cp-tree.h (NAMESPACE_ABI_TAG): New.
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "stringpool.h"
30 #include "stor-layout.h"
31 #include "attribs.h"
32 #include "hash-table.h"
33 #include "cp-tree.h"
34 #include "flags.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38 #include "hash-map.h"
39 #include "is-a.h"
40 #include "plugin-api.h"
41 #include "vec.h"
42 #include "hashtab.h"
43 #include "hash-set.h"
44 #include "machmode.h"
45 #include "hard-reg-set.h"
46 #include "input.h"
47 #include "function.h"
48 #include "ipa-ref.h"
49 #include "cgraph.h"
50 #include "dumpfile.h"
51 #include "splay-tree.h"
52 #include "gimplify.h"
53 #include "wide-int.h"
54
55 /* The number of nested classes being processed. If we are not in the
56 scope of any class, this is zero. */
57
58 int current_class_depth;
59
60 /* In order to deal with nested classes, we keep a stack of classes.
61 The topmost entry is the innermost class, and is the entry at index
62 CURRENT_CLASS_DEPTH */
63
64 typedef struct class_stack_node {
65 /* The name of the class. */
66 tree name;
67
68 /* The _TYPE node for the class. */
69 tree type;
70
71 /* The access specifier pending for new declarations in the scope of
72 this class. */
73 tree access;
74
75 /* If were defining TYPE, the names used in this class. */
76 splay_tree names_used;
77
78 /* Nonzero if this class is no longer open, because of a call to
79 push_to_top_level. */
80 size_t hidden;
81 }* class_stack_node_t;
82
83 typedef struct vtbl_init_data_s
84 {
85 /* The base for which we're building initializers. */
86 tree binfo;
87 /* The type of the most-derived type. */
88 tree derived;
89 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
90 unless ctor_vtbl_p is true. */
91 tree rtti_binfo;
92 /* The negative-index vtable initializers built up so far. These
93 are in order from least negative index to most negative index. */
94 vec<constructor_elt, va_gc> *inits;
95 /* The binfo for the virtual base for which we're building
96 vcall offset initializers. */
97 tree vbase;
98 /* The functions in vbase for which we have already provided vcall
99 offsets. */
100 vec<tree, va_gc> *fns;
101 /* The vtable index of the next vcall or vbase offset. */
102 tree index;
103 /* Nonzero if we are building the initializer for the primary
104 vtable. */
105 int primary_vtbl_p;
106 /* Nonzero if we are building the initializer for a construction
107 vtable. */
108 int ctor_vtbl_p;
109 /* True when adding vcall offset entries to the vtable. False when
110 merely computing the indices. */
111 bool generate_vcall_entries;
112 } vtbl_init_data;
113
114 /* The type of a function passed to walk_subobject_offsets. */
115 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
116
117 /* The stack itself. This is a dynamically resized array. The
118 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
119 static int current_class_stack_size;
120 static class_stack_node_t current_class_stack;
121
122 /* The size of the largest empty class seen in this translation unit. */
123 static GTY (()) tree sizeof_biggest_empty_class;
124
125 /* An array of all local classes present in this translation unit, in
126 declaration order. */
127 vec<tree, va_gc> *local_classes;
128
129 static tree get_vfield_name (tree);
130 static void finish_struct_anon (tree);
131 static tree get_vtable_name (tree);
132 static tree get_basefndecls (tree, tree);
133 static int build_primary_vtable (tree, tree);
134 static int build_secondary_vtable (tree);
135 static void finish_vtbls (tree);
136 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
137 static void finish_struct_bits (tree);
138 static int alter_access (tree, tree, tree);
139 static void handle_using_decl (tree, tree);
140 static tree dfs_modify_vtables (tree, void *);
141 static tree modify_all_vtables (tree, tree);
142 static void determine_primary_bases (tree);
143 static void finish_struct_methods (tree);
144 static void maybe_warn_about_overly_private_class (tree);
145 static int method_name_cmp (const void *, const void *);
146 static int resort_method_name_cmp (const void *, const void *);
147 static void add_implicitly_declared_members (tree, tree*, int, int);
148 static tree fixed_type_or_null (tree, int *, int *);
149 static tree build_simple_base_path (tree expr, tree binfo);
150 static tree build_vtbl_ref_1 (tree, tree);
151 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
152 vec<constructor_elt, va_gc> **);
153 static int count_fields (tree);
154 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
155 static void insert_into_classtype_sorted_fields (tree, tree, int);
156 static bool check_bitfield_decl (tree);
157 static void check_field_decl (tree, tree, int *, int *, int *);
158 static void check_field_decls (tree, tree *, int *, int *);
159 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
160 static void build_base_fields (record_layout_info, splay_tree, tree *);
161 static void check_methods (tree);
162 static void remove_zero_width_bit_fields (tree);
163 static bool accessible_nvdtor_p (tree);
164 static void check_bases (tree, int *, int *);
165 static void check_bases_and_members (tree);
166 static tree create_vtable_ptr (tree, tree *);
167 static void include_empty_classes (record_layout_info);
168 static void layout_class_type (tree, tree *);
169 static void propagate_binfo_offsets (tree, tree);
170 static void layout_virtual_bases (record_layout_info, splay_tree);
171 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
172 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
173 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
174 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
175 static void add_vcall_offset (tree, tree, vtbl_init_data *);
176 static void layout_vtable_decl (tree, int);
177 static tree dfs_find_final_overrider_pre (tree, void *);
178 static tree dfs_find_final_overrider_post (tree, void *);
179 static tree find_final_overrider (tree, tree, tree);
180 static int make_new_vtable (tree, tree);
181 static tree get_primary_binfo (tree);
182 static int maybe_indent_hierarchy (FILE *, int, int);
183 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
184 static void dump_class_hierarchy (tree);
185 static void dump_class_hierarchy_1 (FILE *, int, tree);
186 static void dump_array (FILE *, tree);
187 static void dump_vtable (tree, tree, tree);
188 static void dump_vtt (tree, tree);
189 static void dump_thunk (FILE *, int, tree);
190 static tree build_vtable (tree, tree, tree);
191 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
192 static void layout_nonempty_base_or_field (record_layout_info,
193 tree, tree, splay_tree);
194 static tree end_of_class (tree, int);
195 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
196 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
197 vec<constructor_elt, va_gc> **);
198 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
199 vec<constructor_elt, va_gc> **);
200 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
201 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
202 static void clone_constructors_and_destructors (tree);
203 static tree build_clone (tree, tree);
204 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
205 static void build_ctor_vtbl_group (tree, tree);
206 static void build_vtt (tree);
207 static tree binfo_ctor_vtable (tree);
208 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
209 tree *);
210 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
211 static tree dfs_fixup_binfo_vtbls (tree, void *);
212 static int record_subobject_offset (tree, tree, splay_tree);
213 static int check_subobject_offset (tree, tree, splay_tree);
214 static int walk_subobject_offsets (tree, subobject_offset_fn,
215 tree, splay_tree, tree, int);
216 static void record_subobject_offsets (tree, tree, splay_tree, bool);
217 static int layout_conflict_p (tree, tree, splay_tree, int);
218 static int splay_tree_compare_integer_csts (splay_tree_key k1,
219 splay_tree_key k2);
220 static void warn_about_ambiguous_bases (tree);
221 static bool type_requires_array_cookie (tree);
222 static bool base_derived_from (tree, tree);
223 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
224 static tree end_of_base (tree);
225 static tree get_vcall_index (tree, tree);
226
227 /* Variables shared between class.c and call.c. */
228
229 int n_vtables = 0;
230 int n_vtable_entries = 0;
231 int n_vtable_searches = 0;
232 int n_vtable_elems = 0;
233 int n_convert_harshness = 0;
234 int n_compute_conversion_costs = 0;
235 int n_inner_fields_searched = 0;
236
237 /* Convert to or from a base subobject. EXPR is an expression of type
238 `A' or `A*', an expression of type `B' or `B*' is returned. To
239 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
240 the B base instance within A. To convert base A to derived B, CODE
241 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
242 In this latter case, A must not be a morally virtual base of B.
243 NONNULL is true if EXPR is known to be non-NULL (this is only
244 needed when EXPR is of pointer type). CV qualifiers are preserved
245 from EXPR. */
246
247 tree
248 build_base_path (enum tree_code code,
249 tree expr,
250 tree binfo,
251 int nonnull,
252 tsubst_flags_t complain)
253 {
254 tree v_binfo = NULL_TREE;
255 tree d_binfo = NULL_TREE;
256 tree probe;
257 tree offset;
258 tree target_type;
259 tree null_test = NULL;
260 tree ptr_target_type;
261 int fixed_type_p;
262 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
263 bool has_empty = false;
264 bool virtual_access;
265 bool rvalue = false;
266
267 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
268 return error_mark_node;
269
270 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
271 {
272 d_binfo = probe;
273 if (is_empty_class (BINFO_TYPE (probe)))
274 has_empty = true;
275 if (!v_binfo && BINFO_VIRTUAL_P (probe))
276 v_binfo = probe;
277 }
278
279 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
280 if (want_pointer)
281 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
282
283 if (code == PLUS_EXPR
284 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
285 {
286 /* This can happen when adjust_result_of_qualified_name_lookup can't
287 find a unique base binfo in a call to a member function. We
288 couldn't give the diagnostic then since we might have been calling
289 a static member function, so we do it now. */
290 if (complain & tf_error)
291 {
292 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
293 ba_unique, NULL, complain);
294 gcc_assert (base == error_mark_node);
295 }
296 return error_mark_node;
297 }
298
299 gcc_assert ((code == MINUS_EXPR
300 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
301 || code == PLUS_EXPR);
302
303 if (binfo == d_binfo)
304 /* Nothing to do. */
305 return expr;
306
307 if (code == MINUS_EXPR && v_binfo)
308 {
309 if (complain & tf_error)
310 {
311 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo)))
312 {
313 if (want_pointer)
314 error ("cannot convert from pointer to base class %qT to "
315 "pointer to derived class %qT because the base is "
316 "virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
317 else
318 error ("cannot convert from base class %qT to derived "
319 "class %qT because the base is virtual",
320 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
321 }
322 else
323 {
324 if (want_pointer)
325 error ("cannot convert from pointer to base class %qT to "
326 "pointer to derived class %qT via virtual base %qT",
327 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
328 BINFO_TYPE (v_binfo));
329 else
330 error ("cannot convert from base class %qT to derived "
331 "class %qT via virtual base %qT", BINFO_TYPE (binfo),
332 BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
333 }
334 }
335 return error_mark_node;
336 }
337
338 if (!want_pointer)
339 {
340 rvalue = !real_lvalue_p (expr);
341 /* This must happen before the call to save_expr. */
342 expr = cp_build_addr_expr (expr, complain);
343 }
344 else
345 expr = mark_rvalue_use (expr);
346
347 offset = BINFO_OFFSET (binfo);
348 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
349 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
350 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
351 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
352 expression returned matches the input. */
353 target_type = cp_build_qualified_type
354 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
355 ptr_target_type = build_pointer_type (target_type);
356
357 /* Do we need to look in the vtable for the real offset? */
358 virtual_access = (v_binfo && fixed_type_p <= 0);
359
360 /* Don't bother with the calculations inside sizeof; they'll ICE if the
361 source type is incomplete and the pointer value doesn't matter. In a
362 template (even in instantiate_non_dependent_expr), we don't have vtables
363 set up properly yet, and the value doesn't matter there either; we're
364 just interested in the result of overload resolution. */
365 if (cp_unevaluated_operand != 0
366 || in_template_function ())
367 {
368 expr = build_nop (ptr_target_type, expr);
369 goto indout;
370 }
371
372 /* If we're in an NSDMI, we don't have the full constructor context yet
373 that we need for converting to a virtual base, so just build a stub
374 CONVERT_EXPR and expand it later in bot_replace. */
375 if (virtual_access && fixed_type_p < 0
376 && current_scope () != current_function_decl)
377 {
378 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
379 CONVERT_EXPR_VBASE_PATH (expr) = true;
380 goto indout;
381 }
382
383 /* Do we need to check for a null pointer? */
384 if (want_pointer && !nonnull)
385 {
386 /* If we know the conversion will not actually change the value
387 of EXPR, then we can avoid testing the expression for NULL.
388 We have to avoid generating a COMPONENT_REF for a base class
389 field, because other parts of the compiler know that such
390 expressions are always non-NULL. */
391 if (!virtual_access && integer_zerop (offset))
392 return build_nop (ptr_target_type, expr);
393 null_test = error_mark_node;
394 }
395
396 /* Protect against multiple evaluation if necessary. */
397 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
398 expr = save_expr (expr);
399
400 /* Now that we've saved expr, build the real null test. */
401 if (null_test)
402 {
403 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
404 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
405 expr, zero);
406 }
407
408 /* If this is a simple base reference, express it as a COMPONENT_REF. */
409 if (code == PLUS_EXPR && !virtual_access
410 /* We don't build base fields for empty bases, and they aren't very
411 interesting to the optimizers anyway. */
412 && !has_empty)
413 {
414 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
415 expr = build_simple_base_path (expr, binfo);
416 if (rvalue)
417 expr = move (expr);
418 if (want_pointer)
419 expr = build_address (expr);
420 target_type = TREE_TYPE (expr);
421 goto out;
422 }
423
424 if (virtual_access)
425 {
426 /* Going via virtual base V_BINFO. We need the static offset
427 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
428 V_BINFO. That offset is an entry in D_BINFO's vtable. */
429 tree v_offset;
430
431 if (fixed_type_p < 0 && in_base_initializer)
432 {
433 /* In a base member initializer, we cannot rely on the
434 vtable being set up. We have to indirect via the
435 vtt_parm. */
436 tree t;
437
438 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
439 t = build_pointer_type (t);
440 v_offset = convert (t, current_vtt_parm);
441 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
442 }
443 else
444 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
445 complain),
446 TREE_TYPE (TREE_TYPE (expr)));
447
448 if (v_offset == error_mark_node)
449 return error_mark_node;
450
451 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
452 v_offset = build1 (NOP_EXPR,
453 build_pointer_type (ptrdiff_type_node),
454 v_offset);
455 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
456 TREE_CONSTANT (v_offset) = 1;
457
458 offset = convert_to_integer (ptrdiff_type_node,
459 size_diffop_loc (input_location, offset,
460 BINFO_OFFSET (v_binfo)));
461
462 if (!integer_zerop (offset))
463 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
464
465 if (fixed_type_p < 0)
466 /* Negative fixed_type_p means this is a constructor or destructor;
467 virtual base layout is fixed in in-charge [cd]tors, but not in
468 base [cd]tors. */
469 offset = build3 (COND_EXPR, ptrdiff_type_node,
470 build2 (EQ_EXPR, boolean_type_node,
471 current_in_charge_parm, integer_zero_node),
472 v_offset,
473 convert_to_integer (ptrdiff_type_node,
474 BINFO_OFFSET (binfo)));
475 else
476 offset = v_offset;
477 }
478
479 if (want_pointer)
480 target_type = ptr_target_type;
481
482 expr = build1 (NOP_EXPR, ptr_target_type, expr);
483
484 if (!integer_zerop (offset))
485 {
486 offset = fold_convert (sizetype, offset);
487 if (code == MINUS_EXPR)
488 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
489 expr = fold_build_pointer_plus (expr, offset);
490 }
491 else
492 null_test = NULL;
493
494 indout:
495 if (!want_pointer)
496 {
497 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
498 if (rvalue)
499 expr = move (expr);
500 }
501
502 out:
503 if (null_test)
504 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
505 build_zero_cst (target_type));
506
507 return expr;
508 }
509
510 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
511 Perform a derived-to-base conversion by recursively building up a
512 sequence of COMPONENT_REFs to the appropriate base fields. */
513
514 static tree
515 build_simple_base_path (tree expr, tree binfo)
516 {
517 tree type = BINFO_TYPE (binfo);
518 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
519 tree field;
520
521 if (d_binfo == NULL_TREE)
522 {
523 tree temp;
524
525 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
526
527 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
528 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
529 an lvalue in the front end; only _DECLs and _REFs are lvalues
530 in the back end. */
531 temp = unary_complex_lvalue (ADDR_EXPR, expr);
532 if (temp)
533 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
534
535 return expr;
536 }
537
538 /* Recurse. */
539 expr = build_simple_base_path (expr, d_binfo);
540
541 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
542 field; field = DECL_CHAIN (field))
543 /* Is this the base field created by build_base_field? */
544 if (TREE_CODE (field) == FIELD_DECL
545 && DECL_FIELD_IS_BASE (field)
546 && TREE_TYPE (field) == type
547 /* If we're looking for a field in the most-derived class,
548 also check the field offset; we can have two base fields
549 of the same type if one is an indirect virtual base and one
550 is a direct non-virtual base. */
551 && (BINFO_INHERITANCE_CHAIN (d_binfo)
552 || tree_int_cst_equal (byte_position (field),
553 BINFO_OFFSET (binfo))))
554 {
555 /* We don't use build_class_member_access_expr here, as that
556 has unnecessary checks, and more importantly results in
557 recursive calls to dfs_walk_once. */
558 int type_quals = cp_type_quals (TREE_TYPE (expr));
559
560 expr = build3 (COMPONENT_REF,
561 cp_build_qualified_type (type, type_quals),
562 expr, field, NULL_TREE);
563 expr = fold_if_not_in_template (expr);
564
565 /* Mark the expression const or volatile, as appropriate.
566 Even though we've dealt with the type above, we still have
567 to mark the expression itself. */
568 if (type_quals & TYPE_QUAL_CONST)
569 TREE_READONLY (expr) = 1;
570 if (type_quals & TYPE_QUAL_VOLATILE)
571 TREE_THIS_VOLATILE (expr) = 1;
572
573 return expr;
574 }
575
576 /* Didn't find the base field?!? */
577 gcc_unreachable ();
578 }
579
580 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
581 type is a class type or a pointer to a class type. In the former
582 case, TYPE is also a class type; in the latter it is another
583 pointer type. If CHECK_ACCESS is true, an error message is emitted
584 if TYPE is inaccessible. If OBJECT has pointer type, the value is
585 assumed to be non-NULL. */
586
587 tree
588 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
589 tsubst_flags_t complain)
590 {
591 tree binfo;
592 tree object_type;
593
594 if (TYPE_PTR_P (TREE_TYPE (object)))
595 {
596 object_type = TREE_TYPE (TREE_TYPE (object));
597 type = TREE_TYPE (type);
598 }
599 else
600 object_type = TREE_TYPE (object);
601
602 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
603 NULL, complain);
604 if (!binfo || binfo == error_mark_node)
605 return error_mark_node;
606
607 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
608 }
609
610 /* EXPR is an expression with unqualified class type. BASE is a base
611 binfo of that class type. Returns EXPR, converted to the BASE
612 type. This function assumes that EXPR is the most derived class;
613 therefore virtual bases can be found at their static offsets. */
614
615 tree
616 convert_to_base_statically (tree expr, tree base)
617 {
618 tree expr_type;
619
620 expr_type = TREE_TYPE (expr);
621 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
622 {
623 /* If this is a non-empty base, use a COMPONENT_REF. */
624 if (!is_empty_class (BINFO_TYPE (base)))
625 return build_simple_base_path (expr, base);
626
627 /* We use fold_build2 and fold_convert below to simplify the trees
628 provided to the optimizers. It is not safe to call these functions
629 when processing a template because they do not handle C++-specific
630 trees. */
631 gcc_assert (!processing_template_decl);
632 expr = cp_build_addr_expr (expr, tf_warning_or_error);
633 if (!integer_zerop (BINFO_OFFSET (base)))
634 expr = fold_build_pointer_plus_loc (input_location,
635 expr, BINFO_OFFSET (base));
636 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
637 expr = build_fold_indirect_ref_loc (input_location, expr);
638 }
639
640 return expr;
641 }
642
643 \f
644 tree
645 build_vfield_ref (tree datum, tree type)
646 {
647 tree vfield, vcontext;
648
649 if (datum == error_mark_node
650 /* Can happen in case of duplicate base types (c++/59082). */
651 || !TYPE_VFIELD (type))
652 return error_mark_node;
653
654 /* First, convert to the requested type. */
655 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
656 datum = convert_to_base (datum, type, /*check_access=*/false,
657 /*nonnull=*/true, tf_warning_or_error);
658
659 /* Second, the requested type may not be the owner of its own vptr.
660 If not, convert to the base class that owns it. We cannot use
661 convert_to_base here, because VCONTEXT may appear more than once
662 in the inheritance hierarchy of TYPE, and thus direct conversion
663 between the types may be ambiguous. Following the path back up
664 one step at a time via primary bases avoids the problem. */
665 vfield = TYPE_VFIELD (type);
666 vcontext = DECL_CONTEXT (vfield);
667 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
668 {
669 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
670 type = TREE_TYPE (datum);
671 }
672
673 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
674 }
675
676 /* Given an object INSTANCE, return an expression which yields the
677 vtable element corresponding to INDEX. There are many special
678 cases for INSTANCE which we take care of here, mainly to avoid
679 creating extra tree nodes when we don't have to. */
680
681 static tree
682 build_vtbl_ref_1 (tree instance, tree idx)
683 {
684 tree aref;
685 tree vtbl = NULL_TREE;
686
687 /* Try to figure out what a reference refers to, and
688 access its virtual function table directly. */
689
690 int cdtorp = 0;
691 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
692
693 tree basetype = non_reference (TREE_TYPE (instance));
694
695 if (fixed_type && !cdtorp)
696 {
697 tree binfo = lookup_base (fixed_type, basetype,
698 ba_unique, NULL, tf_none);
699 if (binfo && binfo != error_mark_node)
700 vtbl = unshare_expr (BINFO_VTABLE (binfo));
701 }
702
703 if (!vtbl)
704 vtbl = build_vfield_ref (instance, basetype);
705
706 aref = build_array_ref (input_location, vtbl, idx);
707 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
708
709 return aref;
710 }
711
712 tree
713 build_vtbl_ref (tree instance, tree idx)
714 {
715 tree aref = build_vtbl_ref_1 (instance, idx);
716
717 return aref;
718 }
719
720 /* Given a stable object pointer INSTANCE_PTR, return an expression which
721 yields a function pointer corresponding to vtable element INDEX. */
722
723 tree
724 build_vfn_ref (tree instance_ptr, tree idx)
725 {
726 tree aref;
727
728 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
729 tf_warning_or_error),
730 idx);
731
732 /* When using function descriptors, the address of the
733 vtable entry is treated as a function pointer. */
734 if (TARGET_VTABLE_USES_DESCRIPTORS)
735 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
736 cp_build_addr_expr (aref, tf_warning_or_error));
737
738 /* Remember this as a method reference, for later devirtualization. */
739 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
740
741 return aref;
742 }
743
744 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
745 for the given TYPE. */
746
747 static tree
748 get_vtable_name (tree type)
749 {
750 return mangle_vtbl_for_type (type);
751 }
752
753 /* DECL is an entity associated with TYPE, like a virtual table or an
754 implicitly generated constructor. Determine whether or not DECL
755 should have external or internal linkage at the object file
756 level. This routine does not deal with COMDAT linkage and other
757 similar complexities; it simply sets TREE_PUBLIC if it possible for
758 entities in other translation units to contain copies of DECL, in
759 the abstract. */
760
761 void
762 set_linkage_according_to_type (tree /*type*/, tree decl)
763 {
764 TREE_PUBLIC (decl) = 1;
765 determine_visibility (decl);
766 }
767
768 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
769 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
770 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
771
772 static tree
773 build_vtable (tree class_type, tree name, tree vtable_type)
774 {
775 tree decl;
776
777 decl = build_lang_decl (VAR_DECL, name, vtable_type);
778 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
779 now to avoid confusion in mangle_decl. */
780 SET_DECL_ASSEMBLER_NAME (decl, name);
781 DECL_CONTEXT (decl) = class_type;
782 DECL_ARTIFICIAL (decl) = 1;
783 TREE_STATIC (decl) = 1;
784 TREE_READONLY (decl) = 1;
785 DECL_VIRTUAL_P (decl) = 1;
786 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
787 DECL_USER_ALIGN (decl) = true;
788 DECL_VTABLE_OR_VTT_P (decl) = 1;
789 set_linkage_according_to_type (class_type, decl);
790 /* The vtable has not been defined -- yet. */
791 DECL_EXTERNAL (decl) = 1;
792 DECL_NOT_REALLY_EXTERN (decl) = 1;
793
794 /* Mark the VAR_DECL node representing the vtable itself as a
795 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
796 is rather important that such things be ignored because any
797 effort to actually generate DWARF for them will run into
798 trouble when/if we encounter code like:
799
800 #pragma interface
801 struct S { virtual void member (); };
802
803 because the artificial declaration of the vtable itself (as
804 manufactured by the g++ front end) will say that the vtable is
805 a static member of `S' but only *after* the debug output for
806 the definition of `S' has already been output. This causes
807 grief because the DWARF entry for the definition of the vtable
808 will try to refer back to an earlier *declaration* of the
809 vtable as a static member of `S' and there won't be one. We
810 might be able to arrange to have the "vtable static member"
811 attached to the member list for `S' before the debug info for
812 `S' get written (which would solve the problem) but that would
813 require more intrusive changes to the g++ front end. */
814 DECL_IGNORED_P (decl) = 1;
815
816 return decl;
817 }
818
819 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
820 or even complete. If this does not exist, create it. If COMPLETE is
821 nonzero, then complete the definition of it -- that will render it
822 impossible to actually build the vtable, but is useful to get at those
823 which are known to exist in the runtime. */
824
825 tree
826 get_vtable_decl (tree type, int complete)
827 {
828 tree decl;
829
830 if (CLASSTYPE_VTABLES (type))
831 return CLASSTYPE_VTABLES (type);
832
833 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
834 CLASSTYPE_VTABLES (type) = decl;
835
836 if (complete)
837 {
838 DECL_EXTERNAL (decl) = 1;
839 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
840 }
841
842 return decl;
843 }
844
845 /* Build the primary virtual function table for TYPE. If BINFO is
846 non-NULL, build the vtable starting with the initial approximation
847 that it is the same as the one which is the head of the association
848 list. Returns a nonzero value if a new vtable is actually
849 created. */
850
851 static int
852 build_primary_vtable (tree binfo, tree type)
853 {
854 tree decl;
855 tree virtuals;
856
857 decl = get_vtable_decl (type, /*complete=*/0);
858
859 if (binfo)
860 {
861 if (BINFO_NEW_VTABLE_MARKED (binfo))
862 /* We have already created a vtable for this base, so there's
863 no need to do it again. */
864 return 0;
865
866 virtuals = copy_list (BINFO_VIRTUALS (binfo));
867 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
868 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
869 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
870 }
871 else
872 {
873 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
874 virtuals = NULL_TREE;
875 }
876
877 if (GATHER_STATISTICS)
878 {
879 n_vtables += 1;
880 n_vtable_elems += list_length (virtuals);
881 }
882
883 /* Initialize the association list for this type, based
884 on our first approximation. */
885 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
886 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
887 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
888 return 1;
889 }
890
891 /* Give BINFO a new virtual function table which is initialized
892 with a skeleton-copy of its original initialization. The only
893 entry that changes is the `delta' entry, so we can really
894 share a lot of structure.
895
896 FOR_TYPE is the most derived type which caused this table to
897 be needed.
898
899 Returns nonzero if we haven't met BINFO before.
900
901 The order in which vtables are built (by calling this function) for
902 an object must remain the same, otherwise a binary incompatibility
903 can result. */
904
905 static int
906 build_secondary_vtable (tree binfo)
907 {
908 if (BINFO_NEW_VTABLE_MARKED (binfo))
909 /* We already created a vtable for this base. There's no need to
910 do it again. */
911 return 0;
912
913 /* Remember that we've created a vtable for this BINFO, so that we
914 don't try to do so again. */
915 SET_BINFO_NEW_VTABLE_MARKED (binfo);
916
917 /* Make fresh virtual list, so we can smash it later. */
918 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
919
920 /* Secondary vtables are laid out as part of the same structure as
921 the primary vtable. */
922 BINFO_VTABLE (binfo) = NULL_TREE;
923 return 1;
924 }
925
926 /* Create a new vtable for BINFO which is the hierarchy dominated by
927 T. Return nonzero if we actually created a new vtable. */
928
929 static int
930 make_new_vtable (tree t, tree binfo)
931 {
932 if (binfo == TYPE_BINFO (t))
933 /* In this case, it is *type*'s vtable we are modifying. We start
934 with the approximation that its vtable is that of the
935 immediate base class. */
936 return build_primary_vtable (binfo, t);
937 else
938 /* This is our very own copy of `basetype' to play with. Later,
939 we will fill in all the virtual functions that override the
940 virtual functions in these base classes which are not defined
941 by the current type. */
942 return build_secondary_vtable (binfo);
943 }
944
945 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
946 (which is in the hierarchy dominated by T) list FNDECL as its
947 BV_FN. DELTA is the required constant adjustment from the `this'
948 pointer where the vtable entry appears to the `this' required when
949 the function is actually called. */
950
951 static void
952 modify_vtable_entry (tree t,
953 tree binfo,
954 tree fndecl,
955 tree delta,
956 tree *virtuals)
957 {
958 tree v;
959
960 v = *virtuals;
961
962 if (fndecl != BV_FN (v)
963 || !tree_int_cst_equal (delta, BV_DELTA (v)))
964 {
965 /* We need a new vtable for BINFO. */
966 if (make_new_vtable (t, binfo))
967 {
968 /* If we really did make a new vtable, we also made a copy
969 of the BINFO_VIRTUALS list. Now, we have to find the
970 corresponding entry in that list. */
971 *virtuals = BINFO_VIRTUALS (binfo);
972 while (BV_FN (*virtuals) != BV_FN (v))
973 *virtuals = TREE_CHAIN (*virtuals);
974 v = *virtuals;
975 }
976
977 BV_DELTA (v) = delta;
978 BV_VCALL_INDEX (v) = NULL_TREE;
979 BV_FN (v) = fndecl;
980 }
981 }
982
983 \f
984 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
985 the USING_DECL naming METHOD. Returns true if the method could be
986 added to the method vec. */
987
988 bool
989 add_method (tree type, tree method, tree using_decl)
990 {
991 unsigned slot;
992 tree overload;
993 bool template_conv_p = false;
994 bool conv_p;
995 vec<tree, va_gc> *method_vec;
996 bool complete_p;
997 bool insert_p = false;
998 tree current_fns;
999 tree fns;
1000
1001 if (method == error_mark_node)
1002 return false;
1003
1004 complete_p = COMPLETE_TYPE_P (type);
1005 conv_p = DECL_CONV_FN_P (method);
1006 if (conv_p)
1007 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
1008 && DECL_TEMPLATE_CONV_FN_P (method));
1009
1010 method_vec = CLASSTYPE_METHOD_VEC (type);
1011 if (!method_vec)
1012 {
1013 /* Make a new method vector. We start with 8 entries. We must
1014 allocate at least two (for constructors and destructors), and
1015 we're going to end up with an assignment operator at some
1016 point as well. */
1017 vec_alloc (method_vec, 8);
1018 /* Create slots for constructors and destructors. */
1019 method_vec->quick_push (NULL_TREE);
1020 method_vec->quick_push (NULL_TREE);
1021 CLASSTYPE_METHOD_VEC (type) = method_vec;
1022 }
1023
1024 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
1025 grok_special_member_properties (method);
1026
1027 /* Constructors and destructors go in special slots. */
1028 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
1029 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
1030 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1031 {
1032 slot = CLASSTYPE_DESTRUCTOR_SLOT;
1033
1034 if (TYPE_FOR_JAVA (type))
1035 {
1036 if (!DECL_ARTIFICIAL (method))
1037 error ("Java class %qT cannot have a destructor", type);
1038 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1039 error ("Java class %qT cannot have an implicit non-trivial "
1040 "destructor",
1041 type);
1042 }
1043 }
1044 else
1045 {
1046 tree m;
1047
1048 insert_p = true;
1049 /* See if we already have an entry with this name. */
1050 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1051 vec_safe_iterate (method_vec, slot, &m);
1052 ++slot)
1053 {
1054 m = OVL_CURRENT (m);
1055 if (template_conv_p)
1056 {
1057 if (TREE_CODE (m) == TEMPLATE_DECL
1058 && DECL_TEMPLATE_CONV_FN_P (m))
1059 insert_p = false;
1060 break;
1061 }
1062 if (conv_p && !DECL_CONV_FN_P (m))
1063 break;
1064 if (DECL_NAME (m) == DECL_NAME (method))
1065 {
1066 insert_p = false;
1067 break;
1068 }
1069 if (complete_p
1070 && !DECL_CONV_FN_P (m)
1071 && DECL_NAME (m) > DECL_NAME (method))
1072 break;
1073 }
1074 }
1075 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1076
1077 /* Check to see if we've already got this method. */
1078 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1079 {
1080 tree fn = OVL_CURRENT (fns);
1081 tree fn_type;
1082 tree method_type;
1083 tree parms1;
1084 tree parms2;
1085
1086 if (TREE_CODE (fn) != TREE_CODE (method))
1087 continue;
1088
1089 /* [over.load] Member function declarations with the
1090 same name and the same parameter types cannot be
1091 overloaded if any of them is a static member
1092 function declaration.
1093
1094 [over.load] Member function declarations with the same name and
1095 the same parameter-type-list as well as member function template
1096 declarations with the same name, the same parameter-type-list, and
1097 the same template parameter lists cannot be overloaded if any of
1098 them, but not all, have a ref-qualifier.
1099
1100 [namespace.udecl] When a using-declaration brings names
1101 from a base class into a derived class scope, member
1102 functions in the derived class override and/or hide member
1103 functions with the same name and parameter types in a base
1104 class (rather than conflicting). */
1105 fn_type = TREE_TYPE (fn);
1106 method_type = TREE_TYPE (method);
1107 parms1 = TYPE_ARG_TYPES (fn_type);
1108 parms2 = TYPE_ARG_TYPES (method_type);
1109
1110 /* Compare the quals on the 'this' parm. Don't compare
1111 the whole types, as used functions are treated as
1112 coming from the using class in overload resolution. */
1113 if (! DECL_STATIC_FUNCTION_P (fn)
1114 && ! DECL_STATIC_FUNCTION_P (method)
1115 /* Either both or neither need to be ref-qualified for
1116 differing quals to allow overloading. */
1117 && (FUNCTION_REF_QUALIFIED (fn_type)
1118 == FUNCTION_REF_QUALIFIED (method_type))
1119 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1120 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1121 continue;
1122
1123 /* For templates, the return type and template parameters
1124 must be identical. */
1125 if (TREE_CODE (fn) == TEMPLATE_DECL
1126 && (!same_type_p (TREE_TYPE (fn_type),
1127 TREE_TYPE (method_type))
1128 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1129 DECL_TEMPLATE_PARMS (method))))
1130 continue;
1131
1132 if (! DECL_STATIC_FUNCTION_P (fn))
1133 parms1 = TREE_CHAIN (parms1);
1134 if (! DECL_STATIC_FUNCTION_P (method))
1135 parms2 = TREE_CHAIN (parms2);
1136
1137 if (compparms (parms1, parms2)
1138 && (!DECL_CONV_FN_P (fn)
1139 || same_type_p (TREE_TYPE (fn_type),
1140 TREE_TYPE (method_type))))
1141 {
1142 /* For function versions, their parms and types match
1143 but they are not duplicates. Record function versions
1144 as and when they are found. extern "C" functions are
1145 not treated as versions. */
1146 if (TREE_CODE (fn) == FUNCTION_DECL
1147 && TREE_CODE (method) == FUNCTION_DECL
1148 && !DECL_EXTERN_C_P (fn)
1149 && !DECL_EXTERN_C_P (method)
1150 && targetm.target_option.function_versions (fn, method))
1151 {
1152 /* Mark functions as versions if necessary. Modify the mangled
1153 decl name if necessary. */
1154 if (!DECL_FUNCTION_VERSIONED (fn))
1155 {
1156 DECL_FUNCTION_VERSIONED (fn) = 1;
1157 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1158 mangle_decl (fn);
1159 }
1160 if (!DECL_FUNCTION_VERSIONED (method))
1161 {
1162 DECL_FUNCTION_VERSIONED (method) = 1;
1163 if (DECL_ASSEMBLER_NAME_SET_P (method))
1164 mangle_decl (method);
1165 }
1166 cgraph_node::record_function_versions (fn, method);
1167 continue;
1168 }
1169 if (DECL_INHERITED_CTOR_BASE (method))
1170 {
1171 if (DECL_INHERITED_CTOR_BASE (fn))
1172 {
1173 error_at (DECL_SOURCE_LOCATION (method),
1174 "%q#D inherited from %qT", method,
1175 DECL_INHERITED_CTOR_BASE (method));
1176 error_at (DECL_SOURCE_LOCATION (fn),
1177 "conflicts with version inherited from %qT",
1178 DECL_INHERITED_CTOR_BASE (fn));
1179 }
1180 /* Otherwise defer to the other function. */
1181 return false;
1182 }
1183 if (using_decl)
1184 {
1185 if (DECL_CONTEXT (fn) == type)
1186 /* Defer to the local function. */
1187 return false;
1188 }
1189 else
1190 {
1191 error ("%q+#D cannot be overloaded", method);
1192 error ("with %q+#D", fn);
1193 }
1194
1195 /* We don't call duplicate_decls here to merge the
1196 declarations because that will confuse things if the
1197 methods have inline definitions. In particular, we
1198 will crash while processing the definitions. */
1199 return false;
1200 }
1201 }
1202
1203 /* A class should never have more than one destructor. */
1204 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1205 return false;
1206
1207 /* Add the new binding. */
1208 if (using_decl)
1209 {
1210 overload = ovl_cons (method, current_fns);
1211 OVL_USED (overload) = true;
1212 }
1213 else
1214 overload = build_overload (method, current_fns);
1215
1216 if (conv_p)
1217 TYPE_HAS_CONVERSION (type) = 1;
1218 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1219 push_class_level_binding (DECL_NAME (method), overload);
1220
1221 if (insert_p)
1222 {
1223 bool reallocated;
1224
1225 /* We only expect to add few methods in the COMPLETE_P case, so
1226 just make room for one more method in that case. */
1227 if (complete_p)
1228 reallocated = vec_safe_reserve_exact (method_vec, 1);
1229 else
1230 reallocated = vec_safe_reserve (method_vec, 1);
1231 if (reallocated)
1232 CLASSTYPE_METHOD_VEC (type) = method_vec;
1233 if (slot == method_vec->length ())
1234 method_vec->quick_push (overload);
1235 else
1236 method_vec->quick_insert (slot, overload);
1237 }
1238 else
1239 /* Replace the current slot. */
1240 (*method_vec)[slot] = overload;
1241 return true;
1242 }
1243
1244 /* Subroutines of finish_struct. */
1245
1246 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1247 legit, otherwise return 0. */
1248
1249 static int
1250 alter_access (tree t, tree fdecl, tree access)
1251 {
1252 tree elem;
1253
1254 if (!DECL_LANG_SPECIFIC (fdecl))
1255 retrofit_lang_decl (fdecl);
1256
1257 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1258
1259 elem = purpose_member (t, DECL_ACCESS (fdecl));
1260 if (elem)
1261 {
1262 if (TREE_VALUE (elem) != access)
1263 {
1264 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1265 error ("conflicting access specifications for method"
1266 " %q+D, ignored", TREE_TYPE (fdecl));
1267 else
1268 error ("conflicting access specifications for field %qE, ignored",
1269 DECL_NAME (fdecl));
1270 }
1271 else
1272 {
1273 /* They're changing the access to the same thing they changed
1274 it to before. That's OK. */
1275 ;
1276 }
1277 }
1278 else
1279 {
1280 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1281 tf_warning_or_error);
1282 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1283 return 1;
1284 }
1285 return 0;
1286 }
1287
1288 /* Process the USING_DECL, which is a member of T. */
1289
1290 static void
1291 handle_using_decl (tree using_decl, tree t)
1292 {
1293 tree decl = USING_DECL_DECLS (using_decl);
1294 tree name = DECL_NAME (using_decl);
1295 tree access
1296 = TREE_PRIVATE (using_decl) ? access_private_node
1297 : TREE_PROTECTED (using_decl) ? access_protected_node
1298 : access_public_node;
1299 tree flist = NULL_TREE;
1300 tree old_value;
1301
1302 gcc_assert (!processing_template_decl && decl);
1303
1304 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1305 tf_warning_or_error);
1306 if (old_value)
1307 {
1308 if (is_overloaded_fn (old_value))
1309 old_value = OVL_CURRENT (old_value);
1310
1311 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1312 /* OK */;
1313 else
1314 old_value = NULL_TREE;
1315 }
1316
1317 cp_emit_debug_info_for_using (decl, t);
1318
1319 if (is_overloaded_fn (decl))
1320 flist = decl;
1321
1322 if (! old_value)
1323 ;
1324 else if (is_overloaded_fn (old_value))
1325 {
1326 if (flist)
1327 /* It's OK to use functions from a base when there are functions with
1328 the same name already present in the current class. */;
1329 else
1330 {
1331 error ("%q+D invalid in %q#T", using_decl, t);
1332 error (" because of local method %q+#D with same name",
1333 OVL_CURRENT (old_value));
1334 return;
1335 }
1336 }
1337 else if (!DECL_ARTIFICIAL (old_value))
1338 {
1339 error ("%q+D invalid in %q#T", using_decl, t);
1340 error (" because of local member %q+#D with same name", old_value);
1341 return;
1342 }
1343
1344 /* Make type T see field decl FDECL with access ACCESS. */
1345 if (flist)
1346 for (; flist; flist = OVL_NEXT (flist))
1347 {
1348 add_method (t, OVL_CURRENT (flist), using_decl);
1349 alter_access (t, OVL_CURRENT (flist), access);
1350 }
1351 else
1352 alter_access (t, decl, access);
1353 }
1354 \f
1355 /* Data structure for find_abi_tags_r, below. */
1356
1357 struct abi_tag_data
1358 {
1359 tree t; // The type that we're checking for missing tags.
1360 tree subob; // The subobject of T that we're getting tags from.
1361 tree tags; // error_mark_node for diagnostics, or a list of missing tags.
1362 };
1363
1364 /* Subroutine of find_abi_tags_r. Handle a single TAG found on the class TP
1365 in the context of P. TAG can be either an identifier (the DECL_NAME of
1366 a tag NAMESPACE_DECL) or a STRING_CST (a tag attribute). */
1367
1368 static void
1369 check_tag (tree tag, tree *tp, abi_tag_data *p)
1370 {
1371 tree id;
1372
1373 if (TREE_CODE (tag) == STRING_CST)
1374 id = get_identifier (TREE_STRING_POINTER (tag));
1375 else
1376 {
1377 id = tag;
1378 tag = NULL_TREE;
1379 }
1380
1381 if (!IDENTIFIER_MARKED (id))
1382 {
1383 if (!tag)
1384 tag = build_string (IDENTIFIER_LENGTH (id) + 1,
1385 IDENTIFIER_POINTER (id));
1386 if (p->tags != error_mark_node)
1387 {
1388 /* We're collecting tags from template arguments. */
1389 p->tags = tree_cons (NULL_TREE, tag, p->tags);
1390 ABI_TAG_IMPLICIT (p->tags) = true;
1391
1392 /* Don't inherit this tag multiple times. */
1393 IDENTIFIER_MARKED (id) = true;
1394 }
1395
1396 /* Otherwise we're diagnosing missing tags. */
1397 else if (TYPE_P (p->subob))
1398 {
1399 if (warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1400 "that base %qT has", p->t, tag, p->subob))
1401 inform (location_of (p->subob), "%qT declared here",
1402 p->subob);
1403 }
1404 else
1405 {
1406 if (warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1407 "that %qT (used in the type of %qD) has",
1408 p->t, tag, *tp, p->subob))
1409 {
1410 inform (location_of (p->subob), "%qD declared here",
1411 p->subob);
1412 inform (location_of (*tp), "%qT declared here", *tp);
1413 }
1414 }
1415 }
1416 }
1417
1418 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1419 types with abi tags, add the corresponding identifiers to the VEC in
1420 *DATA and set IDENTIFIER_MARKED. */
1421
1422 static tree
1423 find_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
1424 {
1425 if (!OVERLOAD_TYPE_P (*tp))
1426 return NULL_TREE;
1427
1428 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1429 anyway, but let's make sure of it. */
1430 *walk_subtrees = false;
1431
1432 abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1433
1434 for (tree ns = decl_namespace_context (*tp);
1435 ns != global_namespace;
1436 ns = CP_DECL_CONTEXT (ns))
1437 if (NAMESPACE_ABI_TAG (ns))
1438 check_tag (DECL_NAME (ns), tp, p);
1439
1440 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1441 {
1442 for (tree list = TREE_VALUE (attributes); list;
1443 list = TREE_CHAIN (list))
1444 {
1445 tree tag = TREE_VALUE (list);
1446 check_tag (tag, tp, p);
1447 }
1448 }
1449 return NULL_TREE;
1450 }
1451
1452 /* Set IDENTIFIER_MARKED on all the ABI tags on T and its (transitively
1453 complete) template arguments. */
1454
1455 static void
1456 mark_type_abi_tags (tree t, bool val)
1457 {
1458 for (tree ns = decl_namespace_context (t);
1459 ns != global_namespace;
1460 ns = CP_DECL_CONTEXT (ns))
1461 if (NAMESPACE_ABI_TAG (ns))
1462 IDENTIFIER_MARKED (DECL_NAME (ns)) = val;
1463
1464 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1465 if (attributes)
1466 {
1467 for (tree list = TREE_VALUE (attributes); list;
1468 list = TREE_CHAIN (list))
1469 {
1470 tree tag = TREE_VALUE (list);
1471 tree id = get_identifier (TREE_STRING_POINTER (tag));
1472 IDENTIFIER_MARKED (id) = val;
1473 }
1474 }
1475 }
1476
1477 /* Check that class T has all the abi tags that subobject SUBOB has, or
1478 warn if not. */
1479
1480 static void
1481 check_abi_tags (tree t, tree subob)
1482 {
1483 mark_type_abi_tags (t, true);
1484
1485 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1486 struct abi_tag_data data = { t, subob, error_mark_node };
1487
1488 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1489
1490 mark_type_abi_tags (t, false);
1491 }
1492
1493 void
1494 inherit_targ_abi_tags (tree t)
1495 {
1496 if (!CLASS_TYPE_P (t)
1497 || CLASSTYPE_TEMPLATE_INFO (t) == NULL_TREE)
1498 return;
1499
1500 mark_type_abi_tags (t, true);
1501
1502 tree args = CLASSTYPE_TI_ARGS (t);
1503 struct abi_tag_data data = { t, NULL_TREE, NULL_TREE };
1504 for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
1505 {
1506 tree level = TMPL_ARGS_LEVEL (args, i+1);
1507 for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1508 {
1509 tree arg = TREE_VEC_ELT (level, j);
1510 data.subob = arg;
1511 cp_walk_tree_without_duplicates (&arg, find_abi_tags_r, &data);
1512 }
1513 }
1514
1515 // If we found some tags on our template arguments, add them to our
1516 // abi_tag attribute.
1517 if (data.tags)
1518 {
1519 tree attr = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1520 if (attr)
1521 TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
1522 else
1523 TYPE_ATTRIBUTES (t)
1524 = tree_cons (get_identifier ("abi_tag"), data.tags,
1525 TYPE_ATTRIBUTES (t));
1526 }
1527
1528 mark_type_abi_tags (t, false);
1529 }
1530
1531 /* Return true, iff class T has a non-virtual destructor that is
1532 accessible from outside the class heirarchy (i.e. is public, or
1533 there's a suitable friend. */
1534
1535 static bool
1536 accessible_nvdtor_p (tree t)
1537 {
1538 tree dtor = CLASSTYPE_DESTRUCTORS (t);
1539
1540 /* An implicitly declared destructor is always public. And,
1541 if it were virtual, we would have created it by now. */
1542 if (!dtor)
1543 return true;
1544
1545 if (DECL_VINDEX (dtor))
1546 return false; /* Virtual */
1547
1548 if (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
1549 return true; /* Public */
1550
1551 if (CLASSTYPE_FRIEND_CLASSES (t)
1552 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1553 return true; /* Has friends */
1554
1555 return false;
1556 }
1557
1558 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1559 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1560 properties of the bases. */
1561
1562 static void
1563 check_bases (tree t,
1564 int* cant_have_const_ctor_p,
1565 int* no_const_asn_ref_p)
1566 {
1567 int i;
1568 bool seen_non_virtual_nearly_empty_base_p = 0;
1569 int seen_tm_mask = 0;
1570 tree base_binfo;
1571 tree binfo;
1572 tree field = NULL_TREE;
1573
1574 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1575 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1576 if (TREE_CODE (field) == FIELD_DECL)
1577 break;
1578
1579 for (binfo = TYPE_BINFO (t), i = 0;
1580 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1581 {
1582 tree basetype = TREE_TYPE (base_binfo);
1583
1584 gcc_assert (COMPLETE_TYPE_P (basetype));
1585
1586 if (CLASSTYPE_FINAL (basetype))
1587 error ("cannot derive from %<final%> base %qT in derived type %qT",
1588 basetype, t);
1589
1590 /* If any base class is non-literal, so is the derived class. */
1591 if (!CLASSTYPE_LITERAL_P (basetype))
1592 CLASSTYPE_LITERAL_P (t) = false;
1593
1594 /* If the base class doesn't have copy constructors or
1595 assignment operators that take const references, then the
1596 derived class cannot have such a member automatically
1597 generated. */
1598 if (TYPE_HAS_COPY_CTOR (basetype)
1599 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1600 *cant_have_const_ctor_p = 1;
1601 if (TYPE_HAS_COPY_ASSIGN (basetype)
1602 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1603 *no_const_asn_ref_p = 1;
1604
1605 if (BINFO_VIRTUAL_P (base_binfo))
1606 /* A virtual base does not effect nearly emptiness. */
1607 ;
1608 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1609 {
1610 if (seen_non_virtual_nearly_empty_base_p)
1611 /* And if there is more than one nearly empty base, then the
1612 derived class is not nearly empty either. */
1613 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1614 else
1615 /* Remember we've seen one. */
1616 seen_non_virtual_nearly_empty_base_p = 1;
1617 }
1618 else if (!is_empty_class (basetype))
1619 /* If the base class is not empty or nearly empty, then this
1620 class cannot be nearly empty. */
1621 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1622
1623 /* A lot of properties from the bases also apply to the derived
1624 class. */
1625 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1626 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1627 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1628 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1629 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1630 || !TYPE_HAS_COPY_ASSIGN (basetype));
1631 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1632 || !TYPE_HAS_COPY_CTOR (basetype));
1633 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1634 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1635 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1636 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1637 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1638 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1639 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1640 || TYPE_HAS_COMPLEX_DFLT (basetype));
1641 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
1642 (t, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
1643 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype));
1644 SET_CLASSTYPE_REF_FIELDS_NEED_INIT
1645 (t, CLASSTYPE_REF_FIELDS_NEED_INIT (t)
1646 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype));
1647
1648 /* A standard-layout class is a class that:
1649 ...
1650 * has no non-standard-layout base classes, */
1651 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1652 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1653 {
1654 tree basefield;
1655 /* ...has no base classes of the same type as the first non-static
1656 data member... */
1657 if (field && DECL_CONTEXT (field) == t
1658 && (same_type_ignoring_top_level_qualifiers_p
1659 (TREE_TYPE (field), basetype)))
1660 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1661 else
1662 /* ...either has no non-static data members in the most-derived
1663 class and at most one base class with non-static data
1664 members, or has no base classes with non-static data
1665 members */
1666 for (basefield = TYPE_FIELDS (basetype); basefield;
1667 basefield = DECL_CHAIN (basefield))
1668 if (TREE_CODE (basefield) == FIELD_DECL)
1669 {
1670 if (field)
1671 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1672 else
1673 field = basefield;
1674 break;
1675 }
1676 }
1677
1678 /* Don't bother collecting tm attributes if transactional memory
1679 support is not enabled. */
1680 if (flag_tm)
1681 {
1682 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1683 if (tm_attr)
1684 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1685 }
1686
1687 check_abi_tags (t, basetype);
1688 }
1689
1690 /* If one of the base classes had TM attributes, and the current class
1691 doesn't define its own, then the current class inherits one. */
1692 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1693 {
1694 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1695 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1696 }
1697 }
1698
1699 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1700 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1701 that have had a nearly-empty virtual primary base stolen by some
1702 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1703 T. */
1704
1705 static void
1706 determine_primary_bases (tree t)
1707 {
1708 unsigned i;
1709 tree primary = NULL_TREE;
1710 tree type_binfo = TYPE_BINFO (t);
1711 tree base_binfo;
1712
1713 /* Determine the primary bases of our bases. */
1714 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1715 base_binfo = TREE_CHAIN (base_binfo))
1716 {
1717 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1718
1719 /* See if we're the non-virtual primary of our inheritance
1720 chain. */
1721 if (!BINFO_VIRTUAL_P (base_binfo))
1722 {
1723 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1724 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1725
1726 if (parent_primary
1727 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1728 BINFO_TYPE (parent_primary)))
1729 /* We are the primary binfo. */
1730 BINFO_PRIMARY_P (base_binfo) = 1;
1731 }
1732 /* Determine if we have a virtual primary base, and mark it so.
1733 */
1734 if (primary && BINFO_VIRTUAL_P (primary))
1735 {
1736 tree this_primary = copied_binfo (primary, base_binfo);
1737
1738 if (BINFO_PRIMARY_P (this_primary))
1739 /* Someone already claimed this base. */
1740 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1741 else
1742 {
1743 tree delta;
1744
1745 BINFO_PRIMARY_P (this_primary) = 1;
1746 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1747
1748 /* A virtual binfo might have been copied from within
1749 another hierarchy. As we're about to use it as a
1750 primary base, make sure the offsets match. */
1751 delta = size_diffop_loc (input_location,
1752 convert (ssizetype,
1753 BINFO_OFFSET (base_binfo)),
1754 convert (ssizetype,
1755 BINFO_OFFSET (this_primary)));
1756
1757 propagate_binfo_offsets (this_primary, delta);
1758 }
1759 }
1760 }
1761
1762 /* First look for a dynamic direct non-virtual base. */
1763 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1764 {
1765 tree basetype = BINFO_TYPE (base_binfo);
1766
1767 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1768 {
1769 primary = base_binfo;
1770 goto found;
1771 }
1772 }
1773
1774 /* A "nearly-empty" virtual base class can be the primary base
1775 class, if no non-virtual polymorphic base can be found. Look for
1776 a nearly-empty virtual dynamic base that is not already a primary
1777 base of something in the hierarchy. If there is no such base,
1778 just pick the first nearly-empty virtual base. */
1779
1780 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1781 base_binfo = TREE_CHAIN (base_binfo))
1782 if (BINFO_VIRTUAL_P (base_binfo)
1783 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1784 {
1785 if (!BINFO_PRIMARY_P (base_binfo))
1786 {
1787 /* Found one that is not primary. */
1788 primary = base_binfo;
1789 goto found;
1790 }
1791 else if (!primary)
1792 /* Remember the first candidate. */
1793 primary = base_binfo;
1794 }
1795
1796 found:
1797 /* If we've got a primary base, use it. */
1798 if (primary)
1799 {
1800 tree basetype = BINFO_TYPE (primary);
1801
1802 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1803 if (BINFO_PRIMARY_P (primary))
1804 /* We are stealing a primary base. */
1805 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1806 BINFO_PRIMARY_P (primary) = 1;
1807 if (BINFO_VIRTUAL_P (primary))
1808 {
1809 tree delta;
1810
1811 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1812 /* A virtual binfo might have been copied from within
1813 another hierarchy. As we're about to use it as a primary
1814 base, make sure the offsets match. */
1815 delta = size_diffop_loc (input_location, ssize_int (0),
1816 convert (ssizetype, BINFO_OFFSET (primary)));
1817
1818 propagate_binfo_offsets (primary, delta);
1819 }
1820
1821 primary = TYPE_BINFO (basetype);
1822
1823 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1824 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1825 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1826 }
1827 }
1828
1829 /* Update the variant types of T. */
1830
1831 void
1832 fixup_type_variants (tree t)
1833 {
1834 tree variants;
1835
1836 if (!t)
1837 return;
1838
1839 for (variants = TYPE_NEXT_VARIANT (t);
1840 variants;
1841 variants = TYPE_NEXT_VARIANT (variants))
1842 {
1843 /* These fields are in the _TYPE part of the node, not in
1844 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1845 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1846 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1847 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1848 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1849
1850 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1851
1852 TYPE_BINFO (variants) = TYPE_BINFO (t);
1853
1854 /* Copy whatever these are holding today. */
1855 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1856 TYPE_METHODS (variants) = TYPE_METHODS (t);
1857 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1858 }
1859 }
1860
1861 /* Early variant fixups: we apply attributes at the beginning of the class
1862 definition, and we need to fix up any variants that have already been
1863 made via elaborated-type-specifier so that check_qualified_type works. */
1864
1865 void
1866 fixup_attribute_variants (tree t)
1867 {
1868 tree variants;
1869
1870 if (!t)
1871 return;
1872
1873 for (variants = TYPE_NEXT_VARIANT (t);
1874 variants;
1875 variants = TYPE_NEXT_VARIANT (variants))
1876 {
1877 /* These are the two fields that check_qualified_type looks at and
1878 are affected by attributes. */
1879 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1880 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1881 }
1882 }
1883 \f
1884 /* Set memoizing fields and bits of T (and its variants) for later
1885 use. */
1886
1887 static void
1888 finish_struct_bits (tree t)
1889 {
1890 /* Fix up variants (if any). */
1891 fixup_type_variants (t);
1892
1893 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1894 /* For a class w/o baseclasses, 'finish_struct' has set
1895 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1896 Similarly for a class whose base classes do not have vtables.
1897 When neither of these is true, we might have removed abstract
1898 virtuals (by providing a definition), added some (by declaring
1899 new ones), or redeclared ones from a base class. We need to
1900 recalculate what's really an abstract virtual at this point (by
1901 looking in the vtables). */
1902 get_pure_virtuals (t);
1903
1904 /* If this type has a copy constructor or a destructor, force its
1905 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1906 nonzero. This will cause it to be passed by invisible reference
1907 and prevent it from being returned in a register. */
1908 if (type_has_nontrivial_copy_init (t)
1909 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1910 {
1911 tree variants;
1912 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1913 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1914 {
1915 SET_TYPE_MODE (variants, BLKmode);
1916 TREE_ADDRESSABLE (variants) = 1;
1917 }
1918 }
1919 }
1920
1921 /* Issue warnings about T having private constructors, but no friends,
1922 and so forth.
1923
1924 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1925 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1926 non-private static member functions. */
1927
1928 static void
1929 maybe_warn_about_overly_private_class (tree t)
1930 {
1931 int has_member_fn = 0;
1932 int has_nonprivate_method = 0;
1933 tree fn;
1934
1935 if (!warn_ctor_dtor_privacy
1936 /* If the class has friends, those entities might create and
1937 access instances, so we should not warn. */
1938 || (CLASSTYPE_FRIEND_CLASSES (t)
1939 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1940 /* We will have warned when the template was declared; there's
1941 no need to warn on every instantiation. */
1942 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1943 /* There's no reason to even consider warning about this
1944 class. */
1945 return;
1946
1947 /* We only issue one warning, if more than one applies, because
1948 otherwise, on code like:
1949
1950 class A {
1951 // Oops - forgot `public:'
1952 A();
1953 A(const A&);
1954 ~A();
1955 };
1956
1957 we warn several times about essentially the same problem. */
1958
1959 /* Check to see if all (non-constructor, non-destructor) member
1960 functions are private. (Since there are no friends or
1961 non-private statics, we can't ever call any of the private member
1962 functions.) */
1963 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1964 /* We're not interested in compiler-generated methods; they don't
1965 provide any way to call private members. */
1966 if (!DECL_ARTIFICIAL (fn))
1967 {
1968 if (!TREE_PRIVATE (fn))
1969 {
1970 if (DECL_STATIC_FUNCTION_P (fn))
1971 /* A non-private static member function is just like a
1972 friend; it can create and invoke private member
1973 functions, and be accessed without a class
1974 instance. */
1975 return;
1976
1977 has_nonprivate_method = 1;
1978 /* Keep searching for a static member function. */
1979 }
1980 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1981 has_member_fn = 1;
1982 }
1983
1984 if (!has_nonprivate_method && has_member_fn)
1985 {
1986 /* There are no non-private methods, and there's at least one
1987 private member function that isn't a constructor or
1988 destructor. (If all the private members are
1989 constructors/destructors we want to use the code below that
1990 issues error messages specifically referring to
1991 constructors/destructors.) */
1992 unsigned i;
1993 tree binfo = TYPE_BINFO (t);
1994
1995 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1996 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1997 {
1998 has_nonprivate_method = 1;
1999 break;
2000 }
2001 if (!has_nonprivate_method)
2002 {
2003 warning (OPT_Wctor_dtor_privacy,
2004 "all member functions in class %qT are private", t);
2005 return;
2006 }
2007 }
2008
2009 /* Even if some of the member functions are non-private, the class
2010 won't be useful for much if all the constructors or destructors
2011 are private: such an object can never be created or destroyed. */
2012 fn = CLASSTYPE_DESTRUCTORS (t);
2013 if (fn && TREE_PRIVATE (fn))
2014 {
2015 warning (OPT_Wctor_dtor_privacy,
2016 "%q#T only defines a private destructor and has no friends",
2017 t);
2018 return;
2019 }
2020
2021 /* Warn about classes that have private constructors and no friends. */
2022 if (TYPE_HAS_USER_CONSTRUCTOR (t)
2023 /* Implicitly generated constructors are always public. */
2024 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
2025 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
2026 {
2027 int nonprivate_ctor = 0;
2028
2029 /* If a non-template class does not define a copy
2030 constructor, one is defined for it, enabling it to avoid
2031 this warning. For a template class, this does not
2032 happen, and so we would normally get a warning on:
2033
2034 template <class T> class C { private: C(); };
2035
2036 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
2037 complete non-template or fully instantiated classes have this
2038 flag set. */
2039 if (!TYPE_HAS_COPY_CTOR (t))
2040 nonprivate_ctor = 1;
2041 else
2042 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
2043 {
2044 tree ctor = OVL_CURRENT (fn);
2045 /* Ideally, we wouldn't count copy constructors (or, in
2046 fact, any constructor that takes an argument of the
2047 class type as a parameter) because such things cannot
2048 be used to construct an instance of the class unless
2049 you already have one. But, for now at least, we're
2050 more generous. */
2051 if (! TREE_PRIVATE (ctor))
2052 {
2053 nonprivate_ctor = 1;
2054 break;
2055 }
2056 }
2057
2058 if (nonprivate_ctor == 0)
2059 {
2060 warning (OPT_Wctor_dtor_privacy,
2061 "%q#T only defines private constructors and has no friends",
2062 t);
2063 return;
2064 }
2065 }
2066 }
2067
2068 static struct {
2069 gt_pointer_operator new_value;
2070 void *cookie;
2071 } resort_data;
2072
2073 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
2074
2075 static int
2076 method_name_cmp (const void* m1_p, const void* m2_p)
2077 {
2078 const tree *const m1 = (const tree *) m1_p;
2079 const tree *const m2 = (const tree *) m2_p;
2080
2081 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2082 return 0;
2083 if (*m1 == NULL_TREE)
2084 return -1;
2085 if (*m2 == NULL_TREE)
2086 return 1;
2087 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
2088 return -1;
2089 return 1;
2090 }
2091
2092 /* This routine compares two fields like method_name_cmp but using the
2093 pointer operator in resort_field_decl_data. */
2094
2095 static int
2096 resort_method_name_cmp (const void* m1_p, const void* m2_p)
2097 {
2098 const tree *const m1 = (const tree *) m1_p;
2099 const tree *const m2 = (const tree *) m2_p;
2100 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2101 return 0;
2102 if (*m1 == NULL_TREE)
2103 return -1;
2104 if (*m2 == NULL_TREE)
2105 return 1;
2106 {
2107 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
2108 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
2109 resort_data.new_value (&d1, resort_data.cookie);
2110 resort_data.new_value (&d2, resort_data.cookie);
2111 if (d1 < d2)
2112 return -1;
2113 }
2114 return 1;
2115 }
2116
2117 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
2118
2119 void
2120 resort_type_method_vec (void* obj,
2121 void* /*orig_obj*/,
2122 gt_pointer_operator new_value,
2123 void* cookie)
2124 {
2125 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
2126 int len = vec_safe_length (method_vec);
2127 size_t slot;
2128 tree fn;
2129
2130 /* The type conversion ops have to live at the front of the vec, so we
2131 can't sort them. */
2132 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2133 vec_safe_iterate (method_vec, slot, &fn);
2134 ++slot)
2135 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
2136 break;
2137
2138 if (len - slot > 1)
2139 {
2140 resort_data.new_value = new_value;
2141 resort_data.cookie = cookie;
2142 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
2143 resort_method_name_cmp);
2144 }
2145 }
2146
2147 /* Warn about duplicate methods in fn_fields.
2148
2149 Sort methods that are not special (i.e., constructors, destructors,
2150 and type conversion operators) so that we can find them faster in
2151 search. */
2152
2153 static void
2154 finish_struct_methods (tree t)
2155 {
2156 tree fn_fields;
2157 vec<tree, va_gc> *method_vec;
2158 int slot, len;
2159
2160 method_vec = CLASSTYPE_METHOD_VEC (t);
2161 if (!method_vec)
2162 return;
2163
2164 len = method_vec->length ();
2165
2166 /* Clear DECL_IN_AGGR_P for all functions. */
2167 for (fn_fields = TYPE_METHODS (t); fn_fields;
2168 fn_fields = DECL_CHAIN (fn_fields))
2169 DECL_IN_AGGR_P (fn_fields) = 0;
2170
2171 /* Issue warnings about private constructors and such. If there are
2172 no methods, then some public defaults are generated. */
2173 maybe_warn_about_overly_private_class (t);
2174
2175 /* The type conversion ops have to live at the front of the vec, so we
2176 can't sort them. */
2177 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2178 method_vec->iterate (slot, &fn_fields);
2179 ++slot)
2180 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2181 break;
2182 if (len - slot > 1)
2183 qsort (method_vec->address () + slot,
2184 len-slot, sizeof (tree), method_name_cmp);
2185 }
2186
2187 /* Make BINFO's vtable have N entries, including RTTI entries,
2188 vbase and vcall offsets, etc. Set its type and call the back end
2189 to lay it out. */
2190
2191 static void
2192 layout_vtable_decl (tree binfo, int n)
2193 {
2194 tree atype;
2195 tree vtable;
2196
2197 atype = build_array_of_n_type (vtable_entry_type, n);
2198 layout_type (atype);
2199
2200 /* We may have to grow the vtable. */
2201 vtable = get_vtbl_decl_for_binfo (binfo);
2202 if (!same_type_p (TREE_TYPE (vtable), atype))
2203 {
2204 TREE_TYPE (vtable) = atype;
2205 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2206 layout_decl (vtable, 0);
2207 }
2208 }
2209
2210 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2211 have the same signature. */
2212
2213 int
2214 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2215 {
2216 /* One destructor overrides another if they are the same kind of
2217 destructor. */
2218 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2219 && special_function_p (base_fndecl) == special_function_p (fndecl))
2220 return 1;
2221 /* But a non-destructor never overrides a destructor, nor vice
2222 versa, nor do different kinds of destructors override
2223 one-another. For example, a complete object destructor does not
2224 override a deleting destructor. */
2225 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2226 return 0;
2227
2228 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2229 || (DECL_CONV_FN_P (fndecl)
2230 && DECL_CONV_FN_P (base_fndecl)
2231 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2232 DECL_CONV_FN_TYPE (base_fndecl))))
2233 {
2234 tree fntype = TREE_TYPE (fndecl);
2235 tree base_fntype = TREE_TYPE (base_fndecl);
2236 if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2237 && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2238 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2239 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2240 return 1;
2241 }
2242 return 0;
2243 }
2244
2245 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2246 subobject. */
2247
2248 static bool
2249 base_derived_from (tree derived, tree base)
2250 {
2251 tree probe;
2252
2253 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2254 {
2255 if (probe == derived)
2256 return true;
2257 else if (BINFO_VIRTUAL_P (probe))
2258 /* If we meet a virtual base, we can't follow the inheritance
2259 any more. See if the complete type of DERIVED contains
2260 such a virtual base. */
2261 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2262 != NULL_TREE);
2263 }
2264 return false;
2265 }
2266
2267 typedef struct find_final_overrider_data_s {
2268 /* The function for which we are trying to find a final overrider. */
2269 tree fn;
2270 /* The base class in which the function was declared. */
2271 tree declaring_base;
2272 /* The candidate overriders. */
2273 tree candidates;
2274 /* Path to most derived. */
2275 vec<tree> path;
2276 } find_final_overrider_data;
2277
2278 /* Add the overrider along the current path to FFOD->CANDIDATES.
2279 Returns true if an overrider was found; false otherwise. */
2280
2281 static bool
2282 dfs_find_final_overrider_1 (tree binfo,
2283 find_final_overrider_data *ffod,
2284 unsigned depth)
2285 {
2286 tree method;
2287
2288 /* If BINFO is not the most derived type, try a more derived class.
2289 A definition there will overrider a definition here. */
2290 if (depth)
2291 {
2292 depth--;
2293 if (dfs_find_final_overrider_1
2294 (ffod->path[depth], ffod, depth))
2295 return true;
2296 }
2297
2298 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2299 if (method)
2300 {
2301 tree *candidate = &ffod->candidates;
2302
2303 /* Remove any candidates overridden by this new function. */
2304 while (*candidate)
2305 {
2306 /* If *CANDIDATE overrides METHOD, then METHOD
2307 cannot override anything else on the list. */
2308 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2309 return true;
2310 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2311 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2312 *candidate = TREE_CHAIN (*candidate);
2313 else
2314 candidate = &TREE_CHAIN (*candidate);
2315 }
2316
2317 /* Add the new function. */
2318 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2319 return true;
2320 }
2321
2322 return false;
2323 }
2324
2325 /* Called from find_final_overrider via dfs_walk. */
2326
2327 static tree
2328 dfs_find_final_overrider_pre (tree binfo, void *data)
2329 {
2330 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2331
2332 if (binfo == ffod->declaring_base)
2333 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2334 ffod->path.safe_push (binfo);
2335
2336 return NULL_TREE;
2337 }
2338
2339 static tree
2340 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2341 {
2342 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2343 ffod->path.pop ();
2344
2345 return NULL_TREE;
2346 }
2347
2348 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2349 FN and whose TREE_VALUE is the binfo for the base where the
2350 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2351 DERIVED) is the base object in which FN is declared. */
2352
2353 static tree
2354 find_final_overrider (tree derived, tree binfo, tree fn)
2355 {
2356 find_final_overrider_data ffod;
2357
2358 /* Getting this right is a little tricky. This is valid:
2359
2360 struct S { virtual void f (); };
2361 struct T { virtual void f (); };
2362 struct U : public S, public T { };
2363
2364 even though calling `f' in `U' is ambiguous. But,
2365
2366 struct R { virtual void f(); };
2367 struct S : virtual public R { virtual void f (); };
2368 struct T : virtual public R { virtual void f (); };
2369 struct U : public S, public T { };
2370
2371 is not -- there's no way to decide whether to put `S::f' or
2372 `T::f' in the vtable for `R'.
2373
2374 The solution is to look at all paths to BINFO. If we find
2375 different overriders along any two, then there is a problem. */
2376 if (DECL_THUNK_P (fn))
2377 fn = THUNK_TARGET (fn);
2378
2379 /* Determine the depth of the hierarchy. */
2380 ffod.fn = fn;
2381 ffod.declaring_base = binfo;
2382 ffod.candidates = NULL_TREE;
2383 ffod.path.create (30);
2384
2385 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2386 dfs_find_final_overrider_post, &ffod);
2387
2388 ffod.path.release ();
2389
2390 /* If there was no winner, issue an error message. */
2391 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2392 return error_mark_node;
2393
2394 return ffod.candidates;
2395 }
2396
2397 /* Return the index of the vcall offset for FN when TYPE is used as a
2398 virtual base. */
2399
2400 static tree
2401 get_vcall_index (tree fn, tree type)
2402 {
2403 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2404 tree_pair_p p;
2405 unsigned ix;
2406
2407 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2408 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2409 || same_signature_p (fn, p->purpose))
2410 return p->value;
2411
2412 /* There should always be an appropriate index. */
2413 gcc_unreachable ();
2414 }
2415
2416 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2417 dominated by T. FN is the old function; VIRTUALS points to the
2418 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2419 of that entry in the list. */
2420
2421 static void
2422 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2423 unsigned ix)
2424 {
2425 tree b;
2426 tree overrider;
2427 tree delta;
2428 tree virtual_base;
2429 tree first_defn;
2430 tree overrider_fn, overrider_target;
2431 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2432 tree over_return, base_return;
2433 bool lost = false;
2434
2435 /* Find the nearest primary base (possibly binfo itself) which defines
2436 this function; this is the class the caller will convert to when
2437 calling FN through BINFO. */
2438 for (b = binfo; ; b = get_primary_binfo (b))
2439 {
2440 gcc_assert (b);
2441 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2442 break;
2443
2444 /* The nearest definition is from a lost primary. */
2445 if (BINFO_LOST_PRIMARY_P (b))
2446 lost = true;
2447 }
2448 first_defn = b;
2449
2450 /* Find the final overrider. */
2451 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2452 if (overrider == error_mark_node)
2453 {
2454 error ("no unique final overrider for %qD in %qT", target_fn, t);
2455 return;
2456 }
2457 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2458
2459 /* Check for adjusting covariant return types. */
2460 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2461 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2462
2463 if (POINTER_TYPE_P (over_return)
2464 && TREE_CODE (over_return) == TREE_CODE (base_return)
2465 && CLASS_TYPE_P (TREE_TYPE (over_return))
2466 && CLASS_TYPE_P (TREE_TYPE (base_return))
2467 /* If the overrider is invalid, don't even try. */
2468 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2469 {
2470 /* If FN is a covariant thunk, we must figure out the adjustment
2471 to the final base FN was converting to. As OVERRIDER_TARGET might
2472 also be converting to the return type of FN, we have to
2473 combine the two conversions here. */
2474 tree fixed_offset, virtual_offset;
2475
2476 over_return = TREE_TYPE (over_return);
2477 base_return = TREE_TYPE (base_return);
2478
2479 if (DECL_THUNK_P (fn))
2480 {
2481 gcc_assert (DECL_RESULT_THUNK_P (fn));
2482 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2483 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2484 }
2485 else
2486 fixed_offset = virtual_offset = NULL_TREE;
2487
2488 if (virtual_offset)
2489 /* Find the equivalent binfo within the return type of the
2490 overriding function. We will want the vbase offset from
2491 there. */
2492 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2493 over_return);
2494 else if (!same_type_ignoring_top_level_qualifiers_p
2495 (over_return, base_return))
2496 {
2497 /* There was no existing virtual thunk (which takes
2498 precedence). So find the binfo of the base function's
2499 return type within the overriding function's return type.
2500 We cannot call lookup base here, because we're inside a
2501 dfs_walk, and will therefore clobber the BINFO_MARKED
2502 flags. Fortunately we know the covariancy is valid (it
2503 has already been checked), so we can just iterate along
2504 the binfos, which have been chained in inheritance graph
2505 order. Of course it is lame that we have to repeat the
2506 search here anyway -- we should really be caching pieces
2507 of the vtable and avoiding this repeated work. */
2508 tree thunk_binfo, base_binfo;
2509
2510 /* Find the base binfo within the overriding function's
2511 return type. We will always find a thunk_binfo, except
2512 when the covariancy is invalid (which we will have
2513 already diagnosed). */
2514 for (base_binfo = TYPE_BINFO (base_return),
2515 thunk_binfo = TYPE_BINFO (over_return);
2516 thunk_binfo;
2517 thunk_binfo = TREE_CHAIN (thunk_binfo))
2518 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2519 BINFO_TYPE (base_binfo)))
2520 break;
2521
2522 /* See if virtual inheritance is involved. */
2523 for (virtual_offset = thunk_binfo;
2524 virtual_offset;
2525 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2526 if (BINFO_VIRTUAL_P (virtual_offset))
2527 break;
2528
2529 if (virtual_offset
2530 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2531 {
2532 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2533
2534 if (virtual_offset)
2535 {
2536 /* We convert via virtual base. Adjust the fixed
2537 offset to be from there. */
2538 offset =
2539 size_diffop (offset,
2540 convert (ssizetype,
2541 BINFO_OFFSET (virtual_offset)));
2542 }
2543 if (fixed_offset)
2544 /* There was an existing fixed offset, this must be
2545 from the base just converted to, and the base the
2546 FN was thunking to. */
2547 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2548 else
2549 fixed_offset = offset;
2550 }
2551 }
2552
2553 if (fixed_offset || virtual_offset)
2554 /* Replace the overriding function with a covariant thunk. We
2555 will emit the overriding function in its own slot as
2556 well. */
2557 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2558 fixed_offset, virtual_offset);
2559 }
2560 else
2561 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2562 !DECL_THUNK_P (fn));
2563
2564 /* If we need a covariant thunk, then we may need to adjust first_defn.
2565 The ABI specifies that the thunks emitted with a function are
2566 determined by which bases the function overrides, so we need to be
2567 sure that we're using a thunk for some overridden base; even if we
2568 know that the necessary this adjustment is zero, there may not be an
2569 appropriate zero-this-adjusment thunk for us to use since thunks for
2570 overriding virtual bases always use the vcall offset.
2571
2572 Furthermore, just choosing any base that overrides this function isn't
2573 quite right, as this slot won't be used for calls through a type that
2574 puts a covariant thunk here. Calling the function through such a type
2575 will use a different slot, and that slot is the one that determines
2576 the thunk emitted for that base.
2577
2578 So, keep looking until we find the base that we're really overriding
2579 in this slot: the nearest primary base that doesn't use a covariant
2580 thunk in this slot. */
2581 if (overrider_target != overrider_fn)
2582 {
2583 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2584 /* We already know that the overrider needs a covariant thunk. */
2585 b = get_primary_binfo (b);
2586 for (; ; b = get_primary_binfo (b))
2587 {
2588 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2589 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2590 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2591 break;
2592 if (BINFO_LOST_PRIMARY_P (b))
2593 lost = true;
2594 }
2595 first_defn = b;
2596 }
2597
2598 /* Assume that we will produce a thunk that convert all the way to
2599 the final overrider, and not to an intermediate virtual base. */
2600 virtual_base = NULL_TREE;
2601
2602 /* See if we can convert to an intermediate virtual base first, and then
2603 use the vcall offset located there to finish the conversion. */
2604 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2605 {
2606 /* If we find the final overrider, then we can stop
2607 walking. */
2608 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2609 BINFO_TYPE (TREE_VALUE (overrider))))
2610 break;
2611
2612 /* If we find a virtual base, and we haven't yet found the
2613 overrider, then there is a virtual base between the
2614 declaring base (first_defn) and the final overrider. */
2615 if (BINFO_VIRTUAL_P (b))
2616 {
2617 virtual_base = b;
2618 break;
2619 }
2620 }
2621
2622 /* Compute the constant adjustment to the `this' pointer. The
2623 `this' pointer, when this function is called, will point at BINFO
2624 (or one of its primary bases, which are at the same offset). */
2625 if (virtual_base)
2626 /* The `this' pointer needs to be adjusted from the declaration to
2627 the nearest virtual base. */
2628 delta = size_diffop_loc (input_location,
2629 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2630 convert (ssizetype, BINFO_OFFSET (first_defn)));
2631 else if (lost)
2632 /* If the nearest definition is in a lost primary, we don't need an
2633 entry in our vtable. Except possibly in a constructor vtable,
2634 if we happen to get our primary back. In that case, the offset
2635 will be zero, as it will be a primary base. */
2636 delta = size_zero_node;
2637 else
2638 /* The `this' pointer needs to be adjusted from pointing to
2639 BINFO to pointing at the base where the final overrider
2640 appears. */
2641 delta = size_diffop_loc (input_location,
2642 convert (ssizetype,
2643 BINFO_OFFSET (TREE_VALUE (overrider))),
2644 convert (ssizetype, BINFO_OFFSET (binfo)));
2645
2646 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2647
2648 if (virtual_base)
2649 BV_VCALL_INDEX (*virtuals)
2650 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2651 else
2652 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2653
2654 BV_LOST_PRIMARY (*virtuals) = lost;
2655 }
2656
2657 /* Called from modify_all_vtables via dfs_walk. */
2658
2659 static tree
2660 dfs_modify_vtables (tree binfo, void* data)
2661 {
2662 tree t = (tree) data;
2663 tree virtuals;
2664 tree old_virtuals;
2665 unsigned ix;
2666
2667 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2668 /* A base without a vtable needs no modification, and its bases
2669 are uninteresting. */
2670 return dfs_skip_bases;
2671
2672 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2673 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2674 /* Don't do the primary vtable, if it's new. */
2675 return NULL_TREE;
2676
2677 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2678 /* There's no need to modify the vtable for a non-virtual primary
2679 base; we're not going to use that vtable anyhow. We do still
2680 need to do this for virtual primary bases, as they could become
2681 non-primary in a construction vtable. */
2682 return NULL_TREE;
2683
2684 make_new_vtable (t, binfo);
2685
2686 /* Now, go through each of the virtual functions in the virtual
2687 function table for BINFO. Find the final overrider, and update
2688 the BINFO_VIRTUALS list appropriately. */
2689 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2690 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2691 virtuals;
2692 ix++, virtuals = TREE_CHAIN (virtuals),
2693 old_virtuals = TREE_CHAIN (old_virtuals))
2694 update_vtable_entry_for_fn (t,
2695 binfo,
2696 BV_FN (old_virtuals),
2697 &virtuals, ix);
2698
2699 return NULL_TREE;
2700 }
2701
2702 /* Update all of the primary and secondary vtables for T. Create new
2703 vtables as required, and initialize their RTTI information. Each
2704 of the functions in VIRTUALS is declared in T and may override a
2705 virtual function from a base class; find and modify the appropriate
2706 entries to point to the overriding functions. Returns a list, in
2707 declaration order, of the virtual functions that are declared in T,
2708 but do not appear in the primary base class vtable, and which
2709 should therefore be appended to the end of the vtable for T. */
2710
2711 static tree
2712 modify_all_vtables (tree t, tree virtuals)
2713 {
2714 tree binfo = TYPE_BINFO (t);
2715 tree *fnsp;
2716
2717 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2718 if (TYPE_CONTAINS_VPTR_P (t))
2719 get_vtable_decl (t, false);
2720
2721 /* Update all of the vtables. */
2722 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2723
2724 /* Add virtual functions not already in our primary vtable. These
2725 will be both those introduced by this class, and those overridden
2726 from secondary bases. It does not include virtuals merely
2727 inherited from secondary bases. */
2728 for (fnsp = &virtuals; *fnsp; )
2729 {
2730 tree fn = TREE_VALUE (*fnsp);
2731
2732 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2733 || DECL_VINDEX (fn) == error_mark_node)
2734 {
2735 /* We don't need to adjust the `this' pointer when
2736 calling this function. */
2737 BV_DELTA (*fnsp) = integer_zero_node;
2738 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2739
2740 /* This is a function not already in our vtable. Keep it. */
2741 fnsp = &TREE_CHAIN (*fnsp);
2742 }
2743 else
2744 /* We've already got an entry for this function. Skip it. */
2745 *fnsp = TREE_CHAIN (*fnsp);
2746 }
2747
2748 return virtuals;
2749 }
2750
2751 /* Get the base virtual function declarations in T that have the
2752 indicated NAME. */
2753
2754 static tree
2755 get_basefndecls (tree name, tree t)
2756 {
2757 tree methods;
2758 tree base_fndecls = NULL_TREE;
2759 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2760 int i;
2761
2762 /* Find virtual functions in T with the indicated NAME. */
2763 i = lookup_fnfields_1 (t, name);
2764 if (i != -1)
2765 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2766 methods;
2767 methods = OVL_NEXT (methods))
2768 {
2769 tree method = OVL_CURRENT (methods);
2770
2771 if (TREE_CODE (method) == FUNCTION_DECL
2772 && DECL_VINDEX (method))
2773 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2774 }
2775
2776 if (base_fndecls)
2777 return base_fndecls;
2778
2779 for (i = 0; i < n_baseclasses; i++)
2780 {
2781 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2782 base_fndecls = chainon (get_basefndecls (name, basetype),
2783 base_fndecls);
2784 }
2785
2786 return base_fndecls;
2787 }
2788
2789 /* If this declaration supersedes the declaration of
2790 a method declared virtual in the base class, then
2791 mark this field as being virtual as well. */
2792
2793 void
2794 check_for_override (tree decl, tree ctype)
2795 {
2796 bool overrides_found = false;
2797 if (TREE_CODE (decl) == TEMPLATE_DECL)
2798 /* In [temp.mem] we have:
2799
2800 A specialization of a member function template does not
2801 override a virtual function from a base class. */
2802 return;
2803 if ((DECL_DESTRUCTOR_P (decl)
2804 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2805 || DECL_CONV_FN_P (decl))
2806 && look_for_overrides (ctype, decl)
2807 && !DECL_STATIC_FUNCTION_P (decl))
2808 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2809 the error_mark_node so that we know it is an overriding
2810 function. */
2811 {
2812 DECL_VINDEX (decl) = decl;
2813 overrides_found = true;
2814 }
2815
2816 if (DECL_VIRTUAL_P (decl))
2817 {
2818 if (!DECL_VINDEX (decl))
2819 DECL_VINDEX (decl) = error_mark_node;
2820 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2821 if (DECL_DESTRUCTOR_P (decl))
2822 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2823 }
2824 else if (DECL_FINAL_P (decl))
2825 error ("%q+#D marked %<final%>, but is not virtual", decl);
2826 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2827 error ("%q+#D marked %<override%>, but does not override", decl);
2828 }
2829
2830 /* Warn about hidden virtual functions that are not overridden in t.
2831 We know that constructors and destructors don't apply. */
2832
2833 static void
2834 warn_hidden (tree t)
2835 {
2836 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2837 tree fns;
2838 size_t i;
2839
2840 /* We go through each separately named virtual function. */
2841 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2842 vec_safe_iterate (method_vec, i, &fns);
2843 ++i)
2844 {
2845 tree fn;
2846 tree name;
2847 tree fndecl;
2848 tree base_fndecls;
2849 tree base_binfo;
2850 tree binfo;
2851 int j;
2852
2853 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2854 have the same name. Figure out what name that is. */
2855 name = DECL_NAME (OVL_CURRENT (fns));
2856 /* There are no possibly hidden functions yet. */
2857 base_fndecls = NULL_TREE;
2858 /* Iterate through all of the base classes looking for possibly
2859 hidden functions. */
2860 for (binfo = TYPE_BINFO (t), j = 0;
2861 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2862 {
2863 tree basetype = BINFO_TYPE (base_binfo);
2864 base_fndecls = chainon (get_basefndecls (name, basetype),
2865 base_fndecls);
2866 }
2867
2868 /* If there are no functions to hide, continue. */
2869 if (!base_fndecls)
2870 continue;
2871
2872 /* Remove any overridden functions. */
2873 for (fn = fns; fn; fn = OVL_NEXT (fn))
2874 {
2875 fndecl = OVL_CURRENT (fn);
2876 if (TREE_CODE (fndecl) == FUNCTION_DECL
2877 && DECL_VINDEX (fndecl))
2878 {
2879 tree *prev = &base_fndecls;
2880
2881 while (*prev)
2882 /* If the method from the base class has the same
2883 signature as the method from the derived class, it
2884 has been overridden. */
2885 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2886 *prev = TREE_CHAIN (*prev);
2887 else
2888 prev = &TREE_CHAIN (*prev);
2889 }
2890 }
2891
2892 /* Now give a warning for all base functions without overriders,
2893 as they are hidden. */
2894 while (base_fndecls)
2895 {
2896 /* Here we know it is a hider, and no overrider exists. */
2897 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2898 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2899 base_fndecls = TREE_CHAIN (base_fndecls);
2900 }
2901 }
2902 }
2903
2904 /* Recursive helper for finish_struct_anon. */
2905
2906 static void
2907 finish_struct_anon_r (tree field, bool complain)
2908 {
2909 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2910 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2911 for (; elt; elt = DECL_CHAIN (elt))
2912 {
2913 /* We're generally only interested in entities the user
2914 declared, but we also find nested classes by noticing
2915 the TYPE_DECL that we create implicitly. You're
2916 allowed to put one anonymous union inside another,
2917 though, so we explicitly tolerate that. We use
2918 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2919 we also allow unnamed types used for defining fields. */
2920 if (DECL_ARTIFICIAL (elt)
2921 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2922 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2923 continue;
2924
2925 if (TREE_CODE (elt) != FIELD_DECL)
2926 {
2927 /* We already complained about static data members in
2928 finish_static_data_member_decl. */
2929 if (complain && TREE_CODE (elt) != VAR_DECL)
2930 {
2931 if (is_union)
2932 permerror (input_location,
2933 "%q+#D invalid; an anonymous union can "
2934 "only have non-static data members", elt);
2935 else
2936 permerror (input_location,
2937 "%q+#D invalid; an anonymous struct can "
2938 "only have non-static data members", elt);
2939 }
2940 continue;
2941 }
2942
2943 if (complain)
2944 {
2945 if (TREE_PRIVATE (elt))
2946 {
2947 if (is_union)
2948 permerror (input_location,
2949 "private member %q+#D in anonymous union", elt);
2950 else
2951 permerror (input_location,
2952 "private member %q+#D in anonymous struct", elt);
2953 }
2954 else if (TREE_PROTECTED (elt))
2955 {
2956 if (is_union)
2957 permerror (input_location,
2958 "protected member %q+#D in anonymous union", elt);
2959 else
2960 permerror (input_location,
2961 "protected member %q+#D in anonymous struct", elt);
2962 }
2963 }
2964
2965 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2966 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2967
2968 /* Recurse into the anonymous aggregates to handle correctly
2969 access control (c++/24926):
2970
2971 class A {
2972 union {
2973 union {
2974 int i;
2975 };
2976 };
2977 };
2978
2979 int j=A().i; */
2980 if (DECL_NAME (elt) == NULL_TREE
2981 && ANON_AGGR_TYPE_P (TREE_TYPE (elt)))
2982 finish_struct_anon_r (elt, /*complain=*/false);
2983 }
2984 }
2985
2986 /* Check for things that are invalid. There are probably plenty of other
2987 things we should check for also. */
2988
2989 static void
2990 finish_struct_anon (tree t)
2991 {
2992 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2993 {
2994 if (TREE_STATIC (field))
2995 continue;
2996 if (TREE_CODE (field) != FIELD_DECL)
2997 continue;
2998
2999 if (DECL_NAME (field) == NULL_TREE
3000 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
3001 finish_struct_anon_r (field, /*complain=*/true);
3002 }
3003 }
3004
3005 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
3006 will be used later during class template instantiation.
3007 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
3008 a non-static member data (FIELD_DECL), a member function
3009 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
3010 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
3011 When FRIEND_P is nonzero, T is either a friend class
3012 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
3013 (FUNCTION_DECL, TEMPLATE_DECL). */
3014
3015 void
3016 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
3017 {
3018 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
3019 if (CLASSTYPE_TEMPLATE_INFO (type))
3020 CLASSTYPE_DECL_LIST (type)
3021 = tree_cons (friend_p ? NULL_TREE : type,
3022 t, CLASSTYPE_DECL_LIST (type));
3023 }
3024
3025 /* This function is called from declare_virt_assop_and_dtor via
3026 dfs_walk_all.
3027
3028 DATA is a type that direcly or indirectly inherits the base
3029 represented by BINFO. If BINFO contains a virtual assignment [copy
3030 assignment or move assigment] operator or a virtual constructor,
3031 declare that function in DATA if it hasn't been already declared. */
3032
3033 static tree
3034 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
3035 {
3036 tree bv, fn, t = (tree)data;
3037 tree opname = ansi_assopname (NOP_EXPR);
3038
3039 gcc_assert (t && CLASS_TYPE_P (t));
3040 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
3041
3042 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
3043 /* A base without a vtable needs no modification, and its bases
3044 are uninteresting. */
3045 return dfs_skip_bases;
3046
3047 if (BINFO_PRIMARY_P (binfo))
3048 /* If this is a primary base, then we have already looked at the
3049 virtual functions of its vtable. */
3050 return NULL_TREE;
3051
3052 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
3053 {
3054 fn = BV_FN (bv);
3055
3056 if (DECL_NAME (fn) == opname)
3057 {
3058 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
3059 lazily_declare_fn (sfk_copy_assignment, t);
3060 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
3061 lazily_declare_fn (sfk_move_assignment, t);
3062 }
3063 else if (DECL_DESTRUCTOR_P (fn)
3064 && CLASSTYPE_LAZY_DESTRUCTOR (t))
3065 lazily_declare_fn (sfk_destructor, t);
3066 }
3067
3068 return NULL_TREE;
3069 }
3070
3071 /* If the class type T has a direct or indirect base that contains a
3072 virtual assignment operator or a virtual destructor, declare that
3073 function in T if it hasn't been already declared. */
3074
3075 static void
3076 declare_virt_assop_and_dtor (tree t)
3077 {
3078 if (!(TYPE_POLYMORPHIC_P (t)
3079 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
3080 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
3081 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
3082 return;
3083
3084 dfs_walk_all (TYPE_BINFO (t),
3085 dfs_declare_virt_assop_and_dtor,
3086 NULL, t);
3087 }
3088
3089 /* Declare the inheriting constructor for class T inherited from base
3090 constructor CTOR with the parameter array PARMS of size NPARMS. */
3091
3092 static void
3093 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
3094 {
3095 /* We don't declare an inheriting ctor that would be a default,
3096 copy or move ctor for derived or base. */
3097 if (nparms == 0)
3098 return;
3099 if (nparms == 1
3100 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
3101 {
3102 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
3103 if (parm == t || parm == DECL_CONTEXT (ctor))
3104 return;
3105 }
3106
3107 tree parmlist = void_list_node;
3108 for (int i = nparms - 1; i >= 0; i--)
3109 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
3110 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
3111 t, false, ctor, parmlist);
3112 if (add_method (t, fn, NULL_TREE))
3113 {
3114 DECL_CHAIN (fn) = TYPE_METHODS (t);
3115 TYPE_METHODS (t) = fn;
3116 }
3117 }
3118
3119 /* Declare all the inheriting constructors for class T inherited from base
3120 constructor CTOR. */
3121
3122 static void
3123 one_inherited_ctor (tree ctor, tree t)
3124 {
3125 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
3126
3127 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
3128 int i = 0;
3129 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
3130 {
3131 if (TREE_PURPOSE (parms))
3132 one_inheriting_sig (t, ctor, new_parms, i);
3133 new_parms[i++] = TREE_VALUE (parms);
3134 }
3135 one_inheriting_sig (t, ctor, new_parms, i);
3136 if (parms == NULL_TREE)
3137 {
3138 if (warning (OPT_Winherited_variadic_ctor,
3139 "the ellipsis in %qD is not inherited", ctor))
3140 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
3141 }
3142 }
3143
3144 /* Create default constructors, assignment operators, and so forth for
3145 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
3146 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
3147 the class cannot have a default constructor, copy constructor
3148 taking a const reference argument, or an assignment operator taking
3149 a const reference, respectively. */
3150
3151 static void
3152 add_implicitly_declared_members (tree t, tree* access_decls,
3153 int cant_have_const_cctor,
3154 int cant_have_const_assignment)
3155 {
3156 bool move_ok = false;
3157
3158 if (cxx_dialect >= cxx11 && !CLASSTYPE_DESTRUCTORS (t)
3159 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
3160 && !type_has_move_constructor (t) && !type_has_move_assign (t))
3161 move_ok = true;
3162
3163 /* Destructor. */
3164 if (!CLASSTYPE_DESTRUCTORS (t))
3165 {
3166 /* In general, we create destructors lazily. */
3167 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
3168
3169 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3170 && TYPE_FOR_JAVA (t))
3171 /* But if this is a Java class, any non-trivial destructor is
3172 invalid, even if compiler-generated. Therefore, if the
3173 destructor is non-trivial we create it now. */
3174 lazily_declare_fn (sfk_destructor, t);
3175 }
3176
3177 /* [class.ctor]
3178
3179 If there is no user-declared constructor for a class, a default
3180 constructor is implicitly declared. */
3181 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
3182 {
3183 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
3184 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
3185 if (cxx_dialect >= cxx11)
3186 TYPE_HAS_CONSTEXPR_CTOR (t)
3187 /* This might force the declaration. */
3188 = type_has_constexpr_default_constructor (t);
3189 }
3190
3191 /* [class.ctor]
3192
3193 If a class definition does not explicitly declare a copy
3194 constructor, one is declared implicitly. */
3195 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
3196 {
3197 TYPE_HAS_COPY_CTOR (t) = 1;
3198 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
3199 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3200 if (move_ok)
3201 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3202 }
3203
3204 /* If there is no assignment operator, one will be created if and
3205 when it is needed. For now, just record whether or not the type
3206 of the parameter to the assignment operator will be a const or
3207 non-const reference. */
3208 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3209 {
3210 TYPE_HAS_COPY_ASSIGN (t) = 1;
3211 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3212 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3213 if (move_ok && !LAMBDA_TYPE_P (t))
3214 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3215 }
3216
3217 /* We can't be lazy about declaring functions that might override
3218 a virtual function from a base class. */
3219 declare_virt_assop_and_dtor (t);
3220
3221 while (*access_decls)
3222 {
3223 tree using_decl = TREE_VALUE (*access_decls);
3224 tree decl = USING_DECL_DECLS (using_decl);
3225 if (DECL_NAME (using_decl) == ctor_identifier)
3226 {
3227 /* declare, then remove the decl */
3228 tree ctor_list = decl;
3229 location_t loc = input_location;
3230 input_location = DECL_SOURCE_LOCATION (using_decl);
3231 if (ctor_list)
3232 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3233 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3234 *access_decls = TREE_CHAIN (*access_decls);
3235 input_location = loc;
3236 }
3237 else
3238 access_decls = &TREE_CHAIN (*access_decls);
3239 }
3240 }
3241
3242 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3243 count the number of fields in TYPE, including anonymous union
3244 members. */
3245
3246 static int
3247 count_fields (tree fields)
3248 {
3249 tree x;
3250 int n_fields = 0;
3251 for (x = fields; x; x = DECL_CHAIN (x))
3252 {
3253 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3254 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3255 else
3256 n_fields += 1;
3257 }
3258 return n_fields;
3259 }
3260
3261 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3262 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3263 elts, starting at offset IDX. */
3264
3265 static int
3266 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3267 {
3268 tree x;
3269 for (x = fields; x; x = DECL_CHAIN (x))
3270 {
3271 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3272 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3273 else
3274 field_vec->elts[idx++] = x;
3275 }
3276 return idx;
3277 }
3278
3279 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3280 starting at offset IDX. */
3281
3282 static int
3283 add_enum_fields_to_record_type (tree enumtype,
3284 struct sorted_fields_type *field_vec,
3285 int idx)
3286 {
3287 tree values;
3288 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3289 field_vec->elts[idx++] = TREE_VALUE (values);
3290 return idx;
3291 }
3292
3293 /* FIELD is a bit-field. We are finishing the processing for its
3294 enclosing type. Issue any appropriate messages and set appropriate
3295 flags. Returns false if an error has been diagnosed. */
3296
3297 static bool
3298 check_bitfield_decl (tree field)
3299 {
3300 tree type = TREE_TYPE (field);
3301 tree w;
3302
3303 /* Extract the declared width of the bitfield, which has been
3304 temporarily stashed in DECL_INITIAL. */
3305 w = DECL_INITIAL (field);
3306 gcc_assert (w != NULL_TREE);
3307 /* Remove the bit-field width indicator so that the rest of the
3308 compiler does not treat that value as an initializer. */
3309 DECL_INITIAL (field) = NULL_TREE;
3310
3311 /* Detect invalid bit-field type. */
3312 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3313 {
3314 error ("bit-field %q+#D with non-integral type", field);
3315 w = error_mark_node;
3316 }
3317 else
3318 {
3319 location_t loc = input_location;
3320 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3321 STRIP_NOPS (w);
3322
3323 /* detect invalid field size. */
3324 input_location = DECL_SOURCE_LOCATION (field);
3325 w = cxx_constant_value (w);
3326 input_location = loc;
3327
3328 if (TREE_CODE (w) != INTEGER_CST)
3329 {
3330 error ("bit-field %q+D width not an integer constant", field);
3331 w = error_mark_node;
3332 }
3333 else if (tree_int_cst_sgn (w) < 0)
3334 {
3335 error ("negative width in bit-field %q+D", field);
3336 w = error_mark_node;
3337 }
3338 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3339 {
3340 error ("zero width for bit-field %q+D", field);
3341 w = error_mark_node;
3342 }
3343 else if ((TREE_CODE (type) != ENUMERAL_TYPE
3344 && TREE_CODE (type) != BOOLEAN_TYPE
3345 && compare_tree_int (w, TYPE_PRECISION (type)) > 0)
3346 || ((TREE_CODE (type) == ENUMERAL_TYPE
3347 || TREE_CODE (type) == BOOLEAN_TYPE)
3348 && tree_int_cst_lt (TYPE_SIZE (type), w)))
3349 warning (0, "width of %q+D exceeds its type", field);
3350 else if (TREE_CODE (type) == ENUMERAL_TYPE
3351 && (0 > (compare_tree_int
3352 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3353 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3354 }
3355
3356 if (w != error_mark_node)
3357 {
3358 DECL_SIZE (field) = convert (bitsizetype, w);
3359 DECL_BIT_FIELD (field) = 1;
3360 return true;
3361 }
3362 else
3363 {
3364 /* Non-bit-fields are aligned for their type. */
3365 DECL_BIT_FIELD (field) = 0;
3366 CLEAR_DECL_C_BIT_FIELD (field);
3367 return false;
3368 }
3369 }
3370
3371 /* FIELD is a non bit-field. We are finishing the processing for its
3372 enclosing type T. Issue any appropriate messages and set appropriate
3373 flags. */
3374
3375 static void
3376 check_field_decl (tree field,
3377 tree t,
3378 int* cant_have_const_ctor,
3379 int* no_const_asn_ref,
3380 int* any_default_members)
3381 {
3382 tree type = strip_array_types (TREE_TYPE (field));
3383
3384 /* In C++98 an anonymous union cannot contain any fields which would change
3385 the settings of CANT_HAVE_CONST_CTOR and friends. */
3386 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11)
3387 ;
3388 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3389 structs. So, we recurse through their fields here. */
3390 else if (ANON_AGGR_TYPE_P (type))
3391 {
3392 tree fields;
3393
3394 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3395 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3396 check_field_decl (fields, t, cant_have_const_ctor,
3397 no_const_asn_ref, any_default_members);
3398 }
3399 /* Check members with class type for constructors, destructors,
3400 etc. */
3401 else if (CLASS_TYPE_P (type))
3402 {
3403 /* Never let anything with uninheritable virtuals
3404 make it through without complaint. */
3405 abstract_virtuals_error (field, type);
3406
3407 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11)
3408 {
3409 static bool warned;
3410 int oldcount = errorcount;
3411 if (TYPE_NEEDS_CONSTRUCTING (type))
3412 error ("member %q+#D with constructor not allowed in union",
3413 field);
3414 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3415 error ("member %q+#D with destructor not allowed in union", field);
3416 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3417 error ("member %q+#D with copy assignment operator not allowed in union",
3418 field);
3419 if (!warned && errorcount > oldcount)
3420 {
3421 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3422 "only available with -std=c++11 or -std=gnu++11");
3423 warned = true;
3424 }
3425 }
3426 else
3427 {
3428 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3429 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3430 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3431 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3432 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3433 || !TYPE_HAS_COPY_ASSIGN (type));
3434 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3435 || !TYPE_HAS_COPY_CTOR (type));
3436 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3437 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3438 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3439 || TYPE_HAS_COMPLEX_DFLT (type));
3440 }
3441
3442 if (TYPE_HAS_COPY_CTOR (type)
3443 && !TYPE_HAS_CONST_COPY_CTOR (type))
3444 *cant_have_const_ctor = 1;
3445
3446 if (TYPE_HAS_COPY_ASSIGN (type)
3447 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3448 *no_const_asn_ref = 1;
3449 }
3450
3451 check_abi_tags (t, field);
3452
3453 if (DECL_INITIAL (field) != NULL_TREE)
3454 {
3455 /* `build_class_init_list' does not recognize
3456 non-FIELD_DECLs. */
3457 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3458 error ("multiple fields in union %qT initialized", t);
3459 *any_default_members = 1;
3460 }
3461 }
3462
3463 /* Check the data members (both static and non-static), class-scoped
3464 typedefs, etc., appearing in the declaration of T. Issue
3465 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3466 declaration order) of access declarations; each TREE_VALUE in this
3467 list is a USING_DECL.
3468
3469 In addition, set the following flags:
3470
3471 EMPTY_P
3472 The class is empty, i.e., contains no non-static data members.
3473
3474 CANT_HAVE_CONST_CTOR_P
3475 This class cannot have an implicitly generated copy constructor
3476 taking a const reference.
3477
3478 CANT_HAVE_CONST_ASN_REF
3479 This class cannot have an implicitly generated assignment
3480 operator taking a const reference.
3481
3482 All of these flags should be initialized before calling this
3483 function.
3484
3485 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3486 fields can be added by adding to this chain. */
3487
3488 static void
3489 check_field_decls (tree t, tree *access_decls,
3490 int *cant_have_const_ctor_p,
3491 int *no_const_asn_ref_p)
3492 {
3493 tree *field;
3494 tree *next;
3495 bool has_pointers;
3496 int any_default_members;
3497 int cant_pack = 0;
3498 int field_access = -1;
3499
3500 /* Assume there are no access declarations. */
3501 *access_decls = NULL_TREE;
3502 /* Assume this class has no pointer members. */
3503 has_pointers = false;
3504 /* Assume none of the members of this class have default
3505 initializations. */
3506 any_default_members = 0;
3507
3508 for (field = &TYPE_FIELDS (t); *field; field = next)
3509 {
3510 tree x = *field;
3511 tree type = TREE_TYPE (x);
3512 int this_field_access;
3513
3514 next = &DECL_CHAIN (x);
3515
3516 if (TREE_CODE (x) == USING_DECL)
3517 {
3518 /* Save the access declarations for our caller. */
3519 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3520 continue;
3521 }
3522
3523 if (TREE_CODE (x) == TYPE_DECL
3524 || TREE_CODE (x) == TEMPLATE_DECL)
3525 continue;
3526
3527 /* If we've gotten this far, it's a data member, possibly static,
3528 or an enumerator. */
3529 if (TREE_CODE (x) != CONST_DECL)
3530 DECL_CONTEXT (x) = t;
3531
3532 /* When this goes into scope, it will be a non-local reference. */
3533 DECL_NONLOCAL (x) = 1;
3534
3535 if (TREE_CODE (t) == UNION_TYPE
3536 && cxx_dialect < cxx11)
3537 {
3538 /* [class.union] (C++98)
3539
3540 If a union contains a static data member, or a member of
3541 reference type, the program is ill-formed.
3542
3543 In C++11 this limitation doesn't exist anymore. */
3544 if (VAR_P (x))
3545 {
3546 error ("in C++98 %q+D may not be static because it is "
3547 "a member of a union", x);
3548 continue;
3549 }
3550 if (TREE_CODE (type) == REFERENCE_TYPE)
3551 {
3552 error ("in C++98 %q+D may not have reference type %qT "
3553 "because it is a member of a union", x, type);
3554 continue;
3555 }
3556 }
3557
3558 /* Perform error checking that did not get done in
3559 grokdeclarator. */
3560 if (TREE_CODE (type) == FUNCTION_TYPE)
3561 {
3562 error ("field %q+D invalidly declared function type", x);
3563 type = build_pointer_type (type);
3564 TREE_TYPE (x) = type;
3565 }
3566 else if (TREE_CODE (type) == METHOD_TYPE)
3567 {
3568 error ("field %q+D invalidly declared method type", x);
3569 type = build_pointer_type (type);
3570 TREE_TYPE (x) = type;
3571 }
3572
3573 if (type == error_mark_node)
3574 continue;
3575
3576 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3577 continue;
3578
3579 /* Now it can only be a FIELD_DECL. */
3580
3581 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3582 CLASSTYPE_NON_AGGREGATE (t) = 1;
3583
3584 /* If at least one non-static data member is non-literal, the whole
3585 class becomes non-literal. Per Core/1453, volatile non-static
3586 data members and base classes are also not allowed.
3587 Note: if the type is incomplete we will complain later on. */
3588 if (COMPLETE_TYPE_P (type)
3589 && (!literal_type_p (type) || CP_TYPE_VOLATILE_P (type)))
3590 CLASSTYPE_LITERAL_P (t) = false;
3591
3592 /* A standard-layout class is a class that:
3593 ...
3594 has the same access control (Clause 11) for all non-static data members,
3595 ... */
3596 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3597 if (field_access == -1)
3598 field_access = this_field_access;
3599 else if (this_field_access != field_access)
3600 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3601
3602 /* If this is of reference type, check if it needs an init. */
3603 if (TREE_CODE (type) == REFERENCE_TYPE)
3604 {
3605 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3606 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3607 if (DECL_INITIAL (x) == NULL_TREE)
3608 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3609
3610 /* ARM $12.6.2: [A member initializer list] (or, for an
3611 aggregate, initialization by a brace-enclosed list) is the
3612 only way to initialize nonstatic const and reference
3613 members. */
3614 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3615 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3616 }
3617
3618 type = strip_array_types (type);
3619
3620 if (TYPE_PACKED (t))
3621 {
3622 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3623 {
3624 warning
3625 (0,
3626 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3627 x);
3628 cant_pack = 1;
3629 }
3630 else if (DECL_C_BIT_FIELD (x)
3631 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3632 DECL_PACKED (x) = 1;
3633 }
3634
3635 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3636 /* We don't treat zero-width bitfields as making a class
3637 non-empty. */
3638 ;
3639 else
3640 {
3641 /* The class is non-empty. */
3642 CLASSTYPE_EMPTY_P (t) = 0;
3643 /* The class is not even nearly empty. */
3644 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3645 /* If one of the data members contains an empty class,
3646 so does T. */
3647 if (CLASS_TYPE_P (type)
3648 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3649 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3650 }
3651
3652 /* This is used by -Weffc++ (see below). Warn only for pointers
3653 to members which might hold dynamic memory. So do not warn
3654 for pointers to functions or pointers to members. */
3655 if (TYPE_PTR_P (type)
3656 && !TYPE_PTRFN_P (type))
3657 has_pointers = true;
3658
3659 if (CLASS_TYPE_P (type))
3660 {
3661 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3662 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3663 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3664 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3665 }
3666
3667 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3668 CLASSTYPE_HAS_MUTABLE (t) = 1;
3669
3670 if (DECL_MUTABLE_P (x))
3671 {
3672 if (CP_TYPE_CONST_P (type))
3673 {
3674 error ("member %q+D cannot be declared both %<const%> "
3675 "and %<mutable%>", x);
3676 continue;
3677 }
3678 if (TREE_CODE (type) == REFERENCE_TYPE)
3679 {
3680 error ("member %q+D cannot be declared as a %<mutable%> "
3681 "reference", x);
3682 continue;
3683 }
3684 }
3685
3686 if (! layout_pod_type_p (type))
3687 /* DR 148 now allows pointers to members (which are POD themselves),
3688 to be allowed in POD structs. */
3689 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3690
3691 if (!std_layout_type_p (type))
3692 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3693
3694 if (! zero_init_p (type))
3695 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3696
3697 /* We set DECL_C_BIT_FIELD in grokbitfield.
3698 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3699 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3700 check_field_decl (x, t,
3701 cant_have_const_ctor_p,
3702 no_const_asn_ref_p,
3703 &any_default_members);
3704
3705 /* Now that we've removed bit-field widths from DECL_INITIAL,
3706 anything left in DECL_INITIAL is an NSDMI that makes the class
3707 non-aggregate in C++11. */
3708 if (DECL_INITIAL (x) && cxx_dialect < cxx14)
3709 CLASSTYPE_NON_AGGREGATE (t) = true;
3710
3711 /* If any field is const, the structure type is pseudo-const. */
3712 if (CP_TYPE_CONST_P (type))
3713 {
3714 C_TYPE_FIELDS_READONLY (t) = 1;
3715 if (DECL_INITIAL (x) == NULL_TREE)
3716 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3717
3718 /* ARM $12.6.2: [A member initializer list] (or, for an
3719 aggregate, initialization by a brace-enclosed list) is the
3720 only way to initialize nonstatic const and reference
3721 members. */
3722 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3723 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3724 }
3725 /* A field that is pseudo-const makes the structure likewise. */
3726 else if (CLASS_TYPE_P (type))
3727 {
3728 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3729 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3730 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3731 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3732 }
3733
3734 /* Core issue 80: A nonstatic data member is required to have a
3735 different name from the class iff the class has a
3736 user-declared constructor. */
3737 if (constructor_name_p (DECL_NAME (x), t)
3738 && TYPE_HAS_USER_CONSTRUCTOR (t))
3739 permerror (input_location, "field %q+#D with same name as class", x);
3740 }
3741
3742 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3743 it should also define a copy constructor and an assignment operator to
3744 implement the correct copy semantic (deep vs shallow, etc.). As it is
3745 not feasible to check whether the constructors do allocate dynamic memory
3746 and store it within members, we approximate the warning like this:
3747
3748 -- Warn only if there are members which are pointers
3749 -- Warn only if there is a non-trivial constructor (otherwise,
3750 there cannot be memory allocated).
3751 -- Warn only if there is a non-trivial destructor. We assume that the
3752 user at least implemented the cleanup correctly, and a destructor
3753 is needed to free dynamic memory.
3754
3755 This seems enough for practical purposes. */
3756 if (warn_ecpp
3757 && has_pointers
3758 && TYPE_HAS_USER_CONSTRUCTOR (t)
3759 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3760 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3761 {
3762 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3763
3764 if (! TYPE_HAS_COPY_CTOR (t))
3765 {
3766 warning (OPT_Weffc__,
3767 " but does not override %<%T(const %T&)%>", t, t);
3768 if (!TYPE_HAS_COPY_ASSIGN (t))
3769 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3770 }
3771 else if (! TYPE_HAS_COPY_ASSIGN (t))
3772 warning (OPT_Weffc__,
3773 " but does not override %<operator=(const %T&)%>", t);
3774 }
3775
3776 /* Non-static data member initializers make the default constructor
3777 non-trivial. */
3778 if (any_default_members)
3779 {
3780 TYPE_NEEDS_CONSTRUCTING (t) = true;
3781 TYPE_HAS_COMPLEX_DFLT (t) = true;
3782 }
3783
3784 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3785 if (cant_pack)
3786 TYPE_PACKED (t) = 0;
3787
3788 /* Check anonymous struct/anonymous union fields. */
3789 finish_struct_anon (t);
3790
3791 /* We've built up the list of access declarations in reverse order.
3792 Fix that now. */
3793 *access_decls = nreverse (*access_decls);
3794 }
3795
3796 /* If TYPE is an empty class type, records its OFFSET in the table of
3797 OFFSETS. */
3798
3799 static int
3800 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3801 {
3802 splay_tree_node n;
3803
3804 if (!is_empty_class (type))
3805 return 0;
3806
3807 /* Record the location of this empty object in OFFSETS. */
3808 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3809 if (!n)
3810 n = splay_tree_insert (offsets,
3811 (splay_tree_key) offset,
3812 (splay_tree_value) NULL_TREE);
3813 n->value = ((splay_tree_value)
3814 tree_cons (NULL_TREE,
3815 type,
3816 (tree) n->value));
3817
3818 return 0;
3819 }
3820
3821 /* Returns nonzero if TYPE is an empty class type and there is
3822 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3823
3824 static int
3825 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3826 {
3827 splay_tree_node n;
3828 tree t;
3829
3830 if (!is_empty_class (type))
3831 return 0;
3832
3833 /* Record the location of this empty object in OFFSETS. */
3834 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3835 if (!n)
3836 return 0;
3837
3838 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3839 if (same_type_p (TREE_VALUE (t), type))
3840 return 1;
3841
3842 return 0;
3843 }
3844
3845 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3846 F for every subobject, passing it the type, offset, and table of
3847 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3848 be traversed.
3849
3850 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3851 than MAX_OFFSET will not be walked.
3852
3853 If F returns a nonzero value, the traversal ceases, and that value
3854 is returned. Otherwise, returns zero. */
3855
3856 static int
3857 walk_subobject_offsets (tree type,
3858 subobject_offset_fn f,
3859 tree offset,
3860 splay_tree offsets,
3861 tree max_offset,
3862 int vbases_p)
3863 {
3864 int r = 0;
3865 tree type_binfo = NULL_TREE;
3866
3867 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3868 stop. */
3869 if (max_offset && tree_int_cst_lt (max_offset, offset))
3870 return 0;
3871
3872 if (type == error_mark_node)
3873 return 0;
3874
3875 if (!TYPE_P (type))
3876 {
3877 type_binfo = type;
3878 type = BINFO_TYPE (type);
3879 }
3880
3881 if (CLASS_TYPE_P (type))
3882 {
3883 tree field;
3884 tree binfo;
3885 int i;
3886
3887 /* Avoid recursing into objects that are not interesting. */
3888 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3889 return 0;
3890
3891 /* Record the location of TYPE. */
3892 r = (*f) (type, offset, offsets);
3893 if (r)
3894 return r;
3895
3896 /* Iterate through the direct base classes of TYPE. */
3897 if (!type_binfo)
3898 type_binfo = TYPE_BINFO (type);
3899 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3900 {
3901 tree binfo_offset;
3902
3903 if (BINFO_VIRTUAL_P (binfo))
3904 continue;
3905
3906 tree orig_binfo;
3907 /* We cannot rely on BINFO_OFFSET being set for the base
3908 class yet, but the offsets for direct non-virtual
3909 bases can be calculated by going back to the TYPE. */
3910 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3911 binfo_offset = size_binop (PLUS_EXPR,
3912 offset,
3913 BINFO_OFFSET (orig_binfo));
3914
3915 r = walk_subobject_offsets (binfo,
3916 f,
3917 binfo_offset,
3918 offsets,
3919 max_offset,
3920 /*vbases_p=*/0);
3921 if (r)
3922 return r;
3923 }
3924
3925 if (CLASSTYPE_VBASECLASSES (type))
3926 {
3927 unsigned ix;
3928 vec<tree, va_gc> *vbases;
3929
3930 /* Iterate through the virtual base classes of TYPE. In G++
3931 3.2, we included virtual bases in the direct base class
3932 loop above, which results in incorrect results; the
3933 correct offsets for virtual bases are only known when
3934 working with the most derived type. */
3935 if (vbases_p)
3936 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3937 vec_safe_iterate (vbases, ix, &binfo); ix++)
3938 {
3939 r = walk_subobject_offsets (binfo,
3940 f,
3941 size_binop (PLUS_EXPR,
3942 offset,
3943 BINFO_OFFSET (binfo)),
3944 offsets,
3945 max_offset,
3946 /*vbases_p=*/0);
3947 if (r)
3948 return r;
3949 }
3950 else
3951 {
3952 /* We still have to walk the primary base, if it is
3953 virtual. (If it is non-virtual, then it was walked
3954 above.) */
3955 tree vbase = get_primary_binfo (type_binfo);
3956
3957 if (vbase && BINFO_VIRTUAL_P (vbase)
3958 && BINFO_PRIMARY_P (vbase)
3959 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3960 {
3961 r = (walk_subobject_offsets
3962 (vbase, f, offset,
3963 offsets, max_offset, /*vbases_p=*/0));
3964 if (r)
3965 return r;
3966 }
3967 }
3968 }
3969
3970 /* Iterate through the fields of TYPE. */
3971 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3972 if (TREE_CODE (field) == FIELD_DECL
3973 && TREE_TYPE (field) != error_mark_node
3974 && !DECL_ARTIFICIAL (field))
3975 {
3976 tree field_offset;
3977
3978 field_offset = byte_position (field);
3979
3980 r = walk_subobject_offsets (TREE_TYPE (field),
3981 f,
3982 size_binop (PLUS_EXPR,
3983 offset,
3984 field_offset),
3985 offsets,
3986 max_offset,
3987 /*vbases_p=*/1);
3988 if (r)
3989 return r;
3990 }
3991 }
3992 else if (TREE_CODE (type) == ARRAY_TYPE)
3993 {
3994 tree element_type = strip_array_types (type);
3995 tree domain = TYPE_DOMAIN (type);
3996 tree index;
3997
3998 /* Avoid recursing into objects that are not interesting. */
3999 if (!CLASS_TYPE_P (element_type)
4000 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
4001 return 0;
4002
4003 /* Step through each of the elements in the array. */
4004 for (index = size_zero_node;
4005 !tree_int_cst_lt (TYPE_MAX_VALUE (domain), index);
4006 index = size_binop (PLUS_EXPR, index, size_one_node))
4007 {
4008 r = walk_subobject_offsets (TREE_TYPE (type),
4009 f,
4010 offset,
4011 offsets,
4012 max_offset,
4013 /*vbases_p=*/1);
4014 if (r)
4015 return r;
4016 offset = size_binop (PLUS_EXPR, offset,
4017 TYPE_SIZE_UNIT (TREE_TYPE (type)));
4018 /* If this new OFFSET is bigger than the MAX_OFFSET, then
4019 there's no point in iterating through the remaining
4020 elements of the array. */
4021 if (max_offset && tree_int_cst_lt (max_offset, offset))
4022 break;
4023 }
4024 }
4025
4026 return 0;
4027 }
4028
4029 /* Record all of the empty subobjects of TYPE (either a type or a
4030 binfo). If IS_DATA_MEMBER is true, then a non-static data member
4031 is being placed at OFFSET; otherwise, it is a base class that is
4032 being placed at OFFSET. */
4033
4034 static void
4035 record_subobject_offsets (tree type,
4036 tree offset,
4037 splay_tree offsets,
4038 bool is_data_member)
4039 {
4040 tree max_offset;
4041 /* If recording subobjects for a non-static data member or a
4042 non-empty base class , we do not need to record offsets beyond
4043 the size of the biggest empty class. Additional data members
4044 will go at the end of the class. Additional base classes will go
4045 either at offset zero (if empty, in which case they cannot
4046 overlap with offsets past the size of the biggest empty class) or
4047 at the end of the class.
4048
4049 However, if we are placing an empty base class, then we must record
4050 all offsets, as either the empty class is at offset zero (where
4051 other empty classes might later be placed) or at the end of the
4052 class (where other objects might then be placed, so other empty
4053 subobjects might later overlap). */
4054 if (is_data_member
4055 || !is_empty_class (BINFO_TYPE (type)))
4056 max_offset = sizeof_biggest_empty_class;
4057 else
4058 max_offset = NULL_TREE;
4059 walk_subobject_offsets (type, record_subobject_offset, offset,
4060 offsets, max_offset, is_data_member);
4061 }
4062
4063 /* Returns nonzero if any of the empty subobjects of TYPE (located at
4064 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
4065 virtual bases of TYPE are examined. */
4066
4067 static int
4068 layout_conflict_p (tree type,
4069 tree offset,
4070 splay_tree offsets,
4071 int vbases_p)
4072 {
4073 splay_tree_node max_node;
4074
4075 /* Get the node in OFFSETS that indicates the maximum offset where
4076 an empty subobject is located. */
4077 max_node = splay_tree_max (offsets);
4078 /* If there aren't any empty subobjects, then there's no point in
4079 performing this check. */
4080 if (!max_node)
4081 return 0;
4082
4083 return walk_subobject_offsets (type, check_subobject_offset, offset,
4084 offsets, (tree) (max_node->key),
4085 vbases_p);
4086 }
4087
4088 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
4089 non-static data member of the type indicated by RLI. BINFO is the
4090 binfo corresponding to the base subobject, OFFSETS maps offsets to
4091 types already located at those offsets. This function determines
4092 the position of the DECL. */
4093
4094 static void
4095 layout_nonempty_base_or_field (record_layout_info rli,
4096 tree decl,
4097 tree binfo,
4098 splay_tree offsets)
4099 {
4100 tree offset = NULL_TREE;
4101 bool field_p;
4102 tree type;
4103
4104 if (binfo)
4105 {
4106 /* For the purposes of determining layout conflicts, we want to
4107 use the class type of BINFO; TREE_TYPE (DECL) will be the
4108 CLASSTYPE_AS_BASE version, which does not contain entries for
4109 zero-sized bases. */
4110 type = TREE_TYPE (binfo);
4111 field_p = false;
4112 }
4113 else
4114 {
4115 type = TREE_TYPE (decl);
4116 field_p = true;
4117 }
4118
4119 /* Try to place the field. It may take more than one try if we have
4120 a hard time placing the field without putting two objects of the
4121 same type at the same address. */
4122 while (1)
4123 {
4124 struct record_layout_info_s old_rli = *rli;
4125
4126 /* Place this field. */
4127 place_field (rli, decl);
4128 offset = byte_position (decl);
4129
4130 /* We have to check to see whether or not there is already
4131 something of the same type at the offset we're about to use.
4132 For example, consider:
4133
4134 struct S {};
4135 struct T : public S { int i; };
4136 struct U : public S, public T {};
4137
4138 Here, we put S at offset zero in U. Then, we can't put T at
4139 offset zero -- its S component would be at the same address
4140 as the S we already allocated. So, we have to skip ahead.
4141 Since all data members, including those whose type is an
4142 empty class, have nonzero size, any overlap can happen only
4143 with a direct or indirect base-class -- it can't happen with
4144 a data member. */
4145 /* In a union, overlap is permitted; all members are placed at
4146 offset zero. */
4147 if (TREE_CODE (rli->t) == UNION_TYPE)
4148 break;
4149 if (layout_conflict_p (field_p ? type : binfo, offset,
4150 offsets, field_p))
4151 {
4152 /* Strip off the size allocated to this field. That puts us
4153 at the first place we could have put the field with
4154 proper alignment. */
4155 *rli = old_rli;
4156
4157 /* Bump up by the alignment required for the type. */
4158 rli->bitpos
4159 = size_binop (PLUS_EXPR, rli->bitpos,
4160 bitsize_int (binfo
4161 ? CLASSTYPE_ALIGN (type)
4162 : TYPE_ALIGN (type)));
4163 normalize_rli (rli);
4164 }
4165 else
4166 /* There was no conflict. We're done laying out this field. */
4167 break;
4168 }
4169
4170 /* Now that we know where it will be placed, update its
4171 BINFO_OFFSET. */
4172 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
4173 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4174 this point because their BINFO_OFFSET is copied from another
4175 hierarchy. Therefore, we may not need to add the entire
4176 OFFSET. */
4177 propagate_binfo_offsets (binfo,
4178 size_diffop_loc (input_location,
4179 convert (ssizetype, offset),
4180 convert (ssizetype,
4181 BINFO_OFFSET (binfo))));
4182 }
4183
4184 /* Returns true if TYPE is empty and OFFSET is nonzero. */
4185
4186 static int
4187 empty_base_at_nonzero_offset_p (tree type,
4188 tree offset,
4189 splay_tree /*offsets*/)
4190 {
4191 return is_empty_class (type) && !integer_zerop (offset);
4192 }
4193
4194 /* Layout the empty base BINFO. EOC indicates the byte currently just
4195 past the end of the class, and should be correctly aligned for a
4196 class of the type indicated by BINFO; OFFSETS gives the offsets of
4197 the empty bases allocated so far. T is the most derived
4198 type. Return nonzero iff we added it at the end. */
4199
4200 static bool
4201 layout_empty_base (record_layout_info rli, tree binfo,
4202 tree eoc, splay_tree offsets)
4203 {
4204 tree alignment;
4205 tree basetype = BINFO_TYPE (binfo);
4206 bool atend = false;
4207
4208 /* This routine should only be used for empty classes. */
4209 gcc_assert (is_empty_class (basetype));
4210 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4211
4212 if (!integer_zerop (BINFO_OFFSET (binfo)))
4213 propagate_binfo_offsets
4214 (binfo, size_diffop_loc (input_location,
4215 size_zero_node, BINFO_OFFSET (binfo)));
4216
4217 /* This is an empty base class. We first try to put it at offset
4218 zero. */
4219 if (layout_conflict_p (binfo,
4220 BINFO_OFFSET (binfo),
4221 offsets,
4222 /*vbases_p=*/0))
4223 {
4224 /* That didn't work. Now, we move forward from the next
4225 available spot in the class. */
4226 atend = true;
4227 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4228 while (1)
4229 {
4230 if (!layout_conflict_p (binfo,
4231 BINFO_OFFSET (binfo),
4232 offsets,
4233 /*vbases_p=*/0))
4234 /* We finally found a spot where there's no overlap. */
4235 break;
4236
4237 /* There's overlap here, too. Bump along to the next spot. */
4238 propagate_binfo_offsets (binfo, alignment);
4239 }
4240 }
4241
4242 if (CLASSTYPE_USER_ALIGN (basetype))
4243 {
4244 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4245 if (warn_packed)
4246 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4247 TYPE_USER_ALIGN (rli->t) = 1;
4248 }
4249
4250 return atend;
4251 }
4252
4253 /* Layout the base given by BINFO in the class indicated by RLI.
4254 *BASE_ALIGN is a running maximum of the alignments of
4255 any base class. OFFSETS gives the location of empty base
4256 subobjects. T is the most derived type. Return nonzero if the new
4257 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4258 *NEXT_FIELD, unless BINFO is for an empty base class.
4259
4260 Returns the location at which the next field should be inserted. */
4261
4262 static tree *
4263 build_base_field (record_layout_info rli, tree binfo,
4264 splay_tree offsets, tree *next_field)
4265 {
4266 tree t = rli->t;
4267 tree basetype = BINFO_TYPE (binfo);
4268
4269 if (!COMPLETE_TYPE_P (basetype))
4270 /* This error is now reported in xref_tag, thus giving better
4271 location information. */
4272 return next_field;
4273
4274 /* Place the base class. */
4275 if (!is_empty_class (basetype))
4276 {
4277 tree decl;
4278
4279 /* The containing class is non-empty because it has a non-empty
4280 base class. */
4281 CLASSTYPE_EMPTY_P (t) = 0;
4282
4283 /* Create the FIELD_DECL. */
4284 decl = build_decl (input_location,
4285 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4286 DECL_ARTIFICIAL (decl) = 1;
4287 DECL_IGNORED_P (decl) = 1;
4288 DECL_FIELD_CONTEXT (decl) = t;
4289 if (CLASSTYPE_AS_BASE (basetype))
4290 {
4291 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4292 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4293 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4294 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4295 DECL_MODE (decl) = TYPE_MODE (basetype);
4296 DECL_FIELD_IS_BASE (decl) = 1;
4297
4298 /* Try to place the field. It may take more than one try if we
4299 have a hard time placing the field without putting two
4300 objects of the same type at the same address. */
4301 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4302 /* Add the new FIELD_DECL to the list of fields for T. */
4303 DECL_CHAIN (decl) = *next_field;
4304 *next_field = decl;
4305 next_field = &DECL_CHAIN (decl);
4306 }
4307 }
4308 else
4309 {
4310 tree eoc;
4311 bool atend;
4312
4313 /* On some platforms (ARM), even empty classes will not be
4314 byte-aligned. */
4315 eoc = round_up_loc (input_location,
4316 rli_size_unit_so_far (rli),
4317 CLASSTYPE_ALIGN_UNIT (basetype));
4318 atend = layout_empty_base (rli, binfo, eoc, offsets);
4319 /* A nearly-empty class "has no proper base class that is empty,
4320 not morally virtual, and at an offset other than zero." */
4321 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4322 {
4323 if (atend)
4324 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4325 /* The check above (used in G++ 3.2) is insufficient because
4326 an empty class placed at offset zero might itself have an
4327 empty base at a nonzero offset. */
4328 else if (walk_subobject_offsets (basetype,
4329 empty_base_at_nonzero_offset_p,
4330 size_zero_node,
4331 /*offsets=*/NULL,
4332 /*max_offset=*/NULL_TREE,
4333 /*vbases_p=*/true))
4334 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4335 }
4336
4337 /* We do not create a FIELD_DECL for empty base classes because
4338 it might overlap some other field. We want to be able to
4339 create CONSTRUCTORs for the class by iterating over the
4340 FIELD_DECLs, and the back end does not handle overlapping
4341 FIELD_DECLs. */
4342
4343 /* An empty virtual base causes a class to be non-empty
4344 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4345 here because that was already done when the virtual table
4346 pointer was created. */
4347 }
4348
4349 /* Record the offsets of BINFO and its base subobjects. */
4350 record_subobject_offsets (binfo,
4351 BINFO_OFFSET (binfo),
4352 offsets,
4353 /*is_data_member=*/false);
4354
4355 return next_field;
4356 }
4357
4358 /* Layout all of the non-virtual base classes. Record empty
4359 subobjects in OFFSETS. T is the most derived type. Return nonzero
4360 if the type cannot be nearly empty. The fields created
4361 corresponding to the base classes will be inserted at
4362 *NEXT_FIELD. */
4363
4364 static void
4365 build_base_fields (record_layout_info rli,
4366 splay_tree offsets, tree *next_field)
4367 {
4368 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4369 subobjects. */
4370 tree t = rli->t;
4371 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4372 int i;
4373
4374 /* The primary base class is always allocated first. */
4375 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4376 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4377 offsets, next_field);
4378
4379 /* Now allocate the rest of the bases. */
4380 for (i = 0; i < n_baseclasses; ++i)
4381 {
4382 tree base_binfo;
4383
4384 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4385
4386 /* The primary base was already allocated above, so we don't
4387 need to allocate it again here. */
4388 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4389 continue;
4390
4391 /* Virtual bases are added at the end (a primary virtual base
4392 will have already been added). */
4393 if (BINFO_VIRTUAL_P (base_binfo))
4394 continue;
4395
4396 next_field = build_base_field (rli, base_binfo,
4397 offsets, next_field);
4398 }
4399 }
4400
4401 /* Go through the TYPE_METHODS of T issuing any appropriate
4402 diagnostics, figuring out which methods override which other
4403 methods, and so forth. */
4404
4405 static void
4406 check_methods (tree t)
4407 {
4408 tree x;
4409
4410 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4411 {
4412 check_for_override (x, t);
4413 if (DECL_PURE_VIRTUAL_P (x) && (TREE_CODE (x) != FUNCTION_DECL || ! DECL_VINDEX (x)))
4414 error ("initializer specified for non-virtual method %q+D", x);
4415 /* The name of the field is the original field name
4416 Save this in auxiliary field for later overloading. */
4417 if (TREE_CODE (x) == FUNCTION_DECL && DECL_VINDEX (x))
4418 {
4419 TYPE_POLYMORPHIC_P (t) = 1;
4420 if (DECL_PURE_VIRTUAL_P (x))
4421 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4422 }
4423 /* All user-provided destructors are non-trivial.
4424 Constructors and assignment ops are handled in
4425 grok_special_member_properties. */
4426 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4427 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4428 }
4429 }
4430
4431 /* FN is a constructor or destructor. Clone the declaration to create
4432 a specialized in-charge or not-in-charge version, as indicated by
4433 NAME. */
4434
4435 static tree
4436 build_clone (tree fn, tree name)
4437 {
4438 tree parms;
4439 tree clone;
4440
4441 /* Copy the function. */
4442 clone = copy_decl (fn);
4443 /* Reset the function name. */
4444 DECL_NAME (clone) = name;
4445 /* Remember where this function came from. */
4446 DECL_ABSTRACT_ORIGIN (clone) = fn;
4447 /* Make it easy to find the CLONE given the FN. */
4448 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4449 DECL_CHAIN (fn) = clone;
4450
4451 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4452 if (TREE_CODE (clone) == TEMPLATE_DECL)
4453 {
4454 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4455 DECL_TEMPLATE_RESULT (clone) = result;
4456 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4457 DECL_TI_TEMPLATE (result) = clone;
4458 TREE_TYPE (clone) = TREE_TYPE (result);
4459 return clone;
4460 }
4461
4462 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4463 DECL_CLONED_FUNCTION (clone) = fn;
4464 /* There's no pending inline data for this function. */
4465 DECL_PENDING_INLINE_INFO (clone) = NULL;
4466 DECL_PENDING_INLINE_P (clone) = 0;
4467
4468 /* The base-class destructor is not virtual. */
4469 if (name == base_dtor_identifier)
4470 {
4471 DECL_VIRTUAL_P (clone) = 0;
4472 if (TREE_CODE (clone) != TEMPLATE_DECL)
4473 DECL_VINDEX (clone) = NULL_TREE;
4474 }
4475
4476 /* If there was an in-charge parameter, drop it from the function
4477 type. */
4478 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4479 {
4480 tree basetype;
4481 tree parmtypes;
4482 tree exceptions;
4483
4484 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4485 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4486 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4487 /* Skip the `this' parameter. */
4488 parmtypes = TREE_CHAIN (parmtypes);
4489 /* Skip the in-charge parameter. */
4490 parmtypes = TREE_CHAIN (parmtypes);
4491 /* And the VTT parm, in a complete [cd]tor. */
4492 if (DECL_HAS_VTT_PARM_P (fn)
4493 && ! DECL_NEEDS_VTT_PARM_P (clone))
4494 parmtypes = TREE_CHAIN (parmtypes);
4495 /* If this is subobject constructor or destructor, add the vtt
4496 parameter. */
4497 TREE_TYPE (clone)
4498 = build_method_type_directly (basetype,
4499 TREE_TYPE (TREE_TYPE (clone)),
4500 parmtypes);
4501 if (exceptions)
4502 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4503 exceptions);
4504 TREE_TYPE (clone)
4505 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4506 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4507 }
4508
4509 /* Copy the function parameters. */
4510 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4511 /* Remove the in-charge parameter. */
4512 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4513 {
4514 DECL_CHAIN (DECL_ARGUMENTS (clone))
4515 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4516 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4517 }
4518 /* And the VTT parm, in a complete [cd]tor. */
4519 if (DECL_HAS_VTT_PARM_P (fn))
4520 {
4521 if (DECL_NEEDS_VTT_PARM_P (clone))
4522 DECL_HAS_VTT_PARM_P (clone) = 1;
4523 else
4524 {
4525 DECL_CHAIN (DECL_ARGUMENTS (clone))
4526 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4527 DECL_HAS_VTT_PARM_P (clone) = 0;
4528 }
4529 }
4530
4531 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4532 {
4533 DECL_CONTEXT (parms) = clone;
4534 cxx_dup_lang_specific_decl (parms);
4535 }
4536
4537 /* Create the RTL for this function. */
4538 SET_DECL_RTL (clone, NULL);
4539 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4540
4541 if (pch_file)
4542 note_decl_for_pch (clone);
4543
4544 return clone;
4545 }
4546
4547 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4548 not invoke this function directly.
4549
4550 For a non-thunk function, returns the address of the slot for storing
4551 the function it is a clone of. Otherwise returns NULL_TREE.
4552
4553 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4554 cloned_function is unset. This is to support the separate
4555 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4556 on a template makes sense, but not the former. */
4557
4558 tree *
4559 decl_cloned_function_p (const_tree decl, bool just_testing)
4560 {
4561 tree *ptr;
4562 if (just_testing)
4563 decl = STRIP_TEMPLATE (decl);
4564
4565 if (TREE_CODE (decl) != FUNCTION_DECL
4566 || !DECL_LANG_SPECIFIC (decl)
4567 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4568 {
4569 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4570 if (!just_testing)
4571 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4572 else
4573 #endif
4574 return NULL;
4575 }
4576
4577 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4578 if (just_testing && *ptr == NULL_TREE)
4579 return NULL;
4580 else
4581 return ptr;
4582 }
4583
4584 /* Produce declarations for all appropriate clones of FN. If
4585 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4586 CLASTYPE_METHOD_VEC as well. */
4587
4588 void
4589 clone_function_decl (tree fn, int update_method_vec_p)
4590 {
4591 tree clone;
4592
4593 /* Avoid inappropriate cloning. */
4594 if (DECL_CHAIN (fn)
4595 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4596 return;
4597
4598 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4599 {
4600 /* For each constructor, we need two variants: an in-charge version
4601 and a not-in-charge version. */
4602 clone = build_clone (fn, complete_ctor_identifier);
4603 if (update_method_vec_p)
4604 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4605 clone = build_clone (fn, base_ctor_identifier);
4606 if (update_method_vec_p)
4607 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4608 }
4609 else
4610 {
4611 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4612
4613 /* For each destructor, we need three variants: an in-charge
4614 version, a not-in-charge version, and an in-charge deleting
4615 version. We clone the deleting version first because that
4616 means it will go second on the TYPE_METHODS list -- and that
4617 corresponds to the correct layout order in the virtual
4618 function table.
4619
4620 For a non-virtual destructor, we do not build a deleting
4621 destructor. */
4622 if (DECL_VIRTUAL_P (fn))
4623 {
4624 clone = build_clone (fn, deleting_dtor_identifier);
4625 if (update_method_vec_p)
4626 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4627 }
4628 clone = build_clone (fn, complete_dtor_identifier);
4629 if (update_method_vec_p)
4630 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4631 clone = build_clone (fn, base_dtor_identifier);
4632 if (update_method_vec_p)
4633 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4634 }
4635
4636 /* Note that this is an abstract function that is never emitted. */
4637 DECL_ABSTRACT_P (fn) = true;
4638 }
4639
4640 /* DECL is an in charge constructor, which is being defined. This will
4641 have had an in class declaration, from whence clones were
4642 declared. An out-of-class definition can specify additional default
4643 arguments. As it is the clones that are involved in overload
4644 resolution, we must propagate the information from the DECL to its
4645 clones. */
4646
4647 void
4648 adjust_clone_args (tree decl)
4649 {
4650 tree clone;
4651
4652 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4653 clone = DECL_CHAIN (clone))
4654 {
4655 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4656 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4657 tree decl_parms, clone_parms;
4658
4659 clone_parms = orig_clone_parms;
4660
4661 /* Skip the 'this' parameter. */
4662 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4663 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4664
4665 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4666 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4667 if (DECL_HAS_VTT_PARM_P (decl))
4668 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4669
4670 clone_parms = orig_clone_parms;
4671 if (DECL_HAS_VTT_PARM_P (clone))
4672 clone_parms = TREE_CHAIN (clone_parms);
4673
4674 for (decl_parms = orig_decl_parms; decl_parms;
4675 decl_parms = TREE_CHAIN (decl_parms),
4676 clone_parms = TREE_CHAIN (clone_parms))
4677 {
4678 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4679 TREE_TYPE (clone_parms)));
4680
4681 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4682 {
4683 /* A default parameter has been added. Adjust the
4684 clone's parameters. */
4685 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4686 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4687 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4688 tree type;
4689
4690 clone_parms = orig_decl_parms;
4691
4692 if (DECL_HAS_VTT_PARM_P (clone))
4693 {
4694 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4695 TREE_VALUE (orig_clone_parms),
4696 clone_parms);
4697 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4698 }
4699 type = build_method_type_directly (basetype,
4700 TREE_TYPE (TREE_TYPE (clone)),
4701 clone_parms);
4702 if (exceptions)
4703 type = build_exception_variant (type, exceptions);
4704 if (attrs)
4705 type = cp_build_type_attribute_variant (type, attrs);
4706 TREE_TYPE (clone) = type;
4707
4708 clone_parms = NULL_TREE;
4709 break;
4710 }
4711 }
4712 gcc_assert (!clone_parms);
4713 }
4714 }
4715
4716 /* For each of the constructors and destructors in T, create an
4717 in-charge and not-in-charge variant. */
4718
4719 static void
4720 clone_constructors_and_destructors (tree t)
4721 {
4722 tree fns;
4723
4724 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4725 out now. */
4726 if (!CLASSTYPE_METHOD_VEC (t))
4727 return;
4728
4729 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4730 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4731 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4732 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4733 }
4734
4735 /* Deduce noexcept for a destructor DTOR. */
4736
4737 void
4738 deduce_noexcept_on_destructor (tree dtor)
4739 {
4740 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4741 {
4742 tree eh_spec = unevaluated_noexcept_spec ();
4743 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4744 }
4745 }
4746
4747 /* For each destructor in T, deduce noexcept:
4748
4749 12.4/3: A declaration of a destructor that does not have an
4750 exception-specification is implicitly considered to have the
4751 same exception-specification as an implicit declaration (15.4). */
4752
4753 static void
4754 deduce_noexcept_on_destructors (tree t)
4755 {
4756 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4757 out now. */
4758 if (!CLASSTYPE_METHOD_VEC (t))
4759 return;
4760
4761 for (tree fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4762 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4763 }
4764
4765 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4766 of TYPE for virtual functions which FNDECL overrides. Return a
4767 mask of the tm attributes found therein. */
4768
4769 static int
4770 look_for_tm_attr_overrides (tree type, tree fndecl)
4771 {
4772 tree binfo = TYPE_BINFO (type);
4773 tree base_binfo;
4774 int ix, found = 0;
4775
4776 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4777 {
4778 tree o, basetype = BINFO_TYPE (base_binfo);
4779
4780 if (!TYPE_POLYMORPHIC_P (basetype))
4781 continue;
4782
4783 o = look_for_overrides_here (basetype, fndecl);
4784 if (o)
4785 found |= tm_attr_to_mask (find_tm_attribute
4786 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4787 else
4788 found |= look_for_tm_attr_overrides (basetype, fndecl);
4789 }
4790
4791 return found;
4792 }
4793
4794 /* Subroutine of set_method_tm_attributes. Handle the checks and
4795 inheritance for one virtual method FNDECL. */
4796
4797 static void
4798 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4799 {
4800 tree tm_attr;
4801 int found, have;
4802
4803 found = look_for_tm_attr_overrides (type, fndecl);
4804
4805 /* If FNDECL doesn't actually override anything (i.e. T is the
4806 class that first declares FNDECL virtual), then we're done. */
4807 if (found == 0)
4808 return;
4809
4810 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4811 have = tm_attr_to_mask (tm_attr);
4812
4813 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4814 tm_pure must match exactly, otherwise no weakening of
4815 tm_safe > tm_callable > nothing. */
4816 /* ??? The tm_pure attribute didn't make the transition to the
4817 multivendor language spec. */
4818 if (have == TM_ATTR_PURE)
4819 {
4820 if (found != TM_ATTR_PURE)
4821 {
4822 found &= -found;
4823 goto err_override;
4824 }
4825 }
4826 /* If the overridden function is tm_pure, then FNDECL must be. */
4827 else if (found == TM_ATTR_PURE && tm_attr)
4828 goto err_override;
4829 /* Look for base class combinations that cannot be satisfied. */
4830 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4831 {
4832 found &= ~TM_ATTR_PURE;
4833 found &= -found;
4834 error_at (DECL_SOURCE_LOCATION (fndecl),
4835 "method overrides both %<transaction_pure%> and %qE methods",
4836 tm_mask_to_attr (found));
4837 }
4838 /* If FNDECL did not declare an attribute, then inherit the most
4839 restrictive one. */
4840 else if (tm_attr == NULL)
4841 {
4842 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4843 }
4844 /* Otherwise validate that we're not weaker than a function
4845 that is being overridden. */
4846 else
4847 {
4848 found &= -found;
4849 if (found <= TM_ATTR_CALLABLE && have > found)
4850 goto err_override;
4851 }
4852 return;
4853
4854 err_override:
4855 error_at (DECL_SOURCE_LOCATION (fndecl),
4856 "method declared %qE overriding %qE method",
4857 tm_attr, tm_mask_to_attr (found));
4858 }
4859
4860 /* For each of the methods in T, propagate a class-level tm attribute. */
4861
4862 static void
4863 set_method_tm_attributes (tree t)
4864 {
4865 tree class_tm_attr, fndecl;
4866
4867 /* Don't bother collecting tm attributes if transactional memory
4868 support is not enabled. */
4869 if (!flag_tm)
4870 return;
4871
4872 /* Process virtual methods first, as they inherit directly from the
4873 base virtual function and also require validation of new attributes. */
4874 if (TYPE_CONTAINS_VPTR_P (t))
4875 {
4876 tree vchain;
4877 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4878 vchain = TREE_CHAIN (vchain))
4879 {
4880 fndecl = BV_FN (vchain);
4881 if (DECL_THUNK_P (fndecl))
4882 fndecl = THUNK_TARGET (fndecl);
4883 set_one_vmethod_tm_attributes (t, fndecl);
4884 }
4885 }
4886
4887 /* If the class doesn't have an attribute, nothing more to do. */
4888 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4889 if (class_tm_attr == NULL)
4890 return;
4891
4892 /* Any method that does not yet have a tm attribute inherits
4893 the one from the class. */
4894 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4895 {
4896 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4897 apply_tm_attr (fndecl, class_tm_attr);
4898 }
4899 }
4900
4901 /* Returns true iff class T has a user-defined constructor other than
4902 the default constructor. */
4903
4904 bool
4905 type_has_user_nondefault_constructor (tree t)
4906 {
4907 tree fns;
4908
4909 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4910 return false;
4911
4912 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4913 {
4914 tree fn = OVL_CURRENT (fns);
4915 if (!DECL_ARTIFICIAL (fn)
4916 && (TREE_CODE (fn) == TEMPLATE_DECL
4917 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4918 != NULL_TREE)))
4919 return true;
4920 }
4921
4922 return false;
4923 }
4924
4925 /* Returns the defaulted constructor if T has one. Otherwise, returns
4926 NULL_TREE. */
4927
4928 tree
4929 in_class_defaulted_default_constructor (tree t)
4930 {
4931 tree fns, args;
4932
4933 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4934 return NULL_TREE;
4935
4936 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4937 {
4938 tree fn = OVL_CURRENT (fns);
4939
4940 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4941 {
4942 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4943 while (args && TREE_PURPOSE (args))
4944 args = TREE_CHAIN (args);
4945 if (!args || args == void_list_node)
4946 return fn;
4947 }
4948 }
4949
4950 return NULL_TREE;
4951 }
4952
4953 /* Returns true iff FN is a user-provided function, i.e. user-declared
4954 and not defaulted at its first declaration; or explicit, private,
4955 protected, or non-const. */
4956
4957 bool
4958 user_provided_p (tree fn)
4959 {
4960 if (TREE_CODE (fn) == TEMPLATE_DECL)
4961 return true;
4962 else
4963 return (!DECL_ARTIFICIAL (fn)
4964 && !(DECL_INITIALIZED_IN_CLASS_P (fn)
4965 && (DECL_DEFAULTED_FN (fn) || DECL_DELETED_FN (fn))));
4966 }
4967
4968 /* Returns true iff class T has a user-provided constructor. */
4969
4970 bool
4971 type_has_user_provided_constructor (tree t)
4972 {
4973 tree fns;
4974
4975 if (!CLASS_TYPE_P (t))
4976 return false;
4977
4978 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4979 return false;
4980
4981 /* This can happen in error cases; avoid crashing. */
4982 if (!CLASSTYPE_METHOD_VEC (t))
4983 return false;
4984
4985 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4986 if (user_provided_p (OVL_CURRENT (fns)))
4987 return true;
4988
4989 return false;
4990 }
4991
4992 /* Returns true iff class T has a non-user-provided (i.e. implicitly
4993 declared or explicitly defaulted in the class body) default
4994 constructor. */
4995
4996 bool
4997 type_has_non_user_provided_default_constructor (tree t)
4998 {
4999 tree fns;
5000
5001 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (t))
5002 return false;
5003 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5004 return true;
5005
5006 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5007 {
5008 tree fn = OVL_CURRENT (fns);
5009 if (TREE_CODE (fn) == FUNCTION_DECL
5010 && !user_provided_p (fn)
5011 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
5012 return true;
5013 }
5014
5015 return false;
5016 }
5017
5018 /* TYPE is being used as a virtual base, and has a non-trivial move
5019 assignment. Return true if this is due to there being a user-provided
5020 move assignment in TYPE or one of its subobjects; if there isn't, then
5021 multiple move assignment can't cause any harm. */
5022
5023 bool
5024 vbase_has_user_provided_move_assign (tree type)
5025 {
5026 /* Does the type itself have a user-provided move assignment operator? */
5027 for (tree fns
5028 = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR));
5029 fns; fns = OVL_NEXT (fns))
5030 {
5031 tree fn = OVL_CURRENT (fns);
5032 if (move_fn_p (fn) && user_provided_p (fn))
5033 return true;
5034 }
5035
5036 /* Do any of its bases? */
5037 tree binfo = TYPE_BINFO (type);
5038 tree base_binfo;
5039 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5040 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
5041 return true;
5042
5043 /* Or non-static data members? */
5044 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5045 {
5046 if (TREE_CODE (field) == FIELD_DECL
5047 && CLASS_TYPE_P (TREE_TYPE (field))
5048 && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
5049 return true;
5050 }
5051
5052 /* Seems not. */
5053 return false;
5054 }
5055
5056 /* If default-initialization leaves part of TYPE uninitialized, returns
5057 a DECL for the field or TYPE itself (DR 253). */
5058
5059 tree
5060 default_init_uninitialized_part (tree type)
5061 {
5062 tree t, r, binfo;
5063 int i;
5064
5065 type = strip_array_types (type);
5066 if (!CLASS_TYPE_P (type))
5067 return type;
5068 if (!type_has_non_user_provided_default_constructor (type))
5069 return NULL_TREE;
5070 for (binfo = TYPE_BINFO (type), i = 0;
5071 BINFO_BASE_ITERATE (binfo, i, t); ++i)
5072 {
5073 r = default_init_uninitialized_part (BINFO_TYPE (t));
5074 if (r)
5075 return r;
5076 }
5077 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
5078 if (TREE_CODE (t) == FIELD_DECL
5079 && !DECL_ARTIFICIAL (t)
5080 && !DECL_INITIAL (t))
5081 {
5082 r = default_init_uninitialized_part (TREE_TYPE (t));
5083 if (r)
5084 return DECL_P (r) ? r : t;
5085 }
5086
5087 return NULL_TREE;
5088 }
5089
5090 /* Returns true iff for class T, a trivial synthesized default constructor
5091 would be constexpr. */
5092
5093 bool
5094 trivial_default_constructor_is_constexpr (tree t)
5095 {
5096 /* A defaulted trivial default constructor is constexpr
5097 if there is nothing to initialize. */
5098 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
5099 return is_really_empty_class (t);
5100 }
5101
5102 /* Returns true iff class T has a constexpr default constructor. */
5103
5104 bool
5105 type_has_constexpr_default_constructor (tree t)
5106 {
5107 tree fns;
5108
5109 if (!CLASS_TYPE_P (t))
5110 {
5111 /* The caller should have stripped an enclosing array. */
5112 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
5113 return false;
5114 }
5115 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5116 {
5117 if (!TYPE_HAS_COMPLEX_DFLT (t))
5118 return trivial_default_constructor_is_constexpr (t);
5119 /* Non-trivial, we need to check subobject constructors. */
5120 lazily_declare_fn (sfk_constructor, t);
5121 }
5122 fns = locate_ctor (t);
5123 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
5124 }
5125
5126 /* Returns true iff class TYPE has a virtual destructor. */
5127
5128 bool
5129 type_has_virtual_destructor (tree type)
5130 {
5131 tree dtor;
5132
5133 if (!CLASS_TYPE_P (type))
5134 return false;
5135
5136 gcc_assert (COMPLETE_TYPE_P (type));
5137 dtor = CLASSTYPE_DESTRUCTORS (type);
5138 return (dtor && DECL_VIRTUAL_P (dtor));
5139 }
5140
5141 /* Returns true iff class T has a move constructor. */
5142
5143 bool
5144 type_has_move_constructor (tree t)
5145 {
5146 tree fns;
5147
5148 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5149 {
5150 gcc_assert (COMPLETE_TYPE_P (t));
5151 lazily_declare_fn (sfk_move_constructor, t);
5152 }
5153
5154 if (!CLASSTYPE_METHOD_VEC (t))
5155 return false;
5156
5157 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5158 if (move_fn_p (OVL_CURRENT (fns)))
5159 return true;
5160
5161 return false;
5162 }
5163
5164 /* Returns true iff class T has a move assignment operator. */
5165
5166 bool
5167 type_has_move_assign (tree t)
5168 {
5169 tree fns;
5170
5171 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5172 {
5173 gcc_assert (COMPLETE_TYPE_P (t));
5174 lazily_declare_fn (sfk_move_assignment, t);
5175 }
5176
5177 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5178 fns; fns = OVL_NEXT (fns))
5179 if (move_fn_p (OVL_CURRENT (fns)))
5180 return true;
5181
5182 return false;
5183 }
5184
5185 /* Returns true iff class T has a move constructor that was explicitly
5186 declared in the class body. Note that this is different from
5187 "user-provided", which doesn't include functions that are defaulted in
5188 the class. */
5189
5190 bool
5191 type_has_user_declared_move_constructor (tree t)
5192 {
5193 tree fns;
5194
5195 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5196 return false;
5197
5198 if (!CLASSTYPE_METHOD_VEC (t))
5199 return false;
5200
5201 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5202 {
5203 tree fn = OVL_CURRENT (fns);
5204 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5205 return true;
5206 }
5207
5208 return false;
5209 }
5210
5211 /* Returns true iff class T has a move assignment operator that was
5212 explicitly declared in the class body. */
5213
5214 bool
5215 type_has_user_declared_move_assign (tree t)
5216 {
5217 tree fns;
5218
5219 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5220 return false;
5221
5222 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5223 fns; fns = OVL_NEXT (fns))
5224 {
5225 tree fn = OVL_CURRENT (fns);
5226 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5227 return true;
5228 }
5229
5230 return false;
5231 }
5232
5233 /* Nonzero if we need to build up a constructor call when initializing an
5234 object of this class, either because it has a user-declared constructor
5235 or because it doesn't have a default constructor (so we need to give an
5236 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5237 what you care about is whether or not an object can be produced by a
5238 constructor (e.g. so we don't set TREE_READONLY on const variables of
5239 such type); use this function when what you care about is whether or not
5240 to try to call a constructor to create an object. The latter case is
5241 the former plus some cases of constructors that cannot be called. */
5242
5243 bool
5244 type_build_ctor_call (tree t)
5245 {
5246 tree inner;
5247 if (TYPE_NEEDS_CONSTRUCTING (t))
5248 return true;
5249 inner = strip_array_types (t);
5250 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner))
5251 return false;
5252 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner))
5253 return true;
5254 if (cxx_dialect < cxx11)
5255 return false;
5256 /* A user-declared constructor might be private, and a constructor might
5257 be trivial but deleted. */
5258 for (tree fns = lookup_fnfields_slot (inner, complete_ctor_identifier);
5259 fns; fns = OVL_NEXT (fns))
5260 {
5261 tree fn = OVL_CURRENT (fns);
5262 if (!DECL_ARTIFICIAL (fn)
5263 || DECL_DELETED_FN (fn))
5264 return true;
5265 }
5266 return false;
5267 }
5268
5269 /* Like type_build_ctor_call, but for destructors. */
5270
5271 bool
5272 type_build_dtor_call (tree t)
5273 {
5274 tree inner;
5275 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5276 return true;
5277 inner = strip_array_types (t);
5278 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner)
5279 || !COMPLETE_TYPE_P (inner))
5280 return false;
5281 if (cxx_dialect < cxx11)
5282 return false;
5283 /* A user-declared destructor might be private, and a destructor might
5284 be trivial but deleted. */
5285 for (tree fns = lookup_fnfields_slot (inner, complete_dtor_identifier);
5286 fns; fns = OVL_NEXT (fns))
5287 {
5288 tree fn = OVL_CURRENT (fns);
5289 if (!DECL_ARTIFICIAL (fn)
5290 || DECL_DELETED_FN (fn))
5291 return true;
5292 }
5293 return false;
5294 }
5295
5296 /* Remove all zero-width bit-fields from T. */
5297
5298 static void
5299 remove_zero_width_bit_fields (tree t)
5300 {
5301 tree *fieldsp;
5302
5303 fieldsp = &TYPE_FIELDS (t);
5304 while (*fieldsp)
5305 {
5306 if (TREE_CODE (*fieldsp) == FIELD_DECL
5307 && DECL_C_BIT_FIELD (*fieldsp)
5308 /* We should not be confused by the fact that grokbitfield
5309 temporarily sets the width of the bit field into
5310 DECL_INITIAL (*fieldsp).
5311 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5312 to that width. */
5313 && integer_zerop (DECL_SIZE (*fieldsp)))
5314 *fieldsp = DECL_CHAIN (*fieldsp);
5315 else
5316 fieldsp = &DECL_CHAIN (*fieldsp);
5317 }
5318 }
5319
5320 /* Returns TRUE iff we need a cookie when dynamically allocating an
5321 array whose elements have the indicated class TYPE. */
5322
5323 static bool
5324 type_requires_array_cookie (tree type)
5325 {
5326 tree fns;
5327 bool has_two_argument_delete_p = false;
5328
5329 gcc_assert (CLASS_TYPE_P (type));
5330
5331 /* If there's a non-trivial destructor, we need a cookie. In order
5332 to iterate through the array calling the destructor for each
5333 element, we'll have to know how many elements there are. */
5334 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5335 return true;
5336
5337 /* If the usual deallocation function is a two-argument whose second
5338 argument is of type `size_t', then we have to pass the size of
5339 the array to the deallocation function, so we will need to store
5340 a cookie. */
5341 fns = lookup_fnfields (TYPE_BINFO (type),
5342 ansi_opname (VEC_DELETE_EXPR),
5343 /*protect=*/0);
5344 /* If there are no `operator []' members, or the lookup is
5345 ambiguous, then we don't need a cookie. */
5346 if (!fns || fns == error_mark_node)
5347 return false;
5348 /* Loop through all of the functions. */
5349 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5350 {
5351 tree fn;
5352 tree second_parm;
5353
5354 /* Select the current function. */
5355 fn = OVL_CURRENT (fns);
5356 /* See if this function is a one-argument delete function. If
5357 it is, then it will be the usual deallocation function. */
5358 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5359 if (second_parm == void_list_node)
5360 return false;
5361 /* Do not consider this function if its second argument is an
5362 ellipsis. */
5363 if (!second_parm)
5364 continue;
5365 /* Otherwise, if we have a two-argument function and the second
5366 argument is `size_t', it will be the usual deallocation
5367 function -- unless there is one-argument function, too. */
5368 if (TREE_CHAIN (second_parm) == void_list_node
5369 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5370 has_two_argument_delete_p = true;
5371 }
5372
5373 return has_two_argument_delete_p;
5374 }
5375
5376 /* Finish computing the `literal type' property of class type T.
5377
5378 At this point, we have already processed base classes and
5379 non-static data members. We need to check whether the copy
5380 constructor is trivial, the destructor is trivial, and there
5381 is a trivial default constructor or at least one constexpr
5382 constructor other than the copy constructor. */
5383
5384 static void
5385 finalize_literal_type_property (tree t)
5386 {
5387 tree fn;
5388
5389 if (cxx_dialect < cxx11
5390 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5391 CLASSTYPE_LITERAL_P (t) = false;
5392 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5393 && CLASSTYPE_NON_AGGREGATE (t)
5394 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5395 CLASSTYPE_LITERAL_P (t) = false;
5396
5397 if (!CLASSTYPE_LITERAL_P (t))
5398 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5399 if (DECL_DECLARED_CONSTEXPR_P (fn)
5400 && TREE_CODE (fn) != TEMPLATE_DECL
5401 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5402 && !DECL_CONSTRUCTOR_P (fn))
5403 {
5404 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5405 if (!DECL_GENERATED_P (fn))
5406 {
5407 error ("enclosing class of constexpr non-static member "
5408 "function %q+#D is not a literal type", fn);
5409 explain_non_literal_class (t);
5410 }
5411 }
5412 }
5413
5414 /* T is a non-literal type used in a context which requires a constant
5415 expression. Explain why it isn't literal. */
5416
5417 void
5418 explain_non_literal_class (tree t)
5419 {
5420 static hash_set<tree> *diagnosed;
5421
5422 if (!CLASS_TYPE_P (t))
5423 return;
5424 t = TYPE_MAIN_VARIANT (t);
5425
5426 if (diagnosed == NULL)
5427 diagnosed = new hash_set<tree>;
5428 if (diagnosed->add (t))
5429 /* Already explained. */
5430 return;
5431
5432 inform (0, "%q+T is not literal because:", t);
5433 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5434 inform (0, " %q+T has a non-trivial destructor", t);
5435 else if (CLASSTYPE_NON_AGGREGATE (t)
5436 && !TYPE_HAS_TRIVIAL_DFLT (t)
5437 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5438 {
5439 inform (0, " %q+T is not an aggregate, does not have a trivial "
5440 "default constructor, and has no constexpr constructor that "
5441 "is not a copy or move constructor", t);
5442 if (type_has_non_user_provided_default_constructor (t))
5443 {
5444 /* Note that we can't simply call locate_ctor because when the
5445 constructor is deleted it just returns NULL_TREE. */
5446 tree fns;
5447 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5448 {
5449 tree fn = OVL_CURRENT (fns);
5450 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5451
5452 parms = skip_artificial_parms_for (fn, parms);
5453
5454 if (sufficient_parms_p (parms))
5455 {
5456 if (DECL_DELETED_FN (fn))
5457 maybe_explain_implicit_delete (fn);
5458 else
5459 explain_invalid_constexpr_fn (fn);
5460 break;
5461 }
5462 }
5463 }
5464 }
5465 else
5466 {
5467 tree binfo, base_binfo, field; int i;
5468 for (binfo = TYPE_BINFO (t), i = 0;
5469 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5470 {
5471 tree basetype = TREE_TYPE (base_binfo);
5472 if (!CLASSTYPE_LITERAL_P (basetype))
5473 {
5474 inform (0, " base class %qT of %q+T is non-literal",
5475 basetype, t);
5476 explain_non_literal_class (basetype);
5477 return;
5478 }
5479 }
5480 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5481 {
5482 tree ftype;
5483 if (TREE_CODE (field) != FIELD_DECL)
5484 continue;
5485 ftype = TREE_TYPE (field);
5486 if (!literal_type_p (ftype))
5487 {
5488 inform (0, " non-static data member %q+D has "
5489 "non-literal type", field);
5490 if (CLASS_TYPE_P (ftype))
5491 explain_non_literal_class (ftype);
5492 }
5493 if (CP_TYPE_VOLATILE_P (ftype))
5494 inform (0, " non-static data member %q+D has "
5495 "volatile type", field);
5496 }
5497 }
5498 }
5499
5500 /* Check the validity of the bases and members declared in T. Add any
5501 implicitly-generated functions (like copy-constructors and
5502 assignment operators). Compute various flag bits (like
5503 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5504 level: i.e., independently of the ABI in use. */
5505
5506 static void
5507 check_bases_and_members (tree t)
5508 {
5509 /* Nonzero if the implicitly generated copy constructor should take
5510 a non-const reference argument. */
5511 int cant_have_const_ctor;
5512 /* Nonzero if the implicitly generated assignment operator
5513 should take a non-const reference argument. */
5514 int no_const_asn_ref;
5515 tree access_decls;
5516 bool saved_complex_asn_ref;
5517 bool saved_nontrivial_dtor;
5518 tree fn;
5519
5520 /* By default, we use const reference arguments and generate default
5521 constructors. */
5522 cant_have_const_ctor = 0;
5523 no_const_asn_ref = 0;
5524
5525 /* Check all the base-classes. */
5526 check_bases (t, &cant_have_const_ctor,
5527 &no_const_asn_ref);
5528
5529 /* Deduce noexcept on destructors. This needs to happen after we've set
5530 triviality flags appropriately for our bases. */
5531 if (cxx_dialect >= cxx11)
5532 deduce_noexcept_on_destructors (t);
5533
5534 /* Check all the method declarations. */
5535 check_methods (t);
5536
5537 /* Save the initial values of these flags which only indicate whether
5538 or not the class has user-provided functions. As we analyze the
5539 bases and members we can set these flags for other reasons. */
5540 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5541 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5542
5543 /* Check all the data member declarations. We cannot call
5544 check_field_decls until we have called check_bases check_methods,
5545 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5546 being set appropriately. */
5547 check_field_decls (t, &access_decls,
5548 &cant_have_const_ctor,
5549 &no_const_asn_ref);
5550
5551 /* A nearly-empty class has to be vptr-containing; a nearly empty
5552 class contains just a vptr. */
5553 if (!TYPE_CONTAINS_VPTR_P (t))
5554 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5555
5556 /* Do some bookkeeping that will guide the generation of implicitly
5557 declared member functions. */
5558 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5559 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5560 /* We need to call a constructor for this class if it has a
5561 user-provided constructor, or if the default constructor is going
5562 to initialize the vptr. (This is not an if-and-only-if;
5563 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5564 themselves need constructing.) */
5565 TYPE_NEEDS_CONSTRUCTING (t)
5566 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5567 /* [dcl.init.aggr]
5568
5569 An aggregate is an array or a class with no user-provided
5570 constructors ... and no virtual functions.
5571
5572 Again, other conditions for being an aggregate are checked
5573 elsewhere. */
5574 CLASSTYPE_NON_AGGREGATE (t)
5575 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5576 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5577 retain the old definition internally for ABI reasons. */
5578 CLASSTYPE_NON_LAYOUT_POD_P (t)
5579 |= (CLASSTYPE_NON_AGGREGATE (t)
5580 || saved_nontrivial_dtor || saved_complex_asn_ref);
5581 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5582 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5583 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5584 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5585
5586 /* If the only explicitly declared default constructor is user-provided,
5587 set TYPE_HAS_COMPLEX_DFLT. */
5588 if (!TYPE_HAS_COMPLEX_DFLT (t)
5589 && TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5590 && !type_has_non_user_provided_default_constructor (t))
5591 TYPE_HAS_COMPLEX_DFLT (t) = true;
5592
5593 /* Warn if a public base of a polymorphic type has an accessible
5594 non-virtual destructor. It is only now that we know the class is
5595 polymorphic. Although a polymorphic base will have a already
5596 been diagnosed during its definition, we warn on use too. */
5597 if (TYPE_POLYMORPHIC_P (t) && warn_nonvdtor)
5598 {
5599 tree binfo = TYPE_BINFO (t);
5600 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
5601 tree base_binfo;
5602 unsigned i;
5603
5604 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5605 {
5606 tree basetype = TREE_TYPE (base_binfo);
5607
5608 if ((*accesses)[i] == access_public_node
5609 && (TYPE_POLYMORPHIC_P (basetype) || warn_ecpp)
5610 && accessible_nvdtor_p (basetype))
5611 warning (OPT_Wnon_virtual_dtor,
5612 "base class %q#T has accessible non-virtual destructor",
5613 basetype);
5614 }
5615 }
5616
5617 /* If the class has no user-declared constructor, but does have
5618 non-static const or reference data members that can never be
5619 initialized, issue a warning. */
5620 if (warn_uninitialized
5621 /* Classes with user-declared constructors are presumed to
5622 initialize these members. */
5623 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5624 /* Aggregates can be initialized with brace-enclosed
5625 initializers. */
5626 && CLASSTYPE_NON_AGGREGATE (t))
5627 {
5628 tree field;
5629
5630 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5631 {
5632 tree type;
5633
5634 if (TREE_CODE (field) != FIELD_DECL
5635 || DECL_INITIAL (field) != NULL_TREE)
5636 continue;
5637
5638 type = TREE_TYPE (field);
5639 if (TREE_CODE (type) == REFERENCE_TYPE)
5640 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5641 "in class without a constructor", field);
5642 else if (CP_TYPE_CONST_P (type)
5643 && (!CLASS_TYPE_P (type)
5644 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5645 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5646 "in class without a constructor", field);
5647 }
5648 }
5649
5650 /* Synthesize any needed methods. */
5651 add_implicitly_declared_members (t, &access_decls,
5652 cant_have_const_ctor,
5653 no_const_asn_ref);
5654
5655 /* Check defaulted declarations here so we have cant_have_const_ctor
5656 and don't need to worry about clones. */
5657 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5658 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5659 {
5660 int copy = copy_fn_p (fn);
5661 if (copy > 0)
5662 {
5663 bool imp_const_p
5664 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5665 : !no_const_asn_ref);
5666 bool fn_const_p = (copy == 2);
5667
5668 if (fn_const_p && !imp_const_p)
5669 /* If the function is defaulted outside the class, we just
5670 give the synthesis error. */
5671 error ("%q+D declared to take const reference, but implicit "
5672 "declaration would take non-const", fn);
5673 }
5674 defaulted_late_check (fn);
5675 }
5676
5677 if (LAMBDA_TYPE_P (t))
5678 {
5679 /* "This class type is not an aggregate." */
5680 CLASSTYPE_NON_AGGREGATE (t) = 1;
5681 }
5682
5683 /* Compute the 'literal type' property before we
5684 do anything with non-static member functions. */
5685 finalize_literal_type_property (t);
5686
5687 /* Create the in-charge and not-in-charge variants of constructors
5688 and destructors. */
5689 clone_constructors_and_destructors (t);
5690
5691 /* Process the using-declarations. */
5692 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5693 handle_using_decl (TREE_VALUE (access_decls), t);
5694
5695 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5696 finish_struct_methods (t);
5697
5698 /* Figure out whether or not we will need a cookie when dynamically
5699 allocating an array of this type. */
5700 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5701 = type_requires_array_cookie (t);
5702 }
5703
5704 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5705 accordingly. If a new vfield was created (because T doesn't have a
5706 primary base class), then the newly created field is returned. It
5707 is not added to the TYPE_FIELDS list; it is the caller's
5708 responsibility to do that. Accumulate declared virtual functions
5709 on VIRTUALS_P. */
5710
5711 static tree
5712 create_vtable_ptr (tree t, tree* virtuals_p)
5713 {
5714 tree fn;
5715
5716 /* Collect the virtual functions declared in T. */
5717 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5718 if (TREE_CODE (fn) == FUNCTION_DECL
5719 && DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5720 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5721 {
5722 tree new_virtual = make_node (TREE_LIST);
5723
5724 BV_FN (new_virtual) = fn;
5725 BV_DELTA (new_virtual) = integer_zero_node;
5726 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5727
5728 TREE_CHAIN (new_virtual) = *virtuals_p;
5729 *virtuals_p = new_virtual;
5730 }
5731
5732 /* If we couldn't find an appropriate base class, create a new field
5733 here. Even if there weren't any new virtual functions, we might need a
5734 new virtual function table if we're supposed to include vptrs in
5735 all classes that need them. */
5736 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5737 {
5738 /* We build this decl with vtbl_ptr_type_node, which is a
5739 `vtable_entry_type*'. It might seem more precise to use
5740 `vtable_entry_type (*)[N]' where N is the number of virtual
5741 functions. However, that would require the vtable pointer in
5742 base classes to have a different type than the vtable pointer
5743 in derived classes. We could make that happen, but that
5744 still wouldn't solve all the problems. In particular, the
5745 type-based alias analysis code would decide that assignments
5746 to the base class vtable pointer can't alias assignments to
5747 the derived class vtable pointer, since they have different
5748 types. Thus, in a derived class destructor, where the base
5749 class constructor was inlined, we could generate bad code for
5750 setting up the vtable pointer.
5751
5752 Therefore, we use one type for all vtable pointers. We still
5753 use a type-correct type; it's just doesn't indicate the array
5754 bounds. That's better than using `void*' or some such; it's
5755 cleaner, and it let's the alias analysis code know that these
5756 stores cannot alias stores to void*! */
5757 tree field;
5758
5759 field = build_decl (input_location,
5760 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5761 DECL_VIRTUAL_P (field) = 1;
5762 DECL_ARTIFICIAL (field) = 1;
5763 DECL_FIELD_CONTEXT (field) = t;
5764 DECL_FCONTEXT (field) = t;
5765 if (TYPE_PACKED (t))
5766 DECL_PACKED (field) = 1;
5767
5768 TYPE_VFIELD (t) = field;
5769
5770 /* This class is non-empty. */
5771 CLASSTYPE_EMPTY_P (t) = 0;
5772
5773 return field;
5774 }
5775
5776 return NULL_TREE;
5777 }
5778
5779 /* Add OFFSET to all base types of BINFO which is a base in the
5780 hierarchy dominated by T.
5781
5782 OFFSET, which is a type offset, is number of bytes. */
5783
5784 static void
5785 propagate_binfo_offsets (tree binfo, tree offset)
5786 {
5787 int i;
5788 tree primary_binfo;
5789 tree base_binfo;
5790
5791 /* Update BINFO's offset. */
5792 BINFO_OFFSET (binfo)
5793 = convert (sizetype,
5794 size_binop (PLUS_EXPR,
5795 convert (ssizetype, BINFO_OFFSET (binfo)),
5796 offset));
5797
5798 /* Find the primary base class. */
5799 primary_binfo = get_primary_binfo (binfo);
5800
5801 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5802 propagate_binfo_offsets (primary_binfo, offset);
5803
5804 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5805 downwards. */
5806 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5807 {
5808 /* Don't do the primary base twice. */
5809 if (base_binfo == primary_binfo)
5810 continue;
5811
5812 if (BINFO_VIRTUAL_P (base_binfo))
5813 continue;
5814
5815 propagate_binfo_offsets (base_binfo, offset);
5816 }
5817 }
5818
5819 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5820 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5821 empty subobjects of T. */
5822
5823 static void
5824 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5825 {
5826 tree vbase;
5827 tree t = rli->t;
5828 tree *next_field;
5829
5830 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5831 return;
5832
5833 /* Find the last field. The artificial fields created for virtual
5834 bases will go after the last extant field to date. */
5835 next_field = &TYPE_FIELDS (t);
5836 while (*next_field)
5837 next_field = &DECL_CHAIN (*next_field);
5838
5839 /* Go through the virtual bases, allocating space for each virtual
5840 base that is not already a primary base class. These are
5841 allocated in inheritance graph order. */
5842 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5843 {
5844 if (!BINFO_VIRTUAL_P (vbase))
5845 continue;
5846
5847 if (!BINFO_PRIMARY_P (vbase))
5848 {
5849 /* This virtual base is not a primary base of any class in the
5850 hierarchy, so we have to add space for it. */
5851 next_field = build_base_field (rli, vbase,
5852 offsets, next_field);
5853 }
5854 }
5855 }
5856
5857 /* Returns the offset of the byte just past the end of the base class
5858 BINFO. */
5859
5860 static tree
5861 end_of_base (tree binfo)
5862 {
5863 tree size;
5864
5865 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5866 size = TYPE_SIZE_UNIT (char_type_node);
5867 else if (is_empty_class (BINFO_TYPE (binfo)))
5868 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5869 allocate some space for it. It cannot have virtual bases, so
5870 TYPE_SIZE_UNIT is fine. */
5871 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5872 else
5873 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5874
5875 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5876 }
5877
5878 /* Returns the offset of the byte just past the end of the base class
5879 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5880 only non-virtual bases are included. */
5881
5882 static tree
5883 end_of_class (tree t, int include_virtuals_p)
5884 {
5885 tree result = size_zero_node;
5886 vec<tree, va_gc> *vbases;
5887 tree binfo;
5888 tree base_binfo;
5889 tree offset;
5890 int i;
5891
5892 for (binfo = TYPE_BINFO (t), i = 0;
5893 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5894 {
5895 if (!include_virtuals_p
5896 && BINFO_VIRTUAL_P (base_binfo)
5897 && (!BINFO_PRIMARY_P (base_binfo)
5898 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5899 continue;
5900
5901 offset = end_of_base (base_binfo);
5902 if (tree_int_cst_lt (result, offset))
5903 result = offset;
5904 }
5905
5906 if (include_virtuals_p)
5907 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5908 vec_safe_iterate (vbases, i, &base_binfo); i++)
5909 {
5910 offset = end_of_base (base_binfo);
5911 if (tree_int_cst_lt (result, offset))
5912 result = offset;
5913 }
5914
5915 return result;
5916 }
5917
5918 /* Warn about bases of T that are inaccessible because they are
5919 ambiguous. For example:
5920
5921 struct S {};
5922 struct T : public S {};
5923 struct U : public S, public T {};
5924
5925 Here, `(S*) new U' is not allowed because there are two `S'
5926 subobjects of U. */
5927
5928 static void
5929 warn_about_ambiguous_bases (tree t)
5930 {
5931 int i;
5932 vec<tree, va_gc> *vbases;
5933 tree basetype;
5934 tree binfo;
5935 tree base_binfo;
5936
5937 /* If there are no repeated bases, nothing can be ambiguous. */
5938 if (!CLASSTYPE_REPEATED_BASE_P (t))
5939 return;
5940
5941 /* Check direct bases. */
5942 for (binfo = TYPE_BINFO (t), i = 0;
5943 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5944 {
5945 basetype = BINFO_TYPE (base_binfo);
5946
5947 if (!uniquely_derived_from_p (basetype, t))
5948 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5949 basetype, t);
5950 }
5951
5952 /* Check for ambiguous virtual bases. */
5953 if (extra_warnings)
5954 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5955 vec_safe_iterate (vbases, i, &binfo); i++)
5956 {
5957 basetype = BINFO_TYPE (binfo);
5958
5959 if (!uniquely_derived_from_p (basetype, t))
5960 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5961 "to ambiguity", basetype, t);
5962 }
5963 }
5964
5965 /* Compare two INTEGER_CSTs K1 and K2. */
5966
5967 static int
5968 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5969 {
5970 return tree_int_cst_compare ((tree) k1, (tree) k2);
5971 }
5972
5973 /* Increase the size indicated in RLI to account for empty classes
5974 that are "off the end" of the class. */
5975
5976 static void
5977 include_empty_classes (record_layout_info rli)
5978 {
5979 tree eoc;
5980 tree rli_size;
5981
5982 /* It might be the case that we grew the class to allocate a
5983 zero-sized base class. That won't be reflected in RLI, yet,
5984 because we are willing to overlay multiple bases at the same
5985 offset. However, now we need to make sure that RLI is big enough
5986 to reflect the entire class. */
5987 eoc = end_of_class (rli->t,
5988 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5989 rli_size = rli_size_unit_so_far (rli);
5990 if (TREE_CODE (rli_size) == INTEGER_CST
5991 && tree_int_cst_lt (rli_size, eoc))
5992 {
5993 /* The size should have been rounded to a whole byte. */
5994 gcc_assert (tree_int_cst_equal
5995 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5996 rli->bitpos
5997 = size_binop (PLUS_EXPR,
5998 rli->bitpos,
5999 size_binop (MULT_EXPR,
6000 convert (bitsizetype,
6001 size_binop (MINUS_EXPR,
6002 eoc, rli_size)),
6003 bitsize_int (BITS_PER_UNIT)));
6004 normalize_rli (rli);
6005 }
6006 }
6007
6008 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
6009 BINFO_OFFSETs for all of the base-classes. Position the vtable
6010 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
6011
6012 static void
6013 layout_class_type (tree t, tree *virtuals_p)
6014 {
6015 tree non_static_data_members;
6016 tree field;
6017 tree vptr;
6018 record_layout_info rli;
6019 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
6020 types that appear at that offset. */
6021 splay_tree empty_base_offsets;
6022 /* True if the last field laid out was a bit-field. */
6023 bool last_field_was_bitfield = false;
6024 /* The location at which the next field should be inserted. */
6025 tree *next_field;
6026 /* T, as a base class. */
6027 tree base_t;
6028
6029 /* Keep track of the first non-static data member. */
6030 non_static_data_members = TYPE_FIELDS (t);
6031
6032 /* Start laying out the record. */
6033 rli = start_record_layout (t);
6034
6035 /* Mark all the primary bases in the hierarchy. */
6036 determine_primary_bases (t);
6037
6038 /* Create a pointer to our virtual function table. */
6039 vptr = create_vtable_ptr (t, virtuals_p);
6040
6041 /* The vptr is always the first thing in the class. */
6042 if (vptr)
6043 {
6044 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
6045 TYPE_FIELDS (t) = vptr;
6046 next_field = &DECL_CHAIN (vptr);
6047 place_field (rli, vptr);
6048 }
6049 else
6050 next_field = &TYPE_FIELDS (t);
6051
6052 /* Build FIELD_DECLs for all of the non-virtual base-types. */
6053 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
6054 NULL, NULL);
6055 build_base_fields (rli, empty_base_offsets, next_field);
6056
6057 /* Layout the non-static data members. */
6058 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
6059 {
6060 tree type;
6061 tree padding;
6062
6063 /* We still pass things that aren't non-static data members to
6064 the back end, in case it wants to do something with them. */
6065 if (TREE_CODE (field) != FIELD_DECL)
6066 {
6067 place_field (rli, field);
6068 /* If the static data member has incomplete type, keep track
6069 of it so that it can be completed later. (The handling
6070 of pending statics in finish_record_layout is
6071 insufficient; consider:
6072
6073 struct S1;
6074 struct S2 { static S1 s1; };
6075
6076 At this point, finish_record_layout will be called, but
6077 S1 is still incomplete.) */
6078 if (VAR_P (field))
6079 {
6080 maybe_register_incomplete_var (field);
6081 /* The visibility of static data members is determined
6082 at their point of declaration, not their point of
6083 definition. */
6084 determine_visibility (field);
6085 }
6086 continue;
6087 }
6088
6089 type = TREE_TYPE (field);
6090 if (type == error_mark_node)
6091 continue;
6092
6093 padding = NULL_TREE;
6094
6095 /* If this field is a bit-field whose width is greater than its
6096 type, then there are some special rules for allocating
6097 it. */
6098 if (DECL_C_BIT_FIELD (field)
6099 && tree_int_cst_lt (TYPE_SIZE (type), DECL_SIZE (field)))
6100 {
6101 unsigned int itk;
6102 tree integer_type;
6103 bool was_unnamed_p = false;
6104 /* We must allocate the bits as if suitably aligned for the
6105 longest integer type that fits in this many bits. type
6106 of the field. Then, we are supposed to use the left over
6107 bits as additional padding. */
6108 for (itk = itk_char; itk != itk_none; ++itk)
6109 if (integer_types[itk] != NULL_TREE
6110 && (tree_int_cst_lt (size_int (MAX_FIXED_MODE_SIZE),
6111 TYPE_SIZE (integer_types[itk]))
6112 || tree_int_cst_lt (DECL_SIZE (field),
6113 TYPE_SIZE (integer_types[itk]))))
6114 break;
6115
6116 /* ITK now indicates a type that is too large for the
6117 field. We have to back up by one to find the largest
6118 type that fits. */
6119 do
6120 {
6121 --itk;
6122 integer_type = integer_types[itk];
6123 } while (itk > 0 && integer_type == NULL_TREE);
6124
6125 /* Figure out how much additional padding is required. */
6126 if (tree_int_cst_lt (TYPE_SIZE (integer_type), DECL_SIZE (field)))
6127 {
6128 if (TREE_CODE (t) == UNION_TYPE)
6129 /* In a union, the padding field must have the full width
6130 of the bit-field; all fields start at offset zero. */
6131 padding = DECL_SIZE (field);
6132 else
6133 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
6134 TYPE_SIZE (integer_type));
6135 }
6136 #ifdef PCC_BITFIELD_TYPE_MATTERS
6137 /* An unnamed bitfield does not normally affect the
6138 alignment of the containing class on a target where
6139 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
6140 make any exceptions for unnamed bitfields when the
6141 bitfields are longer than their types. Therefore, we
6142 temporarily give the field a name. */
6143 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
6144 {
6145 was_unnamed_p = true;
6146 DECL_NAME (field) = make_anon_name ();
6147 }
6148 #endif
6149 DECL_SIZE (field) = TYPE_SIZE (integer_type);
6150 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
6151 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
6152 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6153 empty_base_offsets);
6154 if (was_unnamed_p)
6155 DECL_NAME (field) = NULL_TREE;
6156 /* Now that layout has been performed, set the size of the
6157 field to the size of its declared type; the rest of the
6158 field is effectively invisible. */
6159 DECL_SIZE (field) = TYPE_SIZE (type);
6160 /* We must also reset the DECL_MODE of the field. */
6161 DECL_MODE (field) = TYPE_MODE (type);
6162 }
6163 else
6164 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6165 empty_base_offsets);
6166
6167 /* Remember the location of any empty classes in FIELD. */
6168 record_subobject_offsets (TREE_TYPE (field),
6169 byte_position(field),
6170 empty_base_offsets,
6171 /*is_data_member=*/true);
6172
6173 /* If a bit-field does not immediately follow another bit-field,
6174 and yet it starts in the middle of a byte, we have failed to
6175 comply with the ABI. */
6176 if (warn_abi
6177 && DECL_C_BIT_FIELD (field)
6178 /* The TREE_NO_WARNING flag gets set by Objective-C when
6179 laying out an Objective-C class. The ObjC ABI differs
6180 from the C++ ABI, and so we do not want a warning
6181 here. */
6182 && !TREE_NO_WARNING (field)
6183 && !last_field_was_bitfield
6184 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6185 DECL_FIELD_BIT_OFFSET (field),
6186 bitsize_unit_node)))
6187 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
6188 "change in a future version of GCC", field);
6189
6190 /* The middle end uses the type of expressions to determine the
6191 possible range of expression values. In order to optimize
6192 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6193 must be made aware of the width of "i", via its type.
6194
6195 Because C++ does not have integer types of arbitrary width,
6196 we must (for the purposes of the front end) convert from the
6197 type assigned here to the declared type of the bitfield
6198 whenever a bitfield expression is used as an rvalue.
6199 Similarly, when assigning a value to a bitfield, the value
6200 must be converted to the type given the bitfield here. */
6201 if (DECL_C_BIT_FIELD (field))
6202 {
6203 unsigned HOST_WIDE_INT width;
6204 tree ftype = TREE_TYPE (field);
6205 width = tree_to_uhwi (DECL_SIZE (field));
6206 if (width != TYPE_PRECISION (ftype))
6207 {
6208 TREE_TYPE (field)
6209 = c_build_bitfield_integer_type (width,
6210 TYPE_UNSIGNED (ftype));
6211 TREE_TYPE (field)
6212 = cp_build_qualified_type (TREE_TYPE (field),
6213 cp_type_quals (ftype));
6214 }
6215 }
6216
6217 /* If we needed additional padding after this field, add it
6218 now. */
6219 if (padding)
6220 {
6221 tree padding_field;
6222
6223 padding_field = build_decl (input_location,
6224 FIELD_DECL,
6225 NULL_TREE,
6226 char_type_node);
6227 DECL_BIT_FIELD (padding_field) = 1;
6228 DECL_SIZE (padding_field) = padding;
6229 DECL_CONTEXT (padding_field) = t;
6230 DECL_ARTIFICIAL (padding_field) = 1;
6231 DECL_IGNORED_P (padding_field) = 1;
6232 layout_nonempty_base_or_field (rli, padding_field,
6233 NULL_TREE,
6234 empty_base_offsets);
6235 }
6236
6237 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6238 }
6239
6240 if (!integer_zerop (rli->bitpos))
6241 {
6242 /* Make sure that we are on a byte boundary so that the size of
6243 the class without virtual bases will always be a round number
6244 of bytes. */
6245 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6246 normalize_rli (rli);
6247 }
6248
6249 /* Delete all zero-width bit-fields from the list of fields. Now
6250 that the type is laid out they are no longer important. */
6251 remove_zero_width_bit_fields (t);
6252
6253 /* Create the version of T used for virtual bases. We do not use
6254 make_class_type for this version; this is an artificial type. For
6255 a POD type, we just reuse T. */
6256 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6257 {
6258 base_t = make_node (TREE_CODE (t));
6259
6260 /* Set the size and alignment for the new type. */
6261 tree eoc;
6262
6263 /* If the ABI version is not at least two, and the last
6264 field was a bit-field, RLI may not be on a byte
6265 boundary. In particular, rli_size_unit_so_far might
6266 indicate the last complete byte, while rli_size_so_far
6267 indicates the total number of bits used. Therefore,
6268 rli_size_so_far, rather than rli_size_unit_so_far, is
6269 used to compute TYPE_SIZE_UNIT. */
6270 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6271 TYPE_SIZE_UNIT (base_t)
6272 = size_binop (MAX_EXPR,
6273 convert (sizetype,
6274 size_binop (CEIL_DIV_EXPR,
6275 rli_size_so_far (rli),
6276 bitsize_int (BITS_PER_UNIT))),
6277 eoc);
6278 TYPE_SIZE (base_t)
6279 = size_binop (MAX_EXPR,
6280 rli_size_so_far (rli),
6281 size_binop (MULT_EXPR,
6282 convert (bitsizetype, eoc),
6283 bitsize_int (BITS_PER_UNIT)));
6284 TYPE_ALIGN (base_t) = rli->record_align;
6285 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6286
6287 /* Copy the fields from T. */
6288 next_field = &TYPE_FIELDS (base_t);
6289 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6290 if (TREE_CODE (field) == FIELD_DECL)
6291 {
6292 *next_field = build_decl (input_location,
6293 FIELD_DECL,
6294 DECL_NAME (field),
6295 TREE_TYPE (field));
6296 DECL_CONTEXT (*next_field) = base_t;
6297 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6298 DECL_FIELD_BIT_OFFSET (*next_field)
6299 = DECL_FIELD_BIT_OFFSET (field);
6300 DECL_SIZE (*next_field) = DECL_SIZE (field);
6301 DECL_MODE (*next_field) = DECL_MODE (field);
6302 next_field = &DECL_CHAIN (*next_field);
6303 }
6304
6305 /* Record the base version of the type. */
6306 CLASSTYPE_AS_BASE (t) = base_t;
6307 TYPE_CONTEXT (base_t) = t;
6308 }
6309 else
6310 CLASSTYPE_AS_BASE (t) = t;
6311
6312 /* Every empty class contains an empty class. */
6313 if (CLASSTYPE_EMPTY_P (t))
6314 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6315
6316 /* Set the TYPE_DECL for this type to contain the right
6317 value for DECL_OFFSET, so that we can use it as part
6318 of a COMPONENT_REF for multiple inheritance. */
6319 layout_decl (TYPE_MAIN_DECL (t), 0);
6320
6321 /* Now fix up any virtual base class types that we left lying
6322 around. We must get these done before we try to lay out the
6323 virtual function table. As a side-effect, this will remove the
6324 base subobject fields. */
6325 layout_virtual_bases (rli, empty_base_offsets);
6326
6327 /* Make sure that empty classes are reflected in RLI at this
6328 point. */
6329 include_empty_classes(rli);
6330
6331 /* Make sure not to create any structures with zero size. */
6332 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6333 place_field (rli,
6334 build_decl (input_location,
6335 FIELD_DECL, NULL_TREE, char_type_node));
6336
6337 /* If this is a non-POD, declaring it packed makes a difference to how it
6338 can be used as a field; don't let finalize_record_size undo it. */
6339 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6340 rli->packed_maybe_necessary = true;
6341
6342 /* Let the back end lay out the type. */
6343 finish_record_layout (rli, /*free_p=*/true);
6344
6345 if (TYPE_SIZE_UNIT (t)
6346 && TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST
6347 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t))
6348 && !valid_constant_size_p (TYPE_SIZE_UNIT (t)))
6349 error ("type %qT is too large", t);
6350
6351 /* Warn about bases that can't be talked about due to ambiguity. */
6352 warn_about_ambiguous_bases (t);
6353
6354 /* Now that we're done with layout, give the base fields the real types. */
6355 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6356 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6357 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6358
6359 /* Clean up. */
6360 splay_tree_delete (empty_base_offsets);
6361
6362 if (CLASSTYPE_EMPTY_P (t)
6363 && tree_int_cst_lt (sizeof_biggest_empty_class,
6364 TYPE_SIZE_UNIT (t)))
6365 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6366 }
6367
6368 /* Determine the "key method" for the class type indicated by TYPE,
6369 and set CLASSTYPE_KEY_METHOD accordingly. */
6370
6371 void
6372 determine_key_method (tree type)
6373 {
6374 tree method;
6375
6376 if (TYPE_FOR_JAVA (type)
6377 || processing_template_decl
6378 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6379 || CLASSTYPE_INTERFACE_KNOWN (type))
6380 return;
6381
6382 /* The key method is the first non-pure virtual function that is not
6383 inline at the point of class definition. On some targets the
6384 key function may not be inline; those targets should not call
6385 this function until the end of the translation unit. */
6386 for (method = TYPE_METHODS (type); method != NULL_TREE;
6387 method = DECL_CHAIN (method))
6388 if (TREE_CODE (method) == FUNCTION_DECL
6389 && DECL_VINDEX (method) != NULL_TREE
6390 && ! DECL_DECLARED_INLINE_P (method)
6391 && ! DECL_PURE_VIRTUAL_P (method))
6392 {
6393 CLASSTYPE_KEY_METHOD (type) = method;
6394 break;
6395 }
6396
6397 return;
6398 }
6399
6400
6401 /* Allocate and return an instance of struct sorted_fields_type with
6402 N fields. */
6403
6404 static struct sorted_fields_type *
6405 sorted_fields_type_new (int n)
6406 {
6407 struct sorted_fields_type *sft;
6408 sft = (sorted_fields_type *) ggc_internal_alloc (sizeof (sorted_fields_type)
6409 + n * sizeof (tree));
6410 sft->len = n;
6411
6412 return sft;
6413 }
6414
6415
6416 /* Perform processing required when the definition of T (a class type)
6417 is complete. */
6418
6419 void
6420 finish_struct_1 (tree t)
6421 {
6422 tree x;
6423 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6424 tree virtuals = NULL_TREE;
6425
6426 if (COMPLETE_TYPE_P (t))
6427 {
6428 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6429 error ("redefinition of %q#T", t);
6430 popclass ();
6431 return;
6432 }
6433
6434 /* If this type was previously laid out as a forward reference,
6435 make sure we lay it out again. */
6436 TYPE_SIZE (t) = NULL_TREE;
6437 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6438
6439 /* Make assumptions about the class; we'll reset the flags if
6440 necessary. */
6441 CLASSTYPE_EMPTY_P (t) = 1;
6442 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6443 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6444 CLASSTYPE_LITERAL_P (t) = true;
6445
6446 /* Do end-of-class semantic processing: checking the validity of the
6447 bases and members and add implicitly generated methods. */
6448 check_bases_and_members (t);
6449
6450 /* Find the key method. */
6451 if (TYPE_CONTAINS_VPTR_P (t))
6452 {
6453 /* The Itanium C++ ABI permits the key method to be chosen when
6454 the class is defined -- even though the key method so
6455 selected may later turn out to be an inline function. On
6456 some systems (such as ARM Symbian OS) the key method cannot
6457 be determined until the end of the translation unit. On such
6458 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6459 will cause the class to be added to KEYED_CLASSES. Then, in
6460 finish_file we will determine the key method. */
6461 if (targetm.cxx.key_method_may_be_inline ())
6462 determine_key_method (t);
6463
6464 /* If a polymorphic class has no key method, we may emit the vtable
6465 in every translation unit where the class definition appears. If
6466 we're devirtualizing, we can look into the vtable even if we
6467 aren't emitting it. */
6468 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6469 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6470 }
6471
6472 /* Layout the class itself. */
6473 layout_class_type (t, &virtuals);
6474 if (CLASSTYPE_AS_BASE (t) != t)
6475 /* We use the base type for trivial assignments, and hence it
6476 needs a mode. */
6477 compute_record_mode (CLASSTYPE_AS_BASE (t));
6478
6479 virtuals = modify_all_vtables (t, nreverse (virtuals));
6480
6481 /* If necessary, create the primary vtable for this class. */
6482 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6483 {
6484 /* We must enter these virtuals into the table. */
6485 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6486 build_primary_vtable (NULL_TREE, t);
6487 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6488 /* Here we know enough to change the type of our virtual
6489 function table, but we will wait until later this function. */
6490 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6491
6492 /* If we're warning about ABI tags, check the types of the new
6493 virtual functions. */
6494 if (warn_abi_tag)
6495 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6496 check_abi_tags (t, TREE_VALUE (v));
6497 }
6498
6499 if (TYPE_CONTAINS_VPTR_P (t))
6500 {
6501 int vindex;
6502 tree fn;
6503
6504 if (BINFO_VTABLE (TYPE_BINFO (t)))
6505 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6506 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6507 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6508
6509 /* Add entries for virtual functions introduced by this class. */
6510 BINFO_VIRTUALS (TYPE_BINFO (t))
6511 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6512
6513 /* Set DECL_VINDEX for all functions declared in this class. */
6514 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6515 fn;
6516 fn = TREE_CHAIN (fn),
6517 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6518 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6519 {
6520 tree fndecl = BV_FN (fn);
6521
6522 if (DECL_THUNK_P (fndecl))
6523 /* A thunk. We should never be calling this entry directly
6524 from this vtable -- we'd use the entry for the non
6525 thunk base function. */
6526 DECL_VINDEX (fndecl) = NULL_TREE;
6527 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6528 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6529 }
6530 }
6531
6532 finish_struct_bits (t);
6533 set_method_tm_attributes (t);
6534
6535 /* Complete the rtl for any static member objects of the type we're
6536 working on. */
6537 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6538 if (VAR_P (x) && TREE_STATIC (x)
6539 && TREE_TYPE (x) != error_mark_node
6540 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6541 DECL_MODE (x) = TYPE_MODE (t);
6542
6543 /* Done with FIELDS...now decide whether to sort these for
6544 faster lookups later.
6545
6546 We use a small number because most searches fail (succeeding
6547 ultimately as the search bores through the inheritance
6548 hierarchy), and we want this failure to occur quickly. */
6549
6550 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6551
6552 /* Complain if one of the field types requires lower visibility. */
6553 constrain_class_visibility (t);
6554
6555 /* Make the rtl for any new vtables we have created, and unmark
6556 the base types we marked. */
6557 finish_vtbls (t);
6558
6559 /* Build the VTT for T. */
6560 build_vtt (t);
6561
6562 /* This warning does not make sense for Java classes, since they
6563 cannot have destructors. */
6564 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor
6565 && TYPE_POLYMORPHIC_P (t) && accessible_nvdtor_p (t)
6566 && !CLASSTYPE_FINAL (t))
6567 warning (OPT_Wnon_virtual_dtor,
6568 "%q#T has virtual functions and accessible"
6569 " non-virtual destructor", t);
6570
6571 complete_vars (t);
6572
6573 if (warn_overloaded_virtual)
6574 warn_hidden (t);
6575
6576 /* Class layout, assignment of virtual table slots, etc., is now
6577 complete. Give the back end a chance to tweak the visibility of
6578 the class or perform any other required target modifications. */
6579 targetm.cxx.adjust_class_at_definition (t);
6580
6581 maybe_suppress_debug_info (t);
6582
6583 if (flag_vtable_verify)
6584 vtv_save_class_info (t);
6585
6586 dump_class_hierarchy (t);
6587
6588 /* Finish debugging output for this type. */
6589 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6590
6591 if (TYPE_TRANSPARENT_AGGR (t))
6592 {
6593 tree field = first_field (t);
6594 if (field == NULL_TREE || error_operand_p (field))
6595 {
6596 error ("type transparent %q#T does not have any fields", t);
6597 TYPE_TRANSPARENT_AGGR (t) = 0;
6598 }
6599 else if (DECL_ARTIFICIAL (field))
6600 {
6601 if (DECL_FIELD_IS_BASE (field))
6602 error ("type transparent class %qT has base classes", t);
6603 else
6604 {
6605 gcc_checking_assert (DECL_VIRTUAL_P (field));
6606 error ("type transparent class %qT has virtual functions", t);
6607 }
6608 TYPE_TRANSPARENT_AGGR (t) = 0;
6609 }
6610 else if (TYPE_MODE (t) != DECL_MODE (field))
6611 {
6612 error ("type transparent %q#T cannot be made transparent because "
6613 "the type of the first field has a different ABI from the "
6614 "class overall", t);
6615 TYPE_TRANSPARENT_AGGR (t) = 0;
6616 }
6617 }
6618 }
6619
6620 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6621 equal to THRESHOLD or greater than THRESHOLD. */
6622
6623 static void
6624 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6625 {
6626 int n_fields = count_fields (fields);
6627 if (n_fields >= threshold)
6628 {
6629 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6630 add_fields_to_record_type (fields, field_vec, 0);
6631 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6632 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6633 }
6634 }
6635
6636 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6637
6638 void
6639 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6640 {
6641 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6642 if (sorted_fields)
6643 {
6644 int i;
6645 int n_fields
6646 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6647 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6648
6649 for (i = 0; i < sorted_fields->len; ++i)
6650 field_vec->elts[i] = sorted_fields->elts[i];
6651
6652 add_enum_fields_to_record_type (enumtype, field_vec,
6653 sorted_fields->len);
6654 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6655 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6656 }
6657 }
6658
6659 /* When T was built up, the member declarations were added in reverse
6660 order. Rearrange them to declaration order. */
6661
6662 void
6663 unreverse_member_declarations (tree t)
6664 {
6665 tree next;
6666 tree prev;
6667 tree x;
6668
6669 /* The following lists are all in reverse order. Put them in
6670 declaration order now. */
6671 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6672 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6673
6674 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6675 reverse order, so we can't just use nreverse. */
6676 prev = NULL_TREE;
6677 for (x = TYPE_FIELDS (t);
6678 x && TREE_CODE (x) != TYPE_DECL;
6679 x = next)
6680 {
6681 next = DECL_CHAIN (x);
6682 DECL_CHAIN (x) = prev;
6683 prev = x;
6684 }
6685 if (prev)
6686 {
6687 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6688 if (prev)
6689 TYPE_FIELDS (t) = prev;
6690 }
6691 }
6692
6693 tree
6694 finish_struct (tree t, tree attributes)
6695 {
6696 location_t saved_loc = input_location;
6697
6698 /* Now that we've got all the field declarations, reverse everything
6699 as necessary. */
6700 unreverse_member_declarations (t);
6701
6702 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6703
6704 /* Nadger the current location so that diagnostics point to the start of
6705 the struct, not the end. */
6706 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6707
6708 if (processing_template_decl)
6709 {
6710 tree x;
6711
6712 finish_struct_methods (t);
6713 TYPE_SIZE (t) = bitsize_zero_node;
6714 TYPE_SIZE_UNIT (t) = size_zero_node;
6715
6716 /* We need to emit an error message if this type was used as a parameter
6717 and it is an abstract type, even if it is a template. We construct
6718 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6719 account and we call complete_vars with this type, which will check
6720 the PARM_DECLS. Note that while the type is being defined,
6721 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6722 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6723 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6724 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6725 if (DECL_PURE_VIRTUAL_P (x))
6726 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6727 complete_vars (t);
6728 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6729 an enclosing scope is a template class, so that this function be
6730 found by lookup_fnfields_1 when the using declaration is not
6731 instantiated yet. */
6732 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6733 if (TREE_CODE (x) == USING_DECL)
6734 {
6735 tree fn = strip_using_decl (x);
6736 if (is_overloaded_fn (fn))
6737 for (; fn; fn = OVL_NEXT (fn))
6738 add_method (t, OVL_CURRENT (fn), x);
6739 }
6740
6741 /* Remember current #pragma pack value. */
6742 TYPE_PRECISION (t) = maximum_field_alignment;
6743
6744 /* Fix up any variants we've already built. */
6745 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6746 {
6747 TYPE_SIZE (x) = TYPE_SIZE (t);
6748 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6749 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6750 TYPE_METHODS (x) = TYPE_METHODS (t);
6751 }
6752 }
6753 else
6754 finish_struct_1 (t);
6755
6756 if (is_std_init_list (t))
6757 {
6758 /* People keep complaining that the compiler crashes on an invalid
6759 definition of initializer_list, so I guess we should explicitly
6760 reject it. What the compiler internals care about is that it's a
6761 template and has a pointer field followed by an integer field. */
6762 bool ok = false;
6763 if (processing_template_decl)
6764 {
6765 tree f = next_initializable_field (TYPE_FIELDS (t));
6766 if (f && TREE_CODE (TREE_TYPE (f)) == POINTER_TYPE)
6767 {
6768 f = next_initializable_field (DECL_CHAIN (f));
6769 if (f && TREE_CODE (TREE_TYPE (f)) == INTEGER_TYPE)
6770 ok = true;
6771 }
6772 }
6773 if (!ok)
6774 fatal_error ("definition of std::initializer_list does not match "
6775 "#include <initializer_list>");
6776 }
6777
6778 input_location = saved_loc;
6779
6780 TYPE_BEING_DEFINED (t) = 0;
6781
6782 if (current_class_type)
6783 popclass ();
6784 else
6785 error ("trying to finish struct, but kicked out due to previous parse errors");
6786
6787 if (processing_template_decl && at_function_scope_p ()
6788 /* Lambdas are defined by the LAMBDA_EXPR. */
6789 && !LAMBDA_TYPE_P (t))
6790 add_stmt (build_min (TAG_DEFN, t));
6791
6792 return t;
6793 }
6794 \f
6795 /* Hash table to avoid endless recursion when handling references. */
6796 static hash_table<pointer_hash<tree_node> > *fixed_type_or_null_ref_ht;
6797
6798 /* Return the dynamic type of INSTANCE, if known.
6799 Used to determine whether the virtual function table is needed
6800 or not.
6801
6802 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6803 of our knowledge of its type. *NONNULL should be initialized
6804 before this function is called. */
6805
6806 static tree
6807 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6808 {
6809 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6810
6811 switch (TREE_CODE (instance))
6812 {
6813 case INDIRECT_REF:
6814 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6815 return NULL_TREE;
6816 else
6817 return RECUR (TREE_OPERAND (instance, 0));
6818
6819 case CALL_EXPR:
6820 /* This is a call to a constructor, hence it's never zero. */
6821 if (TREE_HAS_CONSTRUCTOR (instance))
6822 {
6823 if (nonnull)
6824 *nonnull = 1;
6825 return TREE_TYPE (instance);
6826 }
6827 return NULL_TREE;
6828
6829 case SAVE_EXPR:
6830 /* This is a call to a constructor, hence it's never zero. */
6831 if (TREE_HAS_CONSTRUCTOR (instance))
6832 {
6833 if (nonnull)
6834 *nonnull = 1;
6835 return TREE_TYPE (instance);
6836 }
6837 return RECUR (TREE_OPERAND (instance, 0));
6838
6839 case POINTER_PLUS_EXPR:
6840 case PLUS_EXPR:
6841 case MINUS_EXPR:
6842 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6843 return RECUR (TREE_OPERAND (instance, 0));
6844 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6845 /* Propagate nonnull. */
6846 return RECUR (TREE_OPERAND (instance, 0));
6847
6848 return NULL_TREE;
6849
6850 CASE_CONVERT:
6851 return RECUR (TREE_OPERAND (instance, 0));
6852
6853 case ADDR_EXPR:
6854 instance = TREE_OPERAND (instance, 0);
6855 if (nonnull)
6856 {
6857 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6858 with a real object -- given &p->f, p can still be null. */
6859 tree t = get_base_address (instance);
6860 /* ??? Probably should check DECL_WEAK here. */
6861 if (t && DECL_P (t))
6862 *nonnull = 1;
6863 }
6864 return RECUR (instance);
6865
6866 case COMPONENT_REF:
6867 /* If this component is really a base class reference, then the field
6868 itself isn't definitive. */
6869 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6870 return RECUR (TREE_OPERAND (instance, 0));
6871 return RECUR (TREE_OPERAND (instance, 1));
6872
6873 case VAR_DECL:
6874 case FIELD_DECL:
6875 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6876 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6877 {
6878 if (nonnull)
6879 *nonnull = 1;
6880 return TREE_TYPE (TREE_TYPE (instance));
6881 }
6882 /* fall through... */
6883 case TARGET_EXPR:
6884 case PARM_DECL:
6885 case RESULT_DECL:
6886 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6887 {
6888 if (nonnull)
6889 *nonnull = 1;
6890 return TREE_TYPE (instance);
6891 }
6892 else if (instance == current_class_ptr)
6893 {
6894 if (nonnull)
6895 *nonnull = 1;
6896
6897 /* if we're in a ctor or dtor, we know our type. If
6898 current_class_ptr is set but we aren't in a function, we're in
6899 an NSDMI (and therefore a constructor). */
6900 if (current_scope () != current_function_decl
6901 || (DECL_LANG_SPECIFIC (current_function_decl)
6902 && (DECL_CONSTRUCTOR_P (current_function_decl)
6903 || DECL_DESTRUCTOR_P (current_function_decl))))
6904 {
6905 if (cdtorp)
6906 *cdtorp = 1;
6907 return TREE_TYPE (TREE_TYPE (instance));
6908 }
6909 }
6910 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6911 {
6912 /* We only need one hash table because it is always left empty. */
6913 if (!fixed_type_or_null_ref_ht)
6914 fixed_type_or_null_ref_ht
6915 = new hash_table<pointer_hash<tree_node> > (37);
6916
6917 /* Reference variables should be references to objects. */
6918 if (nonnull)
6919 *nonnull = 1;
6920
6921 /* Enter the INSTANCE in a table to prevent recursion; a
6922 variable's initializer may refer to the variable
6923 itself. */
6924 if (VAR_P (instance)
6925 && DECL_INITIAL (instance)
6926 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6927 && !fixed_type_or_null_ref_ht->find (instance))
6928 {
6929 tree type;
6930 tree_node **slot;
6931
6932 slot = fixed_type_or_null_ref_ht->find_slot (instance, INSERT);
6933 *slot = instance;
6934 type = RECUR (DECL_INITIAL (instance));
6935 fixed_type_or_null_ref_ht->remove_elt (instance);
6936
6937 return type;
6938 }
6939 }
6940 return NULL_TREE;
6941
6942 default:
6943 return NULL_TREE;
6944 }
6945 #undef RECUR
6946 }
6947
6948 /* Return nonzero if the dynamic type of INSTANCE is known, and
6949 equivalent to the static type. We also handle the case where
6950 INSTANCE is really a pointer. Return negative if this is a
6951 ctor/dtor. There the dynamic type is known, but this might not be
6952 the most derived base of the original object, and hence virtual
6953 bases may not be laid out according to this type.
6954
6955 Used to determine whether the virtual function table is needed
6956 or not.
6957
6958 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6959 of our knowledge of its type. *NONNULL should be initialized
6960 before this function is called. */
6961
6962 int
6963 resolves_to_fixed_type_p (tree instance, int* nonnull)
6964 {
6965 tree t = TREE_TYPE (instance);
6966 int cdtorp = 0;
6967 tree fixed;
6968
6969 /* processing_template_decl can be false in a template if we're in
6970 instantiate_non_dependent_expr, but we still want to suppress
6971 this check. */
6972 if (in_template_function ())
6973 {
6974 /* In a template we only care about the type of the result. */
6975 if (nonnull)
6976 *nonnull = true;
6977 return true;
6978 }
6979
6980 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6981 if (fixed == NULL_TREE)
6982 return 0;
6983 if (POINTER_TYPE_P (t))
6984 t = TREE_TYPE (t);
6985 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6986 return 0;
6987 return cdtorp ? -1 : 1;
6988 }
6989
6990 \f
6991 void
6992 init_class_processing (void)
6993 {
6994 current_class_depth = 0;
6995 current_class_stack_size = 10;
6996 current_class_stack
6997 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6998 vec_alloc (local_classes, 8);
6999 sizeof_biggest_empty_class = size_zero_node;
7000
7001 ridpointers[(int) RID_PUBLIC] = access_public_node;
7002 ridpointers[(int) RID_PRIVATE] = access_private_node;
7003 ridpointers[(int) RID_PROTECTED] = access_protected_node;
7004 }
7005
7006 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
7007
7008 static void
7009 restore_class_cache (void)
7010 {
7011 tree type;
7012
7013 /* We are re-entering the same class we just left, so we don't
7014 have to search the whole inheritance matrix to find all the
7015 decls to bind again. Instead, we install the cached
7016 class_shadowed list and walk through it binding names. */
7017 push_binding_level (previous_class_level);
7018 class_binding_level = previous_class_level;
7019 /* Restore IDENTIFIER_TYPE_VALUE. */
7020 for (type = class_binding_level->type_shadowed;
7021 type;
7022 type = TREE_CHAIN (type))
7023 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
7024 }
7025
7026 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
7027 appropriate for TYPE.
7028
7029 So that we may avoid calls to lookup_name, we cache the _TYPE
7030 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
7031
7032 For multiple inheritance, we perform a two-pass depth-first search
7033 of the type lattice. */
7034
7035 void
7036 pushclass (tree type)
7037 {
7038 class_stack_node_t csn;
7039
7040 type = TYPE_MAIN_VARIANT (type);
7041
7042 /* Make sure there is enough room for the new entry on the stack. */
7043 if (current_class_depth + 1 >= current_class_stack_size)
7044 {
7045 current_class_stack_size *= 2;
7046 current_class_stack
7047 = XRESIZEVEC (struct class_stack_node, current_class_stack,
7048 current_class_stack_size);
7049 }
7050
7051 /* Insert a new entry on the class stack. */
7052 csn = current_class_stack + current_class_depth;
7053 csn->name = current_class_name;
7054 csn->type = current_class_type;
7055 csn->access = current_access_specifier;
7056 csn->names_used = 0;
7057 csn->hidden = 0;
7058 current_class_depth++;
7059
7060 /* Now set up the new type. */
7061 current_class_name = TYPE_NAME (type);
7062 if (TREE_CODE (current_class_name) == TYPE_DECL)
7063 current_class_name = DECL_NAME (current_class_name);
7064 current_class_type = type;
7065
7066 /* By default, things in classes are private, while things in
7067 structures or unions are public. */
7068 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
7069 ? access_private_node
7070 : access_public_node);
7071
7072 if (previous_class_level
7073 && type != previous_class_level->this_entity
7074 && current_class_depth == 1)
7075 {
7076 /* Forcibly remove any old class remnants. */
7077 invalidate_class_lookup_cache ();
7078 }
7079
7080 if (!previous_class_level
7081 || type != previous_class_level->this_entity
7082 || current_class_depth > 1)
7083 pushlevel_class ();
7084 else
7085 restore_class_cache ();
7086 }
7087
7088 /* When we exit a toplevel class scope, we save its binding level so
7089 that we can restore it quickly. Here, we've entered some other
7090 class, so we must invalidate our cache. */
7091
7092 void
7093 invalidate_class_lookup_cache (void)
7094 {
7095 previous_class_level = NULL;
7096 }
7097
7098 /* Get out of the current class scope. If we were in a class scope
7099 previously, that is the one popped to. */
7100
7101 void
7102 popclass (void)
7103 {
7104 poplevel_class ();
7105
7106 current_class_depth--;
7107 current_class_name = current_class_stack[current_class_depth].name;
7108 current_class_type = current_class_stack[current_class_depth].type;
7109 current_access_specifier = current_class_stack[current_class_depth].access;
7110 if (current_class_stack[current_class_depth].names_used)
7111 splay_tree_delete (current_class_stack[current_class_depth].names_used);
7112 }
7113
7114 /* Mark the top of the class stack as hidden. */
7115
7116 void
7117 push_class_stack (void)
7118 {
7119 if (current_class_depth)
7120 ++current_class_stack[current_class_depth - 1].hidden;
7121 }
7122
7123 /* Mark the top of the class stack as un-hidden. */
7124
7125 void
7126 pop_class_stack (void)
7127 {
7128 if (current_class_depth)
7129 --current_class_stack[current_class_depth - 1].hidden;
7130 }
7131
7132 /* Returns 1 if the class type currently being defined is either T or
7133 a nested type of T. */
7134
7135 bool
7136 currently_open_class (tree t)
7137 {
7138 int i;
7139
7140 if (!CLASS_TYPE_P (t))
7141 return false;
7142
7143 t = TYPE_MAIN_VARIANT (t);
7144
7145 /* We start looking from 1 because entry 0 is from global scope,
7146 and has no type. */
7147 for (i = current_class_depth; i > 0; --i)
7148 {
7149 tree c;
7150 if (i == current_class_depth)
7151 c = current_class_type;
7152 else
7153 {
7154 if (current_class_stack[i].hidden)
7155 break;
7156 c = current_class_stack[i].type;
7157 }
7158 if (!c)
7159 continue;
7160 if (same_type_p (c, t))
7161 return true;
7162 }
7163 return false;
7164 }
7165
7166 /* If either current_class_type or one of its enclosing classes are derived
7167 from T, return the appropriate type. Used to determine how we found
7168 something via unqualified lookup. */
7169
7170 tree
7171 currently_open_derived_class (tree t)
7172 {
7173 int i;
7174
7175 /* The bases of a dependent type are unknown. */
7176 if (dependent_type_p (t))
7177 return NULL_TREE;
7178
7179 if (!current_class_type)
7180 return NULL_TREE;
7181
7182 if (DERIVED_FROM_P (t, current_class_type))
7183 return current_class_type;
7184
7185 for (i = current_class_depth - 1; i > 0; --i)
7186 {
7187 if (current_class_stack[i].hidden)
7188 break;
7189 if (DERIVED_FROM_P (t, current_class_stack[i].type))
7190 return current_class_stack[i].type;
7191 }
7192
7193 return NULL_TREE;
7194 }
7195
7196 /* Return the outermost enclosing class type that is still open, or
7197 NULL_TREE. */
7198
7199 tree
7200 outermost_open_class (void)
7201 {
7202 if (!current_class_type)
7203 return NULL_TREE;
7204 tree r = NULL_TREE;
7205 if (TYPE_BEING_DEFINED (current_class_type))
7206 r = current_class_type;
7207 for (int i = current_class_depth - 1; i > 0; --i)
7208 {
7209 if (current_class_stack[i].hidden)
7210 break;
7211 tree t = current_class_stack[i].type;
7212 if (!TYPE_BEING_DEFINED (t))
7213 break;
7214 r = t;
7215 }
7216 return r;
7217 }
7218
7219 /* Returns the innermost class type which is not a lambda closure type. */
7220
7221 tree
7222 current_nonlambda_class_type (void)
7223 {
7224 int i;
7225
7226 /* We start looking from 1 because entry 0 is from global scope,
7227 and has no type. */
7228 for (i = current_class_depth; i > 0; --i)
7229 {
7230 tree c;
7231 if (i == current_class_depth)
7232 c = current_class_type;
7233 else
7234 {
7235 if (current_class_stack[i].hidden)
7236 break;
7237 c = current_class_stack[i].type;
7238 }
7239 if (!c)
7240 continue;
7241 if (!LAMBDA_TYPE_P (c))
7242 return c;
7243 }
7244 return NULL_TREE;
7245 }
7246
7247 /* When entering a class scope, all enclosing class scopes' names with
7248 static meaning (static variables, static functions, types and
7249 enumerators) have to be visible. This recursive function calls
7250 pushclass for all enclosing class contexts until global or a local
7251 scope is reached. TYPE is the enclosed class. */
7252
7253 void
7254 push_nested_class (tree type)
7255 {
7256 /* A namespace might be passed in error cases, like A::B:C. */
7257 if (type == NULL_TREE
7258 || !CLASS_TYPE_P (type))
7259 return;
7260
7261 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7262
7263 pushclass (type);
7264 }
7265
7266 /* Undoes a push_nested_class call. */
7267
7268 void
7269 pop_nested_class (void)
7270 {
7271 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7272
7273 popclass ();
7274 if (context && CLASS_TYPE_P (context))
7275 pop_nested_class ();
7276 }
7277
7278 /* Returns the number of extern "LANG" blocks we are nested within. */
7279
7280 int
7281 current_lang_depth (void)
7282 {
7283 return vec_safe_length (current_lang_base);
7284 }
7285
7286 /* Set global variables CURRENT_LANG_NAME to appropriate value
7287 so that behavior of name-mangling machinery is correct. */
7288
7289 void
7290 push_lang_context (tree name)
7291 {
7292 vec_safe_push (current_lang_base, current_lang_name);
7293
7294 if (name == lang_name_cplusplus)
7295 {
7296 current_lang_name = name;
7297 }
7298 else if (name == lang_name_java)
7299 {
7300 current_lang_name = name;
7301 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7302 (See record_builtin_java_type in decl.c.) However, that causes
7303 incorrect debug entries if these types are actually used.
7304 So we re-enable debug output after extern "Java". */
7305 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7306 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7307 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7308 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7309 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7310 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7311 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7312 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7313 }
7314 else if (name == lang_name_c)
7315 {
7316 current_lang_name = name;
7317 }
7318 else
7319 error ("language string %<\"%E\"%> not recognized", name);
7320 }
7321
7322 /* Get out of the current language scope. */
7323
7324 void
7325 pop_lang_context (void)
7326 {
7327 current_lang_name = current_lang_base->pop ();
7328 }
7329 \f
7330 /* Type instantiation routines. */
7331
7332 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7333 matches the TARGET_TYPE. If there is no satisfactory match, return
7334 error_mark_node, and issue an error & warning messages under
7335 control of FLAGS. Permit pointers to member function if FLAGS
7336 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7337 a template-id, and EXPLICIT_TARGS are the explicitly provided
7338 template arguments.
7339
7340 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7341 is the base path used to reference those member functions. If
7342 the address is resolved to a member function, access checks will be
7343 performed and errors issued if appropriate. */
7344
7345 static tree
7346 resolve_address_of_overloaded_function (tree target_type,
7347 tree overload,
7348 tsubst_flags_t flags,
7349 bool template_only,
7350 tree explicit_targs,
7351 tree access_path)
7352 {
7353 /* Here's what the standard says:
7354
7355 [over.over]
7356
7357 If the name is a function template, template argument deduction
7358 is done, and if the argument deduction succeeds, the deduced
7359 arguments are used to generate a single template function, which
7360 is added to the set of overloaded functions considered.
7361
7362 Non-member functions and static member functions match targets of
7363 type "pointer-to-function" or "reference-to-function." Nonstatic
7364 member functions match targets of type "pointer-to-member
7365 function;" the function type of the pointer to member is used to
7366 select the member function from the set of overloaded member
7367 functions. If a nonstatic member function is selected, the
7368 reference to the overloaded function name is required to have the
7369 form of a pointer to member as described in 5.3.1.
7370
7371 If more than one function is selected, any template functions in
7372 the set are eliminated if the set also contains a non-template
7373 function, and any given template function is eliminated if the
7374 set contains a second template function that is more specialized
7375 than the first according to the partial ordering rules 14.5.5.2.
7376 After such eliminations, if any, there shall remain exactly one
7377 selected function. */
7378
7379 int is_ptrmem = 0;
7380 /* We store the matches in a TREE_LIST rooted here. The functions
7381 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7382 interoperability with most_specialized_instantiation. */
7383 tree matches = NULL_TREE;
7384 tree fn;
7385 tree target_fn_type;
7386
7387 /* By the time we get here, we should be seeing only real
7388 pointer-to-member types, not the internal POINTER_TYPE to
7389 METHOD_TYPE representation. */
7390 gcc_assert (!TYPE_PTR_P (target_type)
7391 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7392
7393 gcc_assert (is_overloaded_fn (overload));
7394
7395 /* Check that the TARGET_TYPE is reasonable. */
7396 if (TYPE_PTRFN_P (target_type)
7397 || TYPE_REFFN_P (target_type))
7398 /* This is OK. */;
7399 else if (TYPE_PTRMEMFUNC_P (target_type))
7400 /* This is OK, too. */
7401 is_ptrmem = 1;
7402 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7403 /* This is OK, too. This comes from a conversion to reference
7404 type. */
7405 target_type = build_reference_type (target_type);
7406 else
7407 {
7408 if (flags & tf_error)
7409 error ("cannot resolve overloaded function %qD based on"
7410 " conversion to type %qT",
7411 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7412 return error_mark_node;
7413 }
7414
7415 /* Non-member functions and static member functions match targets of type
7416 "pointer-to-function" or "reference-to-function." Nonstatic member
7417 functions match targets of type "pointer-to-member-function;" the
7418 function type of the pointer to member is used to select the member
7419 function from the set of overloaded member functions.
7420
7421 So figure out the FUNCTION_TYPE that we want to match against. */
7422 target_fn_type = static_fn_type (target_type);
7423
7424 /* If we can find a non-template function that matches, we can just
7425 use it. There's no point in generating template instantiations
7426 if we're just going to throw them out anyhow. But, of course, we
7427 can only do this when we don't *need* a template function. */
7428 if (!template_only)
7429 {
7430 tree fns;
7431
7432 for (fns = overload; fns; fns = OVL_NEXT (fns))
7433 {
7434 tree fn = OVL_CURRENT (fns);
7435
7436 if (TREE_CODE (fn) == TEMPLATE_DECL)
7437 /* We're not looking for templates just yet. */
7438 continue;
7439
7440 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7441 != is_ptrmem)
7442 /* We're looking for a non-static member, and this isn't
7443 one, or vice versa. */
7444 continue;
7445
7446 /* Ignore functions which haven't been explicitly
7447 declared. */
7448 if (DECL_ANTICIPATED (fn))
7449 continue;
7450
7451 /* See if there's a match. */
7452 if (same_type_p (target_fn_type, static_fn_type (fn)))
7453 matches = tree_cons (fn, NULL_TREE, matches);
7454 }
7455 }
7456
7457 /* Now, if we've already got a match (or matches), there's no need
7458 to proceed to the template functions. But, if we don't have a
7459 match we need to look at them, too. */
7460 if (!matches)
7461 {
7462 tree target_arg_types;
7463 tree target_ret_type;
7464 tree fns;
7465 tree *args;
7466 unsigned int nargs, ia;
7467 tree arg;
7468
7469 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7470 target_ret_type = TREE_TYPE (target_fn_type);
7471
7472 nargs = list_length (target_arg_types);
7473 args = XALLOCAVEC (tree, nargs);
7474 for (arg = target_arg_types, ia = 0;
7475 arg != NULL_TREE && arg != void_list_node;
7476 arg = TREE_CHAIN (arg), ++ia)
7477 args[ia] = TREE_VALUE (arg);
7478 nargs = ia;
7479
7480 for (fns = overload; fns; fns = OVL_NEXT (fns))
7481 {
7482 tree fn = OVL_CURRENT (fns);
7483 tree instantiation;
7484 tree targs;
7485
7486 if (TREE_CODE (fn) != TEMPLATE_DECL)
7487 /* We're only looking for templates. */
7488 continue;
7489
7490 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7491 != is_ptrmem)
7492 /* We're not looking for a non-static member, and this is
7493 one, or vice versa. */
7494 continue;
7495
7496 tree ret = target_ret_type;
7497
7498 /* If the template has a deduced return type, don't expose it to
7499 template argument deduction. */
7500 if (undeduced_auto_decl (fn))
7501 ret = NULL_TREE;
7502
7503 /* Try to do argument deduction. */
7504 targs = make_tree_vec (DECL_NTPARMS (fn));
7505 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7506 nargs, ret,
7507 DEDUCE_EXACT, LOOKUP_NORMAL,
7508 false, false);
7509 if (instantiation == error_mark_node)
7510 /* Instantiation failed. */
7511 continue;
7512
7513 /* And now force instantiation to do return type deduction. */
7514 if (undeduced_auto_decl (instantiation))
7515 {
7516 ++function_depth;
7517 instantiate_decl (instantiation, /*defer*/false, /*class*/false);
7518 --function_depth;
7519
7520 require_deduced_type (instantiation);
7521 }
7522
7523 /* See if there's a match. */
7524 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7525 matches = tree_cons (instantiation, fn, matches);
7526 }
7527
7528 /* Now, remove all but the most specialized of the matches. */
7529 if (matches)
7530 {
7531 tree match = most_specialized_instantiation (matches);
7532
7533 if (match != error_mark_node)
7534 matches = tree_cons (TREE_PURPOSE (match),
7535 NULL_TREE,
7536 NULL_TREE);
7537 }
7538 }
7539
7540 /* Now we should have exactly one function in MATCHES. */
7541 if (matches == NULL_TREE)
7542 {
7543 /* There were *no* matches. */
7544 if (flags & tf_error)
7545 {
7546 error ("no matches converting function %qD to type %q#T",
7547 DECL_NAME (OVL_CURRENT (overload)),
7548 target_type);
7549
7550 print_candidates (overload);
7551 }
7552 return error_mark_node;
7553 }
7554 else if (TREE_CHAIN (matches))
7555 {
7556 /* There were too many matches. First check if they're all
7557 the same function. */
7558 tree match = NULL_TREE;
7559
7560 fn = TREE_PURPOSE (matches);
7561
7562 /* For multi-versioned functions, more than one match is just fine and
7563 decls_match will return false as they are different. */
7564 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7565 if (!decls_match (fn, TREE_PURPOSE (match))
7566 && !targetm.target_option.function_versions
7567 (fn, TREE_PURPOSE (match)))
7568 break;
7569
7570 if (match)
7571 {
7572 if (flags & tf_error)
7573 {
7574 error ("converting overloaded function %qD to type %q#T is ambiguous",
7575 DECL_NAME (OVL_FUNCTION (overload)),
7576 target_type);
7577
7578 /* Since print_candidates expects the functions in the
7579 TREE_VALUE slot, we flip them here. */
7580 for (match = matches; match; match = TREE_CHAIN (match))
7581 TREE_VALUE (match) = TREE_PURPOSE (match);
7582
7583 print_candidates (matches);
7584 }
7585
7586 return error_mark_node;
7587 }
7588 }
7589
7590 /* Good, exactly one match. Now, convert it to the correct type. */
7591 fn = TREE_PURPOSE (matches);
7592
7593 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7594 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7595 {
7596 static int explained;
7597
7598 if (!(flags & tf_error))
7599 return error_mark_node;
7600
7601 permerror (input_location, "assuming pointer to member %qD", fn);
7602 if (!explained)
7603 {
7604 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7605 explained = 1;
7606 }
7607 }
7608
7609 /* If a pointer to a function that is multi-versioned is requested, the
7610 pointer to the dispatcher function is returned instead. This works
7611 well because indirectly calling the function will dispatch the right
7612 function version at run-time. */
7613 if (DECL_FUNCTION_VERSIONED (fn))
7614 {
7615 fn = get_function_version_dispatcher (fn);
7616 if (fn == NULL)
7617 return error_mark_node;
7618 /* Mark all the versions corresponding to the dispatcher as used. */
7619 if (!(flags & tf_conv))
7620 mark_versions_used (fn);
7621 }
7622
7623 /* If we're doing overload resolution purely for the purpose of
7624 determining conversion sequences, we should not consider the
7625 function used. If this conversion sequence is selected, the
7626 function will be marked as used at this point. */
7627 if (!(flags & tf_conv))
7628 {
7629 /* Make =delete work with SFINAE. */
7630 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7631 return error_mark_node;
7632
7633 mark_used (fn);
7634 }
7635
7636 /* We could not check access to member functions when this
7637 expression was originally created since we did not know at that
7638 time to which function the expression referred. */
7639 if (DECL_FUNCTION_MEMBER_P (fn))
7640 {
7641 gcc_assert (access_path);
7642 perform_or_defer_access_check (access_path, fn, fn, flags);
7643 }
7644
7645 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7646 return cp_build_addr_expr (fn, flags);
7647 else
7648 {
7649 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7650 will mark the function as addressed, but here we must do it
7651 explicitly. */
7652 cxx_mark_addressable (fn);
7653
7654 return fn;
7655 }
7656 }
7657
7658 /* This function will instantiate the type of the expression given in
7659 RHS to match the type of LHSTYPE. If errors exist, then return
7660 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7661 we complain on errors. If we are not complaining, never modify rhs,
7662 as overload resolution wants to try many possible instantiations, in
7663 the hope that at least one will work.
7664
7665 For non-recursive calls, LHSTYPE should be a function, pointer to
7666 function, or a pointer to member function. */
7667
7668 tree
7669 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7670 {
7671 tsubst_flags_t flags_in = flags;
7672 tree access_path = NULL_TREE;
7673
7674 flags &= ~tf_ptrmem_ok;
7675
7676 if (lhstype == unknown_type_node)
7677 {
7678 if (flags & tf_error)
7679 error ("not enough type information");
7680 return error_mark_node;
7681 }
7682
7683 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7684 {
7685 tree fntype = non_reference (lhstype);
7686 if (same_type_p (fntype, TREE_TYPE (rhs)))
7687 return rhs;
7688 if (flag_ms_extensions
7689 && TYPE_PTRMEMFUNC_P (fntype)
7690 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7691 /* Microsoft allows `A::f' to be resolved to a
7692 pointer-to-member. */
7693 ;
7694 else
7695 {
7696 if (flags & tf_error)
7697 error ("cannot convert %qE from type %qT to type %qT",
7698 rhs, TREE_TYPE (rhs), fntype);
7699 return error_mark_node;
7700 }
7701 }
7702
7703 if (BASELINK_P (rhs))
7704 {
7705 access_path = BASELINK_ACCESS_BINFO (rhs);
7706 rhs = BASELINK_FUNCTIONS (rhs);
7707 }
7708
7709 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7710 deduce any type information. */
7711 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7712 {
7713 if (flags & tf_error)
7714 error ("not enough type information");
7715 return error_mark_node;
7716 }
7717
7718 /* There only a few kinds of expressions that may have a type
7719 dependent on overload resolution. */
7720 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7721 || TREE_CODE (rhs) == COMPONENT_REF
7722 || is_overloaded_fn (rhs)
7723 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7724
7725 /* This should really only be used when attempting to distinguish
7726 what sort of a pointer to function we have. For now, any
7727 arithmetic operation which is not supported on pointers
7728 is rejected as an error. */
7729
7730 switch (TREE_CODE (rhs))
7731 {
7732 case COMPONENT_REF:
7733 {
7734 tree member = TREE_OPERAND (rhs, 1);
7735
7736 member = instantiate_type (lhstype, member, flags);
7737 if (member != error_mark_node
7738 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7739 /* Do not lose object's side effects. */
7740 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7741 TREE_OPERAND (rhs, 0), member);
7742 return member;
7743 }
7744
7745 case OFFSET_REF:
7746 rhs = TREE_OPERAND (rhs, 1);
7747 if (BASELINK_P (rhs))
7748 return instantiate_type (lhstype, rhs, flags_in);
7749
7750 /* This can happen if we are forming a pointer-to-member for a
7751 member template. */
7752 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7753
7754 /* Fall through. */
7755
7756 case TEMPLATE_ID_EXPR:
7757 {
7758 tree fns = TREE_OPERAND (rhs, 0);
7759 tree args = TREE_OPERAND (rhs, 1);
7760
7761 return
7762 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7763 /*template_only=*/true,
7764 args, access_path);
7765 }
7766
7767 case OVERLOAD:
7768 case FUNCTION_DECL:
7769 return
7770 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7771 /*template_only=*/false,
7772 /*explicit_targs=*/NULL_TREE,
7773 access_path);
7774
7775 case ADDR_EXPR:
7776 {
7777 if (PTRMEM_OK_P (rhs))
7778 flags |= tf_ptrmem_ok;
7779
7780 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7781 }
7782
7783 case ERROR_MARK:
7784 return error_mark_node;
7785
7786 default:
7787 gcc_unreachable ();
7788 }
7789 return error_mark_node;
7790 }
7791 \f
7792 /* Return the name of the virtual function pointer field
7793 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7794 this may have to look back through base types to find the
7795 ultimate field name. (For single inheritance, these could
7796 all be the same name. Who knows for multiple inheritance). */
7797
7798 static tree
7799 get_vfield_name (tree type)
7800 {
7801 tree binfo, base_binfo;
7802 char *buf;
7803
7804 for (binfo = TYPE_BINFO (type);
7805 BINFO_N_BASE_BINFOS (binfo);
7806 binfo = base_binfo)
7807 {
7808 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7809
7810 if (BINFO_VIRTUAL_P (base_binfo)
7811 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7812 break;
7813 }
7814
7815 type = BINFO_TYPE (binfo);
7816 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7817 + TYPE_NAME_LENGTH (type) + 2);
7818 sprintf (buf, VFIELD_NAME_FORMAT,
7819 IDENTIFIER_POINTER (constructor_name (type)));
7820 return get_identifier (buf);
7821 }
7822
7823 void
7824 print_class_statistics (void)
7825 {
7826 if (! GATHER_STATISTICS)
7827 return;
7828
7829 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7830 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7831 if (n_vtables)
7832 {
7833 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7834 n_vtables, n_vtable_searches);
7835 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7836 n_vtable_entries, n_vtable_elems);
7837 }
7838 }
7839
7840 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7841 according to [class]:
7842 The class-name is also inserted
7843 into the scope of the class itself. For purposes of access checking,
7844 the inserted class name is treated as if it were a public member name. */
7845
7846 void
7847 build_self_reference (void)
7848 {
7849 tree name = constructor_name (current_class_type);
7850 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7851 tree saved_cas;
7852
7853 DECL_NONLOCAL (value) = 1;
7854 DECL_CONTEXT (value) = current_class_type;
7855 DECL_ARTIFICIAL (value) = 1;
7856 SET_DECL_SELF_REFERENCE_P (value);
7857 set_underlying_type (value);
7858
7859 if (processing_template_decl)
7860 value = push_template_decl (value);
7861
7862 saved_cas = current_access_specifier;
7863 current_access_specifier = access_public_node;
7864 finish_member_declaration (value);
7865 current_access_specifier = saved_cas;
7866 }
7867
7868 /* Returns 1 if TYPE contains only padding bytes. */
7869
7870 int
7871 is_empty_class (tree type)
7872 {
7873 if (type == error_mark_node)
7874 return 0;
7875
7876 if (! CLASS_TYPE_P (type))
7877 return 0;
7878
7879 return CLASSTYPE_EMPTY_P (type);
7880 }
7881
7882 /* Returns true if TYPE contains no actual data, just various
7883 possible combinations of empty classes and possibly a vptr. */
7884
7885 bool
7886 is_really_empty_class (tree type)
7887 {
7888 if (CLASS_TYPE_P (type))
7889 {
7890 tree field;
7891 tree binfo;
7892 tree base_binfo;
7893 int i;
7894
7895 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7896 out, but we'd like to be able to check this before then. */
7897 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7898 return true;
7899
7900 for (binfo = TYPE_BINFO (type), i = 0;
7901 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7902 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7903 return false;
7904 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7905 if (TREE_CODE (field) == FIELD_DECL
7906 && !DECL_ARTIFICIAL (field)
7907 && !is_really_empty_class (TREE_TYPE (field)))
7908 return false;
7909 return true;
7910 }
7911 else if (TREE_CODE (type) == ARRAY_TYPE)
7912 return is_really_empty_class (TREE_TYPE (type));
7913 return false;
7914 }
7915
7916 /* Note that NAME was looked up while the current class was being
7917 defined and that the result of that lookup was DECL. */
7918
7919 void
7920 maybe_note_name_used_in_class (tree name, tree decl)
7921 {
7922 splay_tree names_used;
7923
7924 /* If we're not defining a class, there's nothing to do. */
7925 if (!(innermost_scope_kind() == sk_class
7926 && TYPE_BEING_DEFINED (current_class_type)
7927 && !LAMBDA_TYPE_P (current_class_type)))
7928 return;
7929
7930 /* If there's already a binding for this NAME, then we don't have
7931 anything to worry about. */
7932 if (lookup_member (current_class_type, name,
7933 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7934 return;
7935
7936 if (!current_class_stack[current_class_depth - 1].names_used)
7937 current_class_stack[current_class_depth - 1].names_used
7938 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7939 names_used = current_class_stack[current_class_depth - 1].names_used;
7940
7941 splay_tree_insert (names_used,
7942 (splay_tree_key) name,
7943 (splay_tree_value) decl);
7944 }
7945
7946 /* Note that NAME was declared (as DECL) in the current class. Check
7947 to see that the declaration is valid. */
7948
7949 void
7950 note_name_declared_in_class (tree name, tree decl)
7951 {
7952 splay_tree names_used;
7953 splay_tree_node n;
7954
7955 /* Look to see if we ever used this name. */
7956 names_used
7957 = current_class_stack[current_class_depth - 1].names_used;
7958 if (!names_used)
7959 return;
7960 /* The C language allows members to be declared with a type of the same
7961 name, and the C++ standard says this diagnostic is not required. So
7962 allow it in extern "C" blocks unless predantic is specified.
7963 Allow it in all cases if -ms-extensions is specified. */
7964 if ((!pedantic && current_lang_name == lang_name_c)
7965 || flag_ms_extensions)
7966 return;
7967 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7968 if (n)
7969 {
7970 /* [basic.scope.class]
7971
7972 A name N used in a class S shall refer to the same declaration
7973 in its context and when re-evaluated in the completed scope of
7974 S. */
7975 permerror (input_location, "declaration of %q#D", decl);
7976 permerror (input_location, "changes meaning of %qD from %q+#D",
7977 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7978 }
7979 }
7980
7981 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7982 Secondary vtables are merged with primary vtables; this function
7983 will return the VAR_DECL for the primary vtable. */
7984
7985 tree
7986 get_vtbl_decl_for_binfo (tree binfo)
7987 {
7988 tree decl;
7989
7990 decl = BINFO_VTABLE (binfo);
7991 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7992 {
7993 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7994 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7995 }
7996 if (decl)
7997 gcc_assert (VAR_P (decl));
7998 return decl;
7999 }
8000
8001
8002 /* Returns the binfo for the primary base of BINFO. If the resulting
8003 BINFO is a virtual base, and it is inherited elsewhere in the
8004 hierarchy, then the returned binfo might not be the primary base of
8005 BINFO in the complete object. Check BINFO_PRIMARY_P or
8006 BINFO_LOST_PRIMARY_P to be sure. */
8007
8008 static tree
8009 get_primary_binfo (tree binfo)
8010 {
8011 tree primary_base;
8012
8013 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
8014 if (!primary_base)
8015 return NULL_TREE;
8016
8017 return copied_binfo (primary_base, binfo);
8018 }
8019
8020 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
8021
8022 static int
8023 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
8024 {
8025 if (!indented_p)
8026 fprintf (stream, "%*s", indent, "");
8027 return 1;
8028 }
8029
8030 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
8031 INDENT should be zero when called from the top level; it is
8032 incremented recursively. IGO indicates the next expected BINFO in
8033 inheritance graph ordering. */
8034
8035 static tree
8036 dump_class_hierarchy_r (FILE *stream,
8037 int flags,
8038 tree binfo,
8039 tree igo,
8040 int indent)
8041 {
8042 int indented = 0;
8043 tree base_binfo;
8044 int i;
8045
8046 indented = maybe_indent_hierarchy (stream, indent, 0);
8047 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
8048 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
8049 (HOST_WIDE_INT) (uintptr_t) binfo);
8050 if (binfo != igo)
8051 {
8052 fprintf (stream, "alternative-path\n");
8053 return igo;
8054 }
8055 igo = TREE_CHAIN (binfo);
8056
8057 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
8058 tree_to_shwi (BINFO_OFFSET (binfo)));
8059 if (is_empty_class (BINFO_TYPE (binfo)))
8060 fprintf (stream, " empty");
8061 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
8062 fprintf (stream, " nearly-empty");
8063 if (BINFO_VIRTUAL_P (binfo))
8064 fprintf (stream, " virtual");
8065 fprintf (stream, "\n");
8066
8067 indented = 0;
8068 if (BINFO_PRIMARY_P (binfo))
8069 {
8070 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8071 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
8072 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
8073 TFF_PLAIN_IDENTIFIER),
8074 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
8075 }
8076 if (BINFO_LOST_PRIMARY_P (binfo))
8077 {
8078 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8079 fprintf (stream, " lost-primary");
8080 }
8081 if (indented)
8082 fprintf (stream, "\n");
8083
8084 if (!(flags & TDF_SLIM))
8085 {
8086 int indented = 0;
8087
8088 if (BINFO_SUBVTT_INDEX (binfo))
8089 {
8090 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8091 fprintf (stream, " subvttidx=%s",
8092 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
8093 TFF_PLAIN_IDENTIFIER));
8094 }
8095 if (BINFO_VPTR_INDEX (binfo))
8096 {
8097 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8098 fprintf (stream, " vptridx=%s",
8099 expr_as_string (BINFO_VPTR_INDEX (binfo),
8100 TFF_PLAIN_IDENTIFIER));
8101 }
8102 if (BINFO_VPTR_FIELD (binfo))
8103 {
8104 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8105 fprintf (stream, " vbaseoffset=%s",
8106 expr_as_string (BINFO_VPTR_FIELD (binfo),
8107 TFF_PLAIN_IDENTIFIER));
8108 }
8109 if (BINFO_VTABLE (binfo))
8110 {
8111 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8112 fprintf (stream, " vptr=%s",
8113 expr_as_string (BINFO_VTABLE (binfo),
8114 TFF_PLAIN_IDENTIFIER));
8115 }
8116
8117 if (indented)
8118 fprintf (stream, "\n");
8119 }
8120
8121 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
8122 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
8123
8124 return igo;
8125 }
8126
8127 /* Dump the BINFO hierarchy for T. */
8128
8129 static void
8130 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
8131 {
8132 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8133 fprintf (stream, " size=%lu align=%lu\n",
8134 (unsigned long)(tree_to_shwi (TYPE_SIZE (t)) / BITS_PER_UNIT),
8135 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
8136 fprintf (stream, " base size=%lu base align=%lu\n",
8137 (unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t)))
8138 / BITS_PER_UNIT),
8139 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
8140 / BITS_PER_UNIT));
8141 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
8142 fprintf (stream, "\n");
8143 }
8144
8145 /* Debug interface to hierarchy dumping. */
8146
8147 void
8148 debug_class (tree t)
8149 {
8150 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
8151 }
8152
8153 static void
8154 dump_class_hierarchy (tree t)
8155 {
8156 int flags;
8157 FILE *stream = get_dump_info (TDI_class, &flags);
8158
8159 if (stream)
8160 {
8161 dump_class_hierarchy_1 (stream, flags, t);
8162 }
8163 }
8164
8165 static void
8166 dump_array (FILE * stream, tree decl)
8167 {
8168 tree value;
8169 unsigned HOST_WIDE_INT ix;
8170 HOST_WIDE_INT elt;
8171 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8172
8173 elt = (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))))
8174 / BITS_PER_UNIT);
8175 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8176 fprintf (stream, " %s entries",
8177 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8178 TFF_PLAIN_IDENTIFIER));
8179 fprintf (stream, "\n");
8180
8181 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8182 ix, value)
8183 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
8184 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8185 }
8186
8187 static void
8188 dump_vtable (tree t, tree binfo, tree vtable)
8189 {
8190 int flags;
8191 FILE *stream = get_dump_info (TDI_class, &flags);
8192
8193 if (!stream)
8194 return;
8195
8196 if (!(flags & TDF_SLIM))
8197 {
8198 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8199
8200 fprintf (stream, "%s for %s",
8201 ctor_vtbl_p ? "Construction vtable" : "Vtable",
8202 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8203 if (ctor_vtbl_p)
8204 {
8205 if (!BINFO_VIRTUAL_P (binfo))
8206 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8207 (HOST_WIDE_INT) (uintptr_t) binfo);
8208 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8209 }
8210 fprintf (stream, "\n");
8211 dump_array (stream, vtable);
8212 fprintf (stream, "\n");
8213 }
8214 }
8215
8216 static void
8217 dump_vtt (tree t, tree vtt)
8218 {
8219 int flags;
8220 FILE *stream = get_dump_info (TDI_class, &flags);
8221
8222 if (!stream)
8223 return;
8224
8225 if (!(flags & TDF_SLIM))
8226 {
8227 fprintf (stream, "VTT for %s\n",
8228 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8229 dump_array (stream, vtt);
8230 fprintf (stream, "\n");
8231 }
8232 }
8233
8234 /* Dump a function or thunk and its thunkees. */
8235
8236 static void
8237 dump_thunk (FILE *stream, int indent, tree thunk)
8238 {
8239 static const char spaces[] = " ";
8240 tree name = DECL_NAME (thunk);
8241 tree thunks;
8242
8243 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8244 (void *)thunk,
8245 !DECL_THUNK_P (thunk) ? "function"
8246 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8247 name ? IDENTIFIER_POINTER (name) : "<unset>");
8248 if (DECL_THUNK_P (thunk))
8249 {
8250 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8251 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8252
8253 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8254 if (!virtual_adjust)
8255 /*NOP*/;
8256 else if (DECL_THIS_THUNK_P (thunk))
8257 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8258 tree_to_shwi (virtual_adjust));
8259 else
8260 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8261 tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust)),
8262 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8263 if (THUNK_ALIAS (thunk))
8264 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8265 }
8266 fprintf (stream, "\n");
8267 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8268 dump_thunk (stream, indent + 2, thunks);
8269 }
8270
8271 /* Dump the thunks for FN. */
8272
8273 void
8274 debug_thunks (tree fn)
8275 {
8276 dump_thunk (stderr, 0, fn);
8277 }
8278
8279 /* Virtual function table initialization. */
8280
8281 /* Create all the necessary vtables for T and its base classes. */
8282
8283 static void
8284 finish_vtbls (tree t)
8285 {
8286 tree vbase;
8287 vec<constructor_elt, va_gc> *v = NULL;
8288 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8289
8290 /* We lay out the primary and secondary vtables in one contiguous
8291 vtable. The primary vtable is first, followed by the non-virtual
8292 secondary vtables in inheritance graph order. */
8293 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8294 vtable, t, &v);
8295
8296 /* Then come the virtual bases, also in inheritance graph order. */
8297 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8298 {
8299 if (!BINFO_VIRTUAL_P (vbase))
8300 continue;
8301 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8302 }
8303
8304 if (BINFO_VTABLE (TYPE_BINFO (t)))
8305 initialize_vtable (TYPE_BINFO (t), v);
8306 }
8307
8308 /* Initialize the vtable for BINFO with the INITS. */
8309
8310 static void
8311 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8312 {
8313 tree decl;
8314
8315 layout_vtable_decl (binfo, vec_safe_length (inits));
8316 decl = get_vtbl_decl_for_binfo (binfo);
8317 initialize_artificial_var (decl, inits);
8318 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8319 }
8320
8321 /* Build the VTT (virtual table table) for T.
8322 A class requires a VTT if it has virtual bases.
8323
8324 This holds
8325 1 - primary virtual pointer for complete object T
8326 2 - secondary VTTs for each direct non-virtual base of T which requires a
8327 VTT
8328 3 - secondary virtual pointers for each direct or indirect base of T which
8329 has virtual bases or is reachable via a virtual path from T.
8330 4 - secondary VTTs for each direct or indirect virtual base of T.
8331
8332 Secondary VTTs look like complete object VTTs without part 4. */
8333
8334 static void
8335 build_vtt (tree t)
8336 {
8337 tree type;
8338 tree vtt;
8339 tree index;
8340 vec<constructor_elt, va_gc> *inits;
8341
8342 /* Build up the initializers for the VTT. */
8343 inits = NULL;
8344 index = size_zero_node;
8345 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8346
8347 /* If we didn't need a VTT, we're done. */
8348 if (!inits)
8349 return;
8350
8351 /* Figure out the type of the VTT. */
8352 type = build_array_of_n_type (const_ptr_type_node,
8353 inits->length ());
8354
8355 /* Now, build the VTT object itself. */
8356 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8357 initialize_artificial_var (vtt, inits);
8358 /* Add the VTT to the vtables list. */
8359 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8360 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8361
8362 dump_vtt (t, vtt);
8363 }
8364
8365 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8366 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8367 and CHAIN the vtable pointer for this binfo after construction is
8368 complete. VALUE can also be another BINFO, in which case we recurse. */
8369
8370 static tree
8371 binfo_ctor_vtable (tree binfo)
8372 {
8373 tree vt;
8374
8375 while (1)
8376 {
8377 vt = BINFO_VTABLE (binfo);
8378 if (TREE_CODE (vt) == TREE_LIST)
8379 vt = TREE_VALUE (vt);
8380 if (TREE_CODE (vt) == TREE_BINFO)
8381 binfo = vt;
8382 else
8383 break;
8384 }
8385
8386 return vt;
8387 }
8388
8389 /* Data for secondary VTT initialization. */
8390 typedef struct secondary_vptr_vtt_init_data_s
8391 {
8392 /* Is this the primary VTT? */
8393 bool top_level_p;
8394
8395 /* Current index into the VTT. */
8396 tree index;
8397
8398 /* Vector of initializers built up. */
8399 vec<constructor_elt, va_gc> *inits;
8400
8401 /* The type being constructed by this secondary VTT. */
8402 tree type_being_constructed;
8403 } secondary_vptr_vtt_init_data;
8404
8405 /* Recursively build the VTT-initializer for BINFO (which is in the
8406 hierarchy dominated by T). INITS points to the end of the initializer
8407 list to date. INDEX is the VTT index where the next element will be
8408 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8409 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8410 for virtual bases of T. When it is not so, we build the constructor
8411 vtables for the BINFO-in-T variant. */
8412
8413 static void
8414 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8415 tree *index)
8416 {
8417 int i;
8418 tree b;
8419 tree init;
8420 secondary_vptr_vtt_init_data data;
8421 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8422
8423 /* We only need VTTs for subobjects with virtual bases. */
8424 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8425 return;
8426
8427 /* We need to use a construction vtable if this is not the primary
8428 VTT. */
8429 if (!top_level_p)
8430 {
8431 build_ctor_vtbl_group (binfo, t);
8432
8433 /* Record the offset in the VTT where this sub-VTT can be found. */
8434 BINFO_SUBVTT_INDEX (binfo) = *index;
8435 }
8436
8437 /* Add the address of the primary vtable for the complete object. */
8438 init = binfo_ctor_vtable (binfo);
8439 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8440 if (top_level_p)
8441 {
8442 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8443 BINFO_VPTR_INDEX (binfo) = *index;
8444 }
8445 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8446
8447 /* Recursively add the secondary VTTs for non-virtual bases. */
8448 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8449 if (!BINFO_VIRTUAL_P (b))
8450 build_vtt_inits (b, t, inits, index);
8451
8452 /* Add secondary virtual pointers for all subobjects of BINFO with
8453 either virtual bases or reachable along a virtual path, except
8454 subobjects that are non-virtual primary bases. */
8455 data.top_level_p = top_level_p;
8456 data.index = *index;
8457 data.inits = *inits;
8458 data.type_being_constructed = BINFO_TYPE (binfo);
8459
8460 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8461
8462 *index = data.index;
8463
8464 /* data.inits might have grown as we added secondary virtual pointers.
8465 Make sure our caller knows about the new vector. */
8466 *inits = data.inits;
8467
8468 if (top_level_p)
8469 /* Add the secondary VTTs for virtual bases in inheritance graph
8470 order. */
8471 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8472 {
8473 if (!BINFO_VIRTUAL_P (b))
8474 continue;
8475
8476 build_vtt_inits (b, t, inits, index);
8477 }
8478 else
8479 /* Remove the ctor vtables we created. */
8480 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8481 }
8482
8483 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8484 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8485
8486 static tree
8487 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8488 {
8489 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8490
8491 /* We don't care about bases that don't have vtables. */
8492 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8493 return dfs_skip_bases;
8494
8495 /* We're only interested in proper subobjects of the type being
8496 constructed. */
8497 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8498 return NULL_TREE;
8499
8500 /* We're only interested in bases with virtual bases or reachable
8501 via a virtual path from the type being constructed. */
8502 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8503 || binfo_via_virtual (binfo, data->type_being_constructed)))
8504 return dfs_skip_bases;
8505
8506 /* We're not interested in non-virtual primary bases. */
8507 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8508 return NULL_TREE;
8509
8510 /* Record the index where this secondary vptr can be found. */
8511 if (data->top_level_p)
8512 {
8513 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8514 BINFO_VPTR_INDEX (binfo) = data->index;
8515
8516 if (BINFO_VIRTUAL_P (binfo))
8517 {
8518 /* It's a primary virtual base, and this is not a
8519 construction vtable. Find the base this is primary of in
8520 the inheritance graph, and use that base's vtable
8521 now. */
8522 while (BINFO_PRIMARY_P (binfo))
8523 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8524 }
8525 }
8526
8527 /* Add the initializer for the secondary vptr itself. */
8528 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8529
8530 /* Advance the vtt index. */
8531 data->index = size_binop (PLUS_EXPR, data->index,
8532 TYPE_SIZE_UNIT (ptr_type_node));
8533
8534 return NULL_TREE;
8535 }
8536
8537 /* Called from build_vtt_inits via dfs_walk. After building
8538 constructor vtables and generating the sub-vtt from them, we need
8539 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8540 binfo of the base whose sub vtt was generated. */
8541
8542 static tree
8543 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8544 {
8545 tree vtable = BINFO_VTABLE (binfo);
8546
8547 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8548 /* If this class has no vtable, none of its bases do. */
8549 return dfs_skip_bases;
8550
8551 if (!vtable)
8552 /* This might be a primary base, so have no vtable in this
8553 hierarchy. */
8554 return NULL_TREE;
8555
8556 /* If we scribbled the construction vtable vptr into BINFO, clear it
8557 out now. */
8558 if (TREE_CODE (vtable) == TREE_LIST
8559 && (TREE_PURPOSE (vtable) == (tree) data))
8560 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8561
8562 return NULL_TREE;
8563 }
8564
8565 /* Build the construction vtable group for BINFO which is in the
8566 hierarchy dominated by T. */
8567
8568 static void
8569 build_ctor_vtbl_group (tree binfo, tree t)
8570 {
8571 tree type;
8572 tree vtbl;
8573 tree id;
8574 tree vbase;
8575 vec<constructor_elt, va_gc> *v;
8576
8577 /* See if we've already created this construction vtable group. */
8578 id = mangle_ctor_vtbl_for_type (t, binfo);
8579 if (IDENTIFIER_GLOBAL_VALUE (id))
8580 return;
8581
8582 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8583 /* Build a version of VTBL (with the wrong type) for use in
8584 constructing the addresses of secondary vtables in the
8585 construction vtable group. */
8586 vtbl = build_vtable (t, id, ptr_type_node);
8587 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8588 /* Don't export construction vtables from shared libraries. Even on
8589 targets that don't support hidden visibility, this tells
8590 can_refer_decl_in_current_unit_p not to assume that it's safe to
8591 access from a different compilation unit (bz 54314). */
8592 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8593 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8594
8595 v = NULL;
8596 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8597 binfo, vtbl, t, &v);
8598
8599 /* Add the vtables for each of our virtual bases using the vbase in T
8600 binfo. */
8601 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8602 vbase;
8603 vbase = TREE_CHAIN (vbase))
8604 {
8605 tree b;
8606
8607 if (!BINFO_VIRTUAL_P (vbase))
8608 continue;
8609 b = copied_binfo (vbase, binfo);
8610
8611 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8612 }
8613
8614 /* Figure out the type of the construction vtable. */
8615 type = build_array_of_n_type (vtable_entry_type, v->length ());
8616 layout_type (type);
8617 TREE_TYPE (vtbl) = type;
8618 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8619 layout_decl (vtbl, 0);
8620
8621 /* Initialize the construction vtable. */
8622 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8623 initialize_artificial_var (vtbl, v);
8624 dump_vtable (t, binfo, vtbl);
8625 }
8626
8627 /* Add the vtbl initializers for BINFO (and its bases other than
8628 non-virtual primaries) to the list of INITS. BINFO is in the
8629 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8630 the constructor the vtbl inits should be accumulated for. (If this
8631 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8632 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8633 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8634 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8635 but are not necessarily the same in terms of layout. */
8636
8637 static void
8638 accumulate_vtbl_inits (tree binfo,
8639 tree orig_binfo,
8640 tree rtti_binfo,
8641 tree vtbl,
8642 tree t,
8643 vec<constructor_elt, va_gc> **inits)
8644 {
8645 int i;
8646 tree base_binfo;
8647 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8648
8649 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8650
8651 /* If it doesn't have a vptr, we don't do anything. */
8652 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8653 return;
8654
8655 /* If we're building a construction vtable, we're not interested in
8656 subobjects that don't require construction vtables. */
8657 if (ctor_vtbl_p
8658 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8659 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8660 return;
8661
8662 /* Build the initializers for the BINFO-in-T vtable. */
8663 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8664
8665 /* Walk the BINFO and its bases. We walk in preorder so that as we
8666 initialize each vtable we can figure out at what offset the
8667 secondary vtable lies from the primary vtable. We can't use
8668 dfs_walk here because we need to iterate through bases of BINFO
8669 and RTTI_BINFO simultaneously. */
8670 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8671 {
8672 /* Skip virtual bases. */
8673 if (BINFO_VIRTUAL_P (base_binfo))
8674 continue;
8675 accumulate_vtbl_inits (base_binfo,
8676 BINFO_BASE_BINFO (orig_binfo, i),
8677 rtti_binfo, vtbl, t,
8678 inits);
8679 }
8680 }
8681
8682 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8683 BINFO vtable to L. */
8684
8685 static void
8686 dfs_accumulate_vtbl_inits (tree binfo,
8687 tree orig_binfo,
8688 tree rtti_binfo,
8689 tree orig_vtbl,
8690 tree t,
8691 vec<constructor_elt, va_gc> **l)
8692 {
8693 tree vtbl = NULL_TREE;
8694 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8695 int n_inits;
8696
8697 if (ctor_vtbl_p
8698 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8699 {
8700 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8701 primary virtual base. If it is not the same primary in
8702 the hierarchy of T, we'll need to generate a ctor vtable
8703 for it, to place at its location in T. If it is the same
8704 primary, we still need a VTT entry for the vtable, but it
8705 should point to the ctor vtable for the base it is a
8706 primary for within the sub-hierarchy of RTTI_BINFO.
8707
8708 There are three possible cases:
8709
8710 1) We are in the same place.
8711 2) We are a primary base within a lost primary virtual base of
8712 RTTI_BINFO.
8713 3) We are primary to something not a base of RTTI_BINFO. */
8714
8715 tree b;
8716 tree last = NULL_TREE;
8717
8718 /* First, look through the bases we are primary to for RTTI_BINFO
8719 or a virtual base. */
8720 b = binfo;
8721 while (BINFO_PRIMARY_P (b))
8722 {
8723 b = BINFO_INHERITANCE_CHAIN (b);
8724 last = b;
8725 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8726 goto found;
8727 }
8728 /* If we run out of primary links, keep looking down our
8729 inheritance chain; we might be an indirect primary. */
8730 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8731 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8732 break;
8733 found:
8734
8735 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8736 base B and it is a base of RTTI_BINFO, this is case 2. In
8737 either case, we share our vtable with LAST, i.e. the
8738 derived-most base within B of which we are a primary. */
8739 if (b == rtti_binfo
8740 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8741 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8742 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8743 binfo_ctor_vtable after everything's been set up. */
8744 vtbl = last;
8745
8746 /* Otherwise, this is case 3 and we get our own. */
8747 }
8748 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8749 return;
8750
8751 n_inits = vec_safe_length (*l);
8752
8753 if (!vtbl)
8754 {
8755 tree index;
8756 int non_fn_entries;
8757
8758 /* Add the initializer for this vtable. */
8759 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8760 &non_fn_entries, l);
8761
8762 /* Figure out the position to which the VPTR should point. */
8763 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8764 index = size_binop (MULT_EXPR,
8765 TYPE_SIZE_UNIT (vtable_entry_type),
8766 size_int (non_fn_entries + n_inits));
8767 vtbl = fold_build_pointer_plus (vtbl, index);
8768 }
8769
8770 if (ctor_vtbl_p)
8771 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8772 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8773 straighten this out. */
8774 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8775 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8776 /* Throw away any unneeded intializers. */
8777 (*l)->truncate (n_inits);
8778 else
8779 /* For an ordinary vtable, set BINFO_VTABLE. */
8780 BINFO_VTABLE (binfo) = vtbl;
8781 }
8782
8783 static GTY(()) tree abort_fndecl_addr;
8784
8785 /* Construct the initializer for BINFO's virtual function table. BINFO
8786 is part of the hierarchy dominated by T. If we're building a
8787 construction vtable, the ORIG_BINFO is the binfo we should use to
8788 find the actual function pointers to put in the vtable - but they
8789 can be overridden on the path to most-derived in the graph that
8790 ORIG_BINFO belongs. Otherwise,
8791 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8792 BINFO that should be indicated by the RTTI information in the
8793 vtable; it will be a base class of T, rather than T itself, if we
8794 are building a construction vtable.
8795
8796 The value returned is a TREE_LIST suitable for wrapping in a
8797 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8798 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8799 number of non-function entries in the vtable.
8800
8801 It might seem that this function should never be called with a
8802 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8803 base is always subsumed by a derived class vtable. However, when
8804 we are building construction vtables, we do build vtables for
8805 primary bases; we need these while the primary base is being
8806 constructed. */
8807
8808 static void
8809 build_vtbl_initializer (tree binfo,
8810 tree orig_binfo,
8811 tree t,
8812 tree rtti_binfo,
8813 int* non_fn_entries_p,
8814 vec<constructor_elt, va_gc> **inits)
8815 {
8816 tree v;
8817 vtbl_init_data vid;
8818 unsigned ix, jx;
8819 tree vbinfo;
8820 vec<tree, va_gc> *vbases;
8821 constructor_elt *e;
8822
8823 /* Initialize VID. */
8824 memset (&vid, 0, sizeof (vid));
8825 vid.binfo = binfo;
8826 vid.derived = t;
8827 vid.rtti_binfo = rtti_binfo;
8828 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8829 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8830 vid.generate_vcall_entries = true;
8831 /* The first vbase or vcall offset is at index -3 in the vtable. */
8832 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8833
8834 /* Add entries to the vtable for RTTI. */
8835 build_rtti_vtbl_entries (binfo, &vid);
8836
8837 /* Create an array for keeping track of the functions we've
8838 processed. When we see multiple functions with the same
8839 signature, we share the vcall offsets. */
8840 vec_alloc (vid.fns, 32);
8841 /* Add the vcall and vbase offset entries. */
8842 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8843
8844 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8845 build_vbase_offset_vtbl_entries. */
8846 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8847 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8848 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8849
8850 /* If the target requires padding between data entries, add that now. */
8851 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8852 {
8853 int n_entries = vec_safe_length (vid.inits);
8854
8855 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8856
8857 /* Move data entries into their new positions and add padding
8858 after the new positions. Iterate backwards so we don't
8859 overwrite entries that we would need to process later. */
8860 for (ix = n_entries - 1;
8861 vid.inits->iterate (ix, &e);
8862 ix--)
8863 {
8864 int j;
8865 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8866 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8867
8868 (*vid.inits)[new_position] = *e;
8869
8870 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8871 {
8872 constructor_elt *f = &(*vid.inits)[new_position - j];
8873 f->index = NULL_TREE;
8874 f->value = build1 (NOP_EXPR, vtable_entry_type,
8875 null_pointer_node);
8876 }
8877 }
8878 }
8879
8880 if (non_fn_entries_p)
8881 *non_fn_entries_p = vec_safe_length (vid.inits);
8882
8883 /* The initializers for virtual functions were built up in reverse
8884 order. Straighten them out and add them to the running list in one
8885 step. */
8886 jx = vec_safe_length (*inits);
8887 vec_safe_grow (*inits, jx + vid.inits->length ());
8888
8889 for (ix = vid.inits->length () - 1;
8890 vid.inits->iterate (ix, &e);
8891 ix--, jx++)
8892 (**inits)[jx] = *e;
8893
8894 /* Go through all the ordinary virtual functions, building up
8895 initializers. */
8896 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8897 {
8898 tree delta;
8899 tree vcall_index;
8900 tree fn, fn_original;
8901 tree init = NULL_TREE;
8902
8903 fn = BV_FN (v);
8904 fn_original = fn;
8905 if (DECL_THUNK_P (fn))
8906 {
8907 if (!DECL_NAME (fn))
8908 finish_thunk (fn);
8909 if (THUNK_ALIAS (fn))
8910 {
8911 fn = THUNK_ALIAS (fn);
8912 BV_FN (v) = fn;
8913 }
8914 fn_original = THUNK_TARGET (fn);
8915 }
8916
8917 /* If the only definition of this function signature along our
8918 primary base chain is from a lost primary, this vtable slot will
8919 never be used, so just zero it out. This is important to avoid
8920 requiring extra thunks which cannot be generated with the function.
8921
8922 We first check this in update_vtable_entry_for_fn, so we handle
8923 restored primary bases properly; we also need to do it here so we
8924 zero out unused slots in ctor vtables, rather than filling them
8925 with erroneous values (though harmless, apart from relocation
8926 costs). */
8927 if (BV_LOST_PRIMARY (v))
8928 init = size_zero_node;
8929
8930 if (! init)
8931 {
8932 /* Pull the offset for `this', and the function to call, out of
8933 the list. */
8934 delta = BV_DELTA (v);
8935 vcall_index = BV_VCALL_INDEX (v);
8936
8937 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8938 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8939
8940 /* You can't call an abstract virtual function; it's abstract.
8941 So, we replace these functions with __pure_virtual. */
8942 if (DECL_PURE_VIRTUAL_P (fn_original))
8943 {
8944 fn = abort_fndecl;
8945 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8946 {
8947 if (abort_fndecl_addr == NULL)
8948 abort_fndecl_addr
8949 = fold_convert (vfunc_ptr_type_node,
8950 build_fold_addr_expr (fn));
8951 init = abort_fndecl_addr;
8952 }
8953 }
8954 /* Likewise for deleted virtuals. */
8955 else if (DECL_DELETED_FN (fn_original))
8956 {
8957 fn = get_identifier ("__cxa_deleted_virtual");
8958 if (!get_global_value_if_present (fn, &fn))
8959 fn = push_library_fn (fn, (build_function_type_list
8960 (void_type_node, NULL_TREE)),
8961 NULL_TREE, ECF_NORETURN);
8962 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8963 init = fold_convert (vfunc_ptr_type_node,
8964 build_fold_addr_expr (fn));
8965 }
8966 else
8967 {
8968 if (!integer_zerop (delta) || vcall_index)
8969 {
8970 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8971 if (!DECL_NAME (fn))
8972 finish_thunk (fn);
8973 }
8974 /* Take the address of the function, considering it to be of an
8975 appropriate generic type. */
8976 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8977 init = fold_convert (vfunc_ptr_type_node,
8978 build_fold_addr_expr (fn));
8979 /* Don't refer to a virtual destructor from a constructor
8980 vtable or a vtable for an abstract class, since destroying
8981 an object under construction is undefined behavior and we
8982 don't want it to be considered a candidate for speculative
8983 devirtualization. But do create the thunk for ABI
8984 compliance. */
8985 if (DECL_DESTRUCTOR_P (fn_original)
8986 && (CLASSTYPE_PURE_VIRTUALS (DECL_CONTEXT (fn_original))
8987 || orig_binfo != binfo))
8988 init = size_zero_node;
8989 }
8990 }
8991
8992 /* And add it to the chain of initializers. */
8993 if (TARGET_VTABLE_USES_DESCRIPTORS)
8994 {
8995 int i;
8996 if (init == size_zero_node)
8997 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8998 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8999 else
9000 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
9001 {
9002 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
9003 fn, build_int_cst (NULL_TREE, i));
9004 TREE_CONSTANT (fdesc) = 1;
9005
9006 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
9007 }
9008 }
9009 else
9010 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
9011 }
9012 }
9013
9014 /* Adds to vid->inits the initializers for the vbase and vcall
9015 offsets in BINFO, which is in the hierarchy dominated by T. */
9016
9017 static void
9018 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
9019 {
9020 tree b;
9021
9022 /* If this is a derived class, we must first create entries
9023 corresponding to the primary base class. */
9024 b = get_primary_binfo (binfo);
9025 if (b)
9026 build_vcall_and_vbase_vtbl_entries (b, vid);
9027
9028 /* Add the vbase entries for this base. */
9029 build_vbase_offset_vtbl_entries (binfo, vid);
9030 /* Add the vcall entries for this base. */
9031 build_vcall_offset_vtbl_entries (binfo, vid);
9032 }
9033
9034 /* Returns the initializers for the vbase offset entries in the vtable
9035 for BINFO (which is part of the class hierarchy dominated by T), in
9036 reverse order. VBASE_OFFSET_INDEX gives the vtable index
9037 where the next vbase offset will go. */
9038
9039 static void
9040 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9041 {
9042 tree vbase;
9043 tree t;
9044 tree non_primary_binfo;
9045
9046 /* If there are no virtual baseclasses, then there is nothing to
9047 do. */
9048 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
9049 return;
9050
9051 t = vid->derived;
9052
9053 /* We might be a primary base class. Go up the inheritance hierarchy
9054 until we find the most derived class of which we are a primary base:
9055 it is the offset of that which we need to use. */
9056 non_primary_binfo = binfo;
9057 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9058 {
9059 tree b;
9060
9061 /* If we have reached a virtual base, then it must be a primary
9062 base (possibly multi-level) of vid->binfo, or we wouldn't
9063 have called build_vcall_and_vbase_vtbl_entries for it. But it
9064 might be a lost primary, so just skip down to vid->binfo. */
9065 if (BINFO_VIRTUAL_P (non_primary_binfo))
9066 {
9067 non_primary_binfo = vid->binfo;
9068 break;
9069 }
9070
9071 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9072 if (get_primary_binfo (b) != non_primary_binfo)
9073 break;
9074 non_primary_binfo = b;
9075 }
9076
9077 /* Go through the virtual bases, adding the offsets. */
9078 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
9079 vbase;
9080 vbase = TREE_CHAIN (vbase))
9081 {
9082 tree b;
9083 tree delta;
9084
9085 if (!BINFO_VIRTUAL_P (vbase))
9086 continue;
9087
9088 /* Find the instance of this virtual base in the complete
9089 object. */
9090 b = copied_binfo (vbase, binfo);
9091
9092 /* If we've already got an offset for this virtual base, we
9093 don't need another one. */
9094 if (BINFO_VTABLE_PATH_MARKED (b))
9095 continue;
9096 BINFO_VTABLE_PATH_MARKED (b) = 1;
9097
9098 /* Figure out where we can find this vbase offset. */
9099 delta = size_binop (MULT_EXPR,
9100 vid->index,
9101 convert (ssizetype,
9102 TYPE_SIZE_UNIT (vtable_entry_type)));
9103 if (vid->primary_vtbl_p)
9104 BINFO_VPTR_FIELD (b) = delta;
9105
9106 if (binfo != TYPE_BINFO (t))
9107 /* The vbase offset had better be the same. */
9108 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
9109
9110 /* The next vbase will come at a more negative offset. */
9111 vid->index = size_binop (MINUS_EXPR, vid->index,
9112 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9113
9114 /* The initializer is the delta from BINFO to this virtual base.
9115 The vbase offsets go in reverse inheritance-graph order, and
9116 we are walking in inheritance graph order so these end up in
9117 the right order. */
9118 delta = size_diffop_loc (input_location,
9119 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
9120
9121 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
9122 fold_build1_loc (input_location, NOP_EXPR,
9123 vtable_entry_type, delta));
9124 }
9125 }
9126
9127 /* Adds the initializers for the vcall offset entries in the vtable
9128 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9129 to VID->INITS. */
9130
9131 static void
9132 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9133 {
9134 /* We only need these entries if this base is a virtual base. We
9135 compute the indices -- but do not add to the vtable -- when
9136 building the main vtable for a class. */
9137 if (binfo == TYPE_BINFO (vid->derived)
9138 || (BINFO_VIRTUAL_P (binfo)
9139 /* If BINFO is RTTI_BINFO, then (since BINFO does not
9140 correspond to VID->DERIVED), we are building a primary
9141 construction virtual table. Since this is a primary
9142 virtual table, we do not need the vcall offsets for
9143 BINFO. */
9144 && binfo != vid->rtti_binfo))
9145 {
9146 /* We need a vcall offset for each of the virtual functions in this
9147 vtable. For example:
9148
9149 class A { virtual void f (); };
9150 class B1 : virtual public A { virtual void f (); };
9151 class B2 : virtual public A { virtual void f (); };
9152 class C: public B1, public B2 { virtual void f (); };
9153
9154 A C object has a primary base of B1, which has a primary base of A. A
9155 C also has a secondary base of B2, which no longer has a primary base
9156 of A. So the B2-in-C construction vtable needs a secondary vtable for
9157 A, which will adjust the A* to a B2* to call f. We have no way of
9158 knowing what (or even whether) this offset will be when we define B2,
9159 so we store this "vcall offset" in the A sub-vtable and look it up in
9160 a "virtual thunk" for B2::f.
9161
9162 We need entries for all the functions in our primary vtable and
9163 in our non-virtual bases' secondary vtables. */
9164 vid->vbase = binfo;
9165 /* If we are just computing the vcall indices -- but do not need
9166 the actual entries -- not that. */
9167 if (!BINFO_VIRTUAL_P (binfo))
9168 vid->generate_vcall_entries = false;
9169 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9170 add_vcall_offset_vtbl_entries_r (binfo, vid);
9171 }
9172 }
9173
9174 /* Build vcall offsets, starting with those for BINFO. */
9175
9176 static void
9177 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9178 {
9179 int i;
9180 tree primary_binfo;
9181 tree base_binfo;
9182
9183 /* Don't walk into virtual bases -- except, of course, for the
9184 virtual base for which we are building vcall offsets. Any
9185 primary virtual base will have already had its offsets generated
9186 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9187 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9188 return;
9189
9190 /* If BINFO has a primary base, process it first. */
9191 primary_binfo = get_primary_binfo (binfo);
9192 if (primary_binfo)
9193 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9194
9195 /* Add BINFO itself to the list. */
9196 add_vcall_offset_vtbl_entries_1 (binfo, vid);
9197
9198 /* Scan the non-primary bases of BINFO. */
9199 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9200 if (base_binfo != primary_binfo)
9201 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9202 }
9203
9204 /* Called from build_vcall_offset_vtbl_entries_r. */
9205
9206 static void
9207 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9208 {
9209 /* Make entries for the rest of the virtuals. */
9210 tree orig_fn;
9211
9212 /* The ABI requires that the methods be processed in declaration
9213 order. */
9214 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
9215 orig_fn;
9216 orig_fn = DECL_CHAIN (orig_fn))
9217 if (TREE_CODE (orig_fn) == FUNCTION_DECL && DECL_VINDEX (orig_fn))
9218 add_vcall_offset (orig_fn, binfo, vid);
9219 }
9220
9221 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9222
9223 static void
9224 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9225 {
9226 size_t i;
9227 tree vcall_offset;
9228 tree derived_entry;
9229
9230 /* If there is already an entry for a function with the same
9231 signature as FN, then we do not need a second vcall offset.
9232 Check the list of functions already present in the derived
9233 class vtable. */
9234 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9235 {
9236 if (same_signature_p (derived_entry, orig_fn)
9237 /* We only use one vcall offset for virtual destructors,
9238 even though there are two virtual table entries. */
9239 || (DECL_DESTRUCTOR_P (derived_entry)
9240 && DECL_DESTRUCTOR_P (orig_fn)))
9241 return;
9242 }
9243
9244 /* If we are building these vcall offsets as part of building
9245 the vtable for the most derived class, remember the vcall
9246 offset. */
9247 if (vid->binfo == TYPE_BINFO (vid->derived))
9248 {
9249 tree_pair_s elt = {orig_fn, vid->index};
9250 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9251 }
9252
9253 /* The next vcall offset will be found at a more negative
9254 offset. */
9255 vid->index = size_binop (MINUS_EXPR, vid->index,
9256 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9257
9258 /* Keep track of this function. */
9259 vec_safe_push (vid->fns, orig_fn);
9260
9261 if (vid->generate_vcall_entries)
9262 {
9263 tree base;
9264 tree fn;
9265
9266 /* Find the overriding function. */
9267 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9268 if (fn == error_mark_node)
9269 vcall_offset = build_zero_cst (vtable_entry_type);
9270 else
9271 {
9272 base = TREE_VALUE (fn);
9273
9274 /* The vbase we're working on is a primary base of
9275 vid->binfo. But it might be a lost primary, so its
9276 BINFO_OFFSET might be wrong, so we just use the
9277 BINFO_OFFSET from vid->binfo. */
9278 vcall_offset = size_diffop_loc (input_location,
9279 BINFO_OFFSET (base),
9280 BINFO_OFFSET (vid->binfo));
9281 vcall_offset = fold_build1_loc (input_location,
9282 NOP_EXPR, vtable_entry_type,
9283 vcall_offset);
9284 }
9285 /* Add the initializer to the vtable. */
9286 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9287 }
9288 }
9289
9290 /* Return vtbl initializers for the RTTI entries corresponding to the
9291 BINFO's vtable. The RTTI entries should indicate the object given
9292 by VID->rtti_binfo. */
9293
9294 static void
9295 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9296 {
9297 tree b;
9298 tree t;
9299 tree offset;
9300 tree decl;
9301 tree init;
9302
9303 t = BINFO_TYPE (vid->rtti_binfo);
9304
9305 /* To find the complete object, we will first convert to our most
9306 primary base, and then add the offset in the vtbl to that value. */
9307 b = binfo;
9308 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9309 && !BINFO_LOST_PRIMARY_P (b))
9310 {
9311 tree primary_base;
9312
9313 primary_base = get_primary_binfo (b);
9314 gcc_assert (BINFO_PRIMARY_P (primary_base)
9315 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9316 b = primary_base;
9317 }
9318 offset = size_diffop_loc (input_location,
9319 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9320
9321 /* The second entry is the address of the typeinfo object. */
9322 if (flag_rtti)
9323 decl = build_address (get_tinfo_decl (t));
9324 else
9325 decl = integer_zero_node;
9326
9327 /* Convert the declaration to a type that can be stored in the
9328 vtable. */
9329 init = build_nop (vfunc_ptr_type_node, decl);
9330 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9331
9332 /* Add the offset-to-top entry. It comes earlier in the vtable than
9333 the typeinfo entry. Convert the offset to look like a
9334 function pointer, so that we can put it in the vtable. */
9335 init = build_nop (vfunc_ptr_type_node, offset);
9336 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9337 }
9338
9339 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9340 accessibility. */
9341
9342 bool
9343 uniquely_derived_from_p (tree parent, tree type)
9344 {
9345 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9346 return base && base != error_mark_node;
9347 }
9348
9349 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9350
9351 bool
9352 publicly_uniquely_derived_p (tree parent, tree type)
9353 {
9354 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9355 NULL, tf_none);
9356 return base && base != error_mark_node;
9357 }
9358
9359 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9360 class between them, if any. */
9361
9362 tree
9363 common_enclosing_class (tree ctx1, tree ctx2)
9364 {
9365 if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
9366 return NULL_TREE;
9367 gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
9368 && ctx2 == TYPE_MAIN_VARIANT (ctx2));
9369 if (ctx1 == ctx2)
9370 return ctx1;
9371 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9372 TYPE_MARKED_P (t) = true;
9373 tree found = NULL_TREE;
9374 for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
9375 if (TYPE_MARKED_P (t))
9376 {
9377 found = t;
9378 break;
9379 }
9380 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9381 TYPE_MARKED_P (t) = false;
9382 return found;
9383 }
9384
9385 #include "gt-cp-class.h"