class.c: Fix typos.
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "cp-tree.h"
30 #include "flags.h"
31 #include "toplev.h"
32 #include "target.h"
33 #include "convert.h"
34 #include "cgraph.h"
35 #include "dumpfile.h"
36 #include "splay-tree.h"
37 #include "pointer-set.h"
38 #include "hash-table.h"
39
40 /* The number of nested classes being processed. If we are not in the
41 scope of any class, this is zero. */
42
43 int current_class_depth;
44
45 /* In order to deal with nested classes, we keep a stack of classes.
46 The topmost entry is the innermost class, and is the entry at index
47 CURRENT_CLASS_DEPTH */
48
49 typedef struct class_stack_node {
50 /* The name of the class. */
51 tree name;
52
53 /* The _TYPE node for the class. */
54 tree type;
55
56 /* The access specifier pending for new declarations in the scope of
57 this class. */
58 tree access;
59
60 /* If were defining TYPE, the names used in this class. */
61 splay_tree names_used;
62
63 /* Nonzero if this class is no longer open, because of a call to
64 push_to_top_level. */
65 size_t hidden;
66 }* class_stack_node_t;
67
68 typedef struct vtbl_init_data_s
69 {
70 /* The base for which we're building initializers. */
71 tree binfo;
72 /* The type of the most-derived type. */
73 tree derived;
74 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
75 unless ctor_vtbl_p is true. */
76 tree rtti_binfo;
77 /* The negative-index vtable initializers built up so far. These
78 are in order from least negative index to most negative index. */
79 vec<constructor_elt, va_gc> *inits;
80 /* The binfo for the virtual base for which we're building
81 vcall offset initializers. */
82 tree vbase;
83 /* The functions in vbase for which we have already provided vcall
84 offsets. */
85 vec<tree, va_gc> *fns;
86 /* The vtable index of the next vcall or vbase offset. */
87 tree index;
88 /* Nonzero if we are building the initializer for the primary
89 vtable. */
90 int primary_vtbl_p;
91 /* Nonzero if we are building the initializer for a construction
92 vtable. */
93 int ctor_vtbl_p;
94 /* True when adding vcall offset entries to the vtable. False when
95 merely computing the indices. */
96 bool generate_vcall_entries;
97 } vtbl_init_data;
98
99 /* The type of a function passed to walk_subobject_offsets. */
100 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
101
102 /* The stack itself. This is a dynamically resized array. The
103 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
104 static int current_class_stack_size;
105 static class_stack_node_t current_class_stack;
106
107 /* The size of the largest empty class seen in this translation unit. */
108 static GTY (()) tree sizeof_biggest_empty_class;
109
110 /* An array of all local classes present in this translation unit, in
111 declaration order. */
112 vec<tree, va_gc> *local_classes;
113
114 static tree get_vfield_name (tree);
115 static void finish_struct_anon (tree);
116 static tree get_vtable_name (tree);
117 static tree get_basefndecls (tree, tree);
118 static int build_primary_vtable (tree, tree);
119 static int build_secondary_vtable (tree);
120 static void finish_vtbls (tree);
121 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
122 static void finish_struct_bits (tree);
123 static int alter_access (tree, tree, tree);
124 static void handle_using_decl (tree, tree);
125 static tree dfs_modify_vtables (tree, void *);
126 static tree modify_all_vtables (tree, tree);
127 static void determine_primary_bases (tree);
128 static void finish_struct_methods (tree);
129 static void maybe_warn_about_overly_private_class (tree);
130 static int method_name_cmp (const void *, const void *);
131 static int resort_method_name_cmp (const void *, const void *);
132 static void add_implicitly_declared_members (tree, tree*, int, int);
133 static tree fixed_type_or_null (tree, int *, int *);
134 static tree build_simple_base_path (tree expr, tree binfo);
135 static tree build_vtbl_ref_1 (tree, tree);
136 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
137 vec<constructor_elt, va_gc> **);
138 static int count_fields (tree);
139 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
140 static void insert_into_classtype_sorted_fields (tree, tree, int);
141 static bool check_bitfield_decl (tree);
142 static void check_field_decl (tree, tree, int *, int *, int *);
143 static void check_field_decls (tree, tree *, int *, int *);
144 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
145 static void build_base_fields (record_layout_info, splay_tree, tree *);
146 static void check_methods (tree);
147 static void remove_zero_width_bit_fields (tree);
148 static void check_bases (tree, int *, int *);
149 static void check_bases_and_members (tree);
150 static tree create_vtable_ptr (tree, tree *);
151 static void include_empty_classes (record_layout_info);
152 static void layout_class_type (tree, tree *);
153 static void propagate_binfo_offsets (tree, tree);
154 static void layout_virtual_bases (record_layout_info, splay_tree);
155 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
156 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
157 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
158 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset (tree, tree, vtbl_init_data *);
160 static void layout_vtable_decl (tree, int);
161 static tree dfs_find_final_overrider_pre (tree, void *);
162 static tree dfs_find_final_overrider_post (tree, void *);
163 static tree find_final_overrider (tree, tree, tree);
164 static int make_new_vtable (tree, tree);
165 static tree get_primary_binfo (tree);
166 static int maybe_indent_hierarchy (FILE *, int, int);
167 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
168 static void dump_class_hierarchy (tree);
169 static void dump_class_hierarchy_1 (FILE *, int, tree);
170 static void dump_array (FILE *, tree);
171 static void dump_vtable (tree, tree, tree);
172 static void dump_vtt (tree, tree);
173 static void dump_thunk (FILE *, int, tree);
174 static tree build_vtable (tree, tree, tree);
175 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
176 static void layout_nonempty_base_or_field (record_layout_info,
177 tree, tree, splay_tree);
178 static tree end_of_class (tree, int);
179 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
180 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
181 vec<constructor_elt, va_gc> **);
182 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
183 vec<constructor_elt, va_gc> **);
184 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
185 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
186 static void clone_constructors_and_destructors (tree);
187 static tree build_clone (tree, tree);
188 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
189 static void build_ctor_vtbl_group (tree, tree);
190 static void build_vtt (tree);
191 static tree binfo_ctor_vtable (tree);
192 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
193 tree *);
194 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
195 static tree dfs_fixup_binfo_vtbls (tree, void *);
196 static int record_subobject_offset (tree, tree, splay_tree);
197 static int check_subobject_offset (tree, tree, splay_tree);
198 static int walk_subobject_offsets (tree, subobject_offset_fn,
199 tree, splay_tree, tree, int);
200 static void record_subobject_offsets (tree, tree, splay_tree, bool);
201 static int layout_conflict_p (tree, tree, splay_tree, int);
202 static int splay_tree_compare_integer_csts (splay_tree_key k1,
203 splay_tree_key k2);
204 static void warn_about_ambiguous_bases (tree);
205 static bool type_requires_array_cookie (tree);
206 static bool contains_empty_class_p (tree);
207 static bool base_derived_from (tree, tree);
208 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
209 static tree end_of_base (tree);
210 static tree get_vcall_index (tree, tree);
211
212 /* Variables shared between class.c and call.c. */
213
214 int n_vtables = 0;
215 int n_vtable_entries = 0;
216 int n_vtable_searches = 0;
217 int n_vtable_elems = 0;
218 int n_convert_harshness = 0;
219 int n_compute_conversion_costs = 0;
220 int n_inner_fields_searched = 0;
221
222 /* Convert to or from a base subobject. EXPR is an expression of type
223 `A' or `A*', an expression of type `B' or `B*' is returned. To
224 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
225 the B base instance within A. To convert base A to derived B, CODE
226 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
227 In this latter case, A must not be a morally virtual base of B.
228 NONNULL is true if EXPR is known to be non-NULL (this is only
229 needed when EXPR is of pointer type). CV qualifiers are preserved
230 from EXPR. */
231
232 tree
233 build_base_path (enum tree_code code,
234 tree expr,
235 tree binfo,
236 int nonnull,
237 tsubst_flags_t complain)
238 {
239 tree v_binfo = NULL_TREE;
240 tree d_binfo = NULL_TREE;
241 tree probe;
242 tree offset;
243 tree target_type;
244 tree null_test = NULL;
245 tree ptr_target_type;
246 int fixed_type_p;
247 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
248 bool has_empty = false;
249 bool virtual_access;
250
251 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
252 return error_mark_node;
253
254 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
255 {
256 d_binfo = probe;
257 if (is_empty_class (BINFO_TYPE (probe)))
258 has_empty = true;
259 if (!v_binfo && BINFO_VIRTUAL_P (probe))
260 v_binfo = probe;
261 }
262
263 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
264 if (want_pointer)
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
266
267 if (code == PLUS_EXPR
268 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
269 {
270 /* This can happen when adjust_result_of_qualified_name_lookup can't
271 find a unique base binfo in a call to a member function. We
272 couldn't give the diagnostic then since we might have been calling
273 a static member function, so we do it now. */
274 if (complain & tf_error)
275 {
276 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
277 ba_unique, NULL, complain);
278 gcc_assert (base == error_mark_node);
279 }
280 return error_mark_node;
281 }
282
283 gcc_assert ((code == MINUS_EXPR
284 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
285 || code == PLUS_EXPR);
286
287 if (binfo == d_binfo)
288 /* Nothing to do. */
289 return expr;
290
291 if (code == MINUS_EXPR && v_binfo)
292 {
293 if (complain & tf_error)
294 {
295 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo)))
296 {
297 if (want_pointer)
298 error ("cannot convert from pointer to base class %qT to "
299 "pointer to derived class %qT because the base is "
300 "virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
301 else
302 error ("cannot convert from base class %qT to derived "
303 "class %qT because the base is virtual",
304 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
305 }
306 else
307 {
308 if (want_pointer)
309 error ("cannot convert from pointer to base class %qT to "
310 "pointer to derived class %qT via virtual base %qT",
311 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
312 BINFO_TYPE (v_binfo));
313 else
314 error ("cannot convert from base class %qT to derived "
315 "class %qT via virtual base %qT", BINFO_TYPE (binfo),
316 BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
317 }
318 }
319 return error_mark_node;
320 }
321
322 if (!want_pointer)
323 /* This must happen before the call to save_expr. */
324 expr = cp_build_addr_expr (expr, complain);
325 else
326 expr = mark_rvalue_use (expr);
327
328 offset = BINFO_OFFSET (binfo);
329 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
330 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
331 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
332 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
333 expression returned matches the input. */
334 target_type = cp_build_qualified_type
335 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
336 ptr_target_type = build_pointer_type (target_type);
337
338 /* Do we need to look in the vtable for the real offset? */
339 virtual_access = (v_binfo && fixed_type_p <= 0);
340
341 /* Don't bother with the calculations inside sizeof; they'll ICE if the
342 source type is incomplete and the pointer value doesn't matter. In a
343 template (even in fold_non_dependent_expr), we don't have vtables set
344 up properly yet, and the value doesn't matter there either; we're just
345 interested in the result of overload resolution. */
346 if (cp_unevaluated_operand != 0
347 || in_template_function ())
348 {
349 expr = build_nop (ptr_target_type, expr);
350 if (!want_pointer)
351 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
352 return expr;
353 }
354
355 /* If we're in an NSDMI, we don't have the full constructor context yet
356 that we need for converting to a virtual base, so just build a stub
357 CONVERT_EXPR and expand it later in bot_replace. */
358 if (virtual_access && fixed_type_p < 0
359 && current_scope () != current_function_decl)
360 {
361 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
362 CONVERT_EXPR_VBASE_PATH (expr) = true;
363 if (!want_pointer)
364 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
365 return expr;
366 }
367
368 /* Do we need to check for a null pointer? */
369 if (want_pointer && !nonnull)
370 {
371 /* If we know the conversion will not actually change the value
372 of EXPR, then we can avoid testing the expression for NULL.
373 We have to avoid generating a COMPONENT_REF for a base class
374 field, because other parts of the compiler know that such
375 expressions are always non-NULL. */
376 if (!virtual_access && integer_zerop (offset))
377 return build_nop (ptr_target_type, expr);
378 null_test = error_mark_node;
379 }
380
381 /* Protect against multiple evaluation if necessary. */
382 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
383 expr = save_expr (expr);
384
385 /* Now that we've saved expr, build the real null test. */
386 if (null_test)
387 {
388 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
389 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
390 expr, zero);
391 }
392
393 /* If this is a simple base reference, express it as a COMPONENT_REF. */
394 if (code == PLUS_EXPR && !virtual_access
395 /* We don't build base fields for empty bases, and they aren't very
396 interesting to the optimizers anyway. */
397 && !has_empty)
398 {
399 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
400 expr = build_simple_base_path (expr, binfo);
401 if (want_pointer)
402 expr = build_address (expr);
403 target_type = TREE_TYPE (expr);
404 goto out;
405 }
406
407 if (virtual_access)
408 {
409 /* Going via virtual base V_BINFO. We need the static offset
410 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
411 V_BINFO. That offset is an entry in D_BINFO's vtable. */
412 tree v_offset;
413
414 if (fixed_type_p < 0 && in_base_initializer)
415 {
416 /* In a base member initializer, we cannot rely on the
417 vtable being set up. We have to indirect via the
418 vtt_parm. */
419 tree t;
420
421 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
422 t = build_pointer_type (t);
423 v_offset = convert (t, current_vtt_parm);
424 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
425 }
426 else
427 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
428 complain),
429 TREE_TYPE (TREE_TYPE (expr)));
430
431 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
432 v_offset = build1 (NOP_EXPR,
433 build_pointer_type (ptrdiff_type_node),
434 v_offset);
435 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
436 TREE_CONSTANT (v_offset) = 1;
437
438 offset = convert_to_integer (ptrdiff_type_node,
439 size_diffop_loc (input_location, offset,
440 BINFO_OFFSET (v_binfo)));
441
442 if (!integer_zerop (offset))
443 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
444
445 if (fixed_type_p < 0)
446 /* Negative fixed_type_p means this is a constructor or destructor;
447 virtual base layout is fixed in in-charge [cd]tors, but not in
448 base [cd]tors. */
449 offset = build3 (COND_EXPR, ptrdiff_type_node,
450 build2 (EQ_EXPR, boolean_type_node,
451 current_in_charge_parm, integer_zero_node),
452 v_offset,
453 convert_to_integer (ptrdiff_type_node,
454 BINFO_OFFSET (binfo)));
455 else
456 offset = v_offset;
457 }
458
459 if (want_pointer)
460 target_type = ptr_target_type;
461
462 expr = build1 (NOP_EXPR, ptr_target_type, expr);
463
464 if (!integer_zerop (offset))
465 {
466 offset = fold_convert (sizetype, offset);
467 if (code == MINUS_EXPR)
468 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
469 expr = fold_build_pointer_plus (expr, offset);
470 }
471 else
472 null_test = NULL;
473
474 if (!want_pointer)
475 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
476
477 out:
478 if (null_test)
479 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
480 build_zero_cst (target_type));
481
482 return expr;
483 }
484
485 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
486 Perform a derived-to-base conversion by recursively building up a
487 sequence of COMPONENT_REFs to the appropriate base fields. */
488
489 static tree
490 build_simple_base_path (tree expr, tree binfo)
491 {
492 tree type = BINFO_TYPE (binfo);
493 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
494 tree field;
495
496 if (d_binfo == NULL_TREE)
497 {
498 tree temp;
499
500 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
501
502 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
503 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
504 an lvalue in the front end; only _DECLs and _REFs are lvalues
505 in the back end. */
506 temp = unary_complex_lvalue (ADDR_EXPR, expr);
507 if (temp)
508 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
509
510 return expr;
511 }
512
513 /* Recurse. */
514 expr = build_simple_base_path (expr, d_binfo);
515
516 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
517 field; field = DECL_CHAIN (field))
518 /* Is this the base field created by build_base_field? */
519 if (TREE_CODE (field) == FIELD_DECL
520 && DECL_FIELD_IS_BASE (field)
521 && TREE_TYPE (field) == type
522 /* If we're looking for a field in the most-derived class,
523 also check the field offset; we can have two base fields
524 of the same type if one is an indirect virtual base and one
525 is a direct non-virtual base. */
526 && (BINFO_INHERITANCE_CHAIN (d_binfo)
527 || tree_int_cst_equal (byte_position (field),
528 BINFO_OFFSET (binfo))))
529 {
530 /* We don't use build_class_member_access_expr here, as that
531 has unnecessary checks, and more importantly results in
532 recursive calls to dfs_walk_once. */
533 int type_quals = cp_type_quals (TREE_TYPE (expr));
534
535 expr = build3 (COMPONENT_REF,
536 cp_build_qualified_type (type, type_quals),
537 expr, field, NULL_TREE);
538 expr = fold_if_not_in_template (expr);
539
540 /* Mark the expression const or volatile, as appropriate.
541 Even though we've dealt with the type above, we still have
542 to mark the expression itself. */
543 if (type_quals & TYPE_QUAL_CONST)
544 TREE_READONLY (expr) = 1;
545 if (type_quals & TYPE_QUAL_VOLATILE)
546 TREE_THIS_VOLATILE (expr) = 1;
547
548 return expr;
549 }
550
551 /* Didn't find the base field?!? */
552 gcc_unreachable ();
553 }
554
555 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
556 type is a class type or a pointer to a class type. In the former
557 case, TYPE is also a class type; in the latter it is another
558 pointer type. If CHECK_ACCESS is true, an error message is emitted
559 if TYPE is inaccessible. If OBJECT has pointer type, the value is
560 assumed to be non-NULL. */
561
562 tree
563 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
564 tsubst_flags_t complain)
565 {
566 tree binfo;
567 tree object_type;
568
569 if (TYPE_PTR_P (TREE_TYPE (object)))
570 {
571 object_type = TREE_TYPE (TREE_TYPE (object));
572 type = TREE_TYPE (type);
573 }
574 else
575 object_type = TREE_TYPE (object);
576
577 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
578 NULL, complain);
579 if (!binfo || binfo == error_mark_node)
580 return error_mark_node;
581
582 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
583 }
584
585 /* EXPR is an expression with unqualified class type. BASE is a base
586 binfo of that class type. Returns EXPR, converted to the BASE
587 type. This function assumes that EXPR is the most derived class;
588 therefore virtual bases can be found at their static offsets. */
589
590 tree
591 convert_to_base_statically (tree expr, tree base)
592 {
593 tree expr_type;
594
595 expr_type = TREE_TYPE (expr);
596 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
597 {
598 /* If this is a non-empty base, use a COMPONENT_REF. */
599 if (!is_empty_class (BINFO_TYPE (base)))
600 return build_simple_base_path (expr, base);
601
602 /* We use fold_build2 and fold_convert below to simplify the trees
603 provided to the optimizers. It is not safe to call these functions
604 when processing a template because they do not handle C++-specific
605 trees. */
606 gcc_assert (!processing_template_decl);
607 expr = cp_build_addr_expr (expr, tf_warning_or_error);
608 if (!integer_zerop (BINFO_OFFSET (base)))
609 expr = fold_build_pointer_plus_loc (input_location,
610 expr, BINFO_OFFSET (base));
611 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
612 expr = build_fold_indirect_ref_loc (input_location, expr);
613 }
614
615 return expr;
616 }
617
618 \f
619 tree
620 build_vfield_ref (tree datum, tree type)
621 {
622 tree vfield, vcontext;
623
624 if (datum == error_mark_node)
625 return error_mark_node;
626
627 /* First, convert to the requested type. */
628 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
629 datum = convert_to_base (datum, type, /*check_access=*/false,
630 /*nonnull=*/true, tf_warning_or_error);
631
632 /* Second, the requested type may not be the owner of its own vptr.
633 If not, convert to the base class that owns it. We cannot use
634 convert_to_base here, because VCONTEXT may appear more than once
635 in the inheritance hierarchy of TYPE, and thus direct conversion
636 between the types may be ambiguous. Following the path back up
637 one step at a time via primary bases avoids the problem. */
638 vfield = TYPE_VFIELD (type);
639 vcontext = DECL_CONTEXT (vfield);
640 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
641 {
642 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
643 type = TREE_TYPE (datum);
644 }
645
646 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
647 }
648
649 /* Given an object INSTANCE, return an expression which yields the
650 vtable element corresponding to INDEX. There are many special
651 cases for INSTANCE which we take care of here, mainly to avoid
652 creating extra tree nodes when we don't have to. */
653
654 static tree
655 build_vtbl_ref_1 (tree instance, tree idx)
656 {
657 tree aref;
658 tree vtbl = NULL_TREE;
659
660 /* Try to figure out what a reference refers to, and
661 access its virtual function table directly. */
662
663 int cdtorp = 0;
664 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
665
666 tree basetype = non_reference (TREE_TYPE (instance));
667
668 if (fixed_type && !cdtorp)
669 {
670 tree binfo = lookup_base (fixed_type, basetype,
671 ba_unique, NULL, tf_none);
672 if (binfo && binfo != error_mark_node)
673 vtbl = unshare_expr (BINFO_VTABLE (binfo));
674 }
675
676 if (!vtbl)
677 vtbl = build_vfield_ref (instance, basetype);
678
679 aref = build_array_ref (input_location, vtbl, idx);
680 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
681
682 return aref;
683 }
684
685 tree
686 build_vtbl_ref (tree instance, tree idx)
687 {
688 tree aref = build_vtbl_ref_1 (instance, idx);
689
690 return aref;
691 }
692
693 /* Given a stable object pointer INSTANCE_PTR, return an expression which
694 yields a function pointer corresponding to vtable element INDEX. */
695
696 tree
697 build_vfn_ref (tree instance_ptr, tree idx)
698 {
699 tree aref;
700
701 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
702 tf_warning_or_error),
703 idx);
704
705 /* When using function descriptors, the address of the
706 vtable entry is treated as a function pointer. */
707 if (TARGET_VTABLE_USES_DESCRIPTORS)
708 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
709 cp_build_addr_expr (aref, tf_warning_or_error));
710
711 /* Remember this as a method reference, for later devirtualization. */
712 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
713
714 return aref;
715 }
716
717 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
718 for the given TYPE. */
719
720 static tree
721 get_vtable_name (tree type)
722 {
723 return mangle_vtbl_for_type (type);
724 }
725
726 /* DECL is an entity associated with TYPE, like a virtual table or an
727 implicitly generated constructor. Determine whether or not DECL
728 should have external or internal linkage at the object file
729 level. This routine does not deal with COMDAT linkage and other
730 similar complexities; it simply sets TREE_PUBLIC if it possible for
731 entities in other translation units to contain copies of DECL, in
732 the abstract. */
733
734 void
735 set_linkage_according_to_type (tree /*type*/, tree decl)
736 {
737 TREE_PUBLIC (decl) = 1;
738 determine_visibility (decl);
739 }
740
741 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
742 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
743 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
744
745 static tree
746 build_vtable (tree class_type, tree name, tree vtable_type)
747 {
748 tree decl;
749
750 decl = build_lang_decl (VAR_DECL, name, vtable_type);
751 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
752 now to avoid confusion in mangle_decl. */
753 SET_DECL_ASSEMBLER_NAME (decl, name);
754 DECL_CONTEXT (decl) = class_type;
755 DECL_ARTIFICIAL (decl) = 1;
756 TREE_STATIC (decl) = 1;
757 TREE_READONLY (decl) = 1;
758 DECL_VIRTUAL_P (decl) = 1;
759 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
760 DECL_VTABLE_OR_VTT_P (decl) = 1;
761 /* At one time the vtable info was grabbed 2 words at a time. This
762 fails on sparc unless you have 8-byte alignment. (tiemann) */
763 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
764 DECL_ALIGN (decl));
765 set_linkage_according_to_type (class_type, decl);
766 /* The vtable has not been defined -- yet. */
767 DECL_EXTERNAL (decl) = 1;
768 DECL_NOT_REALLY_EXTERN (decl) = 1;
769
770 /* Mark the VAR_DECL node representing the vtable itself as a
771 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
772 is rather important that such things be ignored because any
773 effort to actually generate DWARF for them will run into
774 trouble when/if we encounter code like:
775
776 #pragma interface
777 struct S { virtual void member (); };
778
779 because the artificial declaration of the vtable itself (as
780 manufactured by the g++ front end) will say that the vtable is
781 a static member of `S' but only *after* the debug output for
782 the definition of `S' has already been output. This causes
783 grief because the DWARF entry for the definition of the vtable
784 will try to refer back to an earlier *declaration* of the
785 vtable as a static member of `S' and there won't be one. We
786 might be able to arrange to have the "vtable static member"
787 attached to the member list for `S' before the debug info for
788 `S' get written (which would solve the problem) but that would
789 require more intrusive changes to the g++ front end. */
790 DECL_IGNORED_P (decl) = 1;
791
792 return decl;
793 }
794
795 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
796 or even complete. If this does not exist, create it. If COMPLETE is
797 nonzero, then complete the definition of it -- that will render it
798 impossible to actually build the vtable, but is useful to get at those
799 which are known to exist in the runtime. */
800
801 tree
802 get_vtable_decl (tree type, int complete)
803 {
804 tree decl;
805
806 if (CLASSTYPE_VTABLES (type))
807 return CLASSTYPE_VTABLES (type);
808
809 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
810 CLASSTYPE_VTABLES (type) = decl;
811
812 if (complete)
813 {
814 DECL_EXTERNAL (decl) = 1;
815 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
816 }
817
818 return decl;
819 }
820
821 /* Build the primary virtual function table for TYPE. If BINFO is
822 non-NULL, build the vtable starting with the initial approximation
823 that it is the same as the one which is the head of the association
824 list. Returns a nonzero value if a new vtable is actually
825 created. */
826
827 static int
828 build_primary_vtable (tree binfo, tree type)
829 {
830 tree decl;
831 tree virtuals;
832
833 decl = get_vtable_decl (type, /*complete=*/0);
834
835 if (binfo)
836 {
837 if (BINFO_NEW_VTABLE_MARKED (binfo))
838 /* We have already created a vtable for this base, so there's
839 no need to do it again. */
840 return 0;
841
842 virtuals = copy_list (BINFO_VIRTUALS (binfo));
843 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
844 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
845 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
846 }
847 else
848 {
849 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
850 virtuals = NULL_TREE;
851 }
852
853 if (GATHER_STATISTICS)
854 {
855 n_vtables += 1;
856 n_vtable_elems += list_length (virtuals);
857 }
858
859 /* Initialize the association list for this type, based
860 on our first approximation. */
861 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
862 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
863 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
864 return 1;
865 }
866
867 /* Give BINFO a new virtual function table which is initialized
868 with a skeleton-copy of its original initialization. The only
869 entry that changes is the `delta' entry, so we can really
870 share a lot of structure.
871
872 FOR_TYPE is the most derived type which caused this table to
873 be needed.
874
875 Returns nonzero if we haven't met BINFO before.
876
877 The order in which vtables are built (by calling this function) for
878 an object must remain the same, otherwise a binary incompatibility
879 can result. */
880
881 static int
882 build_secondary_vtable (tree binfo)
883 {
884 if (BINFO_NEW_VTABLE_MARKED (binfo))
885 /* We already created a vtable for this base. There's no need to
886 do it again. */
887 return 0;
888
889 /* Remember that we've created a vtable for this BINFO, so that we
890 don't try to do so again. */
891 SET_BINFO_NEW_VTABLE_MARKED (binfo);
892
893 /* Make fresh virtual list, so we can smash it later. */
894 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
895
896 /* Secondary vtables are laid out as part of the same structure as
897 the primary vtable. */
898 BINFO_VTABLE (binfo) = NULL_TREE;
899 return 1;
900 }
901
902 /* Create a new vtable for BINFO which is the hierarchy dominated by
903 T. Return nonzero if we actually created a new vtable. */
904
905 static int
906 make_new_vtable (tree t, tree binfo)
907 {
908 if (binfo == TYPE_BINFO (t))
909 /* In this case, it is *type*'s vtable we are modifying. We start
910 with the approximation that its vtable is that of the
911 immediate base class. */
912 return build_primary_vtable (binfo, t);
913 else
914 /* This is our very own copy of `basetype' to play with. Later,
915 we will fill in all the virtual functions that override the
916 virtual functions in these base classes which are not defined
917 by the current type. */
918 return build_secondary_vtable (binfo);
919 }
920
921 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
922 (which is in the hierarchy dominated by T) list FNDECL as its
923 BV_FN. DELTA is the required constant adjustment from the `this'
924 pointer where the vtable entry appears to the `this' required when
925 the function is actually called. */
926
927 static void
928 modify_vtable_entry (tree t,
929 tree binfo,
930 tree fndecl,
931 tree delta,
932 tree *virtuals)
933 {
934 tree v;
935
936 v = *virtuals;
937
938 if (fndecl != BV_FN (v)
939 || !tree_int_cst_equal (delta, BV_DELTA (v)))
940 {
941 /* We need a new vtable for BINFO. */
942 if (make_new_vtable (t, binfo))
943 {
944 /* If we really did make a new vtable, we also made a copy
945 of the BINFO_VIRTUALS list. Now, we have to find the
946 corresponding entry in that list. */
947 *virtuals = BINFO_VIRTUALS (binfo);
948 while (BV_FN (*virtuals) != BV_FN (v))
949 *virtuals = TREE_CHAIN (*virtuals);
950 v = *virtuals;
951 }
952
953 BV_DELTA (v) = delta;
954 BV_VCALL_INDEX (v) = NULL_TREE;
955 BV_FN (v) = fndecl;
956 }
957 }
958
959 \f
960 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
961 the USING_DECL naming METHOD. Returns true if the method could be
962 added to the method vec. */
963
964 bool
965 add_method (tree type, tree method, tree using_decl)
966 {
967 unsigned slot;
968 tree overload;
969 bool template_conv_p = false;
970 bool conv_p;
971 vec<tree, va_gc> *method_vec;
972 bool complete_p;
973 bool insert_p = false;
974 tree current_fns;
975 tree fns;
976
977 if (method == error_mark_node)
978 return false;
979
980 complete_p = COMPLETE_TYPE_P (type);
981 conv_p = DECL_CONV_FN_P (method);
982 if (conv_p)
983 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
984 && DECL_TEMPLATE_CONV_FN_P (method));
985
986 method_vec = CLASSTYPE_METHOD_VEC (type);
987 if (!method_vec)
988 {
989 /* Make a new method vector. We start with 8 entries. We must
990 allocate at least two (for constructors and destructors), and
991 we're going to end up with an assignment operator at some
992 point as well. */
993 vec_alloc (method_vec, 8);
994 /* Create slots for constructors and destructors. */
995 method_vec->quick_push (NULL_TREE);
996 method_vec->quick_push (NULL_TREE);
997 CLASSTYPE_METHOD_VEC (type) = method_vec;
998 }
999
1000 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
1001 grok_special_member_properties (method);
1002
1003 /* Constructors and destructors go in special slots. */
1004 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
1005 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
1006 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1007 {
1008 slot = CLASSTYPE_DESTRUCTOR_SLOT;
1009
1010 if (TYPE_FOR_JAVA (type))
1011 {
1012 if (!DECL_ARTIFICIAL (method))
1013 error ("Java class %qT cannot have a destructor", type);
1014 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1015 error ("Java class %qT cannot have an implicit non-trivial "
1016 "destructor",
1017 type);
1018 }
1019 }
1020 else
1021 {
1022 tree m;
1023
1024 insert_p = true;
1025 /* See if we already have an entry with this name. */
1026 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1027 vec_safe_iterate (method_vec, slot, &m);
1028 ++slot)
1029 {
1030 m = OVL_CURRENT (m);
1031 if (template_conv_p)
1032 {
1033 if (TREE_CODE (m) == TEMPLATE_DECL
1034 && DECL_TEMPLATE_CONV_FN_P (m))
1035 insert_p = false;
1036 break;
1037 }
1038 if (conv_p && !DECL_CONV_FN_P (m))
1039 break;
1040 if (DECL_NAME (m) == DECL_NAME (method))
1041 {
1042 insert_p = false;
1043 break;
1044 }
1045 if (complete_p
1046 && !DECL_CONV_FN_P (m)
1047 && DECL_NAME (m) > DECL_NAME (method))
1048 break;
1049 }
1050 }
1051 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1052
1053 /* Check to see if we've already got this method. */
1054 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1055 {
1056 tree fn = OVL_CURRENT (fns);
1057 tree fn_type;
1058 tree method_type;
1059 tree parms1;
1060 tree parms2;
1061
1062 if (TREE_CODE (fn) != TREE_CODE (method))
1063 continue;
1064
1065 /* [over.load] Member function declarations with the
1066 same name and the same parameter types cannot be
1067 overloaded if any of them is a static member
1068 function declaration.
1069
1070 [over.load] Member function declarations with the same name and
1071 the same parameter-type-list as well as member function template
1072 declarations with the same name, the same parameter-type-list, and
1073 the same template parameter lists cannot be overloaded if any of
1074 them, but not all, have a ref-qualifier.
1075
1076 [namespace.udecl] When a using-declaration brings names
1077 from a base class into a derived class scope, member
1078 functions in the derived class override and/or hide member
1079 functions with the same name and parameter types in a base
1080 class (rather than conflicting). */
1081 fn_type = TREE_TYPE (fn);
1082 method_type = TREE_TYPE (method);
1083 parms1 = TYPE_ARG_TYPES (fn_type);
1084 parms2 = TYPE_ARG_TYPES (method_type);
1085
1086 /* Compare the quals on the 'this' parm. Don't compare
1087 the whole types, as used functions are treated as
1088 coming from the using class in overload resolution. */
1089 if (! DECL_STATIC_FUNCTION_P (fn)
1090 && ! DECL_STATIC_FUNCTION_P (method)
1091 /* Either both or neither need to be ref-qualified for
1092 differing quals to allow overloading. */
1093 && (FUNCTION_REF_QUALIFIED (fn_type)
1094 == FUNCTION_REF_QUALIFIED (method_type))
1095 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1096 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1097 continue;
1098
1099 /* For templates, the return type and template parameters
1100 must be identical. */
1101 if (TREE_CODE (fn) == TEMPLATE_DECL
1102 && (!same_type_p (TREE_TYPE (fn_type),
1103 TREE_TYPE (method_type))
1104 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1105 DECL_TEMPLATE_PARMS (method))))
1106 continue;
1107
1108 if (! DECL_STATIC_FUNCTION_P (fn))
1109 parms1 = TREE_CHAIN (parms1);
1110 if (! DECL_STATIC_FUNCTION_P (method))
1111 parms2 = TREE_CHAIN (parms2);
1112
1113 if (compparms (parms1, parms2)
1114 && (!DECL_CONV_FN_P (fn)
1115 || same_type_p (TREE_TYPE (fn_type),
1116 TREE_TYPE (method_type))))
1117 {
1118 /* For function versions, their parms and types match
1119 but they are not duplicates. Record function versions
1120 as and when they are found. extern "C" functions are
1121 not treated as versions. */
1122 if (TREE_CODE (fn) == FUNCTION_DECL
1123 && TREE_CODE (method) == FUNCTION_DECL
1124 && !DECL_EXTERN_C_P (fn)
1125 && !DECL_EXTERN_C_P (method)
1126 && targetm.target_option.function_versions (fn, method))
1127 {
1128 /* Mark functions as versions if necessary. Modify the mangled
1129 decl name if necessary. */
1130 if (!DECL_FUNCTION_VERSIONED (fn))
1131 {
1132 DECL_FUNCTION_VERSIONED (fn) = 1;
1133 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1134 mangle_decl (fn);
1135 }
1136 if (!DECL_FUNCTION_VERSIONED (method))
1137 {
1138 DECL_FUNCTION_VERSIONED (method) = 1;
1139 if (DECL_ASSEMBLER_NAME_SET_P (method))
1140 mangle_decl (method);
1141 }
1142 record_function_versions (fn, method);
1143 continue;
1144 }
1145 if (DECL_INHERITED_CTOR_BASE (method))
1146 {
1147 if (DECL_INHERITED_CTOR_BASE (fn))
1148 {
1149 error_at (DECL_SOURCE_LOCATION (method),
1150 "%q#D inherited from %qT", method,
1151 DECL_INHERITED_CTOR_BASE (method));
1152 error_at (DECL_SOURCE_LOCATION (fn),
1153 "conflicts with version inherited from %qT",
1154 DECL_INHERITED_CTOR_BASE (fn));
1155 }
1156 /* Otherwise defer to the other function. */
1157 return false;
1158 }
1159 if (using_decl)
1160 {
1161 if (DECL_CONTEXT (fn) == type)
1162 /* Defer to the local function. */
1163 return false;
1164 }
1165 else
1166 {
1167 error ("%q+#D cannot be overloaded", method);
1168 error ("with %q+#D", fn);
1169 }
1170
1171 /* We don't call duplicate_decls here to merge the
1172 declarations because that will confuse things if the
1173 methods have inline definitions. In particular, we
1174 will crash while processing the definitions. */
1175 return false;
1176 }
1177 }
1178
1179 /* A class should never have more than one destructor. */
1180 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1181 return false;
1182
1183 /* Add the new binding. */
1184 if (using_decl)
1185 {
1186 overload = ovl_cons (method, current_fns);
1187 OVL_USED (overload) = true;
1188 }
1189 else
1190 overload = build_overload (method, current_fns);
1191
1192 if (conv_p)
1193 TYPE_HAS_CONVERSION (type) = 1;
1194 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1195 push_class_level_binding (DECL_NAME (method), overload);
1196
1197 if (insert_p)
1198 {
1199 bool reallocated;
1200
1201 /* We only expect to add few methods in the COMPLETE_P case, so
1202 just make room for one more method in that case. */
1203 if (complete_p)
1204 reallocated = vec_safe_reserve_exact (method_vec, 1);
1205 else
1206 reallocated = vec_safe_reserve (method_vec, 1);
1207 if (reallocated)
1208 CLASSTYPE_METHOD_VEC (type) = method_vec;
1209 if (slot == method_vec->length ())
1210 method_vec->quick_push (overload);
1211 else
1212 method_vec->quick_insert (slot, overload);
1213 }
1214 else
1215 /* Replace the current slot. */
1216 (*method_vec)[slot] = overload;
1217 return true;
1218 }
1219
1220 /* Subroutines of finish_struct. */
1221
1222 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1223 legit, otherwise return 0. */
1224
1225 static int
1226 alter_access (tree t, tree fdecl, tree access)
1227 {
1228 tree elem;
1229
1230 if (!DECL_LANG_SPECIFIC (fdecl))
1231 retrofit_lang_decl (fdecl);
1232
1233 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1234
1235 elem = purpose_member (t, DECL_ACCESS (fdecl));
1236 if (elem)
1237 {
1238 if (TREE_VALUE (elem) != access)
1239 {
1240 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1241 error ("conflicting access specifications for method"
1242 " %q+D, ignored", TREE_TYPE (fdecl));
1243 else
1244 error ("conflicting access specifications for field %qE, ignored",
1245 DECL_NAME (fdecl));
1246 }
1247 else
1248 {
1249 /* They're changing the access to the same thing they changed
1250 it to before. That's OK. */
1251 ;
1252 }
1253 }
1254 else
1255 {
1256 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1257 tf_warning_or_error);
1258 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1259 return 1;
1260 }
1261 return 0;
1262 }
1263
1264 /* Process the USING_DECL, which is a member of T. */
1265
1266 static void
1267 handle_using_decl (tree using_decl, tree t)
1268 {
1269 tree decl = USING_DECL_DECLS (using_decl);
1270 tree name = DECL_NAME (using_decl);
1271 tree access
1272 = TREE_PRIVATE (using_decl) ? access_private_node
1273 : TREE_PROTECTED (using_decl) ? access_protected_node
1274 : access_public_node;
1275 tree flist = NULL_TREE;
1276 tree old_value;
1277
1278 gcc_assert (!processing_template_decl && decl);
1279
1280 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1281 tf_warning_or_error);
1282 if (old_value)
1283 {
1284 if (is_overloaded_fn (old_value))
1285 old_value = OVL_CURRENT (old_value);
1286
1287 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1288 /* OK */;
1289 else
1290 old_value = NULL_TREE;
1291 }
1292
1293 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1294
1295 if (is_overloaded_fn (decl))
1296 flist = decl;
1297
1298 if (! old_value)
1299 ;
1300 else if (is_overloaded_fn (old_value))
1301 {
1302 if (flist)
1303 /* It's OK to use functions from a base when there are functions with
1304 the same name already present in the current class. */;
1305 else
1306 {
1307 error ("%q+D invalid in %q#T", using_decl, t);
1308 error (" because of local method %q+#D with same name",
1309 OVL_CURRENT (old_value));
1310 return;
1311 }
1312 }
1313 else if (!DECL_ARTIFICIAL (old_value))
1314 {
1315 error ("%q+D invalid in %q#T", using_decl, t);
1316 error (" because of local member %q+#D with same name", old_value);
1317 return;
1318 }
1319
1320 /* Make type T see field decl FDECL with access ACCESS. */
1321 if (flist)
1322 for (; flist; flist = OVL_NEXT (flist))
1323 {
1324 add_method (t, OVL_CURRENT (flist), using_decl);
1325 alter_access (t, OVL_CURRENT (flist), access);
1326 }
1327 else
1328 alter_access (t, decl, access);
1329 }
1330 \f
1331 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1332 types with abi tags, add the corresponding identifiers to the VEC in
1333 *DATA and set IDENTIFIER_MARKED. */
1334
1335 struct abi_tag_data
1336 {
1337 tree t;
1338 tree subob;
1339 };
1340
1341 static tree
1342 find_abi_tags_r (tree *tp, int */*walk_subtrees*/, void *data)
1343 {
1344 if (!OVERLOAD_TYPE_P (*tp))
1345 return NULL_TREE;
1346
1347 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1348 {
1349 struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1350 for (tree list = TREE_VALUE (attributes); list;
1351 list = TREE_CHAIN (list))
1352 {
1353 tree tag = TREE_VALUE (list);
1354 tree id = get_identifier (TREE_STRING_POINTER (tag));
1355 if (!IDENTIFIER_MARKED (id))
1356 {
1357 if (TYPE_P (p->subob))
1358 {
1359 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1360 "that base %qT has", p->t, tag, p->subob);
1361 inform (location_of (p->subob), "%qT declared here",
1362 p->subob);
1363 }
1364 else
1365 {
1366 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1367 "that %qT (used in the type of %qD) has",
1368 p->t, tag, *tp, p->subob);
1369 inform (location_of (p->subob), "%qD declared here",
1370 p->subob);
1371 inform (location_of (*tp), "%qT declared here", *tp);
1372 }
1373 }
1374 }
1375 }
1376 return NULL_TREE;
1377 }
1378
1379 /* Set IDENTIFIER_MARKED on all the ABI tags on T and its (transitively
1380 complete) template arguments. */
1381
1382 static void
1383 mark_type_abi_tags (tree t, bool val)
1384 {
1385 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1386 if (attributes)
1387 {
1388 for (tree list = TREE_VALUE (attributes); list;
1389 list = TREE_CHAIN (list))
1390 {
1391 tree tag = TREE_VALUE (list);
1392 tree id = get_identifier (TREE_STRING_POINTER (tag));
1393 IDENTIFIER_MARKED (id) = val;
1394 }
1395 }
1396
1397 /* Also mark ABI tags from template arguments. */
1398 if (CLASSTYPE_TEMPLATE_INFO (t))
1399 {
1400 tree args = CLASSTYPE_TI_ARGS (t);
1401 for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
1402 {
1403 tree level = TMPL_ARGS_LEVEL (args, i+1);
1404 for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1405 {
1406 tree arg = TREE_VEC_ELT (level, j);
1407 if (CLASS_TYPE_P (arg))
1408 mark_type_abi_tags (arg, val);
1409 }
1410 }
1411 }
1412 }
1413
1414 /* Check that class T has all the abi tags that subobject SUBOB has, or
1415 warn if not. */
1416
1417 static void
1418 check_abi_tags (tree t, tree subob)
1419 {
1420 mark_type_abi_tags (t, true);
1421
1422 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1423 struct abi_tag_data data = { t, subob };
1424
1425 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1426
1427 mark_type_abi_tags (t, false);
1428 }
1429
1430 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1431 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1432 properties of the bases. */
1433
1434 static void
1435 check_bases (tree t,
1436 int* cant_have_const_ctor_p,
1437 int* no_const_asn_ref_p)
1438 {
1439 int i;
1440 bool seen_non_virtual_nearly_empty_base_p = 0;
1441 int seen_tm_mask = 0;
1442 tree base_binfo;
1443 tree binfo;
1444 tree field = NULL_TREE;
1445
1446 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1447 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1448 if (TREE_CODE (field) == FIELD_DECL)
1449 break;
1450
1451 for (binfo = TYPE_BINFO (t), i = 0;
1452 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1453 {
1454 tree basetype = TREE_TYPE (base_binfo);
1455
1456 gcc_assert (COMPLETE_TYPE_P (basetype));
1457
1458 if (CLASSTYPE_FINAL (basetype))
1459 error ("cannot derive from %<final%> base %qT in derived type %qT",
1460 basetype, t);
1461
1462 /* If any base class is non-literal, so is the derived class. */
1463 if (!CLASSTYPE_LITERAL_P (basetype))
1464 CLASSTYPE_LITERAL_P (t) = false;
1465
1466 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1467 here because the case of virtual functions but non-virtual
1468 dtor is handled in finish_struct_1. */
1469 if (!TYPE_POLYMORPHIC_P (basetype))
1470 warning (OPT_Weffc__,
1471 "base class %q#T has a non-virtual destructor", basetype);
1472
1473 /* If the base class doesn't have copy constructors or
1474 assignment operators that take const references, then the
1475 derived class cannot have such a member automatically
1476 generated. */
1477 if (TYPE_HAS_COPY_CTOR (basetype)
1478 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1479 *cant_have_const_ctor_p = 1;
1480 if (TYPE_HAS_COPY_ASSIGN (basetype)
1481 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1482 *no_const_asn_ref_p = 1;
1483
1484 if (BINFO_VIRTUAL_P (base_binfo))
1485 /* A virtual base does not effect nearly emptiness. */
1486 ;
1487 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1488 {
1489 if (seen_non_virtual_nearly_empty_base_p)
1490 /* And if there is more than one nearly empty base, then the
1491 derived class is not nearly empty either. */
1492 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1493 else
1494 /* Remember we've seen one. */
1495 seen_non_virtual_nearly_empty_base_p = 1;
1496 }
1497 else if (!is_empty_class (basetype))
1498 /* If the base class is not empty or nearly empty, then this
1499 class cannot be nearly empty. */
1500 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1501
1502 /* A lot of properties from the bases also apply to the derived
1503 class. */
1504 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1505 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1506 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1507 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1508 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1509 || !TYPE_HAS_COPY_ASSIGN (basetype));
1510 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1511 || !TYPE_HAS_COPY_CTOR (basetype));
1512 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1513 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1514 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1515 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1516 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1517 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1518 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1519 || TYPE_HAS_COMPLEX_DFLT (basetype));
1520
1521 /* A standard-layout class is a class that:
1522 ...
1523 * has no non-standard-layout base classes, */
1524 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1525 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1526 {
1527 tree basefield;
1528 /* ...has no base classes of the same type as the first non-static
1529 data member... */
1530 if (field && DECL_CONTEXT (field) == t
1531 && (same_type_ignoring_top_level_qualifiers_p
1532 (TREE_TYPE (field), basetype)))
1533 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1534 else
1535 /* ...either has no non-static data members in the most-derived
1536 class and at most one base class with non-static data
1537 members, or has no base classes with non-static data
1538 members */
1539 for (basefield = TYPE_FIELDS (basetype); basefield;
1540 basefield = DECL_CHAIN (basefield))
1541 if (TREE_CODE (basefield) == FIELD_DECL)
1542 {
1543 if (field)
1544 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1545 else
1546 field = basefield;
1547 break;
1548 }
1549 }
1550
1551 /* Don't bother collecting tm attributes if transactional memory
1552 support is not enabled. */
1553 if (flag_tm)
1554 {
1555 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1556 if (tm_attr)
1557 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1558 }
1559
1560 check_abi_tags (t, basetype);
1561 }
1562
1563 /* If one of the base classes had TM attributes, and the current class
1564 doesn't define its own, then the current class inherits one. */
1565 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1566 {
1567 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1568 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1569 }
1570 }
1571
1572 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1573 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1574 that have had a nearly-empty virtual primary base stolen by some
1575 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1576 T. */
1577
1578 static void
1579 determine_primary_bases (tree t)
1580 {
1581 unsigned i;
1582 tree primary = NULL_TREE;
1583 tree type_binfo = TYPE_BINFO (t);
1584 tree base_binfo;
1585
1586 /* Determine the primary bases of our bases. */
1587 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1588 base_binfo = TREE_CHAIN (base_binfo))
1589 {
1590 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1591
1592 /* See if we're the non-virtual primary of our inheritance
1593 chain. */
1594 if (!BINFO_VIRTUAL_P (base_binfo))
1595 {
1596 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1597 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1598
1599 if (parent_primary
1600 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1601 BINFO_TYPE (parent_primary)))
1602 /* We are the primary binfo. */
1603 BINFO_PRIMARY_P (base_binfo) = 1;
1604 }
1605 /* Determine if we have a virtual primary base, and mark it so.
1606 */
1607 if (primary && BINFO_VIRTUAL_P (primary))
1608 {
1609 tree this_primary = copied_binfo (primary, base_binfo);
1610
1611 if (BINFO_PRIMARY_P (this_primary))
1612 /* Someone already claimed this base. */
1613 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1614 else
1615 {
1616 tree delta;
1617
1618 BINFO_PRIMARY_P (this_primary) = 1;
1619 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1620
1621 /* A virtual binfo might have been copied from within
1622 another hierarchy. As we're about to use it as a
1623 primary base, make sure the offsets match. */
1624 delta = size_diffop_loc (input_location,
1625 convert (ssizetype,
1626 BINFO_OFFSET (base_binfo)),
1627 convert (ssizetype,
1628 BINFO_OFFSET (this_primary)));
1629
1630 propagate_binfo_offsets (this_primary, delta);
1631 }
1632 }
1633 }
1634
1635 /* First look for a dynamic direct non-virtual base. */
1636 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1637 {
1638 tree basetype = BINFO_TYPE (base_binfo);
1639
1640 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1641 {
1642 primary = base_binfo;
1643 goto found;
1644 }
1645 }
1646
1647 /* A "nearly-empty" virtual base class can be the primary base
1648 class, if no non-virtual polymorphic base can be found. Look for
1649 a nearly-empty virtual dynamic base that is not already a primary
1650 base of something in the hierarchy. If there is no such base,
1651 just pick the first nearly-empty virtual base. */
1652
1653 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1654 base_binfo = TREE_CHAIN (base_binfo))
1655 if (BINFO_VIRTUAL_P (base_binfo)
1656 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1657 {
1658 if (!BINFO_PRIMARY_P (base_binfo))
1659 {
1660 /* Found one that is not primary. */
1661 primary = base_binfo;
1662 goto found;
1663 }
1664 else if (!primary)
1665 /* Remember the first candidate. */
1666 primary = base_binfo;
1667 }
1668
1669 found:
1670 /* If we've got a primary base, use it. */
1671 if (primary)
1672 {
1673 tree basetype = BINFO_TYPE (primary);
1674
1675 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1676 if (BINFO_PRIMARY_P (primary))
1677 /* We are stealing a primary base. */
1678 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1679 BINFO_PRIMARY_P (primary) = 1;
1680 if (BINFO_VIRTUAL_P (primary))
1681 {
1682 tree delta;
1683
1684 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1685 /* A virtual binfo might have been copied from within
1686 another hierarchy. As we're about to use it as a primary
1687 base, make sure the offsets match. */
1688 delta = size_diffop_loc (input_location, ssize_int (0),
1689 convert (ssizetype, BINFO_OFFSET (primary)));
1690
1691 propagate_binfo_offsets (primary, delta);
1692 }
1693
1694 primary = TYPE_BINFO (basetype);
1695
1696 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1697 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1698 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1699 }
1700 }
1701
1702 /* Update the variant types of T. */
1703
1704 void
1705 fixup_type_variants (tree t)
1706 {
1707 tree variants;
1708
1709 if (!t)
1710 return;
1711
1712 for (variants = TYPE_NEXT_VARIANT (t);
1713 variants;
1714 variants = TYPE_NEXT_VARIANT (variants))
1715 {
1716 /* These fields are in the _TYPE part of the node, not in
1717 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1718 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1719 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1720 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1721 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1722
1723 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1724
1725 TYPE_BINFO (variants) = TYPE_BINFO (t);
1726
1727 /* Copy whatever these are holding today. */
1728 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1729 TYPE_METHODS (variants) = TYPE_METHODS (t);
1730 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1731 }
1732 }
1733
1734 /* Early variant fixups: we apply attributes at the beginning of the class
1735 definition, and we need to fix up any variants that have already been
1736 made via elaborated-type-specifier so that check_qualified_type works. */
1737
1738 void
1739 fixup_attribute_variants (tree t)
1740 {
1741 tree variants;
1742
1743 if (!t)
1744 return;
1745
1746 for (variants = TYPE_NEXT_VARIANT (t);
1747 variants;
1748 variants = TYPE_NEXT_VARIANT (variants))
1749 {
1750 /* These are the two fields that check_qualified_type looks at and
1751 are affected by attributes. */
1752 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1753 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1754 }
1755 }
1756 \f
1757 /* Set memoizing fields and bits of T (and its variants) for later
1758 use. */
1759
1760 static void
1761 finish_struct_bits (tree t)
1762 {
1763 /* Fix up variants (if any). */
1764 fixup_type_variants (t);
1765
1766 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1767 /* For a class w/o baseclasses, 'finish_struct' has set
1768 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1769 Similarly for a class whose base classes do not have vtables.
1770 When neither of these is true, we might have removed abstract
1771 virtuals (by providing a definition), added some (by declaring
1772 new ones), or redeclared ones from a base class. We need to
1773 recalculate what's really an abstract virtual at this point (by
1774 looking in the vtables). */
1775 get_pure_virtuals (t);
1776
1777 /* If this type has a copy constructor or a destructor, force its
1778 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1779 nonzero. This will cause it to be passed by invisible reference
1780 and prevent it from being returned in a register. */
1781 if (type_has_nontrivial_copy_init (t)
1782 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1783 {
1784 tree variants;
1785 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1786 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1787 {
1788 SET_TYPE_MODE (variants, BLKmode);
1789 TREE_ADDRESSABLE (variants) = 1;
1790 }
1791 }
1792 }
1793
1794 /* Issue warnings about T having private constructors, but no friends,
1795 and so forth.
1796
1797 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1798 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1799 non-private static member functions. */
1800
1801 static void
1802 maybe_warn_about_overly_private_class (tree t)
1803 {
1804 int has_member_fn = 0;
1805 int has_nonprivate_method = 0;
1806 tree fn;
1807
1808 if (!warn_ctor_dtor_privacy
1809 /* If the class has friends, those entities might create and
1810 access instances, so we should not warn. */
1811 || (CLASSTYPE_FRIEND_CLASSES (t)
1812 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1813 /* We will have warned when the template was declared; there's
1814 no need to warn on every instantiation. */
1815 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1816 /* There's no reason to even consider warning about this
1817 class. */
1818 return;
1819
1820 /* We only issue one warning, if more than one applies, because
1821 otherwise, on code like:
1822
1823 class A {
1824 // Oops - forgot `public:'
1825 A();
1826 A(const A&);
1827 ~A();
1828 };
1829
1830 we warn several times about essentially the same problem. */
1831
1832 /* Check to see if all (non-constructor, non-destructor) member
1833 functions are private. (Since there are no friends or
1834 non-private statics, we can't ever call any of the private member
1835 functions.) */
1836 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1837 /* We're not interested in compiler-generated methods; they don't
1838 provide any way to call private members. */
1839 if (!DECL_ARTIFICIAL (fn))
1840 {
1841 if (!TREE_PRIVATE (fn))
1842 {
1843 if (DECL_STATIC_FUNCTION_P (fn))
1844 /* A non-private static member function is just like a
1845 friend; it can create and invoke private member
1846 functions, and be accessed without a class
1847 instance. */
1848 return;
1849
1850 has_nonprivate_method = 1;
1851 /* Keep searching for a static member function. */
1852 }
1853 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1854 has_member_fn = 1;
1855 }
1856
1857 if (!has_nonprivate_method && has_member_fn)
1858 {
1859 /* There are no non-private methods, and there's at least one
1860 private member function that isn't a constructor or
1861 destructor. (If all the private members are
1862 constructors/destructors we want to use the code below that
1863 issues error messages specifically referring to
1864 constructors/destructors.) */
1865 unsigned i;
1866 tree binfo = TYPE_BINFO (t);
1867
1868 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1869 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1870 {
1871 has_nonprivate_method = 1;
1872 break;
1873 }
1874 if (!has_nonprivate_method)
1875 {
1876 warning (OPT_Wctor_dtor_privacy,
1877 "all member functions in class %qT are private", t);
1878 return;
1879 }
1880 }
1881
1882 /* Even if some of the member functions are non-private, the class
1883 won't be useful for much if all the constructors or destructors
1884 are private: such an object can never be created or destroyed. */
1885 fn = CLASSTYPE_DESTRUCTORS (t);
1886 if (fn && TREE_PRIVATE (fn))
1887 {
1888 warning (OPT_Wctor_dtor_privacy,
1889 "%q#T only defines a private destructor and has no friends",
1890 t);
1891 return;
1892 }
1893
1894 /* Warn about classes that have private constructors and no friends. */
1895 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1896 /* Implicitly generated constructors are always public. */
1897 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1898 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1899 {
1900 int nonprivate_ctor = 0;
1901
1902 /* If a non-template class does not define a copy
1903 constructor, one is defined for it, enabling it to avoid
1904 this warning. For a template class, this does not
1905 happen, and so we would normally get a warning on:
1906
1907 template <class T> class C { private: C(); };
1908
1909 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1910 complete non-template or fully instantiated classes have this
1911 flag set. */
1912 if (!TYPE_HAS_COPY_CTOR (t))
1913 nonprivate_ctor = 1;
1914 else
1915 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1916 {
1917 tree ctor = OVL_CURRENT (fn);
1918 /* Ideally, we wouldn't count copy constructors (or, in
1919 fact, any constructor that takes an argument of the
1920 class type as a parameter) because such things cannot
1921 be used to construct an instance of the class unless
1922 you already have one. But, for now at least, we're
1923 more generous. */
1924 if (! TREE_PRIVATE (ctor))
1925 {
1926 nonprivate_ctor = 1;
1927 break;
1928 }
1929 }
1930
1931 if (nonprivate_ctor == 0)
1932 {
1933 warning (OPT_Wctor_dtor_privacy,
1934 "%q#T only defines private constructors and has no friends",
1935 t);
1936 return;
1937 }
1938 }
1939 }
1940
1941 static struct {
1942 gt_pointer_operator new_value;
1943 void *cookie;
1944 } resort_data;
1945
1946 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1947
1948 static int
1949 method_name_cmp (const void* m1_p, const void* m2_p)
1950 {
1951 const tree *const m1 = (const tree *) m1_p;
1952 const tree *const m2 = (const tree *) m2_p;
1953
1954 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1955 return 0;
1956 if (*m1 == NULL_TREE)
1957 return -1;
1958 if (*m2 == NULL_TREE)
1959 return 1;
1960 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1961 return -1;
1962 return 1;
1963 }
1964
1965 /* This routine compares two fields like method_name_cmp but using the
1966 pointer operator in resort_field_decl_data. */
1967
1968 static int
1969 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1970 {
1971 const tree *const m1 = (const tree *) m1_p;
1972 const tree *const m2 = (const tree *) m2_p;
1973 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1974 return 0;
1975 if (*m1 == NULL_TREE)
1976 return -1;
1977 if (*m2 == NULL_TREE)
1978 return 1;
1979 {
1980 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1981 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1982 resort_data.new_value (&d1, resort_data.cookie);
1983 resort_data.new_value (&d2, resort_data.cookie);
1984 if (d1 < d2)
1985 return -1;
1986 }
1987 return 1;
1988 }
1989
1990 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1991
1992 void
1993 resort_type_method_vec (void* obj,
1994 void* /*orig_obj*/,
1995 gt_pointer_operator new_value,
1996 void* cookie)
1997 {
1998 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
1999 int len = vec_safe_length (method_vec);
2000 size_t slot;
2001 tree fn;
2002
2003 /* The type conversion ops have to live at the front of the vec, so we
2004 can't sort them. */
2005 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2006 vec_safe_iterate (method_vec, slot, &fn);
2007 ++slot)
2008 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
2009 break;
2010
2011 if (len - slot > 1)
2012 {
2013 resort_data.new_value = new_value;
2014 resort_data.cookie = cookie;
2015 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
2016 resort_method_name_cmp);
2017 }
2018 }
2019
2020 /* Warn about duplicate methods in fn_fields.
2021
2022 Sort methods that are not special (i.e., constructors, destructors,
2023 and type conversion operators) so that we can find them faster in
2024 search. */
2025
2026 static void
2027 finish_struct_methods (tree t)
2028 {
2029 tree fn_fields;
2030 vec<tree, va_gc> *method_vec;
2031 int slot, len;
2032
2033 method_vec = CLASSTYPE_METHOD_VEC (t);
2034 if (!method_vec)
2035 return;
2036
2037 len = method_vec->length ();
2038
2039 /* Clear DECL_IN_AGGR_P for all functions. */
2040 for (fn_fields = TYPE_METHODS (t); fn_fields;
2041 fn_fields = DECL_CHAIN (fn_fields))
2042 DECL_IN_AGGR_P (fn_fields) = 0;
2043
2044 /* Issue warnings about private constructors and such. If there are
2045 no methods, then some public defaults are generated. */
2046 maybe_warn_about_overly_private_class (t);
2047
2048 /* The type conversion ops have to live at the front of the vec, so we
2049 can't sort them. */
2050 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2051 method_vec->iterate (slot, &fn_fields);
2052 ++slot)
2053 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2054 break;
2055 if (len - slot > 1)
2056 qsort (method_vec->address () + slot,
2057 len-slot, sizeof (tree), method_name_cmp);
2058 }
2059
2060 /* Make BINFO's vtable have N entries, including RTTI entries,
2061 vbase and vcall offsets, etc. Set its type and call the back end
2062 to lay it out. */
2063
2064 static void
2065 layout_vtable_decl (tree binfo, int n)
2066 {
2067 tree atype;
2068 tree vtable;
2069
2070 atype = build_array_of_n_type (vtable_entry_type, n);
2071 layout_type (atype);
2072
2073 /* We may have to grow the vtable. */
2074 vtable = get_vtbl_decl_for_binfo (binfo);
2075 if (!same_type_p (TREE_TYPE (vtable), atype))
2076 {
2077 TREE_TYPE (vtable) = atype;
2078 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2079 layout_decl (vtable, 0);
2080 }
2081 }
2082
2083 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2084 have the same signature. */
2085
2086 int
2087 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2088 {
2089 /* One destructor overrides another if they are the same kind of
2090 destructor. */
2091 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2092 && special_function_p (base_fndecl) == special_function_p (fndecl))
2093 return 1;
2094 /* But a non-destructor never overrides a destructor, nor vice
2095 versa, nor do different kinds of destructors override
2096 one-another. For example, a complete object destructor does not
2097 override a deleting destructor. */
2098 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2099 return 0;
2100
2101 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2102 || (DECL_CONV_FN_P (fndecl)
2103 && DECL_CONV_FN_P (base_fndecl)
2104 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2105 DECL_CONV_FN_TYPE (base_fndecl))))
2106 {
2107 tree fntype = TREE_TYPE (fndecl);
2108 tree base_fntype = TREE_TYPE (base_fndecl);
2109 if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2110 && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2111 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2112 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2113 return 1;
2114 }
2115 return 0;
2116 }
2117
2118 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2119 subobject. */
2120
2121 static bool
2122 base_derived_from (tree derived, tree base)
2123 {
2124 tree probe;
2125
2126 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2127 {
2128 if (probe == derived)
2129 return true;
2130 else if (BINFO_VIRTUAL_P (probe))
2131 /* If we meet a virtual base, we can't follow the inheritance
2132 any more. See if the complete type of DERIVED contains
2133 such a virtual base. */
2134 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2135 != NULL_TREE);
2136 }
2137 return false;
2138 }
2139
2140 typedef struct find_final_overrider_data_s {
2141 /* The function for which we are trying to find a final overrider. */
2142 tree fn;
2143 /* The base class in which the function was declared. */
2144 tree declaring_base;
2145 /* The candidate overriders. */
2146 tree candidates;
2147 /* Path to most derived. */
2148 vec<tree> path;
2149 } find_final_overrider_data;
2150
2151 /* Add the overrider along the current path to FFOD->CANDIDATES.
2152 Returns true if an overrider was found; false otherwise. */
2153
2154 static bool
2155 dfs_find_final_overrider_1 (tree binfo,
2156 find_final_overrider_data *ffod,
2157 unsigned depth)
2158 {
2159 tree method;
2160
2161 /* If BINFO is not the most derived type, try a more derived class.
2162 A definition there will overrider a definition here. */
2163 if (depth)
2164 {
2165 depth--;
2166 if (dfs_find_final_overrider_1
2167 (ffod->path[depth], ffod, depth))
2168 return true;
2169 }
2170
2171 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2172 if (method)
2173 {
2174 tree *candidate = &ffod->candidates;
2175
2176 /* Remove any candidates overridden by this new function. */
2177 while (*candidate)
2178 {
2179 /* If *CANDIDATE overrides METHOD, then METHOD
2180 cannot override anything else on the list. */
2181 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2182 return true;
2183 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2184 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2185 *candidate = TREE_CHAIN (*candidate);
2186 else
2187 candidate = &TREE_CHAIN (*candidate);
2188 }
2189
2190 /* Add the new function. */
2191 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2192 return true;
2193 }
2194
2195 return false;
2196 }
2197
2198 /* Called from find_final_overrider via dfs_walk. */
2199
2200 static tree
2201 dfs_find_final_overrider_pre (tree binfo, void *data)
2202 {
2203 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2204
2205 if (binfo == ffod->declaring_base)
2206 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2207 ffod->path.safe_push (binfo);
2208
2209 return NULL_TREE;
2210 }
2211
2212 static tree
2213 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2214 {
2215 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2216 ffod->path.pop ();
2217
2218 return NULL_TREE;
2219 }
2220
2221 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2222 FN and whose TREE_VALUE is the binfo for the base where the
2223 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2224 DERIVED) is the base object in which FN is declared. */
2225
2226 static tree
2227 find_final_overrider (tree derived, tree binfo, tree fn)
2228 {
2229 find_final_overrider_data ffod;
2230
2231 /* Getting this right is a little tricky. This is valid:
2232
2233 struct S { virtual void f (); };
2234 struct T { virtual void f (); };
2235 struct U : public S, public T { };
2236
2237 even though calling `f' in `U' is ambiguous. But,
2238
2239 struct R { virtual void f(); };
2240 struct S : virtual public R { virtual void f (); };
2241 struct T : virtual public R { virtual void f (); };
2242 struct U : public S, public T { };
2243
2244 is not -- there's no way to decide whether to put `S::f' or
2245 `T::f' in the vtable for `R'.
2246
2247 The solution is to look at all paths to BINFO. If we find
2248 different overriders along any two, then there is a problem. */
2249 if (DECL_THUNK_P (fn))
2250 fn = THUNK_TARGET (fn);
2251
2252 /* Determine the depth of the hierarchy. */
2253 ffod.fn = fn;
2254 ffod.declaring_base = binfo;
2255 ffod.candidates = NULL_TREE;
2256 ffod.path.create (30);
2257
2258 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2259 dfs_find_final_overrider_post, &ffod);
2260
2261 ffod.path.release ();
2262
2263 /* If there was no winner, issue an error message. */
2264 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2265 return error_mark_node;
2266
2267 return ffod.candidates;
2268 }
2269
2270 /* Return the index of the vcall offset for FN when TYPE is used as a
2271 virtual base. */
2272
2273 static tree
2274 get_vcall_index (tree fn, tree type)
2275 {
2276 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2277 tree_pair_p p;
2278 unsigned ix;
2279
2280 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2281 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2282 || same_signature_p (fn, p->purpose))
2283 return p->value;
2284
2285 /* There should always be an appropriate index. */
2286 gcc_unreachable ();
2287 }
2288
2289 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2290 dominated by T. FN is the old function; VIRTUALS points to the
2291 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2292 of that entry in the list. */
2293
2294 static void
2295 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2296 unsigned ix)
2297 {
2298 tree b;
2299 tree overrider;
2300 tree delta;
2301 tree virtual_base;
2302 tree first_defn;
2303 tree overrider_fn, overrider_target;
2304 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2305 tree over_return, base_return;
2306 bool lost = false;
2307
2308 /* Find the nearest primary base (possibly binfo itself) which defines
2309 this function; this is the class the caller will convert to when
2310 calling FN through BINFO. */
2311 for (b = binfo; ; b = get_primary_binfo (b))
2312 {
2313 gcc_assert (b);
2314 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2315 break;
2316
2317 /* The nearest definition is from a lost primary. */
2318 if (BINFO_LOST_PRIMARY_P (b))
2319 lost = true;
2320 }
2321 first_defn = b;
2322
2323 /* Find the final overrider. */
2324 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2325 if (overrider == error_mark_node)
2326 {
2327 error ("no unique final overrider for %qD in %qT", target_fn, t);
2328 return;
2329 }
2330 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2331
2332 /* Check for adjusting covariant return types. */
2333 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2334 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2335
2336 if (POINTER_TYPE_P (over_return)
2337 && TREE_CODE (over_return) == TREE_CODE (base_return)
2338 && CLASS_TYPE_P (TREE_TYPE (over_return))
2339 && CLASS_TYPE_P (TREE_TYPE (base_return))
2340 /* If the overrider is invalid, don't even try. */
2341 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2342 {
2343 /* If FN is a covariant thunk, we must figure out the adjustment
2344 to the final base FN was converting to. As OVERRIDER_TARGET might
2345 also be converting to the return type of FN, we have to
2346 combine the two conversions here. */
2347 tree fixed_offset, virtual_offset;
2348
2349 over_return = TREE_TYPE (over_return);
2350 base_return = TREE_TYPE (base_return);
2351
2352 if (DECL_THUNK_P (fn))
2353 {
2354 gcc_assert (DECL_RESULT_THUNK_P (fn));
2355 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2356 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2357 }
2358 else
2359 fixed_offset = virtual_offset = NULL_TREE;
2360
2361 if (virtual_offset)
2362 /* Find the equivalent binfo within the return type of the
2363 overriding function. We will want the vbase offset from
2364 there. */
2365 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2366 over_return);
2367 else if (!same_type_ignoring_top_level_qualifiers_p
2368 (over_return, base_return))
2369 {
2370 /* There was no existing virtual thunk (which takes
2371 precedence). So find the binfo of the base function's
2372 return type within the overriding function's return type.
2373 We cannot call lookup base here, because we're inside a
2374 dfs_walk, and will therefore clobber the BINFO_MARKED
2375 flags. Fortunately we know the covariancy is valid (it
2376 has already been checked), so we can just iterate along
2377 the binfos, which have been chained in inheritance graph
2378 order. Of course it is lame that we have to repeat the
2379 search here anyway -- we should really be caching pieces
2380 of the vtable and avoiding this repeated work. */
2381 tree thunk_binfo, base_binfo;
2382
2383 /* Find the base binfo within the overriding function's
2384 return type. We will always find a thunk_binfo, except
2385 when the covariancy is invalid (which we will have
2386 already diagnosed). */
2387 for (base_binfo = TYPE_BINFO (base_return),
2388 thunk_binfo = TYPE_BINFO (over_return);
2389 thunk_binfo;
2390 thunk_binfo = TREE_CHAIN (thunk_binfo))
2391 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2392 BINFO_TYPE (base_binfo)))
2393 break;
2394
2395 /* See if virtual inheritance is involved. */
2396 for (virtual_offset = thunk_binfo;
2397 virtual_offset;
2398 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2399 if (BINFO_VIRTUAL_P (virtual_offset))
2400 break;
2401
2402 if (virtual_offset
2403 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2404 {
2405 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2406
2407 if (virtual_offset)
2408 {
2409 /* We convert via virtual base. Adjust the fixed
2410 offset to be from there. */
2411 offset =
2412 size_diffop (offset,
2413 convert (ssizetype,
2414 BINFO_OFFSET (virtual_offset)));
2415 }
2416 if (fixed_offset)
2417 /* There was an existing fixed offset, this must be
2418 from the base just converted to, and the base the
2419 FN was thunking to. */
2420 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2421 else
2422 fixed_offset = offset;
2423 }
2424 }
2425
2426 if (fixed_offset || virtual_offset)
2427 /* Replace the overriding function with a covariant thunk. We
2428 will emit the overriding function in its own slot as
2429 well. */
2430 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2431 fixed_offset, virtual_offset);
2432 }
2433 else
2434 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2435 !DECL_THUNK_P (fn));
2436
2437 /* If we need a covariant thunk, then we may need to adjust first_defn.
2438 The ABI specifies that the thunks emitted with a function are
2439 determined by which bases the function overrides, so we need to be
2440 sure that we're using a thunk for some overridden base; even if we
2441 know that the necessary this adjustment is zero, there may not be an
2442 appropriate zero-this-adjusment thunk for us to use since thunks for
2443 overriding virtual bases always use the vcall offset.
2444
2445 Furthermore, just choosing any base that overrides this function isn't
2446 quite right, as this slot won't be used for calls through a type that
2447 puts a covariant thunk here. Calling the function through such a type
2448 will use a different slot, and that slot is the one that determines
2449 the thunk emitted for that base.
2450
2451 So, keep looking until we find the base that we're really overriding
2452 in this slot: the nearest primary base that doesn't use a covariant
2453 thunk in this slot. */
2454 if (overrider_target != overrider_fn)
2455 {
2456 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2457 /* We already know that the overrider needs a covariant thunk. */
2458 b = get_primary_binfo (b);
2459 for (; ; b = get_primary_binfo (b))
2460 {
2461 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2462 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2463 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2464 break;
2465 if (BINFO_LOST_PRIMARY_P (b))
2466 lost = true;
2467 }
2468 first_defn = b;
2469 }
2470
2471 /* Assume that we will produce a thunk that convert all the way to
2472 the final overrider, and not to an intermediate virtual base. */
2473 virtual_base = NULL_TREE;
2474
2475 /* See if we can convert to an intermediate virtual base first, and then
2476 use the vcall offset located there to finish the conversion. */
2477 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2478 {
2479 /* If we find the final overrider, then we can stop
2480 walking. */
2481 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2482 BINFO_TYPE (TREE_VALUE (overrider))))
2483 break;
2484
2485 /* If we find a virtual base, and we haven't yet found the
2486 overrider, then there is a virtual base between the
2487 declaring base (first_defn) and the final overrider. */
2488 if (BINFO_VIRTUAL_P (b))
2489 {
2490 virtual_base = b;
2491 break;
2492 }
2493 }
2494
2495 /* Compute the constant adjustment to the `this' pointer. The
2496 `this' pointer, when this function is called, will point at BINFO
2497 (or one of its primary bases, which are at the same offset). */
2498 if (virtual_base)
2499 /* The `this' pointer needs to be adjusted from the declaration to
2500 the nearest virtual base. */
2501 delta = size_diffop_loc (input_location,
2502 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2503 convert (ssizetype, BINFO_OFFSET (first_defn)));
2504 else if (lost)
2505 /* If the nearest definition is in a lost primary, we don't need an
2506 entry in our vtable. Except possibly in a constructor vtable,
2507 if we happen to get our primary back. In that case, the offset
2508 will be zero, as it will be a primary base. */
2509 delta = size_zero_node;
2510 else
2511 /* The `this' pointer needs to be adjusted from pointing to
2512 BINFO to pointing at the base where the final overrider
2513 appears. */
2514 delta = size_diffop_loc (input_location,
2515 convert (ssizetype,
2516 BINFO_OFFSET (TREE_VALUE (overrider))),
2517 convert (ssizetype, BINFO_OFFSET (binfo)));
2518
2519 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2520
2521 if (virtual_base)
2522 BV_VCALL_INDEX (*virtuals)
2523 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2524 else
2525 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2526
2527 BV_LOST_PRIMARY (*virtuals) = lost;
2528 }
2529
2530 /* Called from modify_all_vtables via dfs_walk. */
2531
2532 static tree
2533 dfs_modify_vtables (tree binfo, void* data)
2534 {
2535 tree t = (tree) data;
2536 tree virtuals;
2537 tree old_virtuals;
2538 unsigned ix;
2539
2540 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2541 /* A base without a vtable needs no modification, and its bases
2542 are uninteresting. */
2543 return dfs_skip_bases;
2544
2545 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2546 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2547 /* Don't do the primary vtable, if it's new. */
2548 return NULL_TREE;
2549
2550 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2551 /* There's no need to modify the vtable for a non-virtual primary
2552 base; we're not going to use that vtable anyhow. We do still
2553 need to do this for virtual primary bases, as they could become
2554 non-primary in a construction vtable. */
2555 return NULL_TREE;
2556
2557 make_new_vtable (t, binfo);
2558
2559 /* Now, go through each of the virtual functions in the virtual
2560 function table for BINFO. Find the final overrider, and update
2561 the BINFO_VIRTUALS list appropriately. */
2562 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2563 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2564 virtuals;
2565 ix++, virtuals = TREE_CHAIN (virtuals),
2566 old_virtuals = TREE_CHAIN (old_virtuals))
2567 update_vtable_entry_for_fn (t,
2568 binfo,
2569 BV_FN (old_virtuals),
2570 &virtuals, ix);
2571
2572 return NULL_TREE;
2573 }
2574
2575 /* Update all of the primary and secondary vtables for T. Create new
2576 vtables as required, and initialize their RTTI information. Each
2577 of the functions in VIRTUALS is declared in T and may override a
2578 virtual function from a base class; find and modify the appropriate
2579 entries to point to the overriding functions. Returns a list, in
2580 declaration order, of the virtual functions that are declared in T,
2581 but do not appear in the primary base class vtable, and which
2582 should therefore be appended to the end of the vtable for T. */
2583
2584 static tree
2585 modify_all_vtables (tree t, tree virtuals)
2586 {
2587 tree binfo = TYPE_BINFO (t);
2588 tree *fnsp;
2589
2590 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2591 if (TYPE_CONTAINS_VPTR_P (t))
2592 get_vtable_decl (t, false);
2593
2594 /* Update all of the vtables. */
2595 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2596
2597 /* Add virtual functions not already in our primary vtable. These
2598 will be both those introduced by this class, and those overridden
2599 from secondary bases. It does not include virtuals merely
2600 inherited from secondary bases. */
2601 for (fnsp = &virtuals; *fnsp; )
2602 {
2603 tree fn = TREE_VALUE (*fnsp);
2604
2605 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2606 || DECL_VINDEX (fn) == error_mark_node)
2607 {
2608 /* We don't need to adjust the `this' pointer when
2609 calling this function. */
2610 BV_DELTA (*fnsp) = integer_zero_node;
2611 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2612
2613 /* This is a function not already in our vtable. Keep it. */
2614 fnsp = &TREE_CHAIN (*fnsp);
2615 }
2616 else
2617 /* We've already got an entry for this function. Skip it. */
2618 *fnsp = TREE_CHAIN (*fnsp);
2619 }
2620
2621 return virtuals;
2622 }
2623
2624 /* Get the base virtual function declarations in T that have the
2625 indicated NAME. */
2626
2627 static tree
2628 get_basefndecls (tree name, tree t)
2629 {
2630 tree methods;
2631 tree base_fndecls = NULL_TREE;
2632 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2633 int i;
2634
2635 /* Find virtual functions in T with the indicated NAME. */
2636 i = lookup_fnfields_1 (t, name);
2637 if (i != -1)
2638 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2639 methods;
2640 methods = OVL_NEXT (methods))
2641 {
2642 tree method = OVL_CURRENT (methods);
2643
2644 if (TREE_CODE (method) == FUNCTION_DECL
2645 && DECL_VINDEX (method))
2646 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2647 }
2648
2649 if (base_fndecls)
2650 return base_fndecls;
2651
2652 for (i = 0; i < n_baseclasses; i++)
2653 {
2654 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2655 base_fndecls = chainon (get_basefndecls (name, basetype),
2656 base_fndecls);
2657 }
2658
2659 return base_fndecls;
2660 }
2661
2662 /* If this declaration supersedes the declaration of
2663 a method declared virtual in the base class, then
2664 mark this field as being virtual as well. */
2665
2666 void
2667 check_for_override (tree decl, tree ctype)
2668 {
2669 bool overrides_found = false;
2670 if (TREE_CODE (decl) == TEMPLATE_DECL)
2671 /* In [temp.mem] we have:
2672
2673 A specialization of a member function template does not
2674 override a virtual function from a base class. */
2675 return;
2676 if ((DECL_DESTRUCTOR_P (decl)
2677 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2678 || DECL_CONV_FN_P (decl))
2679 && look_for_overrides (ctype, decl)
2680 && !DECL_STATIC_FUNCTION_P (decl))
2681 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2682 the error_mark_node so that we know it is an overriding
2683 function. */
2684 {
2685 DECL_VINDEX (decl) = decl;
2686 overrides_found = true;
2687 }
2688
2689 if (DECL_VIRTUAL_P (decl))
2690 {
2691 if (!DECL_VINDEX (decl))
2692 DECL_VINDEX (decl) = error_mark_node;
2693 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2694 if (DECL_DESTRUCTOR_P (decl))
2695 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2696 }
2697 else if (DECL_FINAL_P (decl))
2698 error ("%q+#D marked final, but is not virtual", decl);
2699 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2700 error ("%q+#D marked override, but does not override", decl);
2701 }
2702
2703 /* Warn about hidden virtual functions that are not overridden in t.
2704 We know that constructors and destructors don't apply. */
2705
2706 static void
2707 warn_hidden (tree t)
2708 {
2709 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2710 tree fns;
2711 size_t i;
2712
2713 /* We go through each separately named virtual function. */
2714 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2715 vec_safe_iterate (method_vec, i, &fns);
2716 ++i)
2717 {
2718 tree fn;
2719 tree name;
2720 tree fndecl;
2721 tree base_fndecls;
2722 tree base_binfo;
2723 tree binfo;
2724 int j;
2725
2726 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2727 have the same name. Figure out what name that is. */
2728 name = DECL_NAME (OVL_CURRENT (fns));
2729 /* There are no possibly hidden functions yet. */
2730 base_fndecls = NULL_TREE;
2731 /* Iterate through all of the base classes looking for possibly
2732 hidden functions. */
2733 for (binfo = TYPE_BINFO (t), j = 0;
2734 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2735 {
2736 tree basetype = BINFO_TYPE (base_binfo);
2737 base_fndecls = chainon (get_basefndecls (name, basetype),
2738 base_fndecls);
2739 }
2740
2741 /* If there are no functions to hide, continue. */
2742 if (!base_fndecls)
2743 continue;
2744
2745 /* Remove any overridden functions. */
2746 for (fn = fns; fn; fn = OVL_NEXT (fn))
2747 {
2748 fndecl = OVL_CURRENT (fn);
2749 if (DECL_VINDEX (fndecl))
2750 {
2751 tree *prev = &base_fndecls;
2752
2753 while (*prev)
2754 /* If the method from the base class has the same
2755 signature as the method from the derived class, it
2756 has been overridden. */
2757 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2758 *prev = TREE_CHAIN (*prev);
2759 else
2760 prev = &TREE_CHAIN (*prev);
2761 }
2762 }
2763
2764 /* Now give a warning for all base functions without overriders,
2765 as they are hidden. */
2766 while (base_fndecls)
2767 {
2768 /* Here we know it is a hider, and no overrider exists. */
2769 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2770 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2771 base_fndecls = TREE_CHAIN (base_fndecls);
2772 }
2773 }
2774 }
2775
2776 /* Check for things that are invalid. There are probably plenty of other
2777 things we should check for also. */
2778
2779 static void
2780 finish_struct_anon (tree t)
2781 {
2782 tree field;
2783
2784 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2785 {
2786 if (TREE_STATIC (field))
2787 continue;
2788 if (TREE_CODE (field) != FIELD_DECL)
2789 continue;
2790
2791 if (DECL_NAME (field) == NULL_TREE
2792 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2793 {
2794 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2795 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2796 for (; elt; elt = DECL_CHAIN (elt))
2797 {
2798 /* We're generally only interested in entities the user
2799 declared, but we also find nested classes by noticing
2800 the TYPE_DECL that we create implicitly. You're
2801 allowed to put one anonymous union inside another,
2802 though, so we explicitly tolerate that. We use
2803 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2804 we also allow unnamed types used for defining fields. */
2805 if (DECL_ARTIFICIAL (elt)
2806 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2807 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2808 continue;
2809
2810 if (TREE_CODE (elt) != FIELD_DECL)
2811 {
2812 if (is_union)
2813 permerror (input_location, "%q+#D invalid; an anonymous union can "
2814 "only have non-static data members", elt);
2815 else
2816 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2817 "only have non-static data members", elt);
2818 continue;
2819 }
2820
2821 if (TREE_PRIVATE (elt))
2822 {
2823 if (is_union)
2824 permerror (input_location, "private member %q+#D in anonymous union", elt);
2825 else
2826 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2827 }
2828 else if (TREE_PROTECTED (elt))
2829 {
2830 if (is_union)
2831 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2832 else
2833 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2834 }
2835
2836 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2837 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2838 }
2839 }
2840 }
2841 }
2842
2843 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2844 will be used later during class template instantiation.
2845 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2846 a non-static member data (FIELD_DECL), a member function
2847 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2848 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2849 When FRIEND_P is nonzero, T is either a friend class
2850 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2851 (FUNCTION_DECL, TEMPLATE_DECL). */
2852
2853 void
2854 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2855 {
2856 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2857 if (CLASSTYPE_TEMPLATE_INFO (type))
2858 CLASSTYPE_DECL_LIST (type)
2859 = tree_cons (friend_p ? NULL_TREE : type,
2860 t, CLASSTYPE_DECL_LIST (type));
2861 }
2862
2863 /* This function is called from declare_virt_assop_and_dtor via
2864 dfs_walk_all.
2865
2866 DATA is a type that direcly or indirectly inherits the base
2867 represented by BINFO. If BINFO contains a virtual assignment [copy
2868 assignment or move assigment] operator or a virtual constructor,
2869 declare that function in DATA if it hasn't been already declared. */
2870
2871 static tree
2872 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2873 {
2874 tree bv, fn, t = (tree)data;
2875 tree opname = ansi_assopname (NOP_EXPR);
2876
2877 gcc_assert (t && CLASS_TYPE_P (t));
2878 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2879
2880 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2881 /* A base without a vtable needs no modification, and its bases
2882 are uninteresting. */
2883 return dfs_skip_bases;
2884
2885 if (BINFO_PRIMARY_P (binfo))
2886 /* If this is a primary base, then we have already looked at the
2887 virtual functions of its vtable. */
2888 return NULL_TREE;
2889
2890 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
2891 {
2892 fn = BV_FN (bv);
2893
2894 if (DECL_NAME (fn) == opname)
2895 {
2896 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
2897 lazily_declare_fn (sfk_copy_assignment, t);
2898 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
2899 lazily_declare_fn (sfk_move_assignment, t);
2900 }
2901 else if (DECL_DESTRUCTOR_P (fn)
2902 && CLASSTYPE_LAZY_DESTRUCTOR (t))
2903 lazily_declare_fn (sfk_destructor, t);
2904 }
2905
2906 return NULL_TREE;
2907 }
2908
2909 /* If the class type T has a direct or indirect base that contains a
2910 virtual assignment operator or a virtual destructor, declare that
2911 function in T if it hasn't been already declared. */
2912
2913 static void
2914 declare_virt_assop_and_dtor (tree t)
2915 {
2916 if (!(TYPE_POLYMORPHIC_P (t)
2917 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
2918 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
2919 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
2920 return;
2921
2922 dfs_walk_all (TYPE_BINFO (t),
2923 dfs_declare_virt_assop_and_dtor,
2924 NULL, t);
2925 }
2926
2927 /* Declare the inheriting constructor for class T inherited from base
2928 constructor CTOR with the parameter array PARMS of size NPARMS. */
2929
2930 static void
2931 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
2932 {
2933 /* We don't declare an inheriting ctor that would be a default,
2934 copy or move ctor for derived or base. */
2935 if (nparms == 0)
2936 return;
2937 if (nparms == 1
2938 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
2939 {
2940 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
2941 if (parm == t || parm == DECL_CONTEXT (ctor))
2942 return;
2943 }
2944
2945 tree parmlist = void_list_node;
2946 for (int i = nparms - 1; i >= 0; i--)
2947 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
2948 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
2949 t, false, ctor, parmlist);
2950 if (add_method (t, fn, NULL_TREE))
2951 {
2952 DECL_CHAIN (fn) = TYPE_METHODS (t);
2953 TYPE_METHODS (t) = fn;
2954 }
2955 }
2956
2957 /* Declare all the inheriting constructors for class T inherited from base
2958 constructor CTOR. */
2959
2960 static void
2961 one_inherited_ctor (tree ctor, tree t)
2962 {
2963 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
2964
2965 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
2966 int i = 0;
2967 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
2968 {
2969 if (TREE_PURPOSE (parms))
2970 one_inheriting_sig (t, ctor, new_parms, i);
2971 new_parms[i++] = TREE_VALUE (parms);
2972 }
2973 one_inheriting_sig (t, ctor, new_parms, i);
2974 if (parms == NULL_TREE)
2975 {
2976 warning (OPT_Winherited_variadic_ctor,
2977 "the ellipsis in %qD is not inherited", ctor);
2978 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
2979 }
2980 }
2981
2982 /* Create default constructors, assignment operators, and so forth for
2983 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2984 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2985 the class cannot have a default constructor, copy constructor
2986 taking a const reference argument, or an assignment operator taking
2987 a const reference, respectively. */
2988
2989 static void
2990 add_implicitly_declared_members (tree t, tree* access_decls,
2991 int cant_have_const_cctor,
2992 int cant_have_const_assignment)
2993 {
2994 bool move_ok = false;
2995
2996 if (cxx_dialect >= cxx11 && !CLASSTYPE_DESTRUCTORS (t)
2997 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
2998 && !type_has_move_constructor (t) && !type_has_move_assign (t))
2999 move_ok = true;
3000
3001 /* Destructor. */
3002 if (!CLASSTYPE_DESTRUCTORS (t))
3003 {
3004 /* In general, we create destructors lazily. */
3005 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
3006
3007 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3008 && TYPE_FOR_JAVA (t))
3009 /* But if this is a Java class, any non-trivial destructor is
3010 invalid, even if compiler-generated. Therefore, if the
3011 destructor is non-trivial we create it now. */
3012 lazily_declare_fn (sfk_destructor, t);
3013 }
3014
3015 /* [class.ctor]
3016
3017 If there is no user-declared constructor for a class, a default
3018 constructor is implicitly declared. */
3019 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
3020 {
3021 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
3022 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
3023 if (cxx_dialect >= cxx11)
3024 TYPE_HAS_CONSTEXPR_CTOR (t)
3025 /* This might force the declaration. */
3026 = type_has_constexpr_default_constructor (t);
3027 }
3028
3029 /* [class.ctor]
3030
3031 If a class definition does not explicitly declare a copy
3032 constructor, one is declared implicitly. */
3033 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
3034 {
3035 TYPE_HAS_COPY_CTOR (t) = 1;
3036 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
3037 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3038 if (move_ok)
3039 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3040 }
3041
3042 /* If there is no assignment operator, one will be created if and
3043 when it is needed. For now, just record whether or not the type
3044 of the parameter to the assignment operator will be a const or
3045 non-const reference. */
3046 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3047 {
3048 TYPE_HAS_COPY_ASSIGN (t) = 1;
3049 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3050 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3051 if (move_ok)
3052 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3053 }
3054
3055 /* We can't be lazy about declaring functions that might override
3056 a virtual function from a base class. */
3057 declare_virt_assop_and_dtor (t);
3058
3059 while (*access_decls)
3060 {
3061 tree using_decl = TREE_VALUE (*access_decls);
3062 tree decl = USING_DECL_DECLS (using_decl);
3063 if (DECL_NAME (using_decl) == ctor_identifier)
3064 {
3065 /* declare, then remove the decl */
3066 tree ctor_list = decl;
3067 location_t loc = input_location;
3068 input_location = DECL_SOURCE_LOCATION (using_decl);
3069 if (ctor_list)
3070 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3071 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3072 *access_decls = TREE_CHAIN (*access_decls);
3073 input_location = loc;
3074 }
3075 else
3076 access_decls = &TREE_CHAIN (*access_decls);
3077 }
3078 }
3079
3080 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3081 count the number of fields in TYPE, including anonymous union
3082 members. */
3083
3084 static int
3085 count_fields (tree fields)
3086 {
3087 tree x;
3088 int n_fields = 0;
3089 for (x = fields; x; x = DECL_CHAIN (x))
3090 {
3091 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3092 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3093 else
3094 n_fields += 1;
3095 }
3096 return n_fields;
3097 }
3098
3099 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3100 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3101 elts, starting at offset IDX. */
3102
3103 static int
3104 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3105 {
3106 tree x;
3107 for (x = fields; x; x = DECL_CHAIN (x))
3108 {
3109 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3110 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3111 else
3112 field_vec->elts[idx++] = x;
3113 }
3114 return idx;
3115 }
3116
3117 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3118 starting at offset IDX. */
3119
3120 static int
3121 add_enum_fields_to_record_type (tree enumtype,
3122 struct sorted_fields_type *field_vec,
3123 int idx)
3124 {
3125 tree values;
3126 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3127 field_vec->elts[idx++] = TREE_VALUE (values);
3128 return idx;
3129 }
3130
3131 /* FIELD is a bit-field. We are finishing the processing for its
3132 enclosing type. Issue any appropriate messages and set appropriate
3133 flags. Returns false if an error has been diagnosed. */
3134
3135 static bool
3136 check_bitfield_decl (tree field)
3137 {
3138 tree type = TREE_TYPE (field);
3139 tree w;
3140
3141 /* Extract the declared width of the bitfield, which has been
3142 temporarily stashed in DECL_INITIAL. */
3143 w = DECL_INITIAL (field);
3144 gcc_assert (w != NULL_TREE);
3145 /* Remove the bit-field width indicator so that the rest of the
3146 compiler does not treat that value as an initializer. */
3147 DECL_INITIAL (field) = NULL_TREE;
3148
3149 /* Detect invalid bit-field type. */
3150 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3151 {
3152 error ("bit-field %q+#D with non-integral type", field);
3153 w = error_mark_node;
3154 }
3155 else
3156 {
3157 location_t loc = input_location;
3158 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3159 STRIP_NOPS (w);
3160
3161 /* detect invalid field size. */
3162 input_location = DECL_SOURCE_LOCATION (field);
3163 w = cxx_constant_value (w);
3164 input_location = loc;
3165
3166 if (TREE_CODE (w) != INTEGER_CST)
3167 {
3168 error ("bit-field %q+D width not an integer constant", field);
3169 w = error_mark_node;
3170 }
3171 else if (tree_int_cst_sgn (w) < 0)
3172 {
3173 error ("negative width in bit-field %q+D", field);
3174 w = error_mark_node;
3175 }
3176 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3177 {
3178 error ("zero width for bit-field %q+D", field);
3179 w = error_mark_node;
3180 }
3181 else if ((TREE_CODE (type) != ENUMERAL_TYPE
3182 && TREE_CODE (type) != BOOLEAN_TYPE
3183 && compare_tree_int (w, TYPE_PRECISION (type)) > 0)
3184 || ((TREE_CODE (type) == ENUMERAL_TYPE
3185 || TREE_CODE (type) == BOOLEAN_TYPE)
3186 && tree_int_cst_lt (TYPE_SIZE (type), w)))
3187 warning (0, "width of %q+D exceeds its type", field);
3188 else if (TREE_CODE (type) == ENUMERAL_TYPE
3189 && (0 > (compare_tree_int
3190 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3191 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3192 }
3193
3194 if (w != error_mark_node)
3195 {
3196 DECL_SIZE (field) = convert (bitsizetype, w);
3197 DECL_BIT_FIELD (field) = 1;
3198 return true;
3199 }
3200 else
3201 {
3202 /* Non-bit-fields are aligned for their type. */
3203 DECL_BIT_FIELD (field) = 0;
3204 CLEAR_DECL_C_BIT_FIELD (field);
3205 return false;
3206 }
3207 }
3208
3209 /* FIELD is a non bit-field. We are finishing the processing for its
3210 enclosing type T. Issue any appropriate messages and set appropriate
3211 flags. */
3212
3213 static void
3214 check_field_decl (tree field,
3215 tree t,
3216 int* cant_have_const_ctor,
3217 int* no_const_asn_ref,
3218 int* any_default_members)
3219 {
3220 tree type = strip_array_types (TREE_TYPE (field));
3221
3222 /* In C++98 an anonymous union cannot contain any fields which would change
3223 the settings of CANT_HAVE_CONST_CTOR and friends. */
3224 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11)
3225 ;
3226 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3227 structs. So, we recurse through their fields here. */
3228 else if (ANON_AGGR_TYPE_P (type))
3229 {
3230 tree fields;
3231
3232 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3233 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3234 check_field_decl (fields, t, cant_have_const_ctor,
3235 no_const_asn_ref, any_default_members);
3236 }
3237 /* Check members with class type for constructors, destructors,
3238 etc. */
3239 else if (CLASS_TYPE_P (type))
3240 {
3241 /* Never let anything with uninheritable virtuals
3242 make it through without complaint. */
3243 abstract_virtuals_error (field, type);
3244
3245 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11)
3246 {
3247 static bool warned;
3248 int oldcount = errorcount;
3249 if (TYPE_NEEDS_CONSTRUCTING (type))
3250 error ("member %q+#D with constructor not allowed in union",
3251 field);
3252 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3253 error ("member %q+#D with destructor not allowed in union", field);
3254 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3255 error ("member %q+#D with copy assignment operator not allowed in union",
3256 field);
3257 if (!warned && errorcount > oldcount)
3258 {
3259 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3260 "only available with -std=c++11 or -std=gnu++11");
3261 warned = true;
3262 }
3263 }
3264 else
3265 {
3266 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3267 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3268 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3269 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3270 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3271 || !TYPE_HAS_COPY_ASSIGN (type));
3272 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3273 || !TYPE_HAS_COPY_CTOR (type));
3274 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3275 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3276 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3277 || TYPE_HAS_COMPLEX_DFLT (type));
3278 }
3279
3280 if (TYPE_HAS_COPY_CTOR (type)
3281 && !TYPE_HAS_CONST_COPY_CTOR (type))
3282 *cant_have_const_ctor = 1;
3283
3284 if (TYPE_HAS_COPY_ASSIGN (type)
3285 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3286 *no_const_asn_ref = 1;
3287 }
3288
3289 check_abi_tags (t, field);
3290
3291 if (DECL_INITIAL (field) != NULL_TREE)
3292 {
3293 /* `build_class_init_list' does not recognize
3294 non-FIELD_DECLs. */
3295 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3296 error ("multiple fields in union %qT initialized", t);
3297 *any_default_members = 1;
3298 }
3299 }
3300
3301 /* Check the data members (both static and non-static), class-scoped
3302 typedefs, etc., appearing in the declaration of T. Issue
3303 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3304 declaration order) of access declarations; each TREE_VALUE in this
3305 list is a USING_DECL.
3306
3307 In addition, set the following flags:
3308
3309 EMPTY_P
3310 The class is empty, i.e., contains no non-static data members.
3311
3312 CANT_HAVE_CONST_CTOR_P
3313 This class cannot have an implicitly generated copy constructor
3314 taking a const reference.
3315
3316 CANT_HAVE_CONST_ASN_REF
3317 This class cannot have an implicitly generated assignment
3318 operator taking a const reference.
3319
3320 All of these flags should be initialized before calling this
3321 function.
3322
3323 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3324 fields can be added by adding to this chain. */
3325
3326 static void
3327 check_field_decls (tree t, tree *access_decls,
3328 int *cant_have_const_ctor_p,
3329 int *no_const_asn_ref_p)
3330 {
3331 tree *field;
3332 tree *next;
3333 bool has_pointers;
3334 int any_default_members;
3335 int cant_pack = 0;
3336 int field_access = -1;
3337
3338 /* Assume there are no access declarations. */
3339 *access_decls = NULL_TREE;
3340 /* Assume this class has no pointer members. */
3341 has_pointers = false;
3342 /* Assume none of the members of this class have default
3343 initializations. */
3344 any_default_members = 0;
3345
3346 for (field = &TYPE_FIELDS (t); *field; field = next)
3347 {
3348 tree x = *field;
3349 tree type = TREE_TYPE (x);
3350 int this_field_access;
3351
3352 next = &DECL_CHAIN (x);
3353
3354 if (TREE_CODE (x) == USING_DECL)
3355 {
3356 /* Save the access declarations for our caller. */
3357 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3358 continue;
3359 }
3360
3361 if (TREE_CODE (x) == TYPE_DECL
3362 || TREE_CODE (x) == TEMPLATE_DECL)
3363 continue;
3364
3365 /* If we've gotten this far, it's a data member, possibly static,
3366 or an enumerator. */
3367 if (TREE_CODE (x) != CONST_DECL)
3368 DECL_CONTEXT (x) = t;
3369
3370 /* When this goes into scope, it will be a non-local reference. */
3371 DECL_NONLOCAL (x) = 1;
3372
3373 if (TREE_CODE (t) == UNION_TYPE)
3374 {
3375 /* [class.union]
3376
3377 If a union contains a static data member, or a member of
3378 reference type, the program is ill-formed. */
3379 if (VAR_P (x))
3380 {
3381 error ("%q+D may not be static because it is a member of a union", x);
3382 continue;
3383 }
3384 if (TREE_CODE (type) == REFERENCE_TYPE)
3385 {
3386 error ("%q+D may not have reference type %qT because"
3387 " it is a member of a union",
3388 x, type);
3389 continue;
3390 }
3391 }
3392
3393 /* Perform error checking that did not get done in
3394 grokdeclarator. */
3395 if (TREE_CODE (type) == FUNCTION_TYPE)
3396 {
3397 error ("field %q+D invalidly declared function type", x);
3398 type = build_pointer_type (type);
3399 TREE_TYPE (x) = type;
3400 }
3401 else if (TREE_CODE (type) == METHOD_TYPE)
3402 {
3403 error ("field %q+D invalidly declared method type", x);
3404 type = build_pointer_type (type);
3405 TREE_TYPE (x) = type;
3406 }
3407
3408 if (type == error_mark_node)
3409 continue;
3410
3411 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3412 continue;
3413
3414 /* Now it can only be a FIELD_DECL. */
3415
3416 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3417 CLASSTYPE_NON_AGGREGATE (t) = 1;
3418
3419 /* If at least one non-static data member is non-literal, the whole
3420 class becomes non-literal. Note: if the type is incomplete we
3421 will complain later on. */
3422 if (COMPLETE_TYPE_P (type) && !literal_type_p (type))
3423 CLASSTYPE_LITERAL_P (t) = false;
3424
3425 /* A standard-layout class is a class that:
3426 ...
3427 has the same access control (Clause 11) for all non-static data members,
3428 ... */
3429 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3430 if (field_access == -1)
3431 field_access = this_field_access;
3432 else if (this_field_access != field_access)
3433 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3434
3435 /* If this is of reference type, check if it needs an init. */
3436 if (TREE_CODE (type) == REFERENCE_TYPE)
3437 {
3438 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3439 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3440 if (DECL_INITIAL (x) == NULL_TREE)
3441 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3442
3443 /* ARM $12.6.2: [A member initializer list] (or, for an
3444 aggregate, initialization by a brace-enclosed list) is the
3445 only way to initialize nonstatic const and reference
3446 members. */
3447 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3448 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3449 }
3450
3451 type = strip_array_types (type);
3452
3453 if (TYPE_PACKED (t))
3454 {
3455 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3456 {
3457 warning
3458 (0,
3459 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3460 x);
3461 cant_pack = 1;
3462 }
3463 else if (DECL_C_BIT_FIELD (x)
3464 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3465 DECL_PACKED (x) = 1;
3466 }
3467
3468 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3469 /* We don't treat zero-width bitfields as making a class
3470 non-empty. */
3471 ;
3472 else
3473 {
3474 /* The class is non-empty. */
3475 CLASSTYPE_EMPTY_P (t) = 0;
3476 /* The class is not even nearly empty. */
3477 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3478 /* If one of the data members contains an empty class,
3479 so does T. */
3480 if (CLASS_TYPE_P (type)
3481 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3482 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3483 }
3484
3485 /* This is used by -Weffc++ (see below). Warn only for pointers
3486 to members which might hold dynamic memory. So do not warn
3487 for pointers to functions or pointers to members. */
3488 if (TYPE_PTR_P (type)
3489 && !TYPE_PTRFN_P (type))
3490 has_pointers = true;
3491
3492 if (CLASS_TYPE_P (type))
3493 {
3494 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3495 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3496 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3497 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3498 }
3499
3500 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3501 CLASSTYPE_HAS_MUTABLE (t) = 1;
3502
3503 if (! layout_pod_type_p (type))
3504 /* DR 148 now allows pointers to members (which are POD themselves),
3505 to be allowed in POD structs. */
3506 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3507
3508 if (!std_layout_type_p (type))
3509 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3510
3511 if (! zero_init_p (type))
3512 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3513
3514 /* We set DECL_C_BIT_FIELD in grokbitfield.
3515 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3516 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3517 check_field_decl (x, t,
3518 cant_have_const_ctor_p,
3519 no_const_asn_ref_p,
3520 &any_default_members);
3521
3522 /* Now that we've removed bit-field widths from DECL_INITIAL,
3523 anything left in DECL_INITIAL is an NSDMI that makes the class
3524 non-aggregate. */
3525 if (DECL_INITIAL (x))
3526 CLASSTYPE_NON_AGGREGATE (t) = true;
3527
3528 /* If any field is const, the structure type is pseudo-const. */
3529 if (CP_TYPE_CONST_P (type))
3530 {
3531 C_TYPE_FIELDS_READONLY (t) = 1;
3532 if (DECL_INITIAL (x) == NULL_TREE)
3533 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3534
3535 /* ARM $12.6.2: [A member initializer list] (or, for an
3536 aggregate, initialization by a brace-enclosed list) is the
3537 only way to initialize nonstatic const and reference
3538 members. */
3539 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3540 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3541 }
3542 /* A field that is pseudo-const makes the structure likewise. */
3543 else if (CLASS_TYPE_P (type))
3544 {
3545 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3546 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3547 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3548 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3549 }
3550
3551 /* Core issue 80: A nonstatic data member is required to have a
3552 different name from the class iff the class has a
3553 user-declared constructor. */
3554 if (constructor_name_p (DECL_NAME (x), t)
3555 && TYPE_HAS_USER_CONSTRUCTOR (t))
3556 permerror (input_location, "field %q+#D with same name as class", x);
3557 }
3558
3559 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3560 it should also define a copy constructor and an assignment operator to
3561 implement the correct copy semantic (deep vs shallow, etc.). As it is
3562 not feasible to check whether the constructors do allocate dynamic memory
3563 and store it within members, we approximate the warning like this:
3564
3565 -- Warn only if there are members which are pointers
3566 -- Warn only if there is a non-trivial constructor (otherwise,
3567 there cannot be memory allocated).
3568 -- Warn only if there is a non-trivial destructor. We assume that the
3569 user at least implemented the cleanup correctly, and a destructor
3570 is needed to free dynamic memory.
3571
3572 This seems enough for practical purposes. */
3573 if (warn_ecpp
3574 && has_pointers
3575 && TYPE_HAS_USER_CONSTRUCTOR (t)
3576 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3577 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3578 {
3579 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3580
3581 if (! TYPE_HAS_COPY_CTOR (t))
3582 {
3583 warning (OPT_Weffc__,
3584 " but does not override %<%T(const %T&)%>", t, t);
3585 if (!TYPE_HAS_COPY_ASSIGN (t))
3586 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3587 }
3588 else if (! TYPE_HAS_COPY_ASSIGN (t))
3589 warning (OPT_Weffc__,
3590 " but does not override %<operator=(const %T&)%>", t);
3591 }
3592
3593 /* Non-static data member initializers make the default constructor
3594 non-trivial. */
3595 if (any_default_members)
3596 {
3597 TYPE_NEEDS_CONSTRUCTING (t) = true;
3598 TYPE_HAS_COMPLEX_DFLT (t) = true;
3599 }
3600
3601 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3602 if (cant_pack)
3603 TYPE_PACKED (t) = 0;
3604
3605 /* Check anonymous struct/anonymous union fields. */
3606 finish_struct_anon (t);
3607
3608 /* We've built up the list of access declarations in reverse order.
3609 Fix that now. */
3610 *access_decls = nreverse (*access_decls);
3611 }
3612
3613 /* If TYPE is an empty class type, records its OFFSET in the table of
3614 OFFSETS. */
3615
3616 static int
3617 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3618 {
3619 splay_tree_node n;
3620
3621 if (!is_empty_class (type))
3622 return 0;
3623
3624 /* Record the location of this empty object in OFFSETS. */
3625 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3626 if (!n)
3627 n = splay_tree_insert (offsets,
3628 (splay_tree_key) offset,
3629 (splay_tree_value) NULL_TREE);
3630 n->value = ((splay_tree_value)
3631 tree_cons (NULL_TREE,
3632 type,
3633 (tree) n->value));
3634
3635 return 0;
3636 }
3637
3638 /* Returns nonzero if TYPE is an empty class type and there is
3639 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3640
3641 static int
3642 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3643 {
3644 splay_tree_node n;
3645 tree t;
3646
3647 if (!is_empty_class (type))
3648 return 0;
3649
3650 /* Record the location of this empty object in OFFSETS. */
3651 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3652 if (!n)
3653 return 0;
3654
3655 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3656 if (same_type_p (TREE_VALUE (t), type))
3657 return 1;
3658
3659 return 0;
3660 }
3661
3662 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3663 F for every subobject, passing it the type, offset, and table of
3664 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3665 be traversed.
3666
3667 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3668 than MAX_OFFSET will not be walked.
3669
3670 If F returns a nonzero value, the traversal ceases, and that value
3671 is returned. Otherwise, returns zero. */
3672
3673 static int
3674 walk_subobject_offsets (tree type,
3675 subobject_offset_fn f,
3676 tree offset,
3677 splay_tree offsets,
3678 tree max_offset,
3679 int vbases_p)
3680 {
3681 int r = 0;
3682 tree type_binfo = NULL_TREE;
3683
3684 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3685 stop. */
3686 if (max_offset && INT_CST_LT (max_offset, offset))
3687 return 0;
3688
3689 if (type == error_mark_node)
3690 return 0;
3691
3692 if (!TYPE_P (type))
3693 {
3694 if (abi_version_at_least (2))
3695 type_binfo = type;
3696 type = BINFO_TYPE (type);
3697 }
3698
3699 if (CLASS_TYPE_P (type))
3700 {
3701 tree field;
3702 tree binfo;
3703 int i;
3704
3705 /* Avoid recursing into objects that are not interesting. */
3706 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3707 return 0;
3708
3709 /* Record the location of TYPE. */
3710 r = (*f) (type, offset, offsets);
3711 if (r)
3712 return r;
3713
3714 /* Iterate through the direct base classes of TYPE. */
3715 if (!type_binfo)
3716 type_binfo = TYPE_BINFO (type);
3717 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3718 {
3719 tree binfo_offset;
3720
3721 if (abi_version_at_least (2)
3722 && BINFO_VIRTUAL_P (binfo))
3723 continue;
3724
3725 if (!vbases_p
3726 && BINFO_VIRTUAL_P (binfo)
3727 && !BINFO_PRIMARY_P (binfo))
3728 continue;
3729
3730 if (!abi_version_at_least (2))
3731 binfo_offset = size_binop (PLUS_EXPR,
3732 offset,
3733 BINFO_OFFSET (binfo));
3734 else
3735 {
3736 tree orig_binfo;
3737 /* We cannot rely on BINFO_OFFSET being set for the base
3738 class yet, but the offsets for direct non-virtual
3739 bases can be calculated by going back to the TYPE. */
3740 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3741 binfo_offset = size_binop (PLUS_EXPR,
3742 offset,
3743 BINFO_OFFSET (orig_binfo));
3744 }
3745
3746 r = walk_subobject_offsets (binfo,
3747 f,
3748 binfo_offset,
3749 offsets,
3750 max_offset,
3751 (abi_version_at_least (2)
3752 ? /*vbases_p=*/0 : vbases_p));
3753 if (r)
3754 return r;
3755 }
3756
3757 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3758 {
3759 unsigned ix;
3760 vec<tree, va_gc> *vbases;
3761
3762 /* Iterate through the virtual base classes of TYPE. In G++
3763 3.2, we included virtual bases in the direct base class
3764 loop above, which results in incorrect results; the
3765 correct offsets for virtual bases are only known when
3766 working with the most derived type. */
3767 if (vbases_p)
3768 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3769 vec_safe_iterate (vbases, ix, &binfo); ix++)
3770 {
3771 r = walk_subobject_offsets (binfo,
3772 f,
3773 size_binop (PLUS_EXPR,
3774 offset,
3775 BINFO_OFFSET (binfo)),
3776 offsets,
3777 max_offset,
3778 /*vbases_p=*/0);
3779 if (r)
3780 return r;
3781 }
3782 else
3783 {
3784 /* We still have to walk the primary base, if it is
3785 virtual. (If it is non-virtual, then it was walked
3786 above.) */
3787 tree vbase = get_primary_binfo (type_binfo);
3788
3789 if (vbase && BINFO_VIRTUAL_P (vbase)
3790 && BINFO_PRIMARY_P (vbase)
3791 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3792 {
3793 r = (walk_subobject_offsets
3794 (vbase, f, offset,
3795 offsets, max_offset, /*vbases_p=*/0));
3796 if (r)
3797 return r;
3798 }
3799 }
3800 }
3801
3802 /* Iterate through the fields of TYPE. */
3803 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3804 if (TREE_CODE (field) == FIELD_DECL
3805 && TREE_TYPE (field) != error_mark_node
3806 && !DECL_ARTIFICIAL (field))
3807 {
3808 tree field_offset;
3809
3810 if (abi_version_at_least (2))
3811 field_offset = byte_position (field);
3812 else
3813 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3814 field_offset = DECL_FIELD_OFFSET (field);
3815
3816 r = walk_subobject_offsets (TREE_TYPE (field),
3817 f,
3818 size_binop (PLUS_EXPR,
3819 offset,
3820 field_offset),
3821 offsets,
3822 max_offset,
3823 /*vbases_p=*/1);
3824 if (r)
3825 return r;
3826 }
3827 }
3828 else if (TREE_CODE (type) == ARRAY_TYPE)
3829 {
3830 tree element_type = strip_array_types (type);
3831 tree domain = TYPE_DOMAIN (type);
3832 tree index;
3833
3834 /* Avoid recursing into objects that are not interesting. */
3835 if (!CLASS_TYPE_P (element_type)
3836 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3837 return 0;
3838
3839 /* Step through each of the elements in the array. */
3840 for (index = size_zero_node;
3841 /* G++ 3.2 had an off-by-one error here. */
3842 (abi_version_at_least (2)
3843 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3844 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3845 index = size_binop (PLUS_EXPR, index, size_one_node))
3846 {
3847 r = walk_subobject_offsets (TREE_TYPE (type),
3848 f,
3849 offset,
3850 offsets,
3851 max_offset,
3852 /*vbases_p=*/1);
3853 if (r)
3854 return r;
3855 offset = size_binop (PLUS_EXPR, offset,
3856 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3857 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3858 there's no point in iterating through the remaining
3859 elements of the array. */
3860 if (max_offset && INT_CST_LT (max_offset, offset))
3861 break;
3862 }
3863 }
3864
3865 return 0;
3866 }
3867
3868 /* Record all of the empty subobjects of TYPE (either a type or a
3869 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3870 is being placed at OFFSET; otherwise, it is a base class that is
3871 being placed at OFFSET. */
3872
3873 static void
3874 record_subobject_offsets (tree type,
3875 tree offset,
3876 splay_tree offsets,
3877 bool is_data_member)
3878 {
3879 tree max_offset;
3880 /* If recording subobjects for a non-static data member or a
3881 non-empty base class , we do not need to record offsets beyond
3882 the size of the biggest empty class. Additional data members
3883 will go at the end of the class. Additional base classes will go
3884 either at offset zero (if empty, in which case they cannot
3885 overlap with offsets past the size of the biggest empty class) or
3886 at the end of the class.
3887
3888 However, if we are placing an empty base class, then we must record
3889 all offsets, as either the empty class is at offset zero (where
3890 other empty classes might later be placed) or at the end of the
3891 class (where other objects might then be placed, so other empty
3892 subobjects might later overlap). */
3893 if (is_data_member
3894 || !is_empty_class (BINFO_TYPE (type)))
3895 max_offset = sizeof_biggest_empty_class;
3896 else
3897 max_offset = NULL_TREE;
3898 walk_subobject_offsets (type, record_subobject_offset, offset,
3899 offsets, max_offset, is_data_member);
3900 }
3901
3902 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3903 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3904 virtual bases of TYPE are examined. */
3905
3906 static int
3907 layout_conflict_p (tree type,
3908 tree offset,
3909 splay_tree offsets,
3910 int vbases_p)
3911 {
3912 splay_tree_node max_node;
3913
3914 /* Get the node in OFFSETS that indicates the maximum offset where
3915 an empty subobject is located. */
3916 max_node = splay_tree_max (offsets);
3917 /* If there aren't any empty subobjects, then there's no point in
3918 performing this check. */
3919 if (!max_node)
3920 return 0;
3921
3922 return walk_subobject_offsets (type, check_subobject_offset, offset,
3923 offsets, (tree) (max_node->key),
3924 vbases_p);
3925 }
3926
3927 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3928 non-static data member of the type indicated by RLI. BINFO is the
3929 binfo corresponding to the base subobject, OFFSETS maps offsets to
3930 types already located at those offsets. This function determines
3931 the position of the DECL. */
3932
3933 static void
3934 layout_nonempty_base_or_field (record_layout_info rli,
3935 tree decl,
3936 tree binfo,
3937 splay_tree offsets)
3938 {
3939 tree offset = NULL_TREE;
3940 bool field_p;
3941 tree type;
3942
3943 if (binfo)
3944 {
3945 /* For the purposes of determining layout conflicts, we want to
3946 use the class type of BINFO; TREE_TYPE (DECL) will be the
3947 CLASSTYPE_AS_BASE version, which does not contain entries for
3948 zero-sized bases. */
3949 type = TREE_TYPE (binfo);
3950 field_p = false;
3951 }
3952 else
3953 {
3954 type = TREE_TYPE (decl);
3955 field_p = true;
3956 }
3957
3958 /* Try to place the field. It may take more than one try if we have
3959 a hard time placing the field without putting two objects of the
3960 same type at the same address. */
3961 while (1)
3962 {
3963 struct record_layout_info_s old_rli = *rli;
3964
3965 /* Place this field. */
3966 place_field (rli, decl);
3967 offset = byte_position (decl);
3968
3969 /* We have to check to see whether or not there is already
3970 something of the same type at the offset we're about to use.
3971 For example, consider:
3972
3973 struct S {};
3974 struct T : public S { int i; };
3975 struct U : public S, public T {};
3976
3977 Here, we put S at offset zero in U. Then, we can't put T at
3978 offset zero -- its S component would be at the same address
3979 as the S we already allocated. So, we have to skip ahead.
3980 Since all data members, including those whose type is an
3981 empty class, have nonzero size, any overlap can happen only
3982 with a direct or indirect base-class -- it can't happen with
3983 a data member. */
3984 /* In a union, overlap is permitted; all members are placed at
3985 offset zero. */
3986 if (TREE_CODE (rli->t) == UNION_TYPE)
3987 break;
3988 /* G++ 3.2 did not check for overlaps when placing a non-empty
3989 virtual base. */
3990 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3991 break;
3992 if (layout_conflict_p (field_p ? type : binfo, offset,
3993 offsets, field_p))
3994 {
3995 /* Strip off the size allocated to this field. That puts us
3996 at the first place we could have put the field with
3997 proper alignment. */
3998 *rli = old_rli;
3999
4000 /* Bump up by the alignment required for the type. */
4001 rli->bitpos
4002 = size_binop (PLUS_EXPR, rli->bitpos,
4003 bitsize_int (binfo
4004 ? CLASSTYPE_ALIGN (type)
4005 : TYPE_ALIGN (type)));
4006 normalize_rli (rli);
4007 }
4008 else
4009 /* There was no conflict. We're done laying out this field. */
4010 break;
4011 }
4012
4013 /* Now that we know where it will be placed, update its
4014 BINFO_OFFSET. */
4015 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
4016 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4017 this point because their BINFO_OFFSET is copied from another
4018 hierarchy. Therefore, we may not need to add the entire
4019 OFFSET. */
4020 propagate_binfo_offsets (binfo,
4021 size_diffop_loc (input_location,
4022 convert (ssizetype, offset),
4023 convert (ssizetype,
4024 BINFO_OFFSET (binfo))));
4025 }
4026
4027 /* Returns true if TYPE is empty and OFFSET is nonzero. */
4028
4029 static int
4030 empty_base_at_nonzero_offset_p (tree type,
4031 tree offset,
4032 splay_tree /*offsets*/)
4033 {
4034 return is_empty_class (type) && !integer_zerop (offset);
4035 }
4036
4037 /* Layout the empty base BINFO. EOC indicates the byte currently just
4038 past the end of the class, and should be correctly aligned for a
4039 class of the type indicated by BINFO; OFFSETS gives the offsets of
4040 the empty bases allocated so far. T is the most derived
4041 type. Return nonzero iff we added it at the end. */
4042
4043 static bool
4044 layout_empty_base (record_layout_info rli, tree binfo,
4045 tree eoc, splay_tree offsets)
4046 {
4047 tree alignment;
4048 tree basetype = BINFO_TYPE (binfo);
4049 bool atend = false;
4050
4051 /* This routine should only be used for empty classes. */
4052 gcc_assert (is_empty_class (basetype));
4053 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4054
4055 if (!integer_zerop (BINFO_OFFSET (binfo)))
4056 {
4057 if (abi_version_at_least (2))
4058 propagate_binfo_offsets
4059 (binfo, size_diffop_loc (input_location,
4060 size_zero_node, BINFO_OFFSET (binfo)));
4061 else
4062 warning (OPT_Wabi,
4063 "offset of empty base %qT may not be ABI-compliant and may"
4064 "change in a future version of GCC",
4065 BINFO_TYPE (binfo));
4066 }
4067
4068 /* This is an empty base class. We first try to put it at offset
4069 zero. */
4070 if (layout_conflict_p (binfo,
4071 BINFO_OFFSET (binfo),
4072 offsets,
4073 /*vbases_p=*/0))
4074 {
4075 /* That didn't work. Now, we move forward from the next
4076 available spot in the class. */
4077 atend = true;
4078 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4079 while (1)
4080 {
4081 if (!layout_conflict_p (binfo,
4082 BINFO_OFFSET (binfo),
4083 offsets,
4084 /*vbases_p=*/0))
4085 /* We finally found a spot where there's no overlap. */
4086 break;
4087
4088 /* There's overlap here, too. Bump along to the next spot. */
4089 propagate_binfo_offsets (binfo, alignment);
4090 }
4091 }
4092
4093 if (CLASSTYPE_USER_ALIGN (basetype))
4094 {
4095 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4096 if (warn_packed)
4097 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4098 TYPE_USER_ALIGN (rli->t) = 1;
4099 }
4100
4101 return atend;
4102 }
4103
4104 /* Layout the base given by BINFO in the class indicated by RLI.
4105 *BASE_ALIGN is a running maximum of the alignments of
4106 any base class. OFFSETS gives the location of empty base
4107 subobjects. T is the most derived type. Return nonzero if the new
4108 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4109 *NEXT_FIELD, unless BINFO is for an empty base class.
4110
4111 Returns the location at which the next field should be inserted. */
4112
4113 static tree *
4114 build_base_field (record_layout_info rli, tree binfo,
4115 splay_tree offsets, tree *next_field)
4116 {
4117 tree t = rli->t;
4118 tree basetype = BINFO_TYPE (binfo);
4119
4120 if (!COMPLETE_TYPE_P (basetype))
4121 /* This error is now reported in xref_tag, thus giving better
4122 location information. */
4123 return next_field;
4124
4125 /* Place the base class. */
4126 if (!is_empty_class (basetype))
4127 {
4128 tree decl;
4129
4130 /* The containing class is non-empty because it has a non-empty
4131 base class. */
4132 CLASSTYPE_EMPTY_P (t) = 0;
4133
4134 /* Create the FIELD_DECL. */
4135 decl = build_decl (input_location,
4136 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4137 DECL_ARTIFICIAL (decl) = 1;
4138 DECL_IGNORED_P (decl) = 1;
4139 DECL_FIELD_CONTEXT (decl) = t;
4140 if (CLASSTYPE_AS_BASE (basetype))
4141 {
4142 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4143 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4144 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4145 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4146 DECL_MODE (decl) = TYPE_MODE (basetype);
4147 DECL_FIELD_IS_BASE (decl) = 1;
4148
4149 /* Try to place the field. It may take more than one try if we
4150 have a hard time placing the field without putting two
4151 objects of the same type at the same address. */
4152 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4153 /* Add the new FIELD_DECL to the list of fields for T. */
4154 DECL_CHAIN (decl) = *next_field;
4155 *next_field = decl;
4156 next_field = &DECL_CHAIN (decl);
4157 }
4158 }
4159 else
4160 {
4161 tree eoc;
4162 bool atend;
4163
4164 /* On some platforms (ARM), even empty classes will not be
4165 byte-aligned. */
4166 eoc = round_up_loc (input_location,
4167 rli_size_unit_so_far (rli),
4168 CLASSTYPE_ALIGN_UNIT (basetype));
4169 atend = layout_empty_base (rli, binfo, eoc, offsets);
4170 /* A nearly-empty class "has no proper base class that is empty,
4171 not morally virtual, and at an offset other than zero." */
4172 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4173 {
4174 if (atend)
4175 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4176 /* The check above (used in G++ 3.2) is insufficient because
4177 an empty class placed at offset zero might itself have an
4178 empty base at a nonzero offset. */
4179 else if (walk_subobject_offsets (basetype,
4180 empty_base_at_nonzero_offset_p,
4181 size_zero_node,
4182 /*offsets=*/NULL,
4183 /*max_offset=*/NULL_TREE,
4184 /*vbases_p=*/true))
4185 {
4186 if (abi_version_at_least (2))
4187 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4188 else
4189 warning (OPT_Wabi,
4190 "class %qT will be considered nearly empty in a "
4191 "future version of GCC", t);
4192 }
4193 }
4194
4195 /* We do not create a FIELD_DECL for empty base classes because
4196 it might overlap some other field. We want to be able to
4197 create CONSTRUCTORs for the class by iterating over the
4198 FIELD_DECLs, and the back end does not handle overlapping
4199 FIELD_DECLs. */
4200
4201 /* An empty virtual base causes a class to be non-empty
4202 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4203 here because that was already done when the virtual table
4204 pointer was created. */
4205 }
4206
4207 /* Record the offsets of BINFO and its base subobjects. */
4208 record_subobject_offsets (binfo,
4209 BINFO_OFFSET (binfo),
4210 offsets,
4211 /*is_data_member=*/false);
4212
4213 return next_field;
4214 }
4215
4216 /* Layout all of the non-virtual base classes. Record empty
4217 subobjects in OFFSETS. T is the most derived type. Return nonzero
4218 if the type cannot be nearly empty. The fields created
4219 corresponding to the base classes will be inserted at
4220 *NEXT_FIELD. */
4221
4222 static void
4223 build_base_fields (record_layout_info rli,
4224 splay_tree offsets, tree *next_field)
4225 {
4226 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4227 subobjects. */
4228 tree t = rli->t;
4229 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4230 int i;
4231
4232 /* The primary base class is always allocated first. */
4233 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4234 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4235 offsets, next_field);
4236
4237 /* Now allocate the rest of the bases. */
4238 for (i = 0; i < n_baseclasses; ++i)
4239 {
4240 tree base_binfo;
4241
4242 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4243
4244 /* The primary base was already allocated above, so we don't
4245 need to allocate it again here. */
4246 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4247 continue;
4248
4249 /* Virtual bases are added at the end (a primary virtual base
4250 will have already been added). */
4251 if (BINFO_VIRTUAL_P (base_binfo))
4252 continue;
4253
4254 next_field = build_base_field (rli, base_binfo,
4255 offsets, next_field);
4256 }
4257 }
4258
4259 /* Go through the TYPE_METHODS of T issuing any appropriate
4260 diagnostics, figuring out which methods override which other
4261 methods, and so forth. */
4262
4263 static void
4264 check_methods (tree t)
4265 {
4266 tree x;
4267
4268 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4269 {
4270 check_for_override (x, t);
4271 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
4272 error ("initializer specified for non-virtual method %q+D", x);
4273 /* The name of the field is the original field name
4274 Save this in auxiliary field for later overloading. */
4275 if (DECL_VINDEX (x))
4276 {
4277 TYPE_POLYMORPHIC_P (t) = 1;
4278 if (DECL_PURE_VIRTUAL_P (x))
4279 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4280 }
4281 /* All user-provided destructors are non-trivial.
4282 Constructors and assignment ops are handled in
4283 grok_special_member_properties. */
4284 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4285 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4286 }
4287 }
4288
4289 /* FN is a constructor or destructor. Clone the declaration to create
4290 a specialized in-charge or not-in-charge version, as indicated by
4291 NAME. */
4292
4293 static tree
4294 build_clone (tree fn, tree name)
4295 {
4296 tree parms;
4297 tree clone;
4298
4299 /* Copy the function. */
4300 clone = copy_decl (fn);
4301 /* Reset the function name. */
4302 DECL_NAME (clone) = name;
4303 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4304 /* Remember where this function came from. */
4305 DECL_ABSTRACT_ORIGIN (clone) = fn;
4306 /* Make it easy to find the CLONE given the FN. */
4307 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4308 DECL_CHAIN (fn) = clone;
4309
4310 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4311 if (TREE_CODE (clone) == TEMPLATE_DECL)
4312 {
4313 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4314 DECL_TEMPLATE_RESULT (clone) = result;
4315 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4316 DECL_TI_TEMPLATE (result) = clone;
4317 TREE_TYPE (clone) = TREE_TYPE (result);
4318 return clone;
4319 }
4320
4321 DECL_CLONED_FUNCTION (clone) = fn;
4322 /* There's no pending inline data for this function. */
4323 DECL_PENDING_INLINE_INFO (clone) = NULL;
4324 DECL_PENDING_INLINE_P (clone) = 0;
4325
4326 /* The base-class destructor is not virtual. */
4327 if (name == base_dtor_identifier)
4328 {
4329 DECL_VIRTUAL_P (clone) = 0;
4330 if (TREE_CODE (clone) != TEMPLATE_DECL)
4331 DECL_VINDEX (clone) = NULL_TREE;
4332 }
4333
4334 /* If there was an in-charge parameter, drop it from the function
4335 type. */
4336 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4337 {
4338 tree basetype;
4339 tree parmtypes;
4340 tree exceptions;
4341
4342 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4343 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4344 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4345 /* Skip the `this' parameter. */
4346 parmtypes = TREE_CHAIN (parmtypes);
4347 /* Skip the in-charge parameter. */
4348 parmtypes = TREE_CHAIN (parmtypes);
4349 /* And the VTT parm, in a complete [cd]tor. */
4350 if (DECL_HAS_VTT_PARM_P (fn)
4351 && ! DECL_NEEDS_VTT_PARM_P (clone))
4352 parmtypes = TREE_CHAIN (parmtypes);
4353 /* If this is subobject constructor or destructor, add the vtt
4354 parameter. */
4355 TREE_TYPE (clone)
4356 = build_method_type_directly (basetype,
4357 TREE_TYPE (TREE_TYPE (clone)),
4358 parmtypes);
4359 if (exceptions)
4360 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4361 exceptions);
4362 TREE_TYPE (clone)
4363 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4364 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4365 }
4366
4367 /* Copy the function parameters. */
4368 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4369 /* Remove the in-charge parameter. */
4370 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4371 {
4372 DECL_CHAIN (DECL_ARGUMENTS (clone))
4373 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4374 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4375 }
4376 /* And the VTT parm, in a complete [cd]tor. */
4377 if (DECL_HAS_VTT_PARM_P (fn))
4378 {
4379 if (DECL_NEEDS_VTT_PARM_P (clone))
4380 DECL_HAS_VTT_PARM_P (clone) = 1;
4381 else
4382 {
4383 DECL_CHAIN (DECL_ARGUMENTS (clone))
4384 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4385 DECL_HAS_VTT_PARM_P (clone) = 0;
4386 }
4387 }
4388
4389 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4390 {
4391 DECL_CONTEXT (parms) = clone;
4392 cxx_dup_lang_specific_decl (parms);
4393 }
4394
4395 /* Create the RTL for this function. */
4396 SET_DECL_RTL (clone, NULL);
4397 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4398
4399 if (pch_file)
4400 note_decl_for_pch (clone);
4401
4402 return clone;
4403 }
4404
4405 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4406 not invoke this function directly.
4407
4408 For a non-thunk function, returns the address of the slot for storing
4409 the function it is a clone of. Otherwise returns NULL_TREE.
4410
4411 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4412 cloned_function is unset. This is to support the separate
4413 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4414 on a template makes sense, but not the former. */
4415
4416 tree *
4417 decl_cloned_function_p (const_tree decl, bool just_testing)
4418 {
4419 tree *ptr;
4420 if (just_testing)
4421 decl = STRIP_TEMPLATE (decl);
4422
4423 if (TREE_CODE (decl) != FUNCTION_DECL
4424 || !DECL_LANG_SPECIFIC (decl)
4425 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4426 {
4427 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4428 if (!just_testing)
4429 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4430 else
4431 #endif
4432 return NULL;
4433 }
4434
4435 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4436 if (just_testing && *ptr == NULL_TREE)
4437 return NULL;
4438 else
4439 return ptr;
4440 }
4441
4442 /* Produce declarations for all appropriate clones of FN. If
4443 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4444 CLASTYPE_METHOD_VEC as well. */
4445
4446 void
4447 clone_function_decl (tree fn, int update_method_vec_p)
4448 {
4449 tree clone;
4450
4451 /* Avoid inappropriate cloning. */
4452 if (DECL_CHAIN (fn)
4453 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4454 return;
4455
4456 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4457 {
4458 /* For each constructor, we need two variants: an in-charge version
4459 and a not-in-charge version. */
4460 clone = build_clone (fn, complete_ctor_identifier);
4461 if (update_method_vec_p)
4462 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4463 clone = build_clone (fn, base_ctor_identifier);
4464 if (update_method_vec_p)
4465 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4466 }
4467 else
4468 {
4469 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4470
4471 /* For each destructor, we need three variants: an in-charge
4472 version, a not-in-charge version, and an in-charge deleting
4473 version. We clone the deleting version first because that
4474 means it will go second on the TYPE_METHODS list -- and that
4475 corresponds to the correct layout order in the virtual
4476 function table.
4477
4478 For a non-virtual destructor, we do not build a deleting
4479 destructor. */
4480 if (DECL_VIRTUAL_P (fn))
4481 {
4482 clone = build_clone (fn, deleting_dtor_identifier);
4483 if (update_method_vec_p)
4484 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4485 }
4486 clone = build_clone (fn, complete_dtor_identifier);
4487 if (update_method_vec_p)
4488 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4489 clone = build_clone (fn, base_dtor_identifier);
4490 if (update_method_vec_p)
4491 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4492 }
4493
4494 /* Note that this is an abstract function that is never emitted. */
4495 DECL_ABSTRACT (fn) = 1;
4496 }
4497
4498 /* DECL is an in charge constructor, which is being defined. This will
4499 have had an in class declaration, from whence clones were
4500 declared. An out-of-class definition can specify additional default
4501 arguments. As it is the clones that are involved in overload
4502 resolution, we must propagate the information from the DECL to its
4503 clones. */
4504
4505 void
4506 adjust_clone_args (tree decl)
4507 {
4508 tree clone;
4509
4510 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4511 clone = DECL_CHAIN (clone))
4512 {
4513 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4514 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4515 tree decl_parms, clone_parms;
4516
4517 clone_parms = orig_clone_parms;
4518
4519 /* Skip the 'this' parameter. */
4520 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4521 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4522
4523 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4524 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4525 if (DECL_HAS_VTT_PARM_P (decl))
4526 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4527
4528 clone_parms = orig_clone_parms;
4529 if (DECL_HAS_VTT_PARM_P (clone))
4530 clone_parms = TREE_CHAIN (clone_parms);
4531
4532 for (decl_parms = orig_decl_parms; decl_parms;
4533 decl_parms = TREE_CHAIN (decl_parms),
4534 clone_parms = TREE_CHAIN (clone_parms))
4535 {
4536 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4537 TREE_TYPE (clone_parms)));
4538
4539 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4540 {
4541 /* A default parameter has been added. Adjust the
4542 clone's parameters. */
4543 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4544 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4545 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4546 tree type;
4547
4548 clone_parms = orig_decl_parms;
4549
4550 if (DECL_HAS_VTT_PARM_P (clone))
4551 {
4552 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4553 TREE_VALUE (orig_clone_parms),
4554 clone_parms);
4555 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4556 }
4557 type = build_method_type_directly (basetype,
4558 TREE_TYPE (TREE_TYPE (clone)),
4559 clone_parms);
4560 if (exceptions)
4561 type = build_exception_variant (type, exceptions);
4562 if (attrs)
4563 type = cp_build_type_attribute_variant (type, attrs);
4564 TREE_TYPE (clone) = type;
4565
4566 clone_parms = NULL_TREE;
4567 break;
4568 }
4569 }
4570 gcc_assert (!clone_parms);
4571 }
4572 }
4573
4574 /* For each of the constructors and destructors in T, create an
4575 in-charge and not-in-charge variant. */
4576
4577 static void
4578 clone_constructors_and_destructors (tree t)
4579 {
4580 tree fns;
4581
4582 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4583 out now. */
4584 if (!CLASSTYPE_METHOD_VEC (t))
4585 return;
4586
4587 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4588 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4589 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4590 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4591 }
4592
4593 /* Deduce noexcept for a destructor DTOR. */
4594
4595 void
4596 deduce_noexcept_on_destructor (tree dtor)
4597 {
4598 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4599 {
4600 tree ctx = DECL_CONTEXT (dtor);
4601 tree implicit_fn = implicitly_declare_fn (sfk_destructor, ctx,
4602 /*const_p=*/false,
4603 NULL, NULL);
4604 tree eh_spec = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (implicit_fn));
4605 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4606 }
4607 }
4608
4609 /* For each destructor in T, deduce noexcept:
4610
4611 12.4/3: A declaration of a destructor that does not have an
4612 exception-specification is implicitly considered to have the
4613 same exception-specification as an implicit declaration (15.4). */
4614
4615 static void
4616 deduce_noexcept_on_destructors (tree t)
4617 {
4618 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4619 out now. */
4620 if (!CLASSTYPE_METHOD_VEC (t))
4621 return;
4622
4623 bool saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
4624
4625 /* Avoid early exit from synthesized_method_walk (c++/57645). */
4626 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = true;
4627
4628 for (tree fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4629 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4630
4631 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = saved_nontrivial_dtor;
4632 }
4633
4634 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4635 of TYPE for virtual functions which FNDECL overrides. Return a
4636 mask of the tm attributes found therein. */
4637
4638 static int
4639 look_for_tm_attr_overrides (tree type, tree fndecl)
4640 {
4641 tree binfo = TYPE_BINFO (type);
4642 tree base_binfo;
4643 int ix, found = 0;
4644
4645 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4646 {
4647 tree o, basetype = BINFO_TYPE (base_binfo);
4648
4649 if (!TYPE_POLYMORPHIC_P (basetype))
4650 continue;
4651
4652 o = look_for_overrides_here (basetype, fndecl);
4653 if (o)
4654 found |= tm_attr_to_mask (find_tm_attribute
4655 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4656 else
4657 found |= look_for_tm_attr_overrides (basetype, fndecl);
4658 }
4659
4660 return found;
4661 }
4662
4663 /* Subroutine of set_method_tm_attributes. Handle the checks and
4664 inheritance for one virtual method FNDECL. */
4665
4666 static void
4667 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4668 {
4669 tree tm_attr;
4670 int found, have;
4671
4672 found = look_for_tm_attr_overrides (type, fndecl);
4673
4674 /* If FNDECL doesn't actually override anything (i.e. T is the
4675 class that first declares FNDECL virtual), then we're done. */
4676 if (found == 0)
4677 return;
4678
4679 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4680 have = tm_attr_to_mask (tm_attr);
4681
4682 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4683 tm_pure must match exactly, otherwise no weakening of
4684 tm_safe > tm_callable > nothing. */
4685 /* ??? The tm_pure attribute didn't make the transition to the
4686 multivendor language spec. */
4687 if (have == TM_ATTR_PURE)
4688 {
4689 if (found != TM_ATTR_PURE)
4690 {
4691 found &= -found;
4692 goto err_override;
4693 }
4694 }
4695 /* If the overridden function is tm_pure, then FNDECL must be. */
4696 else if (found == TM_ATTR_PURE && tm_attr)
4697 goto err_override;
4698 /* Look for base class combinations that cannot be satisfied. */
4699 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4700 {
4701 found &= ~TM_ATTR_PURE;
4702 found &= -found;
4703 error_at (DECL_SOURCE_LOCATION (fndecl),
4704 "method overrides both %<transaction_pure%> and %qE methods",
4705 tm_mask_to_attr (found));
4706 }
4707 /* If FNDECL did not declare an attribute, then inherit the most
4708 restrictive one. */
4709 else if (tm_attr == NULL)
4710 {
4711 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4712 }
4713 /* Otherwise validate that we're not weaker than a function
4714 that is being overridden. */
4715 else
4716 {
4717 found &= -found;
4718 if (found <= TM_ATTR_CALLABLE && have > found)
4719 goto err_override;
4720 }
4721 return;
4722
4723 err_override:
4724 error_at (DECL_SOURCE_LOCATION (fndecl),
4725 "method declared %qE overriding %qE method",
4726 tm_attr, tm_mask_to_attr (found));
4727 }
4728
4729 /* For each of the methods in T, propagate a class-level tm attribute. */
4730
4731 static void
4732 set_method_tm_attributes (tree t)
4733 {
4734 tree class_tm_attr, fndecl;
4735
4736 /* Don't bother collecting tm attributes if transactional memory
4737 support is not enabled. */
4738 if (!flag_tm)
4739 return;
4740
4741 /* Process virtual methods first, as they inherit directly from the
4742 base virtual function and also require validation of new attributes. */
4743 if (TYPE_CONTAINS_VPTR_P (t))
4744 {
4745 tree vchain;
4746 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4747 vchain = TREE_CHAIN (vchain))
4748 {
4749 fndecl = BV_FN (vchain);
4750 if (DECL_THUNK_P (fndecl))
4751 fndecl = THUNK_TARGET (fndecl);
4752 set_one_vmethod_tm_attributes (t, fndecl);
4753 }
4754 }
4755
4756 /* If the class doesn't have an attribute, nothing more to do. */
4757 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4758 if (class_tm_attr == NULL)
4759 return;
4760
4761 /* Any method that does not yet have a tm attribute inherits
4762 the one from the class. */
4763 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4764 {
4765 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4766 apply_tm_attr (fndecl, class_tm_attr);
4767 }
4768 }
4769
4770 /* Returns true iff class T has a user-defined constructor other than
4771 the default constructor. */
4772
4773 bool
4774 type_has_user_nondefault_constructor (tree t)
4775 {
4776 tree fns;
4777
4778 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4779 return false;
4780
4781 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4782 {
4783 tree fn = OVL_CURRENT (fns);
4784 if (!DECL_ARTIFICIAL (fn)
4785 && (TREE_CODE (fn) == TEMPLATE_DECL
4786 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4787 != NULL_TREE)))
4788 return true;
4789 }
4790
4791 return false;
4792 }
4793
4794 /* Returns the defaulted constructor if T has one. Otherwise, returns
4795 NULL_TREE. */
4796
4797 tree
4798 in_class_defaulted_default_constructor (tree t)
4799 {
4800 tree fns, args;
4801
4802 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4803 return NULL_TREE;
4804
4805 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4806 {
4807 tree fn = OVL_CURRENT (fns);
4808
4809 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4810 {
4811 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4812 while (args && TREE_PURPOSE (args))
4813 args = TREE_CHAIN (args);
4814 if (!args || args == void_list_node)
4815 return fn;
4816 }
4817 }
4818
4819 return NULL_TREE;
4820 }
4821
4822 /* Returns true iff FN is a user-provided function, i.e. user-declared
4823 and not defaulted at its first declaration; or explicit, private,
4824 protected, or non-const. */
4825
4826 bool
4827 user_provided_p (tree fn)
4828 {
4829 if (TREE_CODE (fn) == TEMPLATE_DECL)
4830 return true;
4831 else
4832 return (!DECL_ARTIFICIAL (fn)
4833 && !DECL_DEFAULTED_IN_CLASS_P (fn));
4834 }
4835
4836 /* Returns true iff class T has a user-provided constructor. */
4837
4838 bool
4839 type_has_user_provided_constructor (tree t)
4840 {
4841 tree fns;
4842
4843 if (!CLASS_TYPE_P (t))
4844 return false;
4845
4846 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4847 return false;
4848
4849 /* This can happen in error cases; avoid crashing. */
4850 if (!CLASSTYPE_METHOD_VEC (t))
4851 return false;
4852
4853 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4854 if (user_provided_p (OVL_CURRENT (fns)))
4855 return true;
4856
4857 return false;
4858 }
4859
4860 /* Returns true iff class T has a user-provided default constructor. */
4861
4862 bool
4863 type_has_user_provided_default_constructor (tree t)
4864 {
4865 tree fns;
4866
4867 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4868 return false;
4869
4870 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4871 {
4872 tree fn = OVL_CURRENT (fns);
4873 if (TREE_CODE (fn) == FUNCTION_DECL
4874 && user_provided_p (fn)
4875 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4876 return true;
4877 }
4878
4879 return false;
4880 }
4881
4882 /* TYPE is being used as a virtual base, and has a non-trivial move
4883 assignment. Return true if this is due to there being a user-provided
4884 move assignment in TYPE or one of its subobjects; if there isn't, then
4885 multiple move assignment can't cause any harm. */
4886
4887 bool
4888 vbase_has_user_provided_move_assign (tree type)
4889 {
4890 /* Does the type itself have a user-provided move assignment operator? */
4891 for (tree fns
4892 = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR));
4893 fns; fns = OVL_NEXT (fns))
4894 {
4895 tree fn = OVL_CURRENT (fns);
4896 if (move_fn_p (fn) && user_provided_p (fn))
4897 return true;
4898 }
4899
4900 /* Do any of its bases? */
4901 tree binfo = TYPE_BINFO (type);
4902 tree base_binfo;
4903 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4904 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
4905 return true;
4906
4907 /* Or non-static data members? */
4908 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4909 {
4910 if (TREE_CODE (field) == FIELD_DECL
4911 && CLASS_TYPE_P (TREE_TYPE (field))
4912 && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
4913 return true;
4914 }
4915
4916 /* Seems not. */
4917 return false;
4918 }
4919
4920 /* If default-initialization leaves part of TYPE uninitialized, returns
4921 a DECL for the field or TYPE itself (DR 253). */
4922
4923 tree
4924 default_init_uninitialized_part (tree type)
4925 {
4926 tree t, r, binfo;
4927 int i;
4928
4929 type = strip_array_types (type);
4930 if (!CLASS_TYPE_P (type))
4931 return type;
4932 if (type_has_user_provided_default_constructor (type))
4933 return NULL_TREE;
4934 for (binfo = TYPE_BINFO (type), i = 0;
4935 BINFO_BASE_ITERATE (binfo, i, t); ++i)
4936 {
4937 r = default_init_uninitialized_part (BINFO_TYPE (t));
4938 if (r)
4939 return r;
4940 }
4941 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
4942 if (TREE_CODE (t) == FIELD_DECL
4943 && !DECL_ARTIFICIAL (t)
4944 && !DECL_INITIAL (t))
4945 {
4946 r = default_init_uninitialized_part (TREE_TYPE (t));
4947 if (r)
4948 return DECL_P (r) ? r : t;
4949 }
4950
4951 return NULL_TREE;
4952 }
4953
4954 /* Returns true iff for class T, a trivial synthesized default constructor
4955 would be constexpr. */
4956
4957 bool
4958 trivial_default_constructor_is_constexpr (tree t)
4959 {
4960 /* A defaulted trivial default constructor is constexpr
4961 if there is nothing to initialize. */
4962 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
4963 return is_really_empty_class (t);
4964 }
4965
4966 /* Returns true iff class T has a constexpr default constructor. */
4967
4968 bool
4969 type_has_constexpr_default_constructor (tree t)
4970 {
4971 tree fns;
4972
4973 if (!CLASS_TYPE_P (t))
4974 {
4975 /* The caller should have stripped an enclosing array. */
4976 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
4977 return false;
4978 }
4979 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
4980 {
4981 if (!TYPE_HAS_COMPLEX_DFLT (t))
4982 return trivial_default_constructor_is_constexpr (t);
4983 /* Non-trivial, we need to check subobject constructors. */
4984 lazily_declare_fn (sfk_constructor, t);
4985 }
4986 fns = locate_ctor (t);
4987 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
4988 }
4989
4990 /* Returns true iff class TYPE has a virtual destructor. */
4991
4992 bool
4993 type_has_virtual_destructor (tree type)
4994 {
4995 tree dtor;
4996
4997 if (!CLASS_TYPE_P (type))
4998 return false;
4999
5000 gcc_assert (COMPLETE_TYPE_P (type));
5001 dtor = CLASSTYPE_DESTRUCTORS (type);
5002 return (dtor && DECL_VIRTUAL_P (dtor));
5003 }
5004
5005 /* Returns true iff class T has a move constructor. */
5006
5007 bool
5008 type_has_move_constructor (tree t)
5009 {
5010 tree fns;
5011
5012 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5013 {
5014 gcc_assert (COMPLETE_TYPE_P (t));
5015 lazily_declare_fn (sfk_move_constructor, t);
5016 }
5017
5018 if (!CLASSTYPE_METHOD_VEC (t))
5019 return false;
5020
5021 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5022 if (move_fn_p (OVL_CURRENT (fns)))
5023 return true;
5024
5025 return false;
5026 }
5027
5028 /* Returns true iff class T has a move assignment operator. */
5029
5030 bool
5031 type_has_move_assign (tree t)
5032 {
5033 tree fns;
5034
5035 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5036 {
5037 gcc_assert (COMPLETE_TYPE_P (t));
5038 lazily_declare_fn (sfk_move_assignment, t);
5039 }
5040
5041 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5042 fns; fns = OVL_NEXT (fns))
5043 if (move_fn_p (OVL_CURRENT (fns)))
5044 return true;
5045
5046 return false;
5047 }
5048
5049 /* Returns true iff class T has a move constructor that was explicitly
5050 declared in the class body. Note that this is different from
5051 "user-provided", which doesn't include functions that are defaulted in
5052 the class. */
5053
5054 bool
5055 type_has_user_declared_move_constructor (tree t)
5056 {
5057 tree fns;
5058
5059 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5060 return false;
5061
5062 if (!CLASSTYPE_METHOD_VEC (t))
5063 return false;
5064
5065 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5066 {
5067 tree fn = OVL_CURRENT (fns);
5068 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5069 return true;
5070 }
5071
5072 return false;
5073 }
5074
5075 /* Returns true iff class T has a move assignment operator that was
5076 explicitly declared in the class body. */
5077
5078 bool
5079 type_has_user_declared_move_assign (tree t)
5080 {
5081 tree fns;
5082
5083 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5084 return false;
5085
5086 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5087 fns; fns = OVL_NEXT (fns))
5088 {
5089 tree fn = OVL_CURRENT (fns);
5090 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5091 return true;
5092 }
5093
5094 return false;
5095 }
5096
5097 /* Nonzero if we need to build up a constructor call when initializing an
5098 object of this class, either because it has a user-provided constructor
5099 or because it doesn't have a default constructor (so we need to give an
5100 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5101 what you care about is whether or not an object can be produced by a
5102 constructor (e.g. so we don't set TREE_READONLY on const variables of
5103 such type); use this function when what you care about is whether or not
5104 to try to call a constructor to create an object. The latter case is
5105 the former plus some cases of constructors that cannot be called. */
5106
5107 bool
5108 type_build_ctor_call (tree t)
5109 {
5110 tree inner;
5111 if (TYPE_NEEDS_CONSTRUCTING (t))
5112 return true;
5113 inner = strip_array_types (t);
5114 return (CLASS_TYPE_P (inner) && !TYPE_HAS_DEFAULT_CONSTRUCTOR (inner)
5115 && !ANON_AGGR_TYPE_P (inner));
5116 }
5117
5118 /* Remove all zero-width bit-fields from T. */
5119
5120 static void
5121 remove_zero_width_bit_fields (tree t)
5122 {
5123 tree *fieldsp;
5124
5125 fieldsp = &TYPE_FIELDS (t);
5126 while (*fieldsp)
5127 {
5128 if (TREE_CODE (*fieldsp) == FIELD_DECL
5129 && DECL_C_BIT_FIELD (*fieldsp)
5130 /* We should not be confused by the fact that grokbitfield
5131 temporarily sets the width of the bit field into
5132 DECL_INITIAL (*fieldsp).
5133 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5134 to that width. */
5135 && integer_zerop (DECL_SIZE (*fieldsp)))
5136 *fieldsp = DECL_CHAIN (*fieldsp);
5137 else
5138 fieldsp = &DECL_CHAIN (*fieldsp);
5139 }
5140 }
5141
5142 /* Returns TRUE iff we need a cookie when dynamically allocating an
5143 array whose elements have the indicated class TYPE. */
5144
5145 static bool
5146 type_requires_array_cookie (tree type)
5147 {
5148 tree fns;
5149 bool has_two_argument_delete_p = false;
5150
5151 gcc_assert (CLASS_TYPE_P (type));
5152
5153 /* If there's a non-trivial destructor, we need a cookie. In order
5154 to iterate through the array calling the destructor for each
5155 element, we'll have to know how many elements there are. */
5156 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5157 return true;
5158
5159 /* If the usual deallocation function is a two-argument whose second
5160 argument is of type `size_t', then we have to pass the size of
5161 the array to the deallocation function, so we will need to store
5162 a cookie. */
5163 fns = lookup_fnfields (TYPE_BINFO (type),
5164 ansi_opname (VEC_DELETE_EXPR),
5165 /*protect=*/0);
5166 /* If there are no `operator []' members, or the lookup is
5167 ambiguous, then we don't need a cookie. */
5168 if (!fns || fns == error_mark_node)
5169 return false;
5170 /* Loop through all of the functions. */
5171 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5172 {
5173 tree fn;
5174 tree second_parm;
5175
5176 /* Select the current function. */
5177 fn = OVL_CURRENT (fns);
5178 /* See if this function is a one-argument delete function. If
5179 it is, then it will be the usual deallocation function. */
5180 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5181 if (second_parm == void_list_node)
5182 return false;
5183 /* Do not consider this function if its second argument is an
5184 ellipsis. */
5185 if (!second_parm)
5186 continue;
5187 /* Otherwise, if we have a two-argument function and the second
5188 argument is `size_t', it will be the usual deallocation
5189 function -- unless there is one-argument function, too. */
5190 if (TREE_CHAIN (second_parm) == void_list_node
5191 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5192 has_two_argument_delete_p = true;
5193 }
5194
5195 return has_two_argument_delete_p;
5196 }
5197
5198 /* Finish computing the `literal type' property of class type T.
5199
5200 At this point, we have already processed base classes and
5201 non-static data members. We need to check whether the copy
5202 constructor is trivial, the destructor is trivial, and there
5203 is a trivial default constructor or at least one constexpr
5204 constructor other than the copy constructor. */
5205
5206 static void
5207 finalize_literal_type_property (tree t)
5208 {
5209 tree fn;
5210
5211 if (cxx_dialect < cxx11
5212 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5213 CLASSTYPE_LITERAL_P (t) = false;
5214 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5215 && CLASSTYPE_NON_AGGREGATE (t)
5216 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5217 CLASSTYPE_LITERAL_P (t) = false;
5218
5219 if (!CLASSTYPE_LITERAL_P (t))
5220 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5221 if (DECL_DECLARED_CONSTEXPR_P (fn)
5222 && TREE_CODE (fn) != TEMPLATE_DECL
5223 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5224 && !DECL_CONSTRUCTOR_P (fn))
5225 {
5226 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5227 if (!DECL_GENERATED_P (fn))
5228 {
5229 error ("enclosing class of constexpr non-static member "
5230 "function %q+#D is not a literal type", fn);
5231 explain_non_literal_class (t);
5232 }
5233 }
5234 }
5235
5236 /* T is a non-literal type used in a context which requires a constant
5237 expression. Explain why it isn't literal. */
5238
5239 void
5240 explain_non_literal_class (tree t)
5241 {
5242 static struct pointer_set_t *diagnosed;
5243
5244 if (!CLASS_TYPE_P (t))
5245 return;
5246 t = TYPE_MAIN_VARIANT (t);
5247
5248 if (diagnosed == NULL)
5249 diagnosed = pointer_set_create ();
5250 if (pointer_set_insert (diagnosed, t) != 0)
5251 /* Already explained. */
5252 return;
5253
5254 inform (0, "%q+T is not literal because:", t);
5255 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5256 inform (0, " %q+T has a non-trivial destructor", t);
5257 else if (CLASSTYPE_NON_AGGREGATE (t)
5258 && !TYPE_HAS_TRIVIAL_DFLT (t)
5259 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5260 {
5261 inform (0, " %q+T is not an aggregate, does not have a trivial "
5262 "default constructor, and has no constexpr constructor that "
5263 "is not a copy or move constructor", t);
5264 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5265 && !type_has_user_provided_default_constructor (t))
5266 {
5267 /* Note that we can't simply call locate_ctor because when the
5268 constructor is deleted it just returns NULL_TREE. */
5269 tree fns;
5270 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5271 {
5272 tree fn = OVL_CURRENT (fns);
5273 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5274
5275 parms = skip_artificial_parms_for (fn, parms);
5276
5277 if (sufficient_parms_p (parms))
5278 {
5279 if (DECL_DELETED_FN (fn))
5280 maybe_explain_implicit_delete (fn);
5281 else
5282 explain_invalid_constexpr_fn (fn);
5283 break;
5284 }
5285 }
5286 }
5287 }
5288 else
5289 {
5290 tree binfo, base_binfo, field; int i;
5291 for (binfo = TYPE_BINFO (t), i = 0;
5292 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5293 {
5294 tree basetype = TREE_TYPE (base_binfo);
5295 if (!CLASSTYPE_LITERAL_P (basetype))
5296 {
5297 inform (0, " base class %qT of %q+T is non-literal",
5298 basetype, t);
5299 explain_non_literal_class (basetype);
5300 return;
5301 }
5302 }
5303 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5304 {
5305 tree ftype;
5306 if (TREE_CODE (field) != FIELD_DECL)
5307 continue;
5308 ftype = TREE_TYPE (field);
5309 if (!literal_type_p (ftype))
5310 {
5311 inform (0, " non-static data member %q+D has "
5312 "non-literal type", field);
5313 if (CLASS_TYPE_P (ftype))
5314 explain_non_literal_class (ftype);
5315 }
5316 }
5317 }
5318 }
5319
5320 /* Check the validity of the bases and members declared in T. Add any
5321 implicitly-generated functions (like copy-constructors and
5322 assignment operators). Compute various flag bits (like
5323 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5324 level: i.e., independently of the ABI in use. */
5325
5326 static void
5327 check_bases_and_members (tree t)
5328 {
5329 /* Nonzero if the implicitly generated copy constructor should take
5330 a non-const reference argument. */
5331 int cant_have_const_ctor;
5332 /* Nonzero if the implicitly generated assignment operator
5333 should take a non-const reference argument. */
5334 int no_const_asn_ref;
5335 tree access_decls;
5336 bool saved_complex_asn_ref;
5337 bool saved_nontrivial_dtor;
5338 tree fn;
5339
5340 /* By default, we use const reference arguments and generate default
5341 constructors. */
5342 cant_have_const_ctor = 0;
5343 no_const_asn_ref = 0;
5344
5345 /* Check all the base-classes. */
5346 check_bases (t, &cant_have_const_ctor,
5347 &no_const_asn_ref);
5348
5349 /* Deduce noexcept on destructors. This needs to happen after we've set
5350 triviality flags appropriately for our bases. */
5351 if (cxx_dialect >= cxx11)
5352 deduce_noexcept_on_destructors (t);
5353
5354 /* Check all the method declarations. */
5355 check_methods (t);
5356
5357 /* Save the initial values of these flags which only indicate whether
5358 or not the class has user-provided functions. As we analyze the
5359 bases and members we can set these flags for other reasons. */
5360 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5361 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5362
5363 /* Check all the data member declarations. We cannot call
5364 check_field_decls until we have called check_bases check_methods,
5365 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5366 being set appropriately. */
5367 check_field_decls (t, &access_decls,
5368 &cant_have_const_ctor,
5369 &no_const_asn_ref);
5370
5371 /* A nearly-empty class has to be vptr-containing; a nearly empty
5372 class contains just a vptr. */
5373 if (!TYPE_CONTAINS_VPTR_P (t))
5374 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5375
5376 /* Do some bookkeeping that will guide the generation of implicitly
5377 declared member functions. */
5378 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5379 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5380 /* We need to call a constructor for this class if it has a
5381 user-provided constructor, or if the default constructor is going
5382 to initialize the vptr. (This is not an if-and-only-if;
5383 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5384 themselves need constructing.) */
5385 TYPE_NEEDS_CONSTRUCTING (t)
5386 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5387 /* [dcl.init.aggr]
5388
5389 An aggregate is an array or a class with no user-provided
5390 constructors ... and no virtual functions.
5391
5392 Again, other conditions for being an aggregate are checked
5393 elsewhere. */
5394 CLASSTYPE_NON_AGGREGATE (t)
5395 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5396 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5397 retain the old definition internally for ABI reasons. */
5398 CLASSTYPE_NON_LAYOUT_POD_P (t)
5399 |= (CLASSTYPE_NON_AGGREGATE (t)
5400 || saved_nontrivial_dtor || saved_complex_asn_ref);
5401 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5402 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5403 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5404 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5405
5406 /* If the class has no user-declared constructor, but does have
5407 non-static const or reference data members that can never be
5408 initialized, issue a warning. */
5409 if (warn_uninitialized
5410 /* Classes with user-declared constructors are presumed to
5411 initialize these members. */
5412 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5413 /* Aggregates can be initialized with brace-enclosed
5414 initializers. */
5415 && CLASSTYPE_NON_AGGREGATE (t))
5416 {
5417 tree field;
5418
5419 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5420 {
5421 tree type;
5422
5423 if (TREE_CODE (field) != FIELD_DECL
5424 || DECL_INITIAL (field) != NULL_TREE)
5425 continue;
5426
5427 type = TREE_TYPE (field);
5428 if (TREE_CODE (type) == REFERENCE_TYPE)
5429 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5430 "in class without a constructor", field);
5431 else if (CP_TYPE_CONST_P (type)
5432 && (!CLASS_TYPE_P (type)
5433 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5434 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5435 "in class without a constructor", field);
5436 }
5437 }
5438
5439 /* Synthesize any needed methods. */
5440 add_implicitly_declared_members (t, &access_decls,
5441 cant_have_const_ctor,
5442 no_const_asn_ref);
5443
5444 /* Check defaulted declarations here so we have cant_have_const_ctor
5445 and don't need to worry about clones. */
5446 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5447 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5448 {
5449 int copy = copy_fn_p (fn);
5450 if (copy > 0)
5451 {
5452 bool imp_const_p
5453 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5454 : !no_const_asn_ref);
5455 bool fn_const_p = (copy == 2);
5456
5457 if (fn_const_p && !imp_const_p)
5458 /* If the function is defaulted outside the class, we just
5459 give the synthesis error. */
5460 error ("%q+D declared to take const reference, but implicit "
5461 "declaration would take non-const", fn);
5462 }
5463 defaulted_late_check (fn);
5464 }
5465
5466 if (LAMBDA_TYPE_P (t))
5467 {
5468 /* "The closure type associated with a lambda-expression has a deleted
5469 default constructor and a deleted copy assignment operator." */
5470 TYPE_NEEDS_CONSTRUCTING (t) = 1;
5471 TYPE_HAS_COMPLEX_DFLT (t) = 1;
5472 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
5473 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
5474
5475 /* "This class type is not an aggregate." */
5476 CLASSTYPE_NON_AGGREGATE (t) = 1;
5477 }
5478
5479 /* Compute the 'literal type' property before we
5480 do anything with non-static member functions. */
5481 finalize_literal_type_property (t);
5482
5483 /* Create the in-charge and not-in-charge variants of constructors
5484 and destructors. */
5485 clone_constructors_and_destructors (t);
5486
5487 /* Process the using-declarations. */
5488 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5489 handle_using_decl (TREE_VALUE (access_decls), t);
5490
5491 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5492 finish_struct_methods (t);
5493
5494 /* Figure out whether or not we will need a cookie when dynamically
5495 allocating an array of this type. */
5496 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5497 = type_requires_array_cookie (t);
5498 }
5499
5500 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5501 accordingly. If a new vfield was created (because T doesn't have a
5502 primary base class), then the newly created field is returned. It
5503 is not added to the TYPE_FIELDS list; it is the caller's
5504 responsibility to do that. Accumulate declared virtual functions
5505 on VIRTUALS_P. */
5506
5507 static tree
5508 create_vtable_ptr (tree t, tree* virtuals_p)
5509 {
5510 tree fn;
5511
5512 /* Collect the virtual functions declared in T. */
5513 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5514 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5515 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5516 {
5517 tree new_virtual = make_node (TREE_LIST);
5518
5519 BV_FN (new_virtual) = fn;
5520 BV_DELTA (new_virtual) = integer_zero_node;
5521 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5522
5523 TREE_CHAIN (new_virtual) = *virtuals_p;
5524 *virtuals_p = new_virtual;
5525 }
5526
5527 /* If we couldn't find an appropriate base class, create a new field
5528 here. Even if there weren't any new virtual functions, we might need a
5529 new virtual function table if we're supposed to include vptrs in
5530 all classes that need them. */
5531 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5532 {
5533 /* We build this decl with vtbl_ptr_type_node, which is a
5534 `vtable_entry_type*'. It might seem more precise to use
5535 `vtable_entry_type (*)[N]' where N is the number of virtual
5536 functions. However, that would require the vtable pointer in
5537 base classes to have a different type than the vtable pointer
5538 in derived classes. We could make that happen, but that
5539 still wouldn't solve all the problems. In particular, the
5540 type-based alias analysis code would decide that assignments
5541 to the base class vtable pointer can't alias assignments to
5542 the derived class vtable pointer, since they have different
5543 types. Thus, in a derived class destructor, where the base
5544 class constructor was inlined, we could generate bad code for
5545 setting up the vtable pointer.
5546
5547 Therefore, we use one type for all vtable pointers. We still
5548 use a type-correct type; it's just doesn't indicate the array
5549 bounds. That's better than using `void*' or some such; it's
5550 cleaner, and it let's the alias analysis code know that these
5551 stores cannot alias stores to void*! */
5552 tree field;
5553
5554 field = build_decl (input_location,
5555 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5556 DECL_VIRTUAL_P (field) = 1;
5557 DECL_ARTIFICIAL (field) = 1;
5558 DECL_FIELD_CONTEXT (field) = t;
5559 DECL_FCONTEXT (field) = t;
5560 if (TYPE_PACKED (t))
5561 DECL_PACKED (field) = 1;
5562
5563 TYPE_VFIELD (t) = field;
5564
5565 /* This class is non-empty. */
5566 CLASSTYPE_EMPTY_P (t) = 0;
5567
5568 return field;
5569 }
5570
5571 return NULL_TREE;
5572 }
5573
5574 /* Add OFFSET to all base types of BINFO which is a base in the
5575 hierarchy dominated by T.
5576
5577 OFFSET, which is a type offset, is number of bytes. */
5578
5579 static void
5580 propagate_binfo_offsets (tree binfo, tree offset)
5581 {
5582 int i;
5583 tree primary_binfo;
5584 tree base_binfo;
5585
5586 /* Update BINFO's offset. */
5587 BINFO_OFFSET (binfo)
5588 = convert (sizetype,
5589 size_binop (PLUS_EXPR,
5590 convert (ssizetype, BINFO_OFFSET (binfo)),
5591 offset));
5592
5593 /* Find the primary base class. */
5594 primary_binfo = get_primary_binfo (binfo);
5595
5596 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5597 propagate_binfo_offsets (primary_binfo, offset);
5598
5599 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5600 downwards. */
5601 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5602 {
5603 /* Don't do the primary base twice. */
5604 if (base_binfo == primary_binfo)
5605 continue;
5606
5607 if (BINFO_VIRTUAL_P (base_binfo))
5608 continue;
5609
5610 propagate_binfo_offsets (base_binfo, offset);
5611 }
5612 }
5613
5614 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5615 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5616 empty subobjects of T. */
5617
5618 static void
5619 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5620 {
5621 tree vbase;
5622 tree t = rli->t;
5623 bool first_vbase = true;
5624 tree *next_field;
5625
5626 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5627 return;
5628
5629 if (!abi_version_at_least(2))
5630 {
5631 /* In G++ 3.2, we incorrectly rounded the size before laying out
5632 the virtual bases. */
5633 finish_record_layout (rli, /*free_p=*/false);
5634 #ifdef STRUCTURE_SIZE_BOUNDARY
5635 /* Packed structures don't need to have minimum size. */
5636 if (! TYPE_PACKED (t))
5637 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
5638 #endif
5639 rli->offset = TYPE_SIZE_UNIT (t);
5640 rli->bitpos = bitsize_zero_node;
5641 rli->record_align = TYPE_ALIGN (t);
5642 }
5643
5644 /* Find the last field. The artificial fields created for virtual
5645 bases will go after the last extant field to date. */
5646 next_field = &TYPE_FIELDS (t);
5647 while (*next_field)
5648 next_field = &DECL_CHAIN (*next_field);
5649
5650 /* Go through the virtual bases, allocating space for each virtual
5651 base that is not already a primary base class. These are
5652 allocated in inheritance graph order. */
5653 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5654 {
5655 if (!BINFO_VIRTUAL_P (vbase))
5656 continue;
5657
5658 if (!BINFO_PRIMARY_P (vbase))
5659 {
5660 tree basetype = TREE_TYPE (vbase);
5661
5662 /* This virtual base is not a primary base of any class in the
5663 hierarchy, so we have to add space for it. */
5664 next_field = build_base_field (rli, vbase,
5665 offsets, next_field);
5666
5667 /* If the first virtual base might have been placed at a
5668 lower address, had we started from CLASSTYPE_SIZE, rather
5669 than TYPE_SIZE, issue a warning. There can be both false
5670 positives and false negatives from this warning in rare
5671 cases; to deal with all the possibilities would probably
5672 require performing both layout algorithms and comparing
5673 the results which is not particularly tractable. */
5674 if (warn_abi
5675 && first_vbase
5676 && (tree_int_cst_lt
5677 (size_binop (CEIL_DIV_EXPR,
5678 round_up_loc (input_location,
5679 CLASSTYPE_SIZE (t),
5680 CLASSTYPE_ALIGN (basetype)),
5681 bitsize_unit_node),
5682 BINFO_OFFSET (vbase))))
5683 warning (OPT_Wabi,
5684 "offset of virtual base %qT is not ABI-compliant and "
5685 "may change in a future version of GCC",
5686 basetype);
5687
5688 first_vbase = false;
5689 }
5690 }
5691 }
5692
5693 /* Returns the offset of the byte just past the end of the base class
5694 BINFO. */
5695
5696 static tree
5697 end_of_base (tree binfo)
5698 {
5699 tree size;
5700
5701 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5702 size = TYPE_SIZE_UNIT (char_type_node);
5703 else if (is_empty_class (BINFO_TYPE (binfo)))
5704 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5705 allocate some space for it. It cannot have virtual bases, so
5706 TYPE_SIZE_UNIT is fine. */
5707 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5708 else
5709 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5710
5711 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5712 }
5713
5714 /* Returns the offset of the byte just past the end of the base class
5715 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5716 only non-virtual bases are included. */
5717
5718 static tree
5719 end_of_class (tree t, int include_virtuals_p)
5720 {
5721 tree result = size_zero_node;
5722 vec<tree, va_gc> *vbases;
5723 tree binfo;
5724 tree base_binfo;
5725 tree offset;
5726 int i;
5727
5728 for (binfo = TYPE_BINFO (t), i = 0;
5729 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5730 {
5731 if (!include_virtuals_p
5732 && BINFO_VIRTUAL_P (base_binfo)
5733 && (!BINFO_PRIMARY_P (base_binfo)
5734 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5735 continue;
5736
5737 offset = end_of_base (base_binfo);
5738 if (INT_CST_LT_UNSIGNED (result, offset))
5739 result = offset;
5740 }
5741
5742 /* G++ 3.2 did not check indirect virtual bases. */
5743 if (abi_version_at_least (2) && include_virtuals_p)
5744 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5745 vec_safe_iterate (vbases, i, &base_binfo); i++)
5746 {
5747 offset = end_of_base (base_binfo);
5748 if (INT_CST_LT_UNSIGNED (result, offset))
5749 result = offset;
5750 }
5751
5752 return result;
5753 }
5754
5755 /* Warn about bases of T that are inaccessible because they are
5756 ambiguous. For example:
5757
5758 struct S {};
5759 struct T : public S {};
5760 struct U : public S, public T {};
5761
5762 Here, `(S*) new U' is not allowed because there are two `S'
5763 subobjects of U. */
5764
5765 static void
5766 warn_about_ambiguous_bases (tree t)
5767 {
5768 int i;
5769 vec<tree, va_gc> *vbases;
5770 tree basetype;
5771 tree binfo;
5772 tree base_binfo;
5773
5774 /* If there are no repeated bases, nothing can be ambiguous. */
5775 if (!CLASSTYPE_REPEATED_BASE_P (t))
5776 return;
5777
5778 /* Check direct bases. */
5779 for (binfo = TYPE_BINFO (t), i = 0;
5780 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5781 {
5782 basetype = BINFO_TYPE (base_binfo);
5783
5784 if (!uniquely_derived_from_p (basetype, t))
5785 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5786 basetype, t);
5787 }
5788
5789 /* Check for ambiguous virtual bases. */
5790 if (extra_warnings)
5791 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5792 vec_safe_iterate (vbases, i, &binfo); i++)
5793 {
5794 basetype = BINFO_TYPE (binfo);
5795
5796 if (!uniquely_derived_from_p (basetype, t))
5797 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5798 "to ambiguity", basetype, t);
5799 }
5800 }
5801
5802 /* Compare two INTEGER_CSTs K1 and K2. */
5803
5804 static int
5805 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5806 {
5807 return tree_int_cst_compare ((tree) k1, (tree) k2);
5808 }
5809
5810 /* Increase the size indicated in RLI to account for empty classes
5811 that are "off the end" of the class. */
5812
5813 static void
5814 include_empty_classes (record_layout_info rli)
5815 {
5816 tree eoc;
5817 tree rli_size;
5818
5819 /* It might be the case that we grew the class to allocate a
5820 zero-sized base class. That won't be reflected in RLI, yet,
5821 because we are willing to overlay multiple bases at the same
5822 offset. However, now we need to make sure that RLI is big enough
5823 to reflect the entire class. */
5824 eoc = end_of_class (rli->t,
5825 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5826 rli_size = rli_size_unit_so_far (rli);
5827 if (TREE_CODE (rli_size) == INTEGER_CST
5828 && INT_CST_LT_UNSIGNED (rli_size, eoc))
5829 {
5830 if (!abi_version_at_least (2))
5831 /* In version 1 of the ABI, the size of a class that ends with
5832 a bitfield was not rounded up to a whole multiple of a
5833 byte. Because rli_size_unit_so_far returns only the number
5834 of fully allocated bytes, any extra bits were not included
5835 in the size. */
5836 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
5837 else
5838 /* The size should have been rounded to a whole byte. */
5839 gcc_assert (tree_int_cst_equal
5840 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5841 rli->bitpos
5842 = size_binop (PLUS_EXPR,
5843 rli->bitpos,
5844 size_binop (MULT_EXPR,
5845 convert (bitsizetype,
5846 size_binop (MINUS_EXPR,
5847 eoc, rli_size)),
5848 bitsize_int (BITS_PER_UNIT)));
5849 normalize_rli (rli);
5850 }
5851 }
5852
5853 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5854 BINFO_OFFSETs for all of the base-classes. Position the vtable
5855 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5856
5857 static void
5858 layout_class_type (tree t, tree *virtuals_p)
5859 {
5860 tree non_static_data_members;
5861 tree field;
5862 tree vptr;
5863 record_layout_info rli;
5864 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
5865 types that appear at that offset. */
5866 splay_tree empty_base_offsets;
5867 /* True if the last field laid out was a bit-field. */
5868 bool last_field_was_bitfield = false;
5869 /* The location at which the next field should be inserted. */
5870 tree *next_field;
5871 /* T, as a base class. */
5872 tree base_t;
5873
5874 /* Keep track of the first non-static data member. */
5875 non_static_data_members = TYPE_FIELDS (t);
5876
5877 /* Start laying out the record. */
5878 rli = start_record_layout (t);
5879
5880 /* Mark all the primary bases in the hierarchy. */
5881 determine_primary_bases (t);
5882
5883 /* Create a pointer to our virtual function table. */
5884 vptr = create_vtable_ptr (t, virtuals_p);
5885
5886 /* The vptr is always the first thing in the class. */
5887 if (vptr)
5888 {
5889 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
5890 TYPE_FIELDS (t) = vptr;
5891 next_field = &DECL_CHAIN (vptr);
5892 place_field (rli, vptr);
5893 }
5894 else
5895 next_field = &TYPE_FIELDS (t);
5896
5897 /* Build FIELD_DECLs for all of the non-virtual base-types. */
5898 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5899 NULL, NULL);
5900 build_base_fields (rli, empty_base_offsets, next_field);
5901
5902 /* Layout the non-static data members. */
5903 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
5904 {
5905 tree type;
5906 tree padding;
5907
5908 /* We still pass things that aren't non-static data members to
5909 the back end, in case it wants to do something with them. */
5910 if (TREE_CODE (field) != FIELD_DECL)
5911 {
5912 place_field (rli, field);
5913 /* If the static data member has incomplete type, keep track
5914 of it so that it can be completed later. (The handling
5915 of pending statics in finish_record_layout is
5916 insufficient; consider:
5917
5918 struct S1;
5919 struct S2 { static S1 s1; };
5920
5921 At this point, finish_record_layout will be called, but
5922 S1 is still incomplete.) */
5923 if (VAR_P (field))
5924 {
5925 maybe_register_incomplete_var (field);
5926 /* The visibility of static data members is determined
5927 at their point of declaration, not their point of
5928 definition. */
5929 determine_visibility (field);
5930 }
5931 continue;
5932 }
5933
5934 type = TREE_TYPE (field);
5935 if (type == error_mark_node)
5936 continue;
5937
5938 padding = NULL_TREE;
5939
5940 /* If this field is a bit-field whose width is greater than its
5941 type, then there are some special rules for allocating
5942 it. */
5943 if (DECL_C_BIT_FIELD (field)
5944 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
5945 {
5946 unsigned int itk;
5947 tree integer_type;
5948 bool was_unnamed_p = false;
5949 /* We must allocate the bits as if suitably aligned for the
5950 longest integer type that fits in this many bits. type
5951 of the field. Then, we are supposed to use the left over
5952 bits as additional padding. */
5953 for (itk = itk_char; itk != itk_none; ++itk)
5954 if (integer_types[itk] != NULL_TREE
5955 && (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE),
5956 TYPE_SIZE (integer_types[itk]))
5957 || INT_CST_LT (DECL_SIZE (field),
5958 TYPE_SIZE (integer_types[itk]))))
5959 break;
5960
5961 /* ITK now indicates a type that is too large for the
5962 field. We have to back up by one to find the largest
5963 type that fits. */
5964 do
5965 {
5966 --itk;
5967 integer_type = integer_types[itk];
5968 } while (itk > 0 && integer_type == NULL_TREE);
5969
5970 /* Figure out how much additional padding is required. GCC
5971 3.2 always created a padding field, even if it had zero
5972 width. */
5973 if (!abi_version_at_least (2)
5974 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
5975 {
5976 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
5977 /* In a union, the padding field must have the full width
5978 of the bit-field; all fields start at offset zero. */
5979 padding = DECL_SIZE (field);
5980 else
5981 {
5982 if (TREE_CODE (t) == UNION_TYPE)
5983 warning (OPT_Wabi, "size assigned to %qT may not be "
5984 "ABI-compliant and may change in a future "
5985 "version of GCC",
5986 t);
5987 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
5988 TYPE_SIZE (integer_type));
5989 }
5990 }
5991 #ifdef PCC_BITFIELD_TYPE_MATTERS
5992 /* An unnamed bitfield does not normally affect the
5993 alignment of the containing class on a target where
5994 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
5995 make any exceptions for unnamed bitfields when the
5996 bitfields are longer than their types. Therefore, we
5997 temporarily give the field a name. */
5998 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
5999 {
6000 was_unnamed_p = true;
6001 DECL_NAME (field) = make_anon_name ();
6002 }
6003 #endif
6004 DECL_SIZE (field) = TYPE_SIZE (integer_type);
6005 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
6006 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
6007 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6008 empty_base_offsets);
6009 if (was_unnamed_p)
6010 DECL_NAME (field) = NULL_TREE;
6011 /* Now that layout has been performed, set the size of the
6012 field to the size of its declared type; the rest of the
6013 field is effectively invisible. */
6014 DECL_SIZE (field) = TYPE_SIZE (type);
6015 /* We must also reset the DECL_MODE of the field. */
6016 if (abi_version_at_least (2))
6017 DECL_MODE (field) = TYPE_MODE (type);
6018 else if (warn_abi
6019 && DECL_MODE (field) != TYPE_MODE (type))
6020 /* Versions of G++ before G++ 3.4 did not reset the
6021 DECL_MODE. */
6022 warning (OPT_Wabi,
6023 "the offset of %qD may not be ABI-compliant and may "
6024 "change in a future version of GCC", field);
6025 }
6026 else
6027 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6028 empty_base_offsets);
6029
6030 /* Remember the location of any empty classes in FIELD. */
6031 if (abi_version_at_least (2))
6032 record_subobject_offsets (TREE_TYPE (field),
6033 byte_position(field),
6034 empty_base_offsets,
6035 /*is_data_member=*/true);
6036
6037 /* If a bit-field does not immediately follow another bit-field,
6038 and yet it starts in the middle of a byte, we have failed to
6039 comply with the ABI. */
6040 if (warn_abi
6041 && DECL_C_BIT_FIELD (field)
6042 /* The TREE_NO_WARNING flag gets set by Objective-C when
6043 laying out an Objective-C class. The ObjC ABI differs
6044 from the C++ ABI, and so we do not want a warning
6045 here. */
6046 && !TREE_NO_WARNING (field)
6047 && !last_field_was_bitfield
6048 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6049 DECL_FIELD_BIT_OFFSET (field),
6050 bitsize_unit_node)))
6051 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
6052 "change in a future version of GCC", field);
6053
6054 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
6055 offset of the field. */
6056 if (warn_abi
6057 && !abi_version_at_least (2)
6058 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
6059 byte_position (field))
6060 && contains_empty_class_p (TREE_TYPE (field)))
6061 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
6062 "classes to be placed at different locations in a "
6063 "future version of GCC", field);
6064
6065 /* The middle end uses the type of expressions to determine the
6066 possible range of expression values. In order to optimize
6067 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6068 must be made aware of the width of "i", via its type.
6069
6070 Because C++ does not have integer types of arbitrary width,
6071 we must (for the purposes of the front end) convert from the
6072 type assigned here to the declared type of the bitfield
6073 whenever a bitfield expression is used as an rvalue.
6074 Similarly, when assigning a value to a bitfield, the value
6075 must be converted to the type given the bitfield here. */
6076 if (DECL_C_BIT_FIELD (field))
6077 {
6078 unsigned HOST_WIDE_INT width;
6079 tree ftype = TREE_TYPE (field);
6080 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
6081 if (width != TYPE_PRECISION (ftype))
6082 {
6083 TREE_TYPE (field)
6084 = c_build_bitfield_integer_type (width,
6085 TYPE_UNSIGNED (ftype));
6086 TREE_TYPE (field)
6087 = cp_build_qualified_type (TREE_TYPE (field),
6088 cp_type_quals (ftype));
6089 }
6090 }
6091
6092 /* If we needed additional padding after this field, add it
6093 now. */
6094 if (padding)
6095 {
6096 tree padding_field;
6097
6098 padding_field = build_decl (input_location,
6099 FIELD_DECL,
6100 NULL_TREE,
6101 char_type_node);
6102 DECL_BIT_FIELD (padding_field) = 1;
6103 DECL_SIZE (padding_field) = padding;
6104 DECL_CONTEXT (padding_field) = t;
6105 DECL_ARTIFICIAL (padding_field) = 1;
6106 DECL_IGNORED_P (padding_field) = 1;
6107 layout_nonempty_base_or_field (rli, padding_field,
6108 NULL_TREE,
6109 empty_base_offsets);
6110 }
6111
6112 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6113 }
6114
6115 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
6116 {
6117 /* Make sure that we are on a byte boundary so that the size of
6118 the class without virtual bases will always be a round number
6119 of bytes. */
6120 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6121 normalize_rli (rli);
6122 }
6123
6124 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
6125 padding. */
6126 if (!abi_version_at_least (2))
6127 include_empty_classes(rli);
6128
6129 /* Delete all zero-width bit-fields from the list of fields. Now
6130 that the type is laid out they are no longer important. */
6131 remove_zero_width_bit_fields (t);
6132
6133 /* Create the version of T used for virtual bases. We do not use
6134 make_class_type for this version; this is an artificial type. For
6135 a POD type, we just reuse T. */
6136 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6137 {
6138 base_t = make_node (TREE_CODE (t));
6139
6140 /* Set the size and alignment for the new type. In G++ 3.2, all
6141 empty classes were considered to have size zero when used as
6142 base classes. */
6143 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
6144 {
6145 TYPE_SIZE (base_t) = bitsize_zero_node;
6146 TYPE_SIZE_UNIT (base_t) = size_zero_node;
6147 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
6148 warning (OPT_Wabi,
6149 "layout of classes derived from empty class %qT "
6150 "may change in a future version of GCC",
6151 t);
6152 }
6153 else
6154 {
6155 tree eoc;
6156
6157 /* If the ABI version is not at least two, and the last
6158 field was a bit-field, RLI may not be on a byte
6159 boundary. In particular, rli_size_unit_so_far might
6160 indicate the last complete byte, while rli_size_so_far
6161 indicates the total number of bits used. Therefore,
6162 rli_size_so_far, rather than rli_size_unit_so_far, is
6163 used to compute TYPE_SIZE_UNIT. */
6164 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6165 TYPE_SIZE_UNIT (base_t)
6166 = size_binop (MAX_EXPR,
6167 convert (sizetype,
6168 size_binop (CEIL_DIV_EXPR,
6169 rli_size_so_far (rli),
6170 bitsize_int (BITS_PER_UNIT))),
6171 eoc);
6172 TYPE_SIZE (base_t)
6173 = size_binop (MAX_EXPR,
6174 rli_size_so_far (rli),
6175 size_binop (MULT_EXPR,
6176 convert (bitsizetype, eoc),
6177 bitsize_int (BITS_PER_UNIT)));
6178 }
6179 TYPE_ALIGN (base_t) = rli->record_align;
6180 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6181
6182 /* Copy the fields from T. */
6183 next_field = &TYPE_FIELDS (base_t);
6184 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6185 if (TREE_CODE (field) == FIELD_DECL)
6186 {
6187 *next_field = build_decl (input_location,
6188 FIELD_DECL,
6189 DECL_NAME (field),
6190 TREE_TYPE (field));
6191 DECL_CONTEXT (*next_field) = base_t;
6192 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6193 DECL_FIELD_BIT_OFFSET (*next_field)
6194 = DECL_FIELD_BIT_OFFSET (field);
6195 DECL_SIZE (*next_field) = DECL_SIZE (field);
6196 DECL_MODE (*next_field) = DECL_MODE (field);
6197 next_field = &DECL_CHAIN (*next_field);
6198 }
6199
6200 /* Record the base version of the type. */
6201 CLASSTYPE_AS_BASE (t) = base_t;
6202 TYPE_CONTEXT (base_t) = t;
6203 }
6204 else
6205 CLASSTYPE_AS_BASE (t) = t;
6206
6207 /* Every empty class contains an empty class. */
6208 if (CLASSTYPE_EMPTY_P (t))
6209 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6210
6211 /* Set the TYPE_DECL for this type to contain the right
6212 value for DECL_OFFSET, so that we can use it as part
6213 of a COMPONENT_REF for multiple inheritance. */
6214 layout_decl (TYPE_MAIN_DECL (t), 0);
6215
6216 /* Now fix up any virtual base class types that we left lying
6217 around. We must get these done before we try to lay out the
6218 virtual function table. As a side-effect, this will remove the
6219 base subobject fields. */
6220 layout_virtual_bases (rli, empty_base_offsets);
6221
6222 /* Make sure that empty classes are reflected in RLI at this
6223 point. */
6224 include_empty_classes(rli);
6225
6226 /* Make sure not to create any structures with zero size. */
6227 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6228 place_field (rli,
6229 build_decl (input_location,
6230 FIELD_DECL, NULL_TREE, char_type_node));
6231
6232 /* If this is a non-POD, declaring it packed makes a difference to how it
6233 can be used as a field; don't let finalize_record_size undo it. */
6234 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6235 rli->packed_maybe_necessary = true;
6236
6237 /* Let the back end lay out the type. */
6238 finish_record_layout (rli, /*free_p=*/true);
6239
6240 if (TYPE_SIZE_UNIT (t)
6241 && TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST
6242 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t))
6243 && !valid_constant_size_p (TYPE_SIZE_UNIT (t)))
6244 error ("type %qT is too large", t);
6245
6246 /* Warn about bases that can't be talked about due to ambiguity. */
6247 warn_about_ambiguous_bases (t);
6248
6249 /* Now that we're done with layout, give the base fields the real types. */
6250 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6251 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6252 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6253
6254 /* Clean up. */
6255 splay_tree_delete (empty_base_offsets);
6256
6257 if (CLASSTYPE_EMPTY_P (t)
6258 && tree_int_cst_lt (sizeof_biggest_empty_class,
6259 TYPE_SIZE_UNIT (t)))
6260 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6261 }
6262
6263 /* Determine the "key method" for the class type indicated by TYPE,
6264 and set CLASSTYPE_KEY_METHOD accordingly. */
6265
6266 void
6267 determine_key_method (tree type)
6268 {
6269 tree method;
6270
6271 if (TYPE_FOR_JAVA (type)
6272 || processing_template_decl
6273 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6274 || CLASSTYPE_INTERFACE_KNOWN (type))
6275 return;
6276
6277 /* The key method is the first non-pure virtual function that is not
6278 inline at the point of class definition. On some targets the
6279 key function may not be inline; those targets should not call
6280 this function until the end of the translation unit. */
6281 for (method = TYPE_METHODS (type); method != NULL_TREE;
6282 method = DECL_CHAIN (method))
6283 if (DECL_VINDEX (method) != NULL_TREE
6284 && ! DECL_DECLARED_INLINE_P (method)
6285 && ! DECL_PURE_VIRTUAL_P (method))
6286 {
6287 CLASSTYPE_KEY_METHOD (type) = method;
6288 break;
6289 }
6290
6291 return;
6292 }
6293
6294
6295 /* Allocate and return an instance of struct sorted_fields_type with
6296 N fields. */
6297
6298 static struct sorted_fields_type *
6299 sorted_fields_type_new (int n)
6300 {
6301 struct sorted_fields_type *sft;
6302 sft = ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type)
6303 + n * sizeof (tree));
6304 sft->len = n;
6305
6306 return sft;
6307 }
6308
6309
6310 /* Perform processing required when the definition of T (a class type)
6311 is complete. */
6312
6313 void
6314 finish_struct_1 (tree t)
6315 {
6316 tree x;
6317 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6318 tree virtuals = NULL_TREE;
6319
6320 if (COMPLETE_TYPE_P (t))
6321 {
6322 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6323 error ("redefinition of %q#T", t);
6324 popclass ();
6325 return;
6326 }
6327
6328 /* If this type was previously laid out as a forward reference,
6329 make sure we lay it out again. */
6330 TYPE_SIZE (t) = NULL_TREE;
6331 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6332
6333 /* Make assumptions about the class; we'll reset the flags if
6334 necessary. */
6335 CLASSTYPE_EMPTY_P (t) = 1;
6336 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6337 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6338 CLASSTYPE_LITERAL_P (t) = true;
6339
6340 /* Do end-of-class semantic processing: checking the validity of the
6341 bases and members and add implicitly generated methods. */
6342 check_bases_and_members (t);
6343
6344 /* Find the key method. */
6345 if (TYPE_CONTAINS_VPTR_P (t))
6346 {
6347 /* The Itanium C++ ABI permits the key method to be chosen when
6348 the class is defined -- even though the key method so
6349 selected may later turn out to be an inline function. On
6350 some systems (such as ARM Symbian OS) the key method cannot
6351 be determined until the end of the translation unit. On such
6352 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6353 will cause the class to be added to KEYED_CLASSES. Then, in
6354 finish_file we will determine the key method. */
6355 if (targetm.cxx.key_method_may_be_inline ())
6356 determine_key_method (t);
6357
6358 /* If a polymorphic class has no key method, we may emit the vtable
6359 in every translation unit where the class definition appears. */
6360 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6361 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6362 }
6363
6364 /* Layout the class itself. */
6365 layout_class_type (t, &virtuals);
6366 if (CLASSTYPE_AS_BASE (t) != t)
6367 /* We use the base type for trivial assignments, and hence it
6368 needs a mode. */
6369 compute_record_mode (CLASSTYPE_AS_BASE (t));
6370
6371 virtuals = modify_all_vtables (t, nreverse (virtuals));
6372
6373 /* If necessary, create the primary vtable for this class. */
6374 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6375 {
6376 /* We must enter these virtuals into the table. */
6377 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6378 build_primary_vtable (NULL_TREE, t);
6379 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6380 /* Here we know enough to change the type of our virtual
6381 function table, but we will wait until later this function. */
6382 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6383
6384 /* If we're warning about ABI tags, check the types of the new
6385 virtual functions. */
6386 if (warn_abi_tag)
6387 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6388 check_abi_tags (t, TREE_VALUE (v));
6389 }
6390
6391 if (TYPE_CONTAINS_VPTR_P (t))
6392 {
6393 int vindex;
6394 tree fn;
6395
6396 if (BINFO_VTABLE (TYPE_BINFO (t)))
6397 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6398 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6399 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6400
6401 /* Add entries for virtual functions introduced by this class. */
6402 BINFO_VIRTUALS (TYPE_BINFO (t))
6403 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6404
6405 /* Set DECL_VINDEX for all functions declared in this class. */
6406 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6407 fn;
6408 fn = TREE_CHAIN (fn),
6409 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6410 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6411 {
6412 tree fndecl = BV_FN (fn);
6413
6414 if (DECL_THUNK_P (fndecl))
6415 /* A thunk. We should never be calling this entry directly
6416 from this vtable -- we'd use the entry for the non
6417 thunk base function. */
6418 DECL_VINDEX (fndecl) = NULL_TREE;
6419 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6420 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6421 }
6422 }
6423
6424 finish_struct_bits (t);
6425 set_method_tm_attributes (t);
6426
6427 /* Complete the rtl for any static member objects of the type we're
6428 working on. */
6429 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6430 if (VAR_P (x) && TREE_STATIC (x)
6431 && TREE_TYPE (x) != error_mark_node
6432 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6433 DECL_MODE (x) = TYPE_MODE (t);
6434
6435 /* Done with FIELDS...now decide whether to sort these for
6436 faster lookups later.
6437
6438 We use a small number because most searches fail (succeeding
6439 ultimately as the search bores through the inheritance
6440 hierarchy), and we want this failure to occur quickly. */
6441
6442 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6443
6444 /* Complain if one of the field types requires lower visibility. */
6445 constrain_class_visibility (t);
6446
6447 /* Make the rtl for any new vtables we have created, and unmark
6448 the base types we marked. */
6449 finish_vtbls (t);
6450
6451 /* Build the VTT for T. */
6452 build_vtt (t);
6453
6454 /* This warning does not make sense for Java classes, since they
6455 cannot have destructors. */
6456 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
6457 {
6458 tree dtor;
6459
6460 dtor = CLASSTYPE_DESTRUCTORS (t);
6461 if (/* An implicitly declared destructor is always public. And,
6462 if it were virtual, we would have created it by now. */
6463 !dtor
6464 || (!DECL_VINDEX (dtor)
6465 && (/* public non-virtual */
6466 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
6467 || (/* non-public non-virtual with friends */
6468 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
6469 && (CLASSTYPE_FRIEND_CLASSES (t)
6470 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
6471 warning (OPT_Wnon_virtual_dtor,
6472 "%q#T has virtual functions and accessible"
6473 " non-virtual destructor", t);
6474 }
6475
6476 complete_vars (t);
6477
6478 if (warn_overloaded_virtual)
6479 warn_hidden (t);
6480
6481 /* Class layout, assignment of virtual table slots, etc., is now
6482 complete. Give the back end a chance to tweak the visibility of
6483 the class or perform any other required target modifications. */
6484 targetm.cxx.adjust_class_at_definition (t);
6485
6486 maybe_suppress_debug_info (t);
6487
6488 dump_class_hierarchy (t);
6489
6490 /* Finish debugging output for this type. */
6491 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6492
6493 if (TYPE_TRANSPARENT_AGGR (t))
6494 {
6495 tree field = first_field (t);
6496 if (field == NULL_TREE || error_operand_p (field))
6497 {
6498 error ("type transparent %q#T does not have any fields", t);
6499 TYPE_TRANSPARENT_AGGR (t) = 0;
6500 }
6501 else if (DECL_ARTIFICIAL (field))
6502 {
6503 if (DECL_FIELD_IS_BASE (field))
6504 error ("type transparent class %qT has base classes", t);
6505 else
6506 {
6507 gcc_checking_assert (DECL_VIRTUAL_P (field));
6508 error ("type transparent class %qT has virtual functions", t);
6509 }
6510 TYPE_TRANSPARENT_AGGR (t) = 0;
6511 }
6512 else if (TYPE_MODE (t) != DECL_MODE (field))
6513 {
6514 error ("type transparent %q#T cannot be made transparent because "
6515 "the type of the first field has a different ABI from the "
6516 "class overall", t);
6517 TYPE_TRANSPARENT_AGGR (t) = 0;
6518 }
6519 }
6520 }
6521
6522 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6523 equal to THRESHOLD or greater than THRESHOLD. */
6524
6525 static void
6526 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6527 {
6528 int n_fields = count_fields (fields);
6529 if (n_fields >= threshold)
6530 {
6531 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6532 add_fields_to_record_type (fields, field_vec, 0);
6533 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6534 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6535 }
6536 }
6537
6538 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6539
6540 void
6541 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6542 {
6543 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6544 if (sorted_fields)
6545 {
6546 int i;
6547 int n_fields
6548 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6549 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6550
6551 for (i = 0; i < sorted_fields->len; ++i)
6552 field_vec->elts[i] = sorted_fields->elts[i];
6553
6554 add_enum_fields_to_record_type (enumtype, field_vec,
6555 sorted_fields->len);
6556 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6557 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6558 }
6559 }
6560
6561 /* When T was built up, the member declarations were added in reverse
6562 order. Rearrange them to declaration order. */
6563
6564 void
6565 unreverse_member_declarations (tree t)
6566 {
6567 tree next;
6568 tree prev;
6569 tree x;
6570
6571 /* The following lists are all in reverse order. Put them in
6572 declaration order now. */
6573 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6574 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6575
6576 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6577 reverse order, so we can't just use nreverse. */
6578 prev = NULL_TREE;
6579 for (x = TYPE_FIELDS (t);
6580 x && TREE_CODE (x) != TYPE_DECL;
6581 x = next)
6582 {
6583 next = DECL_CHAIN (x);
6584 DECL_CHAIN (x) = prev;
6585 prev = x;
6586 }
6587 if (prev)
6588 {
6589 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6590 if (prev)
6591 TYPE_FIELDS (t) = prev;
6592 }
6593 }
6594
6595 tree
6596 finish_struct (tree t, tree attributes)
6597 {
6598 location_t saved_loc = input_location;
6599
6600 /* Now that we've got all the field declarations, reverse everything
6601 as necessary. */
6602 unreverse_member_declarations (t);
6603
6604 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6605
6606 /* Nadger the current location so that diagnostics point to the start of
6607 the struct, not the end. */
6608 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6609
6610 if (processing_template_decl)
6611 {
6612 tree x;
6613
6614 finish_struct_methods (t);
6615 TYPE_SIZE (t) = bitsize_zero_node;
6616 TYPE_SIZE_UNIT (t) = size_zero_node;
6617
6618 /* We need to emit an error message if this type was used as a parameter
6619 and it is an abstract type, even if it is a template. We construct
6620 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6621 account and we call complete_vars with this type, which will check
6622 the PARM_DECLS. Note that while the type is being defined,
6623 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6624 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6625 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6626 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6627 if (DECL_PURE_VIRTUAL_P (x))
6628 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6629 complete_vars (t);
6630 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6631 an enclosing scope is a template class, so that this function be
6632 found by lookup_fnfields_1 when the using declaration is not
6633 instantiated yet. */
6634 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6635 if (TREE_CODE (x) == USING_DECL)
6636 {
6637 tree fn = strip_using_decl (x);
6638 if (is_overloaded_fn (fn))
6639 for (; fn; fn = OVL_NEXT (fn))
6640 add_method (t, OVL_CURRENT (fn), x);
6641 }
6642
6643 /* Remember current #pragma pack value. */
6644 TYPE_PRECISION (t) = maximum_field_alignment;
6645
6646 /* Fix up any variants we've already built. */
6647 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6648 {
6649 TYPE_SIZE (x) = TYPE_SIZE (t);
6650 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6651 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6652 TYPE_METHODS (x) = TYPE_METHODS (t);
6653 }
6654 }
6655 else
6656 finish_struct_1 (t);
6657
6658 input_location = saved_loc;
6659
6660 TYPE_BEING_DEFINED (t) = 0;
6661
6662 if (current_class_type)
6663 popclass ();
6664 else
6665 error ("trying to finish struct, but kicked out due to previous parse errors");
6666
6667 if (processing_template_decl && at_function_scope_p ()
6668 /* Lambdas are defined by the LAMBDA_EXPR. */
6669 && !LAMBDA_TYPE_P (t))
6670 add_stmt (build_min (TAG_DEFN, t));
6671
6672 return t;
6673 }
6674 \f
6675 /* Hash table to avoid endless recursion when handling references. */
6676 static hash_table <pointer_hash <tree_node> > fixed_type_or_null_ref_ht;
6677
6678 /* Return the dynamic type of INSTANCE, if known.
6679 Used to determine whether the virtual function table is needed
6680 or not.
6681
6682 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6683 of our knowledge of its type. *NONNULL should be initialized
6684 before this function is called. */
6685
6686 static tree
6687 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6688 {
6689 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6690
6691 switch (TREE_CODE (instance))
6692 {
6693 case INDIRECT_REF:
6694 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6695 return NULL_TREE;
6696 else
6697 return RECUR (TREE_OPERAND (instance, 0));
6698
6699 case CALL_EXPR:
6700 /* This is a call to a constructor, hence it's never zero. */
6701 if (TREE_HAS_CONSTRUCTOR (instance))
6702 {
6703 if (nonnull)
6704 *nonnull = 1;
6705 return TREE_TYPE (instance);
6706 }
6707 return NULL_TREE;
6708
6709 case SAVE_EXPR:
6710 /* This is a call to a constructor, hence it's never zero. */
6711 if (TREE_HAS_CONSTRUCTOR (instance))
6712 {
6713 if (nonnull)
6714 *nonnull = 1;
6715 return TREE_TYPE (instance);
6716 }
6717 return RECUR (TREE_OPERAND (instance, 0));
6718
6719 case POINTER_PLUS_EXPR:
6720 case PLUS_EXPR:
6721 case MINUS_EXPR:
6722 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6723 return RECUR (TREE_OPERAND (instance, 0));
6724 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6725 /* Propagate nonnull. */
6726 return RECUR (TREE_OPERAND (instance, 0));
6727
6728 return NULL_TREE;
6729
6730 CASE_CONVERT:
6731 return RECUR (TREE_OPERAND (instance, 0));
6732
6733 case ADDR_EXPR:
6734 instance = TREE_OPERAND (instance, 0);
6735 if (nonnull)
6736 {
6737 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6738 with a real object -- given &p->f, p can still be null. */
6739 tree t = get_base_address (instance);
6740 /* ??? Probably should check DECL_WEAK here. */
6741 if (t && DECL_P (t))
6742 *nonnull = 1;
6743 }
6744 return RECUR (instance);
6745
6746 case COMPONENT_REF:
6747 /* If this component is really a base class reference, then the field
6748 itself isn't definitive. */
6749 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6750 return RECUR (TREE_OPERAND (instance, 0));
6751 return RECUR (TREE_OPERAND (instance, 1));
6752
6753 case VAR_DECL:
6754 case FIELD_DECL:
6755 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6756 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6757 {
6758 if (nonnull)
6759 *nonnull = 1;
6760 return TREE_TYPE (TREE_TYPE (instance));
6761 }
6762 /* fall through... */
6763 case TARGET_EXPR:
6764 case PARM_DECL:
6765 case RESULT_DECL:
6766 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6767 {
6768 if (nonnull)
6769 *nonnull = 1;
6770 return TREE_TYPE (instance);
6771 }
6772 else if (instance == current_class_ptr)
6773 {
6774 if (nonnull)
6775 *nonnull = 1;
6776
6777 /* if we're in a ctor or dtor, we know our type. If
6778 current_class_ptr is set but we aren't in a function, we're in
6779 an NSDMI (and therefore a constructor). */
6780 if (current_scope () != current_function_decl
6781 || (DECL_LANG_SPECIFIC (current_function_decl)
6782 && (DECL_CONSTRUCTOR_P (current_function_decl)
6783 || DECL_DESTRUCTOR_P (current_function_decl))))
6784 {
6785 if (cdtorp)
6786 *cdtorp = 1;
6787 return TREE_TYPE (TREE_TYPE (instance));
6788 }
6789 }
6790 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6791 {
6792 /* We only need one hash table because it is always left empty. */
6793 if (!fixed_type_or_null_ref_ht.is_created ())
6794 fixed_type_or_null_ref_ht.create (37);
6795
6796 /* Reference variables should be references to objects. */
6797 if (nonnull)
6798 *nonnull = 1;
6799
6800 /* Enter the INSTANCE in a table to prevent recursion; a
6801 variable's initializer may refer to the variable
6802 itself. */
6803 if (VAR_P (instance)
6804 && DECL_INITIAL (instance)
6805 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6806 && !fixed_type_or_null_ref_ht.find (instance))
6807 {
6808 tree type;
6809 tree_node **slot;
6810
6811 slot = fixed_type_or_null_ref_ht.find_slot (instance, INSERT);
6812 *slot = instance;
6813 type = RECUR (DECL_INITIAL (instance));
6814 fixed_type_or_null_ref_ht.remove_elt (instance);
6815
6816 return type;
6817 }
6818 }
6819 return NULL_TREE;
6820
6821 default:
6822 return NULL_TREE;
6823 }
6824 #undef RECUR
6825 }
6826
6827 /* Return nonzero if the dynamic type of INSTANCE is known, and
6828 equivalent to the static type. We also handle the case where
6829 INSTANCE is really a pointer. Return negative if this is a
6830 ctor/dtor. There the dynamic type is known, but this might not be
6831 the most derived base of the original object, and hence virtual
6832 bases may not be laid out according to this type.
6833
6834 Used to determine whether the virtual function table is needed
6835 or not.
6836
6837 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6838 of our knowledge of its type. *NONNULL should be initialized
6839 before this function is called. */
6840
6841 int
6842 resolves_to_fixed_type_p (tree instance, int* nonnull)
6843 {
6844 tree t = TREE_TYPE (instance);
6845 int cdtorp = 0;
6846 tree fixed;
6847
6848 /* processing_template_decl can be false in a template if we're in
6849 fold_non_dependent_expr, but we still want to suppress this check. */
6850 if (in_template_function ())
6851 {
6852 /* In a template we only care about the type of the result. */
6853 if (nonnull)
6854 *nonnull = true;
6855 return true;
6856 }
6857
6858 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6859 if (fixed == NULL_TREE)
6860 return 0;
6861 if (POINTER_TYPE_P (t))
6862 t = TREE_TYPE (t);
6863 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6864 return 0;
6865 return cdtorp ? -1 : 1;
6866 }
6867
6868 \f
6869 void
6870 init_class_processing (void)
6871 {
6872 current_class_depth = 0;
6873 current_class_stack_size = 10;
6874 current_class_stack
6875 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6876 vec_alloc (local_classes, 8);
6877 sizeof_biggest_empty_class = size_zero_node;
6878
6879 ridpointers[(int) RID_PUBLIC] = access_public_node;
6880 ridpointers[(int) RID_PRIVATE] = access_private_node;
6881 ridpointers[(int) RID_PROTECTED] = access_protected_node;
6882 }
6883
6884 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
6885
6886 static void
6887 restore_class_cache (void)
6888 {
6889 tree type;
6890
6891 /* We are re-entering the same class we just left, so we don't
6892 have to search the whole inheritance matrix to find all the
6893 decls to bind again. Instead, we install the cached
6894 class_shadowed list and walk through it binding names. */
6895 push_binding_level (previous_class_level);
6896 class_binding_level = previous_class_level;
6897 /* Restore IDENTIFIER_TYPE_VALUE. */
6898 for (type = class_binding_level->type_shadowed;
6899 type;
6900 type = TREE_CHAIN (type))
6901 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
6902 }
6903
6904 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
6905 appropriate for TYPE.
6906
6907 So that we may avoid calls to lookup_name, we cache the _TYPE
6908 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
6909
6910 For multiple inheritance, we perform a two-pass depth-first search
6911 of the type lattice. */
6912
6913 void
6914 pushclass (tree type)
6915 {
6916 class_stack_node_t csn;
6917
6918 type = TYPE_MAIN_VARIANT (type);
6919
6920 /* Make sure there is enough room for the new entry on the stack. */
6921 if (current_class_depth + 1 >= current_class_stack_size)
6922 {
6923 current_class_stack_size *= 2;
6924 current_class_stack
6925 = XRESIZEVEC (struct class_stack_node, current_class_stack,
6926 current_class_stack_size);
6927 }
6928
6929 /* Insert a new entry on the class stack. */
6930 csn = current_class_stack + current_class_depth;
6931 csn->name = current_class_name;
6932 csn->type = current_class_type;
6933 csn->access = current_access_specifier;
6934 csn->names_used = 0;
6935 csn->hidden = 0;
6936 current_class_depth++;
6937
6938 /* Now set up the new type. */
6939 current_class_name = TYPE_NAME (type);
6940 if (TREE_CODE (current_class_name) == TYPE_DECL)
6941 current_class_name = DECL_NAME (current_class_name);
6942 current_class_type = type;
6943
6944 /* By default, things in classes are private, while things in
6945 structures or unions are public. */
6946 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
6947 ? access_private_node
6948 : access_public_node);
6949
6950 if (previous_class_level
6951 && type != previous_class_level->this_entity
6952 && current_class_depth == 1)
6953 {
6954 /* Forcibly remove any old class remnants. */
6955 invalidate_class_lookup_cache ();
6956 }
6957
6958 if (!previous_class_level
6959 || type != previous_class_level->this_entity
6960 || current_class_depth > 1)
6961 pushlevel_class ();
6962 else
6963 restore_class_cache ();
6964 }
6965
6966 /* When we exit a toplevel class scope, we save its binding level so
6967 that we can restore it quickly. Here, we've entered some other
6968 class, so we must invalidate our cache. */
6969
6970 void
6971 invalidate_class_lookup_cache (void)
6972 {
6973 previous_class_level = NULL;
6974 }
6975
6976 /* Get out of the current class scope. If we were in a class scope
6977 previously, that is the one popped to. */
6978
6979 void
6980 popclass (void)
6981 {
6982 poplevel_class ();
6983
6984 current_class_depth--;
6985 current_class_name = current_class_stack[current_class_depth].name;
6986 current_class_type = current_class_stack[current_class_depth].type;
6987 current_access_specifier = current_class_stack[current_class_depth].access;
6988 if (current_class_stack[current_class_depth].names_used)
6989 splay_tree_delete (current_class_stack[current_class_depth].names_used);
6990 }
6991
6992 /* Mark the top of the class stack as hidden. */
6993
6994 void
6995 push_class_stack (void)
6996 {
6997 if (current_class_depth)
6998 ++current_class_stack[current_class_depth - 1].hidden;
6999 }
7000
7001 /* Mark the top of the class stack as un-hidden. */
7002
7003 void
7004 pop_class_stack (void)
7005 {
7006 if (current_class_depth)
7007 --current_class_stack[current_class_depth - 1].hidden;
7008 }
7009
7010 /* Returns 1 if the class type currently being defined is either T or
7011 a nested type of T. */
7012
7013 bool
7014 currently_open_class (tree t)
7015 {
7016 int i;
7017
7018 if (!CLASS_TYPE_P (t))
7019 return false;
7020
7021 t = TYPE_MAIN_VARIANT (t);
7022
7023 /* We start looking from 1 because entry 0 is from global scope,
7024 and has no type. */
7025 for (i = current_class_depth; i > 0; --i)
7026 {
7027 tree c;
7028 if (i == current_class_depth)
7029 c = current_class_type;
7030 else
7031 {
7032 if (current_class_stack[i].hidden)
7033 break;
7034 c = current_class_stack[i].type;
7035 }
7036 if (!c)
7037 continue;
7038 if (same_type_p (c, t))
7039 return true;
7040 }
7041 return false;
7042 }
7043
7044 /* If either current_class_type or one of its enclosing classes are derived
7045 from T, return the appropriate type. Used to determine how we found
7046 something via unqualified lookup. */
7047
7048 tree
7049 currently_open_derived_class (tree t)
7050 {
7051 int i;
7052
7053 /* The bases of a dependent type are unknown. */
7054 if (dependent_type_p (t))
7055 return NULL_TREE;
7056
7057 if (!current_class_type)
7058 return NULL_TREE;
7059
7060 if (DERIVED_FROM_P (t, current_class_type))
7061 return current_class_type;
7062
7063 for (i = current_class_depth - 1; i > 0; --i)
7064 {
7065 if (current_class_stack[i].hidden)
7066 break;
7067 if (DERIVED_FROM_P (t, current_class_stack[i].type))
7068 return current_class_stack[i].type;
7069 }
7070
7071 return NULL_TREE;
7072 }
7073
7074 /* Returns the innermost class type which is not a lambda closure type. */
7075
7076 tree
7077 current_nonlambda_class_type (void)
7078 {
7079 int i;
7080
7081 /* We start looking from 1 because entry 0 is from global scope,
7082 and has no type. */
7083 for (i = current_class_depth; i > 0; --i)
7084 {
7085 tree c;
7086 if (i == current_class_depth)
7087 c = current_class_type;
7088 else
7089 {
7090 if (current_class_stack[i].hidden)
7091 break;
7092 c = current_class_stack[i].type;
7093 }
7094 if (!c)
7095 continue;
7096 if (!LAMBDA_TYPE_P (c))
7097 return c;
7098 }
7099 return NULL_TREE;
7100 }
7101
7102 /* When entering a class scope, all enclosing class scopes' names with
7103 static meaning (static variables, static functions, types and
7104 enumerators) have to be visible. This recursive function calls
7105 pushclass for all enclosing class contexts until global or a local
7106 scope is reached. TYPE is the enclosed class. */
7107
7108 void
7109 push_nested_class (tree type)
7110 {
7111 /* A namespace might be passed in error cases, like A::B:C. */
7112 if (type == NULL_TREE
7113 || !CLASS_TYPE_P (type))
7114 return;
7115
7116 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7117
7118 pushclass (type);
7119 }
7120
7121 /* Undoes a push_nested_class call. */
7122
7123 void
7124 pop_nested_class (void)
7125 {
7126 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7127
7128 popclass ();
7129 if (context && CLASS_TYPE_P (context))
7130 pop_nested_class ();
7131 }
7132
7133 /* Returns the number of extern "LANG" blocks we are nested within. */
7134
7135 int
7136 current_lang_depth (void)
7137 {
7138 return vec_safe_length (current_lang_base);
7139 }
7140
7141 /* Set global variables CURRENT_LANG_NAME to appropriate value
7142 so that behavior of name-mangling machinery is correct. */
7143
7144 void
7145 push_lang_context (tree name)
7146 {
7147 vec_safe_push (current_lang_base, current_lang_name);
7148
7149 if (name == lang_name_cplusplus)
7150 {
7151 current_lang_name = name;
7152 }
7153 else if (name == lang_name_java)
7154 {
7155 current_lang_name = name;
7156 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7157 (See record_builtin_java_type in decl.c.) However, that causes
7158 incorrect debug entries if these types are actually used.
7159 So we re-enable debug output after extern "Java". */
7160 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7161 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7162 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7163 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7164 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7165 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7166 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7167 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7168 }
7169 else if (name == lang_name_c)
7170 {
7171 current_lang_name = name;
7172 }
7173 else
7174 error ("language string %<\"%E\"%> not recognized", name);
7175 }
7176
7177 /* Get out of the current language scope. */
7178
7179 void
7180 pop_lang_context (void)
7181 {
7182 current_lang_name = current_lang_base->pop ();
7183 }
7184 \f
7185 /* Type instantiation routines. */
7186
7187 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7188 matches the TARGET_TYPE. If there is no satisfactory match, return
7189 error_mark_node, and issue an error & warning messages under
7190 control of FLAGS. Permit pointers to member function if FLAGS
7191 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7192 a template-id, and EXPLICIT_TARGS are the explicitly provided
7193 template arguments.
7194
7195 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7196 is the base path used to reference those member functions. If
7197 the address is resolved to a member function, access checks will be
7198 performed and errors issued if appropriate. */
7199
7200 static tree
7201 resolve_address_of_overloaded_function (tree target_type,
7202 tree overload,
7203 tsubst_flags_t flags,
7204 bool template_only,
7205 tree explicit_targs,
7206 tree access_path)
7207 {
7208 /* Here's what the standard says:
7209
7210 [over.over]
7211
7212 If the name is a function template, template argument deduction
7213 is done, and if the argument deduction succeeds, the deduced
7214 arguments are used to generate a single template function, which
7215 is added to the set of overloaded functions considered.
7216
7217 Non-member functions and static member functions match targets of
7218 type "pointer-to-function" or "reference-to-function." Nonstatic
7219 member functions match targets of type "pointer-to-member
7220 function;" the function type of the pointer to member is used to
7221 select the member function from the set of overloaded member
7222 functions. If a nonstatic member function is selected, the
7223 reference to the overloaded function name is required to have the
7224 form of a pointer to member as described in 5.3.1.
7225
7226 If more than one function is selected, any template functions in
7227 the set are eliminated if the set also contains a non-template
7228 function, and any given template function is eliminated if the
7229 set contains a second template function that is more specialized
7230 than the first according to the partial ordering rules 14.5.5.2.
7231 After such eliminations, if any, there shall remain exactly one
7232 selected function. */
7233
7234 int is_ptrmem = 0;
7235 /* We store the matches in a TREE_LIST rooted here. The functions
7236 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7237 interoperability with most_specialized_instantiation. */
7238 tree matches = NULL_TREE;
7239 tree fn;
7240 tree target_fn_type;
7241
7242 /* By the time we get here, we should be seeing only real
7243 pointer-to-member types, not the internal POINTER_TYPE to
7244 METHOD_TYPE representation. */
7245 gcc_assert (!TYPE_PTR_P (target_type)
7246 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7247
7248 gcc_assert (is_overloaded_fn (overload));
7249
7250 /* Check that the TARGET_TYPE is reasonable. */
7251 if (TYPE_PTRFN_P (target_type)
7252 || TYPE_REFFN_P (target_type))
7253 /* This is OK. */;
7254 else if (TYPE_PTRMEMFUNC_P (target_type))
7255 /* This is OK, too. */
7256 is_ptrmem = 1;
7257 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7258 /* This is OK, too. This comes from a conversion to reference
7259 type. */
7260 target_type = build_reference_type (target_type);
7261 else
7262 {
7263 if (flags & tf_error)
7264 error ("cannot resolve overloaded function %qD based on"
7265 " conversion to type %qT",
7266 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7267 return error_mark_node;
7268 }
7269
7270 /* Non-member functions and static member functions match targets of type
7271 "pointer-to-function" or "reference-to-function." Nonstatic member
7272 functions match targets of type "pointer-to-member-function;" the
7273 function type of the pointer to member is used to select the member
7274 function from the set of overloaded member functions.
7275
7276 So figure out the FUNCTION_TYPE that we want to match against. */
7277 target_fn_type = static_fn_type (target_type);
7278
7279 /* If we can find a non-template function that matches, we can just
7280 use it. There's no point in generating template instantiations
7281 if we're just going to throw them out anyhow. But, of course, we
7282 can only do this when we don't *need* a template function. */
7283 if (!template_only)
7284 {
7285 tree fns;
7286
7287 for (fns = overload; fns; fns = OVL_NEXT (fns))
7288 {
7289 tree fn = OVL_CURRENT (fns);
7290
7291 if (TREE_CODE (fn) == TEMPLATE_DECL)
7292 /* We're not looking for templates just yet. */
7293 continue;
7294
7295 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7296 != is_ptrmem)
7297 /* We're looking for a non-static member, and this isn't
7298 one, or vice versa. */
7299 continue;
7300
7301 /* Ignore functions which haven't been explicitly
7302 declared. */
7303 if (DECL_ANTICIPATED (fn))
7304 continue;
7305
7306 /* See if there's a match. */
7307 if (same_type_p (target_fn_type, static_fn_type (fn)))
7308 matches = tree_cons (fn, NULL_TREE, matches);
7309 }
7310 }
7311
7312 /* Now, if we've already got a match (or matches), there's no need
7313 to proceed to the template functions. But, if we don't have a
7314 match we need to look at them, too. */
7315 if (!matches)
7316 {
7317 tree target_arg_types;
7318 tree target_ret_type;
7319 tree fns;
7320 tree *args;
7321 unsigned int nargs, ia;
7322 tree arg;
7323
7324 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7325 target_ret_type = TREE_TYPE (target_fn_type);
7326
7327 nargs = list_length (target_arg_types);
7328 args = XALLOCAVEC (tree, nargs);
7329 for (arg = target_arg_types, ia = 0;
7330 arg != NULL_TREE && arg != void_list_node;
7331 arg = TREE_CHAIN (arg), ++ia)
7332 args[ia] = TREE_VALUE (arg);
7333 nargs = ia;
7334
7335 for (fns = overload; fns; fns = OVL_NEXT (fns))
7336 {
7337 tree fn = OVL_CURRENT (fns);
7338 tree instantiation;
7339 tree targs;
7340
7341 if (TREE_CODE (fn) != TEMPLATE_DECL)
7342 /* We're only looking for templates. */
7343 continue;
7344
7345 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7346 != is_ptrmem)
7347 /* We're not looking for a non-static member, and this is
7348 one, or vice versa. */
7349 continue;
7350
7351 tree ret = target_ret_type;
7352
7353 /* If the template has a deduced return type, don't expose it to
7354 template argument deduction. */
7355 if (undeduced_auto_decl (fn))
7356 ret = NULL_TREE;
7357
7358 /* Try to do argument deduction. */
7359 targs = make_tree_vec (DECL_NTPARMS (fn));
7360 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7361 nargs, ret,
7362 DEDUCE_EXACT, LOOKUP_NORMAL,
7363 false, false);
7364 if (instantiation == error_mark_node)
7365 /* Instantiation failed. */
7366 continue;
7367
7368 /* And now force instantiation to do return type deduction. */
7369 if (undeduced_auto_decl (instantiation))
7370 {
7371 ++function_depth;
7372 instantiate_decl (instantiation, /*defer*/false, /*class*/false);
7373 --function_depth;
7374
7375 require_deduced_type (instantiation);
7376 }
7377
7378 /* See if there's a match. */
7379 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7380 matches = tree_cons (instantiation, fn, matches);
7381
7382 ggc_free (targs);
7383 }
7384
7385 /* Now, remove all but the most specialized of the matches. */
7386 if (matches)
7387 {
7388 tree match = most_specialized_instantiation (matches);
7389
7390 if (match != error_mark_node)
7391 matches = tree_cons (TREE_PURPOSE (match),
7392 NULL_TREE,
7393 NULL_TREE);
7394 }
7395 }
7396
7397 /* Now we should have exactly one function in MATCHES. */
7398 if (matches == NULL_TREE)
7399 {
7400 /* There were *no* matches. */
7401 if (flags & tf_error)
7402 {
7403 error ("no matches converting function %qD to type %q#T",
7404 DECL_NAME (OVL_CURRENT (overload)),
7405 target_type);
7406
7407 print_candidates (overload);
7408 }
7409 return error_mark_node;
7410 }
7411 else if (TREE_CHAIN (matches))
7412 {
7413 /* There were too many matches. First check if they're all
7414 the same function. */
7415 tree match = NULL_TREE;
7416
7417 fn = TREE_PURPOSE (matches);
7418
7419 /* For multi-versioned functions, more than one match is just fine and
7420 decls_match will return false as they are different. */
7421 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7422 if (!decls_match (fn, TREE_PURPOSE (match))
7423 && !targetm.target_option.function_versions
7424 (fn, TREE_PURPOSE (match)))
7425 break;
7426
7427 if (match)
7428 {
7429 if (flags & tf_error)
7430 {
7431 error ("converting overloaded function %qD to type %q#T is ambiguous",
7432 DECL_NAME (OVL_FUNCTION (overload)),
7433 target_type);
7434
7435 /* Since print_candidates expects the functions in the
7436 TREE_VALUE slot, we flip them here. */
7437 for (match = matches; match; match = TREE_CHAIN (match))
7438 TREE_VALUE (match) = TREE_PURPOSE (match);
7439
7440 print_candidates (matches);
7441 }
7442
7443 return error_mark_node;
7444 }
7445 }
7446
7447 /* Good, exactly one match. Now, convert it to the correct type. */
7448 fn = TREE_PURPOSE (matches);
7449
7450 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7451 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7452 {
7453 static int explained;
7454
7455 if (!(flags & tf_error))
7456 return error_mark_node;
7457
7458 permerror (input_location, "assuming pointer to member %qD", fn);
7459 if (!explained)
7460 {
7461 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7462 explained = 1;
7463 }
7464 }
7465
7466 /* If a pointer to a function that is multi-versioned is requested, the
7467 pointer to the dispatcher function is returned instead. This works
7468 well because indirectly calling the function will dispatch the right
7469 function version at run-time. */
7470 if (DECL_FUNCTION_VERSIONED (fn))
7471 {
7472 fn = get_function_version_dispatcher (fn);
7473 if (fn == NULL)
7474 return error_mark_node;
7475 /* Mark all the versions corresponding to the dispatcher as used. */
7476 if (!(flags & tf_conv))
7477 mark_versions_used (fn);
7478 }
7479
7480 /* If we're doing overload resolution purely for the purpose of
7481 determining conversion sequences, we should not consider the
7482 function used. If this conversion sequence is selected, the
7483 function will be marked as used at this point. */
7484 if (!(flags & tf_conv))
7485 {
7486 /* Make =delete work with SFINAE. */
7487 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7488 return error_mark_node;
7489
7490 mark_used (fn);
7491 }
7492
7493 /* We could not check access to member functions when this
7494 expression was originally created since we did not know at that
7495 time to which function the expression referred. */
7496 if (DECL_FUNCTION_MEMBER_P (fn))
7497 {
7498 gcc_assert (access_path);
7499 perform_or_defer_access_check (access_path, fn, fn, flags);
7500 }
7501
7502 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7503 return cp_build_addr_expr (fn, flags);
7504 else
7505 {
7506 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7507 will mark the function as addressed, but here we must do it
7508 explicitly. */
7509 cxx_mark_addressable (fn);
7510
7511 return fn;
7512 }
7513 }
7514
7515 /* This function will instantiate the type of the expression given in
7516 RHS to match the type of LHSTYPE. If errors exist, then return
7517 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7518 we complain on errors. If we are not complaining, never modify rhs,
7519 as overload resolution wants to try many possible instantiations, in
7520 the hope that at least one will work.
7521
7522 For non-recursive calls, LHSTYPE should be a function, pointer to
7523 function, or a pointer to member function. */
7524
7525 tree
7526 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7527 {
7528 tsubst_flags_t flags_in = flags;
7529 tree access_path = NULL_TREE;
7530
7531 flags &= ~tf_ptrmem_ok;
7532
7533 if (lhstype == unknown_type_node)
7534 {
7535 if (flags & tf_error)
7536 error ("not enough type information");
7537 return error_mark_node;
7538 }
7539
7540 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7541 {
7542 tree fntype = non_reference (lhstype);
7543 if (same_type_p (fntype, TREE_TYPE (rhs)))
7544 return rhs;
7545 if (flag_ms_extensions
7546 && TYPE_PTRMEMFUNC_P (fntype)
7547 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7548 /* Microsoft allows `A::f' to be resolved to a
7549 pointer-to-member. */
7550 ;
7551 else
7552 {
7553 if (flags & tf_error)
7554 error ("cannot convert %qE from type %qT to type %qT",
7555 rhs, TREE_TYPE (rhs), fntype);
7556 return error_mark_node;
7557 }
7558 }
7559
7560 if (BASELINK_P (rhs))
7561 {
7562 access_path = BASELINK_ACCESS_BINFO (rhs);
7563 rhs = BASELINK_FUNCTIONS (rhs);
7564 }
7565
7566 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7567 deduce any type information. */
7568 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7569 {
7570 if (flags & tf_error)
7571 error ("not enough type information");
7572 return error_mark_node;
7573 }
7574
7575 /* There only a few kinds of expressions that may have a type
7576 dependent on overload resolution. */
7577 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7578 || TREE_CODE (rhs) == COMPONENT_REF
7579 || really_overloaded_fn (rhs)
7580 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7581
7582 /* This should really only be used when attempting to distinguish
7583 what sort of a pointer to function we have. For now, any
7584 arithmetic operation which is not supported on pointers
7585 is rejected as an error. */
7586
7587 switch (TREE_CODE (rhs))
7588 {
7589 case COMPONENT_REF:
7590 {
7591 tree member = TREE_OPERAND (rhs, 1);
7592
7593 member = instantiate_type (lhstype, member, flags);
7594 if (member != error_mark_node
7595 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7596 /* Do not lose object's side effects. */
7597 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7598 TREE_OPERAND (rhs, 0), member);
7599 return member;
7600 }
7601
7602 case OFFSET_REF:
7603 rhs = TREE_OPERAND (rhs, 1);
7604 if (BASELINK_P (rhs))
7605 return instantiate_type (lhstype, rhs, flags_in);
7606
7607 /* This can happen if we are forming a pointer-to-member for a
7608 member template. */
7609 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7610
7611 /* Fall through. */
7612
7613 case TEMPLATE_ID_EXPR:
7614 {
7615 tree fns = TREE_OPERAND (rhs, 0);
7616 tree args = TREE_OPERAND (rhs, 1);
7617
7618 return
7619 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7620 /*template_only=*/true,
7621 args, access_path);
7622 }
7623
7624 case OVERLOAD:
7625 case FUNCTION_DECL:
7626 return
7627 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7628 /*template_only=*/false,
7629 /*explicit_targs=*/NULL_TREE,
7630 access_path);
7631
7632 case ADDR_EXPR:
7633 {
7634 if (PTRMEM_OK_P (rhs))
7635 flags |= tf_ptrmem_ok;
7636
7637 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7638 }
7639
7640 case ERROR_MARK:
7641 return error_mark_node;
7642
7643 default:
7644 gcc_unreachable ();
7645 }
7646 return error_mark_node;
7647 }
7648 \f
7649 /* Return the name of the virtual function pointer field
7650 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7651 this may have to look back through base types to find the
7652 ultimate field name. (For single inheritance, these could
7653 all be the same name. Who knows for multiple inheritance). */
7654
7655 static tree
7656 get_vfield_name (tree type)
7657 {
7658 tree binfo, base_binfo;
7659 char *buf;
7660
7661 for (binfo = TYPE_BINFO (type);
7662 BINFO_N_BASE_BINFOS (binfo);
7663 binfo = base_binfo)
7664 {
7665 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7666
7667 if (BINFO_VIRTUAL_P (base_binfo)
7668 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7669 break;
7670 }
7671
7672 type = BINFO_TYPE (binfo);
7673 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7674 + TYPE_NAME_LENGTH (type) + 2);
7675 sprintf (buf, VFIELD_NAME_FORMAT,
7676 IDENTIFIER_POINTER (constructor_name (type)));
7677 return get_identifier (buf);
7678 }
7679
7680 void
7681 print_class_statistics (void)
7682 {
7683 if (! GATHER_STATISTICS)
7684 return;
7685
7686 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7687 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7688 if (n_vtables)
7689 {
7690 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7691 n_vtables, n_vtable_searches);
7692 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7693 n_vtable_entries, n_vtable_elems);
7694 }
7695 }
7696
7697 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7698 according to [class]:
7699 The class-name is also inserted
7700 into the scope of the class itself. For purposes of access checking,
7701 the inserted class name is treated as if it were a public member name. */
7702
7703 void
7704 build_self_reference (void)
7705 {
7706 tree name = constructor_name (current_class_type);
7707 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7708 tree saved_cas;
7709
7710 DECL_NONLOCAL (value) = 1;
7711 DECL_CONTEXT (value) = current_class_type;
7712 DECL_ARTIFICIAL (value) = 1;
7713 SET_DECL_SELF_REFERENCE_P (value);
7714 set_underlying_type (value);
7715
7716 if (processing_template_decl)
7717 value = push_template_decl (value);
7718
7719 saved_cas = current_access_specifier;
7720 current_access_specifier = access_public_node;
7721 finish_member_declaration (value);
7722 current_access_specifier = saved_cas;
7723 }
7724
7725 /* Returns 1 if TYPE contains only padding bytes. */
7726
7727 int
7728 is_empty_class (tree type)
7729 {
7730 if (type == error_mark_node)
7731 return 0;
7732
7733 if (! CLASS_TYPE_P (type))
7734 return 0;
7735
7736 /* In G++ 3.2, whether or not a class was empty was determined by
7737 looking at its size. */
7738 if (abi_version_at_least (2))
7739 return CLASSTYPE_EMPTY_P (type);
7740 else
7741 return integer_zerop (CLASSTYPE_SIZE (type));
7742 }
7743
7744 /* Returns true if TYPE contains an empty class. */
7745
7746 static bool
7747 contains_empty_class_p (tree type)
7748 {
7749 if (is_empty_class (type))
7750 return true;
7751 if (CLASS_TYPE_P (type))
7752 {
7753 tree field;
7754 tree binfo;
7755 tree base_binfo;
7756 int i;
7757
7758 for (binfo = TYPE_BINFO (type), i = 0;
7759 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7760 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
7761 return true;
7762 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
7763 if (TREE_CODE (field) == FIELD_DECL
7764 && !DECL_ARTIFICIAL (field)
7765 && is_empty_class (TREE_TYPE (field)))
7766 return true;
7767 }
7768 else if (TREE_CODE (type) == ARRAY_TYPE)
7769 return contains_empty_class_p (TREE_TYPE (type));
7770 return false;
7771 }
7772
7773 /* Returns true if TYPE contains no actual data, just various
7774 possible combinations of empty classes and possibly a vptr. */
7775
7776 bool
7777 is_really_empty_class (tree type)
7778 {
7779 if (CLASS_TYPE_P (type))
7780 {
7781 tree field;
7782 tree binfo;
7783 tree base_binfo;
7784 int i;
7785
7786 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7787 out, but we'd like to be able to check this before then. */
7788 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7789 return true;
7790
7791 for (binfo = TYPE_BINFO (type), i = 0;
7792 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7793 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7794 return false;
7795 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7796 if (TREE_CODE (field) == FIELD_DECL
7797 && !DECL_ARTIFICIAL (field)
7798 && !is_really_empty_class (TREE_TYPE (field)))
7799 return false;
7800 return true;
7801 }
7802 else if (TREE_CODE (type) == ARRAY_TYPE)
7803 return is_really_empty_class (TREE_TYPE (type));
7804 return false;
7805 }
7806
7807 /* Note that NAME was looked up while the current class was being
7808 defined and that the result of that lookup was DECL. */
7809
7810 void
7811 maybe_note_name_used_in_class (tree name, tree decl)
7812 {
7813 splay_tree names_used;
7814
7815 /* If we're not defining a class, there's nothing to do. */
7816 if (!(innermost_scope_kind() == sk_class
7817 && TYPE_BEING_DEFINED (current_class_type)
7818 && !LAMBDA_TYPE_P (current_class_type)))
7819 return;
7820
7821 /* If there's already a binding for this NAME, then we don't have
7822 anything to worry about. */
7823 if (lookup_member (current_class_type, name,
7824 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7825 return;
7826
7827 if (!current_class_stack[current_class_depth - 1].names_used)
7828 current_class_stack[current_class_depth - 1].names_used
7829 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7830 names_used = current_class_stack[current_class_depth - 1].names_used;
7831
7832 splay_tree_insert (names_used,
7833 (splay_tree_key) name,
7834 (splay_tree_value) decl);
7835 }
7836
7837 /* Note that NAME was declared (as DECL) in the current class. Check
7838 to see that the declaration is valid. */
7839
7840 void
7841 note_name_declared_in_class (tree name, tree decl)
7842 {
7843 splay_tree names_used;
7844 splay_tree_node n;
7845
7846 /* Look to see if we ever used this name. */
7847 names_used
7848 = current_class_stack[current_class_depth - 1].names_used;
7849 if (!names_used)
7850 return;
7851 /* The C language allows members to be declared with a type of the same
7852 name, and the C++ standard says this diagnostic is not required. So
7853 allow it in extern "C" blocks unless predantic is specified.
7854 Allow it in all cases if -ms-extensions is specified. */
7855 if ((!pedantic && current_lang_name == lang_name_c)
7856 || flag_ms_extensions)
7857 return;
7858 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7859 if (n)
7860 {
7861 /* [basic.scope.class]
7862
7863 A name N used in a class S shall refer to the same declaration
7864 in its context and when re-evaluated in the completed scope of
7865 S. */
7866 permerror (input_location, "declaration of %q#D", decl);
7867 permerror (input_location, "changes meaning of %qD from %q+#D",
7868 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7869 }
7870 }
7871
7872 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7873 Secondary vtables are merged with primary vtables; this function
7874 will return the VAR_DECL for the primary vtable. */
7875
7876 tree
7877 get_vtbl_decl_for_binfo (tree binfo)
7878 {
7879 tree decl;
7880
7881 decl = BINFO_VTABLE (binfo);
7882 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7883 {
7884 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7885 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7886 }
7887 if (decl)
7888 gcc_assert (VAR_P (decl));
7889 return decl;
7890 }
7891
7892
7893 /* Returns the binfo for the primary base of BINFO. If the resulting
7894 BINFO is a virtual base, and it is inherited elsewhere in the
7895 hierarchy, then the returned binfo might not be the primary base of
7896 BINFO in the complete object. Check BINFO_PRIMARY_P or
7897 BINFO_LOST_PRIMARY_P to be sure. */
7898
7899 static tree
7900 get_primary_binfo (tree binfo)
7901 {
7902 tree primary_base;
7903
7904 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
7905 if (!primary_base)
7906 return NULL_TREE;
7907
7908 return copied_binfo (primary_base, binfo);
7909 }
7910
7911 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
7912
7913 static int
7914 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
7915 {
7916 if (!indented_p)
7917 fprintf (stream, "%*s", indent, "");
7918 return 1;
7919 }
7920
7921 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
7922 INDENT should be zero when called from the top level; it is
7923 incremented recursively. IGO indicates the next expected BINFO in
7924 inheritance graph ordering. */
7925
7926 static tree
7927 dump_class_hierarchy_r (FILE *stream,
7928 int flags,
7929 tree binfo,
7930 tree igo,
7931 int indent)
7932 {
7933 int indented = 0;
7934 tree base_binfo;
7935 int i;
7936
7937 indented = maybe_indent_hierarchy (stream, indent, 0);
7938 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
7939 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
7940 (HOST_WIDE_INT) (uintptr_t) binfo);
7941 if (binfo != igo)
7942 {
7943 fprintf (stream, "alternative-path\n");
7944 return igo;
7945 }
7946 igo = TREE_CHAIN (binfo);
7947
7948 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
7949 tree_low_cst (BINFO_OFFSET (binfo), 0));
7950 if (is_empty_class (BINFO_TYPE (binfo)))
7951 fprintf (stream, " empty");
7952 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
7953 fprintf (stream, " nearly-empty");
7954 if (BINFO_VIRTUAL_P (binfo))
7955 fprintf (stream, " virtual");
7956 fprintf (stream, "\n");
7957
7958 indented = 0;
7959 if (BINFO_PRIMARY_P (binfo))
7960 {
7961 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7962 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
7963 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
7964 TFF_PLAIN_IDENTIFIER),
7965 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
7966 }
7967 if (BINFO_LOST_PRIMARY_P (binfo))
7968 {
7969 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7970 fprintf (stream, " lost-primary");
7971 }
7972 if (indented)
7973 fprintf (stream, "\n");
7974
7975 if (!(flags & TDF_SLIM))
7976 {
7977 int indented = 0;
7978
7979 if (BINFO_SUBVTT_INDEX (binfo))
7980 {
7981 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7982 fprintf (stream, " subvttidx=%s",
7983 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
7984 TFF_PLAIN_IDENTIFIER));
7985 }
7986 if (BINFO_VPTR_INDEX (binfo))
7987 {
7988 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7989 fprintf (stream, " vptridx=%s",
7990 expr_as_string (BINFO_VPTR_INDEX (binfo),
7991 TFF_PLAIN_IDENTIFIER));
7992 }
7993 if (BINFO_VPTR_FIELD (binfo))
7994 {
7995 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7996 fprintf (stream, " vbaseoffset=%s",
7997 expr_as_string (BINFO_VPTR_FIELD (binfo),
7998 TFF_PLAIN_IDENTIFIER));
7999 }
8000 if (BINFO_VTABLE (binfo))
8001 {
8002 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8003 fprintf (stream, " vptr=%s",
8004 expr_as_string (BINFO_VTABLE (binfo),
8005 TFF_PLAIN_IDENTIFIER));
8006 }
8007
8008 if (indented)
8009 fprintf (stream, "\n");
8010 }
8011
8012 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
8013 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
8014
8015 return igo;
8016 }
8017
8018 /* Dump the BINFO hierarchy for T. */
8019
8020 static void
8021 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
8022 {
8023 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8024 fprintf (stream, " size=%lu align=%lu\n",
8025 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
8026 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
8027 fprintf (stream, " base size=%lu base align=%lu\n",
8028 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
8029 / BITS_PER_UNIT),
8030 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
8031 / BITS_PER_UNIT));
8032 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
8033 fprintf (stream, "\n");
8034 }
8035
8036 /* Debug interface to hierarchy dumping. */
8037
8038 void
8039 debug_class (tree t)
8040 {
8041 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
8042 }
8043
8044 static void
8045 dump_class_hierarchy (tree t)
8046 {
8047 int flags;
8048 FILE *stream = dump_begin (TDI_class, &flags);
8049
8050 if (stream)
8051 {
8052 dump_class_hierarchy_1 (stream, flags, t);
8053 dump_end (TDI_class, stream);
8054 }
8055 }
8056
8057 static void
8058 dump_array (FILE * stream, tree decl)
8059 {
8060 tree value;
8061 unsigned HOST_WIDE_INT ix;
8062 HOST_WIDE_INT elt;
8063 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8064
8065 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
8066 / BITS_PER_UNIT);
8067 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8068 fprintf (stream, " %s entries",
8069 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8070 TFF_PLAIN_IDENTIFIER));
8071 fprintf (stream, "\n");
8072
8073 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8074 ix, value)
8075 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
8076 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8077 }
8078
8079 static void
8080 dump_vtable (tree t, tree binfo, tree vtable)
8081 {
8082 int flags;
8083 FILE *stream = dump_begin (TDI_class, &flags);
8084
8085 if (!stream)
8086 return;
8087
8088 if (!(flags & TDF_SLIM))
8089 {
8090 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8091
8092 fprintf (stream, "%s for %s",
8093 ctor_vtbl_p ? "Construction vtable" : "Vtable",
8094 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8095 if (ctor_vtbl_p)
8096 {
8097 if (!BINFO_VIRTUAL_P (binfo))
8098 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8099 (HOST_WIDE_INT) (uintptr_t) binfo);
8100 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8101 }
8102 fprintf (stream, "\n");
8103 dump_array (stream, vtable);
8104 fprintf (stream, "\n");
8105 }
8106
8107 dump_end (TDI_class, stream);
8108 }
8109
8110 static void
8111 dump_vtt (tree t, tree vtt)
8112 {
8113 int flags;
8114 FILE *stream = dump_begin (TDI_class, &flags);
8115
8116 if (!stream)
8117 return;
8118
8119 if (!(flags & TDF_SLIM))
8120 {
8121 fprintf (stream, "VTT for %s\n",
8122 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8123 dump_array (stream, vtt);
8124 fprintf (stream, "\n");
8125 }
8126
8127 dump_end (TDI_class, stream);
8128 }
8129
8130 /* Dump a function or thunk and its thunkees. */
8131
8132 static void
8133 dump_thunk (FILE *stream, int indent, tree thunk)
8134 {
8135 static const char spaces[] = " ";
8136 tree name = DECL_NAME (thunk);
8137 tree thunks;
8138
8139 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8140 (void *)thunk,
8141 !DECL_THUNK_P (thunk) ? "function"
8142 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8143 name ? IDENTIFIER_POINTER (name) : "<unset>");
8144 if (DECL_THUNK_P (thunk))
8145 {
8146 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8147 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8148
8149 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8150 if (!virtual_adjust)
8151 /*NOP*/;
8152 else if (DECL_THIS_THUNK_P (thunk))
8153 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8154 tree_low_cst (virtual_adjust, 0));
8155 else
8156 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8157 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
8158 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8159 if (THUNK_ALIAS (thunk))
8160 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8161 }
8162 fprintf (stream, "\n");
8163 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8164 dump_thunk (stream, indent + 2, thunks);
8165 }
8166
8167 /* Dump the thunks for FN. */
8168
8169 void
8170 debug_thunks (tree fn)
8171 {
8172 dump_thunk (stderr, 0, fn);
8173 }
8174
8175 /* Virtual function table initialization. */
8176
8177 /* Create all the necessary vtables for T and its base classes. */
8178
8179 static void
8180 finish_vtbls (tree t)
8181 {
8182 tree vbase;
8183 vec<constructor_elt, va_gc> *v = NULL;
8184 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8185
8186 /* We lay out the primary and secondary vtables in one contiguous
8187 vtable. The primary vtable is first, followed by the non-virtual
8188 secondary vtables in inheritance graph order. */
8189 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8190 vtable, t, &v);
8191
8192 /* Then come the virtual bases, also in inheritance graph order. */
8193 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8194 {
8195 if (!BINFO_VIRTUAL_P (vbase))
8196 continue;
8197 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8198 }
8199
8200 if (BINFO_VTABLE (TYPE_BINFO (t)))
8201 initialize_vtable (TYPE_BINFO (t), v);
8202 }
8203
8204 /* Initialize the vtable for BINFO with the INITS. */
8205
8206 static void
8207 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8208 {
8209 tree decl;
8210
8211 layout_vtable_decl (binfo, vec_safe_length (inits));
8212 decl = get_vtbl_decl_for_binfo (binfo);
8213 initialize_artificial_var (decl, inits);
8214 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8215 }
8216
8217 /* Build the VTT (virtual table table) for T.
8218 A class requires a VTT if it has virtual bases.
8219
8220 This holds
8221 1 - primary virtual pointer for complete object T
8222 2 - secondary VTTs for each direct non-virtual base of T which requires a
8223 VTT
8224 3 - secondary virtual pointers for each direct or indirect base of T which
8225 has virtual bases or is reachable via a virtual path from T.
8226 4 - secondary VTTs for each direct or indirect virtual base of T.
8227
8228 Secondary VTTs look like complete object VTTs without part 4. */
8229
8230 static void
8231 build_vtt (tree t)
8232 {
8233 tree type;
8234 tree vtt;
8235 tree index;
8236 vec<constructor_elt, va_gc> *inits;
8237
8238 /* Build up the initializers for the VTT. */
8239 inits = NULL;
8240 index = size_zero_node;
8241 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8242
8243 /* If we didn't need a VTT, we're done. */
8244 if (!inits)
8245 return;
8246
8247 /* Figure out the type of the VTT. */
8248 type = build_array_of_n_type (const_ptr_type_node,
8249 inits->length ());
8250
8251 /* Now, build the VTT object itself. */
8252 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8253 initialize_artificial_var (vtt, inits);
8254 /* Add the VTT to the vtables list. */
8255 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8256 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8257
8258 dump_vtt (t, vtt);
8259 }
8260
8261 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8262 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8263 and CHAIN the vtable pointer for this binfo after construction is
8264 complete. VALUE can also be another BINFO, in which case we recurse. */
8265
8266 static tree
8267 binfo_ctor_vtable (tree binfo)
8268 {
8269 tree vt;
8270
8271 while (1)
8272 {
8273 vt = BINFO_VTABLE (binfo);
8274 if (TREE_CODE (vt) == TREE_LIST)
8275 vt = TREE_VALUE (vt);
8276 if (TREE_CODE (vt) == TREE_BINFO)
8277 binfo = vt;
8278 else
8279 break;
8280 }
8281
8282 return vt;
8283 }
8284
8285 /* Data for secondary VTT initialization. */
8286 typedef struct secondary_vptr_vtt_init_data_s
8287 {
8288 /* Is this the primary VTT? */
8289 bool top_level_p;
8290
8291 /* Current index into the VTT. */
8292 tree index;
8293
8294 /* Vector of initializers built up. */
8295 vec<constructor_elt, va_gc> *inits;
8296
8297 /* The type being constructed by this secondary VTT. */
8298 tree type_being_constructed;
8299 } secondary_vptr_vtt_init_data;
8300
8301 /* Recursively build the VTT-initializer for BINFO (which is in the
8302 hierarchy dominated by T). INITS points to the end of the initializer
8303 list to date. INDEX is the VTT index where the next element will be
8304 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8305 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8306 for virtual bases of T. When it is not so, we build the constructor
8307 vtables for the BINFO-in-T variant. */
8308
8309 static void
8310 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8311 tree *index)
8312 {
8313 int i;
8314 tree b;
8315 tree init;
8316 secondary_vptr_vtt_init_data data;
8317 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8318
8319 /* We only need VTTs for subobjects with virtual bases. */
8320 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8321 return;
8322
8323 /* We need to use a construction vtable if this is not the primary
8324 VTT. */
8325 if (!top_level_p)
8326 {
8327 build_ctor_vtbl_group (binfo, t);
8328
8329 /* Record the offset in the VTT where this sub-VTT can be found. */
8330 BINFO_SUBVTT_INDEX (binfo) = *index;
8331 }
8332
8333 /* Add the address of the primary vtable for the complete object. */
8334 init = binfo_ctor_vtable (binfo);
8335 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8336 if (top_level_p)
8337 {
8338 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8339 BINFO_VPTR_INDEX (binfo) = *index;
8340 }
8341 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8342
8343 /* Recursively add the secondary VTTs for non-virtual bases. */
8344 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8345 if (!BINFO_VIRTUAL_P (b))
8346 build_vtt_inits (b, t, inits, index);
8347
8348 /* Add secondary virtual pointers for all subobjects of BINFO with
8349 either virtual bases or reachable along a virtual path, except
8350 subobjects that are non-virtual primary bases. */
8351 data.top_level_p = top_level_p;
8352 data.index = *index;
8353 data.inits = *inits;
8354 data.type_being_constructed = BINFO_TYPE (binfo);
8355
8356 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8357
8358 *index = data.index;
8359
8360 /* data.inits might have grown as we added secondary virtual pointers.
8361 Make sure our caller knows about the new vector. */
8362 *inits = data.inits;
8363
8364 if (top_level_p)
8365 /* Add the secondary VTTs for virtual bases in inheritance graph
8366 order. */
8367 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8368 {
8369 if (!BINFO_VIRTUAL_P (b))
8370 continue;
8371
8372 build_vtt_inits (b, t, inits, index);
8373 }
8374 else
8375 /* Remove the ctor vtables we created. */
8376 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8377 }
8378
8379 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8380 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8381
8382 static tree
8383 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8384 {
8385 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8386
8387 /* We don't care about bases that don't have vtables. */
8388 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8389 return dfs_skip_bases;
8390
8391 /* We're only interested in proper subobjects of the type being
8392 constructed. */
8393 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8394 return NULL_TREE;
8395
8396 /* We're only interested in bases with virtual bases or reachable
8397 via a virtual path from the type being constructed. */
8398 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8399 || binfo_via_virtual (binfo, data->type_being_constructed)))
8400 return dfs_skip_bases;
8401
8402 /* We're not interested in non-virtual primary bases. */
8403 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8404 return NULL_TREE;
8405
8406 /* Record the index where this secondary vptr can be found. */
8407 if (data->top_level_p)
8408 {
8409 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8410 BINFO_VPTR_INDEX (binfo) = data->index;
8411
8412 if (BINFO_VIRTUAL_P (binfo))
8413 {
8414 /* It's a primary virtual base, and this is not a
8415 construction vtable. Find the base this is primary of in
8416 the inheritance graph, and use that base's vtable
8417 now. */
8418 while (BINFO_PRIMARY_P (binfo))
8419 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8420 }
8421 }
8422
8423 /* Add the initializer for the secondary vptr itself. */
8424 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8425
8426 /* Advance the vtt index. */
8427 data->index = size_binop (PLUS_EXPR, data->index,
8428 TYPE_SIZE_UNIT (ptr_type_node));
8429
8430 return NULL_TREE;
8431 }
8432
8433 /* Called from build_vtt_inits via dfs_walk. After building
8434 constructor vtables and generating the sub-vtt from them, we need
8435 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8436 binfo of the base whose sub vtt was generated. */
8437
8438 static tree
8439 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8440 {
8441 tree vtable = BINFO_VTABLE (binfo);
8442
8443 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8444 /* If this class has no vtable, none of its bases do. */
8445 return dfs_skip_bases;
8446
8447 if (!vtable)
8448 /* This might be a primary base, so have no vtable in this
8449 hierarchy. */
8450 return NULL_TREE;
8451
8452 /* If we scribbled the construction vtable vptr into BINFO, clear it
8453 out now. */
8454 if (TREE_CODE (vtable) == TREE_LIST
8455 && (TREE_PURPOSE (vtable) == (tree) data))
8456 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8457
8458 return NULL_TREE;
8459 }
8460
8461 /* Build the construction vtable group for BINFO which is in the
8462 hierarchy dominated by T. */
8463
8464 static void
8465 build_ctor_vtbl_group (tree binfo, tree t)
8466 {
8467 tree type;
8468 tree vtbl;
8469 tree id;
8470 tree vbase;
8471 vec<constructor_elt, va_gc> *v;
8472
8473 /* See if we've already created this construction vtable group. */
8474 id = mangle_ctor_vtbl_for_type (t, binfo);
8475 if (IDENTIFIER_GLOBAL_VALUE (id))
8476 return;
8477
8478 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8479 /* Build a version of VTBL (with the wrong type) for use in
8480 constructing the addresses of secondary vtables in the
8481 construction vtable group. */
8482 vtbl = build_vtable (t, id, ptr_type_node);
8483 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8484 /* Don't export construction vtables from shared libraries. Even on
8485 targets that don't support hidden visibility, this tells
8486 can_refer_decl_in_current_unit_p not to assume that it's safe to
8487 access from a different compilation unit (bz 54314). */
8488 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8489 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8490
8491 v = NULL;
8492 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8493 binfo, vtbl, t, &v);
8494
8495 /* Add the vtables for each of our virtual bases using the vbase in T
8496 binfo. */
8497 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8498 vbase;
8499 vbase = TREE_CHAIN (vbase))
8500 {
8501 tree b;
8502
8503 if (!BINFO_VIRTUAL_P (vbase))
8504 continue;
8505 b = copied_binfo (vbase, binfo);
8506
8507 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8508 }
8509
8510 /* Figure out the type of the construction vtable. */
8511 type = build_array_of_n_type (vtable_entry_type, v->length ());
8512 layout_type (type);
8513 TREE_TYPE (vtbl) = type;
8514 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8515 layout_decl (vtbl, 0);
8516
8517 /* Initialize the construction vtable. */
8518 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8519 initialize_artificial_var (vtbl, v);
8520 dump_vtable (t, binfo, vtbl);
8521 }
8522
8523 /* Add the vtbl initializers for BINFO (and its bases other than
8524 non-virtual primaries) to the list of INITS. BINFO is in the
8525 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8526 the constructor the vtbl inits should be accumulated for. (If this
8527 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8528 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8529 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8530 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8531 but are not necessarily the same in terms of layout. */
8532
8533 static void
8534 accumulate_vtbl_inits (tree binfo,
8535 tree orig_binfo,
8536 tree rtti_binfo,
8537 tree vtbl,
8538 tree t,
8539 vec<constructor_elt, va_gc> **inits)
8540 {
8541 int i;
8542 tree base_binfo;
8543 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8544
8545 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8546
8547 /* If it doesn't have a vptr, we don't do anything. */
8548 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8549 return;
8550
8551 /* If we're building a construction vtable, we're not interested in
8552 subobjects that don't require construction vtables. */
8553 if (ctor_vtbl_p
8554 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8555 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8556 return;
8557
8558 /* Build the initializers for the BINFO-in-T vtable. */
8559 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8560
8561 /* Walk the BINFO and its bases. We walk in preorder so that as we
8562 initialize each vtable we can figure out at what offset the
8563 secondary vtable lies from the primary vtable. We can't use
8564 dfs_walk here because we need to iterate through bases of BINFO
8565 and RTTI_BINFO simultaneously. */
8566 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8567 {
8568 /* Skip virtual bases. */
8569 if (BINFO_VIRTUAL_P (base_binfo))
8570 continue;
8571 accumulate_vtbl_inits (base_binfo,
8572 BINFO_BASE_BINFO (orig_binfo, i),
8573 rtti_binfo, vtbl, t,
8574 inits);
8575 }
8576 }
8577
8578 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8579 BINFO vtable to L. */
8580
8581 static void
8582 dfs_accumulate_vtbl_inits (tree binfo,
8583 tree orig_binfo,
8584 tree rtti_binfo,
8585 tree orig_vtbl,
8586 tree t,
8587 vec<constructor_elt, va_gc> **l)
8588 {
8589 tree vtbl = NULL_TREE;
8590 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8591 int n_inits;
8592
8593 if (ctor_vtbl_p
8594 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8595 {
8596 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8597 primary virtual base. If it is not the same primary in
8598 the hierarchy of T, we'll need to generate a ctor vtable
8599 for it, to place at its location in T. If it is the same
8600 primary, we still need a VTT entry for the vtable, but it
8601 should point to the ctor vtable for the base it is a
8602 primary for within the sub-hierarchy of RTTI_BINFO.
8603
8604 There are three possible cases:
8605
8606 1) We are in the same place.
8607 2) We are a primary base within a lost primary virtual base of
8608 RTTI_BINFO.
8609 3) We are primary to something not a base of RTTI_BINFO. */
8610
8611 tree b;
8612 tree last = NULL_TREE;
8613
8614 /* First, look through the bases we are primary to for RTTI_BINFO
8615 or a virtual base. */
8616 b = binfo;
8617 while (BINFO_PRIMARY_P (b))
8618 {
8619 b = BINFO_INHERITANCE_CHAIN (b);
8620 last = b;
8621 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8622 goto found;
8623 }
8624 /* If we run out of primary links, keep looking down our
8625 inheritance chain; we might be an indirect primary. */
8626 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8627 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8628 break;
8629 found:
8630
8631 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8632 base B and it is a base of RTTI_BINFO, this is case 2. In
8633 either case, we share our vtable with LAST, i.e. the
8634 derived-most base within B of which we are a primary. */
8635 if (b == rtti_binfo
8636 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8637 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8638 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8639 binfo_ctor_vtable after everything's been set up. */
8640 vtbl = last;
8641
8642 /* Otherwise, this is case 3 and we get our own. */
8643 }
8644 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8645 return;
8646
8647 n_inits = vec_safe_length (*l);
8648
8649 if (!vtbl)
8650 {
8651 tree index;
8652 int non_fn_entries;
8653
8654 /* Add the initializer for this vtable. */
8655 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8656 &non_fn_entries, l);
8657
8658 /* Figure out the position to which the VPTR should point. */
8659 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8660 index = size_binop (MULT_EXPR,
8661 TYPE_SIZE_UNIT (vtable_entry_type),
8662 size_int (non_fn_entries + n_inits));
8663 vtbl = fold_build_pointer_plus (vtbl, index);
8664 }
8665
8666 if (ctor_vtbl_p)
8667 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8668 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8669 straighten this out. */
8670 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8671 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8672 /* Throw away any unneeded intializers. */
8673 (*l)->truncate (n_inits);
8674 else
8675 /* For an ordinary vtable, set BINFO_VTABLE. */
8676 BINFO_VTABLE (binfo) = vtbl;
8677 }
8678
8679 static GTY(()) tree abort_fndecl_addr;
8680
8681 /* Construct the initializer for BINFO's virtual function table. BINFO
8682 is part of the hierarchy dominated by T. If we're building a
8683 construction vtable, the ORIG_BINFO is the binfo we should use to
8684 find the actual function pointers to put in the vtable - but they
8685 can be overridden on the path to most-derived in the graph that
8686 ORIG_BINFO belongs. Otherwise,
8687 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8688 BINFO that should be indicated by the RTTI information in the
8689 vtable; it will be a base class of T, rather than T itself, if we
8690 are building a construction vtable.
8691
8692 The value returned is a TREE_LIST suitable for wrapping in a
8693 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8694 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8695 number of non-function entries in the vtable.
8696
8697 It might seem that this function should never be called with a
8698 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8699 base is always subsumed by a derived class vtable. However, when
8700 we are building construction vtables, we do build vtables for
8701 primary bases; we need these while the primary base is being
8702 constructed. */
8703
8704 static void
8705 build_vtbl_initializer (tree binfo,
8706 tree orig_binfo,
8707 tree t,
8708 tree rtti_binfo,
8709 int* non_fn_entries_p,
8710 vec<constructor_elt, va_gc> **inits)
8711 {
8712 tree v;
8713 vtbl_init_data vid;
8714 unsigned ix, jx;
8715 tree vbinfo;
8716 vec<tree, va_gc> *vbases;
8717 constructor_elt *e;
8718
8719 /* Initialize VID. */
8720 memset (&vid, 0, sizeof (vid));
8721 vid.binfo = binfo;
8722 vid.derived = t;
8723 vid.rtti_binfo = rtti_binfo;
8724 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8725 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8726 vid.generate_vcall_entries = true;
8727 /* The first vbase or vcall offset is at index -3 in the vtable. */
8728 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8729
8730 /* Add entries to the vtable for RTTI. */
8731 build_rtti_vtbl_entries (binfo, &vid);
8732
8733 /* Create an array for keeping track of the functions we've
8734 processed. When we see multiple functions with the same
8735 signature, we share the vcall offsets. */
8736 vec_alloc (vid.fns, 32);
8737 /* Add the vcall and vbase offset entries. */
8738 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8739
8740 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8741 build_vbase_offset_vtbl_entries. */
8742 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8743 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8744 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8745
8746 /* If the target requires padding between data entries, add that now. */
8747 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8748 {
8749 int n_entries = vec_safe_length (vid.inits);
8750
8751 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8752
8753 /* Move data entries into their new positions and add padding
8754 after the new positions. Iterate backwards so we don't
8755 overwrite entries that we would need to process later. */
8756 for (ix = n_entries - 1;
8757 vid.inits->iterate (ix, &e);
8758 ix--)
8759 {
8760 int j;
8761 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8762 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8763
8764 (*vid.inits)[new_position] = *e;
8765
8766 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8767 {
8768 constructor_elt *f = &(*vid.inits)[new_position - j];
8769 f->index = NULL_TREE;
8770 f->value = build1 (NOP_EXPR, vtable_entry_type,
8771 null_pointer_node);
8772 }
8773 }
8774 }
8775
8776 if (non_fn_entries_p)
8777 *non_fn_entries_p = vec_safe_length (vid.inits);
8778
8779 /* The initializers for virtual functions were built up in reverse
8780 order. Straighten them out and add them to the running list in one
8781 step. */
8782 jx = vec_safe_length (*inits);
8783 vec_safe_grow (*inits, jx + vid.inits->length ());
8784
8785 for (ix = vid.inits->length () - 1;
8786 vid.inits->iterate (ix, &e);
8787 ix--, jx++)
8788 (**inits)[jx] = *e;
8789
8790 /* Go through all the ordinary virtual functions, building up
8791 initializers. */
8792 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8793 {
8794 tree delta;
8795 tree vcall_index;
8796 tree fn, fn_original;
8797 tree init = NULL_TREE;
8798
8799 fn = BV_FN (v);
8800 fn_original = fn;
8801 if (DECL_THUNK_P (fn))
8802 {
8803 if (!DECL_NAME (fn))
8804 finish_thunk (fn);
8805 if (THUNK_ALIAS (fn))
8806 {
8807 fn = THUNK_ALIAS (fn);
8808 BV_FN (v) = fn;
8809 }
8810 fn_original = THUNK_TARGET (fn);
8811 }
8812
8813 /* If the only definition of this function signature along our
8814 primary base chain is from a lost primary, this vtable slot will
8815 never be used, so just zero it out. This is important to avoid
8816 requiring extra thunks which cannot be generated with the function.
8817
8818 We first check this in update_vtable_entry_for_fn, so we handle
8819 restored primary bases properly; we also need to do it here so we
8820 zero out unused slots in ctor vtables, rather than filling them
8821 with erroneous values (though harmless, apart from relocation
8822 costs). */
8823 if (BV_LOST_PRIMARY (v))
8824 init = size_zero_node;
8825
8826 if (! init)
8827 {
8828 /* Pull the offset for `this', and the function to call, out of
8829 the list. */
8830 delta = BV_DELTA (v);
8831 vcall_index = BV_VCALL_INDEX (v);
8832
8833 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8834 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8835
8836 /* You can't call an abstract virtual function; it's abstract.
8837 So, we replace these functions with __pure_virtual. */
8838 if (DECL_PURE_VIRTUAL_P (fn_original))
8839 {
8840 fn = abort_fndecl;
8841 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8842 {
8843 if (abort_fndecl_addr == NULL)
8844 abort_fndecl_addr
8845 = fold_convert (vfunc_ptr_type_node,
8846 build_fold_addr_expr (fn));
8847 init = abort_fndecl_addr;
8848 }
8849 }
8850 /* Likewise for deleted virtuals. */
8851 else if (DECL_DELETED_FN (fn_original))
8852 {
8853 fn = get_identifier ("__cxa_deleted_virtual");
8854 if (!get_global_value_if_present (fn, &fn))
8855 fn = push_library_fn (fn, (build_function_type_list
8856 (void_type_node, NULL_TREE)),
8857 NULL_TREE);
8858 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8859 init = fold_convert (vfunc_ptr_type_node,
8860 build_fold_addr_expr (fn));
8861 }
8862 else
8863 {
8864 if (!integer_zerop (delta) || vcall_index)
8865 {
8866 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8867 if (!DECL_NAME (fn))
8868 finish_thunk (fn);
8869 }
8870 /* Take the address of the function, considering it to be of an
8871 appropriate generic type. */
8872 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8873 init = fold_convert (vfunc_ptr_type_node,
8874 build_fold_addr_expr (fn));
8875 }
8876 }
8877
8878 /* And add it to the chain of initializers. */
8879 if (TARGET_VTABLE_USES_DESCRIPTORS)
8880 {
8881 int i;
8882 if (init == size_zero_node)
8883 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8884 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8885 else
8886 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8887 {
8888 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
8889 fn, build_int_cst (NULL_TREE, i));
8890 TREE_CONSTANT (fdesc) = 1;
8891
8892 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
8893 }
8894 }
8895 else
8896 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8897 }
8898 }
8899
8900 /* Adds to vid->inits the initializers for the vbase and vcall
8901 offsets in BINFO, which is in the hierarchy dominated by T. */
8902
8903 static void
8904 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
8905 {
8906 tree b;
8907
8908 /* If this is a derived class, we must first create entries
8909 corresponding to the primary base class. */
8910 b = get_primary_binfo (binfo);
8911 if (b)
8912 build_vcall_and_vbase_vtbl_entries (b, vid);
8913
8914 /* Add the vbase entries for this base. */
8915 build_vbase_offset_vtbl_entries (binfo, vid);
8916 /* Add the vcall entries for this base. */
8917 build_vcall_offset_vtbl_entries (binfo, vid);
8918 }
8919
8920 /* Returns the initializers for the vbase offset entries in the vtable
8921 for BINFO (which is part of the class hierarchy dominated by T), in
8922 reverse order. VBASE_OFFSET_INDEX gives the vtable index
8923 where the next vbase offset will go. */
8924
8925 static void
8926 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8927 {
8928 tree vbase;
8929 tree t;
8930 tree non_primary_binfo;
8931
8932 /* If there are no virtual baseclasses, then there is nothing to
8933 do. */
8934 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8935 return;
8936
8937 t = vid->derived;
8938
8939 /* We might be a primary base class. Go up the inheritance hierarchy
8940 until we find the most derived class of which we are a primary base:
8941 it is the offset of that which we need to use. */
8942 non_primary_binfo = binfo;
8943 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
8944 {
8945 tree b;
8946
8947 /* If we have reached a virtual base, then it must be a primary
8948 base (possibly multi-level) of vid->binfo, or we wouldn't
8949 have called build_vcall_and_vbase_vtbl_entries for it. But it
8950 might be a lost primary, so just skip down to vid->binfo. */
8951 if (BINFO_VIRTUAL_P (non_primary_binfo))
8952 {
8953 non_primary_binfo = vid->binfo;
8954 break;
8955 }
8956
8957 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
8958 if (get_primary_binfo (b) != non_primary_binfo)
8959 break;
8960 non_primary_binfo = b;
8961 }
8962
8963 /* Go through the virtual bases, adding the offsets. */
8964 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8965 vbase;
8966 vbase = TREE_CHAIN (vbase))
8967 {
8968 tree b;
8969 tree delta;
8970
8971 if (!BINFO_VIRTUAL_P (vbase))
8972 continue;
8973
8974 /* Find the instance of this virtual base in the complete
8975 object. */
8976 b = copied_binfo (vbase, binfo);
8977
8978 /* If we've already got an offset for this virtual base, we
8979 don't need another one. */
8980 if (BINFO_VTABLE_PATH_MARKED (b))
8981 continue;
8982 BINFO_VTABLE_PATH_MARKED (b) = 1;
8983
8984 /* Figure out where we can find this vbase offset. */
8985 delta = size_binop (MULT_EXPR,
8986 vid->index,
8987 convert (ssizetype,
8988 TYPE_SIZE_UNIT (vtable_entry_type)));
8989 if (vid->primary_vtbl_p)
8990 BINFO_VPTR_FIELD (b) = delta;
8991
8992 if (binfo != TYPE_BINFO (t))
8993 /* The vbase offset had better be the same. */
8994 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
8995
8996 /* The next vbase will come at a more negative offset. */
8997 vid->index = size_binop (MINUS_EXPR, vid->index,
8998 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
8999
9000 /* The initializer is the delta from BINFO to this virtual base.
9001 The vbase offsets go in reverse inheritance-graph order, and
9002 we are walking in inheritance graph order so these end up in
9003 the right order. */
9004 delta = size_diffop_loc (input_location,
9005 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
9006
9007 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
9008 fold_build1_loc (input_location, NOP_EXPR,
9009 vtable_entry_type, delta));
9010 }
9011 }
9012
9013 /* Adds the initializers for the vcall offset entries in the vtable
9014 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9015 to VID->INITS. */
9016
9017 static void
9018 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9019 {
9020 /* We only need these entries if this base is a virtual base. We
9021 compute the indices -- but do not add to the vtable -- when
9022 building the main vtable for a class. */
9023 if (binfo == TYPE_BINFO (vid->derived)
9024 || (BINFO_VIRTUAL_P (binfo)
9025 /* If BINFO is RTTI_BINFO, then (since BINFO does not
9026 correspond to VID->DERIVED), we are building a primary
9027 construction virtual table. Since this is a primary
9028 virtual table, we do not need the vcall offsets for
9029 BINFO. */
9030 && binfo != vid->rtti_binfo))
9031 {
9032 /* We need a vcall offset for each of the virtual functions in this
9033 vtable. For example:
9034
9035 class A { virtual void f (); };
9036 class B1 : virtual public A { virtual void f (); };
9037 class B2 : virtual public A { virtual void f (); };
9038 class C: public B1, public B2 { virtual void f (); };
9039
9040 A C object has a primary base of B1, which has a primary base of A. A
9041 C also has a secondary base of B2, which no longer has a primary base
9042 of A. So the B2-in-C construction vtable needs a secondary vtable for
9043 A, which will adjust the A* to a B2* to call f. We have no way of
9044 knowing what (or even whether) this offset will be when we define B2,
9045 so we store this "vcall offset" in the A sub-vtable and look it up in
9046 a "virtual thunk" for B2::f.
9047
9048 We need entries for all the functions in our primary vtable and
9049 in our non-virtual bases' secondary vtables. */
9050 vid->vbase = binfo;
9051 /* If we are just computing the vcall indices -- but do not need
9052 the actual entries -- not that. */
9053 if (!BINFO_VIRTUAL_P (binfo))
9054 vid->generate_vcall_entries = false;
9055 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9056 add_vcall_offset_vtbl_entries_r (binfo, vid);
9057 }
9058 }
9059
9060 /* Build vcall offsets, starting with those for BINFO. */
9061
9062 static void
9063 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9064 {
9065 int i;
9066 tree primary_binfo;
9067 tree base_binfo;
9068
9069 /* Don't walk into virtual bases -- except, of course, for the
9070 virtual base for which we are building vcall offsets. Any
9071 primary virtual base will have already had its offsets generated
9072 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9073 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9074 return;
9075
9076 /* If BINFO has a primary base, process it first. */
9077 primary_binfo = get_primary_binfo (binfo);
9078 if (primary_binfo)
9079 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9080
9081 /* Add BINFO itself to the list. */
9082 add_vcall_offset_vtbl_entries_1 (binfo, vid);
9083
9084 /* Scan the non-primary bases of BINFO. */
9085 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9086 if (base_binfo != primary_binfo)
9087 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9088 }
9089
9090 /* Called from build_vcall_offset_vtbl_entries_r. */
9091
9092 static void
9093 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9094 {
9095 /* Make entries for the rest of the virtuals. */
9096 if (abi_version_at_least (2))
9097 {
9098 tree orig_fn;
9099
9100 /* The ABI requires that the methods be processed in declaration
9101 order. G++ 3.2 used the order in the vtable. */
9102 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
9103 orig_fn;
9104 orig_fn = DECL_CHAIN (orig_fn))
9105 if (DECL_VINDEX (orig_fn))
9106 add_vcall_offset (orig_fn, binfo, vid);
9107 }
9108 else
9109 {
9110 tree derived_virtuals;
9111 tree base_virtuals;
9112 tree orig_virtuals;
9113 /* If BINFO is a primary base, the most derived class which has
9114 BINFO as a primary base; otherwise, just BINFO. */
9115 tree non_primary_binfo;
9116
9117 /* We might be a primary base class. Go up the inheritance hierarchy
9118 until we find the most derived class of which we are a primary base:
9119 it is the BINFO_VIRTUALS there that we need to consider. */
9120 non_primary_binfo = binfo;
9121 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9122 {
9123 tree b;
9124
9125 /* If we have reached a virtual base, then it must be vid->vbase,
9126 because we ignore other virtual bases in
9127 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
9128 base (possibly multi-level) of vid->binfo, or we wouldn't
9129 have called build_vcall_and_vbase_vtbl_entries for it. But it
9130 might be a lost primary, so just skip down to vid->binfo. */
9131 if (BINFO_VIRTUAL_P (non_primary_binfo))
9132 {
9133 gcc_assert (non_primary_binfo == vid->vbase);
9134 non_primary_binfo = vid->binfo;
9135 break;
9136 }
9137
9138 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9139 if (get_primary_binfo (b) != non_primary_binfo)
9140 break;
9141 non_primary_binfo = b;
9142 }
9143
9144 if (vid->ctor_vtbl_p)
9145 /* For a ctor vtable we need the equivalent binfo within the hierarchy
9146 where rtti_binfo is the most derived type. */
9147 non_primary_binfo
9148 = original_binfo (non_primary_binfo, vid->rtti_binfo);
9149
9150 for (base_virtuals = BINFO_VIRTUALS (binfo),
9151 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
9152 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
9153 base_virtuals;
9154 base_virtuals = TREE_CHAIN (base_virtuals),
9155 derived_virtuals = TREE_CHAIN (derived_virtuals),
9156 orig_virtuals = TREE_CHAIN (orig_virtuals))
9157 {
9158 tree orig_fn;
9159
9160 /* Find the declaration that originally caused this function to
9161 be present in BINFO_TYPE (binfo). */
9162 orig_fn = BV_FN (orig_virtuals);
9163
9164 /* When processing BINFO, we only want to generate vcall slots for
9165 function slots introduced in BINFO. So don't try to generate
9166 one if the function isn't even defined in BINFO. */
9167 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
9168 continue;
9169
9170 add_vcall_offset (orig_fn, binfo, vid);
9171 }
9172 }
9173 }
9174
9175 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9176
9177 static void
9178 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9179 {
9180 size_t i;
9181 tree vcall_offset;
9182 tree derived_entry;
9183
9184 /* If there is already an entry for a function with the same
9185 signature as FN, then we do not need a second vcall offset.
9186 Check the list of functions already present in the derived
9187 class vtable. */
9188 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9189 {
9190 if (same_signature_p (derived_entry, orig_fn)
9191 /* We only use one vcall offset for virtual destructors,
9192 even though there are two virtual table entries. */
9193 || (DECL_DESTRUCTOR_P (derived_entry)
9194 && DECL_DESTRUCTOR_P (orig_fn)))
9195 return;
9196 }
9197
9198 /* If we are building these vcall offsets as part of building
9199 the vtable for the most derived class, remember the vcall
9200 offset. */
9201 if (vid->binfo == TYPE_BINFO (vid->derived))
9202 {
9203 tree_pair_s elt = {orig_fn, vid->index};
9204 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9205 }
9206
9207 /* The next vcall offset will be found at a more negative
9208 offset. */
9209 vid->index = size_binop (MINUS_EXPR, vid->index,
9210 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9211
9212 /* Keep track of this function. */
9213 vec_safe_push (vid->fns, orig_fn);
9214
9215 if (vid->generate_vcall_entries)
9216 {
9217 tree base;
9218 tree fn;
9219
9220 /* Find the overriding function. */
9221 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9222 if (fn == error_mark_node)
9223 vcall_offset = build_zero_cst (vtable_entry_type);
9224 else
9225 {
9226 base = TREE_VALUE (fn);
9227
9228 /* The vbase we're working on is a primary base of
9229 vid->binfo. But it might be a lost primary, so its
9230 BINFO_OFFSET might be wrong, so we just use the
9231 BINFO_OFFSET from vid->binfo. */
9232 vcall_offset = size_diffop_loc (input_location,
9233 BINFO_OFFSET (base),
9234 BINFO_OFFSET (vid->binfo));
9235 vcall_offset = fold_build1_loc (input_location,
9236 NOP_EXPR, vtable_entry_type,
9237 vcall_offset);
9238 }
9239 /* Add the initializer to the vtable. */
9240 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9241 }
9242 }
9243
9244 /* Return vtbl initializers for the RTTI entries corresponding to the
9245 BINFO's vtable. The RTTI entries should indicate the object given
9246 by VID->rtti_binfo. */
9247
9248 static void
9249 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9250 {
9251 tree b;
9252 tree t;
9253 tree offset;
9254 tree decl;
9255 tree init;
9256
9257 t = BINFO_TYPE (vid->rtti_binfo);
9258
9259 /* To find the complete object, we will first convert to our most
9260 primary base, and then add the offset in the vtbl to that value. */
9261 b = binfo;
9262 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9263 && !BINFO_LOST_PRIMARY_P (b))
9264 {
9265 tree primary_base;
9266
9267 primary_base = get_primary_binfo (b);
9268 gcc_assert (BINFO_PRIMARY_P (primary_base)
9269 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9270 b = primary_base;
9271 }
9272 offset = size_diffop_loc (input_location,
9273 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9274
9275 /* The second entry is the address of the typeinfo object. */
9276 if (flag_rtti)
9277 decl = build_address (get_tinfo_decl (t));
9278 else
9279 decl = integer_zero_node;
9280
9281 /* Convert the declaration to a type that can be stored in the
9282 vtable. */
9283 init = build_nop (vfunc_ptr_type_node, decl);
9284 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9285
9286 /* Add the offset-to-top entry. It comes earlier in the vtable than
9287 the typeinfo entry. Convert the offset to look like a
9288 function pointer, so that we can put it in the vtable. */
9289 init = build_nop (vfunc_ptr_type_node, offset);
9290 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9291 }
9292
9293 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9294 accessibility. */
9295
9296 bool
9297 uniquely_derived_from_p (tree parent, tree type)
9298 {
9299 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9300 return base && base != error_mark_node;
9301 }
9302
9303 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9304
9305 bool
9306 publicly_uniquely_derived_p (tree parent, tree type)
9307 {
9308 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9309 NULL, tf_none);
9310 return base && base != error_mark_node;
9311 }
9312
9313 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9314 class between them, if any. */
9315
9316 tree
9317 common_enclosing_class (tree ctx1, tree ctx2)
9318 {
9319 if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
9320 return NULL_TREE;
9321 gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
9322 && ctx2 == TYPE_MAIN_VARIANT (ctx2));
9323 if (ctx1 == ctx2)
9324 return ctx1;
9325 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9326 TYPE_MARKED_P (t) = true;
9327 tree found = NULL_TREE;
9328 for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
9329 if (TYPE_MARKED_P (t))
9330 {
9331 found = t;
9332 break;
9333 }
9334 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9335 TYPE_MARKED_P (t) = false;
9336 return found;
9337 }
9338
9339 #include "gt-cp-class.h"