re PR c++/26693 (Access checks not performed for types in templates)
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38 #include "cgraph.h"
39 #include "tree-dump.h"
40
41 /* The number of nested classes being processed. If we are not in the
42 scope of any class, this is zero. */
43
44 int current_class_depth;
45
46 /* In order to deal with nested classes, we keep a stack of classes.
47 The topmost entry is the innermost class, and is the entry at index
48 CURRENT_CLASS_DEPTH */
49
50 typedef struct class_stack_node {
51 /* The name of the class. */
52 tree name;
53
54 /* The _TYPE node for the class. */
55 tree type;
56
57 /* The access specifier pending for new declarations in the scope of
58 this class. */
59 tree access;
60
61 /* If were defining TYPE, the names used in this class. */
62 splay_tree names_used;
63
64 /* Nonzero if this class is no longer open, because of a call to
65 push_to_top_level. */
66 size_t hidden;
67 }* class_stack_node_t;
68
69 typedef struct vtbl_init_data_s
70 {
71 /* The base for which we're building initializers. */
72 tree binfo;
73 /* The type of the most-derived type. */
74 tree derived;
75 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
76 unless ctor_vtbl_p is true. */
77 tree rtti_binfo;
78 /* The negative-index vtable initializers built up so far. These
79 are in order from least negative index to most negative index. */
80 tree inits;
81 /* The last (i.e., most negative) entry in INITS. */
82 tree* last_init;
83 /* The binfo for the virtual base for which we're building
84 vcall offset initializers. */
85 tree vbase;
86 /* The functions in vbase for which we have already provided vcall
87 offsets. */
88 VEC(tree,gc) *fns;
89 /* The vtable index of the next vcall or vbase offset. */
90 tree index;
91 /* Nonzero if we are building the initializer for the primary
92 vtable. */
93 int primary_vtbl_p;
94 /* Nonzero if we are building the initializer for a construction
95 vtable. */
96 int ctor_vtbl_p;
97 /* True when adding vcall offset entries to the vtable. False when
98 merely computing the indices. */
99 bool generate_vcall_entries;
100 } vtbl_init_data;
101
102 /* The type of a function passed to walk_subobject_offsets. */
103 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
104
105 /* The stack itself. This is a dynamically resized array. The
106 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
107 static int current_class_stack_size;
108 static class_stack_node_t current_class_stack;
109
110 /* The size of the largest empty class seen in this translation unit. */
111 static GTY (()) tree sizeof_biggest_empty_class;
112
113 /* An array of all local classes present in this translation unit, in
114 declaration order. */
115 VEC(tree,gc) *local_classes;
116
117 static tree get_vfield_name (tree);
118 static void finish_struct_anon (tree);
119 static tree get_vtable_name (tree);
120 static tree get_basefndecls (tree, tree);
121 static int build_primary_vtable (tree, tree);
122 static int build_secondary_vtable (tree);
123 static void finish_vtbls (tree);
124 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
125 static void finish_struct_bits (tree);
126 static int alter_access (tree, tree, tree);
127 static void handle_using_decl (tree, tree);
128 static tree dfs_modify_vtables (tree, void *);
129 static tree modify_all_vtables (tree, tree);
130 static void determine_primary_bases (tree);
131 static void finish_struct_methods (tree);
132 static void maybe_warn_about_overly_private_class (tree);
133 static int method_name_cmp (const void *, const void *);
134 static int resort_method_name_cmp (const void *, const void *);
135 static void add_implicitly_declared_members (tree, int, int);
136 static tree fixed_type_or_null (tree, int *, int *);
137 static tree build_simple_base_path (tree expr, tree binfo);
138 static tree build_vtbl_ref_1 (tree, tree);
139 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
140 static int count_fields (tree);
141 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
142 static bool check_bitfield_decl (tree);
143 static void check_field_decl (tree, tree, int *, int *, int *);
144 static void check_field_decls (tree, tree *, int *, int *);
145 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
146 static void build_base_fields (record_layout_info, splay_tree, tree *);
147 static void check_methods (tree);
148 static void remove_zero_width_bit_fields (tree);
149 static void check_bases (tree, int *, int *);
150 static void check_bases_and_members (tree);
151 static tree create_vtable_ptr (tree, tree *);
152 static void include_empty_classes (record_layout_info);
153 static void layout_class_type (tree, tree *);
154 static void fixup_pending_inline (tree);
155 static void fixup_inline_methods (tree);
156 static void propagate_binfo_offsets (tree, tree);
157 static void layout_virtual_bases (record_layout_info, splay_tree);
158 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
160 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
161 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
162 static void add_vcall_offset (tree, tree, vtbl_init_data *);
163 static void layout_vtable_decl (tree, int);
164 static tree dfs_find_final_overrider_pre (tree, void *);
165 static tree dfs_find_final_overrider_post (tree, void *);
166 static tree find_final_overrider (tree, tree, tree);
167 static int make_new_vtable (tree, tree);
168 static tree get_primary_binfo (tree);
169 static int maybe_indent_hierarchy (FILE *, int, int);
170 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
171 static void dump_class_hierarchy (tree);
172 static void dump_class_hierarchy_1 (FILE *, int, tree);
173 static void dump_array (FILE *, tree);
174 static void dump_vtable (tree, tree, tree);
175 static void dump_vtt (tree, tree);
176 static void dump_thunk (FILE *, int, tree);
177 static tree build_vtable (tree, tree, tree);
178 static void initialize_vtable (tree, tree);
179 static void layout_nonempty_base_or_field (record_layout_info,
180 tree, tree, splay_tree);
181 static tree end_of_class (tree, int);
182 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
183 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
184 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
185 tree);
186 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
187 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
188 static void clone_constructors_and_destructors (tree);
189 static tree build_clone (tree, tree);
190 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
191 static void build_ctor_vtbl_group (tree, tree);
192 static void build_vtt (tree);
193 static tree binfo_ctor_vtable (tree);
194 static tree *build_vtt_inits (tree, tree, tree *, tree *);
195 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
196 static tree dfs_fixup_binfo_vtbls (tree, void *);
197 static int record_subobject_offset (tree, tree, splay_tree);
198 static int check_subobject_offset (tree, tree, splay_tree);
199 static int walk_subobject_offsets (tree, subobject_offset_fn,
200 tree, splay_tree, tree, int);
201 static void record_subobject_offsets (tree, tree, splay_tree, bool);
202 static int layout_conflict_p (tree, tree, splay_tree, int);
203 static int splay_tree_compare_integer_csts (splay_tree_key k1,
204 splay_tree_key k2);
205 static void warn_about_ambiguous_bases (tree);
206 static bool type_requires_array_cookie (tree);
207 static bool contains_empty_class_p (tree);
208 static bool base_derived_from (tree, tree);
209 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
210 static tree end_of_base (tree);
211 static tree get_vcall_index (tree, tree);
212
213 /* Variables shared between class.c and call.c. */
214
215 #ifdef GATHER_STATISTICS
216 int n_vtables = 0;
217 int n_vtable_entries = 0;
218 int n_vtable_searches = 0;
219 int n_vtable_elems = 0;
220 int n_convert_harshness = 0;
221 int n_compute_conversion_costs = 0;
222 int n_inner_fields_searched = 0;
223 #endif
224
225 /* Convert to or from a base subobject. EXPR is an expression of type
226 `A' or `A*', an expression of type `B' or `B*' is returned. To
227 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
228 the B base instance within A. To convert base A to derived B, CODE
229 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
230 In this latter case, A must not be a morally virtual base of B.
231 NONNULL is true if EXPR is known to be non-NULL (this is only
232 needed when EXPR is of pointer type). CV qualifiers are preserved
233 from EXPR. */
234
235 tree
236 build_base_path (enum tree_code code,
237 tree expr,
238 tree binfo,
239 int nonnull)
240 {
241 tree v_binfo = NULL_TREE;
242 tree d_binfo = NULL_TREE;
243 tree probe;
244 tree offset;
245 tree target_type;
246 tree null_test = NULL;
247 tree ptr_target_type;
248 int fixed_type_p;
249 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
250 bool has_empty = false;
251 bool virtual_access;
252
253 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
254 return error_mark_node;
255
256 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
257 {
258 d_binfo = probe;
259 if (is_empty_class (BINFO_TYPE (probe)))
260 has_empty = true;
261 if (!v_binfo && BINFO_VIRTUAL_P (probe))
262 v_binfo = probe;
263 }
264
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
266 if (want_pointer)
267 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
268
269 gcc_assert ((code == MINUS_EXPR
270 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
271 || (code == PLUS_EXPR
272 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
273
274 if (binfo == d_binfo)
275 /* Nothing to do. */
276 return expr;
277
278 if (code == MINUS_EXPR && v_binfo)
279 {
280 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
281 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
282 return error_mark_node;
283 }
284
285 if (!want_pointer)
286 /* This must happen before the call to save_expr. */
287 expr = cp_build_unary_op (ADDR_EXPR, expr, 0, tf_warning_or_error);
288
289 offset = BINFO_OFFSET (binfo);
290 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
291 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
292
293 /* Do we need to look in the vtable for the real offset? */
294 virtual_access = (v_binfo && fixed_type_p <= 0);
295
296 /* Don't bother with the calculations inside sizeof; they'll ICE if the
297 source type is incomplete and the pointer value doesn't matter. */
298 if (skip_evaluation)
299 {
300 expr = build_nop (build_pointer_type (target_type), expr);
301 if (!want_pointer)
302 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, NULL);
303 return expr;
304 }
305
306 /* Do we need to check for a null pointer? */
307 if (want_pointer && !nonnull)
308 {
309 /* If we know the conversion will not actually change the value
310 of EXPR, then we can avoid testing the expression for NULL.
311 We have to avoid generating a COMPONENT_REF for a base class
312 field, because other parts of the compiler know that such
313 expressions are always non-NULL. */
314 if (!virtual_access && integer_zerop (offset))
315 {
316 tree class_type;
317 /* TARGET_TYPE has been extracted from BINFO, and, is
318 therefore always cv-unqualified. Extract the
319 cv-qualifiers from EXPR so that the expression returned
320 matches the input. */
321 class_type = TREE_TYPE (TREE_TYPE (expr));
322 target_type
323 = cp_build_qualified_type (target_type,
324 cp_type_quals (class_type));
325 return build_nop (build_pointer_type (target_type), expr);
326 }
327 null_test = error_mark_node;
328 }
329
330 /* Protect against multiple evaluation if necessary. */
331 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
332 expr = save_expr (expr);
333
334 /* Now that we've saved expr, build the real null test. */
335 if (null_test)
336 {
337 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
338 null_test = fold_build2 (NE_EXPR, boolean_type_node,
339 expr, zero);
340 }
341
342 /* If this is a simple base reference, express it as a COMPONENT_REF. */
343 if (code == PLUS_EXPR && !virtual_access
344 /* We don't build base fields for empty bases, and they aren't very
345 interesting to the optimizers anyway. */
346 && !has_empty)
347 {
348 expr = cp_build_indirect_ref (expr, NULL, tf_warning_or_error);
349 expr = build_simple_base_path (expr, binfo);
350 if (want_pointer)
351 expr = build_address (expr);
352 target_type = TREE_TYPE (expr);
353 goto out;
354 }
355
356 if (virtual_access)
357 {
358 /* Going via virtual base V_BINFO. We need the static offset
359 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
360 V_BINFO. That offset is an entry in D_BINFO's vtable. */
361 tree v_offset;
362
363 if (fixed_type_p < 0 && in_base_initializer)
364 {
365 /* In a base member initializer, we cannot rely on the
366 vtable being set up. We have to indirect via the
367 vtt_parm. */
368 tree t;
369
370 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
371 t = build_pointer_type (t);
372 v_offset = convert (t, current_vtt_parm);
373 v_offset = cp_build_indirect_ref (v_offset, NULL,
374 tf_warning_or_error);
375 }
376 else
377 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, NULL,
378 tf_warning_or_error),
379 TREE_TYPE (TREE_TYPE (expr)));
380
381 v_offset = build2 (POINTER_PLUS_EXPR, TREE_TYPE (v_offset),
382 v_offset, fold_convert (sizetype, BINFO_VPTR_FIELD (v_binfo)));
383 v_offset = build1 (NOP_EXPR,
384 build_pointer_type (ptrdiff_type_node),
385 v_offset);
386 v_offset = cp_build_indirect_ref (v_offset, NULL, tf_warning_or_error);
387 TREE_CONSTANT (v_offset) = 1;
388
389 offset = convert_to_integer (ptrdiff_type_node,
390 size_diffop (offset,
391 BINFO_OFFSET (v_binfo)));
392
393 if (!integer_zerop (offset))
394 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
395
396 if (fixed_type_p < 0)
397 /* Negative fixed_type_p means this is a constructor or destructor;
398 virtual base layout is fixed in in-charge [cd]tors, but not in
399 base [cd]tors. */
400 offset = build3 (COND_EXPR, ptrdiff_type_node,
401 build2 (EQ_EXPR, boolean_type_node,
402 current_in_charge_parm, integer_zero_node),
403 v_offset,
404 convert_to_integer (ptrdiff_type_node,
405 BINFO_OFFSET (binfo)));
406 else
407 offset = v_offset;
408 }
409
410 target_type = cp_build_qualified_type
411 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
412 ptr_target_type = build_pointer_type (target_type);
413 if (want_pointer)
414 target_type = ptr_target_type;
415
416 expr = build1 (NOP_EXPR, ptr_target_type, expr);
417
418 if (!integer_zerop (offset))
419 {
420 offset = fold_convert (sizetype, offset);
421 if (code == MINUS_EXPR)
422 offset = fold_build1 (NEGATE_EXPR, sizetype, offset);
423 expr = build2 (POINTER_PLUS_EXPR, ptr_target_type, expr, offset);
424 }
425 else
426 null_test = NULL;
427
428 if (!want_pointer)
429 expr = cp_build_indirect_ref (expr, NULL, tf_warning_or_error);
430
431 out:
432 if (null_test)
433 expr = fold_build3 (COND_EXPR, target_type, null_test, expr,
434 fold_build1 (NOP_EXPR, target_type,
435 integer_zero_node));
436
437 return expr;
438 }
439
440 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
441 Perform a derived-to-base conversion by recursively building up a
442 sequence of COMPONENT_REFs to the appropriate base fields. */
443
444 static tree
445 build_simple_base_path (tree expr, tree binfo)
446 {
447 tree type = BINFO_TYPE (binfo);
448 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
449 tree field;
450
451 if (d_binfo == NULL_TREE)
452 {
453 tree temp;
454
455 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
456
457 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
458 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
459 an lvalue in the front end; only _DECLs and _REFs are lvalues
460 in the back end. */
461 temp = unary_complex_lvalue (ADDR_EXPR, expr);
462 if (temp)
463 expr = cp_build_indirect_ref (temp, NULL, tf_warning_or_error);
464
465 return expr;
466 }
467
468 /* Recurse. */
469 expr = build_simple_base_path (expr, d_binfo);
470
471 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
472 field; field = TREE_CHAIN (field))
473 /* Is this the base field created by build_base_field? */
474 if (TREE_CODE (field) == FIELD_DECL
475 && DECL_FIELD_IS_BASE (field)
476 && TREE_TYPE (field) == type)
477 {
478 /* We don't use build_class_member_access_expr here, as that
479 has unnecessary checks, and more importantly results in
480 recursive calls to dfs_walk_once. */
481 int type_quals = cp_type_quals (TREE_TYPE (expr));
482
483 expr = build3 (COMPONENT_REF,
484 cp_build_qualified_type (type, type_quals),
485 expr, field, NULL_TREE);
486 expr = fold_if_not_in_template (expr);
487
488 /* Mark the expression const or volatile, as appropriate.
489 Even though we've dealt with the type above, we still have
490 to mark the expression itself. */
491 if (type_quals & TYPE_QUAL_CONST)
492 TREE_READONLY (expr) = 1;
493 if (type_quals & TYPE_QUAL_VOLATILE)
494 TREE_THIS_VOLATILE (expr) = 1;
495
496 return expr;
497 }
498
499 /* Didn't find the base field?!? */
500 gcc_unreachable ();
501 }
502
503 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
504 type is a class type or a pointer to a class type. In the former
505 case, TYPE is also a class type; in the latter it is another
506 pointer type. If CHECK_ACCESS is true, an error message is emitted
507 if TYPE is inaccessible. If OBJECT has pointer type, the value is
508 assumed to be non-NULL. */
509
510 tree
511 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
512 {
513 tree binfo;
514 tree object_type;
515
516 if (TYPE_PTR_P (TREE_TYPE (object)))
517 {
518 object_type = TREE_TYPE (TREE_TYPE (object));
519 type = TREE_TYPE (type);
520 }
521 else
522 object_type = TREE_TYPE (object);
523
524 binfo = lookup_base (object_type, type,
525 check_access ? ba_check : ba_unique,
526 NULL);
527 if (!binfo || binfo == error_mark_node)
528 return error_mark_node;
529
530 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
531 }
532
533 /* EXPR is an expression with unqualified class type. BASE is a base
534 binfo of that class type. Returns EXPR, converted to the BASE
535 type. This function assumes that EXPR is the most derived class;
536 therefore virtual bases can be found at their static offsets. */
537
538 tree
539 convert_to_base_statically (tree expr, tree base)
540 {
541 tree expr_type;
542
543 expr_type = TREE_TYPE (expr);
544 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
545 {
546 tree pointer_type;
547
548 pointer_type = build_pointer_type (expr_type);
549
550 /* We use fold_build2 and fold_convert below to simplify the trees
551 provided to the optimizers. It is not safe to call these functions
552 when processing a template because they do not handle C++-specific
553 trees. */
554 gcc_assert (!processing_template_decl);
555 expr = cp_build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1,
556 tf_warning_or_error);
557 if (!integer_zerop (BINFO_OFFSET (base)))
558 expr = fold_build2 (POINTER_PLUS_EXPR, pointer_type, expr,
559 fold_convert (sizetype, BINFO_OFFSET (base)));
560 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
561 expr = build_fold_indirect_ref (expr);
562 }
563
564 return expr;
565 }
566
567 \f
568 tree
569 build_vfield_ref (tree datum, tree type)
570 {
571 tree vfield, vcontext;
572
573 if (datum == error_mark_node)
574 return error_mark_node;
575
576 /* First, convert to the requested type. */
577 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
578 datum = convert_to_base (datum, type, /*check_access=*/false,
579 /*nonnull=*/true);
580
581 /* Second, the requested type may not be the owner of its own vptr.
582 If not, convert to the base class that owns it. We cannot use
583 convert_to_base here, because VCONTEXT may appear more than once
584 in the inheritance hierarchy of TYPE, and thus direct conversion
585 between the types may be ambiguous. Following the path back up
586 one step at a time via primary bases avoids the problem. */
587 vfield = TYPE_VFIELD (type);
588 vcontext = DECL_CONTEXT (vfield);
589 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
590 {
591 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
592 type = TREE_TYPE (datum);
593 }
594
595 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
596 }
597
598 /* Given an object INSTANCE, return an expression which yields the
599 vtable element corresponding to INDEX. There are many special
600 cases for INSTANCE which we take care of here, mainly to avoid
601 creating extra tree nodes when we don't have to. */
602
603 static tree
604 build_vtbl_ref_1 (tree instance, tree idx)
605 {
606 tree aref;
607 tree vtbl = NULL_TREE;
608
609 /* Try to figure out what a reference refers to, and
610 access its virtual function table directly. */
611
612 int cdtorp = 0;
613 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
614
615 tree basetype = non_reference (TREE_TYPE (instance));
616
617 if (fixed_type && !cdtorp)
618 {
619 tree binfo = lookup_base (fixed_type, basetype,
620 ba_unique | ba_quiet, NULL);
621 if (binfo)
622 vtbl = unshare_expr (BINFO_VTABLE (binfo));
623 }
624
625 if (!vtbl)
626 vtbl = build_vfield_ref (instance, basetype);
627
628 assemble_external (vtbl);
629
630 aref = build_array_ref (vtbl, idx, input_location);
631 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
632
633 return aref;
634 }
635
636 tree
637 build_vtbl_ref (tree instance, tree idx)
638 {
639 tree aref = build_vtbl_ref_1 (instance, idx);
640
641 return aref;
642 }
643
644 /* Given a stable object pointer INSTANCE_PTR, return an expression which
645 yields a function pointer corresponding to vtable element INDEX. */
646
647 tree
648 build_vfn_ref (tree instance_ptr, tree idx)
649 {
650 tree aref;
651
652 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, 0,
653 tf_warning_or_error),
654 idx);
655
656 /* When using function descriptors, the address of the
657 vtable entry is treated as a function pointer. */
658 if (TARGET_VTABLE_USES_DESCRIPTORS)
659 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
660 cp_build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1,
661 tf_warning_or_error));
662
663 /* Remember this as a method reference, for later devirtualization. */
664 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
665
666 return aref;
667 }
668
669 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
670 for the given TYPE. */
671
672 static tree
673 get_vtable_name (tree type)
674 {
675 return mangle_vtbl_for_type (type);
676 }
677
678 /* DECL is an entity associated with TYPE, like a virtual table or an
679 implicitly generated constructor. Determine whether or not DECL
680 should have external or internal linkage at the object file
681 level. This routine does not deal with COMDAT linkage and other
682 similar complexities; it simply sets TREE_PUBLIC if it possible for
683 entities in other translation units to contain copies of DECL, in
684 the abstract. */
685
686 void
687 set_linkage_according_to_type (tree type, tree decl)
688 {
689 /* If TYPE involves a local class in a function with internal
690 linkage, then DECL should have internal linkage too. Other local
691 classes have no linkage -- but if their containing functions
692 have external linkage, it makes sense for DECL to have external
693 linkage too. That will allow template definitions to be merged,
694 for example. */
695 if (no_linkage_check (type, /*relaxed_p=*/true))
696 {
697 TREE_PUBLIC (decl) = 0;
698 DECL_INTERFACE_KNOWN (decl) = 1;
699 }
700 else
701 TREE_PUBLIC (decl) = 1;
702 }
703
704 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
705 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
706 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
707
708 static tree
709 build_vtable (tree class_type, tree name, tree vtable_type)
710 {
711 tree decl;
712
713 decl = build_lang_decl (VAR_DECL, name, vtable_type);
714 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
715 now to avoid confusion in mangle_decl. */
716 SET_DECL_ASSEMBLER_NAME (decl, name);
717 DECL_CONTEXT (decl) = class_type;
718 DECL_ARTIFICIAL (decl) = 1;
719 TREE_STATIC (decl) = 1;
720 TREE_READONLY (decl) = 1;
721 DECL_VIRTUAL_P (decl) = 1;
722 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
723 DECL_VTABLE_OR_VTT_P (decl) = 1;
724 /* At one time the vtable info was grabbed 2 words at a time. This
725 fails on sparc unless you have 8-byte alignment. (tiemann) */
726 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
727 DECL_ALIGN (decl));
728 set_linkage_according_to_type (class_type, decl);
729 /* The vtable has not been defined -- yet. */
730 DECL_EXTERNAL (decl) = 1;
731 DECL_NOT_REALLY_EXTERN (decl) = 1;
732
733 /* Mark the VAR_DECL node representing the vtable itself as a
734 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
735 is rather important that such things be ignored because any
736 effort to actually generate DWARF for them will run into
737 trouble when/if we encounter code like:
738
739 #pragma interface
740 struct S { virtual void member (); };
741
742 because the artificial declaration of the vtable itself (as
743 manufactured by the g++ front end) will say that the vtable is
744 a static member of `S' but only *after* the debug output for
745 the definition of `S' has already been output. This causes
746 grief because the DWARF entry for the definition of the vtable
747 will try to refer back to an earlier *declaration* of the
748 vtable as a static member of `S' and there won't be one. We
749 might be able to arrange to have the "vtable static member"
750 attached to the member list for `S' before the debug info for
751 `S' get written (which would solve the problem) but that would
752 require more intrusive changes to the g++ front end. */
753 DECL_IGNORED_P (decl) = 1;
754
755 return decl;
756 }
757
758 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
759 or even complete. If this does not exist, create it. If COMPLETE is
760 nonzero, then complete the definition of it -- that will render it
761 impossible to actually build the vtable, but is useful to get at those
762 which are known to exist in the runtime. */
763
764 tree
765 get_vtable_decl (tree type, int complete)
766 {
767 tree decl;
768
769 if (CLASSTYPE_VTABLES (type))
770 return CLASSTYPE_VTABLES (type);
771
772 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
773 CLASSTYPE_VTABLES (type) = decl;
774
775 if (complete)
776 {
777 DECL_EXTERNAL (decl) = 1;
778 finish_decl (decl, NULL_TREE, NULL_TREE);
779 }
780
781 return decl;
782 }
783
784 /* Build the primary virtual function table for TYPE. If BINFO is
785 non-NULL, build the vtable starting with the initial approximation
786 that it is the same as the one which is the head of the association
787 list. Returns a nonzero value if a new vtable is actually
788 created. */
789
790 static int
791 build_primary_vtable (tree binfo, tree type)
792 {
793 tree decl;
794 tree virtuals;
795
796 decl = get_vtable_decl (type, /*complete=*/0);
797
798 if (binfo)
799 {
800 if (BINFO_NEW_VTABLE_MARKED (binfo))
801 /* We have already created a vtable for this base, so there's
802 no need to do it again. */
803 return 0;
804
805 virtuals = copy_list (BINFO_VIRTUALS (binfo));
806 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
807 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
808 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
809 }
810 else
811 {
812 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
813 virtuals = NULL_TREE;
814 }
815
816 #ifdef GATHER_STATISTICS
817 n_vtables += 1;
818 n_vtable_elems += list_length (virtuals);
819 #endif
820
821 /* Initialize the association list for this type, based
822 on our first approximation. */
823 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
824 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
825 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
826 return 1;
827 }
828
829 /* Give BINFO a new virtual function table which is initialized
830 with a skeleton-copy of its original initialization. The only
831 entry that changes is the `delta' entry, so we can really
832 share a lot of structure.
833
834 FOR_TYPE is the most derived type which caused this table to
835 be needed.
836
837 Returns nonzero if we haven't met BINFO before.
838
839 The order in which vtables are built (by calling this function) for
840 an object must remain the same, otherwise a binary incompatibility
841 can result. */
842
843 static int
844 build_secondary_vtable (tree binfo)
845 {
846 if (BINFO_NEW_VTABLE_MARKED (binfo))
847 /* We already created a vtable for this base. There's no need to
848 do it again. */
849 return 0;
850
851 /* Remember that we've created a vtable for this BINFO, so that we
852 don't try to do so again. */
853 SET_BINFO_NEW_VTABLE_MARKED (binfo);
854
855 /* Make fresh virtual list, so we can smash it later. */
856 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
857
858 /* Secondary vtables are laid out as part of the same structure as
859 the primary vtable. */
860 BINFO_VTABLE (binfo) = NULL_TREE;
861 return 1;
862 }
863
864 /* Create a new vtable for BINFO which is the hierarchy dominated by
865 T. Return nonzero if we actually created a new vtable. */
866
867 static int
868 make_new_vtable (tree t, tree binfo)
869 {
870 if (binfo == TYPE_BINFO (t))
871 /* In this case, it is *type*'s vtable we are modifying. We start
872 with the approximation that its vtable is that of the
873 immediate base class. */
874 return build_primary_vtable (binfo, t);
875 else
876 /* This is our very own copy of `basetype' to play with. Later,
877 we will fill in all the virtual functions that override the
878 virtual functions in these base classes which are not defined
879 by the current type. */
880 return build_secondary_vtable (binfo);
881 }
882
883 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
884 (which is in the hierarchy dominated by T) list FNDECL as its
885 BV_FN. DELTA is the required constant adjustment from the `this'
886 pointer where the vtable entry appears to the `this' required when
887 the function is actually called. */
888
889 static void
890 modify_vtable_entry (tree t,
891 tree binfo,
892 tree fndecl,
893 tree delta,
894 tree *virtuals)
895 {
896 tree v;
897
898 v = *virtuals;
899
900 if (fndecl != BV_FN (v)
901 || !tree_int_cst_equal (delta, BV_DELTA (v)))
902 {
903 /* We need a new vtable for BINFO. */
904 if (make_new_vtable (t, binfo))
905 {
906 /* If we really did make a new vtable, we also made a copy
907 of the BINFO_VIRTUALS list. Now, we have to find the
908 corresponding entry in that list. */
909 *virtuals = BINFO_VIRTUALS (binfo);
910 while (BV_FN (*virtuals) != BV_FN (v))
911 *virtuals = TREE_CHAIN (*virtuals);
912 v = *virtuals;
913 }
914
915 BV_DELTA (v) = delta;
916 BV_VCALL_INDEX (v) = NULL_TREE;
917 BV_FN (v) = fndecl;
918 }
919 }
920
921 \f
922 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
923 the USING_DECL naming METHOD. Returns true if the method could be
924 added to the method vec. */
925
926 bool
927 add_method (tree type, tree method, tree using_decl)
928 {
929 unsigned slot;
930 tree overload;
931 bool template_conv_p = false;
932 bool conv_p;
933 VEC(tree,gc) *method_vec;
934 bool complete_p;
935 bool insert_p = false;
936 tree current_fns;
937 tree fns;
938
939 if (method == error_mark_node)
940 return false;
941
942 complete_p = COMPLETE_TYPE_P (type);
943 conv_p = DECL_CONV_FN_P (method);
944 if (conv_p)
945 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
946 && DECL_TEMPLATE_CONV_FN_P (method));
947
948 method_vec = CLASSTYPE_METHOD_VEC (type);
949 if (!method_vec)
950 {
951 /* Make a new method vector. We start with 8 entries. We must
952 allocate at least two (for constructors and destructors), and
953 we're going to end up with an assignment operator at some
954 point as well. */
955 method_vec = VEC_alloc (tree, gc, 8);
956 /* Create slots for constructors and destructors. */
957 VEC_quick_push (tree, method_vec, NULL_TREE);
958 VEC_quick_push (tree, method_vec, NULL_TREE);
959 CLASSTYPE_METHOD_VEC (type) = method_vec;
960 }
961
962 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
963 grok_special_member_properties (method);
964
965 /* Constructors and destructors go in special slots. */
966 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
967 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
968 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
969 {
970 slot = CLASSTYPE_DESTRUCTOR_SLOT;
971
972 if (TYPE_FOR_JAVA (type))
973 {
974 if (!DECL_ARTIFICIAL (method))
975 error ("Java class %qT cannot have a destructor", type);
976 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
977 error ("Java class %qT cannot have an implicit non-trivial "
978 "destructor",
979 type);
980 }
981 }
982 else
983 {
984 tree m;
985
986 insert_p = true;
987 /* See if we already have an entry with this name. */
988 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
989 VEC_iterate (tree, method_vec, slot, m);
990 ++slot)
991 {
992 m = OVL_CURRENT (m);
993 if (template_conv_p)
994 {
995 if (TREE_CODE (m) == TEMPLATE_DECL
996 && DECL_TEMPLATE_CONV_FN_P (m))
997 insert_p = false;
998 break;
999 }
1000 if (conv_p && !DECL_CONV_FN_P (m))
1001 break;
1002 if (DECL_NAME (m) == DECL_NAME (method))
1003 {
1004 insert_p = false;
1005 break;
1006 }
1007 if (complete_p
1008 && !DECL_CONV_FN_P (m)
1009 && DECL_NAME (m) > DECL_NAME (method))
1010 break;
1011 }
1012 }
1013 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
1014
1015 /* Check to see if we've already got this method. */
1016 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1017 {
1018 tree fn = OVL_CURRENT (fns);
1019 tree fn_type;
1020 tree method_type;
1021 tree parms1;
1022 tree parms2;
1023
1024 if (TREE_CODE (fn) != TREE_CODE (method))
1025 continue;
1026
1027 /* [over.load] Member function declarations with the
1028 same name and the same parameter types cannot be
1029 overloaded if any of them is a static member
1030 function declaration.
1031
1032 [namespace.udecl] When a using-declaration brings names
1033 from a base class into a derived class scope, member
1034 functions in the derived class override and/or hide member
1035 functions with the same name and parameter types in a base
1036 class (rather than conflicting). */
1037 fn_type = TREE_TYPE (fn);
1038 method_type = TREE_TYPE (method);
1039 parms1 = TYPE_ARG_TYPES (fn_type);
1040 parms2 = TYPE_ARG_TYPES (method_type);
1041
1042 /* Compare the quals on the 'this' parm. Don't compare
1043 the whole types, as used functions are treated as
1044 coming from the using class in overload resolution. */
1045 if (! DECL_STATIC_FUNCTION_P (fn)
1046 && ! DECL_STATIC_FUNCTION_P (method)
1047 && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
1048 && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
1049 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1050 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1051 continue;
1052
1053 /* For templates, the return type and template parameters
1054 must be identical. */
1055 if (TREE_CODE (fn) == TEMPLATE_DECL
1056 && (!same_type_p (TREE_TYPE (fn_type),
1057 TREE_TYPE (method_type))
1058 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1059 DECL_TEMPLATE_PARMS (method))))
1060 continue;
1061
1062 if (! DECL_STATIC_FUNCTION_P (fn))
1063 parms1 = TREE_CHAIN (parms1);
1064 if (! DECL_STATIC_FUNCTION_P (method))
1065 parms2 = TREE_CHAIN (parms2);
1066
1067 if (compparms (parms1, parms2)
1068 && (!DECL_CONV_FN_P (fn)
1069 || same_type_p (TREE_TYPE (fn_type),
1070 TREE_TYPE (method_type))))
1071 {
1072 if (using_decl)
1073 {
1074 if (DECL_CONTEXT (fn) == type)
1075 /* Defer to the local function. */
1076 return false;
1077 if (DECL_CONTEXT (fn) == DECL_CONTEXT (method))
1078 error ("repeated using declaration %q+D", using_decl);
1079 else
1080 error ("using declaration %q+D conflicts with a previous using declaration",
1081 using_decl);
1082 }
1083 else
1084 {
1085 error ("%q+#D cannot be overloaded", method);
1086 error ("with %q+#D", fn);
1087 }
1088
1089 /* We don't call duplicate_decls here to merge the
1090 declarations because that will confuse things if the
1091 methods have inline definitions. In particular, we
1092 will crash while processing the definitions. */
1093 return false;
1094 }
1095 }
1096
1097 /* A class should never have more than one destructor. */
1098 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1099 return false;
1100
1101 /* Add the new binding. */
1102 overload = build_overload (method, current_fns);
1103
1104 if (conv_p)
1105 TYPE_HAS_CONVERSION (type) = 1;
1106 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1107 push_class_level_binding (DECL_NAME (method), overload);
1108
1109 if (insert_p)
1110 {
1111 bool reallocated;
1112
1113 /* We only expect to add few methods in the COMPLETE_P case, so
1114 just make room for one more method in that case. */
1115 if (complete_p)
1116 reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
1117 else
1118 reallocated = VEC_reserve (tree, gc, method_vec, 1);
1119 if (reallocated)
1120 CLASSTYPE_METHOD_VEC (type) = method_vec;
1121 if (slot == VEC_length (tree, method_vec))
1122 VEC_quick_push (tree, method_vec, overload);
1123 else
1124 VEC_quick_insert (tree, method_vec, slot, overload);
1125 }
1126 else
1127 /* Replace the current slot. */
1128 VEC_replace (tree, method_vec, slot, overload);
1129 return true;
1130 }
1131
1132 /* Subroutines of finish_struct. */
1133
1134 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1135 legit, otherwise return 0. */
1136
1137 static int
1138 alter_access (tree t, tree fdecl, tree access)
1139 {
1140 tree elem;
1141
1142 if (!DECL_LANG_SPECIFIC (fdecl))
1143 retrofit_lang_decl (fdecl);
1144
1145 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1146
1147 elem = purpose_member (t, DECL_ACCESS (fdecl));
1148 if (elem)
1149 {
1150 if (TREE_VALUE (elem) != access)
1151 {
1152 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1153 error ("conflicting access specifications for method"
1154 " %q+D, ignored", TREE_TYPE (fdecl));
1155 else
1156 error ("conflicting access specifications for field %qE, ignored",
1157 DECL_NAME (fdecl));
1158 }
1159 else
1160 {
1161 /* They're changing the access to the same thing they changed
1162 it to before. That's OK. */
1163 ;
1164 }
1165 }
1166 else
1167 {
1168 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
1169 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1170 return 1;
1171 }
1172 return 0;
1173 }
1174
1175 /* Process the USING_DECL, which is a member of T. */
1176
1177 static void
1178 handle_using_decl (tree using_decl, tree t)
1179 {
1180 tree decl = USING_DECL_DECLS (using_decl);
1181 tree name = DECL_NAME (using_decl);
1182 tree access
1183 = TREE_PRIVATE (using_decl) ? access_private_node
1184 : TREE_PROTECTED (using_decl) ? access_protected_node
1185 : access_public_node;
1186 tree flist = NULL_TREE;
1187 tree old_value;
1188
1189 gcc_assert (!processing_template_decl && decl);
1190
1191 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1192 if (old_value)
1193 {
1194 if (is_overloaded_fn (old_value))
1195 old_value = OVL_CURRENT (old_value);
1196
1197 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1198 /* OK */;
1199 else
1200 old_value = NULL_TREE;
1201 }
1202
1203 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1204
1205 if (is_overloaded_fn (decl))
1206 flist = decl;
1207
1208 if (! old_value)
1209 ;
1210 else if (is_overloaded_fn (old_value))
1211 {
1212 if (flist)
1213 /* It's OK to use functions from a base when there are functions with
1214 the same name already present in the current class. */;
1215 else
1216 {
1217 error ("%q+D invalid in %q#T", using_decl, t);
1218 error (" because of local method %q+#D with same name",
1219 OVL_CURRENT (old_value));
1220 return;
1221 }
1222 }
1223 else if (!DECL_ARTIFICIAL (old_value))
1224 {
1225 error ("%q+D invalid in %q#T", using_decl, t);
1226 error (" because of local member %q+#D with same name", old_value);
1227 return;
1228 }
1229
1230 /* Make type T see field decl FDECL with access ACCESS. */
1231 if (flist)
1232 for (; flist; flist = OVL_NEXT (flist))
1233 {
1234 add_method (t, OVL_CURRENT (flist), using_decl);
1235 alter_access (t, OVL_CURRENT (flist), access);
1236 }
1237 else
1238 alter_access (t, decl, access);
1239 }
1240 \f
1241 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1242 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1243 properties of the bases. */
1244
1245 static void
1246 check_bases (tree t,
1247 int* cant_have_const_ctor_p,
1248 int* no_const_asn_ref_p)
1249 {
1250 int i;
1251 int seen_non_virtual_nearly_empty_base_p;
1252 tree base_binfo;
1253 tree binfo;
1254
1255 seen_non_virtual_nearly_empty_base_p = 0;
1256
1257 for (binfo = TYPE_BINFO (t), i = 0;
1258 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1259 {
1260 tree basetype = TREE_TYPE (base_binfo);
1261
1262 gcc_assert (COMPLETE_TYPE_P (basetype));
1263
1264 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1265 here because the case of virtual functions but non-virtual
1266 dtor is handled in finish_struct_1. */
1267 if (!TYPE_POLYMORPHIC_P (basetype))
1268 warning (OPT_Weffc__,
1269 "base class %q#T has a non-virtual destructor", basetype);
1270
1271 /* If the base class doesn't have copy constructors or
1272 assignment operators that take const references, then the
1273 derived class cannot have such a member automatically
1274 generated. */
1275 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1276 *cant_have_const_ctor_p = 1;
1277 if (TYPE_HAS_ASSIGN_REF (basetype)
1278 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1279 *no_const_asn_ref_p = 1;
1280
1281 if (BINFO_VIRTUAL_P (base_binfo))
1282 /* A virtual base does not effect nearly emptiness. */
1283 ;
1284 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1285 {
1286 if (seen_non_virtual_nearly_empty_base_p)
1287 /* And if there is more than one nearly empty base, then the
1288 derived class is not nearly empty either. */
1289 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1290 else
1291 /* Remember we've seen one. */
1292 seen_non_virtual_nearly_empty_base_p = 1;
1293 }
1294 else if (!is_empty_class (basetype))
1295 /* If the base class is not empty or nearly empty, then this
1296 class cannot be nearly empty. */
1297 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1298
1299 /* A lot of properties from the bases also apply to the derived
1300 class. */
1301 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1302 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1303 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1304 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1305 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1306 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1307 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1308 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1309 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1310 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (basetype);
1311 }
1312 }
1313
1314 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1315 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1316 that have had a nearly-empty virtual primary base stolen by some
1317 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1318 T. */
1319
1320 static void
1321 determine_primary_bases (tree t)
1322 {
1323 unsigned i;
1324 tree primary = NULL_TREE;
1325 tree type_binfo = TYPE_BINFO (t);
1326 tree base_binfo;
1327
1328 /* Determine the primary bases of our bases. */
1329 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1330 base_binfo = TREE_CHAIN (base_binfo))
1331 {
1332 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1333
1334 /* See if we're the non-virtual primary of our inheritance
1335 chain. */
1336 if (!BINFO_VIRTUAL_P (base_binfo))
1337 {
1338 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1339 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1340
1341 if (parent_primary
1342 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1343 BINFO_TYPE (parent_primary)))
1344 /* We are the primary binfo. */
1345 BINFO_PRIMARY_P (base_binfo) = 1;
1346 }
1347 /* Determine if we have a virtual primary base, and mark it so.
1348 */
1349 if (primary && BINFO_VIRTUAL_P (primary))
1350 {
1351 tree this_primary = copied_binfo (primary, base_binfo);
1352
1353 if (BINFO_PRIMARY_P (this_primary))
1354 /* Someone already claimed this base. */
1355 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1356 else
1357 {
1358 tree delta;
1359
1360 BINFO_PRIMARY_P (this_primary) = 1;
1361 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1362
1363 /* A virtual binfo might have been copied from within
1364 another hierarchy. As we're about to use it as a
1365 primary base, make sure the offsets match. */
1366 delta = size_diffop (convert (ssizetype,
1367 BINFO_OFFSET (base_binfo)),
1368 convert (ssizetype,
1369 BINFO_OFFSET (this_primary)));
1370
1371 propagate_binfo_offsets (this_primary, delta);
1372 }
1373 }
1374 }
1375
1376 /* First look for a dynamic direct non-virtual base. */
1377 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1378 {
1379 tree basetype = BINFO_TYPE (base_binfo);
1380
1381 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1382 {
1383 primary = base_binfo;
1384 goto found;
1385 }
1386 }
1387
1388 /* A "nearly-empty" virtual base class can be the primary base
1389 class, if no non-virtual polymorphic base can be found. Look for
1390 a nearly-empty virtual dynamic base that is not already a primary
1391 base of something in the hierarchy. If there is no such base,
1392 just pick the first nearly-empty virtual base. */
1393
1394 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1395 base_binfo = TREE_CHAIN (base_binfo))
1396 if (BINFO_VIRTUAL_P (base_binfo)
1397 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1398 {
1399 if (!BINFO_PRIMARY_P (base_binfo))
1400 {
1401 /* Found one that is not primary. */
1402 primary = base_binfo;
1403 goto found;
1404 }
1405 else if (!primary)
1406 /* Remember the first candidate. */
1407 primary = base_binfo;
1408 }
1409
1410 found:
1411 /* If we've got a primary base, use it. */
1412 if (primary)
1413 {
1414 tree basetype = BINFO_TYPE (primary);
1415
1416 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1417 if (BINFO_PRIMARY_P (primary))
1418 /* We are stealing a primary base. */
1419 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1420 BINFO_PRIMARY_P (primary) = 1;
1421 if (BINFO_VIRTUAL_P (primary))
1422 {
1423 tree delta;
1424
1425 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1426 /* A virtual binfo might have been copied from within
1427 another hierarchy. As we're about to use it as a primary
1428 base, make sure the offsets match. */
1429 delta = size_diffop (ssize_int (0),
1430 convert (ssizetype, BINFO_OFFSET (primary)));
1431
1432 propagate_binfo_offsets (primary, delta);
1433 }
1434
1435 primary = TYPE_BINFO (basetype);
1436
1437 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1438 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1439 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1440 }
1441 }
1442
1443 /* Update the variant types of T. */
1444
1445 void
1446 fixup_type_variants (tree t)
1447 {
1448 tree variants;
1449
1450 if (!t)
1451 return;
1452
1453 for (variants = TYPE_NEXT_VARIANT (t);
1454 variants;
1455 variants = TYPE_NEXT_VARIANT (variants))
1456 {
1457 /* These fields are in the _TYPE part of the node, not in
1458 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1459 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1460 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1461 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1462 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1463
1464 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1465
1466 TYPE_BINFO (variants) = TYPE_BINFO (t);
1467
1468 /* Copy whatever these are holding today. */
1469 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1470 TYPE_METHODS (variants) = TYPE_METHODS (t);
1471 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1472
1473 /* All variants of a class have the same attributes. */
1474 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1475 }
1476 }
1477
1478 \f
1479 /* Set memoizing fields and bits of T (and its variants) for later
1480 use. */
1481
1482 static void
1483 finish_struct_bits (tree t)
1484 {
1485 /* Fix up variants (if any). */
1486 fixup_type_variants (t);
1487
1488 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1489 /* For a class w/o baseclasses, 'finish_struct' has set
1490 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1491 Similarly for a class whose base classes do not have vtables.
1492 When neither of these is true, we might have removed abstract
1493 virtuals (by providing a definition), added some (by declaring
1494 new ones), or redeclared ones from a base class. We need to
1495 recalculate what's really an abstract virtual at this point (by
1496 looking in the vtables). */
1497 get_pure_virtuals (t);
1498
1499 /* If this type has a copy constructor or a destructor, force its
1500 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1501 nonzero. This will cause it to be passed by invisible reference
1502 and prevent it from being returned in a register. */
1503 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1504 {
1505 tree variants;
1506 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1507 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1508 {
1509 SET_TYPE_MODE (variants, BLKmode);
1510 TREE_ADDRESSABLE (variants) = 1;
1511 }
1512 }
1513 }
1514
1515 /* Issue warnings about T having private constructors, but no friends,
1516 and so forth.
1517
1518 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1519 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1520 non-private static member functions. */
1521
1522 static void
1523 maybe_warn_about_overly_private_class (tree t)
1524 {
1525 int has_member_fn = 0;
1526 int has_nonprivate_method = 0;
1527 tree fn;
1528
1529 if (!warn_ctor_dtor_privacy
1530 /* If the class has friends, those entities might create and
1531 access instances, so we should not warn. */
1532 || (CLASSTYPE_FRIEND_CLASSES (t)
1533 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1534 /* We will have warned when the template was declared; there's
1535 no need to warn on every instantiation. */
1536 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1537 /* There's no reason to even consider warning about this
1538 class. */
1539 return;
1540
1541 /* We only issue one warning, if more than one applies, because
1542 otherwise, on code like:
1543
1544 class A {
1545 // Oops - forgot `public:'
1546 A();
1547 A(const A&);
1548 ~A();
1549 };
1550
1551 we warn several times about essentially the same problem. */
1552
1553 /* Check to see if all (non-constructor, non-destructor) member
1554 functions are private. (Since there are no friends or
1555 non-private statics, we can't ever call any of the private member
1556 functions.) */
1557 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1558 /* We're not interested in compiler-generated methods; they don't
1559 provide any way to call private members. */
1560 if (!DECL_ARTIFICIAL (fn))
1561 {
1562 if (!TREE_PRIVATE (fn))
1563 {
1564 if (DECL_STATIC_FUNCTION_P (fn))
1565 /* A non-private static member function is just like a
1566 friend; it can create and invoke private member
1567 functions, and be accessed without a class
1568 instance. */
1569 return;
1570
1571 has_nonprivate_method = 1;
1572 /* Keep searching for a static member function. */
1573 }
1574 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1575 has_member_fn = 1;
1576 }
1577
1578 if (!has_nonprivate_method && has_member_fn)
1579 {
1580 /* There are no non-private methods, and there's at least one
1581 private member function that isn't a constructor or
1582 destructor. (If all the private members are
1583 constructors/destructors we want to use the code below that
1584 issues error messages specifically referring to
1585 constructors/destructors.) */
1586 unsigned i;
1587 tree binfo = TYPE_BINFO (t);
1588
1589 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1590 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1591 {
1592 has_nonprivate_method = 1;
1593 break;
1594 }
1595 if (!has_nonprivate_method)
1596 {
1597 warning (OPT_Wctor_dtor_privacy,
1598 "all member functions in class %qT are private", t);
1599 return;
1600 }
1601 }
1602
1603 /* Even if some of the member functions are non-private, the class
1604 won't be useful for much if all the constructors or destructors
1605 are private: such an object can never be created or destroyed. */
1606 fn = CLASSTYPE_DESTRUCTORS (t);
1607 if (fn && TREE_PRIVATE (fn))
1608 {
1609 warning (OPT_Wctor_dtor_privacy,
1610 "%q#T only defines a private destructor and has no friends",
1611 t);
1612 return;
1613 }
1614
1615 /* Warn about classes that have private constructors and no friends. */
1616 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1617 /* Implicitly generated constructors are always public. */
1618 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1619 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1620 {
1621 int nonprivate_ctor = 0;
1622
1623 /* If a non-template class does not define a copy
1624 constructor, one is defined for it, enabling it to avoid
1625 this warning. For a template class, this does not
1626 happen, and so we would normally get a warning on:
1627
1628 template <class T> class C { private: C(); };
1629
1630 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1631 complete non-template or fully instantiated classes have this
1632 flag set. */
1633 if (!TYPE_HAS_INIT_REF (t))
1634 nonprivate_ctor = 1;
1635 else
1636 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1637 {
1638 tree ctor = OVL_CURRENT (fn);
1639 /* Ideally, we wouldn't count copy constructors (or, in
1640 fact, any constructor that takes an argument of the
1641 class type as a parameter) because such things cannot
1642 be used to construct an instance of the class unless
1643 you already have one. But, for now at least, we're
1644 more generous. */
1645 if (! TREE_PRIVATE (ctor))
1646 {
1647 nonprivate_ctor = 1;
1648 break;
1649 }
1650 }
1651
1652 if (nonprivate_ctor == 0)
1653 {
1654 warning (OPT_Wctor_dtor_privacy,
1655 "%q#T only defines private constructors and has no friends",
1656 t);
1657 return;
1658 }
1659 }
1660 }
1661
1662 static struct {
1663 gt_pointer_operator new_value;
1664 void *cookie;
1665 } resort_data;
1666
1667 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1668
1669 static int
1670 method_name_cmp (const void* m1_p, const void* m2_p)
1671 {
1672 const tree *const m1 = (const tree *) m1_p;
1673 const tree *const m2 = (const tree *) m2_p;
1674
1675 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1676 return 0;
1677 if (*m1 == NULL_TREE)
1678 return -1;
1679 if (*m2 == NULL_TREE)
1680 return 1;
1681 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1682 return -1;
1683 return 1;
1684 }
1685
1686 /* This routine compares two fields like method_name_cmp but using the
1687 pointer operator in resort_field_decl_data. */
1688
1689 static int
1690 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1691 {
1692 const tree *const m1 = (const tree *) m1_p;
1693 const tree *const m2 = (const tree *) m2_p;
1694 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1695 return 0;
1696 if (*m1 == NULL_TREE)
1697 return -1;
1698 if (*m2 == NULL_TREE)
1699 return 1;
1700 {
1701 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1702 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1703 resort_data.new_value (&d1, resort_data.cookie);
1704 resort_data.new_value (&d2, resort_data.cookie);
1705 if (d1 < d2)
1706 return -1;
1707 }
1708 return 1;
1709 }
1710
1711 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1712
1713 void
1714 resort_type_method_vec (void* obj,
1715 void* orig_obj ATTRIBUTE_UNUSED ,
1716 gt_pointer_operator new_value,
1717 void* cookie)
1718 {
1719 VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
1720 int len = VEC_length (tree, method_vec);
1721 size_t slot;
1722 tree fn;
1723
1724 /* The type conversion ops have to live at the front of the vec, so we
1725 can't sort them. */
1726 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1727 VEC_iterate (tree, method_vec, slot, fn);
1728 ++slot)
1729 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1730 break;
1731
1732 if (len - slot > 1)
1733 {
1734 resort_data.new_value = new_value;
1735 resort_data.cookie = cookie;
1736 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1737 resort_method_name_cmp);
1738 }
1739 }
1740
1741 /* Warn about duplicate methods in fn_fields.
1742
1743 Sort methods that are not special (i.e., constructors, destructors,
1744 and type conversion operators) so that we can find them faster in
1745 search. */
1746
1747 static void
1748 finish_struct_methods (tree t)
1749 {
1750 tree fn_fields;
1751 VEC(tree,gc) *method_vec;
1752 int slot, len;
1753
1754 method_vec = CLASSTYPE_METHOD_VEC (t);
1755 if (!method_vec)
1756 return;
1757
1758 len = VEC_length (tree, method_vec);
1759
1760 /* Clear DECL_IN_AGGR_P for all functions. */
1761 for (fn_fields = TYPE_METHODS (t); fn_fields;
1762 fn_fields = TREE_CHAIN (fn_fields))
1763 DECL_IN_AGGR_P (fn_fields) = 0;
1764
1765 /* Issue warnings about private constructors and such. If there are
1766 no methods, then some public defaults are generated. */
1767 maybe_warn_about_overly_private_class (t);
1768
1769 /* The type conversion ops have to live at the front of the vec, so we
1770 can't sort them. */
1771 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1772 VEC_iterate (tree, method_vec, slot, fn_fields);
1773 ++slot)
1774 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1775 break;
1776 if (len - slot > 1)
1777 qsort (VEC_address (tree, method_vec) + slot,
1778 len-slot, sizeof (tree), method_name_cmp);
1779 }
1780
1781 /* Make BINFO's vtable have N entries, including RTTI entries,
1782 vbase and vcall offsets, etc. Set its type and call the back end
1783 to lay it out. */
1784
1785 static void
1786 layout_vtable_decl (tree binfo, int n)
1787 {
1788 tree atype;
1789 tree vtable;
1790
1791 atype = build_cplus_array_type (vtable_entry_type,
1792 build_index_type (size_int (n - 1)));
1793 layout_type (atype);
1794
1795 /* We may have to grow the vtable. */
1796 vtable = get_vtbl_decl_for_binfo (binfo);
1797 if (!same_type_p (TREE_TYPE (vtable), atype))
1798 {
1799 TREE_TYPE (vtable) = atype;
1800 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1801 layout_decl (vtable, 0);
1802 }
1803 }
1804
1805 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1806 have the same signature. */
1807
1808 int
1809 same_signature_p (const_tree fndecl, const_tree base_fndecl)
1810 {
1811 /* One destructor overrides another if they are the same kind of
1812 destructor. */
1813 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1814 && special_function_p (base_fndecl) == special_function_p (fndecl))
1815 return 1;
1816 /* But a non-destructor never overrides a destructor, nor vice
1817 versa, nor do different kinds of destructors override
1818 one-another. For example, a complete object destructor does not
1819 override a deleting destructor. */
1820 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1821 return 0;
1822
1823 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1824 || (DECL_CONV_FN_P (fndecl)
1825 && DECL_CONV_FN_P (base_fndecl)
1826 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1827 DECL_CONV_FN_TYPE (base_fndecl))))
1828 {
1829 tree types, base_types;
1830 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1831 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1832 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1833 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1834 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1835 return 1;
1836 }
1837 return 0;
1838 }
1839
1840 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1841 subobject. */
1842
1843 static bool
1844 base_derived_from (tree derived, tree base)
1845 {
1846 tree probe;
1847
1848 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1849 {
1850 if (probe == derived)
1851 return true;
1852 else if (BINFO_VIRTUAL_P (probe))
1853 /* If we meet a virtual base, we can't follow the inheritance
1854 any more. See if the complete type of DERIVED contains
1855 such a virtual base. */
1856 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1857 != NULL_TREE);
1858 }
1859 return false;
1860 }
1861
1862 typedef struct find_final_overrider_data_s {
1863 /* The function for which we are trying to find a final overrider. */
1864 tree fn;
1865 /* The base class in which the function was declared. */
1866 tree declaring_base;
1867 /* The candidate overriders. */
1868 tree candidates;
1869 /* Path to most derived. */
1870 VEC(tree,heap) *path;
1871 } find_final_overrider_data;
1872
1873 /* Add the overrider along the current path to FFOD->CANDIDATES.
1874 Returns true if an overrider was found; false otherwise. */
1875
1876 static bool
1877 dfs_find_final_overrider_1 (tree binfo,
1878 find_final_overrider_data *ffod,
1879 unsigned depth)
1880 {
1881 tree method;
1882
1883 /* If BINFO is not the most derived type, try a more derived class.
1884 A definition there will overrider a definition here. */
1885 if (depth)
1886 {
1887 depth--;
1888 if (dfs_find_final_overrider_1
1889 (VEC_index (tree, ffod->path, depth), ffod, depth))
1890 return true;
1891 }
1892
1893 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1894 if (method)
1895 {
1896 tree *candidate = &ffod->candidates;
1897
1898 /* Remove any candidates overridden by this new function. */
1899 while (*candidate)
1900 {
1901 /* If *CANDIDATE overrides METHOD, then METHOD
1902 cannot override anything else on the list. */
1903 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1904 return true;
1905 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1906 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1907 *candidate = TREE_CHAIN (*candidate);
1908 else
1909 candidate = &TREE_CHAIN (*candidate);
1910 }
1911
1912 /* Add the new function. */
1913 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1914 return true;
1915 }
1916
1917 return false;
1918 }
1919
1920 /* Called from find_final_overrider via dfs_walk. */
1921
1922 static tree
1923 dfs_find_final_overrider_pre (tree binfo, void *data)
1924 {
1925 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1926
1927 if (binfo == ffod->declaring_base)
1928 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1929 VEC_safe_push (tree, heap, ffod->path, binfo);
1930
1931 return NULL_TREE;
1932 }
1933
1934 static tree
1935 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1936 {
1937 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1938 VEC_pop (tree, ffod->path);
1939
1940 return NULL_TREE;
1941 }
1942
1943 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1944 FN and whose TREE_VALUE is the binfo for the base where the
1945 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1946 DERIVED) is the base object in which FN is declared. */
1947
1948 static tree
1949 find_final_overrider (tree derived, tree binfo, tree fn)
1950 {
1951 find_final_overrider_data ffod;
1952
1953 /* Getting this right is a little tricky. This is valid:
1954
1955 struct S { virtual void f (); };
1956 struct T { virtual void f (); };
1957 struct U : public S, public T { };
1958
1959 even though calling `f' in `U' is ambiguous. But,
1960
1961 struct R { virtual void f(); };
1962 struct S : virtual public R { virtual void f (); };
1963 struct T : virtual public R { virtual void f (); };
1964 struct U : public S, public T { };
1965
1966 is not -- there's no way to decide whether to put `S::f' or
1967 `T::f' in the vtable for `R'.
1968
1969 The solution is to look at all paths to BINFO. If we find
1970 different overriders along any two, then there is a problem. */
1971 if (DECL_THUNK_P (fn))
1972 fn = THUNK_TARGET (fn);
1973
1974 /* Determine the depth of the hierarchy. */
1975 ffod.fn = fn;
1976 ffod.declaring_base = binfo;
1977 ffod.candidates = NULL_TREE;
1978 ffod.path = VEC_alloc (tree, heap, 30);
1979
1980 dfs_walk_all (derived, dfs_find_final_overrider_pre,
1981 dfs_find_final_overrider_post, &ffod);
1982
1983 VEC_free (tree, heap, ffod.path);
1984
1985 /* If there was no winner, issue an error message. */
1986 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
1987 return error_mark_node;
1988
1989 return ffod.candidates;
1990 }
1991
1992 /* Return the index of the vcall offset for FN when TYPE is used as a
1993 virtual base. */
1994
1995 static tree
1996 get_vcall_index (tree fn, tree type)
1997 {
1998 VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
1999 tree_pair_p p;
2000 unsigned ix;
2001
2002 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
2003 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2004 || same_signature_p (fn, p->purpose))
2005 return p->value;
2006
2007 /* There should always be an appropriate index. */
2008 gcc_unreachable ();
2009 }
2010
2011 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2012 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
2013 corresponding position in the BINFO_VIRTUALS list. */
2014
2015 static void
2016 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2017 unsigned ix)
2018 {
2019 tree b;
2020 tree overrider;
2021 tree delta;
2022 tree virtual_base;
2023 tree first_defn;
2024 tree overrider_fn, overrider_target;
2025 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2026 tree over_return, base_return;
2027 bool lost = false;
2028
2029 /* Find the nearest primary base (possibly binfo itself) which defines
2030 this function; this is the class the caller will convert to when
2031 calling FN through BINFO. */
2032 for (b = binfo; ; b = get_primary_binfo (b))
2033 {
2034 gcc_assert (b);
2035 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2036 break;
2037
2038 /* The nearest definition is from a lost primary. */
2039 if (BINFO_LOST_PRIMARY_P (b))
2040 lost = true;
2041 }
2042 first_defn = b;
2043
2044 /* Find the final overrider. */
2045 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2046 if (overrider == error_mark_node)
2047 {
2048 error ("no unique final overrider for %qD in %qT", target_fn, t);
2049 return;
2050 }
2051 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2052
2053 /* Check for adjusting covariant return types. */
2054 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2055 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2056
2057 if (POINTER_TYPE_P (over_return)
2058 && TREE_CODE (over_return) == TREE_CODE (base_return)
2059 && CLASS_TYPE_P (TREE_TYPE (over_return))
2060 && CLASS_TYPE_P (TREE_TYPE (base_return))
2061 /* If the overrider is invalid, don't even try. */
2062 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2063 {
2064 /* If FN is a covariant thunk, we must figure out the adjustment
2065 to the final base FN was converting to. As OVERRIDER_TARGET might
2066 also be converting to the return type of FN, we have to
2067 combine the two conversions here. */
2068 tree fixed_offset, virtual_offset;
2069
2070 over_return = TREE_TYPE (over_return);
2071 base_return = TREE_TYPE (base_return);
2072
2073 if (DECL_THUNK_P (fn))
2074 {
2075 gcc_assert (DECL_RESULT_THUNK_P (fn));
2076 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2077 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2078 }
2079 else
2080 fixed_offset = virtual_offset = NULL_TREE;
2081
2082 if (virtual_offset)
2083 /* Find the equivalent binfo within the return type of the
2084 overriding function. We will want the vbase offset from
2085 there. */
2086 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2087 over_return);
2088 else if (!same_type_ignoring_top_level_qualifiers_p
2089 (over_return, base_return))
2090 {
2091 /* There was no existing virtual thunk (which takes
2092 precedence). So find the binfo of the base function's
2093 return type within the overriding function's return type.
2094 We cannot call lookup base here, because we're inside a
2095 dfs_walk, and will therefore clobber the BINFO_MARKED
2096 flags. Fortunately we know the covariancy is valid (it
2097 has already been checked), so we can just iterate along
2098 the binfos, which have been chained in inheritance graph
2099 order. Of course it is lame that we have to repeat the
2100 search here anyway -- we should really be caching pieces
2101 of the vtable and avoiding this repeated work. */
2102 tree thunk_binfo, base_binfo;
2103
2104 /* Find the base binfo within the overriding function's
2105 return type. We will always find a thunk_binfo, except
2106 when the covariancy is invalid (which we will have
2107 already diagnosed). */
2108 for (base_binfo = TYPE_BINFO (base_return),
2109 thunk_binfo = TYPE_BINFO (over_return);
2110 thunk_binfo;
2111 thunk_binfo = TREE_CHAIN (thunk_binfo))
2112 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2113 BINFO_TYPE (base_binfo)))
2114 break;
2115
2116 /* See if virtual inheritance is involved. */
2117 for (virtual_offset = thunk_binfo;
2118 virtual_offset;
2119 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2120 if (BINFO_VIRTUAL_P (virtual_offset))
2121 break;
2122
2123 if (virtual_offset
2124 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2125 {
2126 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2127
2128 if (virtual_offset)
2129 {
2130 /* We convert via virtual base. Adjust the fixed
2131 offset to be from there. */
2132 offset = size_diffop
2133 (offset, convert
2134 (ssizetype, BINFO_OFFSET (virtual_offset)));
2135 }
2136 if (fixed_offset)
2137 /* There was an existing fixed offset, this must be
2138 from the base just converted to, and the base the
2139 FN was thunking to. */
2140 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2141 else
2142 fixed_offset = offset;
2143 }
2144 }
2145
2146 if (fixed_offset || virtual_offset)
2147 /* Replace the overriding function with a covariant thunk. We
2148 will emit the overriding function in its own slot as
2149 well. */
2150 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2151 fixed_offset, virtual_offset);
2152 }
2153 else
2154 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2155 !DECL_THUNK_P (fn));
2156
2157 /* Assume that we will produce a thunk that convert all the way to
2158 the final overrider, and not to an intermediate virtual base. */
2159 virtual_base = NULL_TREE;
2160
2161 /* See if we can convert to an intermediate virtual base first, and then
2162 use the vcall offset located there to finish the conversion. */
2163 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2164 {
2165 /* If we find the final overrider, then we can stop
2166 walking. */
2167 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2168 BINFO_TYPE (TREE_VALUE (overrider))))
2169 break;
2170
2171 /* If we find a virtual base, and we haven't yet found the
2172 overrider, then there is a virtual base between the
2173 declaring base (first_defn) and the final overrider. */
2174 if (BINFO_VIRTUAL_P (b))
2175 {
2176 virtual_base = b;
2177 break;
2178 }
2179 }
2180
2181 if (overrider_fn != overrider_target && !virtual_base)
2182 {
2183 /* The ABI specifies that a covariant thunk includes a mangling
2184 for a this pointer adjustment. This-adjusting thunks that
2185 override a function from a virtual base have a vcall
2186 adjustment. When the virtual base in question is a primary
2187 virtual base, we know the adjustments are zero, (and in the
2188 non-covariant case, we would not use the thunk).
2189 Unfortunately we didn't notice this could happen, when
2190 designing the ABI and so never mandated that such a covariant
2191 thunk should be emitted. Because we must use the ABI mandated
2192 name, we must continue searching from the binfo where we
2193 found the most recent definition of the function, towards the
2194 primary binfo which first introduced the function into the
2195 vtable. If that enters a virtual base, we must use a vcall
2196 this-adjusting thunk. Bleah! */
2197 tree probe = first_defn;
2198
2199 while ((probe = get_primary_binfo (probe))
2200 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2201 if (BINFO_VIRTUAL_P (probe))
2202 virtual_base = probe;
2203
2204 if (virtual_base)
2205 /* Even if we find a virtual base, the correct delta is
2206 between the overrider and the binfo we're building a vtable
2207 for. */
2208 goto virtual_covariant;
2209 }
2210
2211 /* Compute the constant adjustment to the `this' pointer. The
2212 `this' pointer, when this function is called, will point at BINFO
2213 (or one of its primary bases, which are at the same offset). */
2214 if (virtual_base)
2215 /* The `this' pointer needs to be adjusted from the declaration to
2216 the nearest virtual base. */
2217 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2218 convert (ssizetype, BINFO_OFFSET (first_defn)));
2219 else if (lost)
2220 /* If the nearest definition is in a lost primary, we don't need an
2221 entry in our vtable. Except possibly in a constructor vtable,
2222 if we happen to get our primary back. In that case, the offset
2223 will be zero, as it will be a primary base. */
2224 delta = size_zero_node;
2225 else
2226 /* The `this' pointer needs to be adjusted from pointing to
2227 BINFO to pointing at the base where the final overrider
2228 appears. */
2229 virtual_covariant:
2230 delta = size_diffop (convert (ssizetype,
2231 BINFO_OFFSET (TREE_VALUE (overrider))),
2232 convert (ssizetype, BINFO_OFFSET (binfo)));
2233
2234 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2235
2236 if (virtual_base)
2237 BV_VCALL_INDEX (*virtuals)
2238 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2239 else
2240 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2241 }
2242
2243 /* Called from modify_all_vtables via dfs_walk. */
2244
2245 static tree
2246 dfs_modify_vtables (tree binfo, void* data)
2247 {
2248 tree t = (tree) data;
2249 tree virtuals;
2250 tree old_virtuals;
2251 unsigned ix;
2252
2253 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2254 /* A base without a vtable needs no modification, and its bases
2255 are uninteresting. */
2256 return dfs_skip_bases;
2257
2258 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2259 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2260 /* Don't do the primary vtable, if it's new. */
2261 return NULL_TREE;
2262
2263 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2264 /* There's no need to modify the vtable for a non-virtual primary
2265 base; we're not going to use that vtable anyhow. We do still
2266 need to do this for virtual primary bases, as they could become
2267 non-primary in a construction vtable. */
2268 return NULL_TREE;
2269
2270 make_new_vtable (t, binfo);
2271
2272 /* Now, go through each of the virtual functions in the virtual
2273 function table for BINFO. Find the final overrider, and update
2274 the BINFO_VIRTUALS list appropriately. */
2275 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2276 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2277 virtuals;
2278 ix++, virtuals = TREE_CHAIN (virtuals),
2279 old_virtuals = TREE_CHAIN (old_virtuals))
2280 update_vtable_entry_for_fn (t,
2281 binfo,
2282 BV_FN (old_virtuals),
2283 &virtuals, ix);
2284
2285 return NULL_TREE;
2286 }
2287
2288 /* Update all of the primary and secondary vtables for T. Create new
2289 vtables as required, and initialize their RTTI information. Each
2290 of the functions in VIRTUALS is declared in T and may override a
2291 virtual function from a base class; find and modify the appropriate
2292 entries to point to the overriding functions. Returns a list, in
2293 declaration order, of the virtual functions that are declared in T,
2294 but do not appear in the primary base class vtable, and which
2295 should therefore be appended to the end of the vtable for T. */
2296
2297 static tree
2298 modify_all_vtables (tree t, tree virtuals)
2299 {
2300 tree binfo = TYPE_BINFO (t);
2301 tree *fnsp;
2302
2303 /* Update all of the vtables. */
2304 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2305
2306 /* Add virtual functions not already in our primary vtable. These
2307 will be both those introduced by this class, and those overridden
2308 from secondary bases. It does not include virtuals merely
2309 inherited from secondary bases. */
2310 for (fnsp = &virtuals; *fnsp; )
2311 {
2312 tree fn = TREE_VALUE (*fnsp);
2313
2314 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2315 || DECL_VINDEX (fn) == error_mark_node)
2316 {
2317 /* We don't need to adjust the `this' pointer when
2318 calling this function. */
2319 BV_DELTA (*fnsp) = integer_zero_node;
2320 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2321
2322 /* This is a function not already in our vtable. Keep it. */
2323 fnsp = &TREE_CHAIN (*fnsp);
2324 }
2325 else
2326 /* We've already got an entry for this function. Skip it. */
2327 *fnsp = TREE_CHAIN (*fnsp);
2328 }
2329
2330 return virtuals;
2331 }
2332
2333 /* Get the base virtual function declarations in T that have the
2334 indicated NAME. */
2335
2336 static tree
2337 get_basefndecls (tree name, tree t)
2338 {
2339 tree methods;
2340 tree base_fndecls = NULL_TREE;
2341 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2342 int i;
2343
2344 /* Find virtual functions in T with the indicated NAME. */
2345 i = lookup_fnfields_1 (t, name);
2346 if (i != -1)
2347 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2348 methods;
2349 methods = OVL_NEXT (methods))
2350 {
2351 tree method = OVL_CURRENT (methods);
2352
2353 if (TREE_CODE (method) == FUNCTION_DECL
2354 && DECL_VINDEX (method))
2355 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2356 }
2357
2358 if (base_fndecls)
2359 return base_fndecls;
2360
2361 for (i = 0; i < n_baseclasses; i++)
2362 {
2363 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2364 base_fndecls = chainon (get_basefndecls (name, basetype),
2365 base_fndecls);
2366 }
2367
2368 return base_fndecls;
2369 }
2370
2371 /* If this declaration supersedes the declaration of
2372 a method declared virtual in the base class, then
2373 mark this field as being virtual as well. */
2374
2375 void
2376 check_for_override (tree decl, tree ctype)
2377 {
2378 if (TREE_CODE (decl) == TEMPLATE_DECL)
2379 /* In [temp.mem] we have:
2380
2381 A specialization of a member function template does not
2382 override a virtual function from a base class. */
2383 return;
2384 if ((DECL_DESTRUCTOR_P (decl)
2385 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2386 || DECL_CONV_FN_P (decl))
2387 && look_for_overrides (ctype, decl)
2388 && !DECL_STATIC_FUNCTION_P (decl))
2389 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2390 the error_mark_node so that we know it is an overriding
2391 function. */
2392 DECL_VINDEX (decl) = decl;
2393
2394 if (DECL_VIRTUAL_P (decl))
2395 {
2396 if (!DECL_VINDEX (decl))
2397 DECL_VINDEX (decl) = error_mark_node;
2398 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2399 }
2400 }
2401
2402 /* Warn about hidden virtual functions that are not overridden in t.
2403 We know that constructors and destructors don't apply. */
2404
2405 static void
2406 warn_hidden (tree t)
2407 {
2408 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
2409 tree fns;
2410 size_t i;
2411
2412 /* We go through each separately named virtual function. */
2413 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2414 VEC_iterate (tree, method_vec, i, fns);
2415 ++i)
2416 {
2417 tree fn;
2418 tree name;
2419 tree fndecl;
2420 tree base_fndecls;
2421 tree base_binfo;
2422 tree binfo;
2423 int j;
2424
2425 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2426 have the same name. Figure out what name that is. */
2427 name = DECL_NAME (OVL_CURRENT (fns));
2428 /* There are no possibly hidden functions yet. */
2429 base_fndecls = NULL_TREE;
2430 /* Iterate through all of the base classes looking for possibly
2431 hidden functions. */
2432 for (binfo = TYPE_BINFO (t), j = 0;
2433 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2434 {
2435 tree basetype = BINFO_TYPE (base_binfo);
2436 base_fndecls = chainon (get_basefndecls (name, basetype),
2437 base_fndecls);
2438 }
2439
2440 /* If there are no functions to hide, continue. */
2441 if (!base_fndecls)
2442 continue;
2443
2444 /* Remove any overridden functions. */
2445 for (fn = fns; fn; fn = OVL_NEXT (fn))
2446 {
2447 fndecl = OVL_CURRENT (fn);
2448 if (DECL_VINDEX (fndecl))
2449 {
2450 tree *prev = &base_fndecls;
2451
2452 while (*prev)
2453 /* If the method from the base class has the same
2454 signature as the method from the derived class, it
2455 has been overridden. */
2456 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2457 *prev = TREE_CHAIN (*prev);
2458 else
2459 prev = &TREE_CHAIN (*prev);
2460 }
2461 }
2462
2463 /* Now give a warning for all base functions without overriders,
2464 as they are hidden. */
2465 while (base_fndecls)
2466 {
2467 /* Here we know it is a hider, and no overrider exists. */
2468 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2469 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2470 base_fndecls = TREE_CHAIN (base_fndecls);
2471 }
2472 }
2473 }
2474
2475 /* Check for things that are invalid. There are probably plenty of other
2476 things we should check for also. */
2477
2478 static void
2479 finish_struct_anon (tree t)
2480 {
2481 tree field;
2482
2483 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2484 {
2485 if (TREE_STATIC (field))
2486 continue;
2487 if (TREE_CODE (field) != FIELD_DECL)
2488 continue;
2489
2490 if (DECL_NAME (field) == NULL_TREE
2491 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2492 {
2493 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2494 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2495 for (; elt; elt = TREE_CHAIN (elt))
2496 {
2497 /* We're generally only interested in entities the user
2498 declared, but we also find nested classes by noticing
2499 the TYPE_DECL that we create implicitly. You're
2500 allowed to put one anonymous union inside another,
2501 though, so we explicitly tolerate that. We use
2502 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2503 we also allow unnamed types used for defining fields. */
2504 if (DECL_ARTIFICIAL (elt)
2505 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2506 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2507 continue;
2508
2509 if (TREE_CODE (elt) != FIELD_DECL)
2510 {
2511 if (is_union)
2512 permerror (input_location, "%q+#D invalid; an anonymous union can "
2513 "only have non-static data members", elt);
2514 else
2515 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2516 "only have non-static data members", elt);
2517 continue;
2518 }
2519
2520 if (TREE_PRIVATE (elt))
2521 {
2522 if (is_union)
2523 permerror (input_location, "private member %q+#D in anonymous union", elt);
2524 else
2525 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2526 }
2527 else if (TREE_PROTECTED (elt))
2528 {
2529 if (is_union)
2530 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2531 else
2532 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2533 }
2534
2535 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2536 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2537 }
2538 }
2539 }
2540 }
2541
2542 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2543 will be used later during class template instantiation.
2544 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2545 a non-static member data (FIELD_DECL), a member function
2546 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2547 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2548 When FRIEND_P is nonzero, T is either a friend class
2549 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2550 (FUNCTION_DECL, TEMPLATE_DECL). */
2551
2552 void
2553 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2554 {
2555 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2556 if (CLASSTYPE_TEMPLATE_INFO (type))
2557 CLASSTYPE_DECL_LIST (type)
2558 = tree_cons (friend_p ? NULL_TREE : type,
2559 t, CLASSTYPE_DECL_LIST (type));
2560 }
2561
2562 /* Create default constructors, assignment operators, and so forth for
2563 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2564 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2565 the class cannot have a default constructor, copy constructor
2566 taking a const reference argument, or an assignment operator taking
2567 a const reference, respectively. */
2568
2569 static void
2570 add_implicitly_declared_members (tree t,
2571 int cant_have_const_cctor,
2572 int cant_have_const_assignment)
2573 {
2574 /* Destructor. */
2575 if (!CLASSTYPE_DESTRUCTORS (t))
2576 {
2577 /* In general, we create destructors lazily. */
2578 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2579 /* However, if the implicit destructor is non-trivial
2580 destructor, we sometimes have to create it at this point. */
2581 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2582 {
2583 bool lazy_p = true;
2584
2585 if (TYPE_FOR_JAVA (t))
2586 /* If this a Java class, any non-trivial destructor is
2587 invalid, even if compiler-generated. Therefore, if the
2588 destructor is non-trivial we create it now. */
2589 lazy_p = false;
2590 else
2591 {
2592 tree binfo;
2593 tree base_binfo;
2594 int ix;
2595
2596 /* If the implicit destructor will be virtual, then we must
2597 generate it now because (unfortunately) we do not
2598 generate virtual tables lazily. */
2599 binfo = TYPE_BINFO (t);
2600 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2601 {
2602 tree base_type;
2603 tree dtor;
2604
2605 base_type = BINFO_TYPE (base_binfo);
2606 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2607 if (dtor && DECL_VIRTUAL_P (dtor))
2608 {
2609 lazy_p = false;
2610 break;
2611 }
2612 }
2613 }
2614
2615 /* If we can't get away with being lazy, generate the destructor
2616 now. */
2617 if (!lazy_p)
2618 lazily_declare_fn (sfk_destructor, t);
2619 }
2620 }
2621
2622 /* [class.ctor]
2623
2624 If there is no user-declared constructor for a class, a default
2625 constructor is implicitly declared. */
2626 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2627 {
2628 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2629 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2630 }
2631
2632 /* [class.ctor]
2633
2634 If a class definition does not explicitly declare a copy
2635 constructor, one is declared implicitly. */
2636 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2637 {
2638 TYPE_HAS_INIT_REF (t) = 1;
2639 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2640 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2641 }
2642
2643 /* If there is no assignment operator, one will be created if and
2644 when it is needed. For now, just record whether or not the type
2645 of the parameter to the assignment operator will be a const or
2646 non-const reference. */
2647 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2648 {
2649 TYPE_HAS_ASSIGN_REF (t) = 1;
2650 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2651 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2652 }
2653 }
2654
2655 /* Subroutine of finish_struct_1. Recursively count the number of fields
2656 in TYPE, including anonymous union members. */
2657
2658 static int
2659 count_fields (tree fields)
2660 {
2661 tree x;
2662 int n_fields = 0;
2663 for (x = fields; x; x = TREE_CHAIN (x))
2664 {
2665 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2666 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2667 else
2668 n_fields += 1;
2669 }
2670 return n_fields;
2671 }
2672
2673 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2674 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2675
2676 static int
2677 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2678 {
2679 tree x;
2680 for (x = fields; x; x = TREE_CHAIN (x))
2681 {
2682 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2683 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2684 else
2685 field_vec->elts[idx++] = x;
2686 }
2687 return idx;
2688 }
2689
2690 /* FIELD is a bit-field. We are finishing the processing for its
2691 enclosing type. Issue any appropriate messages and set appropriate
2692 flags. Returns false if an error has been diagnosed. */
2693
2694 static bool
2695 check_bitfield_decl (tree field)
2696 {
2697 tree type = TREE_TYPE (field);
2698 tree w;
2699
2700 /* Extract the declared width of the bitfield, which has been
2701 temporarily stashed in DECL_INITIAL. */
2702 w = DECL_INITIAL (field);
2703 gcc_assert (w != NULL_TREE);
2704 /* Remove the bit-field width indicator so that the rest of the
2705 compiler does not treat that value as an initializer. */
2706 DECL_INITIAL (field) = NULL_TREE;
2707
2708 /* Detect invalid bit-field type. */
2709 if (!INTEGRAL_TYPE_P (type))
2710 {
2711 error ("bit-field %q+#D with non-integral type", field);
2712 w = error_mark_node;
2713 }
2714 else
2715 {
2716 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2717 STRIP_NOPS (w);
2718
2719 /* detect invalid field size. */
2720 w = integral_constant_value (w);
2721
2722 if (TREE_CODE (w) != INTEGER_CST)
2723 {
2724 error ("bit-field %q+D width not an integer constant", field);
2725 w = error_mark_node;
2726 }
2727 else if (tree_int_cst_sgn (w) < 0)
2728 {
2729 error ("negative width in bit-field %q+D", field);
2730 w = error_mark_node;
2731 }
2732 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2733 {
2734 error ("zero width for bit-field %q+D", field);
2735 w = error_mark_node;
2736 }
2737 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2738 && TREE_CODE (type) != ENUMERAL_TYPE
2739 && TREE_CODE (type) != BOOLEAN_TYPE)
2740 warning (0, "width of %q+D exceeds its type", field);
2741 else if (TREE_CODE (type) == ENUMERAL_TYPE
2742 && (0 > compare_tree_int (w,
2743 tree_int_cst_min_precision
2744 (TYPE_MIN_VALUE (type),
2745 TYPE_UNSIGNED (type)))
2746 || 0 > compare_tree_int (w,
2747 tree_int_cst_min_precision
2748 (TYPE_MAX_VALUE (type),
2749 TYPE_UNSIGNED (type)))))
2750 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
2751 }
2752
2753 if (w != error_mark_node)
2754 {
2755 DECL_SIZE (field) = convert (bitsizetype, w);
2756 DECL_BIT_FIELD (field) = 1;
2757 return true;
2758 }
2759 else
2760 {
2761 /* Non-bit-fields are aligned for their type. */
2762 DECL_BIT_FIELD (field) = 0;
2763 CLEAR_DECL_C_BIT_FIELD (field);
2764 return false;
2765 }
2766 }
2767
2768 /* FIELD is a non bit-field. We are finishing the processing for its
2769 enclosing type T. Issue any appropriate messages and set appropriate
2770 flags. */
2771
2772 static void
2773 check_field_decl (tree field,
2774 tree t,
2775 int* cant_have_const_ctor,
2776 int* no_const_asn_ref,
2777 int* any_default_members)
2778 {
2779 tree type = strip_array_types (TREE_TYPE (field));
2780
2781 /* An anonymous union cannot contain any fields which would change
2782 the settings of CANT_HAVE_CONST_CTOR and friends. */
2783 if (ANON_UNION_TYPE_P (type))
2784 ;
2785 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2786 structs. So, we recurse through their fields here. */
2787 else if (ANON_AGGR_TYPE_P (type))
2788 {
2789 tree fields;
2790
2791 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2792 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2793 check_field_decl (fields, t, cant_have_const_ctor,
2794 no_const_asn_ref, any_default_members);
2795 }
2796 /* Check members with class type for constructors, destructors,
2797 etc. */
2798 else if (CLASS_TYPE_P (type))
2799 {
2800 /* Never let anything with uninheritable virtuals
2801 make it through without complaint. */
2802 abstract_virtuals_error (field, type);
2803
2804 if (TREE_CODE (t) == UNION_TYPE)
2805 {
2806 if (TYPE_NEEDS_CONSTRUCTING (type))
2807 error ("member %q+#D with constructor not allowed in union",
2808 field);
2809 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2810 error ("member %q+#D with destructor not allowed in union", field);
2811 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2812 error ("member %q+#D with copy assignment operator not allowed in union",
2813 field);
2814 }
2815 else
2816 {
2817 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2818 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2819 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2820 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2821 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2822 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (type);
2823 }
2824
2825 if (!TYPE_HAS_CONST_INIT_REF (type))
2826 *cant_have_const_ctor = 1;
2827
2828 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2829 *no_const_asn_ref = 1;
2830 }
2831 if (DECL_INITIAL (field) != NULL_TREE)
2832 {
2833 /* `build_class_init_list' does not recognize
2834 non-FIELD_DECLs. */
2835 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2836 error ("multiple fields in union %qT initialized", t);
2837 *any_default_members = 1;
2838 }
2839 }
2840
2841 /* Check the data members (both static and non-static), class-scoped
2842 typedefs, etc., appearing in the declaration of T. Issue
2843 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2844 declaration order) of access declarations; each TREE_VALUE in this
2845 list is a USING_DECL.
2846
2847 In addition, set the following flags:
2848
2849 EMPTY_P
2850 The class is empty, i.e., contains no non-static data members.
2851
2852 CANT_HAVE_CONST_CTOR_P
2853 This class cannot have an implicitly generated copy constructor
2854 taking a const reference.
2855
2856 CANT_HAVE_CONST_ASN_REF
2857 This class cannot have an implicitly generated assignment
2858 operator taking a const reference.
2859
2860 All of these flags should be initialized before calling this
2861 function.
2862
2863 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2864 fields can be added by adding to this chain. */
2865
2866 static void
2867 check_field_decls (tree t, tree *access_decls,
2868 int *cant_have_const_ctor_p,
2869 int *no_const_asn_ref_p)
2870 {
2871 tree *field;
2872 tree *next;
2873 bool has_pointers;
2874 int any_default_members;
2875 int cant_pack = 0;
2876
2877 /* Assume there are no access declarations. */
2878 *access_decls = NULL_TREE;
2879 /* Assume this class has no pointer members. */
2880 has_pointers = false;
2881 /* Assume none of the members of this class have default
2882 initializations. */
2883 any_default_members = 0;
2884
2885 for (field = &TYPE_FIELDS (t); *field; field = next)
2886 {
2887 tree x = *field;
2888 tree type = TREE_TYPE (x);
2889
2890 next = &TREE_CHAIN (x);
2891
2892 if (TREE_CODE (x) == USING_DECL)
2893 {
2894 /* Prune the access declaration from the list of fields. */
2895 *field = TREE_CHAIN (x);
2896
2897 /* Save the access declarations for our caller. */
2898 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2899
2900 /* Since we've reset *FIELD there's no reason to skip to the
2901 next field. */
2902 next = field;
2903 continue;
2904 }
2905
2906 if (TREE_CODE (x) == TYPE_DECL
2907 || TREE_CODE (x) == TEMPLATE_DECL)
2908 continue;
2909
2910 /* If we've gotten this far, it's a data member, possibly static,
2911 or an enumerator. */
2912 DECL_CONTEXT (x) = t;
2913
2914 /* When this goes into scope, it will be a non-local reference. */
2915 DECL_NONLOCAL (x) = 1;
2916
2917 if (TREE_CODE (t) == UNION_TYPE)
2918 {
2919 /* [class.union]
2920
2921 If a union contains a static data member, or a member of
2922 reference type, the program is ill-formed. */
2923 if (TREE_CODE (x) == VAR_DECL)
2924 {
2925 error ("%q+D may not be static because it is a member of a union", x);
2926 continue;
2927 }
2928 if (TREE_CODE (type) == REFERENCE_TYPE)
2929 {
2930 error ("%q+D may not have reference type %qT because"
2931 " it is a member of a union",
2932 x, type);
2933 continue;
2934 }
2935 }
2936
2937 /* Perform error checking that did not get done in
2938 grokdeclarator. */
2939 if (TREE_CODE (type) == FUNCTION_TYPE)
2940 {
2941 error ("field %q+D invalidly declared function type", x);
2942 type = build_pointer_type (type);
2943 TREE_TYPE (x) = type;
2944 }
2945 else if (TREE_CODE (type) == METHOD_TYPE)
2946 {
2947 error ("field %q+D invalidly declared method type", x);
2948 type = build_pointer_type (type);
2949 TREE_TYPE (x) = type;
2950 }
2951
2952 if (type == error_mark_node)
2953 continue;
2954
2955 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
2956 continue;
2957
2958 /* Now it can only be a FIELD_DECL. */
2959
2960 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
2961 CLASSTYPE_NON_AGGREGATE (t) = 1;
2962
2963 /* If this is of reference type, check if it needs an init. */
2964 if (TREE_CODE (type) == REFERENCE_TYPE)
2965 {
2966 CLASSTYPE_NON_POD_P (t) = 1;
2967 if (DECL_INITIAL (x) == NULL_TREE)
2968 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2969
2970 /* ARM $12.6.2: [A member initializer list] (or, for an
2971 aggregate, initialization by a brace-enclosed list) is the
2972 only way to initialize nonstatic const and reference
2973 members. */
2974 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2975 }
2976
2977 type = strip_array_types (type);
2978
2979 if (TYPE_PACKED (t))
2980 {
2981 if (!pod_type_p (type) && !TYPE_PACKED (type))
2982 {
2983 warning
2984 (0,
2985 "ignoring packed attribute because of unpacked non-POD field %q+#D",
2986 x);
2987 cant_pack = 1;
2988 }
2989 else if (DECL_C_BIT_FIELD (x)
2990 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
2991 DECL_PACKED (x) = 1;
2992 }
2993
2994 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2995 /* We don't treat zero-width bitfields as making a class
2996 non-empty. */
2997 ;
2998 else
2999 {
3000 /* The class is non-empty. */
3001 CLASSTYPE_EMPTY_P (t) = 0;
3002 /* The class is not even nearly empty. */
3003 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3004 /* If one of the data members contains an empty class,
3005 so does T. */
3006 if (CLASS_TYPE_P (type)
3007 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3008 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3009 }
3010
3011 /* This is used by -Weffc++ (see below). Warn only for pointers
3012 to members which might hold dynamic memory. So do not warn
3013 for pointers to functions or pointers to members. */
3014 if (TYPE_PTR_P (type)
3015 && !TYPE_PTRFN_P (type)
3016 && !TYPE_PTR_TO_MEMBER_P (type))
3017 has_pointers = true;
3018
3019 if (CLASS_TYPE_P (type))
3020 {
3021 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3022 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3023 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3024 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3025 }
3026
3027 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3028 CLASSTYPE_HAS_MUTABLE (t) = 1;
3029
3030 if (! pod_type_p (type))
3031 /* DR 148 now allows pointers to members (which are POD themselves),
3032 to be allowed in POD structs. */
3033 CLASSTYPE_NON_POD_P (t) = 1;
3034
3035 if (! zero_init_p (type))
3036 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3037
3038 /* If any field is const, the structure type is pseudo-const. */
3039 if (CP_TYPE_CONST_P (type))
3040 {
3041 C_TYPE_FIELDS_READONLY (t) = 1;
3042 if (DECL_INITIAL (x) == NULL_TREE)
3043 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3044
3045 /* ARM $12.6.2: [A member initializer list] (or, for an
3046 aggregate, initialization by a brace-enclosed list) is the
3047 only way to initialize nonstatic const and reference
3048 members. */
3049 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
3050 }
3051 /* A field that is pseudo-const makes the structure likewise. */
3052 else if (CLASS_TYPE_P (type))
3053 {
3054 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3055 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3056 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3057 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3058 }
3059
3060 /* Core issue 80: A nonstatic data member is required to have a
3061 different name from the class iff the class has a
3062 user-declared constructor. */
3063 if (constructor_name_p (DECL_NAME (x), t)
3064 && TYPE_HAS_USER_CONSTRUCTOR (t))
3065 permerror (input_location, "field %q+#D with same name as class", x);
3066
3067 /* We set DECL_C_BIT_FIELD in grokbitfield.
3068 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3069 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3070 check_field_decl (x, t,
3071 cant_have_const_ctor_p,
3072 no_const_asn_ref_p,
3073 &any_default_members);
3074 }
3075
3076 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3077 it should also define a copy constructor and an assignment operator to
3078 implement the correct copy semantic (deep vs shallow, etc.). As it is
3079 not feasible to check whether the constructors do allocate dynamic memory
3080 and store it within members, we approximate the warning like this:
3081
3082 -- Warn only if there are members which are pointers
3083 -- Warn only if there is a non-trivial constructor (otherwise,
3084 there cannot be memory allocated).
3085 -- Warn only if there is a non-trivial destructor. We assume that the
3086 user at least implemented the cleanup correctly, and a destructor
3087 is needed to free dynamic memory.
3088
3089 This seems enough for practical purposes. */
3090 if (warn_ecpp
3091 && has_pointers
3092 && TYPE_HAS_USER_CONSTRUCTOR (t)
3093 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3094 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3095 {
3096 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3097
3098 if (! TYPE_HAS_INIT_REF (t))
3099 {
3100 warning (OPT_Weffc__,
3101 " but does not override %<%T(const %T&)%>", t, t);
3102 if (!TYPE_HAS_ASSIGN_REF (t))
3103 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3104 }
3105 else if (! TYPE_HAS_ASSIGN_REF (t))
3106 warning (OPT_Weffc__,
3107 " but does not override %<operator=(const %T&)%>", t);
3108 }
3109
3110 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3111 if (cant_pack)
3112 TYPE_PACKED (t) = 0;
3113
3114 /* Check anonymous struct/anonymous union fields. */
3115 finish_struct_anon (t);
3116
3117 /* We've built up the list of access declarations in reverse order.
3118 Fix that now. */
3119 *access_decls = nreverse (*access_decls);
3120 }
3121
3122 /* If TYPE is an empty class type, records its OFFSET in the table of
3123 OFFSETS. */
3124
3125 static int
3126 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3127 {
3128 splay_tree_node n;
3129
3130 if (!is_empty_class (type))
3131 return 0;
3132
3133 /* Record the location of this empty object in OFFSETS. */
3134 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3135 if (!n)
3136 n = splay_tree_insert (offsets,
3137 (splay_tree_key) offset,
3138 (splay_tree_value) NULL_TREE);
3139 n->value = ((splay_tree_value)
3140 tree_cons (NULL_TREE,
3141 type,
3142 (tree) n->value));
3143
3144 return 0;
3145 }
3146
3147 /* Returns nonzero if TYPE is an empty class type and there is
3148 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3149
3150 static int
3151 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3152 {
3153 splay_tree_node n;
3154 tree t;
3155
3156 if (!is_empty_class (type))
3157 return 0;
3158
3159 /* Record the location of this empty object in OFFSETS. */
3160 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3161 if (!n)
3162 return 0;
3163
3164 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3165 if (same_type_p (TREE_VALUE (t), type))
3166 return 1;
3167
3168 return 0;
3169 }
3170
3171 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3172 F for every subobject, passing it the type, offset, and table of
3173 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3174 be traversed.
3175
3176 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3177 than MAX_OFFSET will not be walked.
3178
3179 If F returns a nonzero value, the traversal ceases, and that value
3180 is returned. Otherwise, returns zero. */
3181
3182 static int
3183 walk_subobject_offsets (tree type,
3184 subobject_offset_fn f,
3185 tree offset,
3186 splay_tree offsets,
3187 tree max_offset,
3188 int vbases_p)
3189 {
3190 int r = 0;
3191 tree type_binfo = NULL_TREE;
3192
3193 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3194 stop. */
3195 if (max_offset && INT_CST_LT (max_offset, offset))
3196 return 0;
3197
3198 if (type == error_mark_node)
3199 return 0;
3200
3201 if (!TYPE_P (type))
3202 {
3203 if (abi_version_at_least (2))
3204 type_binfo = type;
3205 type = BINFO_TYPE (type);
3206 }
3207
3208 if (CLASS_TYPE_P (type))
3209 {
3210 tree field;
3211 tree binfo;
3212 int i;
3213
3214 /* Avoid recursing into objects that are not interesting. */
3215 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3216 return 0;
3217
3218 /* Record the location of TYPE. */
3219 r = (*f) (type, offset, offsets);
3220 if (r)
3221 return r;
3222
3223 /* Iterate through the direct base classes of TYPE. */
3224 if (!type_binfo)
3225 type_binfo = TYPE_BINFO (type);
3226 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3227 {
3228 tree binfo_offset;
3229
3230 if (abi_version_at_least (2)
3231 && BINFO_VIRTUAL_P (binfo))
3232 continue;
3233
3234 if (!vbases_p
3235 && BINFO_VIRTUAL_P (binfo)
3236 && !BINFO_PRIMARY_P (binfo))
3237 continue;
3238
3239 if (!abi_version_at_least (2))
3240 binfo_offset = size_binop (PLUS_EXPR,
3241 offset,
3242 BINFO_OFFSET (binfo));
3243 else
3244 {
3245 tree orig_binfo;
3246 /* We cannot rely on BINFO_OFFSET being set for the base
3247 class yet, but the offsets for direct non-virtual
3248 bases can be calculated by going back to the TYPE. */
3249 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3250 binfo_offset = size_binop (PLUS_EXPR,
3251 offset,
3252 BINFO_OFFSET (orig_binfo));
3253 }
3254
3255 r = walk_subobject_offsets (binfo,
3256 f,
3257 binfo_offset,
3258 offsets,
3259 max_offset,
3260 (abi_version_at_least (2)
3261 ? /*vbases_p=*/0 : vbases_p));
3262 if (r)
3263 return r;
3264 }
3265
3266 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3267 {
3268 unsigned ix;
3269 VEC(tree,gc) *vbases;
3270
3271 /* Iterate through the virtual base classes of TYPE. In G++
3272 3.2, we included virtual bases in the direct base class
3273 loop above, which results in incorrect results; the
3274 correct offsets for virtual bases are only known when
3275 working with the most derived type. */
3276 if (vbases_p)
3277 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3278 VEC_iterate (tree, vbases, ix, binfo); ix++)
3279 {
3280 r = walk_subobject_offsets (binfo,
3281 f,
3282 size_binop (PLUS_EXPR,
3283 offset,
3284 BINFO_OFFSET (binfo)),
3285 offsets,
3286 max_offset,
3287 /*vbases_p=*/0);
3288 if (r)
3289 return r;
3290 }
3291 else
3292 {
3293 /* We still have to walk the primary base, if it is
3294 virtual. (If it is non-virtual, then it was walked
3295 above.) */
3296 tree vbase = get_primary_binfo (type_binfo);
3297
3298 if (vbase && BINFO_VIRTUAL_P (vbase)
3299 && BINFO_PRIMARY_P (vbase)
3300 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3301 {
3302 r = (walk_subobject_offsets
3303 (vbase, f, offset,
3304 offsets, max_offset, /*vbases_p=*/0));
3305 if (r)
3306 return r;
3307 }
3308 }
3309 }
3310
3311 /* Iterate through the fields of TYPE. */
3312 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3313 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3314 {
3315 tree field_offset;
3316
3317 if (abi_version_at_least (2))
3318 field_offset = byte_position (field);
3319 else
3320 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3321 field_offset = DECL_FIELD_OFFSET (field);
3322
3323 r = walk_subobject_offsets (TREE_TYPE (field),
3324 f,
3325 size_binop (PLUS_EXPR,
3326 offset,
3327 field_offset),
3328 offsets,
3329 max_offset,
3330 /*vbases_p=*/1);
3331 if (r)
3332 return r;
3333 }
3334 }
3335 else if (TREE_CODE (type) == ARRAY_TYPE)
3336 {
3337 tree element_type = strip_array_types (type);
3338 tree domain = TYPE_DOMAIN (type);
3339 tree index;
3340
3341 /* Avoid recursing into objects that are not interesting. */
3342 if (!CLASS_TYPE_P (element_type)
3343 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3344 return 0;
3345
3346 /* Step through each of the elements in the array. */
3347 for (index = size_zero_node;
3348 /* G++ 3.2 had an off-by-one error here. */
3349 (abi_version_at_least (2)
3350 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3351 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3352 index = size_binop (PLUS_EXPR, index, size_one_node))
3353 {
3354 r = walk_subobject_offsets (TREE_TYPE (type),
3355 f,
3356 offset,
3357 offsets,
3358 max_offset,
3359 /*vbases_p=*/1);
3360 if (r)
3361 return r;
3362 offset = size_binop (PLUS_EXPR, offset,
3363 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3364 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3365 there's no point in iterating through the remaining
3366 elements of the array. */
3367 if (max_offset && INT_CST_LT (max_offset, offset))
3368 break;
3369 }
3370 }
3371
3372 return 0;
3373 }
3374
3375 /* Record all of the empty subobjects of TYPE (either a type or a
3376 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3377 is being placed at OFFSET; otherwise, it is a base class that is
3378 being placed at OFFSET. */
3379
3380 static void
3381 record_subobject_offsets (tree type,
3382 tree offset,
3383 splay_tree offsets,
3384 bool is_data_member)
3385 {
3386 tree max_offset;
3387 /* If recording subobjects for a non-static data member or a
3388 non-empty base class , we do not need to record offsets beyond
3389 the size of the biggest empty class. Additional data members
3390 will go at the end of the class. Additional base classes will go
3391 either at offset zero (if empty, in which case they cannot
3392 overlap with offsets past the size of the biggest empty class) or
3393 at the end of the class.
3394
3395 However, if we are placing an empty base class, then we must record
3396 all offsets, as either the empty class is at offset zero (where
3397 other empty classes might later be placed) or at the end of the
3398 class (where other objects might then be placed, so other empty
3399 subobjects might later overlap). */
3400 if (is_data_member
3401 || !is_empty_class (BINFO_TYPE (type)))
3402 max_offset = sizeof_biggest_empty_class;
3403 else
3404 max_offset = NULL_TREE;
3405 walk_subobject_offsets (type, record_subobject_offset, offset,
3406 offsets, max_offset, is_data_member);
3407 }
3408
3409 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3410 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3411 virtual bases of TYPE are examined. */
3412
3413 static int
3414 layout_conflict_p (tree type,
3415 tree offset,
3416 splay_tree offsets,
3417 int vbases_p)
3418 {
3419 splay_tree_node max_node;
3420
3421 /* Get the node in OFFSETS that indicates the maximum offset where
3422 an empty subobject is located. */
3423 max_node = splay_tree_max (offsets);
3424 /* If there aren't any empty subobjects, then there's no point in
3425 performing this check. */
3426 if (!max_node)
3427 return 0;
3428
3429 return walk_subobject_offsets (type, check_subobject_offset, offset,
3430 offsets, (tree) (max_node->key),
3431 vbases_p);
3432 }
3433
3434 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3435 non-static data member of the type indicated by RLI. BINFO is the
3436 binfo corresponding to the base subobject, OFFSETS maps offsets to
3437 types already located at those offsets. This function determines
3438 the position of the DECL. */
3439
3440 static void
3441 layout_nonempty_base_or_field (record_layout_info rli,
3442 tree decl,
3443 tree binfo,
3444 splay_tree offsets)
3445 {
3446 tree offset = NULL_TREE;
3447 bool field_p;
3448 tree type;
3449
3450 if (binfo)
3451 {
3452 /* For the purposes of determining layout conflicts, we want to
3453 use the class type of BINFO; TREE_TYPE (DECL) will be the
3454 CLASSTYPE_AS_BASE version, which does not contain entries for
3455 zero-sized bases. */
3456 type = TREE_TYPE (binfo);
3457 field_p = false;
3458 }
3459 else
3460 {
3461 type = TREE_TYPE (decl);
3462 field_p = true;
3463 }
3464
3465 /* Try to place the field. It may take more than one try if we have
3466 a hard time placing the field without putting two objects of the
3467 same type at the same address. */
3468 while (1)
3469 {
3470 struct record_layout_info_s old_rli = *rli;
3471
3472 /* Place this field. */
3473 place_field (rli, decl);
3474 offset = byte_position (decl);
3475
3476 /* We have to check to see whether or not there is already
3477 something of the same type at the offset we're about to use.
3478 For example, consider:
3479
3480 struct S {};
3481 struct T : public S { int i; };
3482 struct U : public S, public T {};
3483
3484 Here, we put S at offset zero in U. Then, we can't put T at
3485 offset zero -- its S component would be at the same address
3486 as the S we already allocated. So, we have to skip ahead.
3487 Since all data members, including those whose type is an
3488 empty class, have nonzero size, any overlap can happen only
3489 with a direct or indirect base-class -- it can't happen with
3490 a data member. */
3491 /* In a union, overlap is permitted; all members are placed at
3492 offset zero. */
3493 if (TREE_CODE (rli->t) == UNION_TYPE)
3494 break;
3495 /* G++ 3.2 did not check for overlaps when placing a non-empty
3496 virtual base. */
3497 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3498 break;
3499 if (layout_conflict_p (field_p ? type : binfo, offset,
3500 offsets, field_p))
3501 {
3502 /* Strip off the size allocated to this field. That puts us
3503 at the first place we could have put the field with
3504 proper alignment. */
3505 *rli = old_rli;
3506
3507 /* Bump up by the alignment required for the type. */
3508 rli->bitpos
3509 = size_binop (PLUS_EXPR, rli->bitpos,
3510 bitsize_int (binfo
3511 ? CLASSTYPE_ALIGN (type)
3512 : TYPE_ALIGN (type)));
3513 normalize_rli (rli);
3514 }
3515 else
3516 /* There was no conflict. We're done laying out this field. */
3517 break;
3518 }
3519
3520 /* Now that we know where it will be placed, update its
3521 BINFO_OFFSET. */
3522 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3523 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3524 this point because their BINFO_OFFSET is copied from another
3525 hierarchy. Therefore, we may not need to add the entire
3526 OFFSET. */
3527 propagate_binfo_offsets (binfo,
3528 size_diffop (convert (ssizetype, offset),
3529 convert (ssizetype,
3530 BINFO_OFFSET (binfo))));
3531 }
3532
3533 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3534
3535 static int
3536 empty_base_at_nonzero_offset_p (tree type,
3537 tree offset,
3538 splay_tree offsets ATTRIBUTE_UNUSED)
3539 {
3540 return is_empty_class (type) && !integer_zerop (offset);
3541 }
3542
3543 /* Layout the empty base BINFO. EOC indicates the byte currently just
3544 past the end of the class, and should be correctly aligned for a
3545 class of the type indicated by BINFO; OFFSETS gives the offsets of
3546 the empty bases allocated so far. T is the most derived
3547 type. Return nonzero iff we added it at the end. */
3548
3549 static bool
3550 layout_empty_base (record_layout_info rli, tree binfo,
3551 tree eoc, splay_tree offsets)
3552 {
3553 tree alignment;
3554 tree basetype = BINFO_TYPE (binfo);
3555 bool atend = false;
3556
3557 /* This routine should only be used for empty classes. */
3558 gcc_assert (is_empty_class (basetype));
3559 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3560
3561 if (!integer_zerop (BINFO_OFFSET (binfo)))
3562 {
3563 if (abi_version_at_least (2))
3564 propagate_binfo_offsets
3565 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3566 else
3567 warning (OPT_Wabi,
3568 "offset of empty base %qT may not be ABI-compliant and may"
3569 "change in a future version of GCC",
3570 BINFO_TYPE (binfo));
3571 }
3572
3573 /* This is an empty base class. We first try to put it at offset
3574 zero. */
3575 if (layout_conflict_p (binfo,
3576 BINFO_OFFSET (binfo),
3577 offsets,
3578 /*vbases_p=*/0))
3579 {
3580 /* That didn't work. Now, we move forward from the next
3581 available spot in the class. */
3582 atend = true;
3583 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3584 while (1)
3585 {
3586 if (!layout_conflict_p (binfo,
3587 BINFO_OFFSET (binfo),
3588 offsets,
3589 /*vbases_p=*/0))
3590 /* We finally found a spot where there's no overlap. */
3591 break;
3592
3593 /* There's overlap here, too. Bump along to the next spot. */
3594 propagate_binfo_offsets (binfo, alignment);
3595 }
3596 }
3597
3598 if (CLASSTYPE_USER_ALIGN (basetype))
3599 {
3600 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
3601 if (warn_packed)
3602 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
3603 TYPE_USER_ALIGN (rli->t) = 1;
3604 }
3605
3606 return atend;
3607 }
3608
3609 /* Layout the base given by BINFO in the class indicated by RLI.
3610 *BASE_ALIGN is a running maximum of the alignments of
3611 any base class. OFFSETS gives the location of empty base
3612 subobjects. T is the most derived type. Return nonzero if the new
3613 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3614 *NEXT_FIELD, unless BINFO is for an empty base class.
3615
3616 Returns the location at which the next field should be inserted. */
3617
3618 static tree *
3619 build_base_field (record_layout_info rli, tree binfo,
3620 splay_tree offsets, tree *next_field)
3621 {
3622 tree t = rli->t;
3623 tree basetype = BINFO_TYPE (binfo);
3624
3625 if (!COMPLETE_TYPE_P (basetype))
3626 /* This error is now reported in xref_tag, thus giving better
3627 location information. */
3628 return next_field;
3629
3630 /* Place the base class. */
3631 if (!is_empty_class (basetype))
3632 {
3633 tree decl;
3634
3635 /* The containing class is non-empty because it has a non-empty
3636 base class. */
3637 CLASSTYPE_EMPTY_P (t) = 0;
3638
3639 /* Create the FIELD_DECL. */
3640 decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3641 DECL_ARTIFICIAL (decl) = 1;
3642 DECL_IGNORED_P (decl) = 1;
3643 DECL_FIELD_CONTEXT (decl) = t;
3644 if (CLASSTYPE_AS_BASE (basetype))
3645 {
3646 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3647 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3648 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3649 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3650 DECL_MODE (decl) = TYPE_MODE (basetype);
3651 DECL_FIELD_IS_BASE (decl) = 1;
3652
3653 /* Try to place the field. It may take more than one try if we
3654 have a hard time placing the field without putting two
3655 objects of the same type at the same address. */
3656 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3657 /* Add the new FIELD_DECL to the list of fields for T. */
3658 TREE_CHAIN (decl) = *next_field;
3659 *next_field = decl;
3660 next_field = &TREE_CHAIN (decl);
3661 }
3662 }
3663 else
3664 {
3665 tree eoc;
3666 bool atend;
3667
3668 /* On some platforms (ARM), even empty classes will not be
3669 byte-aligned. */
3670 eoc = round_up (rli_size_unit_so_far (rli),
3671 CLASSTYPE_ALIGN_UNIT (basetype));
3672 atend = layout_empty_base (rli, binfo, eoc, offsets);
3673 /* A nearly-empty class "has no proper base class that is empty,
3674 not morally virtual, and at an offset other than zero." */
3675 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3676 {
3677 if (atend)
3678 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3679 /* The check above (used in G++ 3.2) is insufficient because
3680 an empty class placed at offset zero might itself have an
3681 empty base at a nonzero offset. */
3682 else if (walk_subobject_offsets (basetype,
3683 empty_base_at_nonzero_offset_p,
3684 size_zero_node,
3685 /*offsets=*/NULL,
3686 /*max_offset=*/NULL_TREE,
3687 /*vbases_p=*/true))
3688 {
3689 if (abi_version_at_least (2))
3690 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3691 else
3692 warning (OPT_Wabi,
3693 "class %qT will be considered nearly empty in a "
3694 "future version of GCC", t);
3695 }
3696 }
3697
3698 /* We do not create a FIELD_DECL for empty base classes because
3699 it might overlap some other field. We want to be able to
3700 create CONSTRUCTORs for the class by iterating over the
3701 FIELD_DECLs, and the back end does not handle overlapping
3702 FIELD_DECLs. */
3703
3704 /* An empty virtual base causes a class to be non-empty
3705 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3706 here because that was already done when the virtual table
3707 pointer was created. */
3708 }
3709
3710 /* Record the offsets of BINFO and its base subobjects. */
3711 record_subobject_offsets (binfo,
3712 BINFO_OFFSET (binfo),
3713 offsets,
3714 /*is_data_member=*/false);
3715
3716 return next_field;
3717 }
3718
3719 /* Layout all of the non-virtual base classes. Record empty
3720 subobjects in OFFSETS. T is the most derived type. Return nonzero
3721 if the type cannot be nearly empty. The fields created
3722 corresponding to the base classes will be inserted at
3723 *NEXT_FIELD. */
3724
3725 static void
3726 build_base_fields (record_layout_info rli,
3727 splay_tree offsets, tree *next_field)
3728 {
3729 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3730 subobjects. */
3731 tree t = rli->t;
3732 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3733 int i;
3734
3735 /* The primary base class is always allocated first. */
3736 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3737 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3738 offsets, next_field);
3739
3740 /* Now allocate the rest of the bases. */
3741 for (i = 0; i < n_baseclasses; ++i)
3742 {
3743 tree base_binfo;
3744
3745 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3746
3747 /* The primary base was already allocated above, so we don't
3748 need to allocate it again here. */
3749 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3750 continue;
3751
3752 /* Virtual bases are added at the end (a primary virtual base
3753 will have already been added). */
3754 if (BINFO_VIRTUAL_P (base_binfo))
3755 continue;
3756
3757 next_field = build_base_field (rli, base_binfo,
3758 offsets, next_field);
3759 }
3760 }
3761
3762 /* Go through the TYPE_METHODS of T issuing any appropriate
3763 diagnostics, figuring out which methods override which other
3764 methods, and so forth. */
3765
3766 static void
3767 check_methods (tree t)
3768 {
3769 tree x;
3770
3771 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3772 {
3773 check_for_override (x, t);
3774 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3775 error ("initializer specified for non-virtual method %q+D", x);
3776 /* The name of the field is the original field name
3777 Save this in auxiliary field for later overloading. */
3778 if (DECL_VINDEX (x))
3779 {
3780 TYPE_POLYMORPHIC_P (t) = 1;
3781 if (DECL_PURE_VIRTUAL_P (x))
3782 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
3783 }
3784 /* All user-provided destructors are non-trivial. */
3785 if (DECL_DESTRUCTOR_P (x) && !DECL_DEFAULTED_FN (x))
3786 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3787 }
3788 }
3789
3790 /* FN is a constructor or destructor. Clone the declaration to create
3791 a specialized in-charge or not-in-charge version, as indicated by
3792 NAME. */
3793
3794 static tree
3795 build_clone (tree fn, tree name)
3796 {
3797 tree parms;
3798 tree clone;
3799
3800 /* Copy the function. */
3801 clone = copy_decl (fn);
3802 /* Remember where this function came from. */
3803 DECL_CLONED_FUNCTION (clone) = fn;
3804 DECL_ABSTRACT_ORIGIN (clone) = fn;
3805 /* Reset the function name. */
3806 DECL_NAME (clone) = name;
3807 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3808 /* There's no pending inline data for this function. */
3809 DECL_PENDING_INLINE_INFO (clone) = NULL;
3810 DECL_PENDING_INLINE_P (clone) = 0;
3811 /* And it hasn't yet been deferred. */
3812 DECL_DEFERRED_FN (clone) = 0;
3813
3814 /* The base-class destructor is not virtual. */
3815 if (name == base_dtor_identifier)
3816 {
3817 DECL_VIRTUAL_P (clone) = 0;
3818 if (TREE_CODE (clone) != TEMPLATE_DECL)
3819 DECL_VINDEX (clone) = NULL_TREE;
3820 }
3821
3822 /* If there was an in-charge parameter, drop it from the function
3823 type. */
3824 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3825 {
3826 tree basetype;
3827 tree parmtypes;
3828 tree exceptions;
3829
3830 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3831 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3832 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3833 /* Skip the `this' parameter. */
3834 parmtypes = TREE_CHAIN (parmtypes);
3835 /* Skip the in-charge parameter. */
3836 parmtypes = TREE_CHAIN (parmtypes);
3837 /* And the VTT parm, in a complete [cd]tor. */
3838 if (DECL_HAS_VTT_PARM_P (fn)
3839 && ! DECL_NEEDS_VTT_PARM_P (clone))
3840 parmtypes = TREE_CHAIN (parmtypes);
3841 /* If this is subobject constructor or destructor, add the vtt
3842 parameter. */
3843 TREE_TYPE (clone)
3844 = build_method_type_directly (basetype,
3845 TREE_TYPE (TREE_TYPE (clone)),
3846 parmtypes);
3847 if (exceptions)
3848 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3849 exceptions);
3850 TREE_TYPE (clone)
3851 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3852 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3853 }
3854
3855 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3856 aren't function parameters; those are the template parameters. */
3857 if (TREE_CODE (clone) != TEMPLATE_DECL)
3858 {
3859 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3860 /* Remove the in-charge parameter. */
3861 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3862 {
3863 TREE_CHAIN (DECL_ARGUMENTS (clone))
3864 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3865 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3866 }
3867 /* And the VTT parm, in a complete [cd]tor. */
3868 if (DECL_HAS_VTT_PARM_P (fn))
3869 {
3870 if (DECL_NEEDS_VTT_PARM_P (clone))
3871 DECL_HAS_VTT_PARM_P (clone) = 1;
3872 else
3873 {
3874 TREE_CHAIN (DECL_ARGUMENTS (clone))
3875 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3876 DECL_HAS_VTT_PARM_P (clone) = 0;
3877 }
3878 }
3879
3880 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3881 {
3882 DECL_CONTEXT (parms) = clone;
3883 cxx_dup_lang_specific_decl (parms);
3884 }
3885 }
3886
3887 /* Create the RTL for this function. */
3888 SET_DECL_RTL (clone, NULL_RTX);
3889 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3890
3891 /* Make it easy to find the CLONE given the FN. */
3892 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3893 TREE_CHAIN (fn) = clone;
3894
3895 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3896 if (TREE_CODE (clone) == TEMPLATE_DECL)
3897 {
3898 tree result;
3899
3900 DECL_TEMPLATE_RESULT (clone)
3901 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3902 result = DECL_TEMPLATE_RESULT (clone);
3903 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3904 DECL_TI_TEMPLATE (result) = clone;
3905 }
3906 else if (pch_file)
3907 note_decl_for_pch (clone);
3908
3909 return clone;
3910 }
3911
3912 /* Produce declarations for all appropriate clones of FN. If
3913 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3914 CLASTYPE_METHOD_VEC as well. */
3915
3916 void
3917 clone_function_decl (tree fn, int update_method_vec_p)
3918 {
3919 tree clone;
3920
3921 /* Avoid inappropriate cloning. */
3922 if (TREE_CHAIN (fn)
3923 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3924 return;
3925
3926 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3927 {
3928 /* For each constructor, we need two variants: an in-charge version
3929 and a not-in-charge version. */
3930 clone = build_clone (fn, complete_ctor_identifier);
3931 if (update_method_vec_p)
3932 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3933 clone = build_clone (fn, base_ctor_identifier);
3934 if (update_method_vec_p)
3935 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3936 }
3937 else
3938 {
3939 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
3940
3941 /* For each destructor, we need three variants: an in-charge
3942 version, a not-in-charge version, and an in-charge deleting
3943 version. We clone the deleting version first because that
3944 means it will go second on the TYPE_METHODS list -- and that
3945 corresponds to the correct layout order in the virtual
3946 function table.
3947
3948 For a non-virtual destructor, we do not build a deleting
3949 destructor. */
3950 if (DECL_VIRTUAL_P (fn))
3951 {
3952 clone = build_clone (fn, deleting_dtor_identifier);
3953 if (update_method_vec_p)
3954 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3955 }
3956 clone = build_clone (fn, complete_dtor_identifier);
3957 if (update_method_vec_p)
3958 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3959 clone = build_clone (fn, base_dtor_identifier);
3960 if (update_method_vec_p)
3961 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3962 }
3963
3964 /* Note that this is an abstract function that is never emitted. */
3965 DECL_ABSTRACT (fn) = 1;
3966 }
3967
3968 /* DECL is an in charge constructor, which is being defined. This will
3969 have had an in class declaration, from whence clones were
3970 declared. An out-of-class definition can specify additional default
3971 arguments. As it is the clones that are involved in overload
3972 resolution, we must propagate the information from the DECL to its
3973 clones. */
3974
3975 void
3976 adjust_clone_args (tree decl)
3977 {
3978 tree clone;
3979
3980 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3981 clone = TREE_CHAIN (clone))
3982 {
3983 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3984 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3985 tree decl_parms, clone_parms;
3986
3987 clone_parms = orig_clone_parms;
3988
3989 /* Skip the 'this' parameter. */
3990 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3991 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3992
3993 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3994 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3995 if (DECL_HAS_VTT_PARM_P (decl))
3996 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3997
3998 clone_parms = orig_clone_parms;
3999 if (DECL_HAS_VTT_PARM_P (clone))
4000 clone_parms = TREE_CHAIN (clone_parms);
4001
4002 for (decl_parms = orig_decl_parms; decl_parms;
4003 decl_parms = TREE_CHAIN (decl_parms),
4004 clone_parms = TREE_CHAIN (clone_parms))
4005 {
4006 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4007 TREE_TYPE (clone_parms)));
4008
4009 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4010 {
4011 /* A default parameter has been added. Adjust the
4012 clone's parameters. */
4013 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4014 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4015 tree type;
4016
4017 clone_parms = orig_decl_parms;
4018
4019 if (DECL_HAS_VTT_PARM_P (clone))
4020 {
4021 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4022 TREE_VALUE (orig_clone_parms),
4023 clone_parms);
4024 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4025 }
4026 type = build_method_type_directly (basetype,
4027 TREE_TYPE (TREE_TYPE (clone)),
4028 clone_parms);
4029 if (exceptions)
4030 type = build_exception_variant (type, exceptions);
4031 TREE_TYPE (clone) = type;
4032
4033 clone_parms = NULL_TREE;
4034 break;
4035 }
4036 }
4037 gcc_assert (!clone_parms);
4038 }
4039 }
4040
4041 /* For each of the constructors and destructors in T, create an
4042 in-charge and not-in-charge variant. */
4043
4044 static void
4045 clone_constructors_and_destructors (tree t)
4046 {
4047 tree fns;
4048
4049 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4050 out now. */
4051 if (!CLASSTYPE_METHOD_VEC (t))
4052 return;
4053
4054 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4055 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4056 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4057 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4058 }
4059
4060 /* Returns true iff class T has a user-defined constructor other than
4061 the default constructor. */
4062
4063 bool
4064 type_has_user_nondefault_constructor (tree t)
4065 {
4066 tree fns;
4067
4068 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4069 return false;
4070
4071 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4072 {
4073 tree fn = OVL_CURRENT (fns);
4074 if (!DECL_ARTIFICIAL (fn)
4075 && (TREE_CODE (fn) == TEMPLATE_DECL
4076 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4077 != NULL_TREE)))
4078 return true;
4079 }
4080
4081 return false;
4082 }
4083
4084 /* Returns true iff FN is a user-provided function, i.e. user-declared
4085 and not defaulted at its first declaration. */
4086
4087 static bool
4088 user_provided_p (tree fn)
4089 {
4090 if (TREE_CODE (fn) == TEMPLATE_DECL)
4091 return true;
4092 else
4093 return (!DECL_ARTIFICIAL (fn)
4094 && !(DECL_DEFAULTED_FN (fn)
4095 && DECL_INITIALIZED_IN_CLASS_P (fn)));
4096 }
4097
4098 /* Returns true iff class T has a user-provided constructor. */
4099
4100 bool
4101 type_has_user_provided_constructor (tree t)
4102 {
4103 tree fns;
4104
4105 if (!CLASS_TYPE_P (t))
4106 return false;
4107
4108 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4109 return false;
4110
4111 /* This can happen in error cases; avoid crashing. */
4112 if (!CLASSTYPE_METHOD_VEC (t))
4113 return false;
4114
4115 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4116 if (user_provided_p (OVL_CURRENT (fns)))
4117 return true;
4118
4119 return false;
4120 }
4121
4122 /* Returns true iff class T has a user-provided default constructor. */
4123
4124 bool
4125 type_has_user_provided_default_constructor (tree t)
4126 {
4127 tree fns, args;
4128
4129 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4130 return false;
4131
4132 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4133 {
4134 tree fn = OVL_CURRENT (fns);
4135 if (TREE_CODE (fn) == FUNCTION_DECL
4136 && user_provided_p (fn))
4137 {
4138 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4139 while (args && TREE_PURPOSE (args))
4140 args = TREE_CHAIN (args);
4141 if (!args || args == void_list_node)
4142 return true;
4143 }
4144 }
4145
4146 return false;
4147 }
4148
4149 /* Returns true if FN can be explicitly defaulted. */
4150
4151 bool
4152 defaultable_fn_p (tree fn)
4153 {
4154 if (DECL_CONSTRUCTOR_P (fn))
4155 {
4156 if (FUNCTION_FIRST_USER_PARMTYPE (fn) == void_list_node)
4157 return true;
4158 else if (copy_fn_p (fn) > 0
4159 && (TREE_CHAIN (FUNCTION_FIRST_USER_PARMTYPE (fn))
4160 == void_list_node))
4161 return true;
4162 else
4163 return false;
4164 }
4165 else if (DECL_DESTRUCTOR_P (fn))
4166 return true;
4167 else if (DECL_ASSIGNMENT_OPERATOR_P (fn)
4168 && DECL_OVERLOADED_OPERATOR_P (fn) == NOP_EXPR)
4169 return copy_fn_p (fn);
4170 else
4171 return false;
4172 }
4173
4174 /* Remove all zero-width bit-fields from T. */
4175
4176 static void
4177 remove_zero_width_bit_fields (tree t)
4178 {
4179 tree *fieldsp;
4180
4181 fieldsp = &TYPE_FIELDS (t);
4182 while (*fieldsp)
4183 {
4184 if (TREE_CODE (*fieldsp) == FIELD_DECL
4185 && DECL_C_BIT_FIELD (*fieldsp)
4186 && DECL_INITIAL (*fieldsp))
4187 *fieldsp = TREE_CHAIN (*fieldsp);
4188 else
4189 fieldsp = &TREE_CHAIN (*fieldsp);
4190 }
4191 }
4192
4193 /* Returns TRUE iff we need a cookie when dynamically allocating an
4194 array whose elements have the indicated class TYPE. */
4195
4196 static bool
4197 type_requires_array_cookie (tree type)
4198 {
4199 tree fns;
4200 bool has_two_argument_delete_p = false;
4201
4202 gcc_assert (CLASS_TYPE_P (type));
4203
4204 /* If there's a non-trivial destructor, we need a cookie. In order
4205 to iterate through the array calling the destructor for each
4206 element, we'll have to know how many elements there are. */
4207 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4208 return true;
4209
4210 /* If the usual deallocation function is a two-argument whose second
4211 argument is of type `size_t', then we have to pass the size of
4212 the array to the deallocation function, so we will need to store
4213 a cookie. */
4214 fns = lookup_fnfields (TYPE_BINFO (type),
4215 ansi_opname (VEC_DELETE_EXPR),
4216 /*protect=*/0);
4217 /* If there are no `operator []' members, or the lookup is
4218 ambiguous, then we don't need a cookie. */
4219 if (!fns || fns == error_mark_node)
4220 return false;
4221 /* Loop through all of the functions. */
4222 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4223 {
4224 tree fn;
4225 tree second_parm;
4226
4227 /* Select the current function. */
4228 fn = OVL_CURRENT (fns);
4229 /* See if this function is a one-argument delete function. If
4230 it is, then it will be the usual deallocation function. */
4231 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4232 if (second_parm == void_list_node)
4233 return false;
4234 /* Do not consider this function if its second argument is an
4235 ellipsis. */
4236 if (!second_parm)
4237 continue;
4238 /* Otherwise, if we have a two-argument function and the second
4239 argument is `size_t', it will be the usual deallocation
4240 function -- unless there is one-argument function, too. */
4241 if (TREE_CHAIN (second_parm) == void_list_node
4242 && same_type_p (TREE_VALUE (second_parm), size_type_node))
4243 has_two_argument_delete_p = true;
4244 }
4245
4246 return has_two_argument_delete_p;
4247 }
4248
4249 /* Check the validity of the bases and members declared in T. Add any
4250 implicitly-generated functions (like copy-constructors and
4251 assignment operators). Compute various flag bits (like
4252 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4253 level: i.e., independently of the ABI in use. */
4254
4255 static void
4256 check_bases_and_members (tree t)
4257 {
4258 /* Nonzero if the implicitly generated copy constructor should take
4259 a non-const reference argument. */
4260 int cant_have_const_ctor;
4261 /* Nonzero if the implicitly generated assignment operator
4262 should take a non-const reference argument. */
4263 int no_const_asn_ref;
4264 tree access_decls;
4265 bool saved_complex_asn_ref;
4266 bool saved_nontrivial_dtor;
4267
4268 /* By default, we use const reference arguments and generate default
4269 constructors. */
4270 cant_have_const_ctor = 0;
4271 no_const_asn_ref = 0;
4272
4273 /* Check all the base-classes. */
4274 check_bases (t, &cant_have_const_ctor,
4275 &no_const_asn_ref);
4276
4277 /* Check all the method declarations. */
4278 check_methods (t);
4279
4280 /* Save the initial values of these flags which only indicate whether
4281 or not the class has user-provided functions. As we analyze the
4282 bases and members we can set these flags for other reasons. */
4283 saved_complex_asn_ref = TYPE_HAS_COMPLEX_ASSIGN_REF (t);
4284 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
4285
4286 /* Check all the data member declarations. We cannot call
4287 check_field_decls until we have called check_bases check_methods,
4288 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4289 being set appropriately. */
4290 check_field_decls (t, &access_decls,
4291 &cant_have_const_ctor,
4292 &no_const_asn_ref);
4293
4294 /* A nearly-empty class has to be vptr-containing; a nearly empty
4295 class contains just a vptr. */
4296 if (!TYPE_CONTAINS_VPTR_P (t))
4297 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4298
4299 /* Do some bookkeeping that will guide the generation of implicitly
4300 declared member functions. */
4301 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_CONTAINS_VPTR_P (t);
4302 /* We need to call a constructor for this class if it has a
4303 user-provided constructor, or if the default constructor is going
4304 to initialize the vptr. (This is not an if-and-only-if;
4305 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
4306 themselves need constructing.) */
4307 TYPE_NEEDS_CONSTRUCTING (t)
4308 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
4309 /* [dcl.init.aggr]
4310
4311 An aggregate is an array or a class with no user-provided
4312 constructors ... and no virtual functions.
4313
4314 Again, other conditions for being an aggregate are checked
4315 elsewhere. */
4316 CLASSTYPE_NON_AGGREGATE (t)
4317 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
4318 CLASSTYPE_NON_POD_P (t)
4319 |= (CLASSTYPE_NON_AGGREGATE (t)
4320 || saved_nontrivial_dtor || saved_complex_asn_ref);
4321 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_CONTAINS_VPTR_P (t);
4322 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
4323
4324 /* If the class has no user-declared constructor, but does have
4325 non-static const or reference data members that can never be
4326 initialized, issue a warning. */
4327 if (warn_uninitialized
4328 /* Classes with user-declared constructors are presumed to
4329 initialize these members. */
4330 && !TYPE_HAS_USER_CONSTRUCTOR (t)
4331 /* Aggregates can be initialized with brace-enclosed
4332 initializers. */
4333 && CLASSTYPE_NON_AGGREGATE (t))
4334 {
4335 tree field;
4336
4337 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4338 {
4339 tree type;
4340
4341 if (TREE_CODE (field) != FIELD_DECL)
4342 continue;
4343
4344 type = TREE_TYPE (field);
4345 if (TREE_CODE (type) == REFERENCE_TYPE)
4346 warning (OPT_Wuninitialized, "non-static reference %q+#D "
4347 "in class without a constructor", field);
4348 else if (CP_TYPE_CONST_P (type)
4349 && (!CLASS_TYPE_P (type)
4350 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
4351 warning (OPT_Wuninitialized, "non-static const member %q+#D "
4352 "in class without a constructor", field);
4353 }
4354 }
4355
4356 /* Synthesize any needed methods. */
4357 add_implicitly_declared_members (t,
4358 cant_have_const_ctor,
4359 no_const_asn_ref);
4360
4361 /* Create the in-charge and not-in-charge variants of constructors
4362 and destructors. */
4363 clone_constructors_and_destructors (t);
4364
4365 /* Process the using-declarations. */
4366 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4367 handle_using_decl (TREE_VALUE (access_decls), t);
4368
4369 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4370 finish_struct_methods (t);
4371
4372 /* Figure out whether or not we will need a cookie when dynamically
4373 allocating an array of this type. */
4374 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4375 = type_requires_array_cookie (t);
4376 }
4377
4378 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4379 accordingly. If a new vfield was created (because T doesn't have a
4380 primary base class), then the newly created field is returned. It
4381 is not added to the TYPE_FIELDS list; it is the caller's
4382 responsibility to do that. Accumulate declared virtual functions
4383 on VIRTUALS_P. */
4384
4385 static tree
4386 create_vtable_ptr (tree t, tree* virtuals_p)
4387 {
4388 tree fn;
4389
4390 /* Collect the virtual functions declared in T. */
4391 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4392 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4393 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4394 {
4395 tree new_virtual = make_node (TREE_LIST);
4396
4397 BV_FN (new_virtual) = fn;
4398 BV_DELTA (new_virtual) = integer_zero_node;
4399 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4400
4401 TREE_CHAIN (new_virtual) = *virtuals_p;
4402 *virtuals_p = new_virtual;
4403 }
4404
4405 /* If we couldn't find an appropriate base class, create a new field
4406 here. Even if there weren't any new virtual functions, we might need a
4407 new virtual function table if we're supposed to include vptrs in
4408 all classes that need them. */
4409 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4410 {
4411 /* We build this decl with vtbl_ptr_type_node, which is a
4412 `vtable_entry_type*'. It might seem more precise to use
4413 `vtable_entry_type (*)[N]' where N is the number of virtual
4414 functions. However, that would require the vtable pointer in
4415 base classes to have a different type than the vtable pointer
4416 in derived classes. We could make that happen, but that
4417 still wouldn't solve all the problems. In particular, the
4418 type-based alias analysis code would decide that assignments
4419 to the base class vtable pointer can't alias assignments to
4420 the derived class vtable pointer, since they have different
4421 types. Thus, in a derived class destructor, where the base
4422 class constructor was inlined, we could generate bad code for
4423 setting up the vtable pointer.
4424
4425 Therefore, we use one type for all vtable pointers. We still
4426 use a type-correct type; it's just doesn't indicate the array
4427 bounds. That's better than using `void*' or some such; it's
4428 cleaner, and it let's the alias analysis code know that these
4429 stores cannot alias stores to void*! */
4430 tree field;
4431
4432 field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4433 DECL_VIRTUAL_P (field) = 1;
4434 DECL_ARTIFICIAL (field) = 1;
4435 DECL_FIELD_CONTEXT (field) = t;
4436 DECL_FCONTEXT (field) = t;
4437
4438 TYPE_VFIELD (t) = field;
4439
4440 /* This class is non-empty. */
4441 CLASSTYPE_EMPTY_P (t) = 0;
4442
4443 return field;
4444 }
4445
4446 return NULL_TREE;
4447 }
4448
4449 /* Fixup the inline function given by INFO now that the class is
4450 complete. */
4451
4452 static void
4453 fixup_pending_inline (tree fn)
4454 {
4455 if (DECL_PENDING_INLINE_INFO (fn))
4456 {
4457 tree args = DECL_ARGUMENTS (fn);
4458 while (args)
4459 {
4460 DECL_CONTEXT (args) = fn;
4461 args = TREE_CHAIN (args);
4462 }
4463 }
4464 }
4465
4466 /* Fixup the inline methods and friends in TYPE now that TYPE is
4467 complete. */
4468
4469 static void
4470 fixup_inline_methods (tree type)
4471 {
4472 tree method = TYPE_METHODS (type);
4473 VEC(tree,gc) *friends;
4474 unsigned ix;
4475
4476 if (method && TREE_CODE (method) == TREE_VEC)
4477 {
4478 if (TREE_VEC_ELT (method, 1))
4479 method = TREE_VEC_ELT (method, 1);
4480 else if (TREE_VEC_ELT (method, 0))
4481 method = TREE_VEC_ELT (method, 0);
4482 else
4483 method = TREE_VEC_ELT (method, 2);
4484 }
4485
4486 /* Do inline member functions. */
4487 for (; method; method = TREE_CHAIN (method))
4488 fixup_pending_inline (method);
4489
4490 /* Do friends. */
4491 for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
4492 VEC_iterate (tree, friends, ix, method); ix++)
4493 fixup_pending_inline (method);
4494 CLASSTYPE_INLINE_FRIENDS (type) = NULL;
4495 }
4496
4497 /* Add OFFSET to all base types of BINFO which is a base in the
4498 hierarchy dominated by T.
4499
4500 OFFSET, which is a type offset, is number of bytes. */
4501
4502 static void
4503 propagate_binfo_offsets (tree binfo, tree offset)
4504 {
4505 int i;
4506 tree primary_binfo;
4507 tree base_binfo;
4508
4509 /* Update BINFO's offset. */
4510 BINFO_OFFSET (binfo)
4511 = convert (sizetype,
4512 size_binop (PLUS_EXPR,
4513 convert (ssizetype, BINFO_OFFSET (binfo)),
4514 offset));
4515
4516 /* Find the primary base class. */
4517 primary_binfo = get_primary_binfo (binfo);
4518
4519 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4520 propagate_binfo_offsets (primary_binfo, offset);
4521
4522 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4523 downwards. */
4524 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4525 {
4526 /* Don't do the primary base twice. */
4527 if (base_binfo == primary_binfo)
4528 continue;
4529
4530 if (BINFO_VIRTUAL_P (base_binfo))
4531 continue;
4532
4533 propagate_binfo_offsets (base_binfo, offset);
4534 }
4535 }
4536
4537 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4538 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4539 empty subobjects of T. */
4540
4541 static void
4542 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4543 {
4544 tree vbase;
4545 tree t = rli->t;
4546 bool first_vbase = true;
4547 tree *next_field;
4548
4549 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4550 return;
4551
4552 if (!abi_version_at_least(2))
4553 {
4554 /* In G++ 3.2, we incorrectly rounded the size before laying out
4555 the virtual bases. */
4556 finish_record_layout (rli, /*free_p=*/false);
4557 #ifdef STRUCTURE_SIZE_BOUNDARY
4558 /* Packed structures don't need to have minimum size. */
4559 if (! TYPE_PACKED (t))
4560 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4561 #endif
4562 rli->offset = TYPE_SIZE_UNIT (t);
4563 rli->bitpos = bitsize_zero_node;
4564 rli->record_align = TYPE_ALIGN (t);
4565 }
4566
4567 /* Find the last field. The artificial fields created for virtual
4568 bases will go after the last extant field to date. */
4569 next_field = &TYPE_FIELDS (t);
4570 while (*next_field)
4571 next_field = &TREE_CHAIN (*next_field);
4572
4573 /* Go through the virtual bases, allocating space for each virtual
4574 base that is not already a primary base class. These are
4575 allocated in inheritance graph order. */
4576 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4577 {
4578 if (!BINFO_VIRTUAL_P (vbase))
4579 continue;
4580
4581 if (!BINFO_PRIMARY_P (vbase))
4582 {
4583 tree basetype = TREE_TYPE (vbase);
4584
4585 /* This virtual base is not a primary base of any class in the
4586 hierarchy, so we have to add space for it. */
4587 next_field = build_base_field (rli, vbase,
4588 offsets, next_field);
4589
4590 /* If the first virtual base might have been placed at a
4591 lower address, had we started from CLASSTYPE_SIZE, rather
4592 than TYPE_SIZE, issue a warning. There can be both false
4593 positives and false negatives from this warning in rare
4594 cases; to deal with all the possibilities would probably
4595 require performing both layout algorithms and comparing
4596 the results which is not particularly tractable. */
4597 if (warn_abi
4598 && first_vbase
4599 && (tree_int_cst_lt
4600 (size_binop (CEIL_DIV_EXPR,
4601 round_up (CLASSTYPE_SIZE (t),
4602 CLASSTYPE_ALIGN (basetype)),
4603 bitsize_unit_node),
4604 BINFO_OFFSET (vbase))))
4605 warning (OPT_Wabi,
4606 "offset of virtual base %qT is not ABI-compliant and "
4607 "may change in a future version of GCC",
4608 basetype);
4609
4610 first_vbase = false;
4611 }
4612 }
4613 }
4614
4615 /* Returns the offset of the byte just past the end of the base class
4616 BINFO. */
4617
4618 static tree
4619 end_of_base (tree binfo)
4620 {
4621 tree size;
4622
4623 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
4624 size = TYPE_SIZE_UNIT (char_type_node);
4625 else if (is_empty_class (BINFO_TYPE (binfo)))
4626 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4627 allocate some space for it. It cannot have virtual bases, so
4628 TYPE_SIZE_UNIT is fine. */
4629 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4630 else
4631 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4632
4633 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4634 }
4635
4636 /* Returns the offset of the byte just past the end of the base class
4637 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4638 only non-virtual bases are included. */
4639
4640 static tree
4641 end_of_class (tree t, int include_virtuals_p)
4642 {
4643 tree result = size_zero_node;
4644 VEC(tree,gc) *vbases;
4645 tree binfo;
4646 tree base_binfo;
4647 tree offset;
4648 int i;
4649
4650 for (binfo = TYPE_BINFO (t), i = 0;
4651 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4652 {
4653 if (!include_virtuals_p
4654 && BINFO_VIRTUAL_P (base_binfo)
4655 && (!BINFO_PRIMARY_P (base_binfo)
4656 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4657 continue;
4658
4659 offset = end_of_base (base_binfo);
4660 if (INT_CST_LT_UNSIGNED (result, offset))
4661 result = offset;
4662 }
4663
4664 /* G++ 3.2 did not check indirect virtual bases. */
4665 if (abi_version_at_least (2) && include_virtuals_p)
4666 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4667 VEC_iterate (tree, vbases, i, base_binfo); i++)
4668 {
4669 offset = end_of_base (base_binfo);
4670 if (INT_CST_LT_UNSIGNED (result, offset))
4671 result = offset;
4672 }
4673
4674 return result;
4675 }
4676
4677 /* Warn about bases of T that are inaccessible because they are
4678 ambiguous. For example:
4679
4680 struct S {};
4681 struct T : public S {};
4682 struct U : public S, public T {};
4683
4684 Here, `(S*) new U' is not allowed because there are two `S'
4685 subobjects of U. */
4686
4687 static void
4688 warn_about_ambiguous_bases (tree t)
4689 {
4690 int i;
4691 VEC(tree,gc) *vbases;
4692 tree basetype;
4693 tree binfo;
4694 tree base_binfo;
4695
4696 /* If there are no repeated bases, nothing can be ambiguous. */
4697 if (!CLASSTYPE_REPEATED_BASE_P (t))
4698 return;
4699
4700 /* Check direct bases. */
4701 for (binfo = TYPE_BINFO (t), i = 0;
4702 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4703 {
4704 basetype = BINFO_TYPE (base_binfo);
4705
4706 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4707 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4708 basetype, t);
4709 }
4710
4711 /* Check for ambiguous virtual bases. */
4712 if (extra_warnings)
4713 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4714 VEC_iterate (tree, vbases, i, binfo); i++)
4715 {
4716 basetype = BINFO_TYPE (binfo);
4717
4718 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4719 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
4720 basetype, t);
4721 }
4722 }
4723
4724 /* Compare two INTEGER_CSTs K1 and K2. */
4725
4726 static int
4727 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4728 {
4729 return tree_int_cst_compare ((tree) k1, (tree) k2);
4730 }
4731
4732 /* Increase the size indicated in RLI to account for empty classes
4733 that are "off the end" of the class. */
4734
4735 static void
4736 include_empty_classes (record_layout_info rli)
4737 {
4738 tree eoc;
4739 tree rli_size;
4740
4741 /* It might be the case that we grew the class to allocate a
4742 zero-sized base class. That won't be reflected in RLI, yet,
4743 because we are willing to overlay multiple bases at the same
4744 offset. However, now we need to make sure that RLI is big enough
4745 to reflect the entire class. */
4746 eoc = end_of_class (rli->t,
4747 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4748 rli_size = rli_size_unit_so_far (rli);
4749 if (TREE_CODE (rli_size) == INTEGER_CST
4750 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4751 {
4752 if (!abi_version_at_least (2))
4753 /* In version 1 of the ABI, the size of a class that ends with
4754 a bitfield was not rounded up to a whole multiple of a
4755 byte. Because rli_size_unit_so_far returns only the number
4756 of fully allocated bytes, any extra bits were not included
4757 in the size. */
4758 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4759 else
4760 /* The size should have been rounded to a whole byte. */
4761 gcc_assert (tree_int_cst_equal
4762 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4763 rli->bitpos
4764 = size_binop (PLUS_EXPR,
4765 rli->bitpos,
4766 size_binop (MULT_EXPR,
4767 convert (bitsizetype,
4768 size_binop (MINUS_EXPR,
4769 eoc, rli_size)),
4770 bitsize_int (BITS_PER_UNIT)));
4771 normalize_rli (rli);
4772 }
4773 }
4774
4775 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4776 BINFO_OFFSETs for all of the base-classes. Position the vtable
4777 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4778
4779 static void
4780 layout_class_type (tree t, tree *virtuals_p)
4781 {
4782 tree non_static_data_members;
4783 tree field;
4784 tree vptr;
4785 record_layout_info rli;
4786 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4787 types that appear at that offset. */
4788 splay_tree empty_base_offsets;
4789 /* True if the last field layed out was a bit-field. */
4790 bool last_field_was_bitfield = false;
4791 /* The location at which the next field should be inserted. */
4792 tree *next_field;
4793 /* T, as a base class. */
4794 tree base_t;
4795
4796 /* Keep track of the first non-static data member. */
4797 non_static_data_members = TYPE_FIELDS (t);
4798
4799 /* Start laying out the record. */
4800 rli = start_record_layout (t);
4801
4802 /* Mark all the primary bases in the hierarchy. */
4803 determine_primary_bases (t);
4804
4805 /* Create a pointer to our virtual function table. */
4806 vptr = create_vtable_ptr (t, virtuals_p);
4807
4808 /* The vptr is always the first thing in the class. */
4809 if (vptr)
4810 {
4811 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4812 TYPE_FIELDS (t) = vptr;
4813 next_field = &TREE_CHAIN (vptr);
4814 place_field (rli, vptr);
4815 }
4816 else
4817 next_field = &TYPE_FIELDS (t);
4818
4819 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4820 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4821 NULL, NULL);
4822 build_base_fields (rli, empty_base_offsets, next_field);
4823
4824 /* Layout the non-static data members. */
4825 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4826 {
4827 tree type;
4828 tree padding;
4829
4830 /* We still pass things that aren't non-static data members to
4831 the back end, in case it wants to do something with them. */
4832 if (TREE_CODE (field) != FIELD_DECL)
4833 {
4834 place_field (rli, field);
4835 /* If the static data member has incomplete type, keep track
4836 of it so that it can be completed later. (The handling
4837 of pending statics in finish_record_layout is
4838 insufficient; consider:
4839
4840 struct S1;
4841 struct S2 { static S1 s1; };
4842
4843 At this point, finish_record_layout will be called, but
4844 S1 is still incomplete.) */
4845 if (TREE_CODE (field) == VAR_DECL)
4846 {
4847 maybe_register_incomplete_var (field);
4848 /* The visibility of static data members is determined
4849 at their point of declaration, not their point of
4850 definition. */
4851 determine_visibility (field);
4852 }
4853 continue;
4854 }
4855
4856 type = TREE_TYPE (field);
4857 if (type == error_mark_node)
4858 continue;
4859
4860 padding = NULL_TREE;
4861
4862 /* If this field is a bit-field whose width is greater than its
4863 type, then there are some special rules for allocating
4864 it. */
4865 if (DECL_C_BIT_FIELD (field)
4866 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4867 {
4868 integer_type_kind itk;
4869 tree integer_type;
4870 bool was_unnamed_p = false;
4871 /* We must allocate the bits as if suitably aligned for the
4872 longest integer type that fits in this many bits. type
4873 of the field. Then, we are supposed to use the left over
4874 bits as additional padding. */
4875 for (itk = itk_char; itk != itk_none; ++itk)
4876 if (INT_CST_LT (DECL_SIZE (field),
4877 TYPE_SIZE (integer_types[itk])))
4878 break;
4879
4880 /* ITK now indicates a type that is too large for the
4881 field. We have to back up by one to find the largest
4882 type that fits. */
4883 integer_type = integer_types[itk - 1];
4884
4885 /* Figure out how much additional padding is required. GCC
4886 3.2 always created a padding field, even if it had zero
4887 width. */
4888 if (!abi_version_at_least (2)
4889 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4890 {
4891 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4892 /* In a union, the padding field must have the full width
4893 of the bit-field; all fields start at offset zero. */
4894 padding = DECL_SIZE (field);
4895 else
4896 {
4897 if (TREE_CODE (t) == UNION_TYPE)
4898 warning (OPT_Wabi, "size assigned to %qT may not be "
4899 "ABI-compliant and may change in a future "
4900 "version of GCC",
4901 t);
4902 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4903 TYPE_SIZE (integer_type));
4904 }
4905 }
4906 #ifdef PCC_BITFIELD_TYPE_MATTERS
4907 /* An unnamed bitfield does not normally affect the
4908 alignment of the containing class on a target where
4909 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4910 make any exceptions for unnamed bitfields when the
4911 bitfields are longer than their types. Therefore, we
4912 temporarily give the field a name. */
4913 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4914 {
4915 was_unnamed_p = true;
4916 DECL_NAME (field) = make_anon_name ();
4917 }
4918 #endif
4919 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4920 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4921 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4922 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4923 empty_base_offsets);
4924 if (was_unnamed_p)
4925 DECL_NAME (field) = NULL_TREE;
4926 /* Now that layout has been performed, set the size of the
4927 field to the size of its declared type; the rest of the
4928 field is effectively invisible. */
4929 DECL_SIZE (field) = TYPE_SIZE (type);
4930 /* We must also reset the DECL_MODE of the field. */
4931 if (abi_version_at_least (2))
4932 DECL_MODE (field) = TYPE_MODE (type);
4933 else if (warn_abi
4934 && DECL_MODE (field) != TYPE_MODE (type))
4935 /* Versions of G++ before G++ 3.4 did not reset the
4936 DECL_MODE. */
4937 warning (OPT_Wabi,
4938 "the offset of %qD may not be ABI-compliant and may "
4939 "change in a future version of GCC", field);
4940 }
4941 else
4942 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4943 empty_base_offsets);
4944
4945 /* Remember the location of any empty classes in FIELD. */
4946 if (abi_version_at_least (2))
4947 record_subobject_offsets (TREE_TYPE (field),
4948 byte_position(field),
4949 empty_base_offsets,
4950 /*is_data_member=*/true);
4951
4952 /* If a bit-field does not immediately follow another bit-field,
4953 and yet it starts in the middle of a byte, we have failed to
4954 comply with the ABI. */
4955 if (warn_abi
4956 && DECL_C_BIT_FIELD (field)
4957 /* The TREE_NO_WARNING flag gets set by Objective-C when
4958 laying out an Objective-C class. The ObjC ABI differs
4959 from the C++ ABI, and so we do not want a warning
4960 here. */
4961 && !TREE_NO_WARNING (field)
4962 && !last_field_was_bitfield
4963 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4964 DECL_FIELD_BIT_OFFSET (field),
4965 bitsize_unit_node)))
4966 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
4967 "change in a future version of GCC", field);
4968
4969 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4970 offset of the field. */
4971 if (warn_abi
4972 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4973 byte_position (field))
4974 && contains_empty_class_p (TREE_TYPE (field)))
4975 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
4976 "classes to be placed at different locations in a "
4977 "future version of GCC", field);
4978
4979 /* The middle end uses the type of expressions to determine the
4980 possible range of expression values. In order to optimize
4981 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
4982 must be made aware of the width of "i", via its type.
4983
4984 Because C++ does not have integer types of arbitrary width,
4985 we must (for the purposes of the front end) convert from the
4986 type assigned here to the declared type of the bitfield
4987 whenever a bitfield expression is used as an rvalue.
4988 Similarly, when assigning a value to a bitfield, the value
4989 must be converted to the type given the bitfield here. */
4990 if (DECL_C_BIT_FIELD (field))
4991 {
4992 unsigned HOST_WIDE_INT width;
4993 tree ftype = TREE_TYPE (field);
4994 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
4995 if (width != TYPE_PRECISION (ftype))
4996 {
4997 TREE_TYPE (field)
4998 = c_build_bitfield_integer_type (width,
4999 TYPE_UNSIGNED (ftype));
5000 TREE_TYPE (field)
5001 = cp_build_qualified_type (TREE_TYPE (field),
5002 TYPE_QUALS (ftype));
5003 }
5004 }
5005
5006 /* If we needed additional padding after this field, add it
5007 now. */
5008 if (padding)
5009 {
5010 tree padding_field;
5011
5012 padding_field = build_decl (FIELD_DECL,
5013 NULL_TREE,
5014 char_type_node);
5015 DECL_BIT_FIELD (padding_field) = 1;
5016 DECL_SIZE (padding_field) = padding;
5017 DECL_CONTEXT (padding_field) = t;
5018 DECL_ARTIFICIAL (padding_field) = 1;
5019 DECL_IGNORED_P (padding_field) = 1;
5020 layout_nonempty_base_or_field (rli, padding_field,
5021 NULL_TREE,
5022 empty_base_offsets);
5023 }
5024
5025 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
5026 }
5027
5028 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
5029 {
5030 /* Make sure that we are on a byte boundary so that the size of
5031 the class without virtual bases will always be a round number
5032 of bytes. */
5033 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
5034 normalize_rli (rli);
5035 }
5036
5037 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
5038 padding. */
5039 if (!abi_version_at_least (2))
5040 include_empty_classes(rli);
5041
5042 /* Delete all zero-width bit-fields from the list of fields. Now
5043 that the type is laid out they are no longer important. */
5044 remove_zero_width_bit_fields (t);
5045
5046 /* Create the version of T used for virtual bases. We do not use
5047 make_class_type for this version; this is an artificial type. For
5048 a POD type, we just reuse T. */
5049 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
5050 {
5051 base_t = make_node (TREE_CODE (t));
5052
5053 /* Set the size and alignment for the new type. In G++ 3.2, all
5054 empty classes were considered to have size zero when used as
5055 base classes. */
5056 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
5057 {
5058 TYPE_SIZE (base_t) = bitsize_zero_node;
5059 TYPE_SIZE_UNIT (base_t) = size_zero_node;
5060 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
5061 warning (OPT_Wabi,
5062 "layout of classes derived from empty class %qT "
5063 "may change in a future version of GCC",
5064 t);
5065 }
5066 else
5067 {
5068 tree eoc;
5069
5070 /* If the ABI version is not at least two, and the last
5071 field was a bit-field, RLI may not be on a byte
5072 boundary. In particular, rli_size_unit_so_far might
5073 indicate the last complete byte, while rli_size_so_far
5074 indicates the total number of bits used. Therefore,
5075 rli_size_so_far, rather than rli_size_unit_so_far, is
5076 used to compute TYPE_SIZE_UNIT. */
5077 eoc = end_of_class (t, /*include_virtuals_p=*/0);
5078 TYPE_SIZE_UNIT (base_t)
5079 = size_binop (MAX_EXPR,
5080 convert (sizetype,
5081 size_binop (CEIL_DIV_EXPR,
5082 rli_size_so_far (rli),
5083 bitsize_int (BITS_PER_UNIT))),
5084 eoc);
5085 TYPE_SIZE (base_t)
5086 = size_binop (MAX_EXPR,
5087 rli_size_so_far (rli),
5088 size_binop (MULT_EXPR,
5089 convert (bitsizetype, eoc),
5090 bitsize_int (BITS_PER_UNIT)));
5091 }
5092 TYPE_ALIGN (base_t) = rli->record_align;
5093 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
5094
5095 /* Copy the fields from T. */
5096 next_field = &TYPE_FIELDS (base_t);
5097 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5098 if (TREE_CODE (field) == FIELD_DECL)
5099 {
5100 *next_field = build_decl (FIELD_DECL,
5101 DECL_NAME (field),
5102 TREE_TYPE (field));
5103 DECL_CONTEXT (*next_field) = base_t;
5104 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
5105 DECL_FIELD_BIT_OFFSET (*next_field)
5106 = DECL_FIELD_BIT_OFFSET (field);
5107 DECL_SIZE (*next_field) = DECL_SIZE (field);
5108 DECL_MODE (*next_field) = DECL_MODE (field);
5109 next_field = &TREE_CHAIN (*next_field);
5110 }
5111
5112 /* Record the base version of the type. */
5113 CLASSTYPE_AS_BASE (t) = base_t;
5114 TYPE_CONTEXT (base_t) = t;
5115 }
5116 else
5117 CLASSTYPE_AS_BASE (t) = t;
5118
5119 /* Every empty class contains an empty class. */
5120 if (CLASSTYPE_EMPTY_P (t))
5121 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
5122
5123 /* Set the TYPE_DECL for this type to contain the right
5124 value for DECL_OFFSET, so that we can use it as part
5125 of a COMPONENT_REF for multiple inheritance. */
5126 layout_decl (TYPE_MAIN_DECL (t), 0);
5127
5128 /* Now fix up any virtual base class types that we left lying
5129 around. We must get these done before we try to lay out the
5130 virtual function table. As a side-effect, this will remove the
5131 base subobject fields. */
5132 layout_virtual_bases (rli, empty_base_offsets);
5133
5134 /* Make sure that empty classes are reflected in RLI at this
5135 point. */
5136 include_empty_classes(rli);
5137
5138 /* Make sure not to create any structures with zero size. */
5139 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
5140 place_field (rli,
5141 build_decl (FIELD_DECL, NULL_TREE, char_type_node));
5142
5143 /* Let the back end lay out the type. */
5144 finish_record_layout (rli, /*free_p=*/true);
5145
5146 /* Warn about bases that can't be talked about due to ambiguity. */
5147 warn_about_ambiguous_bases (t);
5148
5149 /* Now that we're done with layout, give the base fields the real types. */
5150 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5151 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
5152 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
5153
5154 /* Clean up. */
5155 splay_tree_delete (empty_base_offsets);
5156
5157 if (CLASSTYPE_EMPTY_P (t)
5158 && tree_int_cst_lt (sizeof_biggest_empty_class,
5159 TYPE_SIZE_UNIT (t)))
5160 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
5161 }
5162
5163 /* Determine the "key method" for the class type indicated by TYPE,
5164 and set CLASSTYPE_KEY_METHOD accordingly. */
5165
5166 void
5167 determine_key_method (tree type)
5168 {
5169 tree method;
5170
5171 if (TYPE_FOR_JAVA (type)
5172 || processing_template_decl
5173 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
5174 || CLASSTYPE_INTERFACE_KNOWN (type))
5175 return;
5176
5177 /* The key method is the first non-pure virtual function that is not
5178 inline at the point of class definition. On some targets the
5179 key function may not be inline; those targets should not call
5180 this function until the end of the translation unit. */
5181 for (method = TYPE_METHODS (type); method != NULL_TREE;
5182 method = TREE_CHAIN (method))
5183 if (DECL_VINDEX (method) != NULL_TREE
5184 && ! DECL_DECLARED_INLINE_P (method)
5185 && ! DECL_PURE_VIRTUAL_P (method))
5186 {
5187 CLASSTYPE_KEY_METHOD (type) = method;
5188 break;
5189 }
5190
5191 return;
5192 }
5193
5194 /* Perform processing required when the definition of T (a class type)
5195 is complete. */
5196
5197 void
5198 finish_struct_1 (tree t)
5199 {
5200 tree x;
5201 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
5202 tree virtuals = NULL_TREE;
5203 int n_fields = 0;
5204
5205 if (COMPLETE_TYPE_P (t))
5206 {
5207 gcc_assert (MAYBE_CLASS_TYPE_P (t));
5208 error ("redefinition of %q#T", t);
5209 popclass ();
5210 return;
5211 }
5212
5213 /* If this type was previously laid out as a forward reference,
5214 make sure we lay it out again. */
5215 TYPE_SIZE (t) = NULL_TREE;
5216 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
5217
5218 fixup_inline_methods (t);
5219
5220 /* Make assumptions about the class; we'll reset the flags if
5221 necessary. */
5222 CLASSTYPE_EMPTY_P (t) = 1;
5223 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
5224 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
5225
5226 /* Do end-of-class semantic processing: checking the validity of the
5227 bases and members and add implicitly generated methods. */
5228 check_bases_and_members (t);
5229
5230 /* Find the key method. */
5231 if (TYPE_CONTAINS_VPTR_P (t))
5232 {
5233 /* The Itanium C++ ABI permits the key method to be chosen when
5234 the class is defined -- even though the key method so
5235 selected may later turn out to be an inline function. On
5236 some systems (such as ARM Symbian OS) the key method cannot
5237 be determined until the end of the translation unit. On such
5238 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
5239 will cause the class to be added to KEYED_CLASSES. Then, in
5240 finish_file we will determine the key method. */
5241 if (targetm.cxx.key_method_may_be_inline ())
5242 determine_key_method (t);
5243
5244 /* If a polymorphic class has no key method, we may emit the vtable
5245 in every translation unit where the class definition appears. */
5246 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
5247 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
5248 }
5249
5250 /* Layout the class itself. */
5251 layout_class_type (t, &virtuals);
5252 if (CLASSTYPE_AS_BASE (t) != t)
5253 /* We use the base type for trivial assignments, and hence it
5254 needs a mode. */
5255 compute_record_mode (CLASSTYPE_AS_BASE (t));
5256
5257 virtuals = modify_all_vtables (t, nreverse (virtuals));
5258
5259 /* If necessary, create the primary vtable for this class. */
5260 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
5261 {
5262 /* We must enter these virtuals into the table. */
5263 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5264 build_primary_vtable (NULL_TREE, t);
5265 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
5266 /* Here we know enough to change the type of our virtual
5267 function table, but we will wait until later this function. */
5268 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
5269 }
5270
5271 if (TYPE_CONTAINS_VPTR_P (t))
5272 {
5273 int vindex;
5274 tree fn;
5275
5276 if (BINFO_VTABLE (TYPE_BINFO (t)))
5277 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
5278 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5279 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
5280
5281 /* Add entries for virtual functions introduced by this class. */
5282 BINFO_VIRTUALS (TYPE_BINFO (t))
5283 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
5284
5285 /* Set DECL_VINDEX for all functions declared in this class. */
5286 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5287 fn;
5288 fn = TREE_CHAIN (fn),
5289 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5290 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5291 {
5292 tree fndecl = BV_FN (fn);
5293
5294 if (DECL_THUNK_P (fndecl))
5295 /* A thunk. We should never be calling this entry directly
5296 from this vtable -- we'd use the entry for the non
5297 thunk base function. */
5298 DECL_VINDEX (fndecl) = NULL_TREE;
5299 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5300 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
5301 }
5302 }
5303
5304 finish_struct_bits (t);
5305
5306 /* Complete the rtl for any static member objects of the type we're
5307 working on. */
5308 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5309 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5310 && TREE_TYPE (x) != error_mark_node
5311 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5312 DECL_MODE (x) = TYPE_MODE (t);
5313
5314 /* Done with FIELDS...now decide whether to sort these for
5315 faster lookups later.
5316
5317 We use a small number because most searches fail (succeeding
5318 ultimately as the search bores through the inheritance
5319 hierarchy), and we want this failure to occur quickly. */
5320
5321 n_fields = count_fields (TYPE_FIELDS (t));
5322 if (n_fields > 7)
5323 {
5324 struct sorted_fields_type *field_vec = GGC_NEWVAR
5325 (struct sorted_fields_type,
5326 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5327 field_vec->len = n_fields;
5328 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5329 qsort (field_vec->elts, n_fields, sizeof (tree),
5330 field_decl_cmp);
5331 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5332 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5333 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5334 }
5335
5336 /* Complain if one of the field types requires lower visibility. */
5337 constrain_class_visibility (t);
5338
5339 /* Make the rtl for any new vtables we have created, and unmark
5340 the base types we marked. */
5341 finish_vtbls (t);
5342
5343 /* Build the VTT for T. */
5344 build_vtt (t);
5345
5346 /* This warning does not make sense for Java classes, since they
5347 cannot have destructors. */
5348 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5349 {
5350 tree dtor;
5351
5352 dtor = CLASSTYPE_DESTRUCTORS (t);
5353 if (/* An implicitly declared destructor is always public. And,
5354 if it were virtual, we would have created it by now. */
5355 !dtor
5356 || (!DECL_VINDEX (dtor)
5357 && (/* public non-virtual */
5358 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
5359 || (/* non-public non-virtual with friends */
5360 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
5361 && (CLASSTYPE_FRIEND_CLASSES (t)
5362 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
5363 warning (OPT_Wnon_virtual_dtor,
5364 "%q#T has virtual functions and accessible"
5365 " non-virtual destructor", t);
5366 }
5367
5368 complete_vars (t);
5369
5370 if (warn_overloaded_virtual)
5371 warn_hidden (t);
5372
5373 /* Class layout, assignment of virtual table slots, etc., is now
5374 complete. Give the back end a chance to tweak the visibility of
5375 the class or perform any other required target modifications. */
5376 targetm.cxx.adjust_class_at_definition (t);
5377
5378 maybe_suppress_debug_info (t);
5379
5380 dump_class_hierarchy (t);
5381
5382 /* Finish debugging output for this type. */
5383 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5384 }
5385
5386 /* When T was built up, the member declarations were added in reverse
5387 order. Rearrange them to declaration order. */
5388
5389 void
5390 unreverse_member_declarations (tree t)
5391 {
5392 tree next;
5393 tree prev;
5394 tree x;
5395
5396 /* The following lists are all in reverse order. Put them in
5397 declaration order now. */
5398 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5399 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5400
5401 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5402 reverse order, so we can't just use nreverse. */
5403 prev = NULL_TREE;
5404 for (x = TYPE_FIELDS (t);
5405 x && TREE_CODE (x) != TYPE_DECL;
5406 x = next)
5407 {
5408 next = TREE_CHAIN (x);
5409 TREE_CHAIN (x) = prev;
5410 prev = x;
5411 }
5412 if (prev)
5413 {
5414 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5415 if (prev)
5416 TYPE_FIELDS (t) = prev;
5417 }
5418 }
5419
5420 tree
5421 finish_struct (tree t, tree attributes)
5422 {
5423 location_t saved_loc = input_location;
5424
5425 /* Now that we've got all the field declarations, reverse everything
5426 as necessary. */
5427 unreverse_member_declarations (t);
5428
5429 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5430
5431 /* Nadger the current location so that diagnostics point to the start of
5432 the struct, not the end. */
5433 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5434
5435 if (processing_template_decl)
5436 {
5437 tree x;
5438
5439 finish_struct_methods (t);
5440 TYPE_SIZE (t) = bitsize_zero_node;
5441 TYPE_SIZE_UNIT (t) = size_zero_node;
5442
5443 /* We need to emit an error message if this type was used as a parameter
5444 and it is an abstract type, even if it is a template. We construct
5445 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5446 account and we call complete_vars with this type, which will check
5447 the PARM_DECLS. Note that while the type is being defined,
5448 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5449 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5450 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5451 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5452 if (DECL_PURE_VIRTUAL_P (x))
5453 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
5454 complete_vars (t);
5455 }
5456 else
5457 finish_struct_1 (t);
5458
5459 input_location = saved_loc;
5460
5461 TYPE_BEING_DEFINED (t) = 0;
5462
5463 if (current_class_type)
5464 popclass ();
5465 else
5466 error ("trying to finish struct, but kicked out due to previous parse errors");
5467
5468 if (processing_template_decl && at_function_scope_p ())
5469 add_stmt (build_min (TAG_DEFN, t));
5470
5471 return t;
5472 }
5473 \f
5474 /* Return the dynamic type of INSTANCE, if known.
5475 Used to determine whether the virtual function table is needed
5476 or not.
5477
5478 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5479 of our knowledge of its type. *NONNULL should be initialized
5480 before this function is called. */
5481
5482 static tree
5483 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
5484 {
5485 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
5486
5487 switch (TREE_CODE (instance))
5488 {
5489 case INDIRECT_REF:
5490 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5491 return NULL_TREE;
5492 else
5493 return RECUR (TREE_OPERAND (instance, 0));
5494
5495 case CALL_EXPR:
5496 /* This is a call to a constructor, hence it's never zero. */
5497 if (TREE_HAS_CONSTRUCTOR (instance))
5498 {
5499 if (nonnull)
5500 *nonnull = 1;
5501 return TREE_TYPE (instance);
5502 }
5503 return NULL_TREE;
5504
5505 case SAVE_EXPR:
5506 /* This is a call to a constructor, hence it's never zero. */
5507 if (TREE_HAS_CONSTRUCTOR (instance))
5508 {
5509 if (nonnull)
5510 *nonnull = 1;
5511 return TREE_TYPE (instance);
5512 }
5513 return RECUR (TREE_OPERAND (instance, 0));
5514
5515 case POINTER_PLUS_EXPR:
5516 case PLUS_EXPR:
5517 case MINUS_EXPR:
5518 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5519 return RECUR (TREE_OPERAND (instance, 0));
5520 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5521 /* Propagate nonnull. */
5522 return RECUR (TREE_OPERAND (instance, 0));
5523
5524 return NULL_TREE;
5525
5526 CASE_CONVERT:
5527 return RECUR (TREE_OPERAND (instance, 0));
5528
5529 case ADDR_EXPR:
5530 instance = TREE_OPERAND (instance, 0);
5531 if (nonnull)
5532 {
5533 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5534 with a real object -- given &p->f, p can still be null. */
5535 tree t = get_base_address (instance);
5536 /* ??? Probably should check DECL_WEAK here. */
5537 if (t && DECL_P (t))
5538 *nonnull = 1;
5539 }
5540 return RECUR (instance);
5541
5542 case COMPONENT_REF:
5543 /* If this component is really a base class reference, then the field
5544 itself isn't definitive. */
5545 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5546 return RECUR (TREE_OPERAND (instance, 0));
5547 return RECUR (TREE_OPERAND (instance, 1));
5548
5549 case VAR_DECL:
5550 case FIELD_DECL:
5551 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5552 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
5553 {
5554 if (nonnull)
5555 *nonnull = 1;
5556 return TREE_TYPE (TREE_TYPE (instance));
5557 }
5558 /* fall through... */
5559 case TARGET_EXPR:
5560 case PARM_DECL:
5561 case RESULT_DECL:
5562 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
5563 {
5564 if (nonnull)
5565 *nonnull = 1;
5566 return TREE_TYPE (instance);
5567 }
5568 else if (instance == current_class_ptr)
5569 {
5570 if (nonnull)
5571 *nonnull = 1;
5572
5573 /* if we're in a ctor or dtor, we know our type. */
5574 if (DECL_LANG_SPECIFIC (current_function_decl)
5575 && (DECL_CONSTRUCTOR_P (current_function_decl)
5576 || DECL_DESTRUCTOR_P (current_function_decl)))
5577 {
5578 if (cdtorp)
5579 *cdtorp = 1;
5580 return TREE_TYPE (TREE_TYPE (instance));
5581 }
5582 }
5583 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5584 {
5585 /* We only need one hash table because it is always left empty. */
5586 static htab_t ht;
5587 if (!ht)
5588 ht = htab_create (37,
5589 htab_hash_pointer,
5590 htab_eq_pointer,
5591 /*htab_del=*/NULL);
5592
5593 /* Reference variables should be references to objects. */
5594 if (nonnull)
5595 *nonnull = 1;
5596
5597 /* Enter the INSTANCE in a table to prevent recursion; a
5598 variable's initializer may refer to the variable
5599 itself. */
5600 if (TREE_CODE (instance) == VAR_DECL
5601 && DECL_INITIAL (instance)
5602 && !htab_find (ht, instance))
5603 {
5604 tree type;
5605 void **slot;
5606
5607 slot = htab_find_slot (ht, instance, INSERT);
5608 *slot = instance;
5609 type = RECUR (DECL_INITIAL (instance));
5610 htab_remove_elt (ht, instance);
5611
5612 return type;
5613 }
5614 }
5615 return NULL_TREE;
5616
5617 default:
5618 return NULL_TREE;
5619 }
5620 #undef RECUR
5621 }
5622
5623 /* Return nonzero if the dynamic type of INSTANCE is known, and
5624 equivalent to the static type. We also handle the case where
5625 INSTANCE is really a pointer. Return negative if this is a
5626 ctor/dtor. There the dynamic type is known, but this might not be
5627 the most derived base of the original object, and hence virtual
5628 bases may not be layed out according to this type.
5629
5630 Used to determine whether the virtual function table is needed
5631 or not.
5632
5633 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5634 of our knowledge of its type. *NONNULL should be initialized
5635 before this function is called. */
5636
5637 int
5638 resolves_to_fixed_type_p (tree instance, int* nonnull)
5639 {
5640 tree t = TREE_TYPE (instance);
5641 int cdtorp = 0;
5642 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5643 if (fixed == NULL_TREE)
5644 return 0;
5645 if (POINTER_TYPE_P (t))
5646 t = TREE_TYPE (t);
5647 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5648 return 0;
5649 return cdtorp ? -1 : 1;
5650 }
5651
5652 \f
5653 void
5654 init_class_processing (void)
5655 {
5656 current_class_depth = 0;
5657 current_class_stack_size = 10;
5658 current_class_stack
5659 = XNEWVEC (struct class_stack_node, current_class_stack_size);
5660 local_classes = VEC_alloc (tree, gc, 8);
5661 sizeof_biggest_empty_class = size_zero_node;
5662
5663 ridpointers[(int) RID_PUBLIC] = access_public_node;
5664 ridpointers[(int) RID_PRIVATE] = access_private_node;
5665 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5666 }
5667
5668 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5669
5670 static void
5671 restore_class_cache (void)
5672 {
5673 tree type;
5674
5675 /* We are re-entering the same class we just left, so we don't
5676 have to search the whole inheritance matrix to find all the
5677 decls to bind again. Instead, we install the cached
5678 class_shadowed list and walk through it binding names. */
5679 push_binding_level (previous_class_level);
5680 class_binding_level = previous_class_level;
5681 /* Restore IDENTIFIER_TYPE_VALUE. */
5682 for (type = class_binding_level->type_shadowed;
5683 type;
5684 type = TREE_CHAIN (type))
5685 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5686 }
5687
5688 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5689 appropriate for TYPE.
5690
5691 So that we may avoid calls to lookup_name, we cache the _TYPE
5692 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5693
5694 For multiple inheritance, we perform a two-pass depth-first search
5695 of the type lattice. */
5696
5697 void
5698 pushclass (tree type)
5699 {
5700 class_stack_node_t csn;
5701
5702 type = TYPE_MAIN_VARIANT (type);
5703
5704 /* Make sure there is enough room for the new entry on the stack. */
5705 if (current_class_depth + 1 >= current_class_stack_size)
5706 {
5707 current_class_stack_size *= 2;
5708 current_class_stack
5709 = XRESIZEVEC (struct class_stack_node, current_class_stack,
5710 current_class_stack_size);
5711 }
5712
5713 /* Insert a new entry on the class stack. */
5714 csn = current_class_stack + current_class_depth;
5715 csn->name = current_class_name;
5716 csn->type = current_class_type;
5717 csn->access = current_access_specifier;
5718 csn->names_used = 0;
5719 csn->hidden = 0;
5720 current_class_depth++;
5721
5722 /* Now set up the new type. */
5723 current_class_name = TYPE_NAME (type);
5724 if (TREE_CODE (current_class_name) == TYPE_DECL)
5725 current_class_name = DECL_NAME (current_class_name);
5726 current_class_type = type;
5727
5728 /* By default, things in classes are private, while things in
5729 structures or unions are public. */
5730 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5731 ? access_private_node
5732 : access_public_node);
5733
5734 if (previous_class_level
5735 && type != previous_class_level->this_entity
5736 && current_class_depth == 1)
5737 {
5738 /* Forcibly remove any old class remnants. */
5739 invalidate_class_lookup_cache ();
5740 }
5741
5742 if (!previous_class_level
5743 || type != previous_class_level->this_entity
5744 || current_class_depth > 1)
5745 pushlevel_class ();
5746 else
5747 restore_class_cache ();
5748 }
5749
5750 /* When we exit a toplevel class scope, we save its binding level so
5751 that we can restore it quickly. Here, we've entered some other
5752 class, so we must invalidate our cache. */
5753
5754 void
5755 invalidate_class_lookup_cache (void)
5756 {
5757 previous_class_level = NULL;
5758 }
5759
5760 /* Get out of the current class scope. If we were in a class scope
5761 previously, that is the one popped to. */
5762
5763 void
5764 popclass (void)
5765 {
5766 poplevel_class ();
5767
5768 current_class_depth--;
5769 current_class_name = current_class_stack[current_class_depth].name;
5770 current_class_type = current_class_stack[current_class_depth].type;
5771 current_access_specifier = current_class_stack[current_class_depth].access;
5772 if (current_class_stack[current_class_depth].names_used)
5773 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5774 }
5775
5776 /* Mark the top of the class stack as hidden. */
5777
5778 void
5779 push_class_stack (void)
5780 {
5781 if (current_class_depth)
5782 ++current_class_stack[current_class_depth - 1].hidden;
5783 }
5784
5785 /* Mark the top of the class stack as un-hidden. */
5786
5787 void
5788 pop_class_stack (void)
5789 {
5790 if (current_class_depth)
5791 --current_class_stack[current_class_depth - 1].hidden;
5792 }
5793
5794 /* Returns 1 if the class type currently being defined is either T or
5795 a nested type of T. */
5796
5797 bool
5798 currently_open_class (tree t)
5799 {
5800 int i;
5801
5802 if (!CLASS_TYPE_P (t))
5803 return false;
5804
5805 /* We start looking from 1 because entry 0 is from global scope,
5806 and has no type. */
5807 for (i = current_class_depth; i > 0; --i)
5808 {
5809 tree c;
5810 if (i == current_class_depth)
5811 c = current_class_type;
5812 else
5813 {
5814 if (current_class_stack[i].hidden)
5815 break;
5816 c = current_class_stack[i].type;
5817 }
5818 if (!c)
5819 continue;
5820 if (same_type_p (c, t))
5821 return true;
5822 }
5823 return false;
5824 }
5825
5826 /* If either current_class_type or one of its enclosing classes are derived
5827 from T, return the appropriate type. Used to determine how we found
5828 something via unqualified lookup. */
5829
5830 tree
5831 currently_open_derived_class (tree t)
5832 {
5833 int i;
5834
5835 /* The bases of a dependent type are unknown. */
5836 if (dependent_type_p (t))
5837 return NULL_TREE;
5838
5839 if (!current_class_type)
5840 return NULL_TREE;
5841
5842 if (DERIVED_FROM_P (t, current_class_type))
5843 return current_class_type;
5844
5845 for (i = current_class_depth - 1; i > 0; --i)
5846 {
5847 if (current_class_stack[i].hidden)
5848 break;
5849 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5850 return current_class_stack[i].type;
5851 }
5852
5853 return NULL_TREE;
5854 }
5855
5856 /* When entering a class scope, all enclosing class scopes' names with
5857 static meaning (static variables, static functions, types and
5858 enumerators) have to be visible. This recursive function calls
5859 pushclass for all enclosing class contexts until global or a local
5860 scope is reached. TYPE is the enclosed class. */
5861
5862 void
5863 push_nested_class (tree type)
5864 {
5865 /* A namespace might be passed in error cases, like A::B:C. */
5866 if (type == NULL_TREE
5867 || !CLASS_TYPE_P (type))
5868 return;
5869
5870 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
5871
5872 pushclass (type);
5873 }
5874
5875 /* Undoes a push_nested_class call. */
5876
5877 void
5878 pop_nested_class (void)
5879 {
5880 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5881
5882 popclass ();
5883 if (context && CLASS_TYPE_P (context))
5884 pop_nested_class ();
5885 }
5886
5887 /* Returns the number of extern "LANG" blocks we are nested within. */
5888
5889 int
5890 current_lang_depth (void)
5891 {
5892 return VEC_length (tree, current_lang_base);
5893 }
5894
5895 /* Set global variables CURRENT_LANG_NAME to appropriate value
5896 so that behavior of name-mangling machinery is correct. */
5897
5898 void
5899 push_lang_context (tree name)
5900 {
5901 VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
5902
5903 if (name == lang_name_cplusplus)
5904 {
5905 current_lang_name = name;
5906 }
5907 else if (name == lang_name_java)
5908 {
5909 current_lang_name = name;
5910 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5911 (See record_builtin_java_type in decl.c.) However, that causes
5912 incorrect debug entries if these types are actually used.
5913 So we re-enable debug output after extern "Java". */
5914 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5915 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5916 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5917 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5918 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5919 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5920 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5921 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5922 }
5923 else if (name == lang_name_c)
5924 {
5925 current_lang_name = name;
5926 }
5927 else
5928 error ("language string %<\"%E\"%> not recognized", name);
5929 }
5930
5931 /* Get out of the current language scope. */
5932
5933 void
5934 pop_lang_context (void)
5935 {
5936 current_lang_name = VEC_pop (tree, current_lang_base);
5937 }
5938 \f
5939 /* Type instantiation routines. */
5940
5941 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5942 matches the TARGET_TYPE. If there is no satisfactory match, return
5943 error_mark_node, and issue an error & warning messages under
5944 control of FLAGS. Permit pointers to member function if FLAGS
5945 permits. If TEMPLATE_ONLY, the name of the overloaded function was
5946 a template-id, and EXPLICIT_TARGS are the explicitly provided
5947 template arguments.
5948
5949 If OVERLOAD is for one or more member functions, then ACCESS_PATH
5950 is the base path used to reference those member functions. If
5951 TF_NO_ACCESS_CONTROL is not set in FLAGS, and the address is
5952 resolved to a member function, access checks will be performed and
5953 errors issued if appropriate. */
5954
5955 static tree
5956 resolve_address_of_overloaded_function (tree target_type,
5957 tree overload,
5958 tsubst_flags_t flags,
5959 bool template_only,
5960 tree explicit_targs,
5961 tree access_path)
5962 {
5963 /* Here's what the standard says:
5964
5965 [over.over]
5966
5967 If the name is a function template, template argument deduction
5968 is done, and if the argument deduction succeeds, the deduced
5969 arguments are used to generate a single template function, which
5970 is added to the set of overloaded functions considered.
5971
5972 Non-member functions and static member functions match targets of
5973 type "pointer-to-function" or "reference-to-function." Nonstatic
5974 member functions match targets of type "pointer-to-member
5975 function;" the function type of the pointer to member is used to
5976 select the member function from the set of overloaded member
5977 functions. If a nonstatic member function is selected, the
5978 reference to the overloaded function name is required to have the
5979 form of a pointer to member as described in 5.3.1.
5980
5981 If more than one function is selected, any template functions in
5982 the set are eliminated if the set also contains a non-template
5983 function, and any given template function is eliminated if the
5984 set contains a second template function that is more specialized
5985 than the first according to the partial ordering rules 14.5.5.2.
5986 After such eliminations, if any, there shall remain exactly one
5987 selected function. */
5988
5989 int is_ptrmem = 0;
5990 int is_reference = 0;
5991 /* We store the matches in a TREE_LIST rooted here. The functions
5992 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5993 interoperability with most_specialized_instantiation. */
5994 tree matches = NULL_TREE;
5995 tree fn;
5996
5997 /* By the time we get here, we should be seeing only real
5998 pointer-to-member types, not the internal POINTER_TYPE to
5999 METHOD_TYPE representation. */
6000 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
6001 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
6002
6003 gcc_assert (is_overloaded_fn (overload));
6004
6005 /* Check that the TARGET_TYPE is reasonable. */
6006 if (TYPE_PTRFN_P (target_type))
6007 /* This is OK. */;
6008 else if (TYPE_PTRMEMFUNC_P (target_type))
6009 /* This is OK, too. */
6010 is_ptrmem = 1;
6011 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
6012 {
6013 /* This is OK, too. This comes from a conversion to reference
6014 type. */
6015 target_type = build_reference_type (target_type);
6016 is_reference = 1;
6017 }
6018 else
6019 {
6020 if (flags & tf_error)
6021 error ("cannot resolve overloaded function %qD based on"
6022 " conversion to type %qT",
6023 DECL_NAME (OVL_FUNCTION (overload)), target_type);
6024 return error_mark_node;
6025 }
6026
6027 /* If we can find a non-template function that matches, we can just
6028 use it. There's no point in generating template instantiations
6029 if we're just going to throw them out anyhow. But, of course, we
6030 can only do this when we don't *need* a template function. */
6031 if (!template_only)
6032 {
6033 tree fns;
6034
6035 for (fns = overload; fns; fns = OVL_NEXT (fns))
6036 {
6037 tree fn = OVL_CURRENT (fns);
6038 tree fntype;
6039
6040 if (TREE_CODE (fn) == TEMPLATE_DECL)
6041 /* We're not looking for templates just yet. */
6042 continue;
6043
6044 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6045 != is_ptrmem)
6046 /* We're looking for a non-static member, and this isn't
6047 one, or vice versa. */
6048 continue;
6049
6050 /* Ignore functions which haven't been explicitly
6051 declared. */
6052 if (DECL_ANTICIPATED (fn))
6053 continue;
6054
6055 /* See if there's a match. */
6056 fntype = TREE_TYPE (fn);
6057 if (is_ptrmem)
6058 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
6059 else if (!is_reference)
6060 fntype = build_pointer_type (fntype);
6061
6062 if (can_convert_arg (target_type, fntype, fn, LOOKUP_NORMAL))
6063 matches = tree_cons (fn, NULL_TREE, matches);
6064 }
6065 }
6066
6067 /* Now, if we've already got a match (or matches), there's no need
6068 to proceed to the template functions. But, if we don't have a
6069 match we need to look at them, too. */
6070 if (!matches)
6071 {
6072 tree target_fn_type;
6073 tree target_arg_types;
6074 tree target_ret_type;
6075 tree fns;
6076
6077 if (is_ptrmem)
6078 target_fn_type
6079 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
6080 else
6081 target_fn_type = TREE_TYPE (target_type);
6082 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
6083 target_ret_type = TREE_TYPE (target_fn_type);
6084
6085 /* Never do unification on the 'this' parameter. */
6086 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
6087 target_arg_types = TREE_CHAIN (target_arg_types);
6088
6089 for (fns = overload; fns; fns = OVL_NEXT (fns))
6090 {
6091 tree fn = OVL_CURRENT (fns);
6092 tree instantiation;
6093 tree instantiation_type;
6094 tree targs;
6095
6096 if (TREE_CODE (fn) != TEMPLATE_DECL)
6097 /* We're only looking for templates. */
6098 continue;
6099
6100 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6101 != is_ptrmem)
6102 /* We're not looking for a non-static member, and this is
6103 one, or vice versa. */
6104 continue;
6105
6106 /* Try to do argument deduction. */
6107 targs = make_tree_vec (DECL_NTPARMS (fn));
6108 if (fn_type_unification (fn, explicit_targs, targs,
6109 target_arg_types, target_ret_type,
6110 DEDUCE_EXACT, LOOKUP_NORMAL))
6111 /* Argument deduction failed. */
6112 continue;
6113
6114 /* Instantiate the template. */
6115 instantiation = instantiate_template (fn, targs, flags);
6116 if (instantiation == error_mark_node)
6117 /* Instantiation failed. */
6118 continue;
6119
6120 /* See if there's a match. */
6121 instantiation_type = TREE_TYPE (instantiation);
6122 if (is_ptrmem)
6123 instantiation_type =
6124 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
6125 else if (!is_reference)
6126 instantiation_type = build_pointer_type (instantiation_type);
6127 if (can_convert_arg (target_type, instantiation_type, instantiation,
6128 LOOKUP_NORMAL))
6129 matches = tree_cons (instantiation, fn, matches);
6130 }
6131
6132 /* Now, remove all but the most specialized of the matches. */
6133 if (matches)
6134 {
6135 tree match = most_specialized_instantiation (matches);
6136
6137 if (match != error_mark_node)
6138 matches = tree_cons (TREE_PURPOSE (match),
6139 NULL_TREE,
6140 NULL_TREE);
6141 }
6142 }
6143
6144 /* Now we should have exactly one function in MATCHES. */
6145 if (matches == NULL_TREE)
6146 {
6147 /* There were *no* matches. */
6148 if (flags & tf_error)
6149 {
6150 error ("no matches converting function %qD to type %q#T",
6151 DECL_NAME (OVL_FUNCTION (overload)),
6152 target_type);
6153
6154 /* print_candidates expects a chain with the functions in
6155 TREE_VALUE slots, so we cons one up here (we're losing anyway,
6156 so why be clever?). */
6157 for (; overload; overload = OVL_NEXT (overload))
6158 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
6159 matches);
6160
6161 print_candidates (matches);
6162 }
6163 return error_mark_node;
6164 }
6165 else if (TREE_CHAIN (matches))
6166 {
6167 /* There were too many matches. */
6168
6169 if (flags & tf_error)
6170 {
6171 tree match;
6172
6173 error ("converting overloaded function %qD to type %q#T is ambiguous",
6174 DECL_NAME (OVL_FUNCTION (overload)),
6175 target_type);
6176
6177 /* Since print_candidates expects the functions in the
6178 TREE_VALUE slot, we flip them here. */
6179 for (match = matches; match; match = TREE_CHAIN (match))
6180 TREE_VALUE (match) = TREE_PURPOSE (match);
6181
6182 print_candidates (matches);
6183 }
6184
6185 return error_mark_node;
6186 }
6187
6188 /* Good, exactly one match. Now, convert it to the correct type. */
6189 fn = TREE_PURPOSE (matches);
6190
6191 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
6192 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
6193 {
6194 static int explained;
6195
6196 if (!(flags & tf_error))
6197 return error_mark_node;
6198
6199 permerror (input_location, "assuming pointer to member %qD", fn);
6200 if (!explained)
6201 {
6202 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
6203 explained = 1;
6204 }
6205 }
6206
6207 /* If we're doing overload resolution purely for the purpose of
6208 determining conversion sequences, we should not consider the
6209 function used. If this conversion sequence is selected, the
6210 function will be marked as used at this point. */
6211 if (!(flags & tf_conv))
6212 {
6213 /* Make =delete work with SFINAE. */
6214 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
6215 return error_mark_node;
6216
6217 mark_used (fn);
6218 }
6219
6220 /* We could not check access to member functions when this
6221 expression was originally created since we did not know at that
6222 time to which function the expression referred. */
6223 if (!(flags & tf_no_access_control)
6224 && DECL_FUNCTION_MEMBER_P (fn))
6225 {
6226 gcc_assert (access_path);
6227 perform_or_defer_access_check (access_path, fn, fn);
6228 }
6229
6230 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
6231 return cp_build_unary_op (ADDR_EXPR, fn, 0, flags);
6232 else
6233 {
6234 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
6235 will mark the function as addressed, but here we must do it
6236 explicitly. */
6237 cxx_mark_addressable (fn);
6238
6239 return fn;
6240 }
6241 }
6242
6243 /* This function will instantiate the type of the expression given in
6244 RHS to match the type of LHSTYPE. If errors exist, then return
6245 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
6246 we complain on errors. If we are not complaining, never modify rhs,
6247 as overload resolution wants to try many possible instantiations, in
6248 the hope that at least one will work.
6249
6250 For non-recursive calls, LHSTYPE should be a function, pointer to
6251 function, or a pointer to member function. */
6252
6253 tree
6254 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
6255 {
6256 tsubst_flags_t flags_in = flags;
6257 tree access_path = NULL_TREE;
6258
6259 flags &= ~tf_ptrmem_ok;
6260
6261 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
6262 {
6263 if (flags & tf_error)
6264 error ("not enough type information");
6265 return error_mark_node;
6266 }
6267
6268 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
6269 {
6270 if (same_type_p (lhstype, TREE_TYPE (rhs)))
6271 return rhs;
6272 if (flag_ms_extensions
6273 && TYPE_PTRMEMFUNC_P (lhstype)
6274 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
6275 /* Microsoft allows `A::f' to be resolved to a
6276 pointer-to-member. */
6277 ;
6278 else
6279 {
6280 if (flags & tf_error)
6281 error ("argument of type %qT does not match %qT",
6282 TREE_TYPE (rhs), lhstype);
6283 return error_mark_node;
6284 }
6285 }
6286
6287 if (TREE_CODE (rhs) == BASELINK)
6288 {
6289 access_path = BASELINK_ACCESS_BINFO (rhs);
6290 rhs = BASELINK_FUNCTIONS (rhs);
6291 }
6292
6293 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
6294 deduce any type information. */
6295 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
6296 {
6297 if (flags & tf_error)
6298 error ("not enough type information");
6299 return error_mark_node;
6300 }
6301
6302 /* There only a few kinds of expressions that may have a type
6303 dependent on overload resolution. */
6304 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
6305 || TREE_CODE (rhs) == COMPONENT_REF
6306 || TREE_CODE (rhs) == COMPOUND_EXPR
6307 || really_overloaded_fn (rhs));
6308
6309 /* We don't overwrite rhs if it is an overloaded function.
6310 Copying it would destroy the tree link. */
6311 if (TREE_CODE (rhs) != OVERLOAD)
6312 rhs = copy_node (rhs);
6313
6314 /* This should really only be used when attempting to distinguish
6315 what sort of a pointer to function we have. For now, any
6316 arithmetic operation which is not supported on pointers
6317 is rejected as an error. */
6318
6319 switch (TREE_CODE (rhs))
6320 {
6321 case COMPONENT_REF:
6322 {
6323 tree member = TREE_OPERAND (rhs, 1);
6324
6325 member = instantiate_type (lhstype, member, flags);
6326 if (member != error_mark_node
6327 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
6328 /* Do not lose object's side effects. */
6329 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
6330 TREE_OPERAND (rhs, 0), member);
6331 return member;
6332 }
6333
6334 case OFFSET_REF:
6335 rhs = TREE_OPERAND (rhs, 1);
6336 if (BASELINK_P (rhs))
6337 return instantiate_type (lhstype, rhs, flags_in);
6338
6339 /* This can happen if we are forming a pointer-to-member for a
6340 member template. */
6341 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
6342
6343 /* Fall through. */
6344
6345 case TEMPLATE_ID_EXPR:
6346 {
6347 tree fns = TREE_OPERAND (rhs, 0);
6348 tree args = TREE_OPERAND (rhs, 1);
6349
6350 return
6351 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6352 /*template_only=*/true,
6353 args, access_path);
6354 }
6355
6356 case OVERLOAD:
6357 case FUNCTION_DECL:
6358 return
6359 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6360 /*template_only=*/false,
6361 /*explicit_targs=*/NULL_TREE,
6362 access_path);
6363
6364 case COMPOUND_EXPR:
6365 TREE_OPERAND (rhs, 0)
6366 = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6367 if (TREE_OPERAND (rhs, 0) == error_mark_node)
6368 return error_mark_node;
6369 TREE_OPERAND (rhs, 1)
6370 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6371 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6372 return error_mark_node;
6373
6374 TREE_TYPE (rhs) = lhstype;
6375 return rhs;
6376
6377 case ADDR_EXPR:
6378 {
6379 if (PTRMEM_OK_P (rhs))
6380 flags |= tf_ptrmem_ok;
6381
6382 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6383 }
6384
6385 case ERROR_MARK:
6386 return error_mark_node;
6387
6388 default:
6389 gcc_unreachable ();
6390 }
6391 return error_mark_node;
6392 }
6393 \f
6394 /* Return the name of the virtual function pointer field
6395 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6396 this may have to look back through base types to find the
6397 ultimate field name. (For single inheritance, these could
6398 all be the same name. Who knows for multiple inheritance). */
6399
6400 static tree
6401 get_vfield_name (tree type)
6402 {
6403 tree binfo, base_binfo;
6404 char *buf;
6405
6406 for (binfo = TYPE_BINFO (type);
6407 BINFO_N_BASE_BINFOS (binfo);
6408 binfo = base_binfo)
6409 {
6410 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6411
6412 if (BINFO_VIRTUAL_P (base_binfo)
6413 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6414 break;
6415 }
6416
6417 type = BINFO_TYPE (binfo);
6418 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
6419 + TYPE_NAME_LENGTH (type) + 2);
6420 sprintf (buf, VFIELD_NAME_FORMAT,
6421 IDENTIFIER_POINTER (constructor_name (type)));
6422 return get_identifier (buf);
6423 }
6424
6425 void
6426 print_class_statistics (void)
6427 {
6428 #ifdef GATHER_STATISTICS
6429 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6430 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6431 if (n_vtables)
6432 {
6433 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6434 n_vtables, n_vtable_searches);
6435 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6436 n_vtable_entries, n_vtable_elems);
6437 }
6438 #endif
6439 }
6440
6441 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6442 according to [class]:
6443 The class-name is also inserted
6444 into the scope of the class itself. For purposes of access checking,
6445 the inserted class name is treated as if it were a public member name. */
6446
6447 void
6448 build_self_reference (void)
6449 {
6450 tree name = constructor_name (current_class_type);
6451 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6452 tree saved_cas;
6453
6454 DECL_NONLOCAL (value) = 1;
6455 DECL_CONTEXT (value) = current_class_type;
6456 DECL_ARTIFICIAL (value) = 1;
6457 SET_DECL_SELF_REFERENCE_P (value);
6458
6459 if (processing_template_decl)
6460 value = push_template_decl (value);
6461
6462 saved_cas = current_access_specifier;
6463 current_access_specifier = access_public_node;
6464 finish_member_declaration (value);
6465 current_access_specifier = saved_cas;
6466 }
6467
6468 /* Returns 1 if TYPE contains only padding bytes. */
6469
6470 int
6471 is_empty_class (tree type)
6472 {
6473 if (type == error_mark_node)
6474 return 0;
6475
6476 if (! CLASS_TYPE_P (type))
6477 return 0;
6478
6479 /* In G++ 3.2, whether or not a class was empty was determined by
6480 looking at its size. */
6481 if (abi_version_at_least (2))
6482 return CLASSTYPE_EMPTY_P (type);
6483 else
6484 return integer_zerop (CLASSTYPE_SIZE (type));
6485 }
6486
6487 /* Returns true if TYPE contains an empty class. */
6488
6489 static bool
6490 contains_empty_class_p (tree type)
6491 {
6492 if (is_empty_class (type))
6493 return true;
6494 if (CLASS_TYPE_P (type))
6495 {
6496 tree field;
6497 tree binfo;
6498 tree base_binfo;
6499 int i;
6500
6501 for (binfo = TYPE_BINFO (type), i = 0;
6502 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6503 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6504 return true;
6505 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6506 if (TREE_CODE (field) == FIELD_DECL
6507 && !DECL_ARTIFICIAL (field)
6508 && is_empty_class (TREE_TYPE (field)))
6509 return true;
6510 }
6511 else if (TREE_CODE (type) == ARRAY_TYPE)
6512 return contains_empty_class_p (TREE_TYPE (type));
6513 return false;
6514 }
6515
6516 /* Returns true if TYPE contains no actual data, just various
6517 possible combinations of empty classes. */
6518
6519 bool
6520 is_really_empty_class (tree type)
6521 {
6522 if (is_empty_class (type))
6523 return true;
6524 if (CLASS_TYPE_P (type))
6525 {
6526 tree field;
6527 tree binfo;
6528 tree base_binfo;
6529 int i;
6530
6531 for (binfo = TYPE_BINFO (type), i = 0;
6532 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6533 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
6534 return false;
6535 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6536 if (TREE_CODE (field) == FIELD_DECL
6537 && !DECL_ARTIFICIAL (field)
6538 && !is_really_empty_class (TREE_TYPE (field)))
6539 return false;
6540 return true;
6541 }
6542 else if (TREE_CODE (type) == ARRAY_TYPE)
6543 return is_really_empty_class (TREE_TYPE (type));
6544 return false;
6545 }
6546
6547 /* Note that NAME was looked up while the current class was being
6548 defined and that the result of that lookup was DECL. */
6549
6550 void
6551 maybe_note_name_used_in_class (tree name, tree decl)
6552 {
6553 splay_tree names_used;
6554
6555 /* If we're not defining a class, there's nothing to do. */
6556 if (!(innermost_scope_kind() == sk_class
6557 && TYPE_BEING_DEFINED (current_class_type)))
6558 return;
6559
6560 /* If there's already a binding for this NAME, then we don't have
6561 anything to worry about. */
6562 if (lookup_member (current_class_type, name,
6563 /*protect=*/0, /*want_type=*/false))
6564 return;
6565
6566 if (!current_class_stack[current_class_depth - 1].names_used)
6567 current_class_stack[current_class_depth - 1].names_used
6568 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6569 names_used = current_class_stack[current_class_depth - 1].names_used;
6570
6571 splay_tree_insert (names_used,
6572 (splay_tree_key) name,
6573 (splay_tree_value) decl);
6574 }
6575
6576 /* Note that NAME was declared (as DECL) in the current class. Check
6577 to see that the declaration is valid. */
6578
6579 void
6580 note_name_declared_in_class (tree name, tree decl)
6581 {
6582 splay_tree names_used;
6583 splay_tree_node n;
6584
6585 /* Look to see if we ever used this name. */
6586 names_used
6587 = current_class_stack[current_class_depth - 1].names_used;
6588 if (!names_used)
6589 return;
6590
6591 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6592 if (n)
6593 {
6594 /* [basic.scope.class]
6595
6596 A name N used in a class S shall refer to the same declaration
6597 in its context and when re-evaluated in the completed scope of
6598 S. */
6599 permerror (input_location, "declaration of %q#D", decl);
6600 permerror (input_location, "changes meaning of %qD from %q+#D",
6601 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
6602 }
6603 }
6604
6605 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6606 Secondary vtables are merged with primary vtables; this function
6607 will return the VAR_DECL for the primary vtable. */
6608
6609 tree
6610 get_vtbl_decl_for_binfo (tree binfo)
6611 {
6612 tree decl;
6613
6614 decl = BINFO_VTABLE (binfo);
6615 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
6616 {
6617 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6618 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6619 }
6620 if (decl)
6621 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6622 return decl;
6623 }
6624
6625
6626 /* Returns the binfo for the primary base of BINFO. If the resulting
6627 BINFO is a virtual base, and it is inherited elsewhere in the
6628 hierarchy, then the returned binfo might not be the primary base of
6629 BINFO in the complete object. Check BINFO_PRIMARY_P or
6630 BINFO_LOST_PRIMARY_P to be sure. */
6631
6632 static tree
6633 get_primary_binfo (tree binfo)
6634 {
6635 tree primary_base;
6636
6637 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6638 if (!primary_base)
6639 return NULL_TREE;
6640
6641 return copied_binfo (primary_base, binfo);
6642 }
6643
6644 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6645
6646 static int
6647 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6648 {
6649 if (!indented_p)
6650 fprintf (stream, "%*s", indent, "");
6651 return 1;
6652 }
6653
6654 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6655 INDENT should be zero when called from the top level; it is
6656 incremented recursively. IGO indicates the next expected BINFO in
6657 inheritance graph ordering. */
6658
6659 static tree
6660 dump_class_hierarchy_r (FILE *stream,
6661 int flags,
6662 tree binfo,
6663 tree igo,
6664 int indent)
6665 {
6666 int indented = 0;
6667 tree base_binfo;
6668 int i;
6669
6670 indented = maybe_indent_hierarchy (stream, indent, 0);
6671 fprintf (stream, "%s (0x%lx) ",
6672 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6673 (unsigned long) binfo);
6674 if (binfo != igo)
6675 {
6676 fprintf (stream, "alternative-path\n");
6677 return igo;
6678 }
6679 igo = TREE_CHAIN (binfo);
6680
6681 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6682 tree_low_cst (BINFO_OFFSET (binfo), 0));
6683 if (is_empty_class (BINFO_TYPE (binfo)))
6684 fprintf (stream, " empty");
6685 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6686 fprintf (stream, " nearly-empty");
6687 if (BINFO_VIRTUAL_P (binfo))
6688 fprintf (stream, " virtual");
6689 fprintf (stream, "\n");
6690
6691 indented = 0;
6692 if (BINFO_PRIMARY_P (binfo))
6693 {
6694 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6695 fprintf (stream, " primary-for %s (0x%lx)",
6696 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6697 TFF_PLAIN_IDENTIFIER),
6698 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6699 }
6700 if (BINFO_LOST_PRIMARY_P (binfo))
6701 {
6702 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6703 fprintf (stream, " lost-primary");
6704 }
6705 if (indented)
6706 fprintf (stream, "\n");
6707
6708 if (!(flags & TDF_SLIM))
6709 {
6710 int indented = 0;
6711
6712 if (BINFO_SUBVTT_INDEX (binfo))
6713 {
6714 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6715 fprintf (stream, " subvttidx=%s",
6716 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6717 TFF_PLAIN_IDENTIFIER));
6718 }
6719 if (BINFO_VPTR_INDEX (binfo))
6720 {
6721 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6722 fprintf (stream, " vptridx=%s",
6723 expr_as_string (BINFO_VPTR_INDEX (binfo),
6724 TFF_PLAIN_IDENTIFIER));
6725 }
6726 if (BINFO_VPTR_FIELD (binfo))
6727 {
6728 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6729 fprintf (stream, " vbaseoffset=%s",
6730 expr_as_string (BINFO_VPTR_FIELD (binfo),
6731 TFF_PLAIN_IDENTIFIER));
6732 }
6733 if (BINFO_VTABLE (binfo))
6734 {
6735 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6736 fprintf (stream, " vptr=%s",
6737 expr_as_string (BINFO_VTABLE (binfo),
6738 TFF_PLAIN_IDENTIFIER));
6739 }
6740
6741 if (indented)
6742 fprintf (stream, "\n");
6743 }
6744
6745 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6746 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6747
6748 return igo;
6749 }
6750
6751 /* Dump the BINFO hierarchy for T. */
6752
6753 static void
6754 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6755 {
6756 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6757 fprintf (stream, " size=%lu align=%lu\n",
6758 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6759 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6760 fprintf (stream, " base size=%lu base align=%lu\n",
6761 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6762 / BITS_PER_UNIT),
6763 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6764 / BITS_PER_UNIT));
6765 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6766 fprintf (stream, "\n");
6767 }
6768
6769 /* Debug interface to hierarchy dumping. */
6770
6771 void
6772 debug_class (tree t)
6773 {
6774 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6775 }
6776
6777 static void
6778 dump_class_hierarchy (tree t)
6779 {
6780 int flags;
6781 FILE *stream = dump_begin (TDI_class, &flags);
6782
6783 if (stream)
6784 {
6785 dump_class_hierarchy_1 (stream, flags, t);
6786 dump_end (TDI_class, stream);
6787 }
6788 }
6789
6790 static void
6791 dump_array (FILE * stream, tree decl)
6792 {
6793 tree value;
6794 unsigned HOST_WIDE_INT ix;
6795 HOST_WIDE_INT elt;
6796 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6797
6798 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6799 / BITS_PER_UNIT);
6800 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6801 fprintf (stream, " %s entries",
6802 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6803 TFF_PLAIN_IDENTIFIER));
6804 fprintf (stream, "\n");
6805
6806 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
6807 ix, value)
6808 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6809 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
6810 }
6811
6812 static void
6813 dump_vtable (tree t, tree binfo, tree vtable)
6814 {
6815 int flags;
6816 FILE *stream = dump_begin (TDI_class, &flags);
6817
6818 if (!stream)
6819 return;
6820
6821 if (!(flags & TDF_SLIM))
6822 {
6823 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6824
6825 fprintf (stream, "%s for %s",
6826 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6827 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6828 if (ctor_vtbl_p)
6829 {
6830 if (!BINFO_VIRTUAL_P (binfo))
6831 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6832 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6833 }
6834 fprintf (stream, "\n");
6835 dump_array (stream, vtable);
6836 fprintf (stream, "\n");
6837 }
6838
6839 dump_end (TDI_class, stream);
6840 }
6841
6842 static void
6843 dump_vtt (tree t, tree vtt)
6844 {
6845 int flags;
6846 FILE *stream = dump_begin (TDI_class, &flags);
6847
6848 if (!stream)
6849 return;
6850
6851 if (!(flags & TDF_SLIM))
6852 {
6853 fprintf (stream, "VTT for %s\n",
6854 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6855 dump_array (stream, vtt);
6856 fprintf (stream, "\n");
6857 }
6858
6859 dump_end (TDI_class, stream);
6860 }
6861
6862 /* Dump a function or thunk and its thunkees. */
6863
6864 static void
6865 dump_thunk (FILE *stream, int indent, tree thunk)
6866 {
6867 static const char spaces[] = " ";
6868 tree name = DECL_NAME (thunk);
6869 tree thunks;
6870
6871 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6872 (void *)thunk,
6873 !DECL_THUNK_P (thunk) ? "function"
6874 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6875 name ? IDENTIFIER_POINTER (name) : "<unset>");
6876 if (DECL_THUNK_P (thunk))
6877 {
6878 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6879 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6880
6881 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6882 if (!virtual_adjust)
6883 /*NOP*/;
6884 else if (DECL_THIS_THUNK_P (thunk))
6885 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6886 tree_low_cst (virtual_adjust, 0));
6887 else
6888 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6889 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6890 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6891 if (THUNK_ALIAS (thunk))
6892 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6893 }
6894 fprintf (stream, "\n");
6895 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6896 dump_thunk (stream, indent + 2, thunks);
6897 }
6898
6899 /* Dump the thunks for FN. */
6900
6901 void
6902 debug_thunks (tree fn)
6903 {
6904 dump_thunk (stderr, 0, fn);
6905 }
6906
6907 /* Virtual function table initialization. */
6908
6909 /* Create all the necessary vtables for T and its base classes. */
6910
6911 static void
6912 finish_vtbls (tree t)
6913 {
6914 tree list;
6915 tree vbase;
6916
6917 /* We lay out the primary and secondary vtables in one contiguous
6918 vtable. The primary vtable is first, followed by the non-virtual
6919 secondary vtables in inheritance graph order. */
6920 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6921 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6922 TYPE_BINFO (t), t, list);
6923
6924 /* Then come the virtual bases, also in inheritance graph order. */
6925 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6926 {
6927 if (!BINFO_VIRTUAL_P (vbase))
6928 continue;
6929 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6930 }
6931
6932 if (BINFO_VTABLE (TYPE_BINFO (t)))
6933 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6934 }
6935
6936 /* Initialize the vtable for BINFO with the INITS. */
6937
6938 static void
6939 initialize_vtable (tree binfo, tree inits)
6940 {
6941 tree decl;
6942
6943 layout_vtable_decl (binfo, list_length (inits));
6944 decl = get_vtbl_decl_for_binfo (binfo);
6945 initialize_artificial_var (decl, inits);
6946 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6947 }
6948
6949 /* Build the VTT (virtual table table) for T.
6950 A class requires a VTT if it has virtual bases.
6951
6952 This holds
6953 1 - primary virtual pointer for complete object T
6954 2 - secondary VTTs for each direct non-virtual base of T which requires a
6955 VTT
6956 3 - secondary virtual pointers for each direct or indirect base of T which
6957 has virtual bases or is reachable via a virtual path from T.
6958 4 - secondary VTTs for each direct or indirect virtual base of T.
6959
6960 Secondary VTTs look like complete object VTTs without part 4. */
6961
6962 static void
6963 build_vtt (tree t)
6964 {
6965 tree inits;
6966 tree type;
6967 tree vtt;
6968 tree index;
6969
6970 /* Build up the initializers for the VTT. */
6971 inits = NULL_TREE;
6972 index = size_zero_node;
6973 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6974
6975 /* If we didn't need a VTT, we're done. */
6976 if (!inits)
6977 return;
6978
6979 /* Figure out the type of the VTT. */
6980 type = build_index_type (size_int (list_length (inits) - 1));
6981 type = build_cplus_array_type (const_ptr_type_node, type);
6982
6983 /* Now, build the VTT object itself. */
6984 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
6985 initialize_artificial_var (vtt, inits);
6986 /* Add the VTT to the vtables list. */
6987 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6988 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6989
6990 dump_vtt (t, vtt);
6991 }
6992
6993 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6994 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6995 and CHAIN the vtable pointer for this binfo after construction is
6996 complete. VALUE can also be another BINFO, in which case we recurse. */
6997
6998 static tree
6999 binfo_ctor_vtable (tree binfo)
7000 {
7001 tree vt;
7002
7003 while (1)
7004 {
7005 vt = BINFO_VTABLE (binfo);
7006 if (TREE_CODE (vt) == TREE_LIST)
7007 vt = TREE_VALUE (vt);
7008 if (TREE_CODE (vt) == TREE_BINFO)
7009 binfo = vt;
7010 else
7011 break;
7012 }
7013
7014 return vt;
7015 }
7016
7017 /* Data for secondary VTT initialization. */
7018 typedef struct secondary_vptr_vtt_init_data_s
7019 {
7020 /* Is this the primary VTT? */
7021 bool top_level_p;
7022
7023 /* Current index into the VTT. */
7024 tree index;
7025
7026 /* TREE_LIST of initializers built up. */
7027 tree inits;
7028
7029 /* The type being constructed by this secondary VTT. */
7030 tree type_being_constructed;
7031 } secondary_vptr_vtt_init_data;
7032
7033 /* Recursively build the VTT-initializer for BINFO (which is in the
7034 hierarchy dominated by T). INITS points to the end of the initializer
7035 list to date. INDEX is the VTT index where the next element will be
7036 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
7037 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
7038 for virtual bases of T. When it is not so, we build the constructor
7039 vtables for the BINFO-in-T variant. */
7040
7041 static tree *
7042 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
7043 {
7044 int i;
7045 tree b;
7046 tree init;
7047 tree secondary_vptrs;
7048 secondary_vptr_vtt_init_data data;
7049 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7050
7051 /* We only need VTTs for subobjects with virtual bases. */
7052 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7053 return inits;
7054
7055 /* We need to use a construction vtable if this is not the primary
7056 VTT. */
7057 if (!top_level_p)
7058 {
7059 build_ctor_vtbl_group (binfo, t);
7060
7061 /* Record the offset in the VTT where this sub-VTT can be found. */
7062 BINFO_SUBVTT_INDEX (binfo) = *index;
7063 }
7064
7065 /* Add the address of the primary vtable for the complete object. */
7066 init = binfo_ctor_vtable (binfo);
7067 *inits = build_tree_list (NULL_TREE, init);
7068 inits = &TREE_CHAIN (*inits);
7069 if (top_level_p)
7070 {
7071 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7072 BINFO_VPTR_INDEX (binfo) = *index;
7073 }
7074 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
7075
7076 /* Recursively add the secondary VTTs for non-virtual bases. */
7077 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
7078 if (!BINFO_VIRTUAL_P (b))
7079 inits = build_vtt_inits (b, t, inits, index);
7080
7081 /* Add secondary virtual pointers for all subobjects of BINFO with
7082 either virtual bases or reachable along a virtual path, except
7083 subobjects that are non-virtual primary bases. */
7084 data.top_level_p = top_level_p;
7085 data.index = *index;
7086 data.inits = NULL;
7087 data.type_being_constructed = BINFO_TYPE (binfo);
7088
7089 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
7090
7091 *index = data.index;
7092
7093 /* The secondary vptrs come back in reverse order. After we reverse
7094 them, and add the INITS, the last init will be the first element
7095 of the chain. */
7096 secondary_vptrs = data.inits;
7097 if (secondary_vptrs)
7098 {
7099 *inits = nreverse (secondary_vptrs);
7100 inits = &TREE_CHAIN (secondary_vptrs);
7101 gcc_assert (*inits == NULL_TREE);
7102 }
7103
7104 if (top_level_p)
7105 /* Add the secondary VTTs for virtual bases in inheritance graph
7106 order. */
7107 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
7108 {
7109 if (!BINFO_VIRTUAL_P (b))
7110 continue;
7111
7112 inits = build_vtt_inits (b, t, inits, index);
7113 }
7114 else
7115 /* Remove the ctor vtables we created. */
7116 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
7117
7118 return inits;
7119 }
7120
7121 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
7122 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
7123
7124 static tree
7125 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
7126 {
7127 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
7128
7129 /* We don't care about bases that don't have vtables. */
7130 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
7131 return dfs_skip_bases;
7132
7133 /* We're only interested in proper subobjects of the type being
7134 constructed. */
7135 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
7136 return NULL_TREE;
7137
7138 /* We're only interested in bases with virtual bases or reachable
7139 via a virtual path from the type being constructed. */
7140 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7141 || binfo_via_virtual (binfo, data->type_being_constructed)))
7142 return dfs_skip_bases;
7143
7144 /* We're not interested in non-virtual primary bases. */
7145 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
7146 return NULL_TREE;
7147
7148 /* Record the index where this secondary vptr can be found. */
7149 if (data->top_level_p)
7150 {
7151 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7152 BINFO_VPTR_INDEX (binfo) = data->index;
7153
7154 if (BINFO_VIRTUAL_P (binfo))
7155 {
7156 /* It's a primary virtual base, and this is not a
7157 construction vtable. Find the base this is primary of in
7158 the inheritance graph, and use that base's vtable
7159 now. */
7160 while (BINFO_PRIMARY_P (binfo))
7161 binfo = BINFO_INHERITANCE_CHAIN (binfo);
7162 }
7163 }
7164
7165 /* Add the initializer for the secondary vptr itself. */
7166 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
7167
7168 /* Advance the vtt index. */
7169 data->index = size_binop (PLUS_EXPR, data->index,
7170 TYPE_SIZE_UNIT (ptr_type_node));
7171
7172 return NULL_TREE;
7173 }
7174
7175 /* Called from build_vtt_inits via dfs_walk. After building
7176 constructor vtables and generating the sub-vtt from them, we need
7177 to restore the BINFO_VTABLES that were scribbled on. DATA is the
7178 binfo of the base whose sub vtt was generated. */
7179
7180 static tree
7181 dfs_fixup_binfo_vtbls (tree binfo, void* data)
7182 {
7183 tree vtable = BINFO_VTABLE (binfo);
7184
7185 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7186 /* If this class has no vtable, none of its bases do. */
7187 return dfs_skip_bases;
7188
7189 if (!vtable)
7190 /* This might be a primary base, so have no vtable in this
7191 hierarchy. */
7192 return NULL_TREE;
7193
7194 /* If we scribbled the construction vtable vptr into BINFO, clear it
7195 out now. */
7196 if (TREE_CODE (vtable) == TREE_LIST
7197 && (TREE_PURPOSE (vtable) == (tree) data))
7198 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
7199
7200 return NULL_TREE;
7201 }
7202
7203 /* Build the construction vtable group for BINFO which is in the
7204 hierarchy dominated by T. */
7205
7206 static void
7207 build_ctor_vtbl_group (tree binfo, tree t)
7208 {
7209 tree list;
7210 tree type;
7211 tree vtbl;
7212 tree inits;
7213 tree id;
7214 tree vbase;
7215
7216 /* See if we've already created this construction vtable group. */
7217 id = mangle_ctor_vtbl_for_type (t, binfo);
7218 if (IDENTIFIER_GLOBAL_VALUE (id))
7219 return;
7220
7221 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
7222 /* Build a version of VTBL (with the wrong type) for use in
7223 constructing the addresses of secondary vtables in the
7224 construction vtable group. */
7225 vtbl = build_vtable (t, id, ptr_type_node);
7226 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
7227 list = build_tree_list (vtbl, NULL_TREE);
7228 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
7229 binfo, t, list);
7230
7231 /* Add the vtables for each of our virtual bases using the vbase in T
7232 binfo. */
7233 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7234 vbase;
7235 vbase = TREE_CHAIN (vbase))
7236 {
7237 tree b;
7238
7239 if (!BINFO_VIRTUAL_P (vbase))
7240 continue;
7241 b = copied_binfo (vbase, binfo);
7242
7243 accumulate_vtbl_inits (b, vbase, binfo, t, list);
7244 }
7245 inits = TREE_VALUE (list);
7246
7247 /* Figure out the type of the construction vtable. */
7248 type = build_index_type (size_int (list_length (inits) - 1));
7249 type = build_cplus_array_type (vtable_entry_type, type);
7250 layout_type (type);
7251 TREE_TYPE (vtbl) = type;
7252 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
7253 layout_decl (vtbl, 0);
7254
7255 /* Initialize the construction vtable. */
7256 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
7257 initialize_artificial_var (vtbl, inits);
7258 dump_vtable (t, binfo, vtbl);
7259 }
7260
7261 /* Add the vtbl initializers for BINFO (and its bases other than
7262 non-virtual primaries) to the list of INITS. BINFO is in the
7263 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
7264 the constructor the vtbl inits should be accumulated for. (If this
7265 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
7266 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
7267 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
7268 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
7269 but are not necessarily the same in terms of layout. */
7270
7271 static void
7272 accumulate_vtbl_inits (tree binfo,
7273 tree orig_binfo,
7274 tree rtti_binfo,
7275 tree t,
7276 tree inits)
7277 {
7278 int i;
7279 tree base_binfo;
7280 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7281
7282 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
7283
7284 /* If it doesn't have a vptr, we don't do anything. */
7285 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7286 return;
7287
7288 /* If we're building a construction vtable, we're not interested in
7289 subobjects that don't require construction vtables. */
7290 if (ctor_vtbl_p
7291 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7292 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
7293 return;
7294
7295 /* Build the initializers for the BINFO-in-T vtable. */
7296 TREE_VALUE (inits)
7297 = chainon (TREE_VALUE (inits),
7298 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
7299 rtti_binfo, t, inits));
7300
7301 /* Walk the BINFO and its bases. We walk in preorder so that as we
7302 initialize each vtable we can figure out at what offset the
7303 secondary vtable lies from the primary vtable. We can't use
7304 dfs_walk here because we need to iterate through bases of BINFO
7305 and RTTI_BINFO simultaneously. */
7306 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7307 {
7308 /* Skip virtual bases. */
7309 if (BINFO_VIRTUAL_P (base_binfo))
7310 continue;
7311 accumulate_vtbl_inits (base_binfo,
7312 BINFO_BASE_BINFO (orig_binfo, i),
7313 rtti_binfo, t,
7314 inits);
7315 }
7316 }
7317
7318 /* Called from accumulate_vtbl_inits. Returns the initializers for
7319 the BINFO vtable. */
7320
7321 static tree
7322 dfs_accumulate_vtbl_inits (tree binfo,
7323 tree orig_binfo,
7324 tree rtti_binfo,
7325 tree t,
7326 tree l)
7327 {
7328 tree inits = NULL_TREE;
7329 tree vtbl = NULL_TREE;
7330 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7331
7332 if (ctor_vtbl_p
7333 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7334 {
7335 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7336 primary virtual base. If it is not the same primary in
7337 the hierarchy of T, we'll need to generate a ctor vtable
7338 for it, to place at its location in T. If it is the same
7339 primary, we still need a VTT entry for the vtable, but it
7340 should point to the ctor vtable for the base it is a
7341 primary for within the sub-hierarchy of RTTI_BINFO.
7342
7343 There are three possible cases:
7344
7345 1) We are in the same place.
7346 2) We are a primary base within a lost primary virtual base of
7347 RTTI_BINFO.
7348 3) We are primary to something not a base of RTTI_BINFO. */
7349
7350 tree b;
7351 tree last = NULL_TREE;
7352
7353 /* First, look through the bases we are primary to for RTTI_BINFO
7354 or a virtual base. */
7355 b = binfo;
7356 while (BINFO_PRIMARY_P (b))
7357 {
7358 b = BINFO_INHERITANCE_CHAIN (b);
7359 last = b;
7360 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7361 goto found;
7362 }
7363 /* If we run out of primary links, keep looking down our
7364 inheritance chain; we might be an indirect primary. */
7365 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7366 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7367 break;
7368 found:
7369
7370 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7371 base B and it is a base of RTTI_BINFO, this is case 2. In
7372 either case, we share our vtable with LAST, i.e. the
7373 derived-most base within B of which we are a primary. */
7374 if (b == rtti_binfo
7375 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7376 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7377 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7378 binfo_ctor_vtable after everything's been set up. */
7379 vtbl = last;
7380
7381 /* Otherwise, this is case 3 and we get our own. */
7382 }
7383 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7384 return inits;
7385
7386 if (!vtbl)
7387 {
7388 tree index;
7389 int non_fn_entries;
7390
7391 /* Compute the initializer for this vtable. */
7392 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7393 &non_fn_entries);
7394
7395 /* Figure out the position to which the VPTR should point. */
7396 vtbl = TREE_PURPOSE (l);
7397 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7398 index = size_binop (PLUS_EXPR,
7399 size_int (non_fn_entries),
7400 size_int (list_length (TREE_VALUE (l))));
7401 index = size_binop (MULT_EXPR,
7402 TYPE_SIZE_UNIT (vtable_entry_type),
7403 index);
7404 vtbl = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7405 }
7406
7407 if (ctor_vtbl_p)
7408 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7409 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7410 straighten this out. */
7411 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7412 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7413 inits = NULL_TREE;
7414 else
7415 /* For an ordinary vtable, set BINFO_VTABLE. */
7416 BINFO_VTABLE (binfo) = vtbl;
7417
7418 return inits;
7419 }
7420
7421 static GTY(()) tree abort_fndecl_addr;
7422
7423 /* Construct the initializer for BINFO's virtual function table. BINFO
7424 is part of the hierarchy dominated by T. If we're building a
7425 construction vtable, the ORIG_BINFO is the binfo we should use to
7426 find the actual function pointers to put in the vtable - but they
7427 can be overridden on the path to most-derived in the graph that
7428 ORIG_BINFO belongs. Otherwise,
7429 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7430 BINFO that should be indicated by the RTTI information in the
7431 vtable; it will be a base class of T, rather than T itself, if we
7432 are building a construction vtable.
7433
7434 The value returned is a TREE_LIST suitable for wrapping in a
7435 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7436 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7437 number of non-function entries in the vtable.
7438
7439 It might seem that this function should never be called with a
7440 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7441 base is always subsumed by a derived class vtable. However, when
7442 we are building construction vtables, we do build vtables for
7443 primary bases; we need these while the primary base is being
7444 constructed. */
7445
7446 static tree
7447 build_vtbl_initializer (tree binfo,
7448 tree orig_binfo,
7449 tree t,
7450 tree rtti_binfo,
7451 int* non_fn_entries_p)
7452 {
7453 tree v, b;
7454 tree vfun_inits;
7455 vtbl_init_data vid;
7456 unsigned ix;
7457 tree vbinfo;
7458 VEC(tree,gc) *vbases;
7459
7460 /* Initialize VID. */
7461 memset (&vid, 0, sizeof (vid));
7462 vid.binfo = binfo;
7463 vid.derived = t;
7464 vid.rtti_binfo = rtti_binfo;
7465 vid.last_init = &vid.inits;
7466 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7467 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7468 vid.generate_vcall_entries = true;
7469 /* The first vbase or vcall offset is at index -3 in the vtable. */
7470 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7471
7472 /* Add entries to the vtable for RTTI. */
7473 build_rtti_vtbl_entries (binfo, &vid);
7474
7475 /* Create an array for keeping track of the functions we've
7476 processed. When we see multiple functions with the same
7477 signature, we share the vcall offsets. */
7478 vid.fns = VEC_alloc (tree, gc, 32);
7479 /* Add the vcall and vbase offset entries. */
7480 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7481
7482 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7483 build_vbase_offset_vtbl_entries. */
7484 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7485 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7486 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7487
7488 /* If the target requires padding between data entries, add that now. */
7489 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7490 {
7491 tree cur, *prev;
7492
7493 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7494 {
7495 tree add = cur;
7496 int i;
7497
7498 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7499 add = tree_cons (NULL_TREE,
7500 build1 (NOP_EXPR, vtable_entry_type,
7501 null_pointer_node),
7502 add);
7503 *prev = add;
7504 }
7505 }
7506
7507 if (non_fn_entries_p)
7508 *non_fn_entries_p = list_length (vid.inits);
7509
7510 /* Go through all the ordinary virtual functions, building up
7511 initializers. */
7512 vfun_inits = NULL_TREE;
7513 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7514 {
7515 tree delta;
7516 tree vcall_index;
7517 tree fn, fn_original;
7518 tree init = NULL_TREE;
7519
7520 fn = BV_FN (v);
7521 fn_original = fn;
7522 if (DECL_THUNK_P (fn))
7523 {
7524 if (!DECL_NAME (fn))
7525 finish_thunk (fn);
7526 if (THUNK_ALIAS (fn))
7527 {
7528 fn = THUNK_ALIAS (fn);
7529 BV_FN (v) = fn;
7530 }
7531 fn_original = THUNK_TARGET (fn);
7532 }
7533
7534 /* If the only definition of this function signature along our
7535 primary base chain is from a lost primary, this vtable slot will
7536 never be used, so just zero it out. This is important to avoid
7537 requiring extra thunks which cannot be generated with the function.
7538
7539 We first check this in update_vtable_entry_for_fn, so we handle
7540 restored primary bases properly; we also need to do it here so we
7541 zero out unused slots in ctor vtables, rather than filling them
7542 with erroneous values (though harmless, apart from relocation
7543 costs). */
7544 for (b = binfo; ; b = get_primary_binfo (b))
7545 {
7546 /* We found a defn before a lost primary; go ahead as normal. */
7547 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7548 break;
7549
7550 /* The nearest definition is from a lost primary; clear the
7551 slot. */
7552 if (BINFO_LOST_PRIMARY_P (b))
7553 {
7554 init = size_zero_node;
7555 break;
7556 }
7557 }
7558
7559 if (! init)
7560 {
7561 /* Pull the offset for `this', and the function to call, out of
7562 the list. */
7563 delta = BV_DELTA (v);
7564 vcall_index = BV_VCALL_INDEX (v);
7565
7566 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7567 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7568
7569 /* You can't call an abstract virtual function; it's abstract.
7570 So, we replace these functions with __pure_virtual. */
7571 if (DECL_PURE_VIRTUAL_P (fn_original))
7572 {
7573 fn = abort_fndecl;
7574 if (abort_fndecl_addr == NULL)
7575 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7576 init = abort_fndecl_addr;
7577 }
7578 else
7579 {
7580 if (!integer_zerop (delta) || vcall_index)
7581 {
7582 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7583 if (!DECL_NAME (fn))
7584 finish_thunk (fn);
7585 }
7586 /* Take the address of the function, considering it to be of an
7587 appropriate generic type. */
7588 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7589 }
7590 }
7591
7592 /* And add it to the chain of initializers. */
7593 if (TARGET_VTABLE_USES_DESCRIPTORS)
7594 {
7595 int i;
7596 if (init == size_zero_node)
7597 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7598 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7599 else
7600 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7601 {
7602 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7603 TREE_OPERAND (init, 0),
7604 build_int_cst (NULL_TREE, i));
7605 TREE_CONSTANT (fdesc) = 1;
7606
7607 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7608 }
7609 }
7610 else
7611 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7612 }
7613
7614 /* The initializers for virtual functions were built up in reverse
7615 order; straighten them out now. */
7616 vfun_inits = nreverse (vfun_inits);
7617
7618 /* The negative offset initializers are also in reverse order. */
7619 vid.inits = nreverse (vid.inits);
7620
7621 /* Chain the two together. */
7622 return chainon (vid.inits, vfun_inits);
7623 }
7624
7625 /* Adds to vid->inits the initializers for the vbase and vcall
7626 offsets in BINFO, which is in the hierarchy dominated by T. */
7627
7628 static void
7629 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7630 {
7631 tree b;
7632
7633 /* If this is a derived class, we must first create entries
7634 corresponding to the primary base class. */
7635 b = get_primary_binfo (binfo);
7636 if (b)
7637 build_vcall_and_vbase_vtbl_entries (b, vid);
7638
7639 /* Add the vbase entries for this base. */
7640 build_vbase_offset_vtbl_entries (binfo, vid);
7641 /* Add the vcall entries for this base. */
7642 build_vcall_offset_vtbl_entries (binfo, vid);
7643 }
7644
7645 /* Returns the initializers for the vbase offset entries in the vtable
7646 for BINFO (which is part of the class hierarchy dominated by T), in
7647 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7648 where the next vbase offset will go. */
7649
7650 static void
7651 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7652 {
7653 tree vbase;
7654 tree t;
7655 tree non_primary_binfo;
7656
7657 /* If there are no virtual baseclasses, then there is nothing to
7658 do. */
7659 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7660 return;
7661
7662 t = vid->derived;
7663
7664 /* We might be a primary base class. Go up the inheritance hierarchy
7665 until we find the most derived class of which we are a primary base:
7666 it is the offset of that which we need to use. */
7667 non_primary_binfo = binfo;
7668 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7669 {
7670 tree b;
7671
7672 /* If we have reached a virtual base, then it must be a primary
7673 base (possibly multi-level) of vid->binfo, or we wouldn't
7674 have called build_vcall_and_vbase_vtbl_entries for it. But it
7675 might be a lost primary, so just skip down to vid->binfo. */
7676 if (BINFO_VIRTUAL_P (non_primary_binfo))
7677 {
7678 non_primary_binfo = vid->binfo;
7679 break;
7680 }
7681
7682 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7683 if (get_primary_binfo (b) != non_primary_binfo)
7684 break;
7685 non_primary_binfo = b;
7686 }
7687
7688 /* Go through the virtual bases, adding the offsets. */
7689 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7690 vbase;
7691 vbase = TREE_CHAIN (vbase))
7692 {
7693 tree b;
7694 tree delta;
7695
7696 if (!BINFO_VIRTUAL_P (vbase))
7697 continue;
7698
7699 /* Find the instance of this virtual base in the complete
7700 object. */
7701 b = copied_binfo (vbase, binfo);
7702
7703 /* If we've already got an offset for this virtual base, we
7704 don't need another one. */
7705 if (BINFO_VTABLE_PATH_MARKED (b))
7706 continue;
7707 BINFO_VTABLE_PATH_MARKED (b) = 1;
7708
7709 /* Figure out where we can find this vbase offset. */
7710 delta = size_binop (MULT_EXPR,
7711 vid->index,
7712 convert (ssizetype,
7713 TYPE_SIZE_UNIT (vtable_entry_type)));
7714 if (vid->primary_vtbl_p)
7715 BINFO_VPTR_FIELD (b) = delta;
7716
7717 if (binfo != TYPE_BINFO (t))
7718 /* The vbase offset had better be the same. */
7719 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7720
7721 /* The next vbase will come at a more negative offset. */
7722 vid->index = size_binop (MINUS_EXPR, vid->index,
7723 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7724
7725 /* The initializer is the delta from BINFO to this virtual base.
7726 The vbase offsets go in reverse inheritance-graph order, and
7727 we are walking in inheritance graph order so these end up in
7728 the right order. */
7729 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7730
7731 *vid->last_init
7732 = build_tree_list (NULL_TREE,
7733 fold_build1 (NOP_EXPR,
7734 vtable_entry_type,
7735 delta));
7736 vid->last_init = &TREE_CHAIN (*vid->last_init);
7737 }
7738 }
7739
7740 /* Adds the initializers for the vcall offset entries in the vtable
7741 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7742 to VID->INITS. */
7743
7744 static void
7745 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7746 {
7747 /* We only need these entries if this base is a virtual base. We
7748 compute the indices -- but do not add to the vtable -- when
7749 building the main vtable for a class. */
7750 if (binfo == TYPE_BINFO (vid->derived)
7751 || (BINFO_VIRTUAL_P (binfo)
7752 /* If BINFO is RTTI_BINFO, then (since BINFO does not
7753 correspond to VID->DERIVED), we are building a primary
7754 construction virtual table. Since this is a primary
7755 virtual table, we do not need the vcall offsets for
7756 BINFO. */
7757 && binfo != vid->rtti_binfo))
7758 {
7759 /* We need a vcall offset for each of the virtual functions in this
7760 vtable. For example:
7761
7762 class A { virtual void f (); };
7763 class B1 : virtual public A { virtual void f (); };
7764 class B2 : virtual public A { virtual void f (); };
7765 class C: public B1, public B2 { virtual void f (); };
7766
7767 A C object has a primary base of B1, which has a primary base of A. A
7768 C also has a secondary base of B2, which no longer has a primary base
7769 of A. So the B2-in-C construction vtable needs a secondary vtable for
7770 A, which will adjust the A* to a B2* to call f. We have no way of
7771 knowing what (or even whether) this offset will be when we define B2,
7772 so we store this "vcall offset" in the A sub-vtable and look it up in
7773 a "virtual thunk" for B2::f.
7774
7775 We need entries for all the functions in our primary vtable and
7776 in our non-virtual bases' secondary vtables. */
7777 vid->vbase = binfo;
7778 /* If we are just computing the vcall indices -- but do not need
7779 the actual entries -- not that. */
7780 if (!BINFO_VIRTUAL_P (binfo))
7781 vid->generate_vcall_entries = false;
7782 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7783 add_vcall_offset_vtbl_entries_r (binfo, vid);
7784 }
7785 }
7786
7787 /* Build vcall offsets, starting with those for BINFO. */
7788
7789 static void
7790 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7791 {
7792 int i;
7793 tree primary_binfo;
7794 tree base_binfo;
7795
7796 /* Don't walk into virtual bases -- except, of course, for the
7797 virtual base for which we are building vcall offsets. Any
7798 primary virtual base will have already had its offsets generated
7799 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7800 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7801 return;
7802
7803 /* If BINFO has a primary base, process it first. */
7804 primary_binfo = get_primary_binfo (binfo);
7805 if (primary_binfo)
7806 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7807
7808 /* Add BINFO itself to the list. */
7809 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7810
7811 /* Scan the non-primary bases of BINFO. */
7812 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7813 if (base_binfo != primary_binfo)
7814 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7815 }
7816
7817 /* Called from build_vcall_offset_vtbl_entries_r. */
7818
7819 static void
7820 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7821 {
7822 /* Make entries for the rest of the virtuals. */
7823 if (abi_version_at_least (2))
7824 {
7825 tree orig_fn;
7826
7827 /* The ABI requires that the methods be processed in declaration
7828 order. G++ 3.2 used the order in the vtable. */
7829 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7830 orig_fn;
7831 orig_fn = TREE_CHAIN (orig_fn))
7832 if (DECL_VINDEX (orig_fn))
7833 add_vcall_offset (orig_fn, binfo, vid);
7834 }
7835 else
7836 {
7837 tree derived_virtuals;
7838 tree base_virtuals;
7839 tree orig_virtuals;
7840 /* If BINFO is a primary base, the most derived class which has
7841 BINFO as a primary base; otherwise, just BINFO. */
7842 tree non_primary_binfo;
7843
7844 /* We might be a primary base class. Go up the inheritance hierarchy
7845 until we find the most derived class of which we are a primary base:
7846 it is the BINFO_VIRTUALS there that we need to consider. */
7847 non_primary_binfo = binfo;
7848 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7849 {
7850 tree b;
7851
7852 /* If we have reached a virtual base, then it must be vid->vbase,
7853 because we ignore other virtual bases in
7854 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7855 base (possibly multi-level) of vid->binfo, or we wouldn't
7856 have called build_vcall_and_vbase_vtbl_entries for it. But it
7857 might be a lost primary, so just skip down to vid->binfo. */
7858 if (BINFO_VIRTUAL_P (non_primary_binfo))
7859 {
7860 gcc_assert (non_primary_binfo == vid->vbase);
7861 non_primary_binfo = vid->binfo;
7862 break;
7863 }
7864
7865 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7866 if (get_primary_binfo (b) != non_primary_binfo)
7867 break;
7868 non_primary_binfo = b;
7869 }
7870
7871 if (vid->ctor_vtbl_p)
7872 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7873 where rtti_binfo is the most derived type. */
7874 non_primary_binfo
7875 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7876
7877 for (base_virtuals = BINFO_VIRTUALS (binfo),
7878 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7879 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7880 base_virtuals;
7881 base_virtuals = TREE_CHAIN (base_virtuals),
7882 derived_virtuals = TREE_CHAIN (derived_virtuals),
7883 orig_virtuals = TREE_CHAIN (orig_virtuals))
7884 {
7885 tree orig_fn;
7886
7887 /* Find the declaration that originally caused this function to
7888 be present in BINFO_TYPE (binfo). */
7889 orig_fn = BV_FN (orig_virtuals);
7890
7891 /* When processing BINFO, we only want to generate vcall slots for
7892 function slots introduced in BINFO. So don't try to generate
7893 one if the function isn't even defined in BINFO. */
7894 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7895 continue;
7896
7897 add_vcall_offset (orig_fn, binfo, vid);
7898 }
7899 }
7900 }
7901
7902 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7903
7904 static void
7905 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7906 {
7907 size_t i;
7908 tree vcall_offset;
7909 tree derived_entry;
7910
7911 /* If there is already an entry for a function with the same
7912 signature as FN, then we do not need a second vcall offset.
7913 Check the list of functions already present in the derived
7914 class vtable. */
7915 for (i = 0; VEC_iterate (tree, vid->fns, i, derived_entry); ++i)
7916 {
7917 if (same_signature_p (derived_entry, orig_fn)
7918 /* We only use one vcall offset for virtual destructors,
7919 even though there are two virtual table entries. */
7920 || (DECL_DESTRUCTOR_P (derived_entry)
7921 && DECL_DESTRUCTOR_P (orig_fn)))
7922 return;
7923 }
7924
7925 /* If we are building these vcall offsets as part of building
7926 the vtable for the most derived class, remember the vcall
7927 offset. */
7928 if (vid->binfo == TYPE_BINFO (vid->derived))
7929 {
7930 tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
7931 CLASSTYPE_VCALL_INDICES (vid->derived),
7932 NULL);
7933 elt->purpose = orig_fn;
7934 elt->value = vid->index;
7935 }
7936
7937 /* The next vcall offset will be found at a more negative
7938 offset. */
7939 vid->index = size_binop (MINUS_EXPR, vid->index,
7940 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7941
7942 /* Keep track of this function. */
7943 VEC_safe_push (tree, gc, vid->fns, orig_fn);
7944
7945 if (vid->generate_vcall_entries)
7946 {
7947 tree base;
7948 tree fn;
7949
7950 /* Find the overriding function. */
7951 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7952 if (fn == error_mark_node)
7953 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7954 integer_zero_node);
7955 else
7956 {
7957 base = TREE_VALUE (fn);
7958
7959 /* The vbase we're working on is a primary base of
7960 vid->binfo. But it might be a lost primary, so its
7961 BINFO_OFFSET might be wrong, so we just use the
7962 BINFO_OFFSET from vid->binfo. */
7963 vcall_offset = size_diffop (BINFO_OFFSET (base),
7964 BINFO_OFFSET (vid->binfo));
7965 vcall_offset = fold_build1 (NOP_EXPR, vtable_entry_type,
7966 vcall_offset);
7967 }
7968 /* Add the initializer to the vtable. */
7969 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7970 vid->last_init = &TREE_CHAIN (*vid->last_init);
7971 }
7972 }
7973
7974 /* Return vtbl initializers for the RTTI entries corresponding to the
7975 BINFO's vtable. The RTTI entries should indicate the object given
7976 by VID->rtti_binfo. */
7977
7978 static void
7979 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7980 {
7981 tree b;
7982 tree t;
7983 tree basetype;
7984 tree offset;
7985 tree decl;
7986 tree init;
7987
7988 basetype = BINFO_TYPE (binfo);
7989 t = BINFO_TYPE (vid->rtti_binfo);
7990
7991 /* To find the complete object, we will first convert to our most
7992 primary base, and then add the offset in the vtbl to that value. */
7993 b = binfo;
7994 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
7995 && !BINFO_LOST_PRIMARY_P (b))
7996 {
7997 tree primary_base;
7998
7999 primary_base = get_primary_binfo (b);
8000 gcc_assert (BINFO_PRIMARY_P (primary_base)
8001 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
8002 b = primary_base;
8003 }
8004 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
8005
8006 /* The second entry is the address of the typeinfo object. */
8007 if (flag_rtti)
8008 decl = build_address (get_tinfo_decl (t));
8009 else
8010 decl = integer_zero_node;
8011
8012 /* Convert the declaration to a type that can be stored in the
8013 vtable. */
8014 init = build_nop (vfunc_ptr_type_node, decl);
8015 *vid->last_init = build_tree_list (NULL_TREE, init);
8016 vid->last_init = &TREE_CHAIN (*vid->last_init);
8017
8018 /* Add the offset-to-top entry. It comes earlier in the vtable than
8019 the typeinfo entry. Convert the offset to look like a
8020 function pointer, so that we can put it in the vtable. */
8021 init = build_nop (vfunc_ptr_type_node, offset);
8022 *vid->last_init = build_tree_list (NULL_TREE, init);
8023 vid->last_init = &TREE_CHAIN (*vid->last_init);
8024 }
8025
8026 /* Fold a OBJ_TYPE_REF expression to the address of a function.
8027 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
8028
8029 tree
8030 cp_fold_obj_type_ref (tree ref, tree known_type)
8031 {
8032 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
8033 HOST_WIDE_INT i = 0;
8034 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
8035 tree fndecl;
8036
8037 while (i != index)
8038 {
8039 i += (TARGET_VTABLE_USES_DESCRIPTORS
8040 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
8041 v = TREE_CHAIN (v);
8042 }
8043
8044 fndecl = BV_FN (v);
8045
8046 #ifdef ENABLE_CHECKING
8047 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
8048 DECL_VINDEX (fndecl)));
8049 #endif
8050
8051 cgraph_node (fndecl)->local.vtable_method = true;
8052
8053 return build_address (fndecl);
8054 }
8055
8056 #include "gt-cp-class.h"