {
262 d_binfo = probe;
263 if (is_empty_class (BINFO_TYPE (probe)))
264 has_empty = true;
265 if (!v_binfo && BINFO_VIRTUAL_P (probe))
266 v_binfo = probe;
267 }
268
269 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
270 if (want_pointer)
271 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
272
273 if (code == PLUS_EXPR
274 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
275 {
276 /* This can happen when adjust_result_of_qualified_name_lookup can't
277 find a unique base binfo in a call to a member function. We
278 couldn't give the diagnostic then since we might have been calling
279 a static member function, so we do it now. */
280 if (complain & tf_error)
281 {
282 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
283 ba_unique, NULL, complain);
284 gcc_assert (base == error_mark_node);
285 }
286 return error_mark_node;
287 }
288
289 gcc_assert ((code == MINUS_EXPR
290 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
291 || code == PLUS_EXPR);
292
293 if (binfo == d_binfo)
294 /* Nothing to do. */
295 return expr;
296
297 if (code == MINUS_EXPR && v_binfo)
298 {
299 if (complain & tf_error)
300 {
301 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo)))
302 {
303 if (want_pointer)
304 error ("cannot convert from pointer to base class %qT to "
305 "pointer to derived class %qT because the base is "
306 "virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
307 else
308 error ("cannot convert from base class %qT to derived "
309 "class %qT because the base is virtual",
310 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
311 }
312 else
313 {
314 if (want_pointer)
315 error ("cannot convert from pointer to base class %qT to "
316 "pointer to derived class %qT via virtual base %qT",
317 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
318 BINFO_TYPE (v_binfo));
319 else
320 error ("cannot convert from base class %qT to derived "
321 "class %qT via virtual base %qT", BINFO_TYPE (binfo),
322 BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
323 }
324 }
325 return error_mark_node;
326 }
327
328 if (!want_pointer)
329 /* This must happen before the call to save_expr. */
330 expr = cp_build_addr_expr (expr, complain);
331 else
332 expr = mark_rvalue_use (expr);
333
334 offset = BINFO_OFFSET (binfo);
335 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
336 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
337 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
338 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
339 expression returned matches the input. */
340 target_type = cp_build_qualified_type
341 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
342 ptr_target_type = build_pointer_type (target_type);
343
344 /* Do we need to look in the vtable for the real offset? */
345 virtual_access = (v_binfo && fixed_type_p <= 0);
346
347 /* Don't bother with the calculations inside sizeof; they'll ICE if the
348 source type is incomplete and the pointer value doesn't matter. In a
349 template (even in fold_non_dependent_expr), we don't have vtables set
350 up properly yet, and the value doesn't matter there either; we're just
351 interested in the result of overload resolution. */
352 if (cp_unevaluated_operand != 0
353 || in_template_function ())
354 {
355 expr = build_nop (ptr_target_type, expr);
356 if (!want_pointer)
357 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
358 return expr;
359 }
360
361 /* If we're in an NSDMI, we don't have the full constructor context yet
362 that we need for converting to a virtual base, so just build a stub
363 CONVERT_EXPR and expand it later in bot_replace. */
364 if (virtual_access && fixed_type_p < 0
365 && current_scope () != current_function_decl)
366 {
367 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
368 CONVERT_EXPR_VBASE_PATH (expr) = true;
369 if (!want_pointer)
370 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
371 return expr;
372 }
373
374 /* Do we need to check for a null pointer? */
375 if (want_pointer && !nonnull)
376 {
377 /* If we know the conversion will not actually change the value
378 of EXPR, then we can avoid testing the expression for NULL.
379 We have to avoid generating a COMPONENT_REF for a base class
380 field, because other parts of the compiler know that such
381 expressions are always non-NULL. */
382 if (!virtual_access && integer_zerop (offset))
383 return build_nop (ptr_target_type, expr);
384 null_test = error_mark_node;
385 }
386
387 /* Protect against multiple evaluation if necessary. */
388 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
389 expr = save_expr (expr);
390
391 /* Now that we've saved expr, build the real null test. */
392 if (null_test)
393 {
394 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
395 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
396 expr, zero);
397 }
398
399 /* If this is a simple base reference, express it as a COMPONENT_REF. */
400 if (code == PLUS_EXPR && !virtual_access
401 /* We don't build base fields for empty bases, and they aren't very
402 interesting to the optimizers anyway. */
403 && !has_empty)
404 {
405 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
406 expr = build_simple_base_path (expr, binfo);
407 if (want_pointer)
408 expr = build_address (expr);
409 target_type = TREE_TYPE (expr);
410 goto out;
411 }
412
413 if (virtual_access)
414 {
415 /* Going via virtual base V_BINFO. We need the static offset
416 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
417 V_BINFO. That offset is an entry in D_BINFO's vtable. */
418 tree v_offset;
419
420 if (fixed_type_p < 0 && in_base_initializer)
421 {
422 /* In a base member initializer, we cannot rely on the
423 vtable being set up. We have to indirect via the
424 vtt_parm. */
425 tree t;
426
427 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
428 t = build_pointer_type (t);
429 v_offset = convert (t, current_vtt_parm);
430 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
431 }
432 else
433 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
434 complain),
435 TREE_TYPE (TREE_TYPE (expr)));
436
437 if (v_offset == error_mark_node)
438 return error_mark_node;
439
440 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
441 v_offset = build1 (NOP_EXPR,
442 build_pointer_type (ptrdiff_type_node),
443 v_offset);
444 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
445 TREE_CONSTANT (v_offset) = 1;
446
447 offset = convert_to_integer (ptrdiff_type_node,
448 size_diffop_loc (input_location, offset,
449 BINFO_OFFSET (v_binfo)));
450
451 if (!integer_zerop (offset))
452 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
453
454 if (fixed_type_p < 0)
455 /* Negative fixed_type_p means this is a constructor or destructor;
456 virtual base layout is fixed in in-charge [cd]tors, but not in
457 base [cd]tors. */
458 offset = build3 (COND_EXPR, ptrdiff_type_node,
459 build2 (EQ_EXPR, boolean_type_node,
460 current_in_charge_parm, integer_zero_node),
461 v_offset,
462 convert_to_integer (ptrdiff_type_node,
463 BINFO_OFFSET (binfo)));
464 else
465 offset = v_offset;
466 }
467
468 if (want_pointer)
469 target_type = ptr_target_type;
470
471 expr = build1 (NOP_EXPR, ptr_target_type, expr);
472
473 if (!integer_zerop (offset))
474 {
475 offset = fold_convert (sizetype, offset);
476 if (code == MINUS_EXPR)
477 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
478 expr = fold_build_pointer_plus (expr, offset);
479 }
480 else
481 null_test = NULL;
482
483 if (!want_pointer)
484 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
485
486 out:
487 if (null_test)
488 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
489 build_zero_cst (target_type));
490
491 return expr;
492 }
493
494 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
495 Perform a derived-to-base conversion by recursively building up a
496 sequence of COMPONENT_REFs to the appropriate base fields. */
497
498 static tree
499 build_simple_base_path (tree expr, tree binfo)
500 {
501 tree type = BINFO_TYPE (binfo);
502 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
503 tree field;
504
505 if (d_binfo == NULL_TREE)
506 {
507 tree temp;
508
509 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
510
511 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
512 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
513 an lvalue in the front end; only _DECLs and _REFs are lvalues
514 in the back end. */
515 temp = unary_complex_lvalue (ADDR_EXPR, expr);
516 if (temp)
517 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
518
519 return expr;
520 }
521
522 /* Recurse. */
523 expr = build_simple_base_path (expr, d_binfo);
524
525 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
526 field; field = DECL_CHAIN (field))
527 /* Is this the base field created by build_base_field? */
528 if (TREE_CODE (field) == FIELD_DECL
529 && DECL_FIELD_IS_BASE (field)
530 && TREE_TYPE (field) == type
531 /* If we're looking for a field in the most-derived class,
532 also check the field offset; we can have two base fields
533 of the same type if one is an indirect virtual base and one
534 is a direct non-virtual base. */
535 && (BINFO_INHERITANCE_CHAIN (d_binfo)
536 || tree_int_cst_equal (byte_position (field),
537 BINFO_OFFSET (binfo))))
538 {
539 /* We don't use build_class_member_access_expr here, as that
540 has unnecessary checks, and more importantly results in
541 recursive calls to dfs_walk_once. */
542 int type_quals = cp_type_quals (TREE_TYPE (expr));
543
544 expr = build3 (COMPONENT_REF,
545 cp_build_qualified_type (type, type_quals),
546 expr, field, NULL_TREE);
547 expr = fold_if_not_in_template (expr);
548
549 /* Mark the expression const or volatile, as appropriate.
550 Even though we've dealt with the type above, we still have
551 to mark the expression itself. */
552 if (type_quals & TYPE_QUAL_CONST)
553 TREE_READONLY (expr) = 1;
554 if (type_quals & TYPE_QUAL_VOLATILE)
555 TREE_THIS_VOLATILE (expr) = 1;
556
557 return expr;
558 }
559
560 /* Didn't find the base field?!? */
561 gcc_unreachable ();
562 }
563
564 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
565 type is a class type or a pointer to a class type. In the former
566 case, TYPE is also a class type; in the latter it is another
567 pointer type. If CHECK_ACCESS is true, an error message is emitted
568 if TYPE is inaccessible. If OBJECT has pointer type, the value is
569 assumed to be non-NULL. */
570
571 tree
572 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
573 tsubst_flags_t complain)
574 {
575 tree binfo;
576 tree object_type;
577
578 if (TYPE_PTR_P (TREE_TYPE (object)))
579 {
580 object_type = TREE_TYPE (TREE_TYPE (object));
581 type = TREE_TYPE (type);
582 }
583 else
584 object_type = TREE_TYPE (object);
585
586 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
587 NULL, complain);
588 if (!binfo || binfo == error_mark_node)
589 return error_mark_node;
590
591 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
592 }
593
594 /* EXPR is an expression with unqualified class type. BASE is a base
595 binfo of that class type. Returns EXPR, converted to the BASE
596 type. This function assumes that EXPR is the most derived class;
597 therefore virtual bases can be found at their static offsets. */
598
599 tree
600 convert_to_base_statically (tree expr, tree base)
601 {
602 tree expr_type;
603
604 expr_type = TREE_TYPE (expr);
605 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
606 {
607 /* If this is a non-empty base, use a COMPONENT_REF. */
608 if (!is_empty_class (BINFO_TYPE (base)))
609 return build_simple_base_path (expr, base);
610
611 /* We use fold_build2 and fold_convert below to simplify the trees
612 provided to the optimizers. It is not safe to call these functions
613 when processing a template because they do not handle C++-specific
614 trees. */
615 gcc_assert (!processing_template_decl);
616 expr = cp_build_addr_expr (expr, tf_warning_or_error);
617 if (!integer_zerop (BINFO_OFFSET (base)))
618 expr = fold_build_pointer_plus_loc (input_location,
619 expr, BINFO_OFFSET (base));
620 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
621 expr = build_fold_indirect_ref_loc (input_location, expr);
622 }
623
624 return expr;
625 }
626
627 \f
628 tree
629 build_vfield_ref (tree datum, tree type)
630 {
631 tree vfield, vcontext;
632
633 if (datum == error_mark_node
634 /* Can happen in case of duplicate base types (c++/59082). */
635 || !TYPE_VFIELD (type))
636 return error_mark_node;
637
638 /* First, convert to the requested type. */
639 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
640 datum = convert_to_base (datum, type, /*check_access=*/false,
641 /*nonnull=*/true, tf_warning_or_error);
642
643 /* Second, the requested type may not be the owner of its own vptr.
644 If not, convert to the base class that owns it. We cannot use
645 convert_to_base here, because VCONTEXT may appear more than once
646 in the inheritance hierarchy of TYPE, and thus direct conversion
647 between the types may be ambiguous. Following the path back up
648 one step at a time via primary bases avoids the problem. */
649 vfield = TYPE_VFIELD (type);
650 vcontext = DECL_CONTEXT (vfield);
651 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
652 {
653 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
654 type = TREE_TYPE (datum);
655 }
656
657 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
658 }
659
660 /* Given an object INSTANCE, return an expression which yields the
661 vtable element corresponding to INDEX. There are many special
662 cases for INSTANCE which we take care of here, mainly to avoid
663 creating extra tree nodes when we don't have to. */
664
665 static tree
666 build_vtbl_ref_1 (tree instance, tree idx)
667 {
668 tree aref;
669 tree vtbl = NULL_TREE;
670
671 /* Try to figure out what a reference refers to, and
672 access its virtual function table directly. */
673
674 int cdtorp = 0;
675 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
676
677 tree basetype = non_reference (TREE_TYPE (instance));
678
679 if (fixed_type && !cdtorp)
680 {
681 tree binfo = lookup_base (fixed_type, basetype,
682 ba_unique, NULL, tf_none);
683 if (binfo && binfo != error_mark_node)
684 vtbl = unshare_expr (BINFO_VTABLE (binfo));
685 }
686
687 if (!vtbl)
688 vtbl = build_vfield_ref (instance, basetype);
689
690 aref = build_array_ref (input_location, vtbl, idx);
691 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
692
693 return aref;
694 }
695
696 tree
697 build_vtbl_ref (tree instance, tree idx)
698 {
699 tree aref = build_vtbl_ref_1 (instance, idx);
700
701 return aref;
702 }
703
704 /* Given a stable object pointer INSTANCE_PTR, return an expression which
705 yields a function pointer corresponding to vtable element INDEX. */
706
707 tree
708 build_vfn_ref (tree instance_ptr, tree idx)
709 {
710 tree aref;
711
712 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
713 tf_warning_or_error),
714 idx);
715
716 /* When using function descriptors, the address of the
717 vtable entry is treated as a function pointer. */
718 if (TARGET_VTABLE_USES_DESCRIPTORS)
719 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
720 cp_build_addr_expr (aref, tf_warning_or_error));
721
722 /* Remember this as a method reference, for later devirtualization. */
723 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
724
725 return aref;
726 }
727
728 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
729 for the given TYPE. */
730
731 static tree
732 get_vtable_name (tree type)
733 {
734 return mangle_vtbl_for_type (type);
735 }
736
737 /* DECL is an entity associated with TYPE, like a virtual table or an
738 implicitly generated constructor. Determine whether or not DECL
739 should have external or internal linkage at the object file
740 level. This routine does not deal with COMDAT linkage and other
741 similar complexities; it simply sets TREE_PUBLIC if it possible for
742 entities in other translation units to contain copies of DECL, in
743 the abstract. */
744
745 void
746 set_linkage_according_to_type (tree /*type*/, tree decl)
747 {
748 TREE_PUBLIC (decl) = 1;
749 determine_visibility (decl);
750 }
751
752 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
753 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
754 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
755
756 static tree
757 build_vtable (tree class_type, tree name, tree vtable_type)
758 {
759 tree decl;
760
761 decl = build_lang_decl (VAR_DECL, name, vtable_type);
762 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
763 now to avoid confusion in mangle_decl. */
764 SET_DECL_ASSEMBLER_NAME (decl, name);
765 DECL_CONTEXT (decl) = class_type;
766 DECL_ARTIFICIAL (decl) = 1;
767 TREE_STATIC (decl) = 1;
768 TREE_READONLY (decl) = 1;
769 DECL_VIRTUAL_P (decl) = 1;
770 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
771 DECL_USER_ALIGN (decl) = true;
772 DECL_VTABLE_OR_VTT_P (decl) = 1;
773 set_linkage_according_to_type (class_type, decl);
774 /* The vtable has not been defined -- yet. */
775 DECL_EXTERNAL (decl) = 1;
776 DECL_NOT_REALLY_EXTERN (decl) = 1;
777
778 /* Mark the VAR_DECL node representing the vtable itself as a
779 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
780 is rather important that such things be ignored because any
781 effort to actually generate DWARF for them will run into
782 trouble when/if we encounter code like:
783
784 #pragma interface
785 struct S { virtual void member (); };
786
787 because the artificial declaration of the vtable itself (as
788 manufactured by the g++ front end) will say that the vtable is
789 a static member of `S' but only *after* the debug output for
790 the definition of `S' has already been output. This causes
791 grief because the DWARF entry for the definition of the vtable
792 will try to refer back to an earlier *declaration* of the
793 vtable as a static member of `S' and there won't be one. We
794 might be able to arrange to have the "vtable static member"
795 attached to the member list for `S' before the debug info for
796 `S' get written (which would solve the problem) but that would
797 require more intrusive changes to the g++ front end. */
798 DECL_IGNORED_P (decl) = 1;
799
800 return decl;
801 }
802
803 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
804 or even complete. If this does not exist, create it. If COMPLETE is
805 nonzero, then complete the definition of it -- that will render it
806 impossible to actually build the vtable, but is useful to get at those
807 which are known to exist in the runtime. */
808
809 tree
810 get_vtable_decl (tree type, int complete)
811 {
812 tree decl;
813
814 if (CLASSTYPE_VTABLES (type))
815 return CLASSTYPE_VTABLES (type);
816
817 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
818 CLASSTYPE_VTABLES (type) = decl;
819
820 if (complete)
821 {
822 DECL_EXTERNAL (decl) = 1;
823 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
824 }
825
826 return decl;
827 }
828
829 /* Build the primary virtual function table for TYPE. If BINFO is
830 non-NULL, build the vtable starting with the initial approximation
831 that it is the same as the one which is the head of the association
832 list. Returns a nonzero value if a new vtable is actually
833 created. */
834
835 static int
836 build_primary_vtable (tree binfo, tree type)
837 {
838 tree decl;
839 tree virtuals;
840
841 decl = get_vtable_decl (type, /*complete=*/0);
842
843 if (binfo)
844 {
845 if (BINFO_NEW_VTABLE_MARKED (binfo))
846 /* We have already created a vtable for this base, so there's
847 no need to do it again. */
848 return 0;
849
850 virtuals = copy_list (BINFO_VIRTUALS (binfo));
851 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
852 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
853 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
854 }
855 else
856 {
857 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
858 virtuals = NULL_TREE;
859 }
860
861 if (GATHER_STATISTICS)
862 {
863 n_vtables += 1;
864 n_vtable_elems += list_length (virtuals);
865 }
866
867 /* Initialize the association list for this type, based
868 on our first approximation. */
869 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
870 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
871 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
872 return 1;
873 }
874
875 /* Give BINFO a new virtual function table which is initialized
876 with a skeleton-copy of its original initialization. The only
877 entry that changes is the `delta' entry, so we can really
878 share a lot of structure.
879
880 FOR_TYPE is the most derived type which caused this table to
881 be needed.
882
883 Returns nonzero if we haven't met BINFO before.
884
885 The order in which vtables are built (by calling this function) for
886 an object must remain the same, otherwise a binary incompatibility
887 can result. */
888
889 static int
890 build_secondary_vtable (tree binfo)
891 {
892 if (BINFO_NEW_VTABLE_MARKED (binfo))
893 /* We already created a vtable for this base. There's no need to
894 do it again. */
895 return 0;
896
897 /* Remember that we've created a vtable for this BINFO, so that we
898 don't try to do so again. */
899 SET_BINFO_NEW_VTABLE_MARKED (binfo);
900
901 /* Make fresh virtual list, so we can smash it later. */
902 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
903
904 /* Secondary vtables are laid out as part of the same structure as
905 the primary vtable. */
906 BINFO_VTABLE (binfo) = NULL_TREE;
907 return 1;
908 }
909
910 /* Create a new vtable for BINFO which is the hierarchy dominated by
911 T. Return nonzero if we actually created a new vtable. */
912
913 static int
914 make_new_vtable (tree t, tree binfo)
915 {
916 if (binfo == TYPE_BINFO (t))
917 /* In this case, it is *type*'s vtable we are modifying. We start
918 with the approximation that its vtable is that of the
919 immediate base class. */
920 return build_primary_vtable (binfo, t);
921 else
922 /* This is our very own copy of `basetype' to play with. Later,
923 we will fill in all the virtual functions that override the
924 virtual functions in these base classes which are not defined
925 by the current type. */
926 return build_secondary_vtable (binfo);
927 }
928
929 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
930 (which is in the hierarchy dominated by T) list FNDECL as its
931 BV_FN. DELTA is the required constant adjustment from the `this'
932 pointer where the vtable entry appears to the `this' required when
933 the function is actually called. */
934
935 static void
936 modify_vtable_entry (tree t,
937 tree binfo,
938 tree fndecl,
939 tree delta,
940 tree *virtuals)
941 {
942 tree v;
943
944 v = *virtuals;
945
946 if (fndecl != BV_FN (v)
947 || !tree_int_cst_equal (delta, BV_DELTA (v)))
948 {
949 /* We need a new vtable for BINFO. */
950 if (make_new_vtable (t, binfo))
951 {
952 /* If we really did make a new vtable, we also made a copy
953 of the BINFO_VIRTUALS list. Now, we have to find the
954 corresponding entry in that list. */
955 *virtuals = BINFO_VIRTUALS (binfo);
956 while (BV_FN (*virtuals) != BV_FN (v))
957 *virtuals = TREE_CHAIN (*virtuals);
958 v = *virtuals;
959 }
960
961 BV_DELTA (v) = delta;
962 BV_VCALL_INDEX (v) = NULL_TREE;
963 BV_FN (v) = fndecl;
964 }
965 }
966
967 \f
968 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
969 the USING_DECL naming METHOD. Returns true if the method could be
970 added to the method vec. */
971
972 bool
973 add_method (tree type, tree method, tree using_decl)
974 {
975 unsigned slot;
976 tree overload;
977 bool template_conv_p = false;
978 bool conv_p;
979 vec<tree, va_gc> *method_vec;
980 bool complete_p;
981 bool insert_p = false;
982 tree current_fns;
983 tree fns;
984
985 if (method == error_mark_node)
986 return false;
987
988 complete_p = COMPLETE_TYPE_P (type);
989 conv_p = DECL_CONV_FN_P (method);
990 if (conv_p)
991 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
992 && DECL_TEMPLATE_CONV_FN_P (method));
993
994 method_vec = CLASSTYPE_METHOD_VEC (type);
995 if (!method_vec)
996 {
997 /* Make a new method vector. We start with 8 entries. We must
998 allocate at least two (for constructors and destructors), and
999 we're going to end up with an assignment operator at some
1000 point as well. */
1001 vec_alloc (method_vec, 8);
1002 /* Create slots for constructors and destructors. */
1003 method_vec->quick_push (NULL_TREE);
1004 method_vec->quick_push (NULL_TREE);
1005 CLASSTYPE_METHOD_VEC (type) = method_vec;
1006 }
1007
1008 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
1009 grok_special_member_properties (method);
1010
1011 /* Constructors and destructors go in special slots. */
1012 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
1013 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
1014 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1015 {
1016 slot = CLASSTYPE_DESTRUCTOR_SLOT;
1017
1018 if (TYPE_FOR_JAVA (type))
1019 {
1020 if (!DECL_ARTIFICIAL (method))
1021 error ("Java class %qT cannot have a destructor", type);
1022 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1023 error ("Java class %qT cannot have an implicit non-trivial "
1024 "destructor",
1025 type);
1026 }
1027 }
1028 else
1029 {
1030 tree m;
1031
1032 insert_p = true;
1033 /* See if we already have an entry with this name. */
1034 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1035 vec_safe_iterate (method_vec, slot, &m);
1036 ++slot)
1037 {
1038 m = OVL_CURRENT (m);
1039 if (template_conv_p)
1040 {
1041 if (TREE_CODE (m) == TEMPLATE_DECL
1042 && DECL_TEMPLATE_CONV_FN_P (m))
1043 insert_p = false;
1044 break;
1045 }
1046 if (conv_p && !DECL_CONV_FN_P (m))
1047 break;
1048 if (DECL_NAME (m) == DECL_NAME (method))
1049 {
1050 insert_p = false;
1051 break;
1052 }
1053 if (complete_p
1054 && !DECL_CONV_FN_P (m)
1055 && DECL_NAME (m) > DECL_NAME (method))
1056 break;
1057 }
1058 }
1059 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1060
1061 /* Check to see if we've already got this method. */
1062 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1063 {
1064 tree fn = OVL_CURRENT (fns);
1065 tree fn_type;
1066 tree method_type;
1067 tree parms1;
1068 tree parms2;
1069
1070 if (TREE_CODE (fn) != TREE_CODE (method))
1071 continue;
1072
1073 /* [over.load] Member function declarations with the
1074 same name and the same parameter types cannot be
1075 overloaded if any of them is a static member
1076 function declaration.
1077
1078 [over.load] Member function declarations with the same name and
1079 the same parameter-type-list as well as member function template
1080 declarations with the same name, the same parameter-type-list, and
1081 the same template parameter lists cannot be overloaded if any of
1082 them, but not all, have a ref-qualifier.
1083
1084 [namespace.udecl] When a using-declaration brings names
1085 from a base class into a derived class scope, member
1086 functions in the derived class override and/or hide member
1087 functions with the same name and parameter types in a base
1088 class (rather than conflicting). */
1089 fn_type = TREE_TYPE (fn);
1090 method_type = TREE_TYPE (method);
1091 parms1 = TYPE_ARG_TYPES (fn_type);
1092 parms2 = TYPE_ARG_TYPES (method_type);
1093
1094 /* Compare the quals on the 'this' parm. Don't compare
1095 the whole types, as used functions are treated as
1096 coming from the using class in overload resolution. */
1097 if (! DECL_STATIC_FUNCTION_P (fn)
1098 && ! DECL_STATIC_FUNCTION_P (method)
1099 /* Either both or neither need to be ref-qualified for
1100 differing quals to allow overloading. */
1101 && (FUNCTION_REF_QUALIFIED (fn_type)
1102 == FUNCTION_REF_QUALIFIED (method_type))
1103 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1104 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1105 continue;
1106
1107 /* For templates, the return type and template parameters
1108 must be identical. */
1109 if (TREE_CODE (fn) == TEMPLATE_DECL
1110 && (!same_type_p (TREE_TYPE (fn_type),
1111 TREE_TYPE (method_type))
1112 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1113 DECL_TEMPLATE_PARMS (method))))
1114 continue;
1115
1116 if (! DECL_STATIC_FUNCTION_P (fn))
1117 parms1 = TREE_CHAIN (parms1);
1118 if (! DECL_STATIC_FUNCTION_P (method))
1119 parms2 = TREE_CHAIN (parms2);
1120
1121 if (compparms (parms1, parms2)
1122 && (!DECL_CONV_FN_P (fn)
1123 || same_type_p (TREE_TYPE (fn_type),
1124 TREE_TYPE (method_type))))
1125 {
1126 /* For function versions, their parms and types match
1127 but they are not duplicates. Record function versions
1128 as and when they are found. extern "C" functions are
1129 not treated as versions. */
1130 if (TREE_CODE (fn) == FUNCTION_DECL
1131 && TREE_CODE (method) == FUNCTION_DECL
1132 && !DECL_EXTERN_C_P (fn)
1133 && !DECL_EXTERN_C_P (method)
1134 && targetm.target_option.function_versions (fn, method))
1135 {
1136 /* Mark functions as versions if necessary. Modify the mangled
1137 decl name if necessary. */
1138 if (!DECL_FUNCTION_VERSIONED (fn))
1139 {
1140 DECL_FUNCTION_VERSIONED (fn) = 1;
1141 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1142 mangle_decl (fn);
1143 }
1144 if (!DECL_FUNCTION_VERSIONED (method))
1145 {
1146 DECL_FUNCTION_VERSIONED (method) = 1;
1147 if (DECL_ASSEMBLER_NAME_SET_P (method))
1148 mangle_decl (method);
1149 }
1150 record_function_versions (fn, method);
1151 continue;
1152 }
1153 if (DECL_INHERITED_CTOR_BASE (method))
1154 {
1155 if (DECL_INHERITED_CTOR_BASE (fn))
1156 {
1157 error_at (DECL_SOURCE_LOCATION (method),
1158 "%q#D inherited from %qT", method,
1159 DECL_INHERITED_CTOR_BASE (method));
1160 error_at (DECL_SOURCE_LOCATION (fn),
1161 "conflicts with version inherited from %qT",
1162 DECL_INHERITED_CTOR_BASE (fn));
1163 }
1164 /* Otherwise defer to the other function. */
1165 return false;
1166 }
1167 if (using_decl)
1168 {
1169 if (DECL_CONTEXT (fn) == type)
1170 /* Defer to the local function. */
1171 return false;
1172 }
1173 else
1174 {
1175 error ("%q+#D cannot be overloaded", method);
1176 error ("with %q+#D", fn);
1177 }
1178
1179 /* We don't call duplicate_decls here to merge the
1180 declarations because that will confuse things if the
1181 methods have inline definitions. In particular, we
1182 will crash while processing the definitions. */
1183 return false;
1184 }
1185 }
1186
1187 /* A class should never have more than one destructor. */
1188 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1189 return false;
1190
1191 /* Add the new binding. */
1192 if (using_decl)
1193 {
1194 overload = ovl_cons (method, current_fns);
1195 OVL_USED (overload) = true;
1196 }
1197 else
1198 overload = build_overload (method, current_fns);
1199
1200 if (conv_p)
1201 TYPE_HAS_CONVERSION (type) = 1;
1202 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1203 push_class_level_binding (DECL_NAME (method), overload);
1204
1205 if (insert_p)
1206 {
1207 bool reallocated;
1208
1209 /* We only expect to add few methods in the COMPLETE_P case, so
1210 just make room for one more method in that case. */
1211 if (complete_p)
1212 reallocated = vec_safe_reserve_exact (method_vec, 1);
1213 else
1214 reallocated = vec_safe_reserve (method_vec, 1);
1215 if (reallocated)
1216 CLASSTYPE_METHOD_VEC (type) = method_vec;
1217 if (slot == method_vec->length ())
1218 method_vec->quick_push (overload);
1219 else
1220 method_vec->quick_insert (slot, overload);
1221 }
1222 else
1223 /* Replace the current slot. */
1224 (*method_vec)[slot] = overload;
1225 return true;
1226 }
1227
1228 /* Subroutines of finish_struct. */
1229
1230 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1231 legit, otherwise return 0. */
1232
1233 static int
1234 alter_access (tree t, tree fdecl, tree access)
1235 {
1236 tree elem;
1237
1238 if (!DECL_LANG_SPECIFIC (fdecl))
1239 retrofit_lang_decl (fdecl);
1240
1241 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1242
1243 elem = purpose_member (t, DECL_ACCESS (fdecl));
1244 if (elem)
1245 {
1246 if (TREE_VALUE (elem) != access)
1247 {
1248 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1249 error ("conflicting access specifications for method"
1250 " %q+D, ignored", TREE_TYPE (fdecl));
1251 else
1252 error ("conflicting access specifications for field %qE, ignored",
1253 DECL_NAME (fdecl));
1254 }
1255 else
1256 {
1257 /* They're changing the access to the same thing they changed
1258 it to before. That's OK. */
1259 ;
1260 }
1261 }
1262 else
1263 {
1264 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1265 tf_warning_or_error);
1266 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1267 return 1;
1268 }
1269 return 0;
1270 }
1271
1272 /* Process the USING_DECL, which is a member of T. */
1273
1274 static void
1275 handle_using_decl (tree using_decl, tree t)
1276 {
1277 tree decl = USING_DECL_DECLS (using_decl);
1278 tree name = DECL_NAME (using_decl);
1279 tree access
1280 = TREE_PRIVATE (using_decl) ? access_private_node
1281 : TREE_PROTECTED (using_decl) ? access_protected_node
1282 : access_public_node;
1283 tree flist = NULL_TREE;
1284 tree old_value;
1285
1286 gcc_assert (!processing_template_decl && decl);
1287
1288 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1289 tf_warning_or_error);
1290 if (old_value)
1291 {
1292 if (is_overloaded_fn (old_value))
1293 old_value = OVL_CURRENT (old_value);
1294
1295 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1296 /* OK */;
1297 else
1298 old_value = NULL_TREE;
1299 }
1300
1301 cp_emit_debug_info_for_using (decl, t);
1302
1303 if (is_overloaded_fn (decl))
1304 flist = decl;
1305
1306 if (! old_value)
1307 ;
1308 else if (is_overloaded_fn (old_value))
1309 {
1310 if (flist)
1311 /* It's OK to use functions from a base when there are functions with
1312 the same name already present in the current class. */;
1313 else
1314 {
1315 error ("%q+D invalid in %q#T", using_decl, t);
1316 error (" because of local method %q+#D with same name",
1317 OVL_CURRENT (old_value));
1318 return;
1319 }
1320 }
1321 else if (!DECL_ARTIFICIAL (old_value))
1322 {
1323 error ("%q+D invalid in %q#T", using_decl, t);
1324 error (" because of local member %q+#D with same name", old_value);
1325 return;
1326 }
1327
1328 /* Make type T see field decl FDECL with access ACCESS. */
1329 if (flist)
1330 for (; flist; flist = OVL_NEXT (flist))
1331 {
1332 add_method (t, OVL_CURRENT (flist), using_decl);
1333 alter_access (t, OVL_CURRENT (flist), access);
1334 }
1335 else
1336 alter_access (t, decl, access);
1337 }
1338 \f
1339 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1340 types with abi tags, add the corresponding identifiers to the VEC in
1341 *DATA and set IDENTIFIER_MARKED. */
1342
1343 struct abi_tag_data
1344 {
1345 tree t;
1346 tree subob;
1347 // error_mark_node to get diagnostics; otherwise collect missing tags here
1348 tree tags;
1349 };
1350
1351 static tree
1352 find_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
1353 {
1354 if (!OVERLOAD_TYPE_P (*tp))
1355 return NULL_TREE;
1356
1357 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1358 anyway, but let's make sure of it. */
1359 *walk_subtrees = false;
1360
1361 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1362 {
1363 struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1364 for (tree list = TREE_VALUE (attributes); list;
1365 list = TREE_CHAIN (list))
1366 {
1367 tree tag = TREE_VALUE (list);
1368 tree id = get_identifier (TREE_STRING_POINTER (tag));
1369 if (!IDENTIFIER_MARKED (id))
1370 {
1371 if (p->tags != error_mark_node)
1372 {
1373 /* We're collecting tags from template arguments. */
1374 tree str = build_string (IDENTIFIER_LENGTH (id),
1375 IDENTIFIER_POINTER (id));
1376 p->tags = tree_cons (NULL_TREE, str, p->tags);
1377 ABI_TAG_IMPLICIT (p->tags) = true;
1378
1379 /* Don't inherit this tag multiple times. */
1380 IDENTIFIER_MARKED (id) = true;
1381 }
1382
1383 /* Otherwise we're diagnosing missing tags. */
1384 else if (TYPE_P (p->subob))
1385 {
1386 if (warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1387 "that base %qT has", p->t, tag, p->subob))
1388 inform (location_of (p->subob), "%qT declared here",
1389 p->subob);
1390 }
1391 else
1392 {
1393 if (warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1394 "that %qT (used in the type of %qD) has",
1395 p->t, tag, *tp, p->subob))
1396 {
1397 inform (location_of (p->subob), "%qD declared here",
1398 p->subob);
1399 inform (location_of (*tp), "%qT declared here", *tp);
1400 }
1401 }
1402 }
1403 }
1404 }
1405 return NULL_TREE;
1406 }
1407
1408 /* Set IDENTIFIER_MARKED on all the ABI tags on T and its (transitively
1409 complete) template arguments. */
1410
1411 static void
1412 mark_type_abi_tags (tree t, bool val)
1413 {
1414 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1415 if (attributes)
1416 {
1417 for (tree list = TREE_VALUE (attributes); list;
1418 list = TREE_CHAIN (list))
1419 {
1420 tree tag = TREE_VALUE (list);
1421 tree id = get_identifier (TREE_STRING_POINTER (tag));
1422 IDENTIFIER_MARKED (id) = val;
1423 }
1424 }
1425 }
1426
1427 /* Check that class T has all the abi tags that subobject SUBOB has, or
1428 warn if not. */
1429
1430 static void
1431 check_abi_tags (tree t, tree subob)
1432 {
1433 mark_type_abi_tags (t, true);
1434
1435 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1436 struct abi_tag_data data = { t, subob, error_mark_node };
1437
1438 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1439
1440 mark_type_abi_tags (t, false);
1441 }
1442
1443 void
1444 inherit_targ_abi_tags (tree t)
1445 {
1446 if (CLASSTYPE_TEMPLATE_INFO (t) == NULL_TREE)
1447 return;
1448
1449 mark_type_abi_tags (t, true);
1450
1451 tree args = CLASSTYPE_TI_ARGS (t);
1452 struct abi_tag_data data = { t, NULL_TREE, NULL_TREE };
1453 for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
1454 {
1455 tree level = TMPL_ARGS_LEVEL (args, i+1);
1456 for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1457 {
1458 tree arg = TREE_VEC_ELT (level, j);
1459 data.subob = arg;
1460 cp_walk_tree_without_duplicates (&arg, find_abi_tags_r, &data);
1461 }
1462 }
1463
1464 // If we found some tags on our template arguments, add them to our
1465 // abi_tag attribute.
1466 if (data.tags)
1467 {
1468 tree attr = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1469 if (attr)
1470 TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
1471 else
1472 TYPE_ATTRIBUTES (t)
1473 = tree_cons (get_identifier ("abi_tag"), data.tags,
1474 TYPE_ATTRIBUTES (t));
1475 }
1476
1477 mark_type_abi_tags (t, false);
1478 }
1479
1480 /* Return true, iff class T has a non-virtual destructor that is
1481 accessible from outside the class heirarchy (i.e. is public, or
1482 there's a suitable friend. */
1483
1484 static bool
1485 accessible_nvdtor_p (tree t)
1486 {
1487 tree dtor = CLASSTYPE_DESTRUCTORS (t);
1488
1489 /* An implicitly declared destructor is always public. And,
1490 if it were virtual, we would have created it by now. */
1491 if (!dtor)
1492 return true;
1493
1494 if (DECL_VINDEX (dtor))
1495 return false; /* Virtual */
1496
1497 if (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
1498 return true; /* Public */
1499
1500 if (CLASSTYPE_FRIEND_CLASSES (t)
1501 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1502 return true; /* Has friends */
1503
1504 return false;
1505 }
1506
1507 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1508 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1509 properties of the bases. */
1510
1511 static void
1512 check_bases (tree t,
1513 int* cant_have_const_ctor_p,
1514 int* no_const_asn_ref_p)
1515 {
1516 int i;
1517 bool seen_non_virtual_nearly_empty_base_p = 0;
1518 int seen_tm_mask = 0;
1519 tree base_binfo;
1520 tree binfo;
1521 tree field = NULL_TREE;
1522
1523 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1524 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1525 if (TREE_CODE (field) == FIELD_DECL)
1526 break;
1527
1528 for (binfo = TYPE_BINFO (t), i = 0;
1529 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1530 {
1531 tree basetype = TREE_TYPE (base_binfo);
1532
1533 gcc_assert (COMPLETE_TYPE_P (basetype));
1534
1535 if (CLASSTYPE_FINAL (basetype))
1536 error ("cannot derive from %<final%> base %qT in derived type %qT",
1537 basetype, t);
1538
1539 /* If any base class is non-literal, so is the derived class. */
1540 if (!CLASSTYPE_LITERAL_P (basetype))
1541 CLASSTYPE_LITERAL_P (t) = false;
1542
1543 /* If the base class doesn't have copy constructors or
1544 assignment operators that take const references, then the
1545 derived class cannot have such a member automatically
1546 generated. */
1547 if (TYPE_HAS_COPY_CTOR (basetype)
1548 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1549 *cant_have_const_ctor_p = 1;
1550 if (TYPE_HAS_COPY_ASSIGN (basetype)
1551 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1552 *no_const_asn_ref_p = 1;
1553
1554 if (BINFO_VIRTUAL_P (base_binfo))
1555 /* A virtual base does not effect nearly emptiness. */
1556 ;
1557 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1558 {
1559 if (seen_non_virtual_nearly_empty_base_p)
1560 /* And if there is more than one nearly empty base, then the
1561 derived class is not nearly empty either. */
1562 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1563 else
1564 /* Remember we've seen one. */
1565 seen_non_virtual_nearly_empty_base_p = 1;
1566 }
1567 else if (!is_empty_class (basetype))
1568 /* If the base class is not empty or nearly empty, then this
1569 class cannot be nearly empty. */
1570 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1571
1572 /* A lot of properties from the bases also apply to the derived
1573 class. */
1574 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1575 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1576 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1577 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1578 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1579 || !TYPE_HAS_COPY_ASSIGN (basetype));
1580 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1581 || !TYPE_HAS_COPY_CTOR (basetype));
1582 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1583 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1584 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1585 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1586 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1587 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1588 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1589 || TYPE_HAS_COMPLEX_DFLT (basetype));
1590 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
1591 (t, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
1592 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype));
1593 SET_CLASSTYPE_REF_FIELDS_NEED_INIT
1594 (t, CLASSTYPE_REF_FIELDS_NEED_INIT (t)
1595 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype));
1596
1597 /* A standard-layout class is a class that:
1598 ...
1599 * has no non-standard-layout base classes, */
1600 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1601 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1602 {
1603 tree basefield;
1604 /* ...has no base classes of the same type as the first non-static
1605 data member... */
1606 if (field && DECL_CONTEXT (field) == t
1607 && (same_type_ignoring_top_level_qualifiers_p
1608 (TREE_TYPE (field), basetype)))
1609 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1610 else
1611 /* ...either has no non-static data members in the most-derived
1612 class and at most one base class with non-static data
1613 members, or has no base classes with non-static data
1614 members */
1615 for (basefield = TYPE_FIELDS (basetype); basefield;
1616 basefield = DECL_CHAIN (basefield))
1617 if (TREE_CODE (basefield) == FIELD_DECL)
1618 {
1619 if (field)
1620 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1621 else
1622 field = basefield;
1623 break;
1624 }
1625 }
1626
1627 /* Don't bother collecting tm attributes if transactional memory
1628 support is not enabled. */
1629 if (flag_tm)
1630 {
1631 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1632 if (tm_attr)
1633 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1634 }
1635
1636 check_abi_tags (t, basetype);
1637 }
1638
1639 /* If one of the base classes had TM attributes, and the current class
1640 doesn't define its own, then the current class inherits one. */
1641 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1642 {
1643 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1644 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1645 }
1646 }
1647
1648 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1649 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1650 that have had a nearly-empty virtual primary base stolen by some
1651 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1652 T. */
1653
1654 static void
1655 determine_primary_bases (tree t)
1656 {
1657 unsigned i;
1658 tree primary = NULL_TREE;
1659 tree type_binfo = TYPE_BINFO (t);
1660 tree base_binfo;
1661
1662 /* Determine the primary bases of our bases. */
1663 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1664 base_binfo = TREE_CHAIN (base_binfo))
1665 {
1666 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1667
1668 /* See if we're the non-virtual primary of our inheritance
1669 chain. */
1670 if (!BINFO_VIRTUAL_P (base_binfo))
1671 {
1672 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1673 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1674
1675 if (parent_primary
1676 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1677 BINFO_TYPE (parent_primary)))
1678 /* We are the primary binfo. */
1679 BINFO_PRIMARY_P (base_binfo) = 1;
1680 }
1681 /* Determine if we have a virtual primary base, and mark it so.
1682 */
1683 if (primary && BINFO_VIRTUAL_P (primary))
1684 {
1685 tree this_primary = copied_binfo (primary, base_binfo);
1686
1687 if (BINFO_PRIMARY_P (this_primary))
1688 /* Someone already claimed this base. */
1689 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1690 else
1691 {
1692 tree delta;
1693
1694 BINFO_PRIMARY_P (this_primary) = 1;
1695 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1696
1697 /* A virtual binfo might have been copied from within
1698 another hierarchy. As we're about to use it as a
1699 primary base, make sure the offsets match. */
1700 delta = size_diffop_loc (input_location,
1701 convert (ssizetype,
1702 BINFO_OFFSET (base_binfo)),
1703 convert (ssizetype,
1704 BINFO_OFFSET (this_primary)));
1705
1706 propagate_binfo_offsets (this_primary, delta);
1707 }
1708 }
1709 }
1710
1711 /* First look for a dynamic direct non-virtual base. */
1712 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1713 {
1714 tree basetype = BINFO_TYPE (base_binfo);
1715
1716 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1717 {
1718 primary = base_binfo;
1719 goto found;
1720 }
1721 }
1722
1723 /* A "nearly-empty" virtual base class can be the primary base
1724 class, if no non-virtual polymorphic base can be found. Look for
1725 a nearly-empty virtual dynamic base that is not already a primary
1726 base of something in the hierarchy. If there is no such base,
1727 just pick the first nearly-empty virtual base. */
1728
1729 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1730 base_binfo = TREE_CHAIN (base_binfo))
1731 if (BINFO_VIRTUAL_P (base_binfo)
1732 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1733 {
1734 if (!BINFO_PRIMARY_P (base_binfo))
1735 {
1736 /* Found one that is not primary. */
1737 primary = base_binfo;
1738 goto found;
1739 }
1740 else if (!primary)
1741 /* Remember the first candidate. */
1742 primary = base_binfo;
1743 }
1744
1745 found:
1746 /* If we've got a primary base, use it. */
1747 if (primary)
1748 {
1749 tree basetype = BINFO_TYPE (primary);
1750
1751 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1752 if (BINFO_PRIMARY_P (primary))
1753 /* We are stealing a primary base. */
1754 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1755 BINFO_PRIMARY_P (primary) = 1;
1756 if (BINFO_VIRTUAL_P (primary))
1757 {
1758 tree delta;
1759
1760 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1761 /* A virtual binfo might have been copied from within
1762 another hierarchy. As we're about to use it as a primary
1763 base, make sure the offsets match. */
1764 delta = size_diffop_loc (input_location, ssize_int (0),
1765 convert (ssizetype, BINFO_OFFSET (primary)));
1766
1767 propagate_binfo_offsets (primary, delta);
1768 }
1769
1770 primary = TYPE_BINFO (basetype);
1771
1772 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1773 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1774 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1775 }
1776 }
1777
1778 /* Update the variant types of T. */
1779
1780 void
1781 fixup_type_variants (tree t)
1782 {
1783 tree variants;
1784
1785 if (!t)
1786 return;
1787
1788 for (variants = TYPE_NEXT_VARIANT (t);
1789 variants;
1790 variants = TYPE_NEXT_VARIANT (variants))
1791 {
1792 /* These fields are in the _TYPE part of the node, not in
1793 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1794 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1795 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1796 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1797 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1798
1799 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1800
1801 TYPE_BINFO (variants) = TYPE_BINFO (t);
1802
1803 /* Copy whatever these are holding today. */
1804 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1805 TYPE_METHODS (variants) = TYPE_METHODS (t);
1806 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1807 }
1808 }
1809
1810 /* Early variant fixups: we apply attributes at the beginning of the class
1811 definition, and we need to fix up any variants that have already been
1812 made via elaborated-type-specifier so that check_qualified_type works. */
1813
1814 void
1815 fixup_attribute_variants (tree t)
1816 {
1817 tree variants;
1818
1819 if (!t)
1820 return;
1821
1822 for (variants = TYPE_NEXT_VARIANT (t);
1823 variants;
1824 variants = TYPE_NEXT_VARIANT (variants))
1825 {
1826 /* These are the two fields that check_qualified_type looks at and
1827 are affected by attributes. */
1828 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1829 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1830 }
1831 }
1832 \f
1833 /* Set memoizing fields and bits of T (and its variants) for later
1834 use. */
1835
1836 static void
1837 finish_struct_bits (tree t)
1838 {
1839 /* Fix up variants (if any). */
1840 fixup_type_variants (t);
1841
1842 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1843 /* For a class w/o baseclasses, 'finish_struct' has set
1844 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1845 Similarly for a class whose base classes do not have vtables.
1846 When neither of these is true, we might have removed abstract
1847 virtuals (by providing a definition), added some (by declaring
1848 new ones), or redeclared ones from a base class. We need to
1849 recalculate what's really an abstract virtual at this point (by
1850 looking in the vtables). */
1851 get_pure_virtuals (t);
1852
1853 /* If this type has a copy constructor or a destructor, force its
1854 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1855 nonzero. This will cause it to be passed by invisible reference
1856 and prevent it from being returned in a register. */
1857 if (type_has_nontrivial_copy_init (t)
1858 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1859 {
1860 tree variants;
1861 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1862 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1863 {
1864 SET_TYPE_MODE (variants, BLKmode);
1865 TREE_ADDRESSABLE (variants) = 1;
1866 }
1867 }
1868 }
1869
1870 /* Issue warnings about T having private constructors, but no friends,
1871 and so forth.
1872
1873 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1874 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1875 non-private static member functions. */
1876
1877 static void
1878 maybe_warn_about_overly_private_class (tree t)
1879 {
1880 int has_member_fn = 0;
1881 int has_nonprivate_method = 0;
1882 tree fn;
1883
1884 if (!warn_ctor_dtor_privacy
1885 /* If the class has friends, those entities might create and
1886 access instances, so we should not warn. */
1887 || (CLASSTYPE_FRIEND_CLASSES (t)
1888 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1889 /* We will have warned when the template was declared; there's
1890 no need to warn on every instantiation. */
1891 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1892 /* There's no reason to even consider warning about this
1893 class. */
1894 return;
1895
1896 /* We only issue one warning, if more than one applies, because
1897 otherwise, on code like:
1898
1899 class A {
1900 // Oops - forgot `public:'
1901 A();
1902 A(const A&);
1903 ~A();
1904 };
1905
1906 we warn several times about essentially the same problem. */
1907
1908 /* Check to see if all (non-constructor, non-destructor) member
1909 functions are private. (Since there are no friends or
1910 non-private statics, we can't ever call any of the private member
1911 functions.) */
1912 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1913 /* We're not interested in compiler-generated methods; they don't
1914 provide any way to call private members. */
1915 if (!DECL_ARTIFICIAL (fn))
1916 {
1917 if (!TREE_PRIVATE (fn))
1918 {
1919 if (DECL_STATIC_FUNCTION_P (fn))
1920 /* A non-private static member function is just like a
1921 friend; it can create and invoke private member
1922 functions, and be accessed without a class
1923 instance. */
1924 return;
1925
1926 has_nonprivate_method = 1;
1927 /* Keep searching for a static member function. */
1928 }
1929 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1930 has_member_fn = 1;
1931 }
1932
1933 if (!has_nonprivate_method && has_member_fn)
1934 {
1935 /* There are no non-private methods, and there's at least one
1936 private member function that isn't a constructor or
1937 destructor. (If all the private members are
1938 constructors/destructors we want to use the code below that
1939 issues error messages specifically referring to
1940 constructors/destructors.) */
1941 unsigned i;
1942 tree binfo = TYPE_BINFO (t);
1943
1944 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1945 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1946 {
1947 has_nonprivate_method = 1;
1948 break;
1949 }
1950 if (!has_nonprivate_method)
1951 {
1952 warning (OPT_Wctor_dtor_privacy,
1953 "all member functions in class %qT are private", t);
1954 return;
1955 }
1956 }
1957
1958 /* Even if some of the member functions are non-private, the class
1959 won't be useful for much if all the constructors or destructors
1960 are private: such an object can never be created or destroyed. */
1961 fn = CLASSTYPE_DESTRUCTORS (t);
1962 if (fn && TREE_PRIVATE (fn))
1963 {
1964 warning (OPT_Wctor_dtor_privacy,
1965 "%q#T only defines a private destructor and has no friends",
1966 t);
1967 return;
1968 }
1969
1970 /* Warn about classes that have private constructors and no friends. */
1971 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1972 /* Implicitly generated constructors are always public. */
1973 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1974 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1975 {
1976 int nonprivate_ctor = 0;
1977
1978 /* If a non-template class does not define a copy
1979 constructor, one is defined for it, enabling it to avoid
1980 this warning. For a template class, this does not
1981 happen, and so we would normally get a warning on:
1982
1983 template <class T> class C { private: C(); };
1984
1985 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1986 complete non-template or fully instantiated classes have this
1987 flag set. */
1988 if (!TYPE_HAS_COPY_CTOR (t))
1989 nonprivate_ctor = 1;
1990 else
1991 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1992 {
1993 tree ctor = OVL_CURRENT (fn);
1994 /* Ideally, we wouldn't count copy constructors (or, in
1995 fact, any constructor that takes an argument of the
1996 class type as a parameter) because such things cannot
1997 be used to construct an instance of the class unless
1998 you already have one. But, for now at least, we're
1999 more generous. */
2000 if (! TREE_PRIVATE (ctor))
2001 {
2002 nonprivate_ctor = 1;
2003 break;
2004 }
2005 }
2006
2007 if (nonprivate_ctor == 0)
2008 {
2009 warning (OPT_Wctor_dtor_privacy,
2010 "%q#T only defines private constructors and has no friends",
2011 t);
2012 return;
2013 }
2014 }
2015 }
2016
2017 static struct {
2018 gt_pointer_operator new_value;
2019 void *cookie;
2020 } resort_data;
2021
2022 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
2023
2024 static int
2025 method_name_cmp (const void* m1_p, const void* m2_p)
2026 {
2027 const tree *const m1 = (const tree *) m1_p;
2028 const tree *const m2 = (const tree *) m2_p;
2029
2030 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2031 return 0;
2032 if (*m1 == NULL_TREE)
2033 return -1;
2034 if (*m2 == NULL_TREE)
2035 return 1;
2036 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
2037 return -1;
2038 return 1;
2039 }
2040
2041 /* This routine compares two fields like method_name_cmp but using the
2042 pointer operator in resort_field_decl_data. */
2043
2044 static int
2045 resort_method_name_cmp (const void* m1_p, const void* m2_p)
2046 {
2047 const tree *const m1 = (const tree *) m1_p;
2048 const tree *const m2 = (const tree *) m2_p;
2049 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2050 return 0;
2051 if (*m1 == NULL_TREE)
2052 return -1;
2053 if (*m2 == NULL_TREE)
2054 return 1;
2055 {
2056 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
2057 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
2058 resort_data.new_value (&d1, resort_data.cookie);
2059 resort_data.new_value (&d2, resort_data.cookie);
2060 if (d1 < d2)
2061 return -1;
2062 }
2063 return 1;
2064 }
2065
2066 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
2067
2068 void
2069 resort_type_method_vec (void* obj,
2070 void* /*orig_obj*/,
2071 gt_pointer_operator new_value,
2072 void* cookie)
2073 {
2074 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
2075 int len = vec_safe_length (method_vec);
2076 size_t slot;
2077 tree fn;
2078
2079 /* The type conversion ops have to live at the front of the vec, so we
2080 can't sort them. */
2081 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2082 vec_safe_iterate (method_vec, slot, &fn);
2083 ++slot)
2084 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
2085 break;
2086
2087 if (len - slot > 1)
2088 {
2089 resort_data.new_value = new_value;
2090 resort_data.cookie = cookie;
2091 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
2092 resort_method_name_cmp);
2093 }
2094 }
2095
2096 /* Warn about duplicate methods in fn_fields.
2097
2098 Sort methods that are not special (i.e., constructors, destructors,
2099 and type conversion operators) so that we can find them faster in
2100 search. */
2101
2102 static void
2103 finish_struct_methods (tree t)
2104 {
2105 tree fn_fields;
2106 vec<tree, va_gc> *method_vec;
2107 int slot, len;
2108
2109 method_vec = CLASSTYPE_METHOD_VEC (t);
2110 if (!method_vec)
2111 return;
2112
2113 len = method_vec->length ();
2114
2115 /* Clear DECL_IN_AGGR_P for all functions. */
2116 for (fn_fields = TYPE_METHODS (t); fn_fields;
2117 fn_fields = DECL_CHAIN (fn_fields))
2118 DECL_IN_AGGR_P (fn_fields) = 0;
2119
2120 /* Issue warnings about private constructors and such. If there are
2121 no methods, then some public defaults are generated. */
2122 maybe_warn_about_overly_private_class (t);
2123
2124 /* The type conversion ops have to live at the front of the vec, so we
2125 can't sort them. */
2126 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2127 method_vec->iterate (slot, &fn_fields);
2128 ++slot)
2129 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2130 break;
2131 if (len - slot > 1)
2132 qsort (method_vec->address () + slot,
2133 len-slot, sizeof (tree), method_name_cmp);
2134 }
2135
2136 /* Make BINFO's vtable have N entries, including RTTI entries,
2137 vbase and vcall offsets, etc. Set its type and call the back end
2138 to lay it out. */
2139
2140 static void
2141 layout_vtable_decl (tree binfo, int n)
2142 {
2143 tree atype;
2144 tree vtable;
2145
2146 atype = build_array_of_n_type (vtable_entry_type, n);
2147 layout_type (atype);
2148
2149 /* We may have to grow the vtable. */
2150 vtable = get_vtbl_decl_for_binfo (binfo);
2151 if (!same_type_p (TREE_TYPE (vtable), atype))
2152 {
2153 TREE_TYPE (vtable) = atype;
2154 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2155 layout_decl (vtable, 0);
2156 }
2157 }
2158
2159 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2160 have the same signature. */
2161
2162 int
2163 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2164 {
2165 /* One destructor overrides another if they are the same kind of
2166 destructor. */
2167 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2168 && special_function_p (base_fndecl) == special_function_p (fndecl))
2169 return 1;
2170 /* But a non-destructor never overrides a destructor, nor vice
2171 versa, nor do different kinds of destructors override
2172 one-another. For example, a complete object destructor does not
2173 override a deleting destructor. */
2174 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2175 return 0;
2176
2177 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2178 || (DECL_CONV_FN_P (fndecl)
2179 && DECL_CONV_FN_P (base_fndecl)
2180 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2181 DECL_CONV_FN_TYPE (base_fndecl))))
2182 {
2183 tree fntype = TREE_TYPE (fndecl);
2184 tree base_fntype = TREE_TYPE (base_fndecl);
2185 if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2186 && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2187 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2188 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2189 return 1;
2190 }
2191 return 0;
2192 }
2193
2194 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2195 subobject. */
2196
2197 static bool
2198 base_derived_from (tree derived, tree base)
2199 {
2200 tree probe;
2201
2202 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2203 {
2204 if (probe == derived)
2205 return true;
2206 else if (BINFO_VIRTUAL_P (probe))
2207 /* If we meet a virtual base, we can't follow the inheritance
2208 any more. See if the complete type of DERIVED contains
2209 such a virtual base. */
2210 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2211 != NULL_TREE);
2212 }
2213 return false;
2214 }
2215
2216 typedef struct find_final_overrider_data_s {
2217 /* The function for which we are trying to find a final overrider. */
2218 tree fn;
2219 /* The base class in which the function was declared. */
2220 tree declaring_base;
2221 /* The candidate overriders. */
2222 tree candidates;
2223 /* Path to most derived. */
2224 vec<tree> path;
2225 } find_final_overrider_data;
2226
2227 /* Add the overrider along the current path to FFOD->CANDIDATES.
2228 Returns true if an overrider was found; false otherwise. */
2229
2230 static bool
2231 dfs_find_final_overrider_1 (tree binfo,
2232 find_final_overrider_data *ffod,
2233 unsigned depth)
2234 {
2235 tree method;
2236
2237 /* If BINFO is not the most derived type, try a more derived class.
2238 A definition there will overrider a definition here. */
2239 if (depth)
2240 {
2241 depth--;
2242 if (dfs_find_final_overrider_1
2243 (ffod->path[depth], ffod, depth))
2244 return true;
2245 }
2246
2247 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2248 if (method)
2249 {
2250 tree *candidate = &ffod->candidates;
2251
2252 /* Remove any candidates overridden by this new function. */
2253 while (*candidate)
2254 {
2255 /* If *CANDIDATE overrides METHOD, then METHOD
2256 cannot override anything else on the list. */
2257 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2258 return true;
2259 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2260 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2261 *candidate = TREE_CHAIN (*candidate);
2262 else
2263 candidate = &TREE_CHAIN (*candidate);
2264 }
2265
2266 /* Add the new function. */
2267 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2268 return true;
2269 }
2270
2271 return false;
2272 }
2273
2274 /* Called from find_final_overrider via dfs_walk. */
2275
2276 static tree
2277 dfs_find_final_overrider_pre (tree binfo, void *data)
2278 {
2279 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2280
2281 if (binfo == ffod->declaring_base)
2282 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2283 ffod->path.safe_push (binfo);
2284
2285 return NULL_TREE;
2286 }
2287
2288 static tree
2289 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2290 {
2291 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2292 ffod->path.pop ();
2293
2294 return NULL_TREE;
2295 }
2296
2297 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2298 FN and whose TREE_VALUE is the binfo for the base where the
2299 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2300 DERIVED) is the base object in which FN is declared. */
2301
2302 static tree
2303 find_final_overrider (tree derived, tree binfo, tree fn)
2304 {
2305 find_final_overrider_data ffod;
2306
2307 /* Getting this right is a little tricky. This is valid:
2308
2309 struct S { virtual void f (); };
2310 struct T { virtual void f (); };
2311 struct U : public S, public T { };
2312
2313 even though calling `f' in `U' is ambiguous. But,
2314
2315 struct R { virtual void f(); };
2316 struct S : virtual public R { virtual void f (); };
2317 struct T : virtual public R { virtual void f (); };
2318 struct U : public S, public T { };
2319
2320 is not -- there's no way to decide whether to put `S::f' or
2321 `T::f' in the vtable for `R'.
2322
2323 The solution is to look at all paths to BINFO. If we find
2324 different overriders along any two, then there is a problem. */
2325 if (DECL_THUNK_P (fn))
2326 fn = THUNK_TARGET (fn);
2327
2328 /* Determine the depth of the hierarchy. */
2329 ffod.fn = fn;
2330 ffod.declaring_base = binfo;
2331 ffod.candidates = NULL_TREE;
2332 ffod.path.create (30);
2333
2334 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2335 dfs_find_final_overrider_post, &ffod);
2336
2337 ffod.path.release ();
2338
2339 /* If there was no winner, issue an error message. */
2340 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2341 return error_mark_node;
2342
2343 return ffod.candidates;
2344 }
2345
2346 /* Return the index of the vcall offset for FN when TYPE is used as a
2347 virtual base. */
2348
2349 static tree
2350 get_vcall_index (tree fn, tree type)
2351 {
2352 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2353 tree_pair_p p;
2354 unsigned ix;
2355
2356 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2357 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2358 || same_signature_p (fn, p->purpose))
2359 return p->value;
2360
2361 /* There should always be an appropriate index. */
2362 gcc_unreachable ();
2363 }
2364
2365 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2366 dominated by T. FN is the old function; VIRTUALS points to the
2367 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2368 of that entry in the list. */
2369
2370 static void
2371 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2372 unsigned ix)
2373 {
2374 tree b;
2375 tree overrider;
2376 tree delta;
2377 tree virtual_base;
2378 tree first_defn;
2379 tree overrider_fn, overrider_target;
2380 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2381 tree over_return, base_return;
2382 bool lost = false;
2383
2384 /* Find the nearest primary base (possibly binfo itself) which defines
2385 this function; this is the class the caller will convert to when
2386 calling FN through BINFO. */
2387 for (b = binfo; ; b = get_primary_binfo (b))
2388 {
2389 gcc_assert (b);
2390 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2391 break;
2392
2393 /* The nearest definition is from a lost primary. */
2394 if (BINFO_LOST_PRIMARY_P (b))
2395 lost = true;
2396 }
2397 first_defn = b;
2398
2399 /* Find the final overrider. */
2400 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2401 if (overrider == error_mark_node)
2402 {
2403 error ("no unique final overrider for %qD in %qT", target_fn, t);
2404 return;
2405 }
2406 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2407
2408 /* Check for adjusting covariant return types. */
2409 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2410 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2411
2412 if (POINTER_TYPE_P (over_return)
2413 && TREE_CODE (over_return) == TREE_CODE (base_return)
2414 && CLASS_TYPE_P (TREE_TYPE (over_return))
2415 && CLASS_TYPE_P (TREE_TYPE (base_return))
2416 /* If the overrider is invalid, don't even try. */
2417 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2418 {
2419 /* If FN is a covariant thunk, we must figure out the adjustment
2420 to the final base FN was converting to. As OVERRIDER_TARGET might
2421 also be converting to the return type of FN, we have to
2422 combine the two conversions here. */
2423 tree fixed_offset, virtual_offset;
2424
2425 over_return = TREE_TYPE (over_return);
2426 base_return = TREE_TYPE (base_return);
2427
2428 if (DECL_THUNK_P (fn))
2429 {
2430 gcc_assert (DECL_RESULT_THUNK_P (fn));
2431 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2432 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2433 }
2434 else
2435 fixed_offset = virtual_offset = NULL_TREE;
2436
2437 if (virtual_offset)
2438 /* Find the equivalent binfo within the return type of the
2439 overriding function. We will want the vbase offset from
2440 there. */
2441 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2442 over_return);
2443 else if (!same_type_ignoring_top_level_qualifiers_p
2444 (over_return, base_return))
2445 {
2446 /* There was no existing virtual thunk (which takes
2447 precedence). So find the binfo of the base function's
2448 return type within the overriding function's return type.
2449 We cannot call lookup base here, because we're inside a
2450 dfs_walk, and will therefore clobber the BINFO_MARKED
2451 flags. Fortunately we know the covariancy is valid (it
2452 has already been checked), so we can just iterate along
2453 the binfos, which have been chained in inheritance graph
2454 order. Of course it is lame that we have to repeat the
2455 search here anyway -- we should really be caching pieces
2456 of the vtable and avoiding this repeated work. */
2457 tree thunk_binfo, base_binfo;
2458
2459 /* Find the base binfo within the overriding function's
2460 return type. We will always find a thunk_binfo, except
2461 when the covariancy is invalid (which we will have
2462 already diagnosed). */
2463 for (base_binfo = TYPE_BINFO (base_return),
2464 thunk_binfo = TYPE_BINFO (over_return);
2465 thunk_binfo;
2466 thunk_binfo = TREE_CHAIN (thunk_binfo))
2467 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2468 BINFO_TYPE (base_binfo)))
2469 break;
2470
2471 /* See if virtual inheritance is involved. */
2472 for (virtual_offset = thunk_binfo;
2473 virtual_offset;
2474 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2475 if (BINFO_VIRTUAL_P (virtual_offset))
2476 break;
2477
2478 if (virtual_offset
2479 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2480 {
2481 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2482
2483 if (virtual_offset)
2484 {
2485 /* We convert via virtual base. Adjust the fixed
2486 offset to be from there. */
2487 offset =
2488 size_diffop (offset,
2489 convert (ssizetype,
2490 BINFO_OFFSET (virtual_offset)));
2491 }
2492 if (fixed_offset)
2493 /* There was an existing fixed offset, this must be
2494 from the base just converted to, and the base the
2495 FN was thunking to. */
2496 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2497 else
2498 fixed_offset = offset;
2499 }
2500 }
2501
2502 if (fixed_offset || virtual_offset)
2503 /* Replace the overriding function with a covariant thunk. We
2504 will emit the overriding function in its own slot as
2505 well. */
2506 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2507 fixed_offset, virtual_offset);
2508 }
2509 else
2510 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2511 !DECL_THUNK_P (fn));
2512
2513 /* If we need a covariant thunk, then we may need to adjust first_defn.
2514 The ABI specifies that the thunks emitted with a function are
2515 determined by which bases the function overrides, so we need to be
2516 sure that we're using a thunk for some overridden base; even if we
2517 know that the necessary this adjustment is zero, there may not be an
2518 appropriate zero-this-adjusment thunk for us to use since thunks for
2519 overriding virtual bases always use the vcall offset.
2520
2521 Furthermore, just choosing any base that overrides this function isn't
2522 quite right, as this slot won't be used for calls through a type that
2523 puts a covariant thunk here. Calling the function through such a type
2524 will use a different slot, and that slot is the one that determines
2525 the thunk emitted for that base.
2526
2527 So, keep looking until we find the base that we're really overriding
2528 in this slot: the nearest primary base that doesn't use a covariant
2529 thunk in this slot. */
2530 if (overrider_target != overrider_fn)
2531 {
2532 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2533 /* We already know that the overrider needs a covariant thunk. */
2534 b = get_primary_binfo (b);
2535 for (; ; b = get_primary_binfo (b))
2536 {
2537 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2538 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2539 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2540 break;
2541 if (BINFO_LOST_PRIMARY_P (b))
2542 lost = true;
2543 }
2544 first_defn = b;
2545 }
2546
2547 /* Assume that we will produce a thunk that convert all the way to
2548 the final overrider, and not to an intermediate virtual base. */
2549 virtual_base = NULL_TREE;
2550
2551 /* See if we can convert to an intermediate virtual base first, and then
2552 use the vcall offset located there to finish the conversion. */
2553 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2554 {
2555 /* If we find the final overrider, then we can stop
2556 walking. */
2557 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2558 BINFO_TYPE (TREE_VALUE (overrider))))
2559 break;
2560
2561 /* If we find a virtual base, and we haven't yet found the
2562 overrider, then there is a virtual base between the
2563 declaring base (first_defn) and the final overrider. */
2564 if (BINFO_VIRTUAL_P (b))
2565 {
2566 virtual_base = b;
2567 break;
2568 }
2569 }
2570
2571 /* Compute the constant adjustment to the `this' pointer. The
2572 `this' pointer, when this function is called, will point at BINFO
2573 (or one of its primary bases, which are at the same offset). */
2574 if (virtual_base)
2575 /* The `this' pointer needs to be adjusted from the declaration to
2576 the nearest virtual base. */
2577 delta = size_diffop_loc (input_location,
2578 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2579 convert (ssizetype, BINFO_OFFSET (first_defn)));
2580 else if (lost)
2581 /* If the nearest definition is in a lost primary, we don't need an
2582 entry in our vtable. Except possibly in a constructor vtable,
2583 if we happen to get our primary back. In that case, the offset
2584 will be zero, as it will be a primary base. */
2585 delta = size_zero_node;
2586 else
2587 /* The `this' pointer needs to be adjusted from pointing to
2588 BINFO to pointing at the base where the final overrider
2589 appears. */
2590 delta = size_diffop_loc (input_location,
2591 convert (ssizetype,
2592 BINFO_OFFSET (TREE_VALUE (overrider))),
2593 convert (ssizetype, BINFO_OFFSET (binfo)));
2594
2595 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2596
2597 if (virtual_base)
2598 BV_VCALL_INDEX (*virtuals)
2599 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2600 else
2601 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2602
2603 BV_LOST_PRIMARY (*virtuals) = lost;
2604 }
2605
2606 /* Called from modify_all_vtables via dfs_walk. */
2607
2608 static tree
2609 dfs_modify_vtables (tree binfo, void* data)
2610 {
2611 tree t = (tree) data;
2612 tree virtuals;
2613 tree old_virtuals;
2614 unsigned ix;
2615
2616 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2617 /* A base without a vtable needs no modification, and its bases
2618 are uninteresting. */
2619 return dfs_skip_bases;
2620
2621 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2622 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2623 /* Don't do the primary vtable, if it's new. */
2624 return NULL_TREE;
2625
2626 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2627 /* There's no need to modify the vtable for a non-virtual primary
2628 base; we're not going to use that vtable anyhow. We do still
2629 need to do this for virtual primary bases, as they could become
2630 non-primary in a construction vtable. */
2631 return NULL_TREE;
2632
2633 make_new_vtable (t, binfo);
2634
2635 /* Now, go through each of the virtual functions in the virtual
2636 function table for BINFO. Find the final overrider, and update
2637 the BINFO_VIRTUALS list appropriately. */
2638 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2639 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2640 virtuals;
2641 ix++, virtuals = TREE_CHAIN (virtuals),
2642 old_virtuals = TREE_CHAIN (old_virtuals))
2643 update_vtable_entry_for_fn (t,
2644 binfo,
2645 BV_FN (old_virtuals),
2646 &virtuals, ix);
2647
2648 return NULL_TREE;
2649 }
2650
2651 /* Update all of the primary and secondary vtables for T. Create new
2652 vtables as required, and initialize their RTTI information. Each
2653 of the functions in VIRTUALS is declared in T and may override a
2654 virtual function from a base class; find and modify the appropriate
2655 entries to point to the overriding functions. Returns a list, in
2656 declaration order, of the virtual functions that are declared in T,
2657 but do not appear in the primary base class vtable, and which
2658 should therefore be appended to the end of the vtable for T. */
2659
2660 static tree
2661 modify_all_vtables (tree t, tree virtuals)
2662 {
2663 tree binfo = TYPE_BINFO (t);
2664 tree *fnsp;
2665
2666 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2667 if (TYPE_CONTAINS_VPTR_P (t))
2668 get_vtable_decl (t, false);
2669
2670 /* Update all of the vtables. */
2671 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2672
2673 /* Add virtual functions not already in our primary vtable. These
2674 will be both those introduced by this class, and those overridden
2675 from secondary bases. It does not include virtuals merely
2676 inherited from secondary bases. */
2677 for (fnsp = &virtuals; *fnsp; )
2678 {
2679 tree fn = TREE_VALUE (*fnsp);
2680
2681 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2682 || DECL_VINDEX (fn) == error_mark_node)
2683 {
2684 /* We don't need to adjust the `this' pointer when
2685 calling this function. */
2686 BV_DELTA (*fnsp) = integer_zero_node;
2687 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2688
2689 /* This is a function not already in our vtable. Keep it. */
2690 fnsp = &TREE_CHAIN (*fnsp);
2691 }
2692 else
2693 /* We've already got an entry for this function. Skip it. */
2694 *fnsp = TREE_CHAIN (*fnsp);
2695 }
2696
2697 return virtuals;
2698 }
2699
2700 /* Get the base virtual function declarations in T that have the
2701 indicated NAME. */
2702
2703 static tree
2704 get_basefndecls (tree name, tree t)
2705 {
2706 tree methods;
2707 tree base_fndecls = NULL_TREE;
2708 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2709 int i;
2710
2711 /* Find virtual functions in T with the indicated NAME. */
2712 i = lookup_fnfields_1 (t, name);
2713 if (i != -1)
2714 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2715 methods;
2716 methods = OVL_NEXT (methods))
2717 {
2718 tree method = OVL_CURRENT (methods);
2719
2720 if (TREE_CODE (method) == FUNCTION_DECL
2721 && DECL_VINDEX (method))
2722 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2723 }
2724
2725 if (base_fndecls)
2726 return base_fndecls;
2727
2728 for (i = 0; i < n_baseclasses; i++)
2729 {
2730 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2731 base_fndecls = chainon (get_basefndecls (name, basetype),
2732 base_fndecls);
2733 }
2734
2735 return base_fndecls;
2736 }
2737
2738 /* If this declaration supersedes the declaration of
2739 a method declared virtual in the base class, then
2740 mark this field as being virtual as well. */
2741
2742 void
2743 check_for_override (tree decl, tree ctype)
2744 {
2745 bool overrides_found = false;
2746 if (TREE_CODE (decl) == TEMPLATE_DECL)
2747 /* In [temp.mem] we have:
2748
2749 A specialization of a member function template does not
2750 override a virtual function from a base class. */
2751 return;
2752 if ((DECL_DESTRUCTOR_P (decl)
2753 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2754 || DECL_CONV_FN_P (decl))
2755 && look_for_overrides (ctype, decl)
2756 && !DECL_STATIC_FUNCTION_P (decl))
2757 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2758 the error_mark_node so that we know it is an overriding
2759 function. */
2760 {
2761 DECL_VINDEX (decl) = decl;
2762 overrides_found = true;
2763 }
2764
2765 if (DECL_VIRTUAL_P (decl))
2766 {
2767 if (!DECL_VINDEX (decl))
2768 DECL_VINDEX (decl) = error_mark_node;
2769 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2770 if (DECL_DESTRUCTOR_P (decl))
2771 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2772 }
2773 else if (DECL_FINAL_P (decl))
2774 error ("%q+#D marked final, but is not virtual", decl);
2775 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2776 error ("%q+#D marked override, but does not override", decl);
2777 }
2778
2779 /* Warn about hidden virtual functions that are not overridden in t.
2780 We know that constructors and destructors don't apply. */
2781
2782 static void
2783 warn_hidden (tree t)
2784 {
2785 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2786 tree fns;
2787 size_t i;
2788
2789 /* We go through each separately named virtual function. */
2790 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2791 vec_safe_iterate (method_vec, i, &fns);
2792 ++i)
2793 {
2794 tree fn;
2795 tree name;
2796 tree fndecl;
2797 tree base_fndecls;
2798 tree base_binfo;
2799 tree binfo;
2800 int j;
2801
2802 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2803 have the same name. Figure out what name that is. */
2804 name = DECL_NAME (OVL_CURRENT (fns));
2805 /* There are no possibly hidden functions yet. */
2806 base_fndecls = NULL_TREE;
2807 /* Iterate through all of the base classes looking for possibly
2808 hidden functions. */
2809 for (binfo = TYPE_BINFO (t), j = 0;
2810 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2811 {
2812 tree basetype = BINFO_TYPE (base_binfo);
2813 base_fndecls = chainon (get_basefndecls (name, basetype),
2814 base_fndecls);
2815 }
2816
2817 /* If there are no functions to hide, continue. */
2818 if (!base_fndecls)
2819 continue;
2820
2821 /* Remove any overridden functions. */
2822 for (fn = fns; fn; fn = OVL_NEXT (fn))
2823 {
2824 fndecl = OVL_CURRENT (fn);
2825 if (DECL_VINDEX (fndecl))
2826 {
2827 tree *prev = &base_fndecls;
2828
2829 while (*prev)
2830 /* If the method from the base class has the same
2831 signature as the method from the derived class, it
2832 has been overridden. */
2833 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2834 *prev = TREE_CHAIN (*prev);
2835 else
2836 prev = &TREE_CHAIN (*prev);
2837 }
2838 }
2839
2840 /* Now give a warning for all base functions without overriders,
2841 as they are hidden. */
2842 while (base_fndecls)
2843 {
2844 /* Here we know it is a hider, and no overrider exists. */
2845 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2846 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2847 base_fndecls = TREE_CHAIN (base_fndecls);
2848 }
2849 }
2850 }
2851
2852 /* Recursive helper for finish_struct_anon. */
2853
2854 static void
2855 finish_struct_anon_r (tree field, bool complain)
2856 {
2857 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2858 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2859 for (; elt; elt = DECL_CHAIN (elt))
2860 {
2861 /* We're generally only interested in entities the user
2862 declared, but we also find nested classes by noticing
2863 the TYPE_DECL that we create implicitly. You're
2864 allowed to put one anonymous union inside another,
2865 though, so we explicitly tolerate that. We use
2866 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2867 we also allow unnamed types used for defining fields. */
2868 if (DECL_ARTIFICIAL (elt)
2869 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2870 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2871 continue;
2872
2873 if (TREE_CODE (elt) != FIELD_DECL)
2874 {
2875 /* We already complained about static data members in
2876 finish_static_data_member_decl. */
2877 if (complain && TREE_CODE (elt) != VAR_DECL)
2878 {
2879 if (is_union)
2880 permerror (input_location,
2881 "%q+#D invalid; an anonymous union can "
2882 "only have non-static data members", elt);
2883 else
2884 permerror (input_location,
2885 "%q+#D invalid; an anonymous struct can "
2886 "only have non-static data members", elt);
2887 }
2888 continue;
2889 }
2890
2891 if (complain)
2892 {
2893 if (TREE_PRIVATE (elt))
2894 {
2895 if (is_union)
2896 permerror (input_location,
2897 "private member %q+#D in anonymous union", elt);
2898 else
2899 permerror (input_location,
2900 "private member %q+#D in anonymous struct", elt);
2901 }
2902 else if (TREE_PROTECTED (elt))
2903 {
2904 if (is_union)
2905 permerror (input_location,
2906 "protected member %q+#D in anonymous union", elt);
2907 else
2908 permerror (input_location,
2909 "protected member %q+#D in anonymous struct", elt);
2910 }
2911 }
2912
2913 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2914 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2915
2916 /* Recurse into the anonymous aggregates to handle correctly
2917 access control (c++/24926):
2918
2919 class A {
2920 union {
2921 union {
2922 int i;
2923 };
2924 };
2925 };
2926
2927 int j=A().i; */
2928 if (DECL_NAME (elt) == NULL_TREE
2929 && ANON_AGGR_TYPE_P (TREE_TYPE (elt)))
2930 finish_struct_anon_r (elt, /*complain=*/false);
2931 }
2932 }
2933
2934 /* Check for things that are invalid. There are probably plenty of other
2935 things we should check for also. */
2936
2937 static void
2938 finish_struct_anon (tree t)
2939 {
2940 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2941 {
2942 if (TREE_STATIC (field))
2943 continue;
2944 if (TREE_CODE (field) != FIELD_DECL)
2945 continue;
2946
2947 if (DECL_NAME (field) == NULL_TREE
2948 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2949 finish_struct_anon_r (field, /*complain=*/true);
2950 }
2951 }
2952
2953 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2954 will be used later during class template instantiation.
2955 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2956 a non-static member data (FIELD_DECL), a member function
2957 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2958 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2959 When FRIEND_P is nonzero, T is either a friend class
2960 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2961 (FUNCTION_DECL, TEMPLATE_DECL). */
2962
2963 void
2964 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2965 {
2966 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2967 if (CLASSTYPE_TEMPLATE_INFO (type))
2968 CLASSTYPE_DECL_LIST (type)
2969 = tree_cons (friend_p ? NULL_TREE : type,
2970 t, CLASSTYPE_DECL_LIST (type));
2971 }
2972
2973 /* This function is called from declare_virt_assop_and_dtor via
2974 dfs_walk_all.
2975
2976 DATA is a type that direcly or indirectly inherits the base
2977 represented by BINFO. If BINFO contains a virtual assignment [copy
2978 assignment or move assigment] operator or a virtual constructor,
2979 declare that function in DATA if it hasn't been already declared. */
2980
2981 static tree
2982 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2983 {
2984 tree bv, fn, t = (tree)data;
2985 tree opname = ansi_assopname (NOP_EXPR);
2986
2987 gcc_assert (t && CLASS_TYPE_P (t));
2988 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2989
2990 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2991 /* A base without a vtable needs no modification, and its bases
2992 are uninteresting. */
2993 return dfs_skip_bases;
2994
2995 if (BINFO_PRIMARY_P (binfo))
2996 /* If this is a primary base, then we have already looked at the
2997 virtual functions of its vtable. */
2998 return NULL_TREE;
2999
3000 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
3001 {
3002 fn = BV_FN (bv);
3003
3004 if (DECL_NAME (fn) == opname)
3005 {
3006 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
3007 lazily_declare_fn (sfk_copy_assignment, t);
3008 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
3009 lazily_declare_fn (sfk_move_assignment, t);
3010 }
3011 else if (DECL_DESTRUCTOR_P (fn)
3012 && CLASSTYPE_LAZY_DESTRUCTOR (t))
3013 lazily_declare_fn (sfk_destructor, t);
3014 }
3015
3016 return NULL_TREE;
3017 }
3018
3019 /* If the class type T has a direct or indirect base that contains a
3020 virtual assignment operator or a virtual destructor, declare that
3021 function in T if it hasn't been already declared. */
3022
3023 static void
3024 declare_virt_assop_and_dtor (tree t)
3025 {
3026 if (!(TYPE_POLYMORPHIC_P (t)
3027 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
3028 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
3029 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
3030 return;
3031
3032 dfs_walk_all (TYPE_BINFO (t),
3033 dfs_declare_virt_assop_and_dtor,
3034 NULL, t);
3035 }
3036
3037 /* Declare the inheriting constructor for class T inherited from base
3038 constructor CTOR with the parameter array PARMS of size NPARMS. */
3039
3040 static void
3041 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
3042 {
3043 /* We don't declare an inheriting ctor that would be a default,
3044 copy or move ctor for derived or base. */
3045 if (nparms == 0)
3046 return;
3047 if (nparms == 1
3048 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
3049 {
3050 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
3051 if (parm == t || parm == DECL_CONTEXT (ctor))
3052 return;
3053 }
3054
3055 tree parmlist = void_list_node;
3056 for (int i = nparms - 1; i >= 0; i--)
3057 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
3058 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
3059 t, false, ctor, parmlist);
3060 if (add_method (t, fn, NULL_TREE))
3061 {
3062 DECL_CHAIN (fn) = TYPE_METHODS (t);
3063 TYPE_METHODS (t) = fn;
3064 }
3065 }
3066
3067 /* Declare all the inheriting constructors for class T inherited from base
3068 constructor CTOR. */
3069
3070 static void
3071 one_inherited_ctor (tree ctor, tree t)
3072 {
3073 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
3074
3075 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
3076 int i = 0;
3077 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
3078 {
3079 if (TREE_PURPOSE (parms))
3080 one_inheriting_sig (t, ctor, new_parms, i);
3081 new_parms[i++] = TREE_VALUE (parms);
3082 }
3083 one_inheriting_sig (t, ctor, new_parms, i);
3084 if (parms == NULL_TREE)
3085 {
3086 if (warning (OPT_Winherited_variadic_ctor,
3087 "the ellipsis in %qD is not inherited", ctor))
3088 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
3089 }
3090 }
3091
3092 /* Create default constructors, assignment operators, and so forth for
3093 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
3094 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
3095 the class cannot have a default constructor, copy constructor
3096 taking a const reference argument, or an assignment operator taking
3097 a const reference, respectively. */
3098
3099 static void
3100 add_implicitly_declared_members (tree t, tree* access_decls,
3101 int cant_have_const_cctor,
3102 int cant_have_const_assignment)
3103 {
3104 bool move_ok = false;
3105
3106 if (cxx_dialect >= cxx11 && !CLASSTYPE_DESTRUCTORS (t)
3107 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
3108 && !type_has_move_constructor (t) && !type_has_move_assign (t))
3109 move_ok = true;
3110
3111 /* Destructor. */
3112 if (!CLASSTYPE_DESTRUCTORS (t))
3113 {
3114 /* In general, we create destructors lazily. */
3115 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
3116
3117 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3118 && TYPE_FOR_JAVA (t))
3119 /* But if this is a Java class, any non-trivial destructor is
3120 invalid, even if compiler-generated. Therefore, if the
3121 destructor is non-trivial we create it now. */
3122 lazily_declare_fn (sfk_destructor, t);
3123 }
3124
3125 /* [class.ctor]
3126
3127 If there is no user-declared constructor for a class, a default
3128 constructor is implicitly declared. */
3129 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
3130 {
3131 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
3132 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
3133 if (cxx_dialect >= cxx11)
3134 TYPE_HAS_CONSTEXPR_CTOR (t)
3135 /* This might force the declaration. */
3136 = type_has_constexpr_default_constructor (t);
3137 }
3138
3139 /* [class.ctor]
3140
3141 If a class definition does not explicitly declare a copy
3142 constructor, one is declared implicitly. */
3143 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
3144 {
3145 TYPE_HAS_COPY_CTOR (t) = 1;
3146 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
3147 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3148 if (move_ok)
3149 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3150 }
3151
3152 /* If there is no assignment operator, one will be created if and
3153 when it is needed. For now, just record whether or not the type
3154 of the parameter to the assignment operator will be a const or
3155 non-const reference. */
3156 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3157 {
3158 TYPE_HAS_COPY_ASSIGN (t) = 1;
3159 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3160 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3161 if (move_ok)
3162 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3163 }
3164
3165 /* We can't be lazy about declaring functions that might override
3166 a virtual function from a base class. */
3167 declare_virt_assop_and_dtor (t);
3168
3169 while (*access_decls)
3170 {
3171 tree using_decl = TREE_VALUE (*access_decls);
3172 tree decl = USING_DECL_DECLS (using_decl);
3173 if (DECL_NAME (using_decl) == ctor_identifier)
3174 {
3175 /* declare, then remove the decl */
3176 tree ctor_list = decl;
3177 location_t loc = input_location;
3178 input_location = DECL_SOURCE_LOCATION (using_decl);
3179 if (ctor_list)
3180 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3181 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3182 *access_decls = TREE_CHAIN (*access_decls);
3183 input_location = loc;
3184 }
3185 else
3186 access_decls = &TREE_CHAIN (*access_decls);
3187 }
3188 }
3189
3190 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3191 count the number of fields in TYPE, including anonymous union
3192 members. */
3193
3194 static int
3195 count_fields (tree fields)
3196 {
3197 tree x;
3198 int n_fields = 0;
3199 for (x = fields; x; x = DECL_CHAIN (x))
3200 {
3201 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3202 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3203 else
3204 n_fields += 1;
3205 }
3206 return n_fields;
3207 }
3208
3209 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3210 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3211 elts, starting at offset IDX. */
3212
3213 static int
3214 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3215 {
3216 tree x;
3217 for (x = fields; x; x = DECL_CHAIN (x))
3218 {
3219 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3220 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3221 else
3222 field_vec->elts[idx++] = x;
3223 }
3224 return idx;
3225 }
3226
3227 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3228 starting at offset IDX. */
3229
3230 static int
3231 add_enum_fields_to_record_type (tree enumtype,
3232 struct sorted_fields_type *field_vec,
3233 int idx)
3234 {
3235 tree values;
3236 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3237 field_vec->elts[idx++] = TREE_VALUE (values);
3238 return idx;
3239 }
3240
3241 /* FIELD is a bit-field. We are finishing the processing for its
3242 enclosing type. Issue any appropriate messages and set appropriate
3243 flags. Returns false if an error has been diagnosed. */
3244
3245 static bool
3246 check_bitfield_decl (tree field)
3247 {
3248 tree type = TREE_TYPE (field);
3249 tree w;
3250
3251 /* Extract the declared width of the bitfield, which has been
3252 temporarily stashed in DECL_INITIAL. */
3253 w = DECL_INITIAL (field);
3254 gcc_assert (w != NULL_TREE);
3255 /* Remove the bit-field width indicator so that the rest of the
3256 compiler does not treat that value as an initializer. */
3257 DECL_INITIAL (field) = NULL_TREE;
3258
3259 /* Detect invalid bit-field type. */
3260 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3261 {
3262 error ("bit-field %q+#D with non-integral type", field);
3263 w = error_mark_node;
3264 }
3265 else
3266 {
3267 location_t loc = input_location;
3268 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3269 STRIP_NOPS (w);
3270
3271 /* detect invalid field size. */
3272 input_location = DECL_SOURCE_LOCATION (field);
3273 w = cxx_constant_value (w);
3274 input_location = loc;
3275
3276 if (TREE_CODE (w) != INTEGER_CST)
3277 {
3278 error ("bit-field %q+D width not an integer constant", field);
3279 w = error_mark_node;
3280 }
3281 else if (tree_int_cst_sgn (w) < 0)
3282 {
3283 error ("negative width in bit-field %q+D", field);
3284 w = error_mark_node;
3285 }
3286 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3287 {
3288 error ("zero width for bit-field %q+D", field);
3289 w = error_mark_node;
3290 }
3291 else if ((TREE_CODE (type) != ENUMERAL_TYPE
3292 && TREE_CODE (type) != BOOLEAN_TYPE
3293 && compare_tree_int (w, TYPE_PRECISION (type)) > 0)
3294 || ((TREE_CODE (type) == ENUMERAL_TYPE
3295 || TREE_CODE (type) == BOOLEAN_TYPE)
3296 && tree_int_cst_lt (TYPE_SIZE (type), w)))
3297 warning (0, "width of %q+D exceeds its type", field);
3298 else if (TREE_CODE (type) == ENUMERAL_TYPE
3299 && (0 > (compare_tree_int
3300 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3301 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3302 }
3303
3304 if (w != error_mark_node)
3305 {
3306 DECL_SIZE (field) = convert (bitsizetype, w);
3307 DECL_BIT_FIELD (field) = 1;
3308 return true;
3309 }
3310 else
3311 {
3312 /* Non-bit-fields are aligned for their type. */
3313 DECL_BIT_FIELD (field) = 0;
3314 CLEAR_DECL_C_BIT_FIELD (field);
3315 return false;
3316 }
3317 }
3318
3319 /* FIELD is a non bit-field. We are finishing the processing for its
3320 enclosing type T. Issue any appropriate messages and set appropriate
3321 flags. */
3322
3323 static void
3324 check_field_decl (tree field,
3325 tree t,
3326 int* cant_have_const_ctor,
3327 int* no_const_asn_ref,
3328 int* any_default_members)
3329 {
3330 tree type = strip_array_types (TREE_TYPE (field));
3331
3332 /* In C++98 an anonymous union cannot contain any fields which would change
3333 the settings of CANT_HAVE_CONST_CTOR and friends. */
3334 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11)
3335 ;
3336 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3337 structs. So, we recurse through their fields here. */
3338 else if (ANON_AGGR_TYPE_P (type))
3339 {
3340 tree fields;
3341
3342 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3343 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3344 check_field_decl (fields, t, cant_have_const_ctor,
3345 no_const_asn_ref, any_default_members);
3346 }
3347 /* Check members with class type for constructors, destructors,
3348 etc. */
3349 else if (CLASS_TYPE_P (type))
3350 {
3351 /* Never let anything with uninheritable virtuals
3352 make it through without complaint. */
3353 abstract_virtuals_error (field, type);
3354
3355 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11)
3356 {
3357 static bool warned;
3358 int oldcount = errorcount;
3359 if (TYPE_NEEDS_CONSTRUCTING (type))
3360 error ("member %q+#D with constructor not allowed in union",
3361 field);
3362 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3363 error ("member %q+#D with destructor not allowed in union", field);
3364 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3365 error ("member %q+#D with copy assignment operator not allowed in union",
3366 field);
3367 if (!warned && errorcount > oldcount)
3368 {
3369 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3370 "only available with -std=c++11 or -std=gnu++11");
3371 warned = true;
3372 }
3373 }
3374 else
3375 {
3376 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3377 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3378 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3379 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3380 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3381 || !TYPE_HAS_COPY_ASSIGN (type));
3382 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3383 || !TYPE_HAS_COPY_CTOR (type));
3384 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3385 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3386 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3387 || TYPE_HAS_COMPLEX_DFLT (type));
3388 }
3389
3390 if (TYPE_HAS_COPY_CTOR (type)
3391 && !TYPE_HAS_CONST_COPY_CTOR (type))
3392 *cant_have_const_ctor = 1;
3393
3394 if (TYPE_HAS_COPY_ASSIGN (type)
3395 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3396 *no_const_asn_ref = 1;
3397 }
3398
3399 check_abi_tags (t, field);
3400
3401 if (DECL_INITIAL (field) != NULL_TREE)
3402 {
3403 /* `build_class_init_list' does not recognize
3404 non-FIELD_DECLs. */
3405 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3406 error ("multiple fields in union %qT initialized", t);
3407 *any_default_members = 1;
3408 }
3409 }
3410
3411 /* Check the data members (both static and non-static), class-scoped
3412 typedefs, etc., appearing in the declaration of T. Issue
3413 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3414 declaration order) of access declarations; each TREE_VALUE in this
3415 list is a USING_DECL.
3416
3417 In addition, set the following flags:
3418
3419 EMPTY_P
3420 The class is empty, i.e., contains no non-static data members.
3421
3422 CANT_HAVE_CONST_CTOR_P
3423 This class cannot have an implicitly generated copy constructor
3424 taking a const reference.
3425
3426 CANT_HAVE_CONST_ASN_REF
3427 This class cannot have an implicitly generated assignment
3428 operator taking a const reference.
3429
3430 All of these flags should be initialized before calling this
3431 function.
3432
3433 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3434 fields can be added by adding to this chain. */
3435
3436 static void
3437 check_field_decls (tree t, tree *access_decls,
3438 int *cant_have_const_ctor_p,
3439 int *no_const_asn_ref_p)
3440 {
3441 tree *field;
3442 tree *next;
3443 bool has_pointers;
3444 int any_default_members;
3445 int cant_pack = 0;
3446 int field_access = -1;
3447
3448 /* Assume there are no access declarations. */
3449 *access_decls = NULL_TREE;
3450 /* Assume this class has no pointer members. */
3451 has_pointers = false;
3452 /* Assume none of the members of this class have default
3453 initializations. */
3454 any_default_members = 0;
3455
3456 for (field = &TYPE_FIELDS (t); *field; field = next)
3457 {
3458 tree x = *field;
3459 tree type = TREE_TYPE (x);
3460 int this_field_access;
3461
3462 next = &DECL_CHAIN (x);
3463
3464 if (TREE_CODE (x) == USING_DECL)
3465 {
3466 /* Save the access declarations for our caller. */
3467 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3468 continue;
3469 }
3470
3471 if (TREE_CODE (x) == TYPE_DECL
3472 || TREE_CODE (x) == TEMPLATE_DECL)
3473 continue;
3474
3475 /* If we've gotten this far, it's a data member, possibly static,
3476 or an enumerator. */
3477 if (TREE_CODE (x) != CONST_DECL)
3478 DECL_CONTEXT (x) = t;
3479
3480 /* When this goes into scope, it will be a non-local reference. */
3481 DECL_NONLOCAL (x) = 1;
3482
3483 if (TREE_CODE (t) == UNION_TYPE
3484 && cxx_dialect < cxx11)
3485 {
3486 /* [class.union] (C++98)
3487
3488 If a union contains a static data member, or a member of
3489 reference type, the program is ill-formed.
3490
3491 In C++11 this limitation doesn't exist anymore. */
3492 if (VAR_P (x))
3493 {
3494 error ("in C++98 %q+D may not be static because it is "
3495 "a member of a union", x);
3496 continue;
3497 }
3498 if (TREE_CODE (type) == REFERENCE_TYPE)
3499 {
3500 error ("in C++98 %q+D may not have reference type %qT "
3501 "because it is a member of a union", x, type);
3502 continue;
3503 }
3504 }
3505
3506 /* Perform error checking that did not get done in
3507 grokdeclarator. */
3508 if (TREE_CODE (type) == FUNCTION_TYPE)
3509 {
3510 error ("field %q+D invalidly declared function type", x);
3511 type = build_pointer_type (type);
3512 TREE_TYPE (x) = type;
3513 }
3514 else if (TREE_CODE (type) == METHOD_TYPE)
3515 {
3516 error ("field %q+D invalidly declared method type", x);
3517 type = build_pointer_type (type);
3518 TREE_TYPE (x) = type;
3519 }
3520
3521 if (type == error_mark_node)
3522 continue;
3523
3524 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3525 continue;
3526
3527 /* Now it can only be a FIELD_DECL. */
3528
3529 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3530 CLASSTYPE_NON_AGGREGATE (t) = 1;
3531
3532 /* If at least one non-static data member is non-literal, the whole
3533 class becomes non-literal. Note: if the type is incomplete we
3534 will complain later on. */
3535 if (COMPLETE_TYPE_P (type) && !literal_type_p (type))
3536 CLASSTYPE_LITERAL_P (t) = false;
3537
3538 /* A standard-layout class is a class that:
3539 ...
3540 has the same access control (Clause 11) for all non-static data members,
3541 ... */
3542 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3543 if (field_access == -1)
3544 field_access = this_field_access;
3545 else if (this_field_access != field_access)
3546 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3547
3548 /* If this is of reference type, check if it needs an init. */
3549 if (TREE_CODE (type) == REFERENCE_TYPE)
3550 {
3551 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3552 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3553 if (DECL_INITIAL (x) == NULL_TREE)
3554 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3555
3556 /* ARM $12.6.2: [A member initializer list] (or, for an
3557 aggregate, initialization by a brace-enclosed list) is the
3558 only way to initialize nonstatic const and reference
3559 members. */
3560 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3561 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3562 }
3563
3564 type = strip_array_types (type);
3565
3566 if (TYPE_PACKED (t))
3567 {
3568 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3569 {
3570 warning
3571 (0,
3572 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3573 x);
3574 cant_pack = 1;
3575 }
3576 else if (DECL_C_BIT_FIELD (x)
3577 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3578 DECL_PACKED (x) = 1;
3579 }
3580
3581 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3582 /* We don't treat zero-width bitfields as making a class
3583 non-empty. */
3584 ;
3585 else
3586 {
3587 /* The class is non-empty. */
3588 CLASSTYPE_EMPTY_P (t) = 0;
3589 /* The class is not even nearly empty. */
3590 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3591 /* If one of the data members contains an empty class,
3592 so does T. */
3593 if (CLASS_TYPE_P (type)
3594 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3595 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3596 }
3597
3598 /* This is used by -Weffc++ (see below). Warn only for pointers
3599 to members which might hold dynamic memory. So do not warn
3600 for pointers to functions or pointers to members. */
3601 if (TYPE_PTR_P (type)
3602 && !TYPE_PTRFN_P (type))
3603 has_pointers = true;
3604
3605 if (CLASS_TYPE_P (type))
3606 {
3607 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3608 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3609 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3610 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3611 }
3612
3613 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3614 CLASSTYPE_HAS_MUTABLE (t) = 1;
3615
3616 if (DECL_MUTABLE_P (x))
3617 {
3618 if (CP_TYPE_CONST_P (type))
3619 {
3620 error ("member %q+D cannot be declared both %<const%> "
3621 "and %<mutable%>", x);
3622 continue;
3623 }
3624 if (TREE_CODE (type) == REFERENCE_TYPE)
3625 {
3626 error ("member %q+D cannot be declared as a %<mutable%> "
3627 "reference", x);
3628 continue;
3629 }
3630 }
3631
3632 if (! layout_pod_type_p (type))
3633 /* DR 148 now allows pointers to members (which are POD themselves),
3634 to be allowed in POD structs. */
3635 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3636
3637 if (!std_layout_type_p (type))
3638 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3639
3640 if (! zero_init_p (type))
3641 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3642
3643 /* We set DECL_C_BIT_FIELD in grokbitfield.
3644 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3645 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3646 check_field_decl (x, t,
3647 cant_have_const_ctor_p,
3648 no_const_asn_ref_p,
3649 &any_default_members);
3650
3651 /* Now that we've removed bit-field widths from DECL_INITIAL,
3652 anything left in DECL_INITIAL is an NSDMI that makes the class
3653 non-aggregate. */
3654 if (DECL_INITIAL (x))
3655 CLASSTYPE_NON_AGGREGATE (t) = true;
3656
3657 /* If any field is const, the structure type is pseudo-const. */
3658 if (CP_TYPE_CONST_P (type))
3659 {
3660 C_TYPE_FIELDS_READONLY (t) = 1;
3661 if (DECL_INITIAL (x) == NULL_TREE)
3662 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3663
3664 /* ARM $12.6.2: [A member initializer list] (or, for an
3665 aggregate, initialization by a brace-enclosed list) is the
3666 only way to initialize nonstatic const and reference
3667 members. */
3668 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3669 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3670 }
3671 /* A field that is pseudo-const makes the structure likewise. */
3672 else if (CLASS_TYPE_P (type))
3673 {
3674 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3675 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3676 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3677 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3678 }
3679
3680 /* Core issue 80: A nonstatic data member is required to have a
3681 different name from the class iff the class has a
3682 user-declared constructor. */
3683 if (constructor_name_p (DECL_NAME (x), t)
3684 && TYPE_HAS_USER_CONSTRUCTOR (t))
3685 permerror (input_location, "field %q+#D with same name as class", x);
3686 }
3687
3688 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3689 it should also define a copy constructor and an assignment operator to
3690 implement the correct copy semantic (deep vs shallow, etc.). As it is
3691 not feasible to check whether the constructors do allocate dynamic memory
3692 and store it within members, we approximate the warning like this:
3693
3694 -- Warn only if there are members which are pointers
3695 -- Warn only if there is a non-trivial constructor (otherwise,
3696 there cannot be memory allocated).
3697 -- Warn only if there is a non-trivial destructor. We assume that the
3698 user at least implemented the cleanup correctly, and a destructor
3699 is needed to free dynamic memory.
3700
3701 This seems enough for practical purposes. */
3702 if (warn_ecpp
3703 && has_pointers
3704 && TYPE_HAS_USER_CONSTRUCTOR (t)
3705 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3706 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3707 {
3708 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3709
3710 if (! TYPE_HAS_COPY_CTOR (t))
3711 {
3712 warning (OPT_Weffc__,
3713 " but does not override %<%T(const %T&)%>", t, t);
3714 if (!TYPE_HAS_COPY_ASSIGN (t))
3715 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3716 }
3717 else if (! TYPE_HAS_COPY_ASSIGN (t))
3718 warning (OPT_Weffc__,
3719 " but does not override %<operator=(const %T&)%>", t);
3720 }
3721
3722 /* Non-static data member initializers make the default constructor
3723 non-trivial. */
3724 if (any_default_members)
3725 {
3726 TYPE_NEEDS_CONSTRUCTING (t) = true;
3727 TYPE_HAS_COMPLEX_DFLT (t) = true;
3728 }
3729
3730 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3731 if (cant_pack)
3732 TYPE_PACKED (t) = 0;
3733
3734 /* Check anonymous struct/anonymous union fields. */
3735 finish_struct_anon (t);
3736
3737 /* We've built up the list of access declarations in reverse order.
3738 Fix that now. */
3739 *access_decls = nreverse (*access_decls);
3740 }
3741
3742 /* If TYPE is an empty class type, records its OFFSET in the table of
3743 OFFSETS. */
3744
3745 static int
3746 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3747 {
3748 splay_tree_node n;
3749
3750 if (!is_empty_class (type))
3751 return 0;
3752
3753 /* Record the location of this empty object in OFFSETS. */
3754 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3755 if (!n)
3756 n = splay_tree_insert (offsets,
3757 (splay_tree_key) offset,
3758 (splay_tree_value) NULL_TREE);
3759 n->value = ((splay_tree_value)
3760 tree_cons (NULL_TREE,
3761 type,
3762 (tree) n->value));
3763
3764 return 0;
3765 }
3766
3767 /* Returns nonzero if TYPE is an empty class type and there is
3768 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3769
3770 static int
3771 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3772 {
3773 splay_tree_node n;
3774 tree t;
3775
3776 if (!is_empty_class (type))
3777 return 0;
3778
3779 /* Record the location of this empty object in OFFSETS. */
3780 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3781 if (!n)
3782 return 0;
3783
3784 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3785 if (same_type_p (TREE_VALUE (t), type))
3786 return 1;
3787
3788 return 0;
3789 }
3790
3791 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3792 F for every subobject, passing it the type, offset, and table of
3793 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3794 be traversed.
3795
3796 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3797 than MAX_OFFSET will not be walked.
3798
3799 If F returns a nonzero value, the traversal ceases, and that value
3800 is returned. Otherwise, returns zero. */
3801
3802 static int
3803 walk_subobject_offsets (tree type,
3804 subobject_offset_fn f,
3805 tree offset,
3806 splay_tree offsets,
3807 tree max_offset,
3808 int vbases_p)
3809 {
3810 int r = 0;
3811 tree type_binfo = NULL_TREE;
3812
3813 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3814 stop. */
3815 if (max_offset && tree_int_cst_lt (max_offset, offset))
3816 return 0;
3817
3818 if (type == error_mark_node)
3819 return 0;
3820
3821 if (!TYPE_P (type))
3822 {
3823 type_binfo = type;
3824 type = BINFO_TYPE (type);
3825 }
3826
3827 if (CLASS_TYPE_P (type))
3828 {
3829 tree field;
3830 tree binfo;
3831 int i;
3832
3833 /* Avoid recursing into objects that are not interesting. */
3834 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3835 return 0;
3836
3837 /* Record the location of TYPE. */
3838 r = (*f) (type, offset, offsets);
3839 if (r)
3840 return r;
3841
3842 /* Iterate through the direct base classes of TYPE. */
3843 if (!type_binfo)
3844 type_binfo = TYPE_BINFO (type);
3845 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3846 {
3847 tree binfo_offset;
3848
3849 if (BINFO_VIRTUAL_P (binfo))
3850 continue;
3851
3852 tree orig_binfo;
3853 /* We cannot rely on BINFO_OFFSET being set for the base
3854 class yet, but the offsets for direct non-virtual
3855 bases can be calculated by going back to the TYPE. */
3856 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3857 binfo_offset = size_binop (PLUS_EXPR,
3858 offset,
3859 BINFO_OFFSET (orig_binfo));
3860
3861 r = walk_subobject_offsets (binfo,
3862 f,
3863 binfo_offset,
3864 offsets,
3865 max_offset,
3866 /*vbases_p=*/0);
3867 if (r)
3868 return r;
3869 }
3870
3871 if (CLASSTYPE_VBASECLASSES (type))
3872 {
3873 unsigned ix;
3874 vec<tree, va_gc> *vbases;
3875
3876 /* Iterate through the virtual base classes of TYPE. In G++
3877 3.2, we included virtual bases in the direct base class
3878 loop above, which results in incorrect results; the
3879 correct offsets for virtual bases are only known when
3880 working with the most derived type. */
3881 if (vbases_p)
3882 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3883 vec_safe_iterate (vbases, ix, &binfo); ix++)
3884 {
3885 r = walk_subobject_offsets (binfo,
3886 f,
3887 size_binop (PLUS_EXPR,
3888 offset,
3889 BINFO_OFFSET (binfo)),
3890 offsets,
3891 max_offset,
3892 /*vbases_p=*/0);
3893 if (r)
3894 return r;
3895 }
3896 else
3897 {
3898 /* We still have to walk the primary base, if it is
3899 virtual. (If it is non-virtual, then it was walked
3900 above.) */
3901 tree vbase = get_primary_binfo (type_binfo);
3902
3903 if (vbase && BINFO_VIRTUAL_P (vbase)
3904 && BINFO_PRIMARY_P (vbase)
3905 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3906 {
3907 r = (walk_subobject_offsets
3908 (vbase, f, offset,
3909 offsets, max_offset, /*vbases_p=*/0));
3910 if (r)
3911 return r;
3912 }
3913 }
3914 }
3915
3916 /* Iterate through the fields of TYPE. */
3917 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3918 if (TREE_CODE (field) == FIELD_DECL
3919 && TREE_TYPE (field) != error_mark_node
3920 && !DECL_ARTIFICIAL (field))
3921 {
3922 tree field_offset;
3923
3924 field_offset = byte_position (field);
3925
3926 r = walk_subobject_offsets (TREE_TYPE (field),
3927 f,
3928 size_binop (PLUS_EXPR,
3929 offset,
3930 field_offset),
3931 offsets,
3932 max_offset,
3933 /*vbases_p=*/1);
3934 if (r)
3935 return r;
3936 }
3937 }
3938 else if (TREE_CODE (type) == ARRAY_TYPE)
3939 {
3940 tree element_type = strip_array_types (type);
3941 tree domain = TYPE_DOMAIN (type);
3942 tree index;
3943
3944 /* Avoid recursing into objects that are not interesting. */
3945 if (!CLASS_TYPE_P (element_type)
3946 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3947 return 0;
3948
3949 /* Step through each of the elements in the array. */
3950 for (index = size_zero_node;
3951 !tree_int_cst_lt (TYPE_MAX_VALUE (domain), index);
3952 index = size_binop (PLUS_EXPR, index, size_one_node))
3953 {
3954 r = walk_subobject_offsets (TREE_TYPE (type),
3955 f,
3956 offset,
3957 offsets,
3958 max_offset,
3959 /*vbases_p=*/1);
3960 if (r)
3961 return r;
3962 offset = size_binop (PLUS_EXPR, offset,
3963 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3964 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3965 there's no point in iterating through the remaining
3966 elements of the array. */
3967 if (max_offset && tree_int_cst_lt (max_offset, offset))
3968 break;
3969 }
3970 }
3971
3972 return 0;
3973 }
3974
3975 /* Record all of the empty subobjects of TYPE (either a type or a
3976 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3977 is being placed at OFFSET; otherwise, it is a base class that is
3978 being placed at OFFSET. */
3979
3980 static void
3981 record_subobject_offsets (tree type,
3982 tree offset,
3983 splay_tree offsets,
3984 bool is_data_member)
3985 {
3986 tree max_offset;
3987 /* If recording subobjects for a non-static data member or a
3988 non-empty base class , we do not need to record offsets beyond
3989 the size of the biggest empty class. Additional data members
3990 will go at the end of the class. Additional base classes will go
3991 either at offset zero (if empty, in which case they cannot
3992 overlap with offsets past the size of the biggest empty class) or
3993 at the end of the class.
3994
3995 However, if we are placing an empty base class, then we must record
3996 all offsets, as either the empty class is at offset zero (where
3997 other empty classes might later be placed) or at the end of the
3998 class (where other objects might then be placed, so other empty
3999 subobjects might later overlap). */
4000 if (is_data_member
4001 || !is_empty_class (BINFO_TYPE (type)))
4002 max_offset = sizeof_biggest_empty_class;
4003 else
4004 max_offset = NULL_TREE;
4005 walk_subobject_offsets (type, record_subobject_offset, offset,
4006 offsets, max_offset, is_data_member);
4007 }
4008
4009 /* Returns nonzero if any of the empty subobjects of TYPE (located at
4010 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
4011 virtual bases of TYPE are examined. */
4012
4013 static int
4014 layout_conflict_p (tree type,
4015 tree offset,
4016 splay_tree offsets,
4017 int vbases_p)
4018 {
4019 splay_tree_node max_node;
4020
4021 /* Get the node in OFFSETS that indicates the maximum offset where
4022 an empty subobject is located. */
4023 max_node = splay_tree_max (offsets);
4024 /* If there aren't any empty subobjects, then there's no point in
4025 performing this check. */
4026 if (!max_node)
4027 return 0;
4028
4029 return walk_subobject_offsets (type, check_subobject_offset, offset,
4030 offsets, (tree) (max_node->key),
4031 vbases_p);
4032 }
4033
4034 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
4035 non-static data member of the type indicated by RLI. BINFO is the
4036 binfo corresponding to the base subobject, OFFSETS maps offsets to
4037 types already located at those offsets. This function determines
4038 the position of the DECL. */
4039
4040 static void
4041 layout_nonempty_base_or_field (record_layout_info rli,
4042 tree decl,
4043 tree binfo,
4044 splay_tree offsets)
4045 {
4046 tree offset = NULL_TREE;
4047 bool field_p;
4048 tree type;
4049
4050 if (binfo)
4051 {
4052 /* For the purposes of determining layout conflicts, we want to
4053 use the class type of BINFO; TREE_TYPE (DECL) will be the
4054 CLASSTYPE_AS_BASE version, which does not contain entries for
4055 zero-sized bases. */
4056 type = TREE_TYPE (binfo);
4057 field_p = false;
4058 }
4059 else
4060 {
4061 type = TREE_TYPE (decl);
4062 field_p = true;
4063 }
4064
4065 /* Try to place the field. It may take more than one try if we have
4066 a hard time placing the field without putting two objects of the
4067 same type at the same address. */
4068 while (1)
4069 {
4070 struct record_layout_info_s old_rli = *rli;
4071
4072 /* Place this field. */
4073 place_field (rli, decl);
4074 offset = byte_position (decl);
4075
4076 /* We have to check to see whether or not there is already
4077 something of the same type at the offset we're about to use.
4078 For example, consider:
4079
4080 struct S {};
4081 struct T : public S { int i; };
4082 struct U : public S, public T {};
4083
4084 Here, we put S at offset zero in U. Then, we can't put T at
4085 offset zero -- its S component would be at the same address
4086 as the S we already allocated. So, we have to skip ahead.
4087 Since all data members, including those whose type is an
4088 empty class, have nonzero size, any overlap can happen only
4089 with a direct or indirect base-class -- it can't happen with
4090 a data member. */
4091 /* In a union, overlap is permitted; all members are placed at
4092 offset zero. */
4093 if (TREE_CODE (rli->t) == UNION_TYPE)
4094 break;
4095 if (layout_conflict_p (field_p ? type : binfo, offset,
4096 offsets, field_p))
4097 {
4098 /* Strip off the size allocated to this field. That puts us
4099 at the first place we could have put the field with
4100 proper alignment. */
4101 *rli = old_rli;
4102
4103 /* Bump up by the alignment required for the type. */
4104 rli->bitpos
4105 = size_binop (PLUS_EXPR, rli->bitpos,
4106 bitsize_int (binfo
4107 ? CLASSTYPE_ALIGN (type)
4108 : TYPE_ALIGN (type)));
4109 normalize_rli (rli);
4110 }
4111 else
4112 /* There was no conflict. We're done laying out this field. */
4113 break;
4114 }
4115
4116 /* Now that we know where it will be placed, update its
4117 BINFO_OFFSET. */
4118 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
4119 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4120 this point because their BINFO_OFFSET is copied from another
4121 hierarchy. Therefore, we may not need to add the entire
4122 OFFSET. */
4123 propagate_binfo_offsets (binfo,
4124 size_diffop_loc (input_location,
4125 convert (ssizetype, offset),
4126 convert (ssizetype,
4127 BINFO_OFFSET (binfo))));
4128 }
4129
4130 /* Returns true if TYPE is empty and OFFSET is nonzero. */
4131
4132 static int
4133 empty_base_at_nonzero_offset_p (tree type,
4134 tree offset,
4135 splay_tree /*offsets*/)
4136 {
4137 return is_empty_class (type) && !integer_zerop (offset);
4138 }
4139
4140 /* Layout the empty base BINFO. EOC indicates the byte currently just
4141 past the end of the class, and should be correctly aligned for a
4142 class of the type indicated by BINFO; OFFSETS gives the offsets of
4143 the empty bases allocated so far. T is the most derived
4144 type. Return nonzero iff we added it at the end. */
4145
4146 static bool
4147 layout_empty_base (record_layout_info rli, tree binfo,
4148 tree eoc, splay_tree offsets)
4149 {
4150 tree alignment;
4151 tree basetype = BINFO_TYPE (binfo);
4152 bool atend = false;
4153
4154 /* This routine should only be used for empty classes. */
4155 gcc_assert (is_empty_class (basetype));
4156 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4157
4158 if (!integer_zerop (BINFO_OFFSET (binfo)))
4159 propagate_binfo_offsets
4160 (binfo, size_diffop_loc (input_location,
4161 size_zero_node, BINFO_OFFSET (binfo)));
4162
4163 /* This is an empty base class. We first try to put it at offset
4164 zero. */
4165 if (layout_conflict_p (binfo,
4166 BINFO_OFFSET (binfo),
4167 offsets,
4168 /*vbases_p=*/0))
4169 {
4170 /* That didn't work. Now, we move forward from the next
4171 available spot in the class. */
4172 atend = true;
4173 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4174 while (1)
4175 {
4176 if (!layout_conflict_p (binfo,
4177 BINFO_OFFSET (binfo),
4178 offsets,
4179 /*vbases_p=*/0))
4180 /* We finally found a spot where there's no overlap. */
4181 break;
4182
4183 /* There's overlap here, too. Bump along to the next spot. */
4184 propagate_binfo_offsets (binfo, alignment);
4185 }
4186 }
4187
4188 if (CLASSTYPE_USER_ALIGN (basetype))
4189 {
4190 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4191 if (warn_packed)
4192 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4193 TYPE_USER_ALIGN (rli->t) = 1;
4194 }
4195
4196 return atend;
4197 }
4198
4199 /* Layout the base given by BINFO in the class indicated by RLI.
4200 *BASE_ALIGN is a running maximum of the alignments of
4201 any base class. OFFSETS gives the location of empty base
4202 subobjects. T is the most derived type. Return nonzero if the new
4203 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4204 *NEXT_FIELD, unless BINFO is for an empty base class.
4205
4206 Returns the location at which the next field should be inserted. */
4207
4208 static tree *
4209 build_base_field (record_layout_info rli, tree binfo,
4210 splay_tree offsets, tree *next_field)
4211 {
4212 tree t = rli->t;
4213 tree basetype = BINFO_TYPE (binfo);
4214
4215 if (!COMPLETE_TYPE_P (basetype))
4216 /* This error is now reported in xref_tag, thus giving better
4217 location information. */
4218 return next_field;
4219
4220 /* Place the base class. */
4221 if (!is_empty_class (basetype))
4222 {
4223 tree decl;
4224
4225 /* The containing class is non-empty because it has a non-empty
4226 base class. */
4227 CLASSTYPE_EMPTY_P (t) = 0;
4228
4229 /* Create the FIELD_DECL. */
4230 decl = build_decl (input_location,
4231 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4232 DECL_ARTIFICIAL (decl) = 1;
4233 DECL_IGNORED_P (decl) = 1;
4234 DECL_FIELD_CONTEXT (decl) = t;
4235 if (CLASSTYPE_AS_BASE (basetype))
4236 {
4237 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4238 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4239 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4240 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4241 DECL_MODE (decl) = TYPE_MODE (basetype);
4242 DECL_FIELD_IS_BASE (decl) = 1;
4243
4244 /* Try to place the field. It may take more than one try if we
4245 have a hard time placing the field without putting two
4246 objects of the same type at the same address. */
4247 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4248 /* Add the new FIELD_DECL to the list of fields for T. */
4249 DECL_CHAIN (decl) = *next_field;
4250 *next_field = decl;
4251 next_field = &DECL_CHAIN (decl);
4252 }
4253 }
4254 else
4255 {
4256 tree eoc;
4257 bool atend;
4258
4259 /* On some platforms (ARM), even empty classes will not be
4260 byte-aligned. */
4261 eoc = round_up_loc (input_location,
4262 rli_size_unit_so_far (rli),
4263 CLASSTYPE_ALIGN_UNIT (basetype));
4264 atend = layout_empty_base (rli, binfo, eoc, offsets);
4265 /* A nearly-empty class "has no proper base class that is empty,
4266 not morally virtual, and at an offset other than zero." */
4267 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4268 {
4269 if (atend)
4270 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4271 /* The check above (used in G++ 3.2) is insufficient because
4272 an empty class placed at offset zero might itself have an
4273 empty base at a nonzero offset. */
4274 else if (walk_subobject_offsets (basetype,
4275 empty_base_at_nonzero_offset_p,
4276 size_zero_node,
4277 /*offsets=*/NULL,
4278 /*max_offset=*/NULL_TREE,
4279 /*vbases_p=*/true))
4280 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4281 }
4282
4283 /* We do not create a FIELD_DECL for empty base classes because
4284 it might overlap some other field. We want to be able to
4285 create CONSTRUCTORs for the class by iterating over the
4286 FIELD_DECLs, and the back end does not handle overlapping
4287 FIELD_DECLs. */
4288
4289 /* An empty virtual base causes a class to be non-empty
4290 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4291 here because that was already done when the virtual table
4292 pointer was created. */
4293 }
4294
4295 /* Record the offsets of BINFO and its base subobjects. */
4296 record_subobject_offsets (binfo,
4297 BINFO_OFFSET (binfo),
4298 offsets,
4299 /*is_data_member=*/false);
4300
4301 return next_field;
4302 }
4303
4304 /* Layout all of the non-virtual base classes. Record empty
4305 subobjects in OFFSETS. T is the most derived type. Return nonzero
4306 if the type cannot be nearly empty. The fields created
4307 corresponding to the base classes will be inserted at
4308 *NEXT_FIELD. */
4309
4310 static void
4311 build_base_fields (record_layout_info rli,
4312 splay_tree offsets, tree *next_field)
4313 {
4314 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4315 subobjects. */
4316 tree t = rli->t;
4317 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4318 int i;
4319
4320 /* The primary base class is always allocated first. */
4321 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4322 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4323 offsets, next_field);
4324
4325 /* Now allocate the rest of the bases. */
4326 for (i = 0; i < n_baseclasses; ++i)
4327 {
4328 tree base_binfo;
4329
4330 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4331
4332 /* The primary base was already allocated above, so we don't
4333 need to allocate it again here. */
4334 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4335 continue;
4336
4337 /* Virtual bases are added at the end (a primary virtual base
4338 will have already been added). */
4339 if (BINFO_VIRTUAL_P (base_binfo))
4340 continue;
4341
4342 next_field = build_base_field (rli, base_binfo,
4343 offsets, next_field);
4344 }
4345 }
4346
4347 /* Go through the TYPE_METHODS of T issuing any appropriate
4348 diagnostics, figuring out which methods override which other
4349 methods, and so forth. */
4350
4351 static void
4352 check_methods (tree t)
4353 {
4354 tree x;
4355
4356 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4357 {
4358 check_for_override (x, t);
4359 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
4360 error ("initializer specified for non-virtual method %q+D", x);
4361 /* The name of the field is the original field name
4362 Save this in auxiliary field for later overloading. */
4363 if (DECL_VINDEX (x))
4364 {
4365 TYPE_POLYMORPHIC_P (t) = 1;
4366 if (DECL_PURE_VIRTUAL_P (x))
4367 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4368 }
4369 /* All user-provided destructors are non-trivial.
4370 Constructors and assignment ops are handled in
4371 grok_special_member_properties. */
4372 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4373 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4374 }
4375 }
4376
4377 /* FN is a constructor or destructor. Clone the declaration to create
4378 a specialized in-charge or not-in-charge version, as indicated by
4379 NAME. */
4380
4381 static tree
4382 build_clone (tree fn, tree name)
4383 {
4384 tree parms;
4385 tree clone;
4386
4387 /* Copy the function. */
4388 clone = copy_decl (fn);
4389 /* Reset the function name. */
4390 DECL_NAME (clone) = name;
4391 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4392 /* Remember where this function came from. */
4393 DECL_ABSTRACT_ORIGIN (clone) = fn;
4394 /* Make it easy to find the CLONE given the FN. */
4395 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4396 DECL_CHAIN (fn) = clone;
4397
4398 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4399 if (TREE_CODE (clone) == TEMPLATE_DECL)
4400 {
4401 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4402 DECL_TEMPLATE_RESULT (clone) = result;
4403 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4404 DECL_TI_TEMPLATE (result) = clone;
4405 TREE_TYPE (clone) = TREE_TYPE (result);
4406 return clone;
4407 }
4408
4409 DECL_CLONED_FUNCTION (clone) = fn;
4410 /* There's no pending inline data for this function. */
4411 DECL_PENDING_INLINE_INFO (clone) = NULL;
4412 DECL_PENDING_INLINE_P (clone) = 0;
4413
4414 /* The base-class destructor is not virtual. */
4415 if (name == base_dtor_identifier)
4416 {
4417 DECL_VIRTUAL_P (clone) = 0;
4418 if (TREE_CODE (clone) != TEMPLATE_DECL)
4419 DECL_VINDEX (clone) = NULL_TREE;
4420 }
4421
4422 /* If there was an in-charge parameter, drop it from the function
4423 type. */
4424 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4425 {
4426 tree basetype;
4427 tree parmtypes;
4428 tree exceptions;
4429
4430 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4431 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4432 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4433 /* Skip the `this' parameter. */
4434 parmtypes = TREE_CHAIN (parmtypes);
4435 /* Skip the in-charge parameter. */
4436 parmtypes = TREE_CHAIN (parmtypes);
4437 /* And the VTT parm, in a complete [cd]tor. */
4438 if (DECL_HAS_VTT_PARM_P (fn)
4439 && ! DECL_NEEDS_VTT_PARM_P (clone))
4440 parmtypes = TREE_CHAIN (parmtypes);
4441 /* If this is subobject constructor or destructor, add the vtt
4442 parameter. */
4443 TREE_TYPE (clone)
4444 = build_method_type_directly (basetype,
4445 TREE_TYPE (TREE_TYPE (clone)),
4446 parmtypes);
4447 if (exceptions)
4448 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4449 exceptions);
4450 TREE_TYPE (clone)
4451 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4452 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4453 }
4454
4455 /* Copy the function parameters. */
4456 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4457 /* Remove the in-charge parameter. */
4458 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4459 {
4460 DECL_CHAIN (DECL_ARGUMENTS (clone))
4461 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4462 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4463 }
4464 /* And the VTT parm, in a complete [cd]tor. */
4465 if (DECL_HAS_VTT_PARM_P (fn))
4466 {
4467 if (DECL_NEEDS_VTT_PARM_P (clone))
4468 DECL_HAS_VTT_PARM_P (clone) = 1;
4469 else
4470 {
4471 DECL_CHAIN (DECL_ARGUMENTS (clone))
4472 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4473 DECL_HAS_VTT_PARM_P (clone) = 0;
4474 }
4475 }
4476
4477 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4478 {
4479 DECL_CONTEXT (parms) = clone;
4480 cxx_dup_lang_specific_decl (parms);
4481 }
4482
4483 /* Create the RTL for this function. */
4484 SET_DECL_RTL (clone, NULL);
4485 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4486
4487 if (pch_file)
4488 note_decl_for_pch (clone);
4489
4490 return clone;
4491 }
4492
4493 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4494 not invoke this function directly.
4495
4496 For a non-thunk function, returns the address of the slot for storing
4497 the function it is a clone of. Otherwise returns NULL_TREE.
4498
4499 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4500 cloned_function is unset. This is to support the separate
4501 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4502 on a template makes sense, but not the former. */
4503
4504 tree *
4505 decl_cloned_function_p (const_tree decl, bool just_testing)
4506 {
4507 tree *ptr;
4508 if (just_testing)
4509 decl = STRIP_TEMPLATE (decl);
4510
4511 if (TREE_CODE (decl) != FUNCTION_DECL
4512 || !DECL_LANG_SPECIFIC (decl)
4513 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4514 {
4515 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4516 if (!just_testing)
4517 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4518 else
4519 #endif
4520 return NULL;
4521 }
4522
4523 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4524 if (just_testing && *ptr == NULL_TREE)
4525 return NULL;
4526 else
4527 return ptr;
4528 }
4529
4530 /* Produce declarations for all appropriate clones of FN. If
4531 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4532 CLASTYPE_METHOD_VEC as well. */
4533
4534 void
4535 clone_function_decl (tree fn, int update_method_vec_p)
4536 {
4537 tree clone;
4538
4539 /* Avoid inappropriate cloning. */
4540 if (DECL_CHAIN (fn)
4541 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4542 return;
4543
4544 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4545 {
4546 /* For each constructor, we need two variants: an in-charge version
4547 and a not-in-charge version. */
4548 clone = build_clone (fn, complete_ctor_identifier);
4549 if (update_method_vec_p)
4550 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4551 clone = build_clone (fn, base_ctor_identifier);
4552 if (update_method_vec_p)
4553 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4554 }
4555 else
4556 {
4557 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4558
4559 /* For each destructor, we need three variants: an in-charge
4560 version, a not-in-charge version, and an in-charge deleting
4561 version. We clone the deleting version first because that
4562 means it will go second on the TYPE_METHODS list -- and that
4563 corresponds to the correct layout order in the virtual
4564 function table.
4565
4566 For a non-virtual destructor, we do not build a deleting
4567 destructor. */
4568 if (DECL_VIRTUAL_P (fn))
4569 {
4570 clone = build_clone (fn, deleting_dtor_identifier);
4571 if (update_method_vec_p)
4572 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4573 }
4574 clone = build_clone (fn, complete_dtor_identifier);
4575 if (update_method_vec_p)
4576 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4577 clone = build_clone (fn, base_dtor_identifier);
4578 if (update_method_vec_p)
4579 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4580 }
4581
4582 /* Note that this is an abstract function that is never emitted. */
4583 DECL_ABSTRACT (fn) = 1;
4584 }
4585
4586 /* DECL is an in charge constructor, which is being defined. This will
4587 have had an in class declaration, from whence clones were
4588 declared. An out-of-class definition can specify additional default
4589 arguments. As it is the clones that are involved in overload
4590 resolution, we must propagate the information from the DECL to its
4591 clones. */
4592
4593 void
4594 adjust_clone_args (tree decl)
4595 {
4596 tree clone;
4597
4598 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4599 clone = DECL_CHAIN (clone))
4600 {
4601 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4602 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4603 tree decl_parms, clone_parms;
4604
4605 clone_parms = orig_clone_parms;
4606
4607 /* Skip the 'this' parameter. */
4608 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4609 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4610
4611 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4612 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4613 if (DECL_HAS_VTT_PARM_P (decl))
4614 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4615
4616 clone_parms = orig_clone_parms;
4617 if (DECL_HAS_VTT_PARM_P (clone))
4618 clone_parms = TREE_CHAIN (clone_parms);
4619
4620 for (decl_parms = orig_decl_parms; decl_parms;
4621 decl_parms = TREE_CHAIN (decl_parms),
4622 clone_parms = TREE_CHAIN (clone_parms))
4623 {
4624 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4625 TREE_TYPE (clone_parms)));
4626
4627 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4628 {
4629 /* A default parameter has been added. Adjust the
4630 clone's parameters. */
4631 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4632 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4633 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4634 tree type;
4635
4636 clone_parms = orig_decl_parms;
4637
4638 if (DECL_HAS_VTT_PARM_P (clone))
4639 {
4640 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4641 TREE_VALUE (orig_clone_parms),
4642 clone_parms);
4643 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4644 }
4645 type = build_method_type_directly (basetype,
4646 TREE_TYPE (TREE_TYPE (clone)),
4647 clone_parms);
4648 if (exceptions)
4649 type = build_exception_variant (type, exceptions);
4650 if (attrs)
4651 type = cp_build_type_attribute_variant (type, attrs);
4652 TREE_TYPE (clone) = type;
4653
4654 clone_parms = NULL_TREE;
4655 break;
4656 }
4657 }
4658 gcc_assert (!clone_parms);
4659 }
4660 }
4661
4662 /* For each of the constructors and destructors in T, create an
4663 in-charge and not-in-charge variant. */
4664
4665 static void
4666 clone_constructors_and_destructors (tree t)
4667 {
4668 tree fns;
4669
4670 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4671 out now. */
4672 if (!CLASSTYPE_METHOD_VEC (t))
4673 return;
4674
4675 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4676 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4677 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4678 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4679 }
4680
4681 /* Deduce noexcept for a destructor DTOR. */
4682
4683 void
4684 deduce_noexcept_on_destructor (tree dtor)
4685 {
4686 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4687 {
4688 tree eh_spec = unevaluated_noexcept_spec ();
4689 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4690 }
4691 }
4692
4693 /* For each destructor in T, deduce noexcept:
4694
4695 12.4/3: A declaration of a destructor that does not have an
4696 exception-specification is implicitly considered to have the
4697 same exception-specification as an implicit declaration (15.4). */
4698
4699 static void
4700 deduce_noexcept_on_destructors (tree t)
4701 {
4702 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4703 out now. */
4704 if (!CLASSTYPE_METHOD_VEC (t))
4705 return;
4706
4707 for (tree fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4708 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4709 }
4710
4711 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4712 of TYPE for virtual functions which FNDECL overrides. Return a
4713 mask of the tm attributes found therein. */
4714
4715 static int
4716 look_for_tm_attr_overrides (tree type, tree fndecl)
4717 {
4718 tree binfo = TYPE_BINFO (type);
4719 tree base_binfo;
4720 int ix, found = 0;
4721
4722 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4723 {
4724 tree o, basetype = BINFO_TYPE (base_binfo);
4725
4726 if (!TYPE_POLYMORPHIC_P (basetype))
4727 continue;
4728
4729 o = look_for_overrides_here (basetype, fndecl);
4730 if (o)
4731 found |= tm_attr_to_mask (find_tm_attribute
4732 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4733 else
4734 found |= look_for_tm_attr_overrides (basetype, fndecl);
4735 }
4736
4737 return found;
4738 }
4739
4740 /* Subroutine of set_method_tm_attributes. Handle the checks and
4741 inheritance for one virtual method FNDECL. */
4742
4743 static void
4744 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4745 {
4746 tree tm_attr;
4747 int found, have;
4748
4749 found = look_for_tm_attr_overrides (type, fndecl);
4750
4751 /* If FNDECL doesn't actually override anything (i.e. T is the
4752 class that first declares FNDECL virtual), then we're done. */
4753 if (found == 0)
4754 return;
4755
4756 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4757 have = tm_attr_to_mask (tm_attr);
4758
4759 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4760 tm_pure must match exactly, otherwise no weakening of
4761 tm_safe > tm_callable > nothing. */
4762 /* ??? The tm_pure attribute didn't make the transition to the
4763 multivendor language spec. */
4764 if (have == TM_ATTR_PURE)
4765 {
4766 if (found != TM_ATTR_PURE)
4767 {
4768 found &= -found;
4769 goto err_override;
4770 }
4771 }
4772 /* If the overridden function is tm_pure, then FNDECL must be. */
4773 else if (found == TM_ATTR_PURE && tm_attr)
4774 goto err_override;
4775 /* Look for base class combinations that cannot be satisfied. */
4776 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4777 {
4778 found &= ~TM_ATTR_PURE;
4779 found &= -found;
4780 error_at (DECL_SOURCE_LOCATION (fndecl),
4781 "method overrides both %<transaction_pure%> and %qE methods",
4782 tm_mask_to_attr (found));
4783 }
4784 /* If FNDECL did not declare an attribute, then inherit the most
4785 restrictive one. */
4786 else if (tm_attr == NULL)
4787 {
4788 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4789 }
4790 /* Otherwise validate that we're not weaker than a function
4791 that is being overridden. */
4792 else
4793 {
4794 found &= -found;
4795 if (found <= TM_ATTR_CALLABLE && have > found)
4796 goto err_override;
4797 }
4798 return;
4799
4800 err_override:
4801 error_at (DECL_SOURCE_LOCATION (fndecl),
4802 "method declared %qE overriding %qE method",
4803 tm_attr, tm_mask_to_attr (found));
4804 }
4805
4806 /* For each of the methods in T, propagate a class-level tm attribute. */
4807
4808 static void
4809 set_method_tm_attributes (tree t)
4810 {
4811 tree class_tm_attr, fndecl;
4812
4813 /* Don't bother collecting tm attributes if transactional memory
4814 support is not enabled. */
4815 if (!flag_tm)
4816 return;
4817
4818 /* Process virtual methods first, as they inherit directly from the
4819 base virtual function and also require validation of new attributes. */
4820 if (TYPE_CONTAINS_VPTR_P (t))
4821 {
4822 tree vchain;
4823 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4824 vchain = TREE_CHAIN (vchain))
4825 {
4826 fndecl = BV_FN (vchain);
4827 if (DECL_THUNK_P (fndecl))
4828 fndecl = THUNK_TARGET (fndecl);
4829 set_one_vmethod_tm_attributes (t, fndecl);
4830 }
4831 }
4832
4833 /* If the class doesn't have an attribute, nothing more to do. */
4834 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4835 if (class_tm_attr == NULL)
4836 return;
4837
4838 /* Any method that does not yet have a tm attribute inherits
4839 the one from the class. */
4840 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4841 {
4842 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4843 apply_tm_attr (fndecl, class_tm_attr);
4844 }
4845 }
4846
4847 /* Returns true iff class T has a user-defined constructor other than
4848 the default constructor. */
4849
4850 bool
4851 type_has_user_nondefault_constructor (tree t)
4852 {
4853 tree fns;
4854
4855 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4856 return false;
4857
4858 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4859 {
4860 tree fn = OVL_CURRENT (fns);
4861 if (!DECL_ARTIFICIAL (fn)
4862 && (TREE_CODE (fn) == TEMPLATE_DECL
4863 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4864 != NULL_TREE)))
4865 return true;
4866 }
4867
4868 return false;
4869 }
4870
4871 /* Returns the defaulted constructor if T has one. Otherwise, returns
4872 NULL_TREE. */
4873
4874 tree
4875 in_class_defaulted_default_constructor (tree t)
4876 {
4877 tree fns, args;
4878
4879 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4880 return NULL_TREE;
4881
4882 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4883 {
4884 tree fn = OVL_CURRENT (fns);
4885
4886 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4887 {
4888 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4889 while (args && TREE_PURPOSE (args))
4890 args = TREE_CHAIN (args);
4891 if (!args || args == void_list_node)
4892 return fn;
4893 }
4894 }
4895
4896 return NULL_TREE;
4897 }
4898
4899 /* Returns true iff FN is a user-provided function, i.e. user-declared
4900 and not defaulted at its first declaration; or explicit, private,
4901 protected, or non-const. */
4902
4903 bool
4904 user_provided_p (tree fn)
4905 {
4906 if (TREE_CODE (fn) == TEMPLATE_DECL)
4907 return true;
4908 else
4909 return (!DECL_ARTIFICIAL (fn)
4910 && !(DECL_INITIALIZED_IN_CLASS_P (fn)
4911 && (DECL_DEFAULTED_FN (fn) || DECL_DELETED_FN (fn))));
4912 }
4913
4914 /* Returns true iff class T has a user-provided constructor. */
4915
4916 bool
4917 type_has_user_provided_constructor (tree t)
4918 {
4919 tree fns;
4920
4921 if (!CLASS_TYPE_P (t))
4922 return false;
4923
4924 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4925 return false;
4926
4927 /* This can happen in error cases; avoid crashing. */
4928 if (!CLASSTYPE_METHOD_VEC (t))
4929 return false;
4930
4931 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4932 if (user_provided_p (OVL_CURRENT (fns)))
4933 return true;
4934
4935 return false;
4936 }
4937
4938 /* Returns true iff class T has a user-provided default constructor. */
4939
4940 bool
4941 type_has_user_provided_default_constructor (tree t)
4942 {
4943 tree fns;
4944
4945 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4946 return false;
4947
4948 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4949 {
4950 tree fn = OVL_CURRENT (fns);
4951 if (TREE_CODE (fn) == FUNCTION_DECL
4952 && user_provided_p (fn)
4953 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4954 return true;
4955 }
4956
4957 return false;
4958 }
4959
4960 /* TYPE is being used as a virtual base, and has a non-trivial move
4961 assignment. Return true if this is due to there being a user-provided
4962 move assignment in TYPE or one of its subobjects; if there isn't, then
4963 multiple move assignment can't cause any harm. */
4964
4965 bool
4966 vbase_has_user_provided_move_assign (tree type)
4967 {
4968 /* Does the type itself have a user-provided move assignment operator? */
4969 for (tree fns
4970 = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR));
4971 fns; fns = OVL_NEXT (fns))
4972 {
4973 tree fn = OVL_CURRENT (fns);
4974 if (move_fn_p (fn) && user_provided_p (fn))
4975 return true;
4976 }
4977
4978 /* Do any of its bases? */
4979 tree binfo = TYPE_BINFO (type);
4980 tree base_binfo;
4981 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4982 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
4983 return true;
4984
4985 /* Or non-static data members? */
4986 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4987 {
4988 if (TREE_CODE (field) == FIELD_DECL
4989 && CLASS_TYPE_P (TREE_TYPE (field))
4990 && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
4991 return true;
4992 }
4993
4994 /* Seems not. */
4995 return false;
4996 }
4997
4998 /* If default-initialization leaves part of TYPE uninitialized, returns
4999 a DECL for the field or TYPE itself (DR 253). */
5000
5001 tree
5002 default_init_uninitialized_part (tree type)
5003 {
5004 tree t, r, binfo;
5005 int i;
5006
5007 type = strip_array_types (type);
5008 if (!CLASS_TYPE_P (type))
5009 return type;
5010 if (type_has_user_provided_default_constructor (type))
5011 return NULL_TREE;
5012 for (binfo = TYPE_BINFO (type), i = 0;
5013 BINFO_BASE_ITERATE (binfo, i, t); ++i)
5014 {
5015 r = default_init_uninitialized_part (BINFO_TYPE (t));
5016 if (r)
5017 return r;
5018 }
5019 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
5020 if (TREE_CODE (t) == FIELD_DECL
5021 && !DECL_ARTIFICIAL (t)
5022 && !DECL_INITIAL (t))
5023 {
5024 r = default_init_uninitialized_part (TREE_TYPE (t));
5025 if (r)
5026 return DECL_P (r) ? r : t;
5027 }
5028
5029 return NULL_TREE;
5030 }
5031
5032 /* Returns true iff for class T, a trivial synthesized default constructor
5033 would be constexpr. */
5034
5035 bool
5036 trivial_default_constructor_is_constexpr (tree t)
5037 {
5038 /* A defaulted trivial default constructor is constexpr
5039 if there is nothing to initialize. */
5040 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
5041 return is_really_empty_class (t);
5042 }
5043
5044 /* Returns true iff class T has a constexpr default constructor. */
5045
5046 bool
5047 type_has_constexpr_default_constructor (tree t)
5048 {
5049 tree fns;
5050
5051 if (!CLASS_TYPE_P (t))
5052 {
5053 /* The caller should have stripped an enclosing array. */
5054 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
5055 return false;
5056 }
5057 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5058 {
5059 if (!TYPE_HAS_COMPLEX_DFLT (t))
5060 return trivial_default_constructor_is_constexpr (t);
5061 /* Non-trivial, we need to check subobject constructors. */
5062 lazily_declare_fn (sfk_constructor, t);
5063 }
5064 fns = locate_ctor (t);
5065 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
5066 }
5067
5068 /* Returns true iff class TYPE has a virtual destructor. */
5069
5070 bool
5071 type_has_virtual_destructor (tree type)
5072 {
5073 tree dtor;
5074
5075 if (!CLASS_TYPE_P (type))
5076 return false;
5077
5078 gcc_assert (COMPLETE_TYPE_P (type));
5079 dtor = CLASSTYPE_DESTRUCTORS (type);
5080 return (dtor && DECL_VIRTUAL_P (dtor));
5081 }
5082
5083 /* Returns true iff class T has a move constructor. */
5084
5085 bool
5086 type_has_move_constructor (tree t)
5087 {
5088 tree fns;
5089
5090 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5091 {
5092 gcc_assert (COMPLETE_TYPE_P (t));
5093 lazily_declare_fn (sfk_move_constructor, t);
5094 }
5095
5096 if (!CLASSTYPE_METHOD_VEC (t))
5097 return false;
5098
5099 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5100 if (move_fn_p (OVL_CURRENT (fns)))
5101 return true;
5102
5103 return false;
5104 }
5105
5106 /* Returns true iff class T has a move assignment operator. */
5107
5108 bool
5109 type_has_move_assign (tree t)
5110 {
5111 tree fns;
5112
5113 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5114 {
5115 gcc_assert (COMPLETE_TYPE_P (t));
5116 lazily_declare_fn (sfk_move_assignment, t);
5117 }
5118
5119 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5120 fns; fns = OVL_NEXT (fns))
5121 if (move_fn_p (OVL_CURRENT (fns)))
5122 return true;
5123
5124 return false;
5125 }
5126
5127 /* Returns true iff class T has a move constructor that was explicitly
5128 declared in the class body. Note that this is different from
5129 "user-provided", which doesn't include functions that are defaulted in
5130 the class. */
5131
5132 bool
5133 type_has_user_declared_move_constructor (tree t)
5134 {
5135 tree fns;
5136
5137 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5138 return false;
5139
5140 if (!CLASSTYPE_METHOD_VEC (t))
5141 return false;
5142
5143 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5144 {
5145 tree fn = OVL_CURRENT (fns);
5146 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5147 return true;
5148 }
5149
5150 return false;
5151 }
5152
5153 /* Returns true iff class T has a move assignment operator that was
5154 explicitly declared in the class body. */
5155
5156 bool
5157 type_has_user_declared_move_assign (tree t)
5158 {
5159 tree fns;
5160
5161 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5162 return false;
5163
5164 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5165 fns; fns = OVL_NEXT (fns))
5166 {
5167 tree fn = OVL_CURRENT (fns);
5168 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5169 return true;
5170 }
5171
5172 return false;
5173 }
5174
5175 /* Nonzero if we need to build up a constructor call when initializing an
5176 object of this class, either because it has a user-declared constructor
5177 or because it doesn't have a default constructor (so we need to give an
5178 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5179 what you care about is whether or not an object can be produced by a
5180 constructor (e.g. so we don't set TREE_READONLY on const variables of
5181 such type); use this function when what you care about is whether or not
5182 to try to call a constructor to create an object. The latter case is
5183 the former plus some cases of constructors that cannot be called. */
5184
5185 bool
5186 type_build_ctor_call (tree t)
5187 {
5188 tree inner;
5189 if (TYPE_NEEDS_CONSTRUCTING (t))
5190 return true;
5191 inner = strip_array_types (t);
5192 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner))
5193 return false;
5194 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner))
5195 return true;
5196 if (cxx_dialect < cxx11)
5197 return false;
5198 /* A user-declared constructor might be private, and a constructor might
5199 be trivial but deleted. */
5200 for (tree fns = lookup_fnfields_slot (inner, complete_ctor_identifier);
5201 fns; fns = OVL_NEXT (fns))
5202 {
5203 tree fn = OVL_CURRENT (fns);
5204 if (!DECL_ARTIFICIAL (fn)
5205 || DECL_DELETED_FN (fn))
5206 return true;
5207 }
5208 return false;
5209 }
5210
5211 /* Like type_build_ctor_call, but for destructors. */
5212
5213 bool
5214 type_build_dtor_call (tree t)
5215 {
5216 tree inner;
5217 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5218 return true;
5219 inner = strip_array_types (t);
5220 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner)
5221 || !COMPLETE_TYPE_P (inner))
5222 return false;
5223 if (cxx_dialect < cxx11)
5224 return false;
5225 /* A user-declared destructor might be private, and a destructor might
5226 be trivial but deleted. */
5227 for (tree fns = lookup_fnfields_slot (inner, complete_dtor_identifier);
5228 fns; fns = OVL_NEXT (fns))
5229 {
5230 tree fn = OVL_CURRENT (fns);
5231 if (!DECL_ARTIFICIAL (fn)
5232 || DECL_DELETED_FN (fn))
5233 return true;
5234 }
5235 return false;
5236 }
5237
5238 /* Remove all zero-width bit-fields from T. */
5239
5240 static void
5241 remove_zero_width_bit_fields (tree t)
5242 {
5243 tree *fieldsp;
5244
5245 fieldsp = &TYPE_FIELDS (t);
5246 while (*fieldsp)
5247 {
5248 if (TREE_CODE (*fieldsp) == FIELD_DECL
5249 && DECL_C_BIT_FIELD (*fieldsp)
5250 /* We should not be confused by the fact that grokbitfield
5251 temporarily sets the width of the bit field into
5252 DECL_INITIAL (*fieldsp).
5253 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5254 to that width. */
5255 && integer_zerop (DECL_SIZE (*fieldsp)))
5256 *fieldsp = DECL_CHAIN (*fieldsp);
5257 else
5258 fieldsp = &DECL_CHAIN (*fieldsp);
5259 }
5260 }
5261
5262 /* Returns TRUE iff we need a cookie when dynamically allocating an
5263 array whose elements have the indicated class TYPE. */
5264
5265 static bool
5266 type_requires_array_cookie (tree type)
5267 {
5268 tree fns;
5269 bool has_two_argument_delete_p = false;
5270
5271 gcc_assert (CLASS_TYPE_P (type));
5272
5273 /* If there's a non-trivial destructor, we need a cookie. In order
5274 to iterate through the array calling the destructor for each
5275 element, we'll have to know how many elements there are. */
5276 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5277 return true;
5278
5279 /* If the usual deallocation function is a two-argument whose second
5280 argument is of type `size_t', then we have to pass the size of
5281 the array to the deallocation function, so we will need to store
5282 a cookie. */
5283 fns = lookup_fnfields (TYPE_BINFO (type),
5284 ansi_opname (VEC_DELETE_EXPR),
5285 /*protect=*/0);
5286 /* If there are no `operator []' members, or the lookup is
5287 ambiguous, then we don't need a cookie. */
5288 if (!fns || fns == error_mark_node)
5289 return false;
5290 /* Loop through all of the functions. */
5291 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5292 {
5293 tree fn;
5294 tree second_parm;
5295
5296 /* Select the current function. */
5297 fn = OVL_CURRENT (fns);
5298 /* See if this function is a one-argument delete function. If
5299 it is, then it will be the usual deallocation function. */
5300 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5301 if (second_parm == void_list_node)
5302 return false;
5303 /* Do not consider this function if its second argument is an
5304 ellipsis. */
5305 if (!second_parm)
5306 continue;
5307 /* Otherwise, if we have a two-argument function and the second
5308 argument is `size_t', it will be the usual deallocation
5309 function -- unless there is one-argument function, too. */
5310 if (TREE_CHAIN (second_parm) == void_list_node
5311 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5312 has_two_argument_delete_p = true;
5313 }
5314
5315 return has_two_argument_delete_p;
5316 }
5317
5318 /* Finish computing the `literal type' property of class type T.
5319
5320 At this point, we have already processed base classes and
5321 non-static data members. We need to check whether the copy
5322 constructor is trivial, the destructor is trivial, and there
5323 is a trivial default constructor or at least one constexpr
5324 constructor other than the copy constructor. */
5325
5326 static void
5327 finalize_literal_type_property (tree t)
5328 {
5329 tree fn;
5330
5331 if (cxx_dialect < cxx11
5332 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5333 CLASSTYPE_LITERAL_P (t) = false;
5334 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5335 && CLASSTYPE_NON_AGGREGATE (t)
5336 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5337 CLASSTYPE_LITERAL_P (t) = false;
5338
5339 if (!CLASSTYPE_LITERAL_P (t))
5340 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5341 if (DECL_DECLARED_CONSTEXPR_P (fn)
5342 && TREE_CODE (fn) != TEMPLATE_DECL
5343 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5344 && !DECL_CONSTRUCTOR_P (fn))
5345 {
5346 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5347 if (!DECL_GENERATED_P (fn))
5348 {
5349 error ("enclosing class of constexpr non-static member "
5350 "function %q+#D is not a literal type", fn);
5351 explain_non_literal_class (t);
5352 }
5353 }
5354 }
5355
5356 /* T is a non-literal type used in a context which requires a constant
5357 expression. Explain why it isn't literal. */
5358
5359 void
5360 explain_non_literal_class (tree t)
5361 {
5362 static struct pointer_set_t *diagnosed;
5363
5364 if (!CLASS_TYPE_P (t))
5365 return;
5366 t = TYPE_MAIN_VARIANT (t);
5367
5368 if (diagnosed == NULL)
5369 diagnosed = pointer_set_create ();
5370 if (pointer_set_insert (diagnosed, t) != 0)
5371 /* Already explained. */
5372 return;
5373
5374 inform (0, "%q+T is not literal because:", t);
5375 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5376 inform (0, " %q+T has a non-trivial destructor", t);
5377 else if (CLASSTYPE_NON_AGGREGATE (t)
5378 && !TYPE_HAS_TRIVIAL_DFLT (t)
5379 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5380 {
5381 inform (0, " %q+T is not an aggregate, does not have a trivial "
5382 "default constructor, and has no constexpr constructor that "
5383 "is not a copy or move constructor", t);
5384 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5385 && !type_has_user_provided_default_constructor (t))
5386 {
5387 /* Note that we can't simply call locate_ctor because when the
5388 constructor is deleted it just returns NULL_TREE. */
5389 tree fns;
5390 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5391 {
5392 tree fn = OVL_CURRENT (fns);
5393 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5394
5395 parms = skip_artificial_parms_for (fn, parms);
5396
5397 if (sufficient_parms_p (parms))
5398 {
5399 if (DECL_DELETED_FN (fn))
5400 maybe_explain_implicit_delete (fn);
5401 else
5402 explain_invalid_constexpr_fn (fn);
5403 break;
5404 }
5405 }
5406 }
5407 }
5408 else
5409 {
5410 tree binfo, base_binfo, field; int i;
5411 for (binfo = TYPE_BINFO (t), i = 0;
5412 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5413 {
5414 tree basetype = TREE_TYPE (base_binfo);
5415 if (!CLASSTYPE_LITERAL_P (basetype))
5416 {
5417 inform (0, " base class %qT of %q+T is non-literal",
5418 basetype, t);
5419 explain_non_literal_class (basetype);
5420 return;
5421 }
5422 }
5423 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5424 {
5425 tree ftype;
5426 if (TREE_CODE (field) != FIELD_DECL)
5427 continue;
5428 ftype = TREE_TYPE (field);
5429 if (!literal_type_p (ftype))
5430 {
5431 inform (0, " non-static data member %q+D has "
5432 "non-literal type", field);
5433 if (CLASS_TYPE_P (ftype))
5434 explain_non_literal_class (ftype);
5435 }
5436 }
5437 }
5438 }
5439
5440 /* Check the validity of the bases and members declared in T. Add any
5441 implicitly-generated functions (like copy-constructors and
5442 assignment operators). Compute various flag bits (like
5443 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5444 level: i.e., independently of the ABI in use. */
5445
5446 static void
5447 check_bases_and_members (tree t)
5448 {
5449 /* Nonzero if the implicitly generated copy constructor should take
5450 a non-const reference argument. */
5451 int cant_have_const_ctor;
5452 /* Nonzero if the implicitly generated assignment operator
5453 should take a non-const reference argument. */
5454 int no_const_asn_ref;
5455 tree access_decls;
5456 bool saved_complex_asn_ref;
5457 bool saved_nontrivial_dtor;
5458 tree fn;
5459
5460 /* Pick up any abi_tags from our template arguments before checking. */
5461 inherit_targ_abi_tags (t);
5462
5463 /* By default, we use const reference arguments and generate default
5464 constructors. */
5465 cant_have_const_ctor = 0;
5466 no_const_asn_ref = 0;
5467
5468 /* Check all the base-classes. */
5469 check_bases (t, &cant_have_const_ctor,
5470 &no_const_asn_ref);
5471
5472 /* Deduce noexcept on destructors. This needs to happen after we've set
5473 triviality flags appropriately for our bases. */
5474 if (cxx_dialect >= cxx11)
5475 deduce_noexcept_on_destructors (t);
5476
5477 /* Check all the method declarations. */
5478 check_methods (t);
5479
5480 /* Save the initial values of these flags which only indicate whether
5481 or not the class has user-provided functions. As we analyze the
5482 bases and members we can set these flags for other reasons. */
5483 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5484 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5485
5486 /* Check all the data member declarations. We cannot call
5487 check_field_decls until we have called check_bases check_methods,
5488 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5489 being set appropriately. */
5490 check_field_decls (t, &access_decls,
5491 &cant_have_const_ctor,
5492 &no_const_asn_ref);
5493
5494 /* A nearly-empty class has to be vptr-containing; a nearly empty
5495 class contains just a vptr. */
5496 if (!TYPE_CONTAINS_VPTR_P (t))
5497 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5498
5499 /* Do some bookkeeping that will guide the generation of implicitly
5500 declared member functions. */
5501 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5502 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5503 /* We need to call a constructor for this class if it has a
5504 user-provided constructor, or if the default constructor is going
5505 to initialize the vptr. (This is not an if-and-only-if;
5506 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5507 themselves need constructing.) */
5508 TYPE_NEEDS_CONSTRUCTING (t)
5509 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5510 /* [dcl.init.aggr]
5511
5512 An aggregate is an array or a class with no user-provided
5513 constructors ... and no virtual functions.
5514
5515 Again, other conditions for being an aggregate are checked
5516 elsewhere. */
5517 CLASSTYPE_NON_AGGREGATE (t)
5518 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5519 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5520 retain the old definition internally for ABI reasons. */
5521 CLASSTYPE_NON_LAYOUT_POD_P (t)
5522 |= (CLASSTYPE_NON_AGGREGATE (t)
5523 || saved_nontrivial_dtor || saved_complex_asn_ref);
5524 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5525 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5526 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5527 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5528
5529 /* Warn if a public base of a polymorphic type has an accessible
5530 non-virtual destructor. It is only now that we know the class is
5531 polymorphic. Although a polymorphic base will have a already
5532 been diagnosed during its definition, we warn on use too. */
5533 if (TYPE_POLYMORPHIC_P (t) && warn_nonvdtor)
5534 {
5535 tree binfo = TYPE_BINFO (t);
5536 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
5537 tree base_binfo;
5538 unsigned i;
5539
5540 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5541 {
5542 tree basetype = TREE_TYPE (base_binfo);
5543
5544 if ((*accesses)[i] == access_public_node
5545 && (TYPE_POLYMORPHIC_P (basetype) || warn_ecpp)
5546 && accessible_nvdtor_p (basetype))
5547 warning (OPT_Wnon_virtual_dtor,
5548 "base class %q#T has accessible non-virtual destructor",
5549 basetype);
5550 }
5551 }
5552
5553 /* If the class has no user-declared constructor, but does have
5554 non-static const or reference data members that can never be
5555 initialized, issue a warning. */
5556 if (warn_uninitialized
5557 /* Classes with user-declared constructors are presumed to
5558 initialize these members. */
5559 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5560 /* Aggregates can be initialized with brace-enclosed
5561 initializers. */
5562 && CLASSTYPE_NON_AGGREGATE (t))
5563 {
5564 tree field;
5565
5566 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5567 {
5568 tree type;
5569
5570 if (TREE_CODE (field) != FIELD_DECL
5571 || DECL_INITIAL (field) != NULL_TREE)
5572 continue;
5573
5574 type = TREE_TYPE (field);
5575 if (TREE_CODE (type) == REFERENCE_TYPE)
5576 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5577 "in class without a constructor", field);
5578 else if (CP_TYPE_CONST_P (type)
5579 && (!CLASS_TYPE_P (type)
5580 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5581 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5582 "in class without a constructor", field);
5583 }
5584 }
5585
5586 /* Synthesize any needed methods. */
5587 add_implicitly_declared_members (t, &access_decls,
5588 cant_have_const_ctor,
5589 no_const_asn_ref);
5590
5591 /* Check defaulted declarations here so we have cant_have_const_ctor
5592 and don't need to worry about clones. */
5593 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5594 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5595 {
5596 int copy = copy_fn_p (fn);
5597 if (copy > 0)
5598 {
5599 bool imp_const_p
5600 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5601 : !no_const_asn_ref);
5602 bool fn_const_p = (copy == 2);
5603
5604 if (fn_const_p && !imp_const_p)
5605 /* If the function is defaulted outside the class, we just
5606 give the synthesis error. */
5607 error ("%q+D declared to take const reference, but implicit "
5608 "declaration would take non-const", fn);
5609 }
5610 defaulted_late_check (fn);
5611 }
5612
5613 if (LAMBDA_TYPE_P (t))
5614 {
5615 /* "The closure type associated with a lambda-expression has a deleted
5616 default constructor and a deleted copy assignment operator." */
5617 TYPE_NEEDS_CONSTRUCTING (t) = 1;
5618 TYPE_HAS_COMPLEX_DFLT (t) = 1;
5619 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
5620 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
5621
5622 /* "This class type is not an aggregate." */
5623 CLASSTYPE_NON_AGGREGATE (t) = 1;
5624 }
5625
5626 /* Compute the 'literal type' property before we
5627 do anything with non-static member functions. */
5628 finalize_literal_type_property (t);
5629
5630 /* Create the in-charge and not-in-charge variants of constructors
5631 and destructors. */
5632 clone_constructors_and_destructors (t);
5633
5634 /* Process the using-declarations. */
5635 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5636 handle_using_decl (TREE_VALUE (access_decls), t);
5637
5638 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5639 finish_struct_methods (t);
5640
5641 /* Figure out whether or not we will need a cookie when dynamically
5642 allocating an array of this type. */
5643 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5644 = type_requires_array_cookie (t);
5645 }
5646
5647 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5648 accordingly. If a new vfield was created (because T doesn't have a
5649 primary base class), then the newly created field is returned. It
5650 is not added to the TYPE_FIELDS list; it is the caller's
5651 responsibility to do that. Accumulate declared virtual functions
5652 on VIRTUALS_P. */
5653
5654 static tree
5655 create_vtable_ptr (tree t, tree* virtuals_p)
5656 {
5657 tree fn;
5658
5659 /* Collect the virtual functions declared in T. */
5660 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5661 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5662 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5663 {
5664 tree new_virtual = make_node (TREE_LIST);
5665
5666 BV_FN (new_virtual) = fn;
5667 BV_DELTA (new_virtual) = integer_zero_node;
5668 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5669
5670 TREE_CHAIN (new_virtual) = *virtuals_p;
5671 *virtuals_p = new_virtual;
5672 }
5673
5674 /* If we couldn't find an appropriate base class, create a new field
5675 here. Even if there weren't any new virtual functions, we might need a
5676 new virtual function table if we're supposed to include vptrs in
5677 all classes that need them. */
5678 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5679 {
5680 /* We build this decl with vtbl_ptr_type_node, which is a
5681 `vtable_entry_type*'. It might seem more precise to use
5682 `vtable_entry_type (*)[N]' where N is the number of virtual
5683 functions. However, that would require the vtable pointer in
5684 base classes to have a different type than the vtable pointer
5685 in derived classes. We could make that happen, but that
5686 still wouldn't solve all the problems. In particular, the
5687 type-based alias analysis code would decide that assignments
5688 to the base class vtable pointer can't alias assignments to
5689 the derived class vtable pointer, since they have different
5690 types. Thus, in a derived class destructor, where the base
5691 class constructor was inlined, we could generate bad code for
5692 setting up the vtable pointer.
5693
5694 Therefore, we use one type for all vtable pointers. We still
5695 use a type-correct type; it's just doesn't indicate the array
5696 bounds. That's better than using `void*' or some such; it's
5697 cleaner, and it let's the alias analysis code know that these
5698 stores cannot alias stores to void*! */
5699 tree field;
5700
5701 field = build_decl (input_location,
5702 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5703 DECL_VIRTUAL_P (field) = 1;
5704 DECL_ARTIFICIAL (field) = 1;
5705 DECL_FIELD_CONTEXT (field) = t;
5706 DECL_FCONTEXT (field) = t;
5707 if (TYPE_PACKED (t))
5708 DECL_PACKED (field) = 1;
5709
5710 TYPE_VFIELD (t) = field;
5711
5712 /* This class is non-empty. */
5713 CLASSTYPE_EMPTY_P (t) = 0;
5714
5715 return field;
5716 }
5717
5718 return NULL_TREE;
5719 }
5720
5721 /* Add OFFSET to all base types of BINFO which is a base in the
5722 hierarchy dominated by T.
5723
5724 OFFSET, which is a type offset, is number of bytes. */
5725
5726 static void
5727 propagate_binfo_offsets (tree binfo, tree offset)
5728 {
5729 int i;
5730 tree primary_binfo;
5731 tree base_binfo;
5732
5733 /* Update BINFO's offset. */
5734 BINFO_OFFSET (binfo)
5735 = convert (sizetype,
5736 size_binop (PLUS_EXPR,
5737 convert (ssizetype, BINFO_OFFSET (binfo)),
5738 offset));
5739
5740 /* Find the primary base class. */
5741 primary_binfo = get_primary_binfo (binfo);
5742
5743 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5744 propagate_binfo_offsets (primary_binfo, offset);
5745
5746 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5747 downwards. */
5748 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5749 {
5750 /* Don't do the primary base twice. */
5751 if (base_binfo == primary_binfo)
5752 continue;
5753
5754 if (BINFO_VIRTUAL_P (base_binfo))
5755 continue;
5756
5757 propagate_binfo_offsets (base_binfo, offset);
5758 }
5759 }
5760
5761 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5762 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5763 empty subobjects of T. */
5764
5765 static void
5766 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5767 {
5768 tree vbase;
5769 tree t = rli->t;
5770 tree *next_field;
5771
5772 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5773 return;
5774
5775 /* Find the last field. The artificial fields created for virtual
5776 bases will go after the last extant field to date. */
5777 next_field = &TYPE_FIELDS (t);
5778 while (*next_field)
5779 next_field = &DECL_CHAIN (*next_field);
5780
5781 /* Go through the virtual bases, allocating space for each virtual
5782 base that is not already a primary base class. These are
5783 allocated in inheritance graph order. */
5784 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5785 {
5786 if (!BINFO_VIRTUAL_P (vbase))
5787 continue;
5788
5789 if (!BINFO_PRIMARY_P (vbase))
5790 {
5791 /* This virtual base is not a primary base of any class in the
5792 hierarchy, so we have to add space for it. */
5793 next_field = build_base_field (rli, vbase,
5794 offsets, next_field);
5795 }
5796 }
5797 }
5798
5799 /* Returns the offset of the byte just past the end of the base class
5800 BINFO. */
5801
5802 static tree
5803 end_of_base (tree binfo)
5804 {
5805 tree size;
5806
5807 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5808 size = TYPE_SIZE_UNIT (char_type_node);
5809 else if (is_empty_class (BINFO_TYPE (binfo)))
5810 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5811 allocate some space for it. It cannot have virtual bases, so
5812 TYPE_SIZE_UNIT is fine. */
5813 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5814 else
5815 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5816
5817 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5818 }
5819
5820 /* Returns the offset of the byte just past the end of the base class
5821 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5822 only non-virtual bases are included. */
5823
5824 static tree
5825 end_of_class (tree t, int include_virtuals_p)
5826 {
5827 tree result = size_zero_node;
5828 vec<tree, va_gc> *vbases;
5829 tree binfo;
5830 tree base_binfo;
5831 tree offset;
5832 int i;
5833
5834 for (binfo = TYPE_BINFO (t), i = 0;
5835 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5836 {
5837 if (!include_virtuals_p
5838 && BINFO_VIRTUAL_P (base_binfo)
5839 && (!BINFO_PRIMARY_P (base_binfo)
5840 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5841 continue;
5842
5843 offset = end_of_base (base_binfo);
5844 if (tree_int_cst_lt (result, offset))
5845 result = offset;
5846 }
5847
5848 if (include_virtuals_p)
5849 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5850 vec_safe_iterate (vbases, i, &base_binfo); i++)
5851 {
5852 offset = end_of_base (base_binfo);
5853 if (tree_int_cst_lt (result, offset))
5854 result = offset;
5855 }
5856
5857 return result;
5858 }
5859
5860 /* Warn about bases of T that are inaccessible because they are
5861 ambiguous. For example:
5862
5863 struct S {};
5864 struct T : public S {};
5865 struct U : public S, public T {};
5866
5867 Here, `(S*) new U' is not allowed because there are two `S'
5868 subobjects of U. */
5869
5870 static void
5871 warn_about_ambiguous_bases (tree t)
5872 {
5873 int i;
5874 vec<tree, va_gc> *vbases;
5875 tree basetype;
5876 tree binfo;
5877 tree base_binfo;
5878
5879 /* If there are no repeated bases, nothing can be ambiguous. */
5880 if (!CLASSTYPE_REPEATED_BASE_P (t))
5881 return;
5882
5883 /* Check direct bases. */
5884 for (binfo = TYPE_BINFO (t), i = 0;
5885 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5886 {
5887 basetype = BINFO_TYPE (base_binfo);
5888
5889 if (!uniquely_derived_from_p (basetype, t))
5890 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5891 basetype, t);
5892 }
5893
5894 /* Check for ambiguous virtual bases. */
5895 if (extra_warnings)
5896 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5897 vec_safe_iterate (vbases, i, &binfo); i++)
5898 {
5899 basetype = BINFO_TYPE (binfo);
5900
5901 if (!uniquely_derived_from_p (basetype, t))
5902 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5903 "to ambiguity", basetype, t);
5904 }
5905 }
5906
5907 /* Compare two INTEGER_CSTs K1 and K2. */
5908
5909 static int
5910 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5911 {
5912 return tree_int_cst_compare ((tree) k1, (tree) k2);
5913 }
5914
5915 /* Increase the size indicated in RLI to account for empty classes
5916 that are "off the end" of the class. */
5917
5918 static void
5919 include_empty_classes (record_layout_info rli)
5920 {
5921 tree eoc;
5922 tree rli_size;
5923
5924 /* It might be the case that we grew the class to allocate a
5925 zero-sized base class. That won't be reflected in RLI, yet,
5926 because we are willing to overlay multiple bases at the same
5927 offset. However, now we need to make sure that RLI is big enough
5928 to reflect the entire class. */
5929 eoc = end_of_class (rli->t,
5930 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5931 rli_size = rli_size_unit_so_far (rli);
5932 if (TREE_CODE (rli_size) == INTEGER_CST
5933 && tree_int_cst_lt (rli_size, eoc))
5934 {
5935 /* The size should have been rounded to a whole byte. */
5936 gcc_assert (tree_int_cst_equal
5937 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5938 rli->bitpos
5939 = size_binop (PLUS_EXPR,
5940 rli->bitpos,
5941 size_binop (MULT_EXPR,
5942 convert (bitsizetype,
5943 size_binop (MINUS_EXPR,
5944 eoc, rli_size)),
5945 bitsize_int (BITS_PER_UNIT)));
5946 normalize_rli (rli);
5947 }
5948 }
5949
5950 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5951 BINFO_OFFSETs for all of the base-classes. Position the vtable
5952 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5953
5954 static void
5955 layout_class_type (tree t, tree *virtuals_p)
5956 {
5957 tree non_static_data_members;
5958 tree field;
5959 tree vptr;
5960 record_layout_info rli;
5961 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
5962 types that appear at that offset. */
5963 splay_tree empty_base_offsets;
5964 /* True if the last field laid out was a bit-field. */
5965 bool last_field_was_bitfield = false;
5966 /* The location at which the next field should be inserted. */
5967 tree *next_field;
5968 /* T, as a base class. */
5969 tree base_t;
5970
5971 /* Keep track of the first non-static data member. */
5972 non_static_data_members = TYPE_FIELDS (t);
5973
5974 /* Start laying out the record. */
5975 rli = start_record_layout (t);
5976
5977 /* Mark all the primary bases in the hierarchy. */
5978 determine_primary_bases (t);
5979
5980 /* Create a pointer to our virtual function table. */
5981 vptr = create_vtable_ptr (t, virtuals_p);
5982
5983 /* The vptr is always the first thing in the class. */
5984 if (vptr)
5985 {
5986 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
5987 TYPE_FIELDS (t) = vptr;
5988 next_field = &DECL_CHAIN (vptr);
5989 place_field (rli, vptr);
5990 }
5991 else
5992 next_field = &TYPE_FIELDS (t);
5993
5994 /* Build FIELD_DECLs for all of the non-virtual base-types. */
5995 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5996 NULL, NULL);
5997 build_base_fields (rli, empty_base_offsets, next_field);
5998
5999 /* Layout the non-static data members. */
6000 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
6001 {
6002 tree type;
6003 tree padding;
6004
6005 /* We still pass things that aren't non-static data members to
6006 the back end, in case it wants to do something with them. */
6007 if (TREE_CODE (field) != FIELD_DECL)
6008 {
6009 place_field (rli, field);
6010 /* If the static data member has incomplete type, keep track
6011 of it so that it can be completed later. (The handling
6012 of pending statics in finish_record_layout is
6013 insufficient; consider:
6014
6015 struct S1;
6016 struct S2 { static S1 s1; };
6017
6018 At this point, finish_record_layout will be called, but
6019 S1 is still incomplete.) */
6020 if (VAR_P (field))
6021 {
6022 maybe_register_incomplete_var (field);
6023 /* The visibility of static data members is determined
6024 at their point of declaration, not their point of
6025 definition. */
6026 determine_visibility (field);
6027 }
6028 continue;
6029 }
6030
6031 type = TREE_TYPE (field);
6032 if (type == error_mark_node)
6033 continue;
6034
6035 padding = NULL_TREE;
6036
6037 /* If this field is a bit-field whose width is greater than its
6038 type, then there are some special rules for allocating
6039 it. */
6040 if (DECL_C_BIT_FIELD (field)
6041 && tree_int_cst_lt (TYPE_SIZE (type), DECL_SIZE (field)))
6042 {
6043 unsigned int itk;
6044 tree integer_type;
6045 bool was_unnamed_p = false;
6046 /* We must allocate the bits as if suitably aligned for the
6047 longest integer type that fits in this many bits. type
6048 of the field. Then, we are supposed to use the left over
6049 bits as additional padding. */
6050 for (itk = itk_char; itk != itk_none; ++itk)
6051 if (integer_types[itk] != NULL_TREE
6052 && (tree_int_cst_lt (size_int (MAX_FIXED_MODE_SIZE),
6053 TYPE_SIZE (integer_types[itk]))
6054 || tree_int_cst_lt (DECL_SIZE (field),
6055 TYPE_SIZE (integer_types[itk]))))
6056 break;
6057
6058 /* ITK now indicates a type that is too large for the
6059 field. We have to back up by one to find the largest
6060 type that fits. */
6061 do
6062 {
6063 --itk;
6064 integer_type = integer_types[itk];
6065 } while (itk > 0 && integer_type == NULL_TREE);
6066
6067 /* Figure out how much additional padding is required. */
6068 if (tree_int_cst_lt (TYPE_SIZE (integer_type), DECL_SIZE (field)))
6069 {
6070 if (TREE_CODE (t) == UNION_TYPE)
6071 /* In a union, the padding field must have the full width
6072 of the bit-field; all fields start at offset zero. */
6073 padding = DECL_SIZE (field);
6074 else
6075 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
6076 TYPE_SIZE (integer_type));
6077 }
6078 #ifdef PCC_BITFIELD_TYPE_MATTERS
6079 /* An unnamed bitfield does not normally affect the
6080 alignment of the containing class on a target where
6081 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
6082 make any exceptions for unnamed bitfields when the
6083 bitfields are longer than their types. Therefore, we
6084 temporarily give the field a name. */
6085 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
6086 {
6087 was_unnamed_p = true;
6088 DECL_NAME (field) = make_anon_name ();
6089 }
6090 #endif
6091 DECL_SIZE (field) = TYPE_SIZE (integer_type);
6092 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
6093 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
6094 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6095 empty_base_offsets);
6096 if (was_unnamed_p)
6097 DECL_NAME (field) = NULL_TREE;
6098 /* Now that layout has been performed, set the size of the
6099 field to the size of its declared type; the rest of the
6100 field is effectively invisible. */
6101 DECL_SIZE (field) = TYPE_SIZE (type);
6102 /* We must also reset the DECL_MODE of the field. */
6103 DECL_MODE (field) = TYPE_MODE (type);
6104 }
6105 else
6106 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6107 empty_base_offsets);
6108
6109 /* Remember the location of any empty classes in FIELD. */
6110 record_subobject_offsets (TREE_TYPE (field),
6111 byte_position(field),
6112 empty_base_offsets,
6113 /*is_data_member=*/true);
6114
6115 /* If a bit-field does not immediately follow another bit-field,
6116 and yet it starts in the middle of a byte, we have failed to
6117 comply with the ABI. */
6118 if (warn_abi
6119 && DECL_C_BIT_FIELD (field)
6120 /* The TREE_NO_WARNING flag gets set by Objective-C when
6121 laying out an Objective-C class. The ObjC ABI differs
6122 from the C++ ABI, and so we do not want a warning
6123 here. */
6124 && !TREE_NO_WARNING (field)
6125 && !last_field_was_bitfield
6126 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6127 DECL_FIELD_BIT_OFFSET (field),
6128 bitsize_unit_node)))
6129 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
6130 "change in a future version of GCC", field);
6131
6132 /* The middle end uses the type of expressions to determine the
6133 possible range of expression values. In order to optimize
6134 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6135 must be made aware of the width of "i", via its type.
6136
6137 Because C++ does not have integer types of arbitrary width,
6138 we must (for the purposes of the front end) convert from the
6139 type assigned here to the declared type of the bitfield
6140 whenever a bitfield expression is used as an rvalue.
6141 Similarly, when assigning a value to a bitfield, the value
6142 must be converted to the type given the bitfield here. */
6143 if (DECL_C_BIT_FIELD (field))
6144 {
6145 unsigned HOST_WIDE_INT width;
6146 tree ftype = TREE_TYPE (field);
6147 width = tree_to_uhwi (DECL_SIZE (field));
6148 if (width != TYPE_PRECISION (ftype))
6149 {
6150 TREE_TYPE (field)
6151 = c_build_bitfield_integer_type (width,
6152 TYPE_UNSIGNED (ftype));
6153 TREE_TYPE (field)
6154 = cp_build_qualified_type (TREE_TYPE (field),
6155 cp_type_quals (ftype));
6156 }
6157 }
6158
6159 /* If we needed additional padding after this field, add it
6160 now. */
6161 if (padding)
6162 {
6163 tree padding_field;
6164
6165 padding_field = build_decl (input_location,
6166 FIELD_DECL,
6167 NULL_TREE,
6168 char_type_node);
6169 DECL_BIT_FIELD (padding_field) = 1;
6170 DECL_SIZE (padding_field) = padding;
6171 DECL_CONTEXT (padding_field) = t;
6172 DECL_ARTIFICIAL (padding_field) = 1;
6173 DECL_IGNORED_P (padding_field) = 1;
6174 layout_nonempty_base_or_field (rli, padding_field,
6175 NULL_TREE,
6176 empty_base_offsets);
6177 }
6178
6179 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6180 }
6181
6182 if (!integer_zerop (rli->bitpos))
6183 {
6184 /* Make sure that we are on a byte boundary so that the size of
6185 the class without virtual bases will always be a round number
6186 of bytes. */
6187 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6188 normalize_rli (rli);
6189 }
6190
6191 /* Delete all zero-width bit-fields from the list of fields. Now
6192 that the type is laid out they are no longer important. */
6193 remove_zero_width_bit_fields (t);
6194
6195 /* Create the version of T used for virtual bases. We do not use
6196 make_class_type for this version; this is an artificial type. For
6197 a POD type, we just reuse T. */
6198 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6199 {
6200 base_t = make_node (TREE_CODE (t));
6201
6202 /* Set the size and alignment for the new type. */
6203 tree eoc;
6204
6205 /* If the ABI version is not at least two, and the last
6206 field was a bit-field, RLI may not be on a byte
6207 boundary. In particular, rli_size_unit_so_far might
6208 indicate the last complete byte, while rli_size_so_far
6209 indicates the total number of bits used. Therefore,
6210 rli_size_so_far, rather than rli_size_unit_so_far, is
6211 used to compute TYPE_SIZE_UNIT. */
6212 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6213 TYPE_SIZE_UNIT (base_t)
6214 = size_binop (MAX_EXPR,
6215 convert (sizetype,
6216 size_binop (CEIL_DIV_EXPR,
6217 rli_size_so_far (rli),
6218 bitsize_int (BITS_PER_UNIT))),
6219 eoc);
6220 TYPE_SIZE (base_t)
6221 = size_binop (MAX_EXPR,
6222 rli_size_so_far (rli),
6223 size_binop (MULT_EXPR,
6224 convert (bitsizetype, eoc),
6225 bitsize_int (BITS_PER_UNIT)));
6226 TYPE_ALIGN (base_t) = rli->record_align;
6227 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6228
6229 /* Copy the fields from T. */
6230 next_field = &TYPE_FIELDS (base_t);
6231 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6232 if (TREE_CODE (field) == FIELD_DECL)
6233 {
6234 *next_field = build_decl (input_location,
6235 FIELD_DECL,
6236 DECL_NAME (field),
6237 TREE_TYPE (field));
6238 DECL_CONTEXT (*next_field) = base_t;
6239 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6240 DECL_FIELD_BIT_OFFSET (*next_field)
6241 = DECL_FIELD_BIT_OFFSET (field);
6242 DECL_SIZE (*next_field) = DECL_SIZE (field);
6243 DECL_MODE (*next_field) = DECL_MODE (field);
6244 next_field = &DECL_CHAIN (*next_field);
6245 }
6246
6247 /* Record the base version of the type. */
6248 CLASSTYPE_AS_BASE (t) = base_t;
6249 TYPE_CONTEXT (base_t) = t;
6250 }
6251 else
6252 CLASSTYPE_AS_BASE (t) = t;
6253
6254 /* Every empty class contains an empty class. */
6255 if (CLASSTYPE_EMPTY_P (t))
6256 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6257
6258 /* Set the TYPE_DECL for this type to contain the right
6259 value for DECL_OFFSET, so that we can use it as part
6260 of a COMPONENT_REF for multiple inheritance. */
6261 layout_decl (TYPE_MAIN_DECL (t), 0);
6262
6263 /* Now fix up any virtual base class types that we left lying
6264 around. We must get these done before we try to lay out the
6265 virtual function table. As a side-effect, this will remove the
6266 base subobject fields. */
6267 layout_virtual_bases (rli, empty_base_offsets);
6268
6269 /* Make sure that empty classes are reflected in RLI at this
6270 point. */
6271 include_empty_classes(rli);
6272
6273 /* Make sure not to create any structures with zero size. */
6274 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6275 place_field (rli,
6276 build_decl (input_location,
6277 FIELD_DECL, NULL_TREE, char_type_node));
6278
6279 /* If this is a non-POD, declaring it packed makes a difference to how it
6280 can be used as a field; don't let finalize_record_size undo it. */
6281 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6282 rli->packed_maybe_necessary = true;
6283
6284 /* Let the back end lay out the type. */
6285 finish_record_layout (rli, /*free_p=*/true);
6286
6287 if (TYPE_SIZE_UNIT (t)
6288 && TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST
6289 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t))
6290 && !valid_constant_size_p (TYPE_SIZE_UNIT (t)))
6291 error ("type %qT is too large", t);
6292
6293 /* Warn about bases that can't be talked about due to ambiguity. */
6294 warn_about_ambiguous_bases (t);
6295
6296 /* Now that we're done with layout, give the base fields the real types. */
6297 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6298 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6299 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6300
6301 /* Clean up. */
6302 splay_tree_delete (empty_base_offsets);
6303
6304 if (CLASSTYPE_EMPTY_P (t)
6305 && tree_int_cst_lt (sizeof_biggest_empty_class,
6306 TYPE_SIZE_UNIT (t)))
6307 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6308 }
6309
6310 /* Determine the "key method" for the class type indicated by TYPE,
6311 and set CLASSTYPE_KEY_METHOD accordingly. */
6312
6313 void
6314 determine_key_method (tree type)
6315 {
6316 tree method;
6317
6318 if (TYPE_FOR_JAVA (type)
6319 || processing_template_decl
6320 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6321 || CLASSTYPE_INTERFACE_KNOWN (type))
6322 return;
6323
6324 /* The key method is the first non-pure virtual function that is not
6325 inline at the point of class definition. On some targets the
6326 key function may not be inline; those targets should not call
6327 this function until the end of the translation unit. */
6328 for (method = TYPE_METHODS (type); method != NULL_TREE;
6329 method = DECL_CHAIN (method))
6330 if (DECL_VINDEX (method) != NULL_TREE
6331 && ! DECL_DECLARED_INLINE_P (method)
6332 && ! DECL_PURE_VIRTUAL_P (method))
6333 {
6334 CLASSTYPE_KEY_METHOD (type) = method;
6335 break;
6336 }
6337
6338 return;
6339 }
6340
6341
6342 /* Allocate and return an instance of struct sorted_fields_type with
6343 N fields. */
6344
6345 static struct sorted_fields_type *
6346 sorted_fields_type_new (int n)
6347 {
6348 struct sorted_fields_type *sft;
6349 sft = (sorted_fields_type *) ggc_internal_alloc (sizeof (sorted_fields_type)
6350 + n * sizeof (tree));
6351 sft->len = n;
6352
6353 return sft;
6354 }
6355
6356
6357 /* Perform processing required when the definition of T (a class type)
6358 is complete. */
6359
6360 void
6361 finish_struct_1 (tree t)
6362 {
6363 tree x;
6364 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6365 tree virtuals = NULL_TREE;
6366
6367 if (COMPLETE_TYPE_P (t))
6368 {
6369 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6370 error ("redefinition of %q#T", t);
6371 popclass ();
6372 return;
6373 }
6374
6375 /* If this type was previously laid out as a forward reference,
6376 make sure we lay it out again. */
6377 TYPE_SIZE (t) = NULL_TREE;
6378 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6379
6380 /* Make assumptions about the class; we'll reset the flags if
6381 necessary. */
6382 CLASSTYPE_EMPTY_P (t) = 1;
6383 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6384 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6385 CLASSTYPE_LITERAL_P (t) = true;
6386
6387 /* Do end-of-class semantic processing: checking the validity of the
6388 bases and members and add implicitly generated methods. */
6389 check_bases_and_members (t);
6390
6391 /* Find the key method. */
6392 if (TYPE_CONTAINS_VPTR_P (t))
6393 {
6394 /* The Itanium C++ ABI permits the key method to be chosen when
6395 the class is defined -- even though the key method so
6396 selected may later turn out to be an inline function. On
6397 some systems (such as ARM Symbian OS) the key method cannot
6398 be determined until the end of the translation unit. On such
6399 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6400 will cause the class to be added to KEYED_CLASSES. Then, in
6401 finish_file we will determine the key method. */
6402 if (targetm.cxx.key_method_may_be_inline ())
6403 determine_key_method (t);
6404
6405 /* If a polymorphic class has no key method, we may emit the vtable
6406 in every translation unit where the class definition appears. */
6407 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6408 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6409 }
6410
6411 /* Layout the class itself. */
6412 layout_class_type (t, &virtuals);
6413 if (CLASSTYPE_AS_BASE (t) != t)
6414 /* We use the base type for trivial assignments, and hence it
6415 needs a mode. */
6416 compute_record_mode (CLASSTYPE_AS_BASE (t));
6417
6418 virtuals = modify_all_vtables (t, nreverse (virtuals));
6419
6420 /* If necessary, create the primary vtable for this class. */
6421 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6422 {
6423 /* We must enter these virtuals into the table. */
6424 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6425 build_primary_vtable (NULL_TREE, t);
6426 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6427 /* Here we know enough to change the type of our virtual
6428 function table, but we will wait until later this function. */
6429 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6430
6431 /* If we're warning about ABI tags, check the types of the new
6432 virtual functions. */
6433 if (warn_abi_tag)
6434 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6435 check_abi_tags (t, TREE_VALUE (v));
6436 }
6437
6438 if (TYPE_CONTAINS_VPTR_P (t))
6439 {
6440 int vindex;
6441 tree fn;
6442
6443 if (BINFO_VTABLE (TYPE_BINFO (t)))
6444 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6445 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6446 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6447
6448 /* Add entries for virtual functions introduced by this class. */
6449 BINFO_VIRTUALS (TYPE_BINFO (t))
6450 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6451
6452 /* Set DECL_VINDEX for all functions declared in this class. */
6453 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6454 fn;
6455 fn = TREE_CHAIN (fn),
6456 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6457 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6458 {
6459 tree fndecl = BV_FN (fn);
6460
6461 if (DECL_THUNK_P (fndecl))
6462 /* A thunk. We should never be calling this entry directly
6463 from this vtable -- we'd use the entry for the non
6464 thunk base function. */
6465 DECL_VINDEX (fndecl) = NULL_TREE;
6466 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6467 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6468 }
6469 }
6470
6471 finish_struct_bits (t);
6472 set_method_tm_attributes (t);
6473
6474 /* Complete the rtl for any static member objects of the type we're
6475 working on. */
6476 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6477 if (VAR_P (x) && TREE_STATIC (x)
6478 && TREE_TYPE (x) != error_mark_node
6479 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6480 DECL_MODE (x) = TYPE_MODE (t);
6481
6482 /* Done with FIELDS...now decide whether to sort these for
6483 faster lookups later.
6484
6485 We use a small number because most searches fail (succeeding
6486 ultimately as the search bores through the inheritance
6487 hierarchy), and we want this failure to occur quickly. */
6488
6489 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6490
6491 /* Complain if one of the field types requires lower visibility. */
6492 constrain_class_visibility (t);
6493
6494 /* Make the rtl for any new vtables we have created, and unmark
6495 the base types we marked. */
6496 finish_vtbls (t);
6497
6498 /* Build the VTT for T. */
6499 build_vtt (t);
6500
6501 /* This warning does not make sense for Java classes, since they
6502 cannot have destructors. */
6503 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor
6504 && TYPE_POLYMORPHIC_P (t) && accessible_nvdtor_p (t))
6505 warning (OPT_Wnon_virtual_dtor,
6506 "%q#T has virtual functions and accessible"
6507 " non-virtual destructor", t);
6508
6509 complete_vars (t);
6510
6511 if (warn_overloaded_virtual)
6512 warn_hidden (t);
6513
6514 /* Class layout, assignment of virtual table slots, etc., is now
6515 complete. Give the back end a chance to tweak the visibility of
6516 the class or perform any other required target modifications. */
6517 targetm.cxx.adjust_class_at_definition (t);
6518
6519 maybe_suppress_debug_info (t);
6520
6521 if (flag_vtable_verify)
6522 vtv_save_class_info (t);
6523
6524 dump_class_hierarchy (t);
6525
6526 /* Finish debugging output for this type. */
6527 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6528
6529 if (TYPE_TRANSPARENT_AGGR (t))
6530 {
6531 tree field = first_field (t);
6532 if (field == NULL_TREE || error_operand_p (field))
6533 {
6534 error ("type transparent %q#T does not have any fields", t);
6535 TYPE_TRANSPARENT_AGGR (t) = 0;
6536 }
6537 else if (DECL_ARTIFICIAL (field))
6538 {
6539 if (DECL_FIELD_IS_BASE (field))
6540 error ("type transparent class %qT has base classes", t);
6541 else
6542 {
6543 gcc_checking_assert (DECL_VIRTUAL_P (field));
6544 error ("type transparent class %qT has virtual functions", t);
6545 }
6546 TYPE_TRANSPARENT_AGGR (t) = 0;
6547 }
6548 else if (TYPE_MODE (t) != DECL_MODE (field))
6549 {
6550 error ("type transparent %q#T cannot be made transparent because "
6551 "the type of the first field has a different ABI from the "
6552 "class overall", t);
6553 TYPE_TRANSPARENT_AGGR (t) = 0;
6554 }
6555 }
6556 }
6557
6558 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6559 equal to THRESHOLD or greater than THRESHOLD. */
6560
6561 static void
6562 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6563 {
6564 int n_fields = count_fields (fields);
6565 if (n_fields >= threshold)
6566 {
6567 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6568 add_fields_to_record_type (fields, field_vec, 0);
6569 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6570 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6571 }
6572 }
6573
6574 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6575
6576 void
6577 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6578 {
6579 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6580 if (sorted_fields)
6581 {
6582 int i;
6583 int n_fields
6584 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6585 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6586
6587 for (i = 0; i < sorted_fields->len; ++i)
6588 field_vec->elts[i] = sorted_fields->elts[i];
6589
6590 add_enum_fields_to_record_type (enumtype, field_vec,
6591 sorted_fields->len);
6592 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6593 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6594 }
6595 }
6596
6597 /* When T was built up, the member declarations were added in reverse
6598 order. Rearrange them to declaration order. */
6599
6600 void
6601 unreverse_member_declarations (tree t)
6602 {
6603 tree next;
6604 tree prev;
6605 tree x;
6606
6607 /* The following lists are all in reverse order. Put them in
6608 declaration order now. */
6609 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6610 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6611
6612 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6613 reverse order, so we can't just use nreverse. */
6614 prev = NULL_TREE;
6615 for (x = TYPE_FIELDS (t);
6616 x && TREE_CODE (x) != TYPE_DECL;
6617 x = next)
6618 {
6619 next = DECL_CHAIN (x);
6620 DECL_CHAIN (x) = prev;
6621 prev = x;
6622 }
6623 if (prev)
6624 {
6625 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6626 if (prev)
6627 TYPE_FIELDS (t) = prev;
6628 }
6629 }
6630
6631 tree
6632 finish_struct (tree t, tree attributes)
6633 {
6634 location_t saved_loc = input_location;
6635
6636 /* Now that we've got all the field declarations, reverse everything
6637 as necessary. */
6638 unreverse_member_declarations (t);
6639
6640 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6641
6642 /* Nadger the current location so that diagnostics point to the start of
6643 the struct, not the end. */
6644 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6645
6646 if (processing_template_decl)
6647 {
6648 tree x;
6649
6650 finish_struct_methods (t);
6651 TYPE_SIZE (t) = bitsize_zero_node;
6652 TYPE_SIZE_UNIT (t) = size_zero_node;
6653
6654 /* We need to emit an error message if this type was used as a parameter
6655 and it is an abstract type, even if it is a template. We construct
6656 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6657 account and we call complete_vars with this type, which will check
6658 the PARM_DECLS. Note that while the type is being defined,
6659 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6660 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6661 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6662 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6663 if (DECL_PURE_VIRTUAL_P (x))
6664 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6665 complete_vars (t);
6666 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6667 an enclosing scope is a template class, so that this function be
6668 found by lookup_fnfields_1 when the using declaration is not
6669 instantiated yet. */
6670 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6671 if (TREE_CODE (x) == USING_DECL)
6672 {
6673 tree fn = strip_using_decl (x);
6674 if (is_overloaded_fn (fn))
6675 for (; fn; fn = OVL_NEXT (fn))
6676 add_method (t, OVL_CURRENT (fn), x);
6677 }
6678
6679 /* Remember current #pragma pack value. */
6680 TYPE_PRECISION (t) = maximum_field_alignment;
6681
6682 /* Fix up any variants we've already built. */
6683 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6684 {
6685 TYPE_SIZE (x) = TYPE_SIZE (t);
6686 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6687 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6688 TYPE_METHODS (x) = TYPE_METHODS (t);
6689 }
6690 }
6691 else
6692 finish_struct_1 (t);
6693
6694 input_location = saved_loc;
6695
6696 TYPE_BEING_DEFINED (t) = 0;
6697
6698 if (current_class_type)
6699 popclass ();
6700 else
6701 error ("trying to finish struct, but kicked out due to previous parse errors");
6702
6703 if (processing_template_decl && at_function_scope_p ()
6704 /* Lambdas are defined by the LAMBDA_EXPR. */
6705 && !LAMBDA_TYPE_P (t))
6706 add_stmt (build_min (TAG_DEFN, t));
6707
6708 return t;
6709 }
6710 \f
6711 /* Hash table to avoid endless recursion when handling references. */
6712 static hash_table<pointer_hash<tree_node> > *fixed_type_or_null_ref_ht;
6713
6714 /* Return the dynamic type of INSTANCE, if known.
6715 Used to determine whether the virtual function table is needed
6716 or not.
6717
6718 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6719 of our knowledge of its type. *NONNULL should be initialized
6720 before this function is called. */
6721
6722 static tree
6723 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6724 {
6725 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6726
6727 switch (TREE_CODE (instance))
6728 {
6729 case INDIRECT_REF:
6730 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6731 return NULL_TREE;
6732 else
6733 return RECUR (TREE_OPERAND (instance, 0));
6734
6735 case CALL_EXPR:
6736 /* This is a call to a constructor, hence it's never zero. */
6737 if (TREE_HAS_CONSTRUCTOR (instance))
6738 {
6739 if (nonnull)
6740 *nonnull = 1;
6741 return TREE_TYPE (instance);
6742 }
6743 return NULL_TREE;
6744
6745 case SAVE_EXPR:
6746 /* This is a call to a constructor, hence it's never zero. */
6747 if (TREE_HAS_CONSTRUCTOR (instance))
6748 {
6749 if (nonnull)
6750 *nonnull = 1;
6751 return TREE_TYPE (instance);
6752 }
6753 return RECUR (TREE_OPERAND (instance, 0));
6754
6755 case POINTER_PLUS_EXPR:
6756 case PLUS_EXPR:
6757 case MINUS_EXPR:
6758 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6759 return RECUR (TREE_OPERAND (instance, 0));
6760 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6761 /* Propagate nonnull. */
6762 return RECUR (TREE_OPERAND (instance, 0));
6763
6764 return NULL_TREE;
6765
6766 CASE_CONVERT:
6767 return RECUR (TREE_OPERAND (instance, 0));
6768
6769 case ADDR_EXPR:
6770 instance = TREE_OPERAND (instance, 0);
6771 if (nonnull)
6772 {
6773 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6774 with a real object -- given &p->f, p can still be null. */
6775 tree t = get_base_address (instance);
6776 /* ??? Probably should check DECL_WEAK here. */
6777 if (t && DECL_P (t))
6778 *nonnull = 1;
6779 }
6780 return RECUR (instance);
6781
6782 case COMPONENT_REF:
6783 /* If this component is really a base class reference, then the field
6784 itself isn't definitive. */
6785 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6786 return RECUR (TREE_OPERAND (instance, 0));
6787 return RECUR (TREE_OPERAND (instance, 1));
6788
6789 case VAR_DECL:
6790 case FIELD_DECL:
6791 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6792 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6793 {
6794 if (nonnull)
6795 *nonnull = 1;
6796 return TREE_TYPE (TREE_TYPE (instance));
6797 }
6798 /* fall through... */
6799 case TARGET_EXPR:
6800 case PARM_DECL:
6801 case RESULT_DECL:
6802 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6803 {
6804 if (nonnull)
6805 *nonnull = 1;
6806 return TREE_TYPE (instance);
6807 }
6808 else if (instance == current_class_ptr)
6809 {
6810 if (nonnull)
6811 *nonnull = 1;
6812
6813 /* if we're in a ctor or dtor, we know our type. If
6814 current_class_ptr is set but we aren't in a function, we're in
6815 an NSDMI (and therefore a constructor). */
6816 if (current_scope () != current_function_decl
6817 || (DECL_LANG_SPECIFIC (current_function_decl)
6818 && (DECL_CONSTRUCTOR_P (current_function_decl)
6819 || DECL_DESTRUCTOR_P (current_function_decl))))
6820 {
6821 if (cdtorp)
6822 *cdtorp = 1;
6823 return TREE_TYPE (TREE_TYPE (instance));
6824 }
6825 }
6826 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6827 {
6828 /* We only need one hash table because it is always left empty. */
6829 if (!fixed_type_or_null_ref_ht)
6830 fixed_type_or_null_ref_ht
6831 = new hash_table<pointer_hash<tree_node> > (37);
6832
6833 /* Reference variables should be references to objects. */
6834 if (nonnull)
6835 *nonnull = 1;
6836
6837 /* Enter the INSTANCE in a table to prevent recursion; a
6838 variable's initializer may refer to the variable
6839 itself. */
6840 if (VAR_P (instance)
6841 && DECL_INITIAL (instance)
6842 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6843 && !fixed_type_or_null_ref_ht->find (instance))
6844 {
6845 tree type;
6846 tree_node **slot;
6847
6848 slot = fixed_type_or_null_ref_ht->find_slot (instance, INSERT);
6849 *slot = instance;
6850 type = RECUR (DECL_INITIAL (instance));
6851 fixed_type_or_null_ref_ht->remove_elt (instance);
6852
6853 return type;
6854 }
6855 }
6856 return NULL_TREE;
6857
6858 default:
6859 return NULL_TREE;
6860 }
6861 #undef RECUR
6862 }
6863
6864 /* Return nonzero if the dynamic type of INSTANCE is known, and
6865 equivalent to the static type. We also handle the case where
6866 INSTANCE is really a pointer. Return negative if this is a
6867 ctor/dtor. There the dynamic type is known, but this might not be
6868 the most derived base of the original object, and hence virtual
6869 bases may not be laid out according to this type.
6870
6871 Used to determine whether the virtual function table is needed
6872 or not.
6873
6874 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6875 of our knowledge of its type. *NONNULL should be initialized
6876 before this function is called. */
6877
6878 int
6879 resolves_to_fixed_type_p (tree instance, int* nonnull)
6880 {
6881 tree t = TREE_TYPE (instance);
6882 int cdtorp = 0;
6883 tree fixed;
6884
6885 /* processing_template_decl can be false in a template if we're in
6886 fold_non_dependent_expr, but we still want to suppress this check. */
6887 if (in_template_function ())
6888 {
6889 /* In a template we only care about the type of the result. */
6890 if (nonnull)
6891 *nonnull = true;
6892 return true;
6893 }
6894
6895 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6896 if (fixed == NULL_TREE)
6897 return 0;
6898 if (POINTER_TYPE_P (t))
6899 t = TREE_TYPE (t);
6900 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6901 return 0;
6902 return cdtorp ? -1 : 1;
6903 }
6904
6905 \f
6906 void
6907 init_class_processing (void)
6908 {
6909 current_class_depth = 0;
6910 current_class_stack_size = 10;
6911 current_class_stack
6912 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6913 vec_alloc (local_classes, 8);
6914 sizeof_biggest_empty_class = size_zero_node;
6915
6916 ridpointers[(int) RID_PUBLIC] = access_public_node;
6917 ridpointers[(int) RID_PRIVATE] = access_private_node;
6918 ridpointers[(int) RID_PROTECTED] = access_protected_node;
6919 }
6920
6921 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
6922
6923 static void
6924 restore_class_cache (void)
6925 {
6926 tree type;
6927
6928 /* We are re-entering the same class we just left, so we don't
6929 have to search the whole inheritance matrix to find all the
6930 decls to bind again. Instead, we install the cached
6931 class_shadowed list and walk through it binding names. */
6932 push_binding_level (previous_class_level);
6933 class_binding_level = previous_class_level;
6934 /* Restore IDENTIFIER_TYPE_VALUE. */
6935 for (type = class_binding_level->type_shadowed;
6936 type;
6937 type = TREE_CHAIN (type))
6938 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
6939 }
6940
6941 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
6942 appropriate for TYPE.
6943
6944 So that we may avoid calls to lookup_name, we cache the _TYPE
6945 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
6946
6947 For multiple inheritance, we perform a two-pass depth-first search
6948 of the type lattice. */
6949
6950 void
6951 pushclass (tree type)
6952 {
6953 class_stack_node_t csn;
6954
6955 type = TYPE_MAIN_VARIANT (type);
6956
6957 /* Make sure there is enough room for the new entry on the stack. */
6958 if (current_class_depth + 1 >= current_class_stack_size)
6959 {
6960 current_class_stack_size *= 2;
6961 current_class_stack
6962 = XRESIZEVEC (struct class_stack_node, current_class_stack,
6963 current_class_stack_size);
6964 }
6965
6966 /* Insert a new entry on the class stack. */
6967 csn = current_class_stack + current_class_depth;
6968 csn->name = current_class_name;
6969 csn->type = current_class_type;
6970 csn->access = current_access_specifier;
6971 csn->names_used = 0;
6972 csn->hidden = 0;
6973 current_class_depth++;
6974
6975 /* Now set up the new type. */
6976 current_class_name = TYPE_NAME (type);
6977 if (TREE_CODE (current_class_name) == TYPE_DECL)
6978 current_class_name = DECL_NAME (current_class_name);
6979 current_class_type = type;
6980
6981 /* By default, things in classes are private, while things in
6982 structures or unions are public. */
6983 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
6984 ? access_private_node
6985 : access_public_node);
6986
6987 if (previous_class_level
6988 && type != previous_class_level->this_entity
6989 && current_class_depth == 1)
6990 {
6991 /* Forcibly remove any old class remnants. */
6992 invalidate_class_lookup_cache ();
6993 }
6994
6995 if (!previous_class_level
6996 || type != previous_class_level->this_entity
6997 || current_class_depth > 1)
6998 pushlevel_class ();
6999 else
7000 restore_class_cache ();
7001 }
7002
7003 /* When we exit a toplevel class scope, we save its binding level so
7004 that we can restore it quickly. Here, we've entered some other
7005 class, so we must invalidate our cache. */
7006
7007 void
7008 invalidate_class_lookup_cache (void)
7009 {
7010 previous_class_level = NULL;
7011 }
7012
7013 /* Get out of the current class scope. If we were in a class scope
7014 previously, that is the one popped to. */
7015
7016 void
7017 popclass (void)
7018 {
7019 poplevel_class ();
7020
7021 current_class_depth--;
7022 current_class_name = current_class_stack[current_class_depth].name;
7023 current_class_type = current_class_stack[current_class_depth].type;
7024 current_access_specifier = current_class_stack[current_class_depth].access;
7025 if (current_class_stack[current_class_depth].names_used)
7026 splay_tree_delete (current_class_stack[current_class_depth].names_used);
7027 }
7028
7029 /* Mark the top of the class stack as hidden. */
7030
7031 void
7032 push_class_stack (void)
7033 {
7034 if (current_class_depth)
7035 ++current_class_stack[current_class_depth - 1].hidden;
7036 }
7037
7038 /* Mark the top of the class stack as un-hidden. */
7039
7040 void
7041 pop_class_stack (void)
7042 {
7043 if (current_class_depth)
7044 --current_class_stack[current_class_depth - 1].hidden;
7045 }
7046
7047 /* Returns 1 if the class type currently being defined is either T or
7048 a nested type of T. */
7049
7050 bool
7051 currently_open_class (tree t)
7052 {
7053 int i;
7054
7055 if (!CLASS_TYPE_P (t))
7056 return false;
7057
7058 t = TYPE_MAIN_VARIANT (t);
7059
7060 /* We start looking from 1 because entry 0 is from global scope,
7061 and has no type. */
7062 for (i = current_class_depth; i > 0; --i)
7063 {
7064 tree c;
7065 if (i == current_class_depth)
7066 c = current_class_type;
7067 else
7068 {
7069 if (current_class_stack[i].hidden)
7070 break;
7071 c = current_class_stack[i].type;
7072 }
7073 if (!c)
7074 continue;
7075 if (same_type_p (c, t))
7076 return true;
7077 }
7078 return false;
7079 }
7080
7081 /* If either current_class_type or one of its enclosing classes are derived
7082 from T, return the appropriate type. Used to determine how we found
7083 something via unqualified lookup. */
7084
7085 tree
7086 currently_open_derived_class (tree t)
7087 {
7088 int i;
7089
7090 /* The bases of a dependent type are unknown. */
7091 if (dependent_type_p (t))
7092 return NULL_TREE;
7093
7094 if (!current_class_type)
7095 return NULL_TREE;
7096
7097 if (DERIVED_FROM_P (t, current_class_type))
7098 return current_class_type;
7099
7100 for (i = current_class_depth - 1; i > 0; --i)
7101 {
7102 if (current_class_stack[i].hidden)
7103 break;
7104 if (DERIVED_FROM_P (t, current_class_stack[i].type))
7105 return current_class_stack[i].type;
7106 }
7107
7108 return NULL_TREE;
7109 }
7110
7111 /* Returns the innermost class type which is not a lambda closure type. */
7112
7113 tree
7114 current_nonlambda_class_type (void)
7115 {
7116 int i;
7117
7118 /* We start looking from 1 because entry 0 is from global scope,
7119 and has no type. */
7120 for (i = current_class_depth; i > 0; --i)
7121 {
7122 tree c;
7123 if (i == current_class_depth)
7124 c = current_class_type;
7125 else
7126 {
7127 if (current_class_stack[i].hidden)
7128 break;
7129 c = current_class_stack[i].type;
7130 }
7131 if (!c)
7132 continue;
7133 if (!LAMBDA_TYPE_P (c))
7134 return c;
7135 }
7136 return NULL_TREE;
7137 }
7138
7139 /* When entering a class scope, all enclosing class scopes' names with
7140 static meaning (static variables, static functions, types and
7141 enumerators) have to be visible. This recursive function calls
7142 pushclass for all enclosing class contexts until global or a local
7143 scope is reached. TYPE is the enclosed class. */
7144
7145 void
7146 push_nested_class (tree type)
7147 {
7148 /* A namespace might be passed in error cases, like A::B:C. */
7149 if (type == NULL_TREE
7150 || !CLASS_TYPE_P (type))
7151 return;
7152
7153 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7154
7155 pushclass (type);
7156 }
7157
7158 /* Undoes a push_nested_class call. */
7159
7160 void
7161 pop_nested_class (void)
7162 {
7163 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7164
7165 popclass ();
7166 if (context && CLASS_TYPE_P (context))
7167 pop_nested_class ();
7168 }
7169
7170 /* Returns the number of extern "LANG" blocks we are nested within. */
7171
7172 int
7173 current_lang_depth (void)
7174 {
7175 return vec_safe_length (current_lang_base);
7176 }
7177
7178 /* Set global variables CURRENT_LANG_NAME to appropriate value
7179 so that behavior of name-mangling machinery is correct. */
7180
7181 void
7182 push_lang_context (tree name)
7183 {
7184 vec_safe_push (current_lang_base, current_lang_name);
7185
7186 if (name == lang_name_cplusplus)
7187 {
7188 current_lang_name = name;
7189 }
7190 else if (name == lang_name_java)
7191 {
7192 current_lang_name = name;
7193 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7194 (See record_builtin_java_type in decl.c.) However, that causes
7195 incorrect debug entries if these types are actually used.
7196 So we re-enable debug output after extern "Java". */
7197 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7198 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7199 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7200 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7201 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7202 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7203 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7204 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7205 }
7206 else if (name == lang_name_c)
7207 {
7208 current_lang_name = name;
7209 }
7210 else
7211 error ("language string %<\"%E\"%> not recognized", name);
7212 }
7213
7214 /* Get out of the current language scope. */
7215
7216 void
7217 pop_lang_context (void)
7218 {
7219 current_lang_name = current_lang_base->pop ();
7220 }
7221 \f
7222 /* Type instantiation routines. */
7223
7224 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7225 matches the TARGET_TYPE. If there is no satisfactory match, return
7226 error_mark_node, and issue an error & warning messages under
7227 control of FLAGS. Permit pointers to member function if FLAGS
7228 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7229 a template-id, and EXPLICIT_TARGS are the explicitly provided
7230 template arguments.
7231
7232 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7233 is the base path used to reference those member functions. If
7234 the address is resolved to a member function, access checks will be
7235 performed and errors issued if appropriate. */
7236
7237 static tree
7238 resolve_address_of_overloaded_function (tree target_type,
7239 tree overload,
7240 tsubst_flags_t flags,
7241 bool template_only,
7242 tree explicit_targs,
7243 tree access_path)
7244 {
7245 /* Here's what the standard says:
7246
7247 [over.over]
7248
7249 If the name is a function template, template argument deduction
7250 is done, and if the argument deduction succeeds, the deduced
7251 arguments are used to generate a single template function, which
7252 is added to the set of overloaded functions considered.
7253
7254 Non-member functions and static member functions match targets of
7255 type "pointer-to-function" or "reference-to-function." Nonstatic
7256 member functions match targets of type "pointer-to-member
7257 function;" the function type of the pointer to member is used to
7258 select the member function from the set of overloaded member
7259 functions. If a nonstatic member function is selected, the
7260 reference to the overloaded function name is required to have the
7261 form of a pointer to member as described in 5.3.1.
7262
7263 If more than one function is selected, any template functions in
7264 the set are eliminated if the set also contains a non-template
7265 function, and any given template function is eliminated if the
7266 set contains a second template function that is more specialized
7267 than the first according to the partial ordering rules 14.5.5.2.
7268 After such eliminations, if any, there shall remain exactly one
7269 selected function. */
7270
7271 int is_ptrmem = 0;
7272 /* We store the matches in a TREE_LIST rooted here. The functions
7273 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7274 interoperability with most_specialized_instantiation. */
7275 tree matches = NULL_TREE;
7276 tree fn;
7277 tree target_fn_type;
7278
7279 /* By the time we get here, we should be seeing only real
7280 pointer-to-member types, not the internal POINTER_TYPE to
7281 METHOD_TYPE representation. */
7282 gcc_assert (!TYPE_PTR_P (target_type)
7283 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7284
7285 gcc_assert (is_overloaded_fn (overload));
7286
7287 /* Check that the TARGET_TYPE is reasonable. */
7288 if (TYPE_PTRFN_P (target_type)
7289 || TYPE_REFFN_P (target_type))
7290 /* This is OK. */;
7291 else if (TYPE_PTRMEMFUNC_P (target_type))
7292 /* This is OK, too. */
7293 is_ptrmem = 1;
7294 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7295 /* This is OK, too. This comes from a conversion to reference
7296 type. */
7297 target_type = build_reference_type (target_type);
7298 else
7299 {
7300 if (flags & tf_error)
7301 error ("cannot resolve overloaded function %qD based on"
7302 " conversion to type %qT",
7303 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7304 return error_mark_node;
7305 }
7306
7307 /* Non-member functions and static member functions match targets of type
7308 "pointer-to-function" or "reference-to-function." Nonstatic member
7309 functions match targets of type "pointer-to-member-function;" the
7310 function type of the pointer to member is used to select the member
7311 function from the set of overloaded member functions.
7312
7313 So figure out the FUNCTION_TYPE that we want to match against. */
7314 target_fn_type = static_fn_type (target_type);
7315
7316 /* If we can find a non-template function that matches, we can just
7317 use it. There's no point in generating template instantiations
7318 if we're just going to throw them out anyhow. But, of course, we
7319 can only do this when we don't *need* a template function. */
7320 if (!template_only)
7321 {
7322 tree fns;
7323
7324 for (fns = overload; fns; fns = OVL_NEXT (fns))
7325 {
7326 tree fn = OVL_CURRENT (fns);
7327
7328 if (TREE_CODE (fn) == TEMPLATE_DECL)
7329 /* We're not looking for templates just yet. */
7330 continue;
7331
7332 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7333 != is_ptrmem)
7334 /* We're looking for a non-static member, and this isn't
7335 one, or vice versa. */
7336 continue;
7337
7338 /* Ignore functions which haven't been explicitly
7339 declared. */
7340 if (DECL_ANTICIPATED (fn))
7341 continue;
7342
7343 /* See if there's a match. */
7344 if (same_type_p (target_fn_type, static_fn_type (fn)))
7345 matches = tree_cons (fn, NULL_TREE, matches);
7346 }
7347 }
7348
7349 /* Now, if we've already got a match (or matches), there's no need
7350 to proceed to the template functions. But, if we don't have a
7351 match we need to look at them, too. */
7352 if (!matches)
7353 {
7354 tree target_arg_types;
7355 tree target_ret_type;
7356 tree fns;
7357 tree *args;
7358 unsigned int nargs, ia;
7359 tree arg;
7360
7361 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7362 target_ret_type = TREE_TYPE (target_fn_type);
7363
7364 nargs = list_length (target_arg_types);
7365 args = XALLOCAVEC (tree, nargs);
7366 for (arg = target_arg_types, ia = 0;
7367 arg != NULL_TREE && arg != void_list_node;
7368 arg = TREE_CHAIN (arg), ++ia)
7369 args[ia] = TREE_VALUE (arg);
7370 nargs = ia;
7371
7372 for (fns = overload; fns; fns = OVL_NEXT (fns))
7373 {
7374 tree fn = OVL_CURRENT (fns);
7375 tree instantiation;
7376 tree targs;
7377
7378 if (TREE_CODE (fn) != TEMPLATE_DECL)
7379 /* We're only looking for templates. */
7380 continue;
7381
7382 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7383 != is_ptrmem)
7384 /* We're not looking for a non-static member, and this is
7385 one, or vice versa. */
7386 continue;
7387
7388 tree ret = target_ret_type;
7389
7390 /* If the template has a deduced return type, don't expose it to
7391 template argument deduction. */
7392 if (undeduced_auto_decl (fn))
7393 ret = NULL_TREE;
7394
7395 /* Try to do argument deduction. */
7396 targs = make_tree_vec (DECL_NTPARMS (fn));
7397 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7398 nargs, ret,
7399 DEDUCE_EXACT, LOOKUP_NORMAL,
7400 false, false);
7401 if (instantiation == error_mark_node)
7402 /* Instantiation failed. */
7403 continue;
7404
7405 /* And now force instantiation to do return type deduction. */
7406 if (undeduced_auto_decl (instantiation))
7407 {
7408 ++function_depth;
7409 instantiate_decl (instantiation, /*defer*/false, /*class*/false);
7410 --function_depth;
7411
7412 require_deduced_type (instantiation);
7413 }
7414
7415 /* See if there's a match. */
7416 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7417 matches = tree_cons (instantiation, fn, matches);
7418 }
7419
7420 /* Now, remove all but the most specialized of the matches. */
7421 if (matches)
7422 {
7423 tree match = most_specialized_instantiation (matches);
7424
7425 if (match != error_mark_node)
7426 matches = tree_cons (TREE_PURPOSE (match),
7427 NULL_TREE,
7428 NULL_TREE);
7429 }
7430 }
7431
7432 /* Now we should have exactly one function in MATCHES. */
7433 if (matches == NULL_TREE)
7434 {
7435 /* There were *no* matches. */
7436 if (flags & tf_error)
7437 {
7438 error ("no matches converting function %qD to type %q#T",
7439 DECL_NAME (OVL_CURRENT (overload)),
7440 target_type);
7441
7442 print_candidates (overload);
7443 }
7444 return error_mark_node;
7445 }
7446 else if (TREE_CHAIN (matches))
7447 {
7448 /* There were too many matches. First check if they're all
7449 the same function. */
7450 tree match = NULL_TREE;
7451
7452 fn = TREE_PURPOSE (matches);
7453
7454 /* For multi-versioned functions, more than one match is just fine and
7455 decls_match will return false as they are different. */
7456 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7457 if (!decls_match (fn, TREE_PURPOSE (match))
7458 && !targetm.target_option.function_versions
7459 (fn, TREE_PURPOSE (match)))
7460 break;
7461
7462 if (match)
7463 {
7464 if (flags & tf_error)
7465 {
7466 error ("converting overloaded function %qD to type %q#T is ambiguous",
7467 DECL_NAME (OVL_FUNCTION (overload)),
7468 target_type);
7469
7470 /* Since print_candidates expects the functions in the
7471 TREE_VALUE slot, we flip them here. */
7472 for (match = matches; match; match = TREE_CHAIN (match))
7473 TREE_VALUE (match) = TREE_PURPOSE (match);
7474
7475 print_candidates (matches);
7476 }
7477
7478 return error_mark_node;
7479 }
7480 }
7481
7482 /* Good, exactly one match. Now, convert it to the correct type. */
7483 fn = TREE_PURPOSE (matches);
7484
7485 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7486 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7487 {
7488 static int explained;
7489
7490 if (!(flags & tf_error))
7491 return error_mark_node;
7492
7493 permerror (input_location, "assuming pointer to member %qD", fn);
7494 if (!explained)
7495 {
7496 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7497 explained = 1;
7498 }
7499 }
7500
7501 /* If a pointer to a function that is multi-versioned is requested, the
7502 pointer to the dispatcher function is returned instead. This works
7503 well because indirectly calling the function will dispatch the right
7504 function version at run-time. */
7505 if (DECL_FUNCTION_VERSIONED (fn))
7506 {
7507 fn = get_function_version_dispatcher (fn);
7508 if (fn == NULL)
7509 return error_mark_node;
7510 /* Mark all the versions corresponding to the dispatcher as used. */
7511 if (!(flags & tf_conv))
7512 mark_versions_used (fn);
7513 }
7514
7515 /* If we're doing overload resolution purely for the purpose of
7516 determining conversion sequences, we should not consider the
7517 function used. If this conversion sequence is selected, the
7518 function will be marked as used at this point. */
7519 if (!(flags & tf_conv))
7520 {
7521 /* Make =delete work with SFINAE. */
7522 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7523 return error_mark_node;
7524
7525 mark_used (fn);
7526 }
7527
7528 /* We could not check access to member functions when this
7529 expression was originally created since we did not know at that
7530 time to which function the expression referred. */
7531 if (DECL_FUNCTION_MEMBER_P (fn))
7532 {
7533 gcc_assert (access_path);
7534 perform_or_defer_access_check (access_path, fn, fn, flags);
7535 }
7536
7537 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7538 return cp_build_addr_expr (fn, flags);
7539 else
7540 {
7541 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7542 will mark the function as addressed, but here we must do it
7543 explicitly. */
7544 cxx_mark_addressable (fn);
7545
7546 return fn;
7547 }
7548 }
7549
7550 /* This function will instantiate the type of the expression given in
7551 RHS to match the type of LHSTYPE. If errors exist, then return
7552 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7553 we complain on errors. If we are not complaining, never modify rhs,
7554 as overload resolution wants to try many possible instantiations, in
7555 the hope that at least one will work.
7556
7557 For non-recursive calls, LHSTYPE should be a function, pointer to
7558 function, or a pointer to member function. */
7559
7560 tree
7561 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7562 {
7563 tsubst_flags_t flags_in = flags;
7564 tree access_path = NULL_TREE;
7565
7566 flags &= ~tf_ptrmem_ok;
7567
7568 if (lhstype == unknown_type_node)
7569 {
7570 if (flags & tf_error)
7571 error ("not enough type information");
7572 return error_mark_node;
7573 }
7574
7575 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7576 {
7577 tree fntype = non_reference (lhstype);
7578 if (same_type_p (fntype, TREE_TYPE (rhs)))
7579 return rhs;
7580 if (flag_ms_extensions
7581 && TYPE_PTRMEMFUNC_P (fntype)
7582 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7583 /* Microsoft allows `A::f' to be resolved to a
7584 pointer-to-member. */
7585 ;
7586 else
7587 {
7588 if (flags & tf_error)
7589 error ("cannot convert %qE from type %qT to type %qT",
7590 rhs, TREE_TYPE (rhs), fntype);
7591 return error_mark_node;
7592 }
7593 }
7594
7595 if (BASELINK_P (rhs))
7596 {
7597 access_path = BASELINK_ACCESS_BINFO (rhs);
7598 rhs = BASELINK_FUNCTIONS (rhs);
7599 }
7600
7601 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7602 deduce any type information. */
7603 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7604 {
7605 if (flags & tf_error)
7606 error ("not enough type information");
7607 return error_mark_node;
7608 }
7609
7610 /* There only a few kinds of expressions that may have a type
7611 dependent on overload resolution. */
7612 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7613 || TREE_CODE (rhs) == COMPONENT_REF
7614 || is_overloaded_fn (rhs)
7615 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7616
7617 /* This should really only be used when attempting to distinguish
7618 what sort of a pointer to function we have. For now, any
7619 arithmetic operation which is not supported on pointers
7620 is rejected as an error. */
7621
7622 switch (TREE_CODE (rhs))
7623 {
7624 case COMPONENT_REF:
7625 {
7626 tree member = TREE_OPERAND (rhs, 1);
7627
7628 member = instantiate_type (lhstype, member, flags);
7629 if (member != error_mark_node
7630 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7631 /* Do not lose object's side effects. */
7632 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7633 TREE_OPERAND (rhs, 0), member);
7634 return member;
7635 }
7636
7637 case OFFSET_REF:
7638 rhs = TREE_OPERAND (rhs, 1);
7639 if (BASELINK_P (rhs))
7640 return instantiate_type (lhstype, rhs, flags_in);
7641
7642 /* This can happen if we are forming a pointer-to-member for a
7643 member template. */
7644 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7645
7646 /* Fall through. */
7647
7648 case TEMPLATE_ID_EXPR:
7649 {
7650 tree fns = TREE_OPERAND (rhs, 0);
7651 tree args = TREE_OPERAND (rhs, 1);
7652
7653 return
7654 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7655 /*template_only=*/true,
7656 args, access_path);
7657 }
7658
7659 case OVERLOAD:
7660 case FUNCTION_DECL:
7661 return
7662 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7663 /*template_only=*/false,
7664 /*explicit_targs=*/NULL_TREE,
7665 access_path);
7666
7667 case ADDR_EXPR:
7668 {
7669 if (PTRMEM_OK_P (rhs))
7670 flags |= tf_ptrmem_ok;
7671
7672 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7673 }
7674
7675 case ERROR_MARK:
7676 return error_mark_node;
7677
7678 default:
7679 gcc_unreachable ();
7680 }
7681 return error_mark_node;
7682 }
7683 \f
7684 /* Return the name of the virtual function pointer field
7685 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7686 this may have to look back through base types to find the
7687 ultimate field name. (For single inheritance, these could
7688 all be the same name. Who knows for multiple inheritance). */
7689
7690 static tree
7691 get_vfield_name (tree type)
7692 {
7693 tree binfo, base_binfo;
7694 char *buf;
7695
7696 for (binfo = TYPE_BINFO (type);
7697 BINFO_N_BASE_BINFOS (binfo);
7698 binfo = base_binfo)
7699 {
7700 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7701
7702 if (BINFO_VIRTUAL_P (base_binfo)
7703 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7704 break;
7705 }
7706
7707 type = BINFO_TYPE (binfo);
7708 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7709 + TYPE_NAME_LENGTH (type) + 2);
7710 sprintf (buf, VFIELD_NAME_FORMAT,
7711 IDENTIFIER_POINTER (constructor_name (type)));
7712 return get_identifier (buf);
7713 }
7714
7715 void
7716 print_class_statistics (void)
7717 {
7718 if (! GATHER_STATISTICS)
7719 return;
7720
7721 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7722 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7723 if (n_vtables)
7724 {
7725 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7726 n_vtables, n_vtable_searches);
7727 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7728 n_vtable_entries, n_vtable_elems);
7729 }
7730 }
7731
7732 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7733 according to [class]:
7734 The class-name is also inserted
7735 into the scope of the class itself. For purposes of access checking,
7736 the inserted class name is treated as if it were a public member name. */
7737
7738 void
7739 build_self_reference (void)
7740 {
7741 tree name = constructor_name (current_class_type);
7742 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7743 tree saved_cas;
7744
7745 DECL_NONLOCAL (value) = 1;
7746 DECL_CONTEXT (value) = current_class_type;
7747 DECL_ARTIFICIAL (value) = 1;
7748 SET_DECL_SELF_REFERENCE_P (value);
7749 set_underlying_type (value);
7750
7751 if (processing_template_decl)
7752 value = push_template_decl (value);
7753
7754 saved_cas = current_access_specifier;
7755 current_access_specifier = access_public_node;
7756 finish_member_declaration (value);
7757 current_access_specifier = saved_cas;
7758 }
7759
7760 /* Returns 1 if TYPE contains only padding bytes. */
7761
7762 int
7763 is_empty_class (tree type)
7764 {
7765 if (type == error_mark_node)
7766 return 0;
7767
7768 if (! CLASS_TYPE_P (type))
7769 return 0;
7770
7771 return CLASSTYPE_EMPTY_P (type);
7772 }
7773
7774 /* Returns true if TYPE contains an empty class. */
7775
7776 static bool
7777 contains_empty_class_p (tree type)
7778 {
7779 if (is_empty_class (type))
7780 return true;
7781 if (CLASS_TYPE_P (type))
7782 {
7783 tree field;
7784 tree binfo;
7785 tree base_binfo;
7786 int i;
7787
7788 for (binfo = TYPE_BINFO (type), i = 0;
7789 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7790 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
7791 return true;
7792 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
7793 if (TREE_CODE (field) == FIELD_DECL
7794 && !DECL_ARTIFICIAL (field)
7795 && is_empty_class (TREE_TYPE (field)))
7796 return true;
7797 }
7798 else if (TREE_CODE (type) == ARRAY_TYPE)
7799 return contains_empty_class_p (TREE_TYPE (type));
7800 return false;
7801 }
7802
7803 /* Returns true if TYPE contains no actual data, just various
7804 possible combinations of empty classes and possibly a vptr. */
7805
7806 bool
7807 is_really_empty_class (tree type)
7808 {
7809 if (CLASS_TYPE_P (type))
7810 {
7811 tree field;
7812 tree binfo;
7813 tree base_binfo;
7814 int i;
7815
7816 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7817 out, but we'd like to be able to check this before then. */
7818 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7819 return true;
7820
7821 for (binfo = TYPE_BINFO (type), i = 0;
7822 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7823 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7824 return false;
7825 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7826 if (TREE_CODE (field) == FIELD_DECL
7827 && !DECL_ARTIFICIAL (field)
7828 && !is_really_empty_class (TREE_TYPE (field)))
7829 return false;
7830 return true;
7831 }
7832 else if (TREE_CODE (type) == ARRAY_TYPE)
7833 return is_really_empty_class (TREE_TYPE (type));
7834 return false;
7835 }
7836
7837 /* Note that NAME was looked up while the current class was being
7838 defined and that the result of that lookup was DECL. */
7839
7840 void
7841 maybe_note_name_used_in_class (tree name, tree decl)
7842 {
7843 splay_tree names_used;
7844
7845 /* If we're not defining a class, there's nothing to do. */
7846 if (!(innermost_scope_kind() == sk_class
7847 && TYPE_BEING_DEFINED (current_class_type)
7848 && !LAMBDA_TYPE_P (current_class_type)))
7849 return;
7850
7851 /* If there's already a binding for this NAME, then we don't have
7852 anything to worry about. */
7853 if (lookup_member (current_class_type, name,
7854 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7855 return;
7856
7857 if (!current_class_stack[current_class_depth - 1].names_used)
7858 current_class_stack[current_class_depth - 1].names_used
7859 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7860 names_used = current_class_stack[current_class_depth - 1].names_used;
7861
7862 splay_tree_insert (names_used,
7863 (splay_tree_key) name,
7864 (splay_tree_value) decl);
7865 }
7866
7867 /* Note that NAME was declared (as DECL) in the current class. Check
7868 to see that the declaration is valid. */
7869
7870 void
7871 note_name_declared_in_class (tree name, tree decl)
7872 {
7873 splay_tree names_used;
7874 splay_tree_node n;
7875
7876 /* Look to see if we ever used this name. */
7877 names_used
7878 = current_class_stack[current_class_depth - 1].names_used;
7879 if (!names_used)
7880 return;
7881 /* The C language allows members to be declared with a type of the same
7882 name, and the C++ standard says this diagnostic is not required. So
7883 allow it in extern "C" blocks unless predantic is specified.
7884 Allow it in all cases if -ms-extensions is specified. */
7885 if ((!pedantic && current_lang_name == lang_name_c)
7886 || flag_ms_extensions)
7887 return;
7888 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7889 if (n)
7890 {
7891 /* [basic.scope.class]
7892
7893 A name N used in a class S shall refer to the same declaration
7894 in its context and when re-evaluated in the completed scope of
7895 S. */
7896 permerror (input_location, "declaration of %q#D", decl);
7897 permerror (input_location, "changes meaning of %qD from %q+#D",
7898 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7899 }
7900 }
7901
7902 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7903 Secondary vtables are merged with primary vtables; this function
7904 will return the VAR_DECL for the primary vtable. */
7905
7906 tree
7907 get_vtbl_decl_for_binfo (tree binfo)
7908 {
7909 tree decl;
7910
7911 decl = BINFO_VTABLE (binfo);
7912 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7913 {
7914 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7915 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7916 }
7917 if (decl)
7918 gcc_assert (VAR_P (decl));
7919 return decl;
7920 }
7921
7922
7923 /* Returns the binfo for the primary base of BINFO. If the resulting
7924 BINFO is a virtual base, and it is inherited elsewhere in the
7925 hierarchy, then the returned binfo might not be the primary base of
7926 BINFO in the complete object. Check BINFO_PRIMARY_P or
7927 BINFO_LOST_PRIMARY_P to be sure. */
7928
7929 static tree
7930 get_primary_binfo (tree binfo)
7931 {
7932 tree primary_base;
7933
7934 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
7935 if (!primary_base)
7936 return NULL_TREE;
7937
7938 return copied_binfo (primary_base, binfo);
7939 }
7940
7941 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
7942
7943 static int
7944 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
7945 {
7946 if (!indented_p)
7947 fprintf (stream, "%*s", indent, "");
7948 return 1;
7949 }
7950
7951 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
7952 INDENT should be zero when called from the top level; it is
7953 incremented recursively. IGO indicates the next expected BINFO in
7954 inheritance graph ordering. */
7955
7956 static tree
7957 dump_class_hierarchy_r (FILE *stream,
7958 int flags,
7959 tree binfo,
7960 tree igo,
7961 int indent)
7962 {
7963 int indented = 0;
7964 tree base_binfo;
7965 int i;
7966
7967 indented = maybe_indent_hierarchy (stream, indent, 0);
7968 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
7969 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
7970 (HOST_WIDE_INT) (uintptr_t) binfo);
7971 if (binfo != igo)
7972 {
7973 fprintf (stream, "alternative-path\n");
7974 return igo;
7975 }
7976 igo = TREE_CHAIN (binfo);
7977
7978 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
7979 tree_to_shwi (BINFO_OFFSET (binfo)));
7980 if (is_empty_class (BINFO_TYPE (binfo)))
7981 fprintf (stream, " empty");
7982 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
7983 fprintf (stream, " nearly-empty");
7984 if (BINFO_VIRTUAL_P (binfo))
7985 fprintf (stream, " virtual");
7986 fprintf (stream, "\n");
7987
7988 indented = 0;
7989 if (BINFO_PRIMARY_P (binfo))
7990 {
7991 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7992 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
7993 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
7994 TFF_PLAIN_IDENTIFIER),
7995 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
7996 }
7997 if (BINFO_LOST_PRIMARY_P (binfo))
7998 {
7999 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8000 fprintf (stream, " lost-primary");
8001 }
8002 if (indented)
8003 fprintf (stream, "\n");
8004
8005 if (!(flags & TDF_SLIM))
8006 {
8007 int indented = 0;
8008
8009 if (BINFO_SUBVTT_INDEX (binfo))
8010 {
8011 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8012 fprintf (stream, " subvttidx=%s",
8013 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
8014 TFF_PLAIN_IDENTIFIER));
8015 }
8016 if (BINFO_VPTR_INDEX (binfo))
8017 {
8018 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8019 fprintf (stream, " vptridx=%s",
8020 expr_as_string (BINFO_VPTR_INDEX (binfo),
8021 TFF_PLAIN_IDENTIFIER));
8022 }
8023 if (BINFO_VPTR_FIELD (binfo))
8024 {
8025 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8026 fprintf (stream, " vbaseoffset=%s",
8027 expr_as_string (BINFO_VPTR_FIELD (binfo),
8028 TFF_PLAIN_IDENTIFIER));
8029 }
8030 if (BINFO_VTABLE (binfo))
8031 {
8032 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8033 fprintf (stream, " vptr=%s",
8034 expr_as_string (BINFO_VTABLE (binfo),
8035 TFF_PLAIN_IDENTIFIER));
8036 }
8037
8038 if (indented)
8039 fprintf (stream, "\n");
8040 }
8041
8042 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
8043 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
8044
8045 return igo;
8046 }
8047
8048 /* Dump the BINFO hierarchy for T. */
8049
8050 static void
8051 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
8052 {
8053 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8054 fprintf (stream, " size=%lu align=%lu\n",
8055 (unsigned long)(tree_to_shwi (TYPE_SIZE (t)) / BITS_PER_UNIT),
8056 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
8057 fprintf (stream, " base size=%lu base align=%lu\n",
8058 (unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t)))
8059 / BITS_PER_UNIT),
8060 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
8061 / BITS_PER_UNIT));
8062 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
8063 fprintf (stream, "\n");
8064 }
8065
8066 /* Debug interface to hierarchy dumping. */
8067
8068 void
8069 debug_class (tree t)
8070 {
8071 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
8072 }
8073
8074 static void
8075 dump_class_hierarchy (tree t)
8076 {
8077 int flags;
8078 FILE *stream = dump_begin (TDI_class, &flags);
8079
8080 if (stream)
8081 {
8082 dump_class_hierarchy_1 (stream, flags, t);
8083 dump_end (TDI_class, stream);
8084 }
8085 }
8086
8087 static void
8088 dump_array (FILE * stream, tree decl)
8089 {
8090 tree value;
8091 unsigned HOST_WIDE_INT ix;
8092 HOST_WIDE_INT elt;
8093 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8094
8095 elt = (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))))
8096 / BITS_PER_UNIT);
8097 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8098 fprintf (stream, " %s entries",
8099 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8100 TFF_PLAIN_IDENTIFIER));
8101 fprintf (stream, "\n");
8102
8103 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8104 ix, value)
8105 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
8106 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8107 }
8108
8109 static void
8110 dump_vtable (tree t, tree binfo, tree vtable)
8111 {
8112 int flags;
8113 FILE *stream = dump_begin (TDI_class, &flags);
8114
8115 if (!stream)
8116 return;
8117
8118 if (!(flags & TDF_SLIM))
8119 {
8120 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8121
8122 fprintf (stream, "%s for %s",
8123 ctor_vtbl_p ? "Construction vtable" : "Vtable",
8124 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8125 if (ctor_vtbl_p)
8126 {
8127 if (!BINFO_VIRTUAL_P (binfo))
8128 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8129 (HOST_WIDE_INT) (uintptr_t) binfo);
8130 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8131 }
8132 fprintf (stream, "\n");
8133 dump_array (stream, vtable);
8134 fprintf (stream, "\n");
8135 }
8136
8137 dump_end (TDI_class, stream);
8138 }
8139
8140 static void
8141 dump_vtt (tree t, tree vtt)
8142 {
8143 int flags;
8144 FILE *stream = dump_begin (TDI_class, &flags);
8145
8146 if (!stream)
8147 return;
8148
8149 if (!(flags & TDF_SLIM))
8150 {
8151 fprintf (stream, "VTT for %s\n",
8152 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8153 dump_array (stream, vtt);
8154 fprintf (stream, "\n");
8155 }
8156
8157 dump_end (TDI_class, stream);
8158 }
8159
8160 /* Dump a function or thunk and its thunkees. */
8161
8162 static void
8163 dump_thunk (FILE *stream, int indent, tree thunk)
8164 {
8165 static const char spaces[] = " ";
8166 tree name = DECL_NAME (thunk);
8167 tree thunks;
8168
8169 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8170 (void *)thunk,
8171 !DECL_THUNK_P (thunk) ? "function"
8172 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8173 name ? IDENTIFIER_POINTER (name) : "<unset>");
8174 if (DECL_THUNK_P (thunk))
8175 {
8176 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8177 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8178
8179 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8180 if (!virtual_adjust)
8181 /*NOP*/;
8182 else if (DECL_THIS_THUNK_P (thunk))
8183 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8184 tree_to_shwi (virtual_adjust));
8185 else
8186 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8187 tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust)),
8188 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8189 if (THUNK_ALIAS (thunk))
8190 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8191 }
8192 fprintf (stream, "\n");
8193 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8194 dump_thunk (stream, indent + 2, thunks);
8195 }
8196
8197 /* Dump the thunks for FN. */
8198
8199 void
8200 debug_thunks (tree fn)
8201 {
8202 dump_thunk (stderr, 0, fn);
8203 }
8204
8205 /* Virtual function table initialization. */
8206
8207 /* Create all the necessary vtables for T and its base classes. */
8208
8209 static void
8210 finish_vtbls (tree t)
8211 {
8212 tree vbase;
8213 vec<constructor_elt, va_gc> *v = NULL;
8214 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8215
8216 /* We lay out the primary and secondary vtables in one contiguous
8217 vtable. The primary vtable is first, followed by the non-virtual
8218 secondary vtables in inheritance graph order. */
8219 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8220 vtable, t, &v);
8221
8222 /* Then come the virtual bases, also in inheritance graph order. */
8223 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8224 {
8225 if (!BINFO_VIRTUAL_P (vbase))
8226 continue;
8227 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8228 }
8229
8230 if (BINFO_VTABLE (TYPE_BINFO (t)))
8231 initialize_vtable (TYPE_BINFO (t), v);
8232 }
8233
8234 /* Initialize the vtable for BINFO with the INITS. */
8235
8236 static void
8237 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8238 {
8239 tree decl;
8240
8241 layout_vtable_decl (binfo, vec_safe_length (inits));
8242 decl = get_vtbl_decl_for_binfo (binfo);
8243 initialize_artificial_var (decl, inits);
8244 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8245 }
8246
8247 /* Build the VTT (virtual table table) for T.
8248 A class requires a VTT if it has virtual bases.
8249
8250 This holds
8251 1 - primary virtual pointer for complete object T
8252 2 - secondary VTTs for each direct non-virtual base of T which requires a
8253 VTT
8254 3 - secondary virtual pointers for each direct or indirect base of T which
8255 has virtual bases or is reachable via a virtual path from T.
8256 4 - secondary VTTs for each direct or indirect virtual base of T.
8257
8258 Secondary VTTs look like complete object VTTs without part 4. */
8259
8260 static void
8261 build_vtt (tree t)
8262 {
8263 tree type;
8264 tree vtt;
8265 tree index;
8266 vec<constructor_elt, va_gc> *inits;
8267
8268 /* Build up the initializers for the VTT. */
8269 inits = NULL;
8270 index = size_zero_node;
8271 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8272
8273 /* If we didn't need a VTT, we're done. */
8274 if (!inits)
8275 return;
8276
8277 /* Figure out the type of the VTT. */
8278 type = build_array_of_n_type (const_ptr_type_node,
8279 inits->length ());
8280
8281 /* Now, build the VTT object itself. */
8282 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8283 initialize_artificial_var (vtt, inits);
8284 /* Add the VTT to the vtables list. */
8285 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8286 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8287
8288 dump_vtt (t, vtt);
8289 }
8290
8291 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8292 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8293 and CHAIN the vtable pointer for this binfo after construction is
8294 complete. VALUE can also be another BINFO, in which case we recurse. */
8295
8296 static tree
8297 binfo_ctor_vtable (tree binfo)
8298 {
8299 tree vt;
8300
8301 while (1)
8302 {
8303 vt = BINFO_VTABLE (binfo);
8304 if (TREE_CODE (vt) == TREE_LIST)
8305 vt = TREE_VALUE (vt);
8306 if (TREE_CODE (vt) == TREE_BINFO)
8307 binfo = vt;
8308 else
8309 break;
8310 }
8311
8312 return vt;
8313 }
8314
8315 /* Data for secondary VTT initialization. */
8316 typedef struct secondary_vptr_vtt_init_data_s
8317 {
8318 /* Is this the primary VTT? */
8319 bool top_level_p;
8320
8321 /* Current index into the VTT. */
8322 tree index;
8323
8324 /* Vector of initializers built up. */
8325 vec<constructor_elt, va_gc> *inits;
8326
8327 /* The type being constructed by this secondary VTT. */
8328 tree type_being_constructed;
8329 } secondary_vptr_vtt_init_data;
8330
8331 /* Recursively build the VTT-initializer for BINFO (which is in the
8332 hierarchy dominated by T). INITS points to the end of the initializer
8333 list to date. INDEX is the VTT index where the next element will be
8334 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8335 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8336 for virtual bases of T. When it is not so, we build the constructor
8337 vtables for the BINFO-in-T variant. */
8338
8339 static void
8340 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8341 tree *index)
8342 {
8343 int i;
8344 tree b;
8345 tree init;
8346 secondary_vptr_vtt_init_data data;
8347 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8348
8349 /* We only need VTTs for subobjects with virtual bases. */
8350 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8351 return;
8352
8353 /* We need to use a construction vtable if this is not the primary
8354 VTT. */
8355 if (!top_level_p)
8356 {
8357 build_ctor_vtbl_group (binfo, t);
8358
8359 /* Record the offset in the VTT where this sub-VTT can be found. */
8360 BINFO_SUBVTT_INDEX (binfo) = *index;
8361 }
8362
8363 /* Add the address of the primary vtable for the complete object. */
8364 init = binfo_ctor_vtable (binfo);
8365 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8366 if (top_level_p)
8367 {
8368 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8369 BINFO_VPTR_INDEX (binfo) = *index;
8370 }
8371 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8372
8373 /* Recursively add the secondary VTTs for non-virtual bases. */
8374 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8375 if (!BINFO_VIRTUAL_P (b))
8376 build_vtt_inits (b, t, inits, index);
8377
8378 /* Add secondary virtual pointers for all subobjects of BINFO with
8379 either virtual bases or reachable along a virtual path, except
8380 subobjects that are non-virtual primary bases. */
8381 data.top_level_p = top_level_p;
8382 data.index = *index;
8383 data.inits = *inits;
8384 data.type_being_constructed = BINFO_TYPE (binfo);
8385
8386 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8387
8388 *index = data.index;
8389
8390 /* data.inits might have grown as we added secondary virtual pointers.
8391 Make sure our caller knows about the new vector. */
8392 *inits = data.inits;
8393
8394 if (top_level_p)
8395 /* Add the secondary VTTs for virtual bases in inheritance graph
8396 order. */
8397 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8398 {
8399 if (!BINFO_VIRTUAL_P (b))
8400 continue;
8401
8402 build_vtt_inits (b, t, inits, index);
8403 }
8404 else
8405 /* Remove the ctor vtables we created. */
8406 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8407 }
8408
8409 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8410 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8411
8412 static tree
8413 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8414 {
8415 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8416
8417 /* We don't care about bases that don't have vtables. */
8418 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8419 return dfs_skip_bases;
8420
8421 /* We're only interested in proper subobjects of the type being
8422 constructed. */
8423 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8424 return NULL_TREE;
8425
8426 /* We're only interested in bases with virtual bases or reachable
8427 via a virtual path from the type being constructed. */
8428 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8429 || binfo_via_virtual (binfo, data->type_being_constructed)))
8430 return dfs_skip_bases;
8431
8432 /* We're not interested in non-virtual primary bases. */
8433 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8434 return NULL_TREE;
8435
8436 /* Record the index where this secondary vptr can be found. */
8437 if (data->top_level_p)
8438 {
8439 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8440 BINFO_VPTR_INDEX (binfo) = data->index;
8441
8442 if (BINFO_VIRTUAL_P (binfo))
8443 {
8444 /* It's a primary virtual base, and this is not a
8445 construction vtable. Find the base this is primary of in
8446 the inheritance graph, and use that base's vtable
8447 now. */
8448 while (BINFO_PRIMARY_P (binfo))
8449 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8450 }
8451 }
8452
8453 /* Add the initializer for the secondary vptr itself. */
8454 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8455
8456 /* Advance the vtt index. */
8457 data->index = size_binop (PLUS_EXPR, data->index,
8458 TYPE_SIZE_UNIT (ptr_type_node));
8459
8460 return NULL_TREE;
8461 }
8462
8463 /* Called from build_vtt_inits via dfs_walk. After building
8464 constructor vtables and generating the sub-vtt from them, we need
8465 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8466 binfo of the base whose sub vtt was generated. */
8467
8468 static tree
8469 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8470 {
8471 tree vtable = BINFO_VTABLE (binfo);
8472
8473 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8474 /* If this class has no vtable, none of its bases do. */
8475 return dfs_skip_bases;
8476
8477 if (!vtable)
8478 /* This might be a primary base, so have no vtable in this
8479 hierarchy. */
8480 return NULL_TREE;
8481
8482 /* If we scribbled the construction vtable vptr into BINFO, clear it
8483 out now. */
8484 if (TREE_CODE (vtable) == TREE_LIST
8485 && (TREE_PURPOSE (vtable) == (tree) data))
8486 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8487
8488 return NULL_TREE;
8489 }
8490
8491 /* Build the construction vtable group for BINFO which is in the
8492 hierarchy dominated by T. */
8493
8494 static void
8495 build_ctor_vtbl_group (tree binfo, tree t)
8496 {
8497 tree type;
8498 tree vtbl;
8499 tree id;
8500 tree vbase;
8501 vec<constructor_elt, va_gc> *v;
8502
8503 /* See if we've already created this construction vtable group. */
8504 id = mangle_ctor_vtbl_for_type (t, binfo);
8505 if (IDENTIFIER_GLOBAL_VALUE (id))
8506 return;
8507
8508 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8509 /* Build a version of VTBL (with the wrong type) for use in
8510 constructing the addresses of secondary vtables in the
8511 construction vtable group. */
8512 vtbl = build_vtable (t, id, ptr_type_node);
8513 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8514 /* Don't export construction vtables from shared libraries. Even on
8515 targets that don't support hidden visibility, this tells
8516 can_refer_decl_in_current_unit_p not to assume that it's safe to
8517 access from a different compilation unit (bz 54314). */
8518 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8519 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8520
8521 v = NULL;
8522 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8523 binfo, vtbl, t, &v);
8524
8525 /* Add the vtables for each of our virtual bases using the vbase in T
8526 binfo. */
8527 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8528 vbase;
8529 vbase = TREE_CHAIN (vbase))
8530 {
8531 tree b;
8532
8533 if (!BINFO_VIRTUAL_P (vbase))
8534 continue;
8535 b = copied_binfo (vbase, binfo);
8536
8537 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8538 }
8539
8540 /* Figure out the type of the construction vtable. */
8541 type = build_array_of_n_type (vtable_entry_type, v->length ());
8542 layout_type (type);
8543 TREE_TYPE (vtbl) = type;
8544 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8545 layout_decl (vtbl, 0);
8546
8547 /* Initialize the construction vtable. */
8548 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8549 initialize_artificial_var (vtbl, v);
8550 dump_vtable (t, binfo, vtbl);
8551 }
8552
8553 /* Add the vtbl initializers for BINFO (and its bases other than
8554 non-virtual primaries) to the list of INITS. BINFO is in the
8555 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8556 the constructor the vtbl inits should be accumulated for. (If this
8557 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8558 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8559 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8560 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8561 but are not necessarily the same in terms of layout. */
8562
8563 static void
8564 accumulate_vtbl_inits (tree binfo,
8565 tree orig_binfo,
8566 tree rtti_binfo,
8567 tree vtbl,
8568 tree t,
8569 vec<constructor_elt, va_gc> **inits)
8570 {
8571 int i;
8572 tree base_binfo;
8573 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8574
8575 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8576
8577 /* If it doesn't have a vptr, we don't do anything. */
8578 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8579 return;
8580
8581 /* If we're building a construction vtable, we're not interested in
8582 subobjects that don't require construction vtables. */
8583 if (ctor_vtbl_p
8584 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8585 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8586 return;
8587
8588 /* Build the initializers for the BINFO-in-T vtable. */
8589 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8590
8591 /* Walk the BINFO and its bases. We walk in preorder so that as we
8592 initialize each vtable we can figure out at what offset the
8593 secondary vtable lies from the primary vtable. We can't use
8594 dfs_walk here because we need to iterate through bases of BINFO
8595 and RTTI_BINFO simultaneously. */
8596 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8597 {
8598 /* Skip virtual bases. */
8599 if (BINFO_VIRTUAL_P (base_binfo))
8600 continue;
8601 accumulate_vtbl_inits (base_binfo,
8602 BINFO_BASE_BINFO (orig_binfo, i),
8603 rtti_binfo, vtbl, t,
8604 inits);
8605 }
8606 }
8607
8608 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8609 BINFO vtable to L. */
8610
8611 static void
8612 dfs_accumulate_vtbl_inits (tree binfo,
8613 tree orig_binfo,
8614 tree rtti_binfo,
8615 tree orig_vtbl,
8616 tree t,
8617 vec<constructor_elt, va_gc> **l)
8618 {
8619 tree vtbl = NULL_TREE;
8620 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8621 int n_inits;
8622
8623 if (ctor_vtbl_p
8624 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8625 {
8626 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8627 primary virtual base. If it is not the same primary in
8628 the hierarchy of T, we'll need to generate a ctor vtable
8629 for it, to place at its location in T. If it is the same
8630 primary, we still need a VTT entry for the vtable, but it
8631 should point to the ctor vtable for the base it is a
8632 primary for within the sub-hierarchy of RTTI_BINFO.
8633
8634 There are three possible cases:
8635
8636 1) We are in the same place.
8637 2) We are a primary base within a lost primary virtual base of
8638 RTTI_BINFO.
8639 3) We are primary to something not a base of RTTI_BINFO. */
8640
8641 tree b;
8642 tree last = NULL_TREE;
8643
8644 /* First, look through the bases we are primary to for RTTI_BINFO
8645 or a virtual base. */
8646 b = binfo;
8647 while (BINFO_PRIMARY_P (b))
8648 {
8649 b = BINFO_INHERITANCE_CHAIN (b);
8650 last = b;
8651 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8652 goto found;
8653 }
8654 /* If we run out of primary links, keep looking down our
8655 inheritance chain; we might be an indirect primary. */
8656 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8657 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8658 break;
8659 found:
8660
8661 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8662 base B and it is a base of RTTI_BINFO, this is case 2. In
8663 either case, we share our vtable with LAST, i.e. the
8664 derived-most base within B of which we are a primary. */
8665 if (b == rtti_binfo
8666 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8667 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8668 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8669 binfo_ctor_vtable after everything's been set up. */
8670 vtbl = last;
8671
8672 /* Otherwise, this is case 3 and we get our own. */
8673 }
8674 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8675 return;
8676
8677 n_inits = vec_safe_length (*l);
8678
8679 if (!vtbl)
8680 {
8681 tree index;
8682 int non_fn_entries;
8683
8684 /* Add the initializer for this vtable. */
8685 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8686 &non_fn_entries, l);
8687
8688 /* Figure out the position to which the VPTR should point. */
8689 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8690 index = size_binop (MULT_EXPR,
8691 TYPE_SIZE_UNIT (vtable_entry_type),
8692 size_int (non_fn_entries + n_inits));
8693 vtbl = fold_build_pointer_plus (vtbl, index);
8694 }
8695
8696 if (ctor_vtbl_p)
8697 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8698 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8699 straighten this out. */
8700 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8701 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8702 /* Throw away any unneeded intializers. */
8703 (*l)->truncate (n_inits);
8704 else
8705 /* For an ordinary vtable, set BINFO_VTABLE. */
8706 BINFO_VTABLE (binfo) = vtbl;
8707 }
8708
8709 static GTY(()) tree abort_fndecl_addr;
8710
8711 /* Construct the initializer for BINFO's virtual function table. BINFO
8712 is part of the hierarchy dominated by T. If we're building a
8713 construction vtable, the ORIG_BINFO is the binfo we should use to
8714 find the actual function pointers to put in the vtable - but they
8715 can be overridden on the path to most-derived in the graph that
8716 ORIG_BINFO belongs. Otherwise,
8717 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8718 BINFO that should be indicated by the RTTI information in the
8719 vtable; it will be a base class of T, rather than T itself, if we
8720 are building a construction vtable.
8721
8722 The value returned is a TREE_LIST suitable for wrapping in a
8723 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8724 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8725 number of non-function entries in the vtable.
8726
8727 It might seem that this function should never be called with a
8728 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8729 base is always subsumed by a derived class vtable. However, when
8730 we are building construction vtables, we do build vtables for
8731 primary bases; we need these while the primary base is being
8732 constructed. */
8733
8734 static void
8735 build_vtbl_initializer (tree binfo,
8736 tree orig_binfo,
8737 tree t,
8738 tree rtti_binfo,
8739 int* non_fn_entries_p,
8740 vec<constructor_elt, va_gc> **inits)
8741 {
8742 tree v;
8743 vtbl_init_data vid;
8744 unsigned ix, jx;
8745 tree vbinfo;
8746 vec<tree, va_gc> *vbases;
8747 constructor_elt *e;
8748
8749 /* Initialize VID. */
8750 memset (&vid, 0, sizeof (vid));
8751 vid.binfo = binfo;
8752 vid.derived = t;
8753 vid.rtti_binfo = rtti_binfo;
8754 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8755 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8756 vid.generate_vcall_entries = true;
8757 /* The first vbase or vcall offset is at index -3 in the vtable. */
8758 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8759
8760 /* Add entries to the vtable for RTTI. */
8761 build_rtti_vtbl_entries (binfo, &vid);
8762
8763 /* Create an array for keeping track of the functions we've
8764 processed. When we see multiple functions with the same
8765 signature, we share the vcall offsets. */
8766 vec_alloc (vid.fns, 32);
8767 /* Add the vcall and vbase offset entries. */
8768 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8769
8770 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8771 build_vbase_offset_vtbl_entries. */
8772 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8773 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8774 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8775
8776 /* If the target requires padding between data entries, add that now. */
8777 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8778 {
8779 int n_entries = vec_safe_length (vid.inits);
8780
8781 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8782
8783 /* Move data entries into their new positions and add padding
8784 after the new positions. Iterate backwards so we don't
8785 overwrite entries that we would need to process later. */
8786 for (ix = n_entries - 1;
8787 vid.inits->iterate (ix, &e);
8788 ix--)
8789 {
8790 int j;
8791 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8792 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8793
8794 (*vid.inits)[new_position] = *e;
8795
8796 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8797 {
8798 constructor_elt *f = &(*vid.inits)[new_position - j];
8799 f->index = NULL_TREE;
8800 f->value = build1 (NOP_EXPR, vtable_entry_type,
8801 null_pointer_node);
8802 }
8803 }
8804 }
8805
8806 if (non_fn_entries_p)
8807 *non_fn_entries_p = vec_safe_length (vid.inits);
8808
8809 /* The initializers for virtual functions were built up in reverse
8810 order. Straighten them out and add them to the running list in one
8811 step. */
8812 jx = vec_safe_length (*inits);
8813 vec_safe_grow (*inits, jx + vid.inits->length ());
8814
8815 for (ix = vid.inits->length () - 1;
8816 vid.inits->iterate (ix, &e);
8817 ix--, jx++)
8818 (**inits)[jx] = *e;
8819
8820 /* Go through all the ordinary virtual functions, building up
8821 initializers. */
8822 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8823 {
8824 tree delta;
8825 tree vcall_index;
8826 tree fn, fn_original;
8827 tree init = NULL_TREE;
8828
8829 fn = BV_FN (v);
8830 fn_original = fn;
8831 if (DECL_THUNK_P (fn))
8832 {
8833 if (!DECL_NAME (fn))
8834 finish_thunk (fn);
8835 if (THUNK_ALIAS (fn))
8836 {
8837 fn = THUNK_ALIAS (fn);
8838 BV_FN (v) = fn;
8839 }
8840 fn_original = THUNK_TARGET (fn);
8841 }
8842
8843 /* If the only definition of this function signature along our
8844 primary base chain is from a lost primary, this vtable slot will
8845 never be used, so just zero it out. This is important to avoid
8846 requiring extra thunks which cannot be generated with the function.
8847
8848 We first check this in update_vtable_entry_for_fn, so we handle
8849 restored primary bases properly; we also need to do it here so we
8850 zero out unused slots in ctor vtables, rather than filling them
8851 with erroneous values (though harmless, apart from relocation
8852 costs). */
8853 if (BV_LOST_PRIMARY (v))
8854 init = size_zero_node;
8855
8856 if (! init)
8857 {
8858 /* Pull the offset for `this', and the function to call, out of
8859 the list. */
8860 delta = BV_DELTA (v);
8861 vcall_index = BV_VCALL_INDEX (v);
8862
8863 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8864 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8865
8866 /* You can't call an abstract virtual function; it's abstract.
8867 So, we replace these functions with __pure_virtual. */
8868 if (DECL_PURE_VIRTUAL_P (fn_original))
8869 {
8870 fn = abort_fndecl;
8871 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8872 {
8873 if (abort_fndecl_addr == NULL)
8874 abort_fndecl_addr
8875 = fold_convert (vfunc_ptr_type_node,
8876 build_fold_addr_expr (fn));
8877 init = abort_fndecl_addr;
8878 }
8879 }
8880 /* Likewise for deleted virtuals. */
8881 else if (DECL_DELETED_FN (fn_original))
8882 {
8883 fn = get_identifier ("__cxa_deleted_virtual");
8884 if (!get_global_value_if_present (fn, &fn))
8885 fn = push_library_fn (fn, (build_function_type_list
8886 (void_type_node, NULL_TREE)),
8887 NULL_TREE, ECF_NORETURN);
8888 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8889 init = fold_convert (vfunc_ptr_type_node,
8890 build_fold_addr_expr (fn));
8891 }
8892 else
8893 {
8894 if (!integer_zerop (delta) || vcall_index)
8895 {
8896 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8897 if (!DECL_NAME (fn))
8898 finish_thunk (fn);
8899 }
8900 /* Take the address of the function, considering it to be of an
8901 appropriate generic type. */
8902 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8903 init = fold_convert (vfunc_ptr_type_node,
8904 build_fold_addr_expr (fn));
8905 /* Don't refer to a virtual destructor from a constructor
8906 vtable or a vtable for an abstract class, since destroying
8907 an object under construction is undefined behavior and we
8908 don't want it to be considered a candidate for speculative
8909 devirtualization. But do create the thunk for ABI
8910 compliance. */
8911 if (DECL_DESTRUCTOR_P (fn_original)
8912 && (CLASSTYPE_PURE_VIRTUALS (DECL_CONTEXT (fn_original))
8913 || orig_binfo != binfo))
8914 init = size_zero_node;
8915 }
8916 }
8917
8918 /* And add it to the chain of initializers. */
8919 if (TARGET_VTABLE_USES_DESCRIPTORS)
8920 {
8921 int i;
8922 if (init == size_zero_node)
8923 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8924 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8925 else
8926 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8927 {
8928 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
8929 fn, build_int_cst (NULL_TREE, i));
8930 TREE_CONSTANT (fdesc) = 1;
8931
8932 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
8933 }
8934 }
8935 else
8936 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8937 }
8938 }
8939
8940 /* Adds to vid->inits the initializers for the vbase and vcall
8941 offsets in BINFO, which is in the hierarchy dominated by T. */
8942
8943 static void
8944 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
8945 {
8946 tree b;
8947
8948 /* If this is a derived class, we must first create entries
8949 corresponding to the primary base class. */
8950 b = get_primary_binfo (binfo);
8951 if (b)
8952 build_vcall_and_vbase_vtbl_entries (b, vid);
8953
8954 /* Add the vbase entries for this base. */
8955 build_vbase_offset_vtbl_entries (binfo, vid);
8956 /* Add the vcall entries for this base. */
8957 build_vcall_offset_vtbl_entries (binfo, vid);
8958 }
8959
8960 /* Returns the initializers for the vbase offset entries in the vtable
8961 for BINFO (which is part of the class hierarchy dominated by T), in
8962 reverse order. VBASE_OFFSET_INDEX gives the vtable index
8963 where the next vbase offset will go. */
8964
8965 static void
8966 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8967 {
8968 tree vbase;
8969 tree t;
8970 tree non_primary_binfo;
8971
8972 /* If there are no virtual baseclasses, then there is nothing to
8973 do. */
8974 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8975 return;
8976
8977 t = vid->derived;
8978
8979 /* We might be a primary base class. Go up the inheritance hierarchy
8980 until we find the most derived class of which we are a primary base:
8981 it is the offset of that which we need to use. */
8982 non_primary_binfo = binfo;
8983 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
8984 {
8985 tree b;
8986
8987 /* If we have reached a virtual base, then it must be a primary
8988 base (possibly multi-level) of vid->binfo, or we wouldn't
8989 have called build_vcall_and_vbase_vtbl_entries for it. But it
8990 might be a lost primary, so just skip down to vid->binfo. */
8991 if (BINFO_VIRTUAL_P (non_primary_binfo))
8992 {
8993 non_primary_binfo = vid->binfo;
8994 break;
8995 }
8996
8997 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
8998 if (get_primary_binfo (b) != non_primary_binfo)
8999 break;
9000 non_primary_binfo = b;
9001 }
9002
9003 /* Go through the virtual bases, adding the offsets. */
9004 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
9005 vbase;
9006 vbase = TREE_CHAIN (vbase))
9007 {
9008 tree b;
9009 tree delta;
9010
9011 if (!BINFO_VIRTUAL_P (vbase))
9012 continue;
9013
9014 /* Find the instance of this virtual base in the complete
9015 object. */
9016 b = copied_binfo (vbase, binfo);
9017
9018 /* If we've already got an offset for this virtual base, we
9019 don't need another one. */
9020 if (BINFO_VTABLE_PATH_MARKED (b))
9021 continue;
9022 BINFO_VTABLE_PATH_MARKED (b) = 1;
9023
9024 /* Figure out where we can find this vbase offset. */
9025 delta = size_binop (MULT_EXPR,
9026 vid->index,
9027 convert (ssizetype,
9028 TYPE_SIZE_UNIT (vtable_entry_type)));
9029 if (vid->primary_vtbl_p)
9030 BINFO_VPTR_FIELD (b) = delta;
9031
9032 if (binfo != TYPE_BINFO (t))
9033 /* The vbase offset had better be the same. */
9034 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
9035
9036 /* The next vbase will come at a more negative offset. */
9037 vid->index = size_binop (MINUS_EXPR, vid->index,
9038 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9039
9040 /* The initializer is the delta from BINFO to this virtual base.
9041 The vbase offsets go in reverse inheritance-graph order, and
9042 we are walking in inheritance graph order so these end up in
9043 the right order. */
9044 delta = size_diffop_loc (input_location,
9045 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
9046
9047 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
9048 fold_build1_loc (input_location, NOP_EXPR,
9049 vtable_entry_type, delta));
9050 }
9051 }
9052
9053 /* Adds the initializers for the vcall offset entries in the vtable
9054 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9055 to VID->INITS. */
9056
9057 static void
9058 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9059 {
9060 /* We only need these entries if this base is a virtual base. We
9061 compute the indices -- but do not add to the vtable -- when
9062 building the main vtable for a class. */
9063 if (binfo == TYPE_BINFO (vid->derived)
9064 || (BINFO_VIRTUAL_P (binfo)
9065 /* If BINFO is RTTI_BINFO, then (since BINFO does not
9066 correspond to VID->DERIVED), we are building a primary
9067 construction virtual table. Since this is a primary
9068 virtual table, we do not need the vcall offsets for
9069 BINFO. */
9070 && binfo != vid->rtti_binfo))
9071 {
9072 /* We need a vcall offset for each of the virtual functions in this
9073 vtable. For example:
9074
9075 class A { virtual void f (); };
9076 class B1 : virtual public A { virtual void f (); };
9077 class B2 : virtual public A { virtual void f (); };
9078 class C: public B1, public B2 { virtual void f (); };
9079
9080 A C object has a primary base of B1, which has a primary base of A. A
9081 C also has a secondary base of B2, which no longer has a primary base
9082 of A. So the B2-in-C construction vtable needs a secondary vtable for
9083 A, which will adjust the A* to a B2* to call f. We have no way of
9084 knowing what (or even whether) this offset will be when we define B2,
9085 so we store this "vcall offset" in the A sub-vtable and look it up in
9086 a "virtual thunk" for B2::f.
9087
9088 We need entries for all the functions in our primary vtable and
9089 in our non-virtual bases' secondary vtables. */
9090 vid->vbase = binfo;
9091 /* If we are just computing the vcall indices -- but do not need
9092 the actual entries -- not that. */
9093 if (!BINFO_VIRTUAL_P (binfo))
9094 vid->generate_vcall_entries = false;
9095 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9096 add_vcall_offset_vtbl_entries_r (binfo, vid);
9097 }
9098 }
9099
9100 /* Build vcall offsets, starting with those for BINFO. */
9101
9102 static void
9103 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9104 {
9105 int i;
9106 tree primary_binfo;
9107 tree base_binfo;
9108
9109 /* Don't walk into virtual bases -- except, of course, for the
9110 virtual base for which we are building vcall offsets. Any
9111 primary virtual base will have already had its offsets generated
9112 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9113 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9114 return;
9115
9116 /* If BINFO has a primary base, process it first. */
9117 primary_binfo = get_primary_binfo (binfo);
9118 if (primary_binfo)
9119 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9120
9121 /* Add BINFO itself to the list. */
9122 add_vcall_offset_vtbl_entries_1 (binfo, vid);
9123
9124 /* Scan the non-primary bases of BINFO. */
9125 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9126 if (base_binfo != primary_binfo)
9127 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9128 }
9129
9130 /* Called from build_vcall_offset_vtbl_entries_r. */
9131
9132 static void
9133 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9134 {
9135 /* Make entries for the rest of the virtuals. */
9136 tree orig_fn;
9137
9138 /* The ABI requires that the methods be processed in declaration
9139 order. */
9140 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
9141 orig_fn;
9142 orig_fn = DECL_CHAIN (orig_fn))
9143 if (DECL_VINDEX (orig_fn))
9144 add_vcall_offset (orig_fn, binfo, vid);
9145 }
9146
9147 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9148
9149 static void
9150 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9151 {
9152 size_t i;
9153 tree vcall_offset;
9154 tree derived_entry;
9155
9156 /* If there is already an entry for a function with the same
9157 signature as FN, then we do not need a second vcall offset.
9158 Check the list of functions already present in the derived
9159 class vtable. */
9160 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9161 {
9162 if (same_signature_p (derived_entry, orig_fn)
9163 /* We only use one vcall offset for virtual destructors,
9164 even though there are two virtual table entries. */
9165 || (DECL_DESTRUCTOR_P (derived_entry)
9166 && DECL_DESTRUCTOR_P (orig_fn)))
9167 return;
9168 }
9169
9170 /* If we are building these vcall offsets as part of building
9171 the vtable for the most derived class, remember the vcall
9172 offset. */
9173 if (vid->binfo == TYPE_BINFO (vid->derived))
9174 {
9175 tree_pair_s elt = {orig_fn, vid->index};
9176 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9177 }
9178
9179 /* The next vcall offset will be found at a more negative
9180 offset. */
9181 vid->index = size_binop (MINUS_EXPR, vid->index,
9182 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9183
9184 /* Keep track of this function. */
9185 vec_safe_push (vid->fns, orig_fn);
9186
9187 if (vid->generate_vcall_entries)
9188 {
9189 tree base;
9190 tree fn;
9191
9192 /* Find the overriding function. */
9193 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9194 if (fn == error_mark_node)
9195 vcall_offset = build_zero_cst (vtable_entry_type);
9196 else
9197 {
9198 base = TREE_VALUE (fn);
9199
9200 /* The vbase we're working on is a primary base of
9201 vid->binfo. But it might be a lost primary, so its
9202 BINFO_OFFSET might be wrong, so we just use the
9203 BINFO_OFFSET from vid->binfo. */
9204 vcall_offset = size_diffop_loc (input_location,
9205 BINFO_OFFSET (base),
9206 BINFO_OFFSET (vid->binfo));
9207 vcall_offset = fold_build1_loc (input_location,
9208 NOP_EXPR, vtable_entry_type,
9209 vcall_offset);
9210 }
9211 /* Add the initializer to the vtable. */
9212 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9213 }
9214 }
9215
9216 /* Return vtbl initializers for the RTTI entries corresponding to the
9217 BINFO's vtable. The RTTI entries should indicate the object given
9218 by VID->rtti_binfo. */
9219
9220 static void
9221 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9222 {
9223 tree b;
9224 tree t;
9225 tree offset;
9226 tree decl;
9227 tree init;
9228
9229 t = BINFO_TYPE (vid->rtti_binfo);
9230
9231 /* To find the complete object, we will first convert to our most
9232 primary base, and then add the offset in the vtbl to that value. */
9233 b = binfo;
9234 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9235 && !BINFO_LOST_PRIMARY_P (b))
9236 {
9237 tree primary_base;
9238
9239 primary_base = get_primary_binfo (b);
9240 gcc_assert (BINFO_PRIMARY_P (primary_base)
9241 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9242 b = primary_base;
9243 }
9244 offset = size_diffop_loc (input_location,
9245 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9246
9247 /* The second entry is the address of the typeinfo object. */
9248 if (flag_rtti)
9249 decl = build_address (get_tinfo_decl (t));
9250 else
9251 decl = integer_zero_node;
9252
9253 /* Convert the declaration to a type that can be stored in the
9254 vtable. */
9255 init = build_nop (vfunc_ptr_type_node, decl);
9256 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9257
9258 /* Add the offset-to-top entry. It comes earlier in the vtable than
9259 the typeinfo entry. Convert the offset to look like a
9260 function pointer, so that we can put it in the vtable. */
9261 init = build_nop (vfunc_ptr_type_node, offset);
9262 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9263 }
9264
9265 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9266 accessibility. */
9267
9268 bool
9269 uniquely_derived_from_p (tree parent, tree type)
9270 {
9271 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9272 return base && base != error_mark_node;
9273 }
9274
9275 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9276
9277 bool
9278 publicly_uniquely_derived_p (tree parent, tree type)
9279 {
9280 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9281 NULL, tf_none);
9282 return base && base != error_mark_node;
9283 }
9284
9285 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9286 class between them, if any. */
9287
9288 tree
9289 common_enclosing_class (tree ctx1, tree ctx2)
9290 {
9291 if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
9292 return NULL_TREE;
9293 gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
9294 && ctx2 == TYPE_MAIN_VARIANT (ctx2));
9295 if (ctx1 == ctx2)
9296 return ctx1;
9297 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9298 TYPE_MARKED_P (t) = true;
9299 tree found = NULL_TREE;
9300 for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
9301 if (TYPE_MARKED_P (t))
9302 {
9303 found = t;
9304 break;
9305 }
9306 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9307 TYPE_MARKED_P (t) = false;
9308 return found;
9309 }
9310
9311 #include "gt-cp-class.h"