pt.c (lookup_template_class_1): Splice out abi_tag attribute if necessary.
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "stringpool.h"
30 #include "stor-layout.h"
31 #include "attribs.h"
32 #include "hash-table.h"
33 #include "cp-tree.h"
34 #include "flags.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38 #include "cgraph.h"
39 #include "dumpfile.h"
40 #include "splay-tree.h"
41 #include "gimplify.h"
42 #include "wide-int.h"
43
44 /* The number of nested classes being processed. If we are not in the
45 scope of any class, this is zero. */
46
47 int current_class_depth;
48
49 /* In order to deal with nested classes, we keep a stack of classes.
50 The topmost entry is the innermost class, and is the entry at index
51 CURRENT_CLASS_DEPTH */
52
53 typedef struct class_stack_node {
54 /* The name of the class. */
55 tree name;
56
57 /* The _TYPE node for the class. */
58 tree type;
59
60 /* The access specifier pending for new declarations in the scope of
61 this class. */
62 tree access;
63
64 /* If were defining TYPE, the names used in this class. */
65 splay_tree names_used;
66
67 /* Nonzero if this class is no longer open, because of a call to
68 push_to_top_level. */
69 size_t hidden;
70 }* class_stack_node_t;
71
72 typedef struct vtbl_init_data_s
73 {
74 /* The base for which we're building initializers. */
75 tree binfo;
76 /* The type of the most-derived type. */
77 tree derived;
78 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
79 unless ctor_vtbl_p is true. */
80 tree rtti_binfo;
81 /* The negative-index vtable initializers built up so far. These
82 are in order from least negative index to most negative index. */
83 vec<constructor_elt, va_gc> *inits;
84 /* The binfo for the virtual base for which we're building
85 vcall offset initializers. */
86 tree vbase;
87 /* The functions in vbase for which we have already provided vcall
88 offsets. */
89 vec<tree, va_gc> *fns;
90 /* The vtable index of the next vcall or vbase offset. */
91 tree index;
92 /* Nonzero if we are building the initializer for the primary
93 vtable. */
94 int primary_vtbl_p;
95 /* Nonzero if we are building the initializer for a construction
96 vtable. */
97 int ctor_vtbl_p;
98 /* True when adding vcall offset entries to the vtable. False when
99 merely computing the indices. */
100 bool generate_vcall_entries;
101 } vtbl_init_data;
102
103 /* The type of a function passed to walk_subobject_offsets. */
104 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
105
106 /* The stack itself. This is a dynamically resized array. The
107 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
108 static int current_class_stack_size;
109 static class_stack_node_t current_class_stack;
110
111 /* The size of the largest empty class seen in this translation unit. */
112 static GTY (()) tree sizeof_biggest_empty_class;
113
114 /* An array of all local classes present in this translation unit, in
115 declaration order. */
116 vec<tree, va_gc> *local_classes;
117
118 static tree get_vfield_name (tree);
119 static void finish_struct_anon (tree);
120 static tree get_vtable_name (tree);
121 static tree get_basefndecls (tree, tree);
122 static int build_primary_vtable (tree, tree);
123 static int build_secondary_vtable (tree);
124 static void finish_vtbls (tree);
125 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
126 static void finish_struct_bits (tree);
127 static int alter_access (tree, tree, tree);
128 static void handle_using_decl (tree, tree);
129 static tree dfs_modify_vtables (tree, void *);
130 static tree modify_all_vtables (tree, tree);
131 static void determine_primary_bases (tree);
132 static void finish_struct_methods (tree);
133 static void maybe_warn_about_overly_private_class (tree);
134 static int method_name_cmp (const void *, const void *);
135 static int resort_method_name_cmp (const void *, const void *);
136 static void add_implicitly_declared_members (tree, tree*, int, int);
137 static tree fixed_type_or_null (tree, int *, int *);
138 static tree build_simple_base_path (tree expr, tree binfo);
139 static tree build_vtbl_ref_1 (tree, tree);
140 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
141 vec<constructor_elt, va_gc> **);
142 static int count_fields (tree);
143 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
144 static void insert_into_classtype_sorted_fields (tree, tree, int);
145 static bool check_bitfield_decl (tree);
146 static void check_field_decl (tree, tree, int *, int *, int *);
147 static void check_field_decls (tree, tree *, int *, int *);
148 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
149 static void build_base_fields (record_layout_info, splay_tree, tree *);
150 static void check_methods (tree);
151 static void remove_zero_width_bit_fields (tree);
152 static bool accessible_nvdtor_p (tree);
153 static void check_bases (tree, int *, int *);
154 static void check_bases_and_members (tree);
155 static tree create_vtable_ptr (tree, tree *);
156 static void include_empty_classes (record_layout_info);
157 static void layout_class_type (tree, tree *);
158 static void propagate_binfo_offsets (tree, tree);
159 static void layout_virtual_bases (record_layout_info, splay_tree);
160 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
161 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
162 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
163 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
164 static void add_vcall_offset (tree, tree, vtbl_init_data *);
165 static void layout_vtable_decl (tree, int);
166 static tree dfs_find_final_overrider_pre (tree, void *);
167 static tree dfs_find_final_overrider_post (tree, void *);
168 static tree find_final_overrider (tree, tree, tree);
169 static int make_new_vtable (tree, tree);
170 static tree get_primary_binfo (tree);
171 static int maybe_indent_hierarchy (FILE *, int, int);
172 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
173 static void dump_class_hierarchy (tree);
174 static void dump_class_hierarchy_1 (FILE *, int, tree);
175 static void dump_array (FILE *, tree);
176 static void dump_vtable (tree, tree, tree);
177 static void dump_vtt (tree, tree);
178 static void dump_thunk (FILE *, int, tree);
179 static tree build_vtable (tree, tree, tree);
180 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
181 static void layout_nonempty_base_or_field (record_layout_info,
182 tree, tree, splay_tree);
183 static tree end_of_class (tree, int);
184 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
185 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
186 vec<constructor_elt, va_gc> **);
187 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
188 vec<constructor_elt, va_gc> **);
189 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
190 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
191 static void clone_constructors_and_destructors (tree);
192 static tree build_clone (tree, tree);
193 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
194 static void build_ctor_vtbl_group (tree, tree);
195 static void build_vtt (tree);
196 static tree binfo_ctor_vtable (tree);
197 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
198 tree *);
199 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
200 static tree dfs_fixup_binfo_vtbls (tree, void *);
201 static int record_subobject_offset (tree, tree, splay_tree);
202 static int check_subobject_offset (tree, tree, splay_tree);
203 static int walk_subobject_offsets (tree, subobject_offset_fn,
204 tree, splay_tree, tree, int);
205 static void record_subobject_offsets (tree, tree, splay_tree, bool);
206 static int layout_conflict_p (tree, tree, splay_tree, int);
207 static int splay_tree_compare_integer_csts (splay_tree_key k1,
208 splay_tree_key k2);
209 static void warn_about_ambiguous_bases (tree);
210 static bool type_requires_array_cookie (tree);
211 static bool base_derived_from (tree, tree);
212 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
213 static tree end_of_base (tree);
214 static tree get_vcall_index (tree, tree);
215
216 /* Variables shared between class.c and call.c. */
217
218 int n_vtables = 0;
219 int n_vtable_entries = 0;
220 int n_vtable_searches = 0;
221 int n_vtable_elems = 0;
222 int n_convert_harshness = 0;
223 int n_compute_conversion_costs = 0;
224 int n_inner_fields_searched = 0;
225
226 /* Convert to or from a base subobject. EXPR is an expression of type
227 `A' or `A*', an expression of type `B' or `B*' is returned. To
228 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
229 the B base instance within A. To convert base A to derived B, CODE
230 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
231 In this latter case, A must not be a morally virtual base of B.
232 NONNULL is true if EXPR is known to be non-NULL (this is only
233 needed when EXPR is of pointer type). CV qualifiers are preserved
234 from EXPR. */
235
236 tree
237 build_base_path (enum tree_code code,
238 tree expr,
239 tree binfo,
240 int nonnull,
241 tsubst_flags_t complain)
242 {
243 tree v_binfo = NULL_TREE;
244 tree d_binfo = NULL_TREE;
245 tree probe;
246 tree offset;
247 tree target_type;
248 tree null_test = NULL;
249 tree ptr_target_type;
250 int fixed_type_p;
251 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
252 bool has_empty = false;
253 bool virtual_access;
254
255 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
256 return error_mark_node;
257
258 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
259 {
260 d_binfo = probe;
261 if (is_empty_class (BINFO_TYPE (probe)))
262 has_empty = true;
263 if (!v_binfo && BINFO_VIRTUAL_P (probe))
264 v_binfo = probe;
265 }
266
267 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
268 if (want_pointer)
269 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
270
271 if (code == PLUS_EXPR
272 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
273 {
274 /* This can happen when adjust_result_of_qualified_name_lookup can't
275 find a unique base binfo in a call to a member function. We
276 couldn't give the diagnostic then since we might have been calling
277 a static member function, so we do it now. */
278 if (complain & tf_error)
279 {
280 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
281 ba_unique, NULL, complain);
282 gcc_assert (base == error_mark_node);
283 }
284 return error_mark_node;
285 }
286
287 gcc_assert ((code == MINUS_EXPR
288 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
289 || code == PLUS_EXPR);
290
291 if (binfo == d_binfo)
292 /* Nothing to do. */
293 return expr;
294
295 if (code == MINUS_EXPR && v_binfo)
296 {
297 if (complain & tf_error)
298 {
299 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo)))
300 {
301 if (want_pointer)
302 error ("cannot convert from pointer to base class %qT to "
303 "pointer to derived class %qT because the base is "
304 "virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
305 else
306 error ("cannot convert from base class %qT to derived "
307 "class %qT because the base is virtual",
308 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
309 }
310 else
311 {
312 if (want_pointer)
313 error ("cannot convert from pointer to base class %qT to "
314 "pointer to derived class %qT via virtual base %qT",
315 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
316 BINFO_TYPE (v_binfo));
317 else
318 error ("cannot convert from base class %qT to derived "
319 "class %qT via virtual base %qT", BINFO_TYPE (binfo),
320 BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
321 }
322 }
323 return error_mark_node;
324 }
325
326 if (!want_pointer)
327 /* This must happen before the call to save_expr. */
328 expr = cp_build_addr_expr (expr, complain);
329 else
330 expr = mark_rvalue_use (expr);
331
332 offset = BINFO_OFFSET (binfo);
333 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
334 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
335 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
336 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
337 expression returned matches the input. */
338 target_type = cp_build_qualified_type
339 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
340 ptr_target_type = build_pointer_type (target_type);
341
342 /* Do we need to look in the vtable for the real offset? */
343 virtual_access = (v_binfo && fixed_type_p <= 0);
344
345 /* Don't bother with the calculations inside sizeof; they'll ICE if the
346 source type is incomplete and the pointer value doesn't matter. In a
347 template (even in fold_non_dependent_expr), we don't have vtables set
348 up properly yet, and the value doesn't matter there either; we're just
349 interested in the result of overload resolution. */
350 if (cp_unevaluated_operand != 0
351 || in_template_function ())
352 {
353 expr = build_nop (ptr_target_type, expr);
354 if (!want_pointer)
355 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
356 return expr;
357 }
358
359 /* If we're in an NSDMI, we don't have the full constructor context yet
360 that we need for converting to a virtual base, so just build a stub
361 CONVERT_EXPR and expand it later in bot_replace. */
362 if (virtual_access && fixed_type_p < 0
363 && current_scope () != current_function_decl)
364 {
365 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
366 CONVERT_EXPR_VBASE_PATH (expr) = true;
367 if (!want_pointer)
368 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
369 return expr;
370 }
371
372 /* Do we need to check for a null pointer? */
373 if (want_pointer && !nonnull)
374 {
375 /* If we know the conversion will not actually change the value
376 of EXPR, then we can avoid testing the expression for NULL.
377 We have to avoid generating a COMPONENT_REF for a base class
378 field, because other parts of the compiler know that such
379 expressions are always non-NULL. */
380 if (!virtual_access && integer_zerop (offset))
381 return build_nop (ptr_target_type, expr);
382 null_test = error_mark_node;
383 }
384
385 /* Protect against multiple evaluation if necessary. */
386 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
387 expr = save_expr (expr);
388
389 /* Now that we've saved expr, build the real null test. */
390 if (null_test)
391 {
392 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
393 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
394 expr, zero);
395 }
396
397 /* If this is a simple base reference, express it as a COMPONENT_REF. */
398 if (code == PLUS_EXPR && !virtual_access
399 /* We don't build base fields for empty bases, and they aren't very
400 interesting to the optimizers anyway. */
401 && !has_empty)
402 {
403 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
404 expr = build_simple_base_path (expr, binfo);
405 if (want_pointer)
406 expr = build_address (expr);
407 target_type = TREE_TYPE (expr);
408 goto out;
409 }
410
411 if (virtual_access)
412 {
413 /* Going via virtual base V_BINFO. We need the static offset
414 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
415 V_BINFO. That offset is an entry in D_BINFO's vtable. */
416 tree v_offset;
417
418 if (fixed_type_p < 0 && in_base_initializer)
419 {
420 /* In a base member initializer, we cannot rely on the
421 vtable being set up. We have to indirect via the
422 vtt_parm. */
423 tree t;
424
425 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
426 t = build_pointer_type (t);
427 v_offset = convert (t, current_vtt_parm);
428 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
429 }
430 else
431 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
432 complain),
433 TREE_TYPE (TREE_TYPE (expr)));
434
435 if (v_offset == error_mark_node)
436 return error_mark_node;
437
438 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
439 v_offset = build1 (NOP_EXPR,
440 build_pointer_type (ptrdiff_type_node),
441 v_offset);
442 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
443 TREE_CONSTANT (v_offset) = 1;
444
445 offset = convert_to_integer (ptrdiff_type_node,
446 size_diffop_loc (input_location, offset,
447 BINFO_OFFSET (v_binfo)));
448
449 if (!integer_zerop (offset))
450 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
451
452 if (fixed_type_p < 0)
453 /* Negative fixed_type_p means this is a constructor or destructor;
454 virtual base layout is fixed in in-charge [cd]tors, but not in
455 base [cd]tors. */
456 offset = build3 (COND_EXPR, ptrdiff_type_node,
457 build2 (EQ_EXPR, boolean_type_node,
458 current_in_charge_parm, integer_zero_node),
459 v_offset,
460 convert_to_integer (ptrdiff_type_node,
461 BINFO_OFFSET (binfo)));
462 else
463 offset = v_offset;
464 }
465
466 if (want_pointer)
467 target_type = ptr_target_type;
468
469 expr = build1 (NOP_EXPR, ptr_target_type, expr);
470
471 if (!integer_zerop (offset))
472 {
473 offset = fold_convert (sizetype, offset);
474 if (code == MINUS_EXPR)
475 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
476 expr = fold_build_pointer_plus (expr, offset);
477 }
478 else
479 null_test = NULL;
480
481 if (!want_pointer)
482 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
483
484 out:
485 if (null_test)
486 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
487 build_zero_cst (target_type));
488
489 return expr;
490 }
491
492 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
493 Perform a derived-to-base conversion by recursively building up a
494 sequence of COMPONENT_REFs to the appropriate base fields. */
495
496 static tree
497 build_simple_base_path (tree expr, tree binfo)
498 {
499 tree type = BINFO_TYPE (binfo);
500 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
501 tree field;
502
503 if (d_binfo == NULL_TREE)
504 {
505 tree temp;
506
507 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
508
509 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
510 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
511 an lvalue in the front end; only _DECLs and _REFs are lvalues
512 in the back end. */
513 temp = unary_complex_lvalue (ADDR_EXPR, expr);
514 if (temp)
515 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
516
517 return expr;
518 }
519
520 /* Recurse. */
521 expr = build_simple_base_path (expr, d_binfo);
522
523 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
524 field; field = DECL_CHAIN (field))
525 /* Is this the base field created by build_base_field? */
526 if (TREE_CODE (field) == FIELD_DECL
527 && DECL_FIELD_IS_BASE (field)
528 && TREE_TYPE (field) == type
529 /* If we're looking for a field in the most-derived class,
530 also check the field offset; we can have two base fields
531 of the same type if one is an indirect virtual base and one
532 is a direct non-virtual base. */
533 && (BINFO_INHERITANCE_CHAIN (d_binfo)
534 || tree_int_cst_equal (byte_position (field),
535 BINFO_OFFSET (binfo))))
536 {
537 /* We don't use build_class_member_access_expr here, as that
538 has unnecessary checks, and more importantly results in
539 recursive calls to dfs_walk_once. */
540 int type_quals = cp_type_quals (TREE_TYPE (expr));
541
542 expr = build3 (COMPONENT_REF,
543 cp_build_qualified_type (type, type_quals),
544 expr, field, NULL_TREE);
545 expr = fold_if_not_in_template (expr);
546
547 /* Mark the expression const or volatile, as appropriate.
548 Even though we've dealt with the type above, we still have
549 to mark the expression itself. */
550 if (type_quals & TYPE_QUAL_CONST)
551 TREE_READONLY (expr) = 1;
552 if (type_quals & TYPE_QUAL_VOLATILE)
553 TREE_THIS_VOLATILE (expr) = 1;
554
555 return expr;
556 }
557
558 /* Didn't find the base field?!? */
559 gcc_unreachable ();
560 }
561
562 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
563 type is a class type or a pointer to a class type. In the former
564 case, TYPE is also a class type; in the latter it is another
565 pointer type. If CHECK_ACCESS is true, an error message is emitted
566 if TYPE is inaccessible. If OBJECT has pointer type, the value is
567 assumed to be non-NULL. */
568
569 tree
570 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
571 tsubst_flags_t complain)
572 {
573 tree binfo;
574 tree object_type;
575
576 if (TYPE_PTR_P (TREE_TYPE (object)))
577 {
578 object_type = TREE_TYPE (TREE_TYPE (object));
579 type = TREE_TYPE (type);
580 }
581 else
582 object_type = TREE_TYPE (object);
583
584 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
585 NULL, complain);
586 if (!binfo || binfo == error_mark_node)
587 return error_mark_node;
588
589 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
590 }
591
592 /* EXPR is an expression with unqualified class type. BASE is a base
593 binfo of that class type. Returns EXPR, converted to the BASE
594 type. This function assumes that EXPR is the most derived class;
595 therefore virtual bases can be found at their static offsets. */
596
597 tree
598 convert_to_base_statically (tree expr, tree base)
599 {
600 tree expr_type;
601
602 expr_type = TREE_TYPE (expr);
603 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
604 {
605 /* If this is a non-empty base, use a COMPONENT_REF. */
606 if (!is_empty_class (BINFO_TYPE (base)))
607 return build_simple_base_path (expr, base);
608
609 /* We use fold_build2 and fold_convert below to simplify the trees
610 provided to the optimizers. It is not safe to call these functions
611 when processing a template because they do not handle C++-specific
612 trees. */
613 gcc_assert (!processing_template_decl);
614 expr = cp_build_addr_expr (expr, tf_warning_or_error);
615 if (!integer_zerop (BINFO_OFFSET (base)))
616 expr = fold_build_pointer_plus_loc (input_location,
617 expr, BINFO_OFFSET (base));
618 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
619 expr = build_fold_indirect_ref_loc (input_location, expr);
620 }
621
622 return expr;
623 }
624
625 \f
626 tree
627 build_vfield_ref (tree datum, tree type)
628 {
629 tree vfield, vcontext;
630
631 if (datum == error_mark_node
632 /* Can happen in case of duplicate base types (c++/59082). */
633 || !TYPE_VFIELD (type))
634 return error_mark_node;
635
636 /* First, convert to the requested type. */
637 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
638 datum = convert_to_base (datum, type, /*check_access=*/false,
639 /*nonnull=*/true, tf_warning_or_error);
640
641 /* Second, the requested type may not be the owner of its own vptr.
642 If not, convert to the base class that owns it. We cannot use
643 convert_to_base here, because VCONTEXT may appear more than once
644 in the inheritance hierarchy of TYPE, and thus direct conversion
645 between the types may be ambiguous. Following the path back up
646 one step at a time via primary bases avoids the problem. */
647 vfield = TYPE_VFIELD (type);
648 vcontext = DECL_CONTEXT (vfield);
649 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
650 {
651 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
652 type = TREE_TYPE (datum);
653 }
654
655 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
656 }
657
658 /* Given an object INSTANCE, return an expression which yields the
659 vtable element corresponding to INDEX. There are many special
660 cases for INSTANCE which we take care of here, mainly to avoid
661 creating extra tree nodes when we don't have to. */
662
663 static tree
664 build_vtbl_ref_1 (tree instance, tree idx)
665 {
666 tree aref;
667 tree vtbl = NULL_TREE;
668
669 /* Try to figure out what a reference refers to, and
670 access its virtual function table directly. */
671
672 int cdtorp = 0;
673 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
674
675 tree basetype = non_reference (TREE_TYPE (instance));
676
677 if (fixed_type && !cdtorp)
678 {
679 tree binfo = lookup_base (fixed_type, basetype,
680 ba_unique, NULL, tf_none);
681 if (binfo && binfo != error_mark_node)
682 vtbl = unshare_expr (BINFO_VTABLE (binfo));
683 }
684
685 if (!vtbl)
686 vtbl = build_vfield_ref (instance, basetype);
687
688 aref = build_array_ref (input_location, vtbl, idx);
689 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
690
691 return aref;
692 }
693
694 tree
695 build_vtbl_ref (tree instance, tree idx)
696 {
697 tree aref = build_vtbl_ref_1 (instance, idx);
698
699 return aref;
700 }
701
702 /* Given a stable object pointer INSTANCE_PTR, return an expression which
703 yields a function pointer corresponding to vtable element INDEX. */
704
705 tree
706 build_vfn_ref (tree instance_ptr, tree idx)
707 {
708 tree aref;
709
710 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
711 tf_warning_or_error),
712 idx);
713
714 /* When using function descriptors, the address of the
715 vtable entry is treated as a function pointer. */
716 if (TARGET_VTABLE_USES_DESCRIPTORS)
717 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
718 cp_build_addr_expr (aref, tf_warning_or_error));
719
720 /* Remember this as a method reference, for later devirtualization. */
721 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
722
723 return aref;
724 }
725
726 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
727 for the given TYPE. */
728
729 static tree
730 get_vtable_name (tree type)
731 {
732 return mangle_vtbl_for_type (type);
733 }
734
735 /* DECL is an entity associated with TYPE, like a virtual table or an
736 implicitly generated constructor. Determine whether or not DECL
737 should have external or internal linkage at the object file
738 level. This routine does not deal with COMDAT linkage and other
739 similar complexities; it simply sets TREE_PUBLIC if it possible for
740 entities in other translation units to contain copies of DECL, in
741 the abstract. */
742
743 void
744 set_linkage_according_to_type (tree /*type*/, tree decl)
745 {
746 TREE_PUBLIC (decl) = 1;
747 determine_visibility (decl);
748 }
749
750 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
751 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
752 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
753
754 static tree
755 build_vtable (tree class_type, tree name, tree vtable_type)
756 {
757 tree decl;
758
759 decl = build_lang_decl (VAR_DECL, name, vtable_type);
760 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
761 now to avoid confusion in mangle_decl. */
762 SET_DECL_ASSEMBLER_NAME (decl, name);
763 DECL_CONTEXT (decl) = class_type;
764 DECL_ARTIFICIAL (decl) = 1;
765 TREE_STATIC (decl) = 1;
766 TREE_READONLY (decl) = 1;
767 DECL_VIRTUAL_P (decl) = 1;
768 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
769 DECL_USER_ALIGN (decl) = true;
770 DECL_VTABLE_OR_VTT_P (decl) = 1;
771 set_linkage_according_to_type (class_type, decl);
772 /* The vtable has not been defined -- yet. */
773 DECL_EXTERNAL (decl) = 1;
774 DECL_NOT_REALLY_EXTERN (decl) = 1;
775
776 /* Mark the VAR_DECL node representing the vtable itself as a
777 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
778 is rather important that such things be ignored because any
779 effort to actually generate DWARF for them will run into
780 trouble when/if we encounter code like:
781
782 #pragma interface
783 struct S { virtual void member (); };
784
785 because the artificial declaration of the vtable itself (as
786 manufactured by the g++ front end) will say that the vtable is
787 a static member of `S' but only *after* the debug output for
788 the definition of `S' has already been output. This causes
789 grief because the DWARF entry for the definition of the vtable
790 will try to refer back to an earlier *declaration* of the
791 vtable as a static member of `S' and there won't be one. We
792 might be able to arrange to have the "vtable static member"
793 attached to the member list for `S' before the debug info for
794 `S' get written (which would solve the problem) but that would
795 require more intrusive changes to the g++ front end. */
796 DECL_IGNORED_P (decl) = 1;
797
798 return decl;
799 }
800
801 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
802 or even complete. If this does not exist, create it. If COMPLETE is
803 nonzero, then complete the definition of it -- that will render it
804 impossible to actually build the vtable, but is useful to get at those
805 which are known to exist in the runtime. */
806
807 tree
808 get_vtable_decl (tree type, int complete)
809 {
810 tree decl;
811
812 if (CLASSTYPE_VTABLES (type))
813 return CLASSTYPE_VTABLES (type);
814
815 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
816 CLASSTYPE_VTABLES (type) = decl;
817
818 if (complete)
819 {
820 DECL_EXTERNAL (decl) = 1;
821 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
822 }
823
824 return decl;
825 }
826
827 /* Build the primary virtual function table for TYPE. If BINFO is
828 non-NULL, build the vtable starting with the initial approximation
829 that it is the same as the one which is the head of the association
830 list. Returns a nonzero value if a new vtable is actually
831 created. */
832
833 static int
834 build_primary_vtable (tree binfo, tree type)
835 {
836 tree decl;
837 tree virtuals;
838
839 decl = get_vtable_decl (type, /*complete=*/0);
840
841 if (binfo)
842 {
843 if (BINFO_NEW_VTABLE_MARKED (binfo))
844 /* We have already created a vtable for this base, so there's
845 no need to do it again. */
846 return 0;
847
848 virtuals = copy_list (BINFO_VIRTUALS (binfo));
849 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
850 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
851 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
852 }
853 else
854 {
855 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
856 virtuals = NULL_TREE;
857 }
858
859 if (GATHER_STATISTICS)
860 {
861 n_vtables += 1;
862 n_vtable_elems += list_length (virtuals);
863 }
864
865 /* Initialize the association list for this type, based
866 on our first approximation. */
867 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
868 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
869 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
870 return 1;
871 }
872
873 /* Give BINFO a new virtual function table which is initialized
874 with a skeleton-copy of its original initialization. The only
875 entry that changes is the `delta' entry, so we can really
876 share a lot of structure.
877
878 FOR_TYPE is the most derived type which caused this table to
879 be needed.
880
881 Returns nonzero if we haven't met BINFO before.
882
883 The order in which vtables are built (by calling this function) for
884 an object must remain the same, otherwise a binary incompatibility
885 can result. */
886
887 static int
888 build_secondary_vtable (tree binfo)
889 {
890 if (BINFO_NEW_VTABLE_MARKED (binfo))
891 /* We already created a vtable for this base. There's no need to
892 do it again. */
893 return 0;
894
895 /* Remember that we've created a vtable for this BINFO, so that we
896 don't try to do so again. */
897 SET_BINFO_NEW_VTABLE_MARKED (binfo);
898
899 /* Make fresh virtual list, so we can smash it later. */
900 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
901
902 /* Secondary vtables are laid out as part of the same structure as
903 the primary vtable. */
904 BINFO_VTABLE (binfo) = NULL_TREE;
905 return 1;
906 }
907
908 /* Create a new vtable for BINFO which is the hierarchy dominated by
909 T. Return nonzero if we actually created a new vtable. */
910
911 static int
912 make_new_vtable (tree t, tree binfo)
913 {
914 if (binfo == TYPE_BINFO (t))
915 /* In this case, it is *type*'s vtable we are modifying. We start
916 with the approximation that its vtable is that of the
917 immediate base class. */
918 return build_primary_vtable (binfo, t);
919 else
920 /* This is our very own copy of `basetype' to play with. Later,
921 we will fill in all the virtual functions that override the
922 virtual functions in these base classes which are not defined
923 by the current type. */
924 return build_secondary_vtable (binfo);
925 }
926
927 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
928 (which is in the hierarchy dominated by T) list FNDECL as its
929 BV_FN. DELTA is the required constant adjustment from the `this'
930 pointer where the vtable entry appears to the `this' required when
931 the function is actually called. */
932
933 static void
934 modify_vtable_entry (tree t,
935 tree binfo,
936 tree fndecl,
937 tree delta,
938 tree *virtuals)
939 {
940 tree v;
941
942 v = *virtuals;
943
944 if (fndecl != BV_FN (v)
945 || !tree_int_cst_equal (delta, BV_DELTA (v)))
946 {
947 /* We need a new vtable for BINFO. */
948 if (make_new_vtable (t, binfo))
949 {
950 /* If we really did make a new vtable, we also made a copy
951 of the BINFO_VIRTUALS list. Now, we have to find the
952 corresponding entry in that list. */
953 *virtuals = BINFO_VIRTUALS (binfo);
954 while (BV_FN (*virtuals) != BV_FN (v))
955 *virtuals = TREE_CHAIN (*virtuals);
956 v = *virtuals;
957 }
958
959 BV_DELTA (v) = delta;
960 BV_VCALL_INDEX (v) = NULL_TREE;
961 BV_FN (v) = fndecl;
962 }
963 }
964
965 \f
966 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
967 the USING_DECL naming METHOD. Returns true if the method could be
968 added to the method vec. */
969
970 bool
971 add_method (tree type, tree method, tree using_decl)
972 {
973 unsigned slot;
974 tree overload;
975 bool template_conv_p = false;
976 bool conv_p;
977 vec<tree, va_gc> *method_vec;
978 bool complete_p;
979 bool insert_p = false;
980 tree current_fns;
981 tree fns;
982
983 if (method == error_mark_node)
984 return false;
985
986 complete_p = COMPLETE_TYPE_P (type);
987 conv_p = DECL_CONV_FN_P (method);
988 if (conv_p)
989 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
990 && DECL_TEMPLATE_CONV_FN_P (method));
991
992 method_vec = CLASSTYPE_METHOD_VEC (type);
993 if (!method_vec)
994 {
995 /* Make a new method vector. We start with 8 entries. We must
996 allocate at least two (for constructors and destructors), and
997 we're going to end up with an assignment operator at some
998 point as well. */
999 vec_alloc (method_vec, 8);
1000 /* Create slots for constructors and destructors. */
1001 method_vec->quick_push (NULL_TREE);
1002 method_vec->quick_push (NULL_TREE);
1003 CLASSTYPE_METHOD_VEC (type) = method_vec;
1004 }
1005
1006 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
1007 grok_special_member_properties (method);
1008
1009 /* Constructors and destructors go in special slots. */
1010 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
1011 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
1012 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1013 {
1014 slot = CLASSTYPE_DESTRUCTOR_SLOT;
1015
1016 if (TYPE_FOR_JAVA (type))
1017 {
1018 if (!DECL_ARTIFICIAL (method))
1019 error ("Java class %qT cannot have a destructor", type);
1020 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1021 error ("Java class %qT cannot have an implicit non-trivial "
1022 "destructor",
1023 type);
1024 }
1025 }
1026 else
1027 {
1028 tree m;
1029
1030 insert_p = true;
1031 /* See if we already have an entry with this name. */
1032 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1033 vec_safe_iterate (method_vec, slot, &m);
1034 ++slot)
1035 {
1036 m = OVL_CURRENT (m);
1037 if (template_conv_p)
1038 {
1039 if (TREE_CODE (m) == TEMPLATE_DECL
1040 && DECL_TEMPLATE_CONV_FN_P (m))
1041 insert_p = false;
1042 break;
1043 }
1044 if (conv_p && !DECL_CONV_FN_P (m))
1045 break;
1046 if (DECL_NAME (m) == DECL_NAME (method))
1047 {
1048 insert_p = false;
1049 break;
1050 }
1051 if (complete_p
1052 && !DECL_CONV_FN_P (m)
1053 && DECL_NAME (m) > DECL_NAME (method))
1054 break;
1055 }
1056 }
1057 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1058
1059 /* Check to see if we've already got this method. */
1060 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1061 {
1062 tree fn = OVL_CURRENT (fns);
1063 tree fn_type;
1064 tree method_type;
1065 tree parms1;
1066 tree parms2;
1067
1068 if (TREE_CODE (fn) != TREE_CODE (method))
1069 continue;
1070
1071 /* [over.load] Member function declarations with the
1072 same name and the same parameter types cannot be
1073 overloaded if any of them is a static member
1074 function declaration.
1075
1076 [over.load] Member function declarations with the same name and
1077 the same parameter-type-list as well as member function template
1078 declarations with the same name, the same parameter-type-list, and
1079 the same template parameter lists cannot be overloaded if any of
1080 them, but not all, have a ref-qualifier.
1081
1082 [namespace.udecl] When a using-declaration brings names
1083 from a base class into a derived class scope, member
1084 functions in the derived class override and/or hide member
1085 functions with the same name and parameter types in a base
1086 class (rather than conflicting). */
1087 fn_type = TREE_TYPE (fn);
1088 method_type = TREE_TYPE (method);
1089 parms1 = TYPE_ARG_TYPES (fn_type);
1090 parms2 = TYPE_ARG_TYPES (method_type);
1091
1092 /* Compare the quals on the 'this' parm. Don't compare
1093 the whole types, as used functions are treated as
1094 coming from the using class in overload resolution. */
1095 if (! DECL_STATIC_FUNCTION_P (fn)
1096 && ! DECL_STATIC_FUNCTION_P (method)
1097 /* Either both or neither need to be ref-qualified for
1098 differing quals to allow overloading. */
1099 && (FUNCTION_REF_QUALIFIED (fn_type)
1100 == FUNCTION_REF_QUALIFIED (method_type))
1101 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1102 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1103 continue;
1104
1105 /* For templates, the return type and template parameters
1106 must be identical. */
1107 if (TREE_CODE (fn) == TEMPLATE_DECL
1108 && (!same_type_p (TREE_TYPE (fn_type),
1109 TREE_TYPE (method_type))
1110 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1111 DECL_TEMPLATE_PARMS (method))))
1112 continue;
1113
1114 if (! DECL_STATIC_FUNCTION_P (fn))
1115 parms1 = TREE_CHAIN (parms1);
1116 if (! DECL_STATIC_FUNCTION_P (method))
1117 parms2 = TREE_CHAIN (parms2);
1118
1119 if (compparms (parms1, parms2)
1120 && (!DECL_CONV_FN_P (fn)
1121 || same_type_p (TREE_TYPE (fn_type),
1122 TREE_TYPE (method_type))))
1123 {
1124 /* For function versions, their parms and types match
1125 but they are not duplicates. Record function versions
1126 as and when they are found. extern "C" functions are
1127 not treated as versions. */
1128 if (TREE_CODE (fn) == FUNCTION_DECL
1129 && TREE_CODE (method) == FUNCTION_DECL
1130 && !DECL_EXTERN_C_P (fn)
1131 && !DECL_EXTERN_C_P (method)
1132 && targetm.target_option.function_versions (fn, method))
1133 {
1134 /* Mark functions as versions if necessary. Modify the mangled
1135 decl name if necessary. */
1136 if (!DECL_FUNCTION_VERSIONED (fn))
1137 {
1138 DECL_FUNCTION_VERSIONED (fn) = 1;
1139 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1140 mangle_decl (fn);
1141 }
1142 if (!DECL_FUNCTION_VERSIONED (method))
1143 {
1144 DECL_FUNCTION_VERSIONED (method) = 1;
1145 if (DECL_ASSEMBLER_NAME_SET_P (method))
1146 mangle_decl (method);
1147 }
1148 cgraph_node::record_function_versions (fn, method);
1149 continue;
1150 }
1151 if (DECL_INHERITED_CTOR_BASE (method))
1152 {
1153 if (DECL_INHERITED_CTOR_BASE (fn))
1154 {
1155 error_at (DECL_SOURCE_LOCATION (method),
1156 "%q#D inherited from %qT", method,
1157 DECL_INHERITED_CTOR_BASE (method));
1158 error_at (DECL_SOURCE_LOCATION (fn),
1159 "conflicts with version inherited from %qT",
1160 DECL_INHERITED_CTOR_BASE (fn));
1161 }
1162 /* Otherwise defer to the other function. */
1163 return false;
1164 }
1165 if (using_decl)
1166 {
1167 if (DECL_CONTEXT (fn) == type)
1168 /* Defer to the local function. */
1169 return false;
1170 }
1171 else
1172 {
1173 error ("%q+#D cannot be overloaded", method);
1174 error ("with %q+#D", fn);
1175 }
1176
1177 /* We don't call duplicate_decls here to merge the
1178 declarations because that will confuse things if the
1179 methods have inline definitions. In particular, we
1180 will crash while processing the definitions. */
1181 return false;
1182 }
1183 }
1184
1185 /* A class should never have more than one destructor. */
1186 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1187 return false;
1188
1189 /* Add the new binding. */
1190 if (using_decl)
1191 {
1192 overload = ovl_cons (method, current_fns);
1193 OVL_USED (overload) = true;
1194 }
1195 else
1196 overload = build_overload (method, current_fns);
1197
1198 if (conv_p)
1199 TYPE_HAS_CONVERSION (type) = 1;
1200 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1201 push_class_level_binding (DECL_NAME (method), overload);
1202
1203 if (insert_p)
1204 {
1205 bool reallocated;
1206
1207 /* We only expect to add few methods in the COMPLETE_P case, so
1208 just make room for one more method in that case. */
1209 if (complete_p)
1210 reallocated = vec_safe_reserve_exact (method_vec, 1);
1211 else
1212 reallocated = vec_safe_reserve (method_vec, 1);
1213 if (reallocated)
1214 CLASSTYPE_METHOD_VEC (type) = method_vec;
1215 if (slot == method_vec->length ())
1216 method_vec->quick_push (overload);
1217 else
1218 method_vec->quick_insert (slot, overload);
1219 }
1220 else
1221 /* Replace the current slot. */
1222 (*method_vec)[slot] = overload;
1223 return true;
1224 }
1225
1226 /* Subroutines of finish_struct. */
1227
1228 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1229 legit, otherwise return 0. */
1230
1231 static int
1232 alter_access (tree t, tree fdecl, tree access)
1233 {
1234 tree elem;
1235
1236 if (!DECL_LANG_SPECIFIC (fdecl))
1237 retrofit_lang_decl (fdecl);
1238
1239 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1240
1241 elem = purpose_member (t, DECL_ACCESS (fdecl));
1242 if (elem)
1243 {
1244 if (TREE_VALUE (elem) != access)
1245 {
1246 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1247 error ("conflicting access specifications for method"
1248 " %q+D, ignored", TREE_TYPE (fdecl));
1249 else
1250 error ("conflicting access specifications for field %qE, ignored",
1251 DECL_NAME (fdecl));
1252 }
1253 else
1254 {
1255 /* They're changing the access to the same thing they changed
1256 it to before. That's OK. */
1257 ;
1258 }
1259 }
1260 else
1261 {
1262 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1263 tf_warning_or_error);
1264 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1265 return 1;
1266 }
1267 return 0;
1268 }
1269
1270 /* Process the USING_DECL, which is a member of T. */
1271
1272 static void
1273 handle_using_decl (tree using_decl, tree t)
1274 {
1275 tree decl = USING_DECL_DECLS (using_decl);
1276 tree name = DECL_NAME (using_decl);
1277 tree access
1278 = TREE_PRIVATE (using_decl) ? access_private_node
1279 : TREE_PROTECTED (using_decl) ? access_protected_node
1280 : access_public_node;
1281 tree flist = NULL_TREE;
1282 tree old_value;
1283
1284 gcc_assert (!processing_template_decl && decl);
1285
1286 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1287 tf_warning_or_error);
1288 if (old_value)
1289 {
1290 if (is_overloaded_fn (old_value))
1291 old_value = OVL_CURRENT (old_value);
1292
1293 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1294 /* OK */;
1295 else
1296 old_value = NULL_TREE;
1297 }
1298
1299 cp_emit_debug_info_for_using (decl, t);
1300
1301 if (is_overloaded_fn (decl))
1302 flist = decl;
1303
1304 if (! old_value)
1305 ;
1306 else if (is_overloaded_fn (old_value))
1307 {
1308 if (flist)
1309 /* It's OK to use functions from a base when there are functions with
1310 the same name already present in the current class. */;
1311 else
1312 {
1313 error ("%q+D invalid in %q#T", using_decl, t);
1314 error (" because of local method %q+#D with same name",
1315 OVL_CURRENT (old_value));
1316 return;
1317 }
1318 }
1319 else if (!DECL_ARTIFICIAL (old_value))
1320 {
1321 error ("%q+D invalid in %q#T", using_decl, t);
1322 error (" because of local member %q+#D with same name", old_value);
1323 return;
1324 }
1325
1326 /* Make type T see field decl FDECL with access ACCESS. */
1327 if (flist)
1328 for (; flist; flist = OVL_NEXT (flist))
1329 {
1330 add_method (t, OVL_CURRENT (flist), using_decl);
1331 alter_access (t, OVL_CURRENT (flist), access);
1332 }
1333 else
1334 alter_access (t, decl, access);
1335 }
1336 \f
1337 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1338 types with abi tags, add the corresponding identifiers to the VEC in
1339 *DATA and set IDENTIFIER_MARKED. */
1340
1341 struct abi_tag_data
1342 {
1343 tree t;
1344 tree subob;
1345 // error_mark_node to get diagnostics; otherwise collect missing tags here
1346 tree tags;
1347 };
1348
1349 static tree
1350 find_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
1351 {
1352 if (!OVERLOAD_TYPE_P (*tp))
1353 return NULL_TREE;
1354
1355 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1356 anyway, but let's make sure of it. */
1357 *walk_subtrees = false;
1358
1359 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1360 {
1361 struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1362 for (tree list = TREE_VALUE (attributes); list;
1363 list = TREE_CHAIN (list))
1364 {
1365 tree tag = TREE_VALUE (list);
1366 tree id = get_identifier (TREE_STRING_POINTER (tag));
1367 if (!IDENTIFIER_MARKED (id))
1368 {
1369 if (p->tags != error_mark_node)
1370 {
1371 /* We're collecting tags from template arguments. */
1372 tree str = build_string (IDENTIFIER_LENGTH (id),
1373 IDENTIFIER_POINTER (id));
1374 p->tags = tree_cons (NULL_TREE, str, p->tags);
1375 ABI_TAG_IMPLICIT (p->tags) = true;
1376
1377 /* Don't inherit this tag multiple times. */
1378 IDENTIFIER_MARKED (id) = true;
1379 }
1380
1381 /* Otherwise we're diagnosing missing tags. */
1382 else if (TYPE_P (p->subob))
1383 {
1384 if (warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1385 "that base %qT has", p->t, tag, p->subob))
1386 inform (location_of (p->subob), "%qT declared here",
1387 p->subob);
1388 }
1389 else
1390 {
1391 if (warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1392 "that %qT (used in the type of %qD) has",
1393 p->t, tag, *tp, p->subob))
1394 {
1395 inform (location_of (p->subob), "%qD declared here",
1396 p->subob);
1397 inform (location_of (*tp), "%qT declared here", *tp);
1398 }
1399 }
1400 }
1401 }
1402 }
1403 return NULL_TREE;
1404 }
1405
1406 /* Set IDENTIFIER_MARKED on all the ABI tags on T and its (transitively
1407 complete) template arguments. */
1408
1409 static void
1410 mark_type_abi_tags (tree t, bool val)
1411 {
1412 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1413 if (attributes)
1414 {
1415 for (tree list = TREE_VALUE (attributes); list;
1416 list = TREE_CHAIN (list))
1417 {
1418 tree tag = TREE_VALUE (list);
1419 tree id = get_identifier (TREE_STRING_POINTER (tag));
1420 IDENTIFIER_MARKED (id) = val;
1421 }
1422 }
1423 }
1424
1425 /* Check that class T has all the abi tags that subobject SUBOB has, or
1426 warn if not. */
1427
1428 static void
1429 check_abi_tags (tree t, tree subob)
1430 {
1431 mark_type_abi_tags (t, true);
1432
1433 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1434 struct abi_tag_data data = { t, subob, error_mark_node };
1435
1436 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1437
1438 mark_type_abi_tags (t, false);
1439 }
1440
1441 void
1442 inherit_targ_abi_tags (tree t)
1443 {
1444 if (!CLASS_TYPE_P (t)
1445 || CLASSTYPE_TEMPLATE_INFO (t) == NULL_TREE)
1446 return;
1447
1448 mark_type_abi_tags (t, true);
1449
1450 tree args = CLASSTYPE_TI_ARGS (t);
1451 struct abi_tag_data data = { t, NULL_TREE, NULL_TREE };
1452 for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
1453 {
1454 tree level = TMPL_ARGS_LEVEL (args, i+1);
1455 for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1456 {
1457 tree arg = TREE_VEC_ELT (level, j);
1458 data.subob = arg;
1459 cp_walk_tree_without_duplicates (&arg, find_abi_tags_r, &data);
1460 }
1461 }
1462
1463 // If we found some tags on our template arguments, add them to our
1464 // abi_tag attribute.
1465 if (data.tags)
1466 {
1467 tree attr = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1468 if (attr)
1469 TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
1470 else
1471 TYPE_ATTRIBUTES (t)
1472 = tree_cons (get_identifier ("abi_tag"), data.tags,
1473 TYPE_ATTRIBUTES (t));
1474 }
1475
1476 mark_type_abi_tags (t, false);
1477 }
1478
1479 /* Return true, iff class T has a non-virtual destructor that is
1480 accessible from outside the class heirarchy (i.e. is public, or
1481 there's a suitable friend. */
1482
1483 static bool
1484 accessible_nvdtor_p (tree t)
1485 {
1486 tree dtor = CLASSTYPE_DESTRUCTORS (t);
1487
1488 /* An implicitly declared destructor is always public. And,
1489 if it were virtual, we would have created it by now. */
1490 if (!dtor)
1491 return true;
1492
1493 if (DECL_VINDEX (dtor))
1494 return false; /* Virtual */
1495
1496 if (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
1497 return true; /* Public */
1498
1499 if (CLASSTYPE_FRIEND_CLASSES (t)
1500 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1501 return true; /* Has friends */
1502
1503 return false;
1504 }
1505
1506 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1507 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1508 properties of the bases. */
1509
1510 static void
1511 check_bases (tree t,
1512 int* cant_have_const_ctor_p,
1513 int* no_const_asn_ref_p)
1514 {
1515 int i;
1516 bool seen_non_virtual_nearly_empty_base_p = 0;
1517 int seen_tm_mask = 0;
1518 tree base_binfo;
1519 tree binfo;
1520 tree field = NULL_TREE;
1521
1522 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1523 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1524 if (TREE_CODE (field) == FIELD_DECL)
1525 break;
1526
1527 for (binfo = TYPE_BINFO (t), i = 0;
1528 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1529 {
1530 tree basetype = TREE_TYPE (base_binfo);
1531
1532 gcc_assert (COMPLETE_TYPE_P (basetype));
1533
1534 if (CLASSTYPE_FINAL (basetype))
1535 error ("cannot derive from %<final%> base %qT in derived type %qT",
1536 basetype, t);
1537
1538 /* If any base class is non-literal, so is the derived class. */
1539 if (!CLASSTYPE_LITERAL_P (basetype))
1540 CLASSTYPE_LITERAL_P (t) = false;
1541
1542 /* If the base class doesn't have copy constructors or
1543 assignment operators that take const references, then the
1544 derived class cannot have such a member automatically
1545 generated. */
1546 if (TYPE_HAS_COPY_CTOR (basetype)
1547 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1548 *cant_have_const_ctor_p = 1;
1549 if (TYPE_HAS_COPY_ASSIGN (basetype)
1550 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1551 *no_const_asn_ref_p = 1;
1552
1553 if (BINFO_VIRTUAL_P (base_binfo))
1554 /* A virtual base does not effect nearly emptiness. */
1555 ;
1556 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1557 {
1558 if (seen_non_virtual_nearly_empty_base_p)
1559 /* And if there is more than one nearly empty base, then the
1560 derived class is not nearly empty either. */
1561 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1562 else
1563 /* Remember we've seen one. */
1564 seen_non_virtual_nearly_empty_base_p = 1;
1565 }
1566 else if (!is_empty_class (basetype))
1567 /* If the base class is not empty or nearly empty, then this
1568 class cannot be nearly empty. */
1569 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1570
1571 /* A lot of properties from the bases also apply to the derived
1572 class. */
1573 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1574 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1575 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1576 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1577 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1578 || !TYPE_HAS_COPY_ASSIGN (basetype));
1579 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1580 || !TYPE_HAS_COPY_CTOR (basetype));
1581 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1582 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1583 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1584 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1585 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1586 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1587 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1588 || TYPE_HAS_COMPLEX_DFLT (basetype));
1589 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
1590 (t, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
1591 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype));
1592 SET_CLASSTYPE_REF_FIELDS_NEED_INIT
1593 (t, CLASSTYPE_REF_FIELDS_NEED_INIT (t)
1594 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype));
1595
1596 /* A standard-layout class is a class that:
1597 ...
1598 * has no non-standard-layout base classes, */
1599 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1600 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1601 {
1602 tree basefield;
1603 /* ...has no base classes of the same type as the first non-static
1604 data member... */
1605 if (field && DECL_CONTEXT (field) == t
1606 && (same_type_ignoring_top_level_qualifiers_p
1607 (TREE_TYPE (field), basetype)))
1608 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1609 else
1610 /* ...either has no non-static data members in the most-derived
1611 class and at most one base class with non-static data
1612 members, or has no base classes with non-static data
1613 members */
1614 for (basefield = TYPE_FIELDS (basetype); basefield;
1615 basefield = DECL_CHAIN (basefield))
1616 if (TREE_CODE (basefield) == FIELD_DECL)
1617 {
1618 if (field)
1619 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1620 else
1621 field = basefield;
1622 break;
1623 }
1624 }
1625
1626 /* Don't bother collecting tm attributes if transactional memory
1627 support is not enabled. */
1628 if (flag_tm)
1629 {
1630 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1631 if (tm_attr)
1632 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1633 }
1634
1635 check_abi_tags (t, basetype);
1636 }
1637
1638 /* If one of the base classes had TM attributes, and the current class
1639 doesn't define its own, then the current class inherits one. */
1640 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1641 {
1642 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1643 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1644 }
1645 }
1646
1647 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1648 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1649 that have had a nearly-empty virtual primary base stolen by some
1650 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1651 T. */
1652
1653 static void
1654 determine_primary_bases (tree t)
1655 {
1656 unsigned i;
1657 tree primary = NULL_TREE;
1658 tree type_binfo = TYPE_BINFO (t);
1659 tree base_binfo;
1660
1661 /* Determine the primary bases of our bases. */
1662 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1663 base_binfo = TREE_CHAIN (base_binfo))
1664 {
1665 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1666
1667 /* See if we're the non-virtual primary of our inheritance
1668 chain. */
1669 if (!BINFO_VIRTUAL_P (base_binfo))
1670 {
1671 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1672 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1673
1674 if (parent_primary
1675 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1676 BINFO_TYPE (parent_primary)))
1677 /* We are the primary binfo. */
1678 BINFO_PRIMARY_P (base_binfo) = 1;
1679 }
1680 /* Determine if we have a virtual primary base, and mark it so.
1681 */
1682 if (primary && BINFO_VIRTUAL_P (primary))
1683 {
1684 tree this_primary = copied_binfo (primary, base_binfo);
1685
1686 if (BINFO_PRIMARY_P (this_primary))
1687 /* Someone already claimed this base. */
1688 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1689 else
1690 {
1691 tree delta;
1692
1693 BINFO_PRIMARY_P (this_primary) = 1;
1694 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1695
1696 /* A virtual binfo might have been copied from within
1697 another hierarchy. As we're about to use it as a
1698 primary base, make sure the offsets match. */
1699 delta = size_diffop_loc (input_location,
1700 convert (ssizetype,
1701 BINFO_OFFSET (base_binfo)),
1702 convert (ssizetype,
1703 BINFO_OFFSET (this_primary)));
1704
1705 propagate_binfo_offsets (this_primary, delta);
1706 }
1707 }
1708 }
1709
1710 /* First look for a dynamic direct non-virtual base. */
1711 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1712 {
1713 tree basetype = BINFO_TYPE (base_binfo);
1714
1715 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1716 {
1717 primary = base_binfo;
1718 goto found;
1719 }
1720 }
1721
1722 /* A "nearly-empty" virtual base class can be the primary base
1723 class, if no non-virtual polymorphic base can be found. Look for
1724 a nearly-empty virtual dynamic base that is not already a primary
1725 base of something in the hierarchy. If there is no such base,
1726 just pick the first nearly-empty virtual base. */
1727
1728 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1729 base_binfo = TREE_CHAIN (base_binfo))
1730 if (BINFO_VIRTUAL_P (base_binfo)
1731 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1732 {
1733 if (!BINFO_PRIMARY_P (base_binfo))
1734 {
1735 /* Found one that is not primary. */
1736 primary = base_binfo;
1737 goto found;
1738 }
1739 else if (!primary)
1740 /* Remember the first candidate. */
1741 primary = base_binfo;
1742 }
1743
1744 found:
1745 /* If we've got a primary base, use it. */
1746 if (primary)
1747 {
1748 tree basetype = BINFO_TYPE (primary);
1749
1750 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1751 if (BINFO_PRIMARY_P (primary))
1752 /* We are stealing a primary base. */
1753 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1754 BINFO_PRIMARY_P (primary) = 1;
1755 if (BINFO_VIRTUAL_P (primary))
1756 {
1757 tree delta;
1758
1759 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1760 /* A virtual binfo might have been copied from within
1761 another hierarchy. As we're about to use it as a primary
1762 base, make sure the offsets match. */
1763 delta = size_diffop_loc (input_location, ssize_int (0),
1764 convert (ssizetype, BINFO_OFFSET (primary)));
1765
1766 propagate_binfo_offsets (primary, delta);
1767 }
1768
1769 primary = TYPE_BINFO (basetype);
1770
1771 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1772 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1773 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1774 }
1775 }
1776
1777 /* Update the variant types of T. */
1778
1779 void
1780 fixup_type_variants (tree t)
1781 {
1782 tree variants;
1783
1784 if (!t)
1785 return;
1786
1787 for (variants = TYPE_NEXT_VARIANT (t);
1788 variants;
1789 variants = TYPE_NEXT_VARIANT (variants))
1790 {
1791 /* These fields are in the _TYPE part of the node, not in
1792 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1793 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1794 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1795 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1796 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1797
1798 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1799
1800 TYPE_BINFO (variants) = TYPE_BINFO (t);
1801
1802 /* Copy whatever these are holding today. */
1803 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1804 TYPE_METHODS (variants) = TYPE_METHODS (t);
1805 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1806 }
1807 }
1808
1809 /* Early variant fixups: we apply attributes at the beginning of the class
1810 definition, and we need to fix up any variants that have already been
1811 made via elaborated-type-specifier so that check_qualified_type works. */
1812
1813 void
1814 fixup_attribute_variants (tree t)
1815 {
1816 tree variants;
1817
1818 if (!t)
1819 return;
1820
1821 for (variants = TYPE_NEXT_VARIANT (t);
1822 variants;
1823 variants = TYPE_NEXT_VARIANT (variants))
1824 {
1825 /* These are the two fields that check_qualified_type looks at and
1826 are affected by attributes. */
1827 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1828 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1829 }
1830 }
1831 \f
1832 /* Set memoizing fields and bits of T (and its variants) for later
1833 use. */
1834
1835 static void
1836 finish_struct_bits (tree t)
1837 {
1838 /* Fix up variants (if any). */
1839 fixup_type_variants (t);
1840
1841 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1842 /* For a class w/o baseclasses, 'finish_struct' has set
1843 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1844 Similarly for a class whose base classes do not have vtables.
1845 When neither of these is true, we might have removed abstract
1846 virtuals (by providing a definition), added some (by declaring
1847 new ones), or redeclared ones from a base class. We need to
1848 recalculate what's really an abstract virtual at this point (by
1849 looking in the vtables). */
1850 get_pure_virtuals (t);
1851
1852 /* If this type has a copy constructor or a destructor, force its
1853 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1854 nonzero. This will cause it to be passed by invisible reference
1855 and prevent it from being returned in a register. */
1856 if (type_has_nontrivial_copy_init (t)
1857 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1858 {
1859 tree variants;
1860 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1861 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1862 {
1863 SET_TYPE_MODE (variants, BLKmode);
1864 TREE_ADDRESSABLE (variants) = 1;
1865 }
1866 }
1867 }
1868
1869 /* Issue warnings about T having private constructors, but no friends,
1870 and so forth.
1871
1872 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1873 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1874 non-private static member functions. */
1875
1876 static void
1877 maybe_warn_about_overly_private_class (tree t)
1878 {
1879 int has_member_fn = 0;
1880 int has_nonprivate_method = 0;
1881 tree fn;
1882
1883 if (!warn_ctor_dtor_privacy
1884 /* If the class has friends, those entities might create and
1885 access instances, so we should not warn. */
1886 || (CLASSTYPE_FRIEND_CLASSES (t)
1887 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1888 /* We will have warned when the template was declared; there's
1889 no need to warn on every instantiation. */
1890 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1891 /* There's no reason to even consider warning about this
1892 class. */
1893 return;
1894
1895 /* We only issue one warning, if more than one applies, because
1896 otherwise, on code like:
1897
1898 class A {
1899 // Oops - forgot `public:'
1900 A();
1901 A(const A&);
1902 ~A();
1903 };
1904
1905 we warn several times about essentially the same problem. */
1906
1907 /* Check to see if all (non-constructor, non-destructor) member
1908 functions are private. (Since there are no friends or
1909 non-private statics, we can't ever call any of the private member
1910 functions.) */
1911 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1912 /* We're not interested in compiler-generated methods; they don't
1913 provide any way to call private members. */
1914 if (!DECL_ARTIFICIAL (fn))
1915 {
1916 if (!TREE_PRIVATE (fn))
1917 {
1918 if (DECL_STATIC_FUNCTION_P (fn))
1919 /* A non-private static member function is just like a
1920 friend; it can create and invoke private member
1921 functions, and be accessed without a class
1922 instance. */
1923 return;
1924
1925 has_nonprivate_method = 1;
1926 /* Keep searching for a static member function. */
1927 }
1928 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1929 has_member_fn = 1;
1930 }
1931
1932 if (!has_nonprivate_method && has_member_fn)
1933 {
1934 /* There are no non-private methods, and there's at least one
1935 private member function that isn't a constructor or
1936 destructor. (If all the private members are
1937 constructors/destructors we want to use the code below that
1938 issues error messages specifically referring to
1939 constructors/destructors.) */
1940 unsigned i;
1941 tree binfo = TYPE_BINFO (t);
1942
1943 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1944 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1945 {
1946 has_nonprivate_method = 1;
1947 break;
1948 }
1949 if (!has_nonprivate_method)
1950 {
1951 warning (OPT_Wctor_dtor_privacy,
1952 "all member functions in class %qT are private", t);
1953 return;
1954 }
1955 }
1956
1957 /* Even if some of the member functions are non-private, the class
1958 won't be useful for much if all the constructors or destructors
1959 are private: such an object can never be created or destroyed. */
1960 fn = CLASSTYPE_DESTRUCTORS (t);
1961 if (fn && TREE_PRIVATE (fn))
1962 {
1963 warning (OPT_Wctor_dtor_privacy,
1964 "%q#T only defines a private destructor and has no friends",
1965 t);
1966 return;
1967 }
1968
1969 /* Warn about classes that have private constructors and no friends. */
1970 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1971 /* Implicitly generated constructors are always public. */
1972 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1973 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1974 {
1975 int nonprivate_ctor = 0;
1976
1977 /* If a non-template class does not define a copy
1978 constructor, one is defined for it, enabling it to avoid
1979 this warning. For a template class, this does not
1980 happen, and so we would normally get a warning on:
1981
1982 template <class T> class C { private: C(); };
1983
1984 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1985 complete non-template or fully instantiated classes have this
1986 flag set. */
1987 if (!TYPE_HAS_COPY_CTOR (t))
1988 nonprivate_ctor = 1;
1989 else
1990 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1991 {
1992 tree ctor = OVL_CURRENT (fn);
1993 /* Ideally, we wouldn't count copy constructors (or, in
1994 fact, any constructor that takes an argument of the
1995 class type as a parameter) because such things cannot
1996 be used to construct an instance of the class unless
1997 you already have one. But, for now at least, we're
1998 more generous. */
1999 if (! TREE_PRIVATE (ctor))
2000 {
2001 nonprivate_ctor = 1;
2002 break;
2003 }
2004 }
2005
2006 if (nonprivate_ctor == 0)
2007 {
2008 warning (OPT_Wctor_dtor_privacy,
2009 "%q#T only defines private constructors and has no friends",
2010 t);
2011 return;
2012 }
2013 }
2014 }
2015
2016 static struct {
2017 gt_pointer_operator new_value;
2018 void *cookie;
2019 } resort_data;
2020
2021 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
2022
2023 static int
2024 method_name_cmp (const void* m1_p, const void* m2_p)
2025 {
2026 const tree *const m1 = (const tree *) m1_p;
2027 const tree *const m2 = (const tree *) m2_p;
2028
2029 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2030 return 0;
2031 if (*m1 == NULL_TREE)
2032 return -1;
2033 if (*m2 == NULL_TREE)
2034 return 1;
2035 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
2036 return -1;
2037 return 1;
2038 }
2039
2040 /* This routine compares two fields like method_name_cmp but using the
2041 pointer operator in resort_field_decl_data. */
2042
2043 static int
2044 resort_method_name_cmp (const void* m1_p, const void* m2_p)
2045 {
2046 const tree *const m1 = (const tree *) m1_p;
2047 const tree *const m2 = (const tree *) m2_p;
2048 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2049 return 0;
2050 if (*m1 == NULL_TREE)
2051 return -1;
2052 if (*m2 == NULL_TREE)
2053 return 1;
2054 {
2055 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
2056 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
2057 resort_data.new_value (&d1, resort_data.cookie);
2058 resort_data.new_value (&d2, resort_data.cookie);
2059 if (d1 < d2)
2060 return -1;
2061 }
2062 return 1;
2063 }
2064
2065 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
2066
2067 void
2068 resort_type_method_vec (void* obj,
2069 void* /*orig_obj*/,
2070 gt_pointer_operator new_value,
2071 void* cookie)
2072 {
2073 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
2074 int len = vec_safe_length (method_vec);
2075 size_t slot;
2076 tree fn;
2077
2078 /* The type conversion ops have to live at the front of the vec, so we
2079 can't sort them. */
2080 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2081 vec_safe_iterate (method_vec, slot, &fn);
2082 ++slot)
2083 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
2084 break;
2085
2086 if (len - slot > 1)
2087 {
2088 resort_data.new_value = new_value;
2089 resort_data.cookie = cookie;
2090 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
2091 resort_method_name_cmp);
2092 }
2093 }
2094
2095 /* Warn about duplicate methods in fn_fields.
2096
2097 Sort methods that are not special (i.e., constructors, destructors,
2098 and type conversion operators) so that we can find them faster in
2099 search. */
2100
2101 static void
2102 finish_struct_methods (tree t)
2103 {
2104 tree fn_fields;
2105 vec<tree, va_gc> *method_vec;
2106 int slot, len;
2107
2108 method_vec = CLASSTYPE_METHOD_VEC (t);
2109 if (!method_vec)
2110 return;
2111
2112 len = method_vec->length ();
2113
2114 /* Clear DECL_IN_AGGR_P for all functions. */
2115 for (fn_fields = TYPE_METHODS (t); fn_fields;
2116 fn_fields = DECL_CHAIN (fn_fields))
2117 DECL_IN_AGGR_P (fn_fields) = 0;
2118
2119 /* Issue warnings about private constructors and such. If there are
2120 no methods, then some public defaults are generated. */
2121 maybe_warn_about_overly_private_class (t);
2122
2123 /* The type conversion ops have to live at the front of the vec, so we
2124 can't sort them. */
2125 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2126 method_vec->iterate (slot, &fn_fields);
2127 ++slot)
2128 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2129 break;
2130 if (len - slot > 1)
2131 qsort (method_vec->address () + slot,
2132 len-slot, sizeof (tree), method_name_cmp);
2133 }
2134
2135 /* Make BINFO's vtable have N entries, including RTTI entries,
2136 vbase and vcall offsets, etc. Set its type and call the back end
2137 to lay it out. */
2138
2139 static void
2140 layout_vtable_decl (tree binfo, int n)
2141 {
2142 tree atype;
2143 tree vtable;
2144
2145 atype = build_array_of_n_type (vtable_entry_type, n);
2146 layout_type (atype);
2147
2148 /* We may have to grow the vtable. */
2149 vtable = get_vtbl_decl_for_binfo (binfo);
2150 if (!same_type_p (TREE_TYPE (vtable), atype))
2151 {
2152 TREE_TYPE (vtable) = atype;
2153 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2154 layout_decl (vtable, 0);
2155 }
2156 }
2157
2158 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2159 have the same signature. */
2160
2161 int
2162 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2163 {
2164 /* One destructor overrides another if they are the same kind of
2165 destructor. */
2166 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2167 && special_function_p (base_fndecl) == special_function_p (fndecl))
2168 return 1;
2169 /* But a non-destructor never overrides a destructor, nor vice
2170 versa, nor do different kinds of destructors override
2171 one-another. For example, a complete object destructor does not
2172 override a deleting destructor. */
2173 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2174 return 0;
2175
2176 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2177 || (DECL_CONV_FN_P (fndecl)
2178 && DECL_CONV_FN_P (base_fndecl)
2179 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2180 DECL_CONV_FN_TYPE (base_fndecl))))
2181 {
2182 tree fntype = TREE_TYPE (fndecl);
2183 tree base_fntype = TREE_TYPE (base_fndecl);
2184 if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2185 && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2186 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2187 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2188 return 1;
2189 }
2190 return 0;
2191 }
2192
2193 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2194 subobject. */
2195
2196 static bool
2197 base_derived_from (tree derived, tree base)
2198 {
2199 tree probe;
2200
2201 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2202 {
2203 if (probe == derived)
2204 return true;
2205 else if (BINFO_VIRTUAL_P (probe))
2206 /* If we meet a virtual base, we can't follow the inheritance
2207 any more. See if the complete type of DERIVED contains
2208 such a virtual base. */
2209 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2210 != NULL_TREE);
2211 }
2212 return false;
2213 }
2214
2215 typedef struct find_final_overrider_data_s {
2216 /* The function for which we are trying to find a final overrider. */
2217 tree fn;
2218 /* The base class in which the function was declared. */
2219 tree declaring_base;
2220 /* The candidate overriders. */
2221 tree candidates;
2222 /* Path to most derived. */
2223 vec<tree> path;
2224 } find_final_overrider_data;
2225
2226 /* Add the overrider along the current path to FFOD->CANDIDATES.
2227 Returns true if an overrider was found; false otherwise. */
2228
2229 static bool
2230 dfs_find_final_overrider_1 (tree binfo,
2231 find_final_overrider_data *ffod,
2232 unsigned depth)
2233 {
2234 tree method;
2235
2236 /* If BINFO is not the most derived type, try a more derived class.
2237 A definition there will overrider a definition here. */
2238 if (depth)
2239 {
2240 depth--;
2241 if (dfs_find_final_overrider_1
2242 (ffod->path[depth], ffod, depth))
2243 return true;
2244 }
2245
2246 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2247 if (method)
2248 {
2249 tree *candidate = &ffod->candidates;
2250
2251 /* Remove any candidates overridden by this new function. */
2252 while (*candidate)
2253 {
2254 /* If *CANDIDATE overrides METHOD, then METHOD
2255 cannot override anything else on the list. */
2256 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2257 return true;
2258 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2259 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2260 *candidate = TREE_CHAIN (*candidate);
2261 else
2262 candidate = &TREE_CHAIN (*candidate);
2263 }
2264
2265 /* Add the new function. */
2266 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2267 return true;
2268 }
2269
2270 return false;
2271 }
2272
2273 /* Called from find_final_overrider via dfs_walk. */
2274
2275 static tree
2276 dfs_find_final_overrider_pre (tree binfo, void *data)
2277 {
2278 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2279
2280 if (binfo == ffod->declaring_base)
2281 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2282 ffod->path.safe_push (binfo);
2283
2284 return NULL_TREE;
2285 }
2286
2287 static tree
2288 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2289 {
2290 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2291 ffod->path.pop ();
2292
2293 return NULL_TREE;
2294 }
2295
2296 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2297 FN and whose TREE_VALUE is the binfo for the base where the
2298 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2299 DERIVED) is the base object in which FN is declared. */
2300
2301 static tree
2302 find_final_overrider (tree derived, tree binfo, tree fn)
2303 {
2304 find_final_overrider_data ffod;
2305
2306 /* Getting this right is a little tricky. This is valid:
2307
2308 struct S { virtual void f (); };
2309 struct T { virtual void f (); };
2310 struct U : public S, public T { };
2311
2312 even though calling `f' in `U' is ambiguous. But,
2313
2314 struct R { virtual void f(); };
2315 struct S : virtual public R { virtual void f (); };
2316 struct T : virtual public R { virtual void f (); };
2317 struct U : public S, public T { };
2318
2319 is not -- there's no way to decide whether to put `S::f' or
2320 `T::f' in the vtable for `R'.
2321
2322 The solution is to look at all paths to BINFO. If we find
2323 different overriders along any two, then there is a problem. */
2324 if (DECL_THUNK_P (fn))
2325 fn = THUNK_TARGET (fn);
2326
2327 /* Determine the depth of the hierarchy. */
2328 ffod.fn = fn;
2329 ffod.declaring_base = binfo;
2330 ffod.candidates = NULL_TREE;
2331 ffod.path.create (30);
2332
2333 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2334 dfs_find_final_overrider_post, &ffod);
2335
2336 ffod.path.release ();
2337
2338 /* If there was no winner, issue an error message. */
2339 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2340 return error_mark_node;
2341
2342 return ffod.candidates;
2343 }
2344
2345 /* Return the index of the vcall offset for FN when TYPE is used as a
2346 virtual base. */
2347
2348 static tree
2349 get_vcall_index (tree fn, tree type)
2350 {
2351 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2352 tree_pair_p p;
2353 unsigned ix;
2354
2355 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2356 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2357 || same_signature_p (fn, p->purpose))
2358 return p->value;
2359
2360 /* There should always be an appropriate index. */
2361 gcc_unreachable ();
2362 }
2363
2364 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2365 dominated by T. FN is the old function; VIRTUALS points to the
2366 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2367 of that entry in the list. */
2368
2369 static void
2370 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2371 unsigned ix)
2372 {
2373 tree b;
2374 tree overrider;
2375 tree delta;
2376 tree virtual_base;
2377 tree first_defn;
2378 tree overrider_fn, overrider_target;
2379 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2380 tree over_return, base_return;
2381 bool lost = false;
2382
2383 /* Find the nearest primary base (possibly binfo itself) which defines
2384 this function; this is the class the caller will convert to when
2385 calling FN through BINFO. */
2386 for (b = binfo; ; b = get_primary_binfo (b))
2387 {
2388 gcc_assert (b);
2389 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2390 break;
2391
2392 /* The nearest definition is from a lost primary. */
2393 if (BINFO_LOST_PRIMARY_P (b))
2394 lost = true;
2395 }
2396 first_defn = b;
2397
2398 /* Find the final overrider. */
2399 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2400 if (overrider == error_mark_node)
2401 {
2402 error ("no unique final overrider for %qD in %qT", target_fn, t);
2403 return;
2404 }
2405 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2406
2407 /* Check for adjusting covariant return types. */
2408 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2409 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2410
2411 if (POINTER_TYPE_P (over_return)
2412 && TREE_CODE (over_return) == TREE_CODE (base_return)
2413 && CLASS_TYPE_P (TREE_TYPE (over_return))
2414 && CLASS_TYPE_P (TREE_TYPE (base_return))
2415 /* If the overrider is invalid, don't even try. */
2416 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2417 {
2418 /* If FN is a covariant thunk, we must figure out the adjustment
2419 to the final base FN was converting to. As OVERRIDER_TARGET might
2420 also be converting to the return type of FN, we have to
2421 combine the two conversions here. */
2422 tree fixed_offset, virtual_offset;
2423
2424 over_return = TREE_TYPE (over_return);
2425 base_return = TREE_TYPE (base_return);
2426
2427 if (DECL_THUNK_P (fn))
2428 {
2429 gcc_assert (DECL_RESULT_THUNK_P (fn));
2430 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2431 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2432 }
2433 else
2434 fixed_offset = virtual_offset = NULL_TREE;
2435
2436 if (virtual_offset)
2437 /* Find the equivalent binfo within the return type of the
2438 overriding function. We will want the vbase offset from
2439 there. */
2440 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2441 over_return);
2442 else if (!same_type_ignoring_top_level_qualifiers_p
2443 (over_return, base_return))
2444 {
2445 /* There was no existing virtual thunk (which takes
2446 precedence). So find the binfo of the base function's
2447 return type within the overriding function's return type.
2448 We cannot call lookup base here, because we're inside a
2449 dfs_walk, and will therefore clobber the BINFO_MARKED
2450 flags. Fortunately we know the covariancy is valid (it
2451 has already been checked), so we can just iterate along
2452 the binfos, which have been chained in inheritance graph
2453 order. Of course it is lame that we have to repeat the
2454 search here anyway -- we should really be caching pieces
2455 of the vtable and avoiding this repeated work. */
2456 tree thunk_binfo, base_binfo;
2457
2458 /* Find the base binfo within the overriding function's
2459 return type. We will always find a thunk_binfo, except
2460 when the covariancy is invalid (which we will have
2461 already diagnosed). */
2462 for (base_binfo = TYPE_BINFO (base_return),
2463 thunk_binfo = TYPE_BINFO (over_return);
2464 thunk_binfo;
2465 thunk_binfo = TREE_CHAIN (thunk_binfo))
2466 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2467 BINFO_TYPE (base_binfo)))
2468 break;
2469
2470 /* See if virtual inheritance is involved. */
2471 for (virtual_offset = thunk_binfo;
2472 virtual_offset;
2473 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2474 if (BINFO_VIRTUAL_P (virtual_offset))
2475 break;
2476
2477 if (virtual_offset
2478 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2479 {
2480 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2481
2482 if (virtual_offset)
2483 {
2484 /* We convert via virtual base. Adjust the fixed
2485 offset to be from there. */
2486 offset =
2487 size_diffop (offset,
2488 convert (ssizetype,
2489 BINFO_OFFSET (virtual_offset)));
2490 }
2491 if (fixed_offset)
2492 /* There was an existing fixed offset, this must be
2493 from the base just converted to, and the base the
2494 FN was thunking to. */
2495 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2496 else
2497 fixed_offset = offset;
2498 }
2499 }
2500
2501 if (fixed_offset || virtual_offset)
2502 /* Replace the overriding function with a covariant thunk. We
2503 will emit the overriding function in its own slot as
2504 well. */
2505 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2506 fixed_offset, virtual_offset);
2507 }
2508 else
2509 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2510 !DECL_THUNK_P (fn));
2511
2512 /* If we need a covariant thunk, then we may need to adjust first_defn.
2513 The ABI specifies that the thunks emitted with a function are
2514 determined by which bases the function overrides, so we need to be
2515 sure that we're using a thunk for some overridden base; even if we
2516 know that the necessary this adjustment is zero, there may not be an
2517 appropriate zero-this-adjusment thunk for us to use since thunks for
2518 overriding virtual bases always use the vcall offset.
2519
2520 Furthermore, just choosing any base that overrides this function isn't
2521 quite right, as this slot won't be used for calls through a type that
2522 puts a covariant thunk here. Calling the function through such a type
2523 will use a different slot, and that slot is the one that determines
2524 the thunk emitted for that base.
2525
2526 So, keep looking until we find the base that we're really overriding
2527 in this slot: the nearest primary base that doesn't use a covariant
2528 thunk in this slot. */
2529 if (overrider_target != overrider_fn)
2530 {
2531 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2532 /* We already know that the overrider needs a covariant thunk. */
2533 b = get_primary_binfo (b);
2534 for (; ; b = get_primary_binfo (b))
2535 {
2536 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2537 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2538 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2539 break;
2540 if (BINFO_LOST_PRIMARY_P (b))
2541 lost = true;
2542 }
2543 first_defn = b;
2544 }
2545
2546 /* Assume that we will produce a thunk that convert all the way to
2547 the final overrider, and not to an intermediate virtual base. */
2548 virtual_base = NULL_TREE;
2549
2550 /* See if we can convert to an intermediate virtual base first, and then
2551 use the vcall offset located there to finish the conversion. */
2552 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2553 {
2554 /* If we find the final overrider, then we can stop
2555 walking. */
2556 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2557 BINFO_TYPE (TREE_VALUE (overrider))))
2558 break;
2559
2560 /* If we find a virtual base, and we haven't yet found the
2561 overrider, then there is a virtual base between the
2562 declaring base (first_defn) and the final overrider. */
2563 if (BINFO_VIRTUAL_P (b))
2564 {
2565 virtual_base = b;
2566 break;
2567 }
2568 }
2569
2570 /* Compute the constant adjustment to the `this' pointer. The
2571 `this' pointer, when this function is called, will point at BINFO
2572 (or one of its primary bases, which are at the same offset). */
2573 if (virtual_base)
2574 /* The `this' pointer needs to be adjusted from the declaration to
2575 the nearest virtual base. */
2576 delta = size_diffop_loc (input_location,
2577 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2578 convert (ssizetype, BINFO_OFFSET (first_defn)));
2579 else if (lost)
2580 /* If the nearest definition is in a lost primary, we don't need an
2581 entry in our vtable. Except possibly in a constructor vtable,
2582 if we happen to get our primary back. In that case, the offset
2583 will be zero, as it will be a primary base. */
2584 delta = size_zero_node;
2585 else
2586 /* The `this' pointer needs to be adjusted from pointing to
2587 BINFO to pointing at the base where the final overrider
2588 appears. */
2589 delta = size_diffop_loc (input_location,
2590 convert (ssizetype,
2591 BINFO_OFFSET (TREE_VALUE (overrider))),
2592 convert (ssizetype, BINFO_OFFSET (binfo)));
2593
2594 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2595
2596 if (virtual_base)
2597 BV_VCALL_INDEX (*virtuals)
2598 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2599 else
2600 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2601
2602 BV_LOST_PRIMARY (*virtuals) = lost;
2603 }
2604
2605 /* Called from modify_all_vtables via dfs_walk. */
2606
2607 static tree
2608 dfs_modify_vtables (tree binfo, void* data)
2609 {
2610 tree t = (tree) data;
2611 tree virtuals;
2612 tree old_virtuals;
2613 unsigned ix;
2614
2615 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2616 /* A base without a vtable needs no modification, and its bases
2617 are uninteresting. */
2618 return dfs_skip_bases;
2619
2620 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2621 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2622 /* Don't do the primary vtable, if it's new. */
2623 return NULL_TREE;
2624
2625 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2626 /* There's no need to modify the vtable for a non-virtual primary
2627 base; we're not going to use that vtable anyhow. We do still
2628 need to do this for virtual primary bases, as they could become
2629 non-primary in a construction vtable. */
2630 return NULL_TREE;
2631
2632 make_new_vtable (t, binfo);
2633
2634 /* Now, go through each of the virtual functions in the virtual
2635 function table for BINFO. Find the final overrider, and update
2636 the BINFO_VIRTUALS list appropriately. */
2637 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2638 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2639 virtuals;
2640 ix++, virtuals = TREE_CHAIN (virtuals),
2641 old_virtuals = TREE_CHAIN (old_virtuals))
2642 update_vtable_entry_for_fn (t,
2643 binfo,
2644 BV_FN (old_virtuals),
2645 &virtuals, ix);
2646
2647 return NULL_TREE;
2648 }
2649
2650 /* Update all of the primary and secondary vtables for T. Create new
2651 vtables as required, and initialize their RTTI information. Each
2652 of the functions in VIRTUALS is declared in T and may override a
2653 virtual function from a base class; find and modify the appropriate
2654 entries to point to the overriding functions. Returns a list, in
2655 declaration order, of the virtual functions that are declared in T,
2656 but do not appear in the primary base class vtable, and which
2657 should therefore be appended to the end of the vtable for T. */
2658
2659 static tree
2660 modify_all_vtables (tree t, tree virtuals)
2661 {
2662 tree binfo = TYPE_BINFO (t);
2663 tree *fnsp;
2664
2665 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2666 if (TYPE_CONTAINS_VPTR_P (t))
2667 get_vtable_decl (t, false);
2668
2669 /* Update all of the vtables. */
2670 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2671
2672 /* Add virtual functions not already in our primary vtable. These
2673 will be both those introduced by this class, and those overridden
2674 from secondary bases. It does not include virtuals merely
2675 inherited from secondary bases. */
2676 for (fnsp = &virtuals; *fnsp; )
2677 {
2678 tree fn = TREE_VALUE (*fnsp);
2679
2680 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2681 || DECL_VINDEX (fn) == error_mark_node)
2682 {
2683 /* We don't need to adjust the `this' pointer when
2684 calling this function. */
2685 BV_DELTA (*fnsp) = integer_zero_node;
2686 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2687
2688 /* This is a function not already in our vtable. Keep it. */
2689 fnsp = &TREE_CHAIN (*fnsp);
2690 }
2691 else
2692 /* We've already got an entry for this function. Skip it. */
2693 *fnsp = TREE_CHAIN (*fnsp);
2694 }
2695
2696 return virtuals;
2697 }
2698
2699 /* Get the base virtual function declarations in T that have the
2700 indicated NAME. */
2701
2702 static tree
2703 get_basefndecls (tree name, tree t)
2704 {
2705 tree methods;
2706 tree base_fndecls = NULL_TREE;
2707 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2708 int i;
2709
2710 /* Find virtual functions in T with the indicated NAME. */
2711 i = lookup_fnfields_1 (t, name);
2712 if (i != -1)
2713 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2714 methods;
2715 methods = OVL_NEXT (methods))
2716 {
2717 tree method = OVL_CURRENT (methods);
2718
2719 if (TREE_CODE (method) == FUNCTION_DECL
2720 && DECL_VINDEX (method))
2721 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2722 }
2723
2724 if (base_fndecls)
2725 return base_fndecls;
2726
2727 for (i = 0; i < n_baseclasses; i++)
2728 {
2729 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2730 base_fndecls = chainon (get_basefndecls (name, basetype),
2731 base_fndecls);
2732 }
2733
2734 return base_fndecls;
2735 }
2736
2737 /* If this declaration supersedes the declaration of
2738 a method declared virtual in the base class, then
2739 mark this field as being virtual as well. */
2740
2741 void
2742 check_for_override (tree decl, tree ctype)
2743 {
2744 bool overrides_found = false;
2745 if (TREE_CODE (decl) == TEMPLATE_DECL)
2746 /* In [temp.mem] we have:
2747
2748 A specialization of a member function template does not
2749 override a virtual function from a base class. */
2750 return;
2751 if ((DECL_DESTRUCTOR_P (decl)
2752 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2753 || DECL_CONV_FN_P (decl))
2754 && look_for_overrides (ctype, decl)
2755 && !DECL_STATIC_FUNCTION_P (decl))
2756 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2757 the error_mark_node so that we know it is an overriding
2758 function. */
2759 {
2760 DECL_VINDEX (decl) = decl;
2761 overrides_found = true;
2762 }
2763
2764 if (DECL_VIRTUAL_P (decl))
2765 {
2766 if (!DECL_VINDEX (decl))
2767 DECL_VINDEX (decl) = error_mark_node;
2768 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2769 if (DECL_DESTRUCTOR_P (decl))
2770 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2771 }
2772 else if (DECL_FINAL_P (decl))
2773 error ("%q+#D marked %<final%>, but is not virtual", decl);
2774 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2775 error ("%q+#D marked %<override%>, but does not override", decl);
2776 }
2777
2778 /* Warn about hidden virtual functions that are not overridden in t.
2779 We know that constructors and destructors don't apply. */
2780
2781 static void
2782 warn_hidden (tree t)
2783 {
2784 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2785 tree fns;
2786 size_t i;
2787
2788 /* We go through each separately named virtual function. */
2789 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2790 vec_safe_iterate (method_vec, i, &fns);
2791 ++i)
2792 {
2793 tree fn;
2794 tree name;
2795 tree fndecl;
2796 tree base_fndecls;
2797 tree base_binfo;
2798 tree binfo;
2799 int j;
2800
2801 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2802 have the same name. Figure out what name that is. */
2803 name = DECL_NAME (OVL_CURRENT (fns));
2804 /* There are no possibly hidden functions yet. */
2805 base_fndecls = NULL_TREE;
2806 /* Iterate through all of the base classes looking for possibly
2807 hidden functions. */
2808 for (binfo = TYPE_BINFO (t), j = 0;
2809 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2810 {
2811 tree basetype = BINFO_TYPE (base_binfo);
2812 base_fndecls = chainon (get_basefndecls (name, basetype),
2813 base_fndecls);
2814 }
2815
2816 /* If there are no functions to hide, continue. */
2817 if (!base_fndecls)
2818 continue;
2819
2820 /* Remove any overridden functions. */
2821 for (fn = fns; fn; fn = OVL_NEXT (fn))
2822 {
2823 fndecl = OVL_CURRENT (fn);
2824 if (DECL_VINDEX (fndecl))
2825 {
2826 tree *prev = &base_fndecls;
2827
2828 while (*prev)
2829 /* If the method from the base class has the same
2830 signature as the method from the derived class, it
2831 has been overridden. */
2832 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2833 *prev = TREE_CHAIN (*prev);
2834 else
2835 prev = &TREE_CHAIN (*prev);
2836 }
2837 }
2838
2839 /* Now give a warning for all base functions without overriders,
2840 as they are hidden. */
2841 while (base_fndecls)
2842 {
2843 /* Here we know it is a hider, and no overrider exists. */
2844 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2845 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2846 base_fndecls = TREE_CHAIN (base_fndecls);
2847 }
2848 }
2849 }
2850
2851 /* Recursive helper for finish_struct_anon. */
2852
2853 static void
2854 finish_struct_anon_r (tree field, bool complain)
2855 {
2856 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2857 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2858 for (; elt; elt = DECL_CHAIN (elt))
2859 {
2860 /* We're generally only interested in entities the user
2861 declared, but we also find nested classes by noticing
2862 the TYPE_DECL that we create implicitly. You're
2863 allowed to put one anonymous union inside another,
2864 though, so we explicitly tolerate that. We use
2865 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2866 we also allow unnamed types used for defining fields. */
2867 if (DECL_ARTIFICIAL (elt)
2868 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2869 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2870 continue;
2871
2872 if (TREE_CODE (elt) != FIELD_DECL)
2873 {
2874 /* We already complained about static data members in
2875 finish_static_data_member_decl. */
2876 if (complain && TREE_CODE (elt) != VAR_DECL)
2877 {
2878 if (is_union)
2879 permerror (input_location,
2880 "%q+#D invalid; an anonymous union can "
2881 "only have non-static data members", elt);
2882 else
2883 permerror (input_location,
2884 "%q+#D invalid; an anonymous struct can "
2885 "only have non-static data members", elt);
2886 }
2887 continue;
2888 }
2889
2890 if (complain)
2891 {
2892 if (TREE_PRIVATE (elt))
2893 {
2894 if (is_union)
2895 permerror (input_location,
2896 "private member %q+#D in anonymous union", elt);
2897 else
2898 permerror (input_location,
2899 "private member %q+#D in anonymous struct", elt);
2900 }
2901 else if (TREE_PROTECTED (elt))
2902 {
2903 if (is_union)
2904 permerror (input_location,
2905 "protected member %q+#D in anonymous union", elt);
2906 else
2907 permerror (input_location,
2908 "protected member %q+#D in anonymous struct", elt);
2909 }
2910 }
2911
2912 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2913 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2914
2915 /* Recurse into the anonymous aggregates to handle correctly
2916 access control (c++/24926):
2917
2918 class A {
2919 union {
2920 union {
2921 int i;
2922 };
2923 };
2924 };
2925
2926 int j=A().i; */
2927 if (DECL_NAME (elt) == NULL_TREE
2928 && ANON_AGGR_TYPE_P (TREE_TYPE (elt)))
2929 finish_struct_anon_r (elt, /*complain=*/false);
2930 }
2931 }
2932
2933 /* Check for things that are invalid. There are probably plenty of other
2934 things we should check for also. */
2935
2936 static void
2937 finish_struct_anon (tree t)
2938 {
2939 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2940 {
2941 if (TREE_STATIC (field))
2942 continue;
2943 if (TREE_CODE (field) != FIELD_DECL)
2944 continue;
2945
2946 if (DECL_NAME (field) == NULL_TREE
2947 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2948 finish_struct_anon_r (field, /*complain=*/true);
2949 }
2950 }
2951
2952 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2953 will be used later during class template instantiation.
2954 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2955 a non-static member data (FIELD_DECL), a member function
2956 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2957 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2958 When FRIEND_P is nonzero, T is either a friend class
2959 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2960 (FUNCTION_DECL, TEMPLATE_DECL). */
2961
2962 void
2963 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2964 {
2965 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2966 if (CLASSTYPE_TEMPLATE_INFO (type))
2967 CLASSTYPE_DECL_LIST (type)
2968 = tree_cons (friend_p ? NULL_TREE : type,
2969 t, CLASSTYPE_DECL_LIST (type));
2970 }
2971
2972 /* This function is called from declare_virt_assop_and_dtor via
2973 dfs_walk_all.
2974
2975 DATA is a type that direcly or indirectly inherits the base
2976 represented by BINFO. If BINFO contains a virtual assignment [copy
2977 assignment or move assigment] operator or a virtual constructor,
2978 declare that function in DATA if it hasn't been already declared. */
2979
2980 static tree
2981 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2982 {
2983 tree bv, fn, t = (tree)data;
2984 tree opname = ansi_assopname (NOP_EXPR);
2985
2986 gcc_assert (t && CLASS_TYPE_P (t));
2987 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2988
2989 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2990 /* A base without a vtable needs no modification, and its bases
2991 are uninteresting. */
2992 return dfs_skip_bases;
2993
2994 if (BINFO_PRIMARY_P (binfo))
2995 /* If this is a primary base, then we have already looked at the
2996 virtual functions of its vtable. */
2997 return NULL_TREE;
2998
2999 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
3000 {
3001 fn = BV_FN (bv);
3002
3003 if (DECL_NAME (fn) == opname)
3004 {
3005 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
3006 lazily_declare_fn (sfk_copy_assignment, t);
3007 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
3008 lazily_declare_fn (sfk_move_assignment, t);
3009 }
3010 else if (DECL_DESTRUCTOR_P (fn)
3011 && CLASSTYPE_LAZY_DESTRUCTOR (t))
3012 lazily_declare_fn (sfk_destructor, t);
3013 }
3014
3015 return NULL_TREE;
3016 }
3017
3018 /* If the class type T has a direct or indirect base that contains a
3019 virtual assignment operator or a virtual destructor, declare that
3020 function in T if it hasn't been already declared. */
3021
3022 static void
3023 declare_virt_assop_and_dtor (tree t)
3024 {
3025 if (!(TYPE_POLYMORPHIC_P (t)
3026 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
3027 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
3028 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
3029 return;
3030
3031 dfs_walk_all (TYPE_BINFO (t),
3032 dfs_declare_virt_assop_and_dtor,
3033 NULL, t);
3034 }
3035
3036 /* Declare the inheriting constructor for class T inherited from base
3037 constructor CTOR with the parameter array PARMS of size NPARMS. */
3038
3039 static void
3040 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
3041 {
3042 /* We don't declare an inheriting ctor that would be a default,
3043 copy or move ctor for derived or base. */
3044 if (nparms == 0)
3045 return;
3046 if (nparms == 1
3047 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
3048 {
3049 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
3050 if (parm == t || parm == DECL_CONTEXT (ctor))
3051 return;
3052 }
3053
3054 tree parmlist = void_list_node;
3055 for (int i = nparms - 1; i >= 0; i--)
3056 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
3057 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
3058 t, false, ctor, parmlist);
3059 if (add_method (t, fn, NULL_TREE))
3060 {
3061 DECL_CHAIN (fn) = TYPE_METHODS (t);
3062 TYPE_METHODS (t) = fn;
3063 }
3064 }
3065
3066 /* Declare all the inheriting constructors for class T inherited from base
3067 constructor CTOR. */
3068
3069 static void
3070 one_inherited_ctor (tree ctor, tree t)
3071 {
3072 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
3073
3074 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
3075 int i = 0;
3076 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
3077 {
3078 if (TREE_PURPOSE (parms))
3079 one_inheriting_sig (t, ctor, new_parms, i);
3080 new_parms[i++] = TREE_VALUE (parms);
3081 }
3082 one_inheriting_sig (t, ctor, new_parms, i);
3083 if (parms == NULL_TREE)
3084 {
3085 if (warning (OPT_Winherited_variadic_ctor,
3086 "the ellipsis in %qD is not inherited", ctor))
3087 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
3088 }
3089 }
3090
3091 /* Create default constructors, assignment operators, and so forth for
3092 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
3093 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
3094 the class cannot have a default constructor, copy constructor
3095 taking a const reference argument, or an assignment operator taking
3096 a const reference, respectively. */
3097
3098 static void
3099 add_implicitly_declared_members (tree t, tree* access_decls,
3100 int cant_have_const_cctor,
3101 int cant_have_const_assignment)
3102 {
3103 bool move_ok = false;
3104
3105 if (cxx_dialect >= cxx11 && !CLASSTYPE_DESTRUCTORS (t)
3106 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
3107 && !type_has_move_constructor (t) && !type_has_move_assign (t))
3108 move_ok = true;
3109
3110 /* Destructor. */
3111 if (!CLASSTYPE_DESTRUCTORS (t))
3112 {
3113 /* In general, we create destructors lazily. */
3114 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
3115
3116 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3117 && TYPE_FOR_JAVA (t))
3118 /* But if this is a Java class, any non-trivial destructor is
3119 invalid, even if compiler-generated. Therefore, if the
3120 destructor is non-trivial we create it now. */
3121 lazily_declare_fn (sfk_destructor, t);
3122 }
3123
3124 /* [class.ctor]
3125
3126 If there is no user-declared constructor for a class, a default
3127 constructor is implicitly declared. */
3128 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
3129 {
3130 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
3131 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
3132 if (cxx_dialect >= cxx11)
3133 TYPE_HAS_CONSTEXPR_CTOR (t)
3134 /* This might force the declaration. */
3135 = type_has_constexpr_default_constructor (t);
3136 }
3137
3138 /* [class.ctor]
3139
3140 If a class definition does not explicitly declare a copy
3141 constructor, one is declared implicitly. */
3142 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
3143 {
3144 TYPE_HAS_COPY_CTOR (t) = 1;
3145 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
3146 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3147 if (move_ok)
3148 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3149 }
3150
3151 /* If there is no assignment operator, one will be created if and
3152 when it is needed. For now, just record whether or not the type
3153 of the parameter to the assignment operator will be a const or
3154 non-const reference. */
3155 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3156 {
3157 TYPE_HAS_COPY_ASSIGN (t) = 1;
3158 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3159 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3160 if (move_ok)
3161 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3162 }
3163
3164 /* We can't be lazy about declaring functions that might override
3165 a virtual function from a base class. */
3166 declare_virt_assop_and_dtor (t);
3167
3168 while (*access_decls)
3169 {
3170 tree using_decl = TREE_VALUE (*access_decls);
3171 tree decl = USING_DECL_DECLS (using_decl);
3172 if (DECL_NAME (using_decl) == ctor_identifier)
3173 {
3174 /* declare, then remove the decl */
3175 tree ctor_list = decl;
3176 location_t loc = input_location;
3177 input_location = DECL_SOURCE_LOCATION (using_decl);
3178 if (ctor_list)
3179 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3180 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3181 *access_decls = TREE_CHAIN (*access_decls);
3182 input_location = loc;
3183 }
3184 else
3185 access_decls = &TREE_CHAIN (*access_decls);
3186 }
3187 }
3188
3189 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3190 count the number of fields in TYPE, including anonymous union
3191 members. */
3192
3193 static int
3194 count_fields (tree fields)
3195 {
3196 tree x;
3197 int n_fields = 0;
3198 for (x = fields; x; x = DECL_CHAIN (x))
3199 {
3200 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3201 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3202 else
3203 n_fields += 1;
3204 }
3205 return n_fields;
3206 }
3207
3208 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3209 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3210 elts, starting at offset IDX. */
3211
3212 static int
3213 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3214 {
3215 tree x;
3216 for (x = fields; x; x = DECL_CHAIN (x))
3217 {
3218 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3219 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3220 else
3221 field_vec->elts[idx++] = x;
3222 }
3223 return idx;
3224 }
3225
3226 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3227 starting at offset IDX. */
3228
3229 static int
3230 add_enum_fields_to_record_type (tree enumtype,
3231 struct sorted_fields_type *field_vec,
3232 int idx)
3233 {
3234 tree values;
3235 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3236 field_vec->elts[idx++] = TREE_VALUE (values);
3237 return idx;
3238 }
3239
3240 /* FIELD is a bit-field. We are finishing the processing for its
3241 enclosing type. Issue any appropriate messages and set appropriate
3242 flags. Returns false if an error has been diagnosed. */
3243
3244 static bool
3245 check_bitfield_decl (tree field)
3246 {
3247 tree type = TREE_TYPE (field);
3248 tree w;
3249
3250 /* Extract the declared width of the bitfield, which has been
3251 temporarily stashed in DECL_INITIAL. */
3252 w = DECL_INITIAL (field);
3253 gcc_assert (w != NULL_TREE);
3254 /* Remove the bit-field width indicator so that the rest of the
3255 compiler does not treat that value as an initializer. */
3256 DECL_INITIAL (field) = NULL_TREE;
3257
3258 /* Detect invalid bit-field type. */
3259 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3260 {
3261 error ("bit-field %q+#D with non-integral type", field);
3262 w = error_mark_node;
3263 }
3264 else
3265 {
3266 location_t loc = input_location;
3267 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3268 STRIP_NOPS (w);
3269
3270 /* detect invalid field size. */
3271 input_location = DECL_SOURCE_LOCATION (field);
3272 w = cxx_constant_value (w);
3273 input_location = loc;
3274
3275 if (TREE_CODE (w) != INTEGER_CST)
3276 {
3277 error ("bit-field %q+D width not an integer constant", field);
3278 w = error_mark_node;
3279 }
3280 else if (tree_int_cst_sgn (w) < 0)
3281 {
3282 error ("negative width in bit-field %q+D", field);
3283 w = error_mark_node;
3284 }
3285 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3286 {
3287 error ("zero width for bit-field %q+D", field);
3288 w = error_mark_node;
3289 }
3290 else if ((TREE_CODE (type) != ENUMERAL_TYPE
3291 && TREE_CODE (type) != BOOLEAN_TYPE
3292 && compare_tree_int (w, TYPE_PRECISION (type)) > 0)
3293 || ((TREE_CODE (type) == ENUMERAL_TYPE
3294 || TREE_CODE (type) == BOOLEAN_TYPE)
3295 && tree_int_cst_lt (TYPE_SIZE (type), w)))
3296 warning (0, "width of %q+D exceeds its type", field);
3297 else if (TREE_CODE (type) == ENUMERAL_TYPE
3298 && (0 > (compare_tree_int
3299 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3300 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3301 }
3302
3303 if (w != error_mark_node)
3304 {
3305 DECL_SIZE (field) = convert (bitsizetype, w);
3306 DECL_BIT_FIELD (field) = 1;
3307 return true;
3308 }
3309 else
3310 {
3311 /* Non-bit-fields are aligned for their type. */
3312 DECL_BIT_FIELD (field) = 0;
3313 CLEAR_DECL_C_BIT_FIELD (field);
3314 return false;
3315 }
3316 }
3317
3318 /* FIELD is a non bit-field. We are finishing the processing for its
3319 enclosing type T. Issue any appropriate messages and set appropriate
3320 flags. */
3321
3322 static void
3323 check_field_decl (tree field,
3324 tree t,
3325 int* cant_have_const_ctor,
3326 int* no_const_asn_ref,
3327 int* any_default_members)
3328 {
3329 tree type = strip_array_types (TREE_TYPE (field));
3330
3331 /* In C++98 an anonymous union cannot contain any fields which would change
3332 the settings of CANT_HAVE_CONST_CTOR and friends. */
3333 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11)
3334 ;
3335 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3336 structs. So, we recurse through their fields here. */
3337 else if (ANON_AGGR_TYPE_P (type))
3338 {
3339 tree fields;
3340
3341 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3342 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3343 check_field_decl (fields, t, cant_have_const_ctor,
3344 no_const_asn_ref, any_default_members);
3345 }
3346 /* Check members with class type for constructors, destructors,
3347 etc. */
3348 else if (CLASS_TYPE_P (type))
3349 {
3350 /* Never let anything with uninheritable virtuals
3351 make it through without complaint. */
3352 abstract_virtuals_error (field, type);
3353
3354 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11)
3355 {
3356 static bool warned;
3357 int oldcount = errorcount;
3358 if (TYPE_NEEDS_CONSTRUCTING (type))
3359 error ("member %q+#D with constructor not allowed in union",
3360 field);
3361 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3362 error ("member %q+#D with destructor not allowed in union", field);
3363 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3364 error ("member %q+#D with copy assignment operator not allowed in union",
3365 field);
3366 if (!warned && errorcount > oldcount)
3367 {
3368 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3369 "only available with -std=c++11 or -std=gnu++11");
3370 warned = true;
3371 }
3372 }
3373 else
3374 {
3375 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3376 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3377 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3378 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3379 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3380 || !TYPE_HAS_COPY_ASSIGN (type));
3381 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3382 || !TYPE_HAS_COPY_CTOR (type));
3383 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3384 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3385 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3386 || TYPE_HAS_COMPLEX_DFLT (type));
3387 }
3388
3389 if (TYPE_HAS_COPY_CTOR (type)
3390 && !TYPE_HAS_CONST_COPY_CTOR (type))
3391 *cant_have_const_ctor = 1;
3392
3393 if (TYPE_HAS_COPY_ASSIGN (type)
3394 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3395 *no_const_asn_ref = 1;
3396 }
3397
3398 check_abi_tags (t, field);
3399
3400 if (DECL_INITIAL (field) != NULL_TREE)
3401 {
3402 /* `build_class_init_list' does not recognize
3403 non-FIELD_DECLs. */
3404 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3405 error ("multiple fields in union %qT initialized", t);
3406 *any_default_members = 1;
3407 }
3408 }
3409
3410 /* Check the data members (both static and non-static), class-scoped
3411 typedefs, etc., appearing in the declaration of T. Issue
3412 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3413 declaration order) of access declarations; each TREE_VALUE in this
3414 list is a USING_DECL.
3415
3416 In addition, set the following flags:
3417
3418 EMPTY_P
3419 The class is empty, i.e., contains no non-static data members.
3420
3421 CANT_HAVE_CONST_CTOR_P
3422 This class cannot have an implicitly generated copy constructor
3423 taking a const reference.
3424
3425 CANT_HAVE_CONST_ASN_REF
3426 This class cannot have an implicitly generated assignment
3427 operator taking a const reference.
3428
3429 All of these flags should be initialized before calling this
3430 function.
3431
3432 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3433 fields can be added by adding to this chain. */
3434
3435 static void
3436 check_field_decls (tree t, tree *access_decls,
3437 int *cant_have_const_ctor_p,
3438 int *no_const_asn_ref_p)
3439 {
3440 tree *field;
3441 tree *next;
3442 bool has_pointers;
3443 int any_default_members;
3444 int cant_pack = 0;
3445 int field_access = -1;
3446
3447 /* Assume there are no access declarations. */
3448 *access_decls = NULL_TREE;
3449 /* Assume this class has no pointer members. */
3450 has_pointers = false;
3451 /* Assume none of the members of this class have default
3452 initializations. */
3453 any_default_members = 0;
3454
3455 for (field = &TYPE_FIELDS (t); *field; field = next)
3456 {
3457 tree x = *field;
3458 tree type = TREE_TYPE (x);
3459 int this_field_access;
3460
3461 next = &DECL_CHAIN (x);
3462
3463 if (TREE_CODE (x) == USING_DECL)
3464 {
3465 /* Save the access declarations for our caller. */
3466 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3467 continue;
3468 }
3469
3470 if (TREE_CODE (x) == TYPE_DECL
3471 || TREE_CODE (x) == TEMPLATE_DECL)
3472 continue;
3473
3474 /* If we've gotten this far, it's a data member, possibly static,
3475 or an enumerator. */
3476 if (TREE_CODE (x) != CONST_DECL)
3477 DECL_CONTEXT (x) = t;
3478
3479 /* When this goes into scope, it will be a non-local reference. */
3480 DECL_NONLOCAL (x) = 1;
3481
3482 if (TREE_CODE (t) == UNION_TYPE
3483 && cxx_dialect < cxx11)
3484 {
3485 /* [class.union] (C++98)
3486
3487 If a union contains a static data member, or a member of
3488 reference type, the program is ill-formed.
3489
3490 In C++11 this limitation doesn't exist anymore. */
3491 if (VAR_P (x))
3492 {
3493 error ("in C++98 %q+D may not be static because it is "
3494 "a member of a union", x);
3495 continue;
3496 }
3497 if (TREE_CODE (type) == REFERENCE_TYPE)
3498 {
3499 error ("in C++98 %q+D may not have reference type %qT "
3500 "because it is a member of a union", x, type);
3501 continue;
3502 }
3503 }
3504
3505 /* Perform error checking that did not get done in
3506 grokdeclarator. */
3507 if (TREE_CODE (type) == FUNCTION_TYPE)
3508 {
3509 error ("field %q+D invalidly declared function type", x);
3510 type = build_pointer_type (type);
3511 TREE_TYPE (x) = type;
3512 }
3513 else if (TREE_CODE (type) == METHOD_TYPE)
3514 {
3515 error ("field %q+D invalidly declared method type", x);
3516 type = build_pointer_type (type);
3517 TREE_TYPE (x) = type;
3518 }
3519
3520 if (type == error_mark_node)
3521 continue;
3522
3523 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3524 continue;
3525
3526 /* Now it can only be a FIELD_DECL. */
3527
3528 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3529 CLASSTYPE_NON_AGGREGATE (t) = 1;
3530
3531 /* If at least one non-static data member is non-literal, the whole
3532 class becomes non-literal. Per Core/1453, volatile non-static
3533 data members and base classes are also not allowed.
3534 Note: if the type is incomplete we will complain later on. */
3535 if (COMPLETE_TYPE_P (type)
3536 && (!literal_type_p (type) || CP_TYPE_VOLATILE_P (type)))
3537 CLASSTYPE_LITERAL_P (t) = false;
3538
3539 /* A standard-layout class is a class that:
3540 ...
3541 has the same access control (Clause 11) for all non-static data members,
3542 ... */
3543 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3544 if (field_access == -1)
3545 field_access = this_field_access;
3546 else if (this_field_access != field_access)
3547 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3548
3549 /* If this is of reference type, check if it needs an init. */
3550 if (TREE_CODE (type) == REFERENCE_TYPE)
3551 {
3552 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3553 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3554 if (DECL_INITIAL (x) == NULL_TREE)
3555 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3556
3557 /* ARM $12.6.2: [A member initializer list] (or, for an
3558 aggregate, initialization by a brace-enclosed list) is the
3559 only way to initialize nonstatic const and reference
3560 members. */
3561 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3562 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3563 }
3564
3565 type = strip_array_types (type);
3566
3567 if (TYPE_PACKED (t))
3568 {
3569 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3570 {
3571 warning
3572 (0,
3573 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3574 x);
3575 cant_pack = 1;
3576 }
3577 else if (DECL_C_BIT_FIELD (x)
3578 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3579 DECL_PACKED (x) = 1;
3580 }
3581
3582 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3583 /* We don't treat zero-width bitfields as making a class
3584 non-empty. */
3585 ;
3586 else
3587 {
3588 /* The class is non-empty. */
3589 CLASSTYPE_EMPTY_P (t) = 0;
3590 /* The class is not even nearly empty. */
3591 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3592 /* If one of the data members contains an empty class,
3593 so does T. */
3594 if (CLASS_TYPE_P (type)
3595 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3596 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3597 }
3598
3599 /* This is used by -Weffc++ (see below). Warn only for pointers
3600 to members which might hold dynamic memory. So do not warn
3601 for pointers to functions or pointers to members. */
3602 if (TYPE_PTR_P (type)
3603 && !TYPE_PTRFN_P (type))
3604 has_pointers = true;
3605
3606 if (CLASS_TYPE_P (type))
3607 {
3608 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3609 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3610 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3611 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3612 }
3613
3614 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3615 CLASSTYPE_HAS_MUTABLE (t) = 1;
3616
3617 if (DECL_MUTABLE_P (x))
3618 {
3619 if (CP_TYPE_CONST_P (type))
3620 {
3621 error ("member %q+D cannot be declared both %<const%> "
3622 "and %<mutable%>", x);
3623 continue;
3624 }
3625 if (TREE_CODE (type) == REFERENCE_TYPE)
3626 {
3627 error ("member %q+D cannot be declared as a %<mutable%> "
3628 "reference", x);
3629 continue;
3630 }
3631 }
3632
3633 if (! layout_pod_type_p (type))
3634 /* DR 148 now allows pointers to members (which are POD themselves),
3635 to be allowed in POD structs. */
3636 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3637
3638 if (!std_layout_type_p (type))
3639 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3640
3641 if (! zero_init_p (type))
3642 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3643
3644 /* We set DECL_C_BIT_FIELD in grokbitfield.
3645 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3646 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3647 check_field_decl (x, t,
3648 cant_have_const_ctor_p,
3649 no_const_asn_ref_p,
3650 &any_default_members);
3651
3652 /* Now that we've removed bit-field widths from DECL_INITIAL,
3653 anything left in DECL_INITIAL is an NSDMI that makes the class
3654 non-aggregate. */
3655 if (DECL_INITIAL (x))
3656 CLASSTYPE_NON_AGGREGATE (t) = true;
3657
3658 /* If any field is const, the structure type is pseudo-const. */
3659 if (CP_TYPE_CONST_P (type))
3660 {
3661 C_TYPE_FIELDS_READONLY (t) = 1;
3662 if (DECL_INITIAL (x) == NULL_TREE)
3663 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3664
3665 /* ARM $12.6.2: [A member initializer list] (or, for an
3666 aggregate, initialization by a brace-enclosed list) is the
3667 only way to initialize nonstatic const and reference
3668 members. */
3669 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3670 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3671 }
3672 /* A field that is pseudo-const makes the structure likewise. */
3673 else if (CLASS_TYPE_P (type))
3674 {
3675 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3676 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3677 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3678 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3679 }
3680
3681 /* Core issue 80: A nonstatic data member is required to have a
3682 different name from the class iff the class has a
3683 user-declared constructor. */
3684 if (constructor_name_p (DECL_NAME (x), t)
3685 && TYPE_HAS_USER_CONSTRUCTOR (t))
3686 permerror (input_location, "field %q+#D with same name as class", x);
3687 }
3688
3689 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3690 it should also define a copy constructor and an assignment operator to
3691 implement the correct copy semantic (deep vs shallow, etc.). As it is
3692 not feasible to check whether the constructors do allocate dynamic memory
3693 and store it within members, we approximate the warning like this:
3694
3695 -- Warn only if there are members which are pointers
3696 -- Warn only if there is a non-trivial constructor (otherwise,
3697 there cannot be memory allocated).
3698 -- Warn only if there is a non-trivial destructor. We assume that the
3699 user at least implemented the cleanup correctly, and a destructor
3700 is needed to free dynamic memory.
3701
3702 This seems enough for practical purposes. */
3703 if (warn_ecpp
3704 && has_pointers
3705 && TYPE_HAS_USER_CONSTRUCTOR (t)
3706 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3707 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3708 {
3709 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3710
3711 if (! TYPE_HAS_COPY_CTOR (t))
3712 {
3713 warning (OPT_Weffc__,
3714 " but does not override %<%T(const %T&)%>", t, t);
3715 if (!TYPE_HAS_COPY_ASSIGN (t))
3716 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3717 }
3718 else if (! TYPE_HAS_COPY_ASSIGN (t))
3719 warning (OPT_Weffc__,
3720 " but does not override %<operator=(const %T&)%>", t);
3721 }
3722
3723 /* Non-static data member initializers make the default constructor
3724 non-trivial. */
3725 if (any_default_members)
3726 {
3727 TYPE_NEEDS_CONSTRUCTING (t) = true;
3728 TYPE_HAS_COMPLEX_DFLT (t) = true;
3729 }
3730
3731 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3732 if (cant_pack)
3733 TYPE_PACKED (t) = 0;
3734
3735 /* Check anonymous struct/anonymous union fields. */
3736 finish_struct_anon (t);
3737
3738 /* We've built up the list of access declarations in reverse order.
3739 Fix that now. */
3740 *access_decls = nreverse (*access_decls);
3741 }
3742
3743 /* If TYPE is an empty class type, records its OFFSET in the table of
3744 OFFSETS. */
3745
3746 static int
3747 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3748 {
3749 splay_tree_node n;
3750
3751 if (!is_empty_class (type))
3752 return 0;
3753
3754 /* Record the location of this empty object in OFFSETS. */
3755 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3756 if (!n)
3757 n = splay_tree_insert (offsets,
3758 (splay_tree_key) offset,
3759 (splay_tree_value) NULL_TREE);
3760 n->value = ((splay_tree_value)
3761 tree_cons (NULL_TREE,
3762 type,
3763 (tree) n->value));
3764
3765 return 0;
3766 }
3767
3768 /* Returns nonzero if TYPE is an empty class type and there is
3769 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3770
3771 static int
3772 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3773 {
3774 splay_tree_node n;
3775 tree t;
3776
3777 if (!is_empty_class (type))
3778 return 0;
3779
3780 /* Record the location of this empty object in OFFSETS. */
3781 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3782 if (!n)
3783 return 0;
3784
3785 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3786 if (same_type_p (TREE_VALUE (t), type))
3787 return 1;
3788
3789 return 0;
3790 }
3791
3792 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3793 F for every subobject, passing it the type, offset, and table of
3794 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3795 be traversed.
3796
3797 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3798 than MAX_OFFSET will not be walked.
3799
3800 If F returns a nonzero value, the traversal ceases, and that value
3801 is returned. Otherwise, returns zero. */
3802
3803 static int
3804 walk_subobject_offsets (tree type,
3805 subobject_offset_fn f,
3806 tree offset,
3807 splay_tree offsets,
3808 tree max_offset,
3809 int vbases_p)
3810 {
3811 int r = 0;
3812 tree type_binfo = NULL_TREE;
3813
3814 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3815 stop. */
3816 if (max_offset && tree_int_cst_lt (max_offset, offset))
3817 return 0;
3818
3819 if (type == error_mark_node)
3820 return 0;
3821
3822 if (!TYPE_P (type))
3823 {
3824 type_binfo = type;
3825 type = BINFO_TYPE (type);
3826 }
3827
3828 if (CLASS_TYPE_P (type))
3829 {
3830 tree field;
3831 tree binfo;
3832 int i;
3833
3834 /* Avoid recursing into objects that are not interesting. */
3835 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3836 return 0;
3837
3838 /* Record the location of TYPE. */
3839 r = (*f) (type, offset, offsets);
3840 if (r)
3841 return r;
3842
3843 /* Iterate through the direct base classes of TYPE. */
3844 if (!type_binfo)
3845 type_binfo = TYPE_BINFO (type);
3846 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3847 {
3848 tree binfo_offset;
3849
3850 if (BINFO_VIRTUAL_P (binfo))
3851 continue;
3852
3853 tree orig_binfo;
3854 /* We cannot rely on BINFO_OFFSET being set for the base
3855 class yet, but the offsets for direct non-virtual
3856 bases can be calculated by going back to the TYPE. */
3857 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3858 binfo_offset = size_binop (PLUS_EXPR,
3859 offset,
3860 BINFO_OFFSET (orig_binfo));
3861
3862 r = walk_subobject_offsets (binfo,
3863 f,
3864 binfo_offset,
3865 offsets,
3866 max_offset,
3867 /*vbases_p=*/0);
3868 if (r)
3869 return r;
3870 }
3871
3872 if (CLASSTYPE_VBASECLASSES (type))
3873 {
3874 unsigned ix;
3875 vec<tree, va_gc> *vbases;
3876
3877 /* Iterate through the virtual base classes of TYPE. In G++
3878 3.2, we included virtual bases in the direct base class
3879 loop above, which results in incorrect results; the
3880 correct offsets for virtual bases are only known when
3881 working with the most derived type. */
3882 if (vbases_p)
3883 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3884 vec_safe_iterate (vbases, ix, &binfo); ix++)
3885 {
3886 r = walk_subobject_offsets (binfo,
3887 f,
3888 size_binop (PLUS_EXPR,
3889 offset,
3890 BINFO_OFFSET (binfo)),
3891 offsets,
3892 max_offset,
3893 /*vbases_p=*/0);
3894 if (r)
3895 return r;
3896 }
3897 else
3898 {
3899 /* We still have to walk the primary base, if it is
3900 virtual. (If it is non-virtual, then it was walked
3901 above.) */
3902 tree vbase = get_primary_binfo (type_binfo);
3903
3904 if (vbase && BINFO_VIRTUAL_P (vbase)
3905 && BINFO_PRIMARY_P (vbase)
3906 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3907 {
3908 r = (walk_subobject_offsets
3909 (vbase, f, offset,
3910 offsets, max_offset, /*vbases_p=*/0));
3911 if (r)
3912 return r;
3913 }
3914 }
3915 }
3916
3917 /* Iterate through the fields of TYPE. */
3918 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3919 if (TREE_CODE (field) == FIELD_DECL
3920 && TREE_TYPE (field) != error_mark_node
3921 && !DECL_ARTIFICIAL (field))
3922 {
3923 tree field_offset;
3924
3925 field_offset = byte_position (field);
3926
3927 r = walk_subobject_offsets (TREE_TYPE (field),
3928 f,
3929 size_binop (PLUS_EXPR,
3930 offset,
3931 field_offset),
3932 offsets,
3933 max_offset,
3934 /*vbases_p=*/1);
3935 if (r)
3936 return r;
3937 }
3938 }
3939 else if (TREE_CODE (type) == ARRAY_TYPE)
3940 {
3941 tree element_type = strip_array_types (type);
3942 tree domain = TYPE_DOMAIN (type);
3943 tree index;
3944
3945 /* Avoid recursing into objects that are not interesting. */
3946 if (!CLASS_TYPE_P (element_type)
3947 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3948 return 0;
3949
3950 /* Step through each of the elements in the array. */
3951 for (index = size_zero_node;
3952 !tree_int_cst_lt (TYPE_MAX_VALUE (domain), index);
3953 index = size_binop (PLUS_EXPR, index, size_one_node))
3954 {
3955 r = walk_subobject_offsets (TREE_TYPE (type),
3956 f,
3957 offset,
3958 offsets,
3959 max_offset,
3960 /*vbases_p=*/1);
3961 if (r)
3962 return r;
3963 offset = size_binop (PLUS_EXPR, offset,
3964 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3965 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3966 there's no point in iterating through the remaining
3967 elements of the array. */
3968 if (max_offset && tree_int_cst_lt (max_offset, offset))
3969 break;
3970 }
3971 }
3972
3973 return 0;
3974 }
3975
3976 /* Record all of the empty subobjects of TYPE (either a type or a
3977 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3978 is being placed at OFFSET; otherwise, it is a base class that is
3979 being placed at OFFSET. */
3980
3981 static void
3982 record_subobject_offsets (tree type,
3983 tree offset,
3984 splay_tree offsets,
3985 bool is_data_member)
3986 {
3987 tree max_offset;
3988 /* If recording subobjects for a non-static data member or a
3989 non-empty base class , we do not need to record offsets beyond
3990 the size of the biggest empty class. Additional data members
3991 will go at the end of the class. Additional base classes will go
3992 either at offset zero (if empty, in which case they cannot
3993 overlap with offsets past the size of the biggest empty class) or
3994 at the end of the class.
3995
3996 However, if we are placing an empty base class, then we must record
3997 all offsets, as either the empty class is at offset zero (where
3998 other empty classes might later be placed) or at the end of the
3999 class (where other objects might then be placed, so other empty
4000 subobjects might later overlap). */
4001 if (is_data_member
4002 || !is_empty_class (BINFO_TYPE (type)))
4003 max_offset = sizeof_biggest_empty_class;
4004 else
4005 max_offset = NULL_TREE;
4006 walk_subobject_offsets (type, record_subobject_offset, offset,
4007 offsets, max_offset, is_data_member);
4008 }
4009
4010 /* Returns nonzero if any of the empty subobjects of TYPE (located at
4011 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
4012 virtual bases of TYPE are examined. */
4013
4014 static int
4015 layout_conflict_p (tree type,
4016 tree offset,
4017 splay_tree offsets,
4018 int vbases_p)
4019 {
4020 splay_tree_node max_node;
4021
4022 /* Get the node in OFFSETS that indicates the maximum offset where
4023 an empty subobject is located. */
4024 max_node = splay_tree_max (offsets);
4025 /* If there aren't any empty subobjects, then there's no point in
4026 performing this check. */
4027 if (!max_node)
4028 return 0;
4029
4030 return walk_subobject_offsets (type, check_subobject_offset, offset,
4031 offsets, (tree) (max_node->key),
4032 vbases_p);
4033 }
4034
4035 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
4036 non-static data member of the type indicated by RLI. BINFO is the
4037 binfo corresponding to the base subobject, OFFSETS maps offsets to
4038 types already located at those offsets. This function determines
4039 the position of the DECL. */
4040
4041 static void
4042 layout_nonempty_base_or_field (record_layout_info rli,
4043 tree decl,
4044 tree binfo,
4045 splay_tree offsets)
4046 {
4047 tree offset = NULL_TREE;
4048 bool field_p;
4049 tree type;
4050
4051 if (binfo)
4052 {
4053 /* For the purposes of determining layout conflicts, we want to
4054 use the class type of BINFO; TREE_TYPE (DECL) will be the
4055 CLASSTYPE_AS_BASE version, which does not contain entries for
4056 zero-sized bases. */
4057 type = TREE_TYPE (binfo);
4058 field_p = false;
4059 }
4060 else
4061 {
4062 type = TREE_TYPE (decl);
4063 field_p = true;
4064 }
4065
4066 /* Try to place the field. It may take more than one try if we have
4067 a hard time placing the field without putting two objects of the
4068 same type at the same address. */
4069 while (1)
4070 {
4071 struct record_layout_info_s old_rli = *rli;
4072
4073 /* Place this field. */
4074 place_field (rli, decl);
4075 offset = byte_position (decl);
4076
4077 /* We have to check to see whether or not there is already
4078 something of the same type at the offset we're about to use.
4079 For example, consider:
4080
4081 struct S {};
4082 struct T : public S { int i; };
4083 struct U : public S, public T {};
4084
4085 Here, we put S at offset zero in U. Then, we can't put T at
4086 offset zero -- its S component would be at the same address
4087 as the S we already allocated. So, we have to skip ahead.
4088 Since all data members, including those whose type is an
4089 empty class, have nonzero size, any overlap can happen only
4090 with a direct or indirect base-class -- it can't happen with
4091 a data member. */
4092 /* In a union, overlap is permitted; all members are placed at
4093 offset zero. */
4094 if (TREE_CODE (rli->t) == UNION_TYPE)
4095 break;
4096 if (layout_conflict_p (field_p ? type : binfo, offset,
4097 offsets, field_p))
4098 {
4099 /* Strip off the size allocated to this field. That puts us
4100 at the first place we could have put the field with
4101 proper alignment. */
4102 *rli = old_rli;
4103
4104 /* Bump up by the alignment required for the type. */
4105 rli->bitpos
4106 = size_binop (PLUS_EXPR, rli->bitpos,
4107 bitsize_int (binfo
4108 ? CLASSTYPE_ALIGN (type)
4109 : TYPE_ALIGN (type)));
4110 normalize_rli (rli);
4111 }
4112 else
4113 /* There was no conflict. We're done laying out this field. */
4114 break;
4115 }
4116
4117 /* Now that we know where it will be placed, update its
4118 BINFO_OFFSET. */
4119 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
4120 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4121 this point because their BINFO_OFFSET is copied from another
4122 hierarchy. Therefore, we may not need to add the entire
4123 OFFSET. */
4124 propagate_binfo_offsets (binfo,
4125 size_diffop_loc (input_location,
4126 convert (ssizetype, offset),
4127 convert (ssizetype,
4128 BINFO_OFFSET (binfo))));
4129 }
4130
4131 /* Returns true if TYPE is empty and OFFSET is nonzero. */
4132
4133 static int
4134 empty_base_at_nonzero_offset_p (tree type,
4135 tree offset,
4136 splay_tree /*offsets*/)
4137 {
4138 return is_empty_class (type) && !integer_zerop (offset);
4139 }
4140
4141 /* Layout the empty base BINFO. EOC indicates the byte currently just
4142 past the end of the class, and should be correctly aligned for a
4143 class of the type indicated by BINFO; OFFSETS gives the offsets of
4144 the empty bases allocated so far. T is the most derived
4145 type. Return nonzero iff we added it at the end. */
4146
4147 static bool
4148 layout_empty_base (record_layout_info rli, tree binfo,
4149 tree eoc, splay_tree offsets)
4150 {
4151 tree alignment;
4152 tree basetype = BINFO_TYPE (binfo);
4153 bool atend = false;
4154
4155 /* This routine should only be used for empty classes. */
4156 gcc_assert (is_empty_class (basetype));
4157 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4158
4159 if (!integer_zerop (BINFO_OFFSET (binfo)))
4160 propagate_binfo_offsets
4161 (binfo, size_diffop_loc (input_location,
4162 size_zero_node, BINFO_OFFSET (binfo)));
4163
4164 /* This is an empty base class. We first try to put it at offset
4165 zero. */
4166 if (layout_conflict_p (binfo,
4167 BINFO_OFFSET (binfo),
4168 offsets,
4169 /*vbases_p=*/0))
4170 {
4171 /* That didn't work. Now, we move forward from the next
4172 available spot in the class. */
4173 atend = true;
4174 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4175 while (1)
4176 {
4177 if (!layout_conflict_p (binfo,
4178 BINFO_OFFSET (binfo),
4179 offsets,
4180 /*vbases_p=*/0))
4181 /* We finally found a spot where there's no overlap. */
4182 break;
4183
4184 /* There's overlap here, too. Bump along to the next spot. */
4185 propagate_binfo_offsets (binfo, alignment);
4186 }
4187 }
4188
4189 if (CLASSTYPE_USER_ALIGN (basetype))
4190 {
4191 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4192 if (warn_packed)
4193 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4194 TYPE_USER_ALIGN (rli->t) = 1;
4195 }
4196
4197 return atend;
4198 }
4199
4200 /* Layout the base given by BINFO in the class indicated by RLI.
4201 *BASE_ALIGN is a running maximum of the alignments of
4202 any base class. OFFSETS gives the location of empty base
4203 subobjects. T is the most derived type. Return nonzero if the new
4204 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4205 *NEXT_FIELD, unless BINFO is for an empty base class.
4206
4207 Returns the location at which the next field should be inserted. */
4208
4209 static tree *
4210 build_base_field (record_layout_info rli, tree binfo,
4211 splay_tree offsets, tree *next_field)
4212 {
4213 tree t = rli->t;
4214 tree basetype = BINFO_TYPE (binfo);
4215
4216 if (!COMPLETE_TYPE_P (basetype))
4217 /* This error is now reported in xref_tag, thus giving better
4218 location information. */
4219 return next_field;
4220
4221 /* Place the base class. */
4222 if (!is_empty_class (basetype))
4223 {
4224 tree decl;
4225
4226 /* The containing class is non-empty because it has a non-empty
4227 base class. */
4228 CLASSTYPE_EMPTY_P (t) = 0;
4229
4230 /* Create the FIELD_DECL. */
4231 decl = build_decl (input_location,
4232 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4233 DECL_ARTIFICIAL (decl) = 1;
4234 DECL_IGNORED_P (decl) = 1;
4235 DECL_FIELD_CONTEXT (decl) = t;
4236 if (CLASSTYPE_AS_BASE (basetype))
4237 {
4238 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4239 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4240 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4241 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4242 DECL_MODE (decl) = TYPE_MODE (basetype);
4243 DECL_FIELD_IS_BASE (decl) = 1;
4244
4245 /* Try to place the field. It may take more than one try if we
4246 have a hard time placing the field without putting two
4247 objects of the same type at the same address. */
4248 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4249 /* Add the new FIELD_DECL to the list of fields for T. */
4250 DECL_CHAIN (decl) = *next_field;
4251 *next_field = decl;
4252 next_field = &DECL_CHAIN (decl);
4253 }
4254 }
4255 else
4256 {
4257 tree eoc;
4258 bool atend;
4259
4260 /* On some platforms (ARM), even empty classes will not be
4261 byte-aligned. */
4262 eoc = round_up_loc (input_location,
4263 rli_size_unit_so_far (rli),
4264 CLASSTYPE_ALIGN_UNIT (basetype));
4265 atend = layout_empty_base (rli, binfo, eoc, offsets);
4266 /* A nearly-empty class "has no proper base class that is empty,
4267 not morally virtual, and at an offset other than zero." */
4268 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4269 {
4270 if (atend)
4271 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4272 /* The check above (used in G++ 3.2) is insufficient because
4273 an empty class placed at offset zero might itself have an
4274 empty base at a nonzero offset. */
4275 else if (walk_subobject_offsets (basetype,
4276 empty_base_at_nonzero_offset_p,
4277 size_zero_node,
4278 /*offsets=*/NULL,
4279 /*max_offset=*/NULL_TREE,
4280 /*vbases_p=*/true))
4281 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4282 }
4283
4284 /* We do not create a FIELD_DECL for empty base classes because
4285 it might overlap some other field. We want to be able to
4286 create CONSTRUCTORs for the class by iterating over the
4287 FIELD_DECLs, and the back end does not handle overlapping
4288 FIELD_DECLs. */
4289
4290 /* An empty virtual base causes a class to be non-empty
4291 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4292 here because that was already done when the virtual table
4293 pointer was created. */
4294 }
4295
4296 /* Record the offsets of BINFO and its base subobjects. */
4297 record_subobject_offsets (binfo,
4298 BINFO_OFFSET (binfo),
4299 offsets,
4300 /*is_data_member=*/false);
4301
4302 return next_field;
4303 }
4304
4305 /* Layout all of the non-virtual base classes. Record empty
4306 subobjects in OFFSETS. T is the most derived type. Return nonzero
4307 if the type cannot be nearly empty. The fields created
4308 corresponding to the base classes will be inserted at
4309 *NEXT_FIELD. */
4310
4311 static void
4312 build_base_fields (record_layout_info rli,
4313 splay_tree offsets, tree *next_field)
4314 {
4315 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4316 subobjects. */
4317 tree t = rli->t;
4318 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4319 int i;
4320
4321 /* The primary base class is always allocated first. */
4322 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4323 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4324 offsets, next_field);
4325
4326 /* Now allocate the rest of the bases. */
4327 for (i = 0; i < n_baseclasses; ++i)
4328 {
4329 tree base_binfo;
4330
4331 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4332
4333 /* The primary base was already allocated above, so we don't
4334 need to allocate it again here. */
4335 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4336 continue;
4337
4338 /* Virtual bases are added at the end (a primary virtual base
4339 will have already been added). */
4340 if (BINFO_VIRTUAL_P (base_binfo))
4341 continue;
4342
4343 next_field = build_base_field (rli, base_binfo,
4344 offsets, next_field);
4345 }
4346 }
4347
4348 /* Go through the TYPE_METHODS of T issuing any appropriate
4349 diagnostics, figuring out which methods override which other
4350 methods, and so forth. */
4351
4352 static void
4353 check_methods (tree t)
4354 {
4355 tree x;
4356
4357 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4358 {
4359 check_for_override (x, t);
4360 if (DECL_PURE_VIRTUAL_P (x) && (TREE_CODE (x) != FUNCTION_DECL || ! DECL_VINDEX (x)))
4361 error ("initializer specified for non-virtual method %q+D", x);
4362 /* The name of the field is the original field name
4363 Save this in auxiliary field for later overloading. */
4364 if (TREE_CODE (x) == FUNCTION_DECL && DECL_VINDEX (x))
4365 {
4366 TYPE_POLYMORPHIC_P (t) = 1;
4367 if (DECL_PURE_VIRTUAL_P (x))
4368 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4369 }
4370 /* All user-provided destructors are non-trivial.
4371 Constructors and assignment ops are handled in
4372 grok_special_member_properties. */
4373 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4374 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4375 }
4376 }
4377
4378 /* FN is a constructor or destructor. Clone the declaration to create
4379 a specialized in-charge or not-in-charge version, as indicated by
4380 NAME. */
4381
4382 static tree
4383 build_clone (tree fn, tree name)
4384 {
4385 tree parms;
4386 tree clone;
4387
4388 /* Copy the function. */
4389 clone = copy_decl (fn);
4390 /* Reset the function name. */
4391 DECL_NAME (clone) = name;
4392 /* Remember where this function came from. */
4393 DECL_ABSTRACT_ORIGIN (clone) = fn;
4394 /* Make it easy to find the CLONE given the FN. */
4395 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4396 DECL_CHAIN (fn) = clone;
4397
4398 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4399 if (TREE_CODE (clone) == TEMPLATE_DECL)
4400 {
4401 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4402 DECL_TEMPLATE_RESULT (clone) = result;
4403 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4404 DECL_TI_TEMPLATE (result) = clone;
4405 TREE_TYPE (clone) = TREE_TYPE (result);
4406 return clone;
4407 }
4408
4409 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4410 DECL_CLONED_FUNCTION (clone) = fn;
4411 /* There's no pending inline data for this function. */
4412 DECL_PENDING_INLINE_INFO (clone) = NULL;
4413 DECL_PENDING_INLINE_P (clone) = 0;
4414
4415 /* The base-class destructor is not virtual. */
4416 if (name == base_dtor_identifier)
4417 {
4418 DECL_VIRTUAL_P (clone) = 0;
4419 if (TREE_CODE (clone) != TEMPLATE_DECL)
4420 DECL_VINDEX (clone) = NULL_TREE;
4421 }
4422
4423 /* If there was an in-charge parameter, drop it from the function
4424 type. */
4425 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4426 {
4427 tree basetype;
4428 tree parmtypes;
4429 tree exceptions;
4430
4431 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4432 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4433 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4434 /* Skip the `this' parameter. */
4435 parmtypes = TREE_CHAIN (parmtypes);
4436 /* Skip the in-charge parameter. */
4437 parmtypes = TREE_CHAIN (parmtypes);
4438 /* And the VTT parm, in a complete [cd]tor. */
4439 if (DECL_HAS_VTT_PARM_P (fn)
4440 && ! DECL_NEEDS_VTT_PARM_P (clone))
4441 parmtypes = TREE_CHAIN (parmtypes);
4442 /* If this is subobject constructor or destructor, add the vtt
4443 parameter. */
4444 TREE_TYPE (clone)
4445 = build_method_type_directly (basetype,
4446 TREE_TYPE (TREE_TYPE (clone)),
4447 parmtypes);
4448 if (exceptions)
4449 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4450 exceptions);
4451 TREE_TYPE (clone)
4452 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4453 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4454 }
4455
4456 /* Copy the function parameters. */
4457 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4458 /* Remove the in-charge parameter. */
4459 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4460 {
4461 DECL_CHAIN (DECL_ARGUMENTS (clone))
4462 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4463 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4464 }
4465 /* And the VTT parm, in a complete [cd]tor. */
4466 if (DECL_HAS_VTT_PARM_P (fn))
4467 {
4468 if (DECL_NEEDS_VTT_PARM_P (clone))
4469 DECL_HAS_VTT_PARM_P (clone) = 1;
4470 else
4471 {
4472 DECL_CHAIN (DECL_ARGUMENTS (clone))
4473 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4474 DECL_HAS_VTT_PARM_P (clone) = 0;
4475 }
4476 }
4477
4478 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4479 {
4480 DECL_CONTEXT (parms) = clone;
4481 cxx_dup_lang_specific_decl (parms);
4482 }
4483
4484 /* Create the RTL for this function. */
4485 SET_DECL_RTL (clone, NULL);
4486 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4487
4488 if (pch_file)
4489 note_decl_for_pch (clone);
4490
4491 return clone;
4492 }
4493
4494 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4495 not invoke this function directly.
4496
4497 For a non-thunk function, returns the address of the slot for storing
4498 the function it is a clone of. Otherwise returns NULL_TREE.
4499
4500 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4501 cloned_function is unset. This is to support the separate
4502 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4503 on a template makes sense, but not the former. */
4504
4505 tree *
4506 decl_cloned_function_p (const_tree decl, bool just_testing)
4507 {
4508 tree *ptr;
4509 if (just_testing)
4510 decl = STRIP_TEMPLATE (decl);
4511
4512 if (TREE_CODE (decl) != FUNCTION_DECL
4513 || !DECL_LANG_SPECIFIC (decl)
4514 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4515 {
4516 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4517 if (!just_testing)
4518 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4519 else
4520 #endif
4521 return NULL;
4522 }
4523
4524 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4525 if (just_testing && *ptr == NULL_TREE)
4526 return NULL;
4527 else
4528 return ptr;
4529 }
4530
4531 /* Produce declarations for all appropriate clones of FN. If
4532 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4533 CLASTYPE_METHOD_VEC as well. */
4534
4535 void
4536 clone_function_decl (tree fn, int update_method_vec_p)
4537 {
4538 tree clone;
4539
4540 /* Avoid inappropriate cloning. */
4541 if (DECL_CHAIN (fn)
4542 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4543 return;
4544
4545 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4546 {
4547 /* For each constructor, we need two variants: an in-charge version
4548 and a not-in-charge version. */
4549 clone = build_clone (fn, complete_ctor_identifier);
4550 if (update_method_vec_p)
4551 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4552 clone = build_clone (fn, base_ctor_identifier);
4553 if (update_method_vec_p)
4554 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4555 }
4556 else
4557 {
4558 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4559
4560 /* For each destructor, we need three variants: an in-charge
4561 version, a not-in-charge version, and an in-charge deleting
4562 version. We clone the deleting version first because that
4563 means it will go second on the TYPE_METHODS list -- and that
4564 corresponds to the correct layout order in the virtual
4565 function table.
4566
4567 For a non-virtual destructor, we do not build a deleting
4568 destructor. */
4569 if (DECL_VIRTUAL_P (fn))
4570 {
4571 clone = build_clone (fn, deleting_dtor_identifier);
4572 if (update_method_vec_p)
4573 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4574 }
4575 clone = build_clone (fn, complete_dtor_identifier);
4576 if (update_method_vec_p)
4577 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4578 clone = build_clone (fn, base_dtor_identifier);
4579 if (update_method_vec_p)
4580 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4581 }
4582
4583 /* Note that this is an abstract function that is never emitted. */
4584 DECL_ABSTRACT (fn) = 1;
4585 }
4586
4587 /* DECL is an in charge constructor, which is being defined. This will
4588 have had an in class declaration, from whence clones were
4589 declared. An out-of-class definition can specify additional default
4590 arguments. As it is the clones that are involved in overload
4591 resolution, we must propagate the information from the DECL to its
4592 clones. */
4593
4594 void
4595 adjust_clone_args (tree decl)
4596 {
4597 tree clone;
4598
4599 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4600 clone = DECL_CHAIN (clone))
4601 {
4602 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4603 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4604 tree decl_parms, clone_parms;
4605
4606 clone_parms = orig_clone_parms;
4607
4608 /* Skip the 'this' parameter. */
4609 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4610 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4611
4612 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4613 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4614 if (DECL_HAS_VTT_PARM_P (decl))
4615 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4616
4617 clone_parms = orig_clone_parms;
4618 if (DECL_HAS_VTT_PARM_P (clone))
4619 clone_parms = TREE_CHAIN (clone_parms);
4620
4621 for (decl_parms = orig_decl_parms; decl_parms;
4622 decl_parms = TREE_CHAIN (decl_parms),
4623 clone_parms = TREE_CHAIN (clone_parms))
4624 {
4625 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4626 TREE_TYPE (clone_parms)));
4627
4628 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4629 {
4630 /* A default parameter has been added. Adjust the
4631 clone's parameters. */
4632 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4633 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4634 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4635 tree type;
4636
4637 clone_parms = orig_decl_parms;
4638
4639 if (DECL_HAS_VTT_PARM_P (clone))
4640 {
4641 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4642 TREE_VALUE (orig_clone_parms),
4643 clone_parms);
4644 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4645 }
4646 type = build_method_type_directly (basetype,
4647 TREE_TYPE (TREE_TYPE (clone)),
4648 clone_parms);
4649 if (exceptions)
4650 type = build_exception_variant (type, exceptions);
4651 if (attrs)
4652 type = cp_build_type_attribute_variant (type, attrs);
4653 TREE_TYPE (clone) = type;
4654
4655 clone_parms = NULL_TREE;
4656 break;
4657 }
4658 }
4659 gcc_assert (!clone_parms);
4660 }
4661 }
4662
4663 /* For each of the constructors and destructors in T, create an
4664 in-charge and not-in-charge variant. */
4665
4666 static void
4667 clone_constructors_and_destructors (tree t)
4668 {
4669 tree fns;
4670
4671 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4672 out now. */
4673 if (!CLASSTYPE_METHOD_VEC (t))
4674 return;
4675
4676 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4677 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4678 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4679 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4680 }
4681
4682 /* Deduce noexcept for a destructor DTOR. */
4683
4684 void
4685 deduce_noexcept_on_destructor (tree dtor)
4686 {
4687 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4688 {
4689 tree eh_spec = unevaluated_noexcept_spec ();
4690 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4691 }
4692 }
4693
4694 /* For each destructor in T, deduce noexcept:
4695
4696 12.4/3: A declaration of a destructor that does not have an
4697 exception-specification is implicitly considered to have the
4698 same exception-specification as an implicit declaration (15.4). */
4699
4700 static void
4701 deduce_noexcept_on_destructors (tree t)
4702 {
4703 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4704 out now. */
4705 if (!CLASSTYPE_METHOD_VEC (t))
4706 return;
4707
4708 for (tree fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4709 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4710 }
4711
4712 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4713 of TYPE for virtual functions which FNDECL overrides. Return a
4714 mask of the tm attributes found therein. */
4715
4716 static int
4717 look_for_tm_attr_overrides (tree type, tree fndecl)
4718 {
4719 tree binfo = TYPE_BINFO (type);
4720 tree base_binfo;
4721 int ix, found = 0;
4722
4723 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4724 {
4725 tree o, basetype = BINFO_TYPE (base_binfo);
4726
4727 if (!TYPE_POLYMORPHIC_P (basetype))
4728 continue;
4729
4730 o = look_for_overrides_here (basetype, fndecl);
4731 if (o)
4732 found |= tm_attr_to_mask (find_tm_attribute
4733 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4734 else
4735 found |= look_for_tm_attr_overrides (basetype, fndecl);
4736 }
4737
4738 return found;
4739 }
4740
4741 /* Subroutine of set_method_tm_attributes. Handle the checks and
4742 inheritance for one virtual method FNDECL. */
4743
4744 static void
4745 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4746 {
4747 tree tm_attr;
4748 int found, have;
4749
4750 found = look_for_tm_attr_overrides (type, fndecl);
4751
4752 /* If FNDECL doesn't actually override anything (i.e. T is the
4753 class that first declares FNDECL virtual), then we're done. */
4754 if (found == 0)
4755 return;
4756
4757 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4758 have = tm_attr_to_mask (tm_attr);
4759
4760 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4761 tm_pure must match exactly, otherwise no weakening of
4762 tm_safe > tm_callable > nothing. */
4763 /* ??? The tm_pure attribute didn't make the transition to the
4764 multivendor language spec. */
4765 if (have == TM_ATTR_PURE)
4766 {
4767 if (found != TM_ATTR_PURE)
4768 {
4769 found &= -found;
4770 goto err_override;
4771 }
4772 }
4773 /* If the overridden function is tm_pure, then FNDECL must be. */
4774 else if (found == TM_ATTR_PURE && tm_attr)
4775 goto err_override;
4776 /* Look for base class combinations that cannot be satisfied. */
4777 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4778 {
4779 found &= ~TM_ATTR_PURE;
4780 found &= -found;
4781 error_at (DECL_SOURCE_LOCATION (fndecl),
4782 "method overrides both %<transaction_pure%> and %qE methods",
4783 tm_mask_to_attr (found));
4784 }
4785 /* If FNDECL did not declare an attribute, then inherit the most
4786 restrictive one. */
4787 else if (tm_attr == NULL)
4788 {
4789 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4790 }
4791 /* Otherwise validate that we're not weaker than a function
4792 that is being overridden. */
4793 else
4794 {
4795 found &= -found;
4796 if (found <= TM_ATTR_CALLABLE && have > found)
4797 goto err_override;
4798 }
4799 return;
4800
4801 err_override:
4802 error_at (DECL_SOURCE_LOCATION (fndecl),
4803 "method declared %qE overriding %qE method",
4804 tm_attr, tm_mask_to_attr (found));
4805 }
4806
4807 /* For each of the methods in T, propagate a class-level tm attribute. */
4808
4809 static void
4810 set_method_tm_attributes (tree t)
4811 {
4812 tree class_tm_attr, fndecl;
4813
4814 /* Don't bother collecting tm attributes if transactional memory
4815 support is not enabled. */
4816 if (!flag_tm)
4817 return;
4818
4819 /* Process virtual methods first, as they inherit directly from the
4820 base virtual function and also require validation of new attributes. */
4821 if (TYPE_CONTAINS_VPTR_P (t))
4822 {
4823 tree vchain;
4824 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4825 vchain = TREE_CHAIN (vchain))
4826 {
4827 fndecl = BV_FN (vchain);
4828 if (DECL_THUNK_P (fndecl))
4829 fndecl = THUNK_TARGET (fndecl);
4830 set_one_vmethod_tm_attributes (t, fndecl);
4831 }
4832 }
4833
4834 /* If the class doesn't have an attribute, nothing more to do. */
4835 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4836 if (class_tm_attr == NULL)
4837 return;
4838
4839 /* Any method that does not yet have a tm attribute inherits
4840 the one from the class. */
4841 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4842 {
4843 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4844 apply_tm_attr (fndecl, class_tm_attr);
4845 }
4846 }
4847
4848 /* Returns true iff class T has a user-defined constructor other than
4849 the default constructor. */
4850
4851 bool
4852 type_has_user_nondefault_constructor (tree t)
4853 {
4854 tree fns;
4855
4856 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4857 return false;
4858
4859 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4860 {
4861 tree fn = OVL_CURRENT (fns);
4862 if (!DECL_ARTIFICIAL (fn)
4863 && (TREE_CODE (fn) == TEMPLATE_DECL
4864 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4865 != NULL_TREE)))
4866 return true;
4867 }
4868
4869 return false;
4870 }
4871
4872 /* Returns the defaulted constructor if T has one. Otherwise, returns
4873 NULL_TREE. */
4874
4875 tree
4876 in_class_defaulted_default_constructor (tree t)
4877 {
4878 tree fns, args;
4879
4880 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4881 return NULL_TREE;
4882
4883 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4884 {
4885 tree fn = OVL_CURRENT (fns);
4886
4887 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4888 {
4889 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4890 while (args && TREE_PURPOSE (args))
4891 args = TREE_CHAIN (args);
4892 if (!args || args == void_list_node)
4893 return fn;
4894 }
4895 }
4896
4897 return NULL_TREE;
4898 }
4899
4900 /* Returns true iff FN is a user-provided function, i.e. user-declared
4901 and not defaulted at its first declaration; or explicit, private,
4902 protected, or non-const. */
4903
4904 bool
4905 user_provided_p (tree fn)
4906 {
4907 if (TREE_CODE (fn) == TEMPLATE_DECL)
4908 return true;
4909 else
4910 return (!DECL_ARTIFICIAL (fn)
4911 && !(DECL_INITIALIZED_IN_CLASS_P (fn)
4912 && (DECL_DEFAULTED_FN (fn) || DECL_DELETED_FN (fn))));
4913 }
4914
4915 /* Returns true iff class T has a user-provided constructor. */
4916
4917 bool
4918 type_has_user_provided_constructor (tree t)
4919 {
4920 tree fns;
4921
4922 if (!CLASS_TYPE_P (t))
4923 return false;
4924
4925 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4926 return false;
4927
4928 /* This can happen in error cases; avoid crashing. */
4929 if (!CLASSTYPE_METHOD_VEC (t))
4930 return false;
4931
4932 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4933 if (user_provided_p (OVL_CURRENT (fns)))
4934 return true;
4935
4936 return false;
4937 }
4938
4939 /* Returns true iff class T has a user-provided default constructor. */
4940
4941 bool
4942 type_has_user_provided_default_constructor (tree t)
4943 {
4944 tree fns;
4945
4946 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4947 return false;
4948
4949 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4950 {
4951 tree fn = OVL_CURRENT (fns);
4952 if (TREE_CODE (fn) == FUNCTION_DECL
4953 && user_provided_p (fn)
4954 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4955 return true;
4956 }
4957
4958 return false;
4959 }
4960
4961 /* TYPE is being used as a virtual base, and has a non-trivial move
4962 assignment. Return true if this is due to there being a user-provided
4963 move assignment in TYPE or one of its subobjects; if there isn't, then
4964 multiple move assignment can't cause any harm. */
4965
4966 bool
4967 vbase_has_user_provided_move_assign (tree type)
4968 {
4969 /* Does the type itself have a user-provided move assignment operator? */
4970 for (tree fns
4971 = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR));
4972 fns; fns = OVL_NEXT (fns))
4973 {
4974 tree fn = OVL_CURRENT (fns);
4975 if (move_fn_p (fn) && user_provided_p (fn))
4976 return true;
4977 }
4978
4979 /* Do any of its bases? */
4980 tree binfo = TYPE_BINFO (type);
4981 tree base_binfo;
4982 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4983 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
4984 return true;
4985
4986 /* Or non-static data members? */
4987 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4988 {
4989 if (TREE_CODE (field) == FIELD_DECL
4990 && CLASS_TYPE_P (TREE_TYPE (field))
4991 && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
4992 return true;
4993 }
4994
4995 /* Seems not. */
4996 return false;
4997 }
4998
4999 /* If default-initialization leaves part of TYPE uninitialized, returns
5000 a DECL for the field or TYPE itself (DR 253). */
5001
5002 tree
5003 default_init_uninitialized_part (tree type)
5004 {
5005 tree t, r, binfo;
5006 int i;
5007
5008 type = strip_array_types (type);
5009 if (!CLASS_TYPE_P (type))
5010 return type;
5011 if (type_has_user_provided_default_constructor (type))
5012 return NULL_TREE;
5013 for (binfo = TYPE_BINFO (type), i = 0;
5014 BINFO_BASE_ITERATE (binfo, i, t); ++i)
5015 {
5016 r = default_init_uninitialized_part (BINFO_TYPE (t));
5017 if (r)
5018 return r;
5019 }
5020 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
5021 if (TREE_CODE (t) == FIELD_DECL
5022 && !DECL_ARTIFICIAL (t)
5023 && !DECL_INITIAL (t))
5024 {
5025 r = default_init_uninitialized_part (TREE_TYPE (t));
5026 if (r)
5027 return DECL_P (r) ? r : t;
5028 }
5029
5030 return NULL_TREE;
5031 }
5032
5033 /* Returns true iff for class T, a trivial synthesized default constructor
5034 would be constexpr. */
5035
5036 bool
5037 trivial_default_constructor_is_constexpr (tree t)
5038 {
5039 /* A defaulted trivial default constructor is constexpr
5040 if there is nothing to initialize. */
5041 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
5042 return is_really_empty_class (t);
5043 }
5044
5045 /* Returns true iff class T has a constexpr default constructor. */
5046
5047 bool
5048 type_has_constexpr_default_constructor (tree t)
5049 {
5050 tree fns;
5051
5052 if (!CLASS_TYPE_P (t))
5053 {
5054 /* The caller should have stripped an enclosing array. */
5055 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
5056 return false;
5057 }
5058 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5059 {
5060 if (!TYPE_HAS_COMPLEX_DFLT (t))
5061 return trivial_default_constructor_is_constexpr (t);
5062 /* Non-trivial, we need to check subobject constructors. */
5063 lazily_declare_fn (sfk_constructor, t);
5064 }
5065 fns = locate_ctor (t);
5066 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
5067 }
5068
5069 /* Returns true iff class TYPE has a virtual destructor. */
5070
5071 bool
5072 type_has_virtual_destructor (tree type)
5073 {
5074 tree dtor;
5075
5076 if (!CLASS_TYPE_P (type))
5077 return false;
5078
5079 gcc_assert (COMPLETE_TYPE_P (type));
5080 dtor = CLASSTYPE_DESTRUCTORS (type);
5081 return (dtor && DECL_VIRTUAL_P (dtor));
5082 }
5083
5084 /* Returns true iff class T has a move constructor. */
5085
5086 bool
5087 type_has_move_constructor (tree t)
5088 {
5089 tree fns;
5090
5091 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5092 {
5093 gcc_assert (COMPLETE_TYPE_P (t));
5094 lazily_declare_fn (sfk_move_constructor, t);
5095 }
5096
5097 if (!CLASSTYPE_METHOD_VEC (t))
5098 return false;
5099
5100 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5101 if (move_fn_p (OVL_CURRENT (fns)))
5102 return true;
5103
5104 return false;
5105 }
5106
5107 /* Returns true iff class T has a move assignment operator. */
5108
5109 bool
5110 type_has_move_assign (tree t)
5111 {
5112 tree fns;
5113
5114 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5115 {
5116 gcc_assert (COMPLETE_TYPE_P (t));
5117 lazily_declare_fn (sfk_move_assignment, t);
5118 }
5119
5120 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5121 fns; fns = OVL_NEXT (fns))
5122 if (move_fn_p (OVL_CURRENT (fns)))
5123 return true;
5124
5125 return false;
5126 }
5127
5128 /* Returns true iff class T has a move constructor that was explicitly
5129 declared in the class body. Note that this is different from
5130 "user-provided", which doesn't include functions that are defaulted in
5131 the class. */
5132
5133 bool
5134 type_has_user_declared_move_constructor (tree t)
5135 {
5136 tree fns;
5137
5138 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5139 return false;
5140
5141 if (!CLASSTYPE_METHOD_VEC (t))
5142 return false;
5143
5144 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5145 {
5146 tree fn = OVL_CURRENT (fns);
5147 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5148 return true;
5149 }
5150
5151 return false;
5152 }
5153
5154 /* Returns true iff class T has a move assignment operator that was
5155 explicitly declared in the class body. */
5156
5157 bool
5158 type_has_user_declared_move_assign (tree t)
5159 {
5160 tree fns;
5161
5162 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5163 return false;
5164
5165 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5166 fns; fns = OVL_NEXT (fns))
5167 {
5168 tree fn = OVL_CURRENT (fns);
5169 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5170 return true;
5171 }
5172
5173 return false;
5174 }
5175
5176 /* Nonzero if we need to build up a constructor call when initializing an
5177 object of this class, either because it has a user-declared constructor
5178 or because it doesn't have a default constructor (so we need to give an
5179 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5180 what you care about is whether or not an object can be produced by a
5181 constructor (e.g. so we don't set TREE_READONLY on const variables of
5182 such type); use this function when what you care about is whether or not
5183 to try to call a constructor to create an object. The latter case is
5184 the former plus some cases of constructors that cannot be called. */
5185
5186 bool
5187 type_build_ctor_call (tree t)
5188 {
5189 tree inner;
5190 if (TYPE_NEEDS_CONSTRUCTING (t))
5191 return true;
5192 inner = strip_array_types (t);
5193 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner))
5194 return false;
5195 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner))
5196 return true;
5197 if (cxx_dialect < cxx11)
5198 return false;
5199 /* A user-declared constructor might be private, and a constructor might
5200 be trivial but deleted. */
5201 for (tree fns = lookup_fnfields_slot (inner, complete_ctor_identifier);
5202 fns; fns = OVL_NEXT (fns))
5203 {
5204 tree fn = OVL_CURRENT (fns);
5205 if (!DECL_ARTIFICIAL (fn)
5206 || DECL_DELETED_FN (fn))
5207 return true;
5208 }
5209 return false;
5210 }
5211
5212 /* Like type_build_ctor_call, but for destructors. */
5213
5214 bool
5215 type_build_dtor_call (tree t)
5216 {
5217 tree inner;
5218 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5219 return true;
5220 inner = strip_array_types (t);
5221 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner)
5222 || !COMPLETE_TYPE_P (inner))
5223 return false;
5224 if (cxx_dialect < cxx11)
5225 return false;
5226 /* A user-declared destructor might be private, and a destructor might
5227 be trivial but deleted. */
5228 for (tree fns = lookup_fnfields_slot (inner, complete_dtor_identifier);
5229 fns; fns = OVL_NEXT (fns))
5230 {
5231 tree fn = OVL_CURRENT (fns);
5232 if (!DECL_ARTIFICIAL (fn)
5233 || DECL_DELETED_FN (fn))
5234 return true;
5235 }
5236 return false;
5237 }
5238
5239 /* Remove all zero-width bit-fields from T. */
5240
5241 static void
5242 remove_zero_width_bit_fields (tree t)
5243 {
5244 tree *fieldsp;
5245
5246 fieldsp = &TYPE_FIELDS (t);
5247 while (*fieldsp)
5248 {
5249 if (TREE_CODE (*fieldsp) == FIELD_DECL
5250 && DECL_C_BIT_FIELD (*fieldsp)
5251 /* We should not be confused by the fact that grokbitfield
5252 temporarily sets the width of the bit field into
5253 DECL_INITIAL (*fieldsp).
5254 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5255 to that width. */
5256 && integer_zerop (DECL_SIZE (*fieldsp)))
5257 *fieldsp = DECL_CHAIN (*fieldsp);
5258 else
5259 fieldsp = &DECL_CHAIN (*fieldsp);
5260 }
5261 }
5262
5263 /* Returns TRUE iff we need a cookie when dynamically allocating an
5264 array whose elements have the indicated class TYPE. */
5265
5266 static bool
5267 type_requires_array_cookie (tree type)
5268 {
5269 tree fns;
5270 bool has_two_argument_delete_p = false;
5271
5272 gcc_assert (CLASS_TYPE_P (type));
5273
5274 /* If there's a non-trivial destructor, we need a cookie. In order
5275 to iterate through the array calling the destructor for each
5276 element, we'll have to know how many elements there are. */
5277 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5278 return true;
5279
5280 /* If the usual deallocation function is a two-argument whose second
5281 argument is of type `size_t', then we have to pass the size of
5282 the array to the deallocation function, so we will need to store
5283 a cookie. */
5284 fns = lookup_fnfields (TYPE_BINFO (type),
5285 ansi_opname (VEC_DELETE_EXPR),
5286 /*protect=*/0);
5287 /* If there are no `operator []' members, or the lookup is
5288 ambiguous, then we don't need a cookie. */
5289 if (!fns || fns == error_mark_node)
5290 return false;
5291 /* Loop through all of the functions. */
5292 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5293 {
5294 tree fn;
5295 tree second_parm;
5296
5297 /* Select the current function. */
5298 fn = OVL_CURRENT (fns);
5299 /* See if this function is a one-argument delete function. If
5300 it is, then it will be the usual deallocation function. */
5301 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5302 if (second_parm == void_list_node)
5303 return false;
5304 /* Do not consider this function if its second argument is an
5305 ellipsis. */
5306 if (!second_parm)
5307 continue;
5308 /* Otherwise, if we have a two-argument function and the second
5309 argument is `size_t', it will be the usual deallocation
5310 function -- unless there is one-argument function, too. */
5311 if (TREE_CHAIN (second_parm) == void_list_node
5312 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5313 has_two_argument_delete_p = true;
5314 }
5315
5316 return has_two_argument_delete_p;
5317 }
5318
5319 /* Finish computing the `literal type' property of class type T.
5320
5321 At this point, we have already processed base classes and
5322 non-static data members. We need to check whether the copy
5323 constructor is trivial, the destructor is trivial, and there
5324 is a trivial default constructor or at least one constexpr
5325 constructor other than the copy constructor. */
5326
5327 static void
5328 finalize_literal_type_property (tree t)
5329 {
5330 tree fn;
5331
5332 if (cxx_dialect < cxx11
5333 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5334 CLASSTYPE_LITERAL_P (t) = false;
5335 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5336 && CLASSTYPE_NON_AGGREGATE (t)
5337 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5338 CLASSTYPE_LITERAL_P (t) = false;
5339
5340 if (!CLASSTYPE_LITERAL_P (t))
5341 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5342 if (DECL_DECLARED_CONSTEXPR_P (fn)
5343 && TREE_CODE (fn) != TEMPLATE_DECL
5344 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5345 && !DECL_CONSTRUCTOR_P (fn))
5346 {
5347 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5348 if (!DECL_GENERATED_P (fn))
5349 {
5350 error ("enclosing class of constexpr non-static member "
5351 "function %q+#D is not a literal type", fn);
5352 explain_non_literal_class (t);
5353 }
5354 }
5355 }
5356
5357 /* T is a non-literal type used in a context which requires a constant
5358 expression. Explain why it isn't literal. */
5359
5360 void
5361 explain_non_literal_class (tree t)
5362 {
5363 static hash_set<tree> *diagnosed;
5364
5365 if (!CLASS_TYPE_P (t))
5366 return;
5367 t = TYPE_MAIN_VARIANT (t);
5368
5369 if (diagnosed == NULL)
5370 diagnosed = new hash_set<tree>;
5371 if (diagnosed->add (t))
5372 /* Already explained. */
5373 return;
5374
5375 inform (0, "%q+T is not literal because:", t);
5376 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5377 inform (0, " %q+T has a non-trivial destructor", t);
5378 else if (CLASSTYPE_NON_AGGREGATE (t)
5379 && !TYPE_HAS_TRIVIAL_DFLT (t)
5380 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5381 {
5382 inform (0, " %q+T is not an aggregate, does not have a trivial "
5383 "default constructor, and has no constexpr constructor that "
5384 "is not a copy or move constructor", t);
5385 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5386 && !type_has_user_provided_default_constructor (t))
5387 {
5388 /* Note that we can't simply call locate_ctor because when the
5389 constructor is deleted it just returns NULL_TREE. */
5390 tree fns;
5391 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5392 {
5393 tree fn = OVL_CURRENT (fns);
5394 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5395
5396 parms = skip_artificial_parms_for (fn, parms);
5397
5398 if (sufficient_parms_p (parms))
5399 {
5400 if (DECL_DELETED_FN (fn))
5401 maybe_explain_implicit_delete (fn);
5402 else
5403 explain_invalid_constexpr_fn (fn);
5404 break;
5405 }
5406 }
5407 }
5408 }
5409 else
5410 {
5411 tree binfo, base_binfo, field; int i;
5412 for (binfo = TYPE_BINFO (t), i = 0;
5413 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5414 {
5415 tree basetype = TREE_TYPE (base_binfo);
5416 if (!CLASSTYPE_LITERAL_P (basetype))
5417 {
5418 inform (0, " base class %qT of %q+T is non-literal",
5419 basetype, t);
5420 explain_non_literal_class (basetype);
5421 return;
5422 }
5423 }
5424 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5425 {
5426 tree ftype;
5427 if (TREE_CODE (field) != FIELD_DECL)
5428 continue;
5429 ftype = TREE_TYPE (field);
5430 if (!literal_type_p (ftype))
5431 {
5432 inform (0, " non-static data member %q+D has "
5433 "non-literal type", field);
5434 if (CLASS_TYPE_P (ftype))
5435 explain_non_literal_class (ftype);
5436 }
5437 if (CP_TYPE_VOLATILE_P (ftype))
5438 inform (0, " non-static data member %q+D has "
5439 "volatile type", field);
5440 }
5441 }
5442 }
5443
5444 /* Check the validity of the bases and members declared in T. Add any
5445 implicitly-generated functions (like copy-constructors and
5446 assignment operators). Compute various flag bits (like
5447 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5448 level: i.e., independently of the ABI in use. */
5449
5450 static void
5451 check_bases_and_members (tree t)
5452 {
5453 /* Nonzero if the implicitly generated copy constructor should take
5454 a non-const reference argument. */
5455 int cant_have_const_ctor;
5456 /* Nonzero if the implicitly generated assignment operator
5457 should take a non-const reference argument. */
5458 int no_const_asn_ref;
5459 tree access_decls;
5460 bool saved_complex_asn_ref;
5461 bool saved_nontrivial_dtor;
5462 tree fn;
5463
5464 /* By default, we use const reference arguments and generate default
5465 constructors. */
5466 cant_have_const_ctor = 0;
5467 no_const_asn_ref = 0;
5468
5469 /* Check all the base-classes. */
5470 check_bases (t, &cant_have_const_ctor,
5471 &no_const_asn_ref);
5472
5473 /* Deduce noexcept on destructors. This needs to happen after we've set
5474 triviality flags appropriately for our bases. */
5475 if (cxx_dialect >= cxx11)
5476 deduce_noexcept_on_destructors (t);
5477
5478 /* Check all the method declarations. */
5479 check_methods (t);
5480
5481 /* Save the initial values of these flags which only indicate whether
5482 or not the class has user-provided functions. As we analyze the
5483 bases and members we can set these flags for other reasons. */
5484 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5485 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5486
5487 /* Check all the data member declarations. We cannot call
5488 check_field_decls until we have called check_bases check_methods,
5489 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5490 being set appropriately. */
5491 check_field_decls (t, &access_decls,
5492 &cant_have_const_ctor,
5493 &no_const_asn_ref);
5494
5495 /* A nearly-empty class has to be vptr-containing; a nearly empty
5496 class contains just a vptr. */
5497 if (!TYPE_CONTAINS_VPTR_P (t))
5498 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5499
5500 /* Do some bookkeeping that will guide the generation of implicitly
5501 declared member functions. */
5502 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5503 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5504 /* We need to call a constructor for this class if it has a
5505 user-provided constructor, or if the default constructor is going
5506 to initialize the vptr. (This is not an if-and-only-if;
5507 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5508 themselves need constructing.) */
5509 TYPE_NEEDS_CONSTRUCTING (t)
5510 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5511 /* [dcl.init.aggr]
5512
5513 An aggregate is an array or a class with no user-provided
5514 constructors ... and no virtual functions.
5515
5516 Again, other conditions for being an aggregate are checked
5517 elsewhere. */
5518 CLASSTYPE_NON_AGGREGATE (t)
5519 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5520 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5521 retain the old definition internally for ABI reasons. */
5522 CLASSTYPE_NON_LAYOUT_POD_P (t)
5523 |= (CLASSTYPE_NON_AGGREGATE (t)
5524 || saved_nontrivial_dtor || saved_complex_asn_ref);
5525 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5526 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5527 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5528 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5529
5530 /* Warn if a public base of a polymorphic type has an accessible
5531 non-virtual destructor. It is only now that we know the class is
5532 polymorphic. Although a polymorphic base will have a already
5533 been diagnosed during its definition, we warn on use too. */
5534 if (TYPE_POLYMORPHIC_P (t) && warn_nonvdtor)
5535 {
5536 tree binfo = TYPE_BINFO (t);
5537 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
5538 tree base_binfo;
5539 unsigned i;
5540
5541 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5542 {
5543 tree basetype = TREE_TYPE (base_binfo);
5544
5545 if ((*accesses)[i] == access_public_node
5546 && (TYPE_POLYMORPHIC_P (basetype) || warn_ecpp)
5547 && accessible_nvdtor_p (basetype))
5548 warning (OPT_Wnon_virtual_dtor,
5549 "base class %q#T has accessible non-virtual destructor",
5550 basetype);
5551 }
5552 }
5553
5554 /* If the class has no user-declared constructor, but does have
5555 non-static const or reference data members that can never be
5556 initialized, issue a warning. */
5557 if (warn_uninitialized
5558 /* Classes with user-declared constructors are presumed to
5559 initialize these members. */
5560 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5561 /* Aggregates can be initialized with brace-enclosed
5562 initializers. */
5563 && CLASSTYPE_NON_AGGREGATE (t))
5564 {
5565 tree field;
5566
5567 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5568 {
5569 tree type;
5570
5571 if (TREE_CODE (field) != FIELD_DECL
5572 || DECL_INITIAL (field) != NULL_TREE)
5573 continue;
5574
5575 type = TREE_TYPE (field);
5576 if (TREE_CODE (type) == REFERENCE_TYPE)
5577 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5578 "in class without a constructor", field);
5579 else if (CP_TYPE_CONST_P (type)
5580 && (!CLASS_TYPE_P (type)
5581 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5582 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5583 "in class without a constructor", field);
5584 }
5585 }
5586
5587 /* Synthesize any needed methods. */
5588 add_implicitly_declared_members (t, &access_decls,
5589 cant_have_const_ctor,
5590 no_const_asn_ref);
5591
5592 /* Check defaulted declarations here so we have cant_have_const_ctor
5593 and don't need to worry about clones. */
5594 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5595 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5596 {
5597 int copy = copy_fn_p (fn);
5598 if (copy > 0)
5599 {
5600 bool imp_const_p
5601 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5602 : !no_const_asn_ref);
5603 bool fn_const_p = (copy == 2);
5604
5605 if (fn_const_p && !imp_const_p)
5606 /* If the function is defaulted outside the class, we just
5607 give the synthesis error. */
5608 error ("%q+D declared to take const reference, but implicit "
5609 "declaration would take non-const", fn);
5610 }
5611 defaulted_late_check (fn);
5612 }
5613
5614 if (LAMBDA_TYPE_P (t))
5615 {
5616 /* "The closure type associated with a lambda-expression has a deleted
5617 default constructor and a deleted copy assignment operator." */
5618 TYPE_NEEDS_CONSTRUCTING (t) = 1;
5619 TYPE_HAS_COMPLEX_DFLT (t) = 1;
5620 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
5621 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
5622
5623 /* "This class type is not an aggregate." */
5624 CLASSTYPE_NON_AGGREGATE (t) = 1;
5625 }
5626
5627 /* Compute the 'literal type' property before we
5628 do anything with non-static member functions. */
5629 finalize_literal_type_property (t);
5630
5631 /* Create the in-charge and not-in-charge variants of constructors
5632 and destructors. */
5633 clone_constructors_and_destructors (t);
5634
5635 /* Process the using-declarations. */
5636 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5637 handle_using_decl (TREE_VALUE (access_decls), t);
5638
5639 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5640 finish_struct_methods (t);
5641
5642 /* Figure out whether or not we will need a cookie when dynamically
5643 allocating an array of this type. */
5644 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5645 = type_requires_array_cookie (t);
5646 }
5647
5648 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5649 accordingly. If a new vfield was created (because T doesn't have a
5650 primary base class), then the newly created field is returned. It
5651 is not added to the TYPE_FIELDS list; it is the caller's
5652 responsibility to do that. Accumulate declared virtual functions
5653 on VIRTUALS_P. */
5654
5655 static tree
5656 create_vtable_ptr (tree t, tree* virtuals_p)
5657 {
5658 tree fn;
5659
5660 /* Collect the virtual functions declared in T. */
5661 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5662 if (TREE_CODE (fn) == FUNCTION_DECL
5663 && DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5664 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5665 {
5666 tree new_virtual = make_node (TREE_LIST);
5667
5668 BV_FN (new_virtual) = fn;
5669 BV_DELTA (new_virtual) = integer_zero_node;
5670 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5671
5672 TREE_CHAIN (new_virtual) = *virtuals_p;
5673 *virtuals_p = new_virtual;
5674 }
5675
5676 /* If we couldn't find an appropriate base class, create a new field
5677 here. Even if there weren't any new virtual functions, we might need a
5678 new virtual function table if we're supposed to include vptrs in
5679 all classes that need them. */
5680 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5681 {
5682 /* We build this decl with vtbl_ptr_type_node, which is a
5683 `vtable_entry_type*'. It might seem more precise to use
5684 `vtable_entry_type (*)[N]' where N is the number of virtual
5685 functions. However, that would require the vtable pointer in
5686 base classes to have a different type than the vtable pointer
5687 in derived classes. We could make that happen, but that
5688 still wouldn't solve all the problems. In particular, the
5689 type-based alias analysis code would decide that assignments
5690 to the base class vtable pointer can't alias assignments to
5691 the derived class vtable pointer, since they have different
5692 types. Thus, in a derived class destructor, where the base
5693 class constructor was inlined, we could generate bad code for
5694 setting up the vtable pointer.
5695
5696 Therefore, we use one type for all vtable pointers. We still
5697 use a type-correct type; it's just doesn't indicate the array
5698 bounds. That's better than using `void*' or some such; it's
5699 cleaner, and it let's the alias analysis code know that these
5700 stores cannot alias stores to void*! */
5701 tree field;
5702
5703 field = build_decl (input_location,
5704 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5705 DECL_VIRTUAL_P (field) = 1;
5706 DECL_ARTIFICIAL (field) = 1;
5707 DECL_FIELD_CONTEXT (field) = t;
5708 DECL_FCONTEXT (field) = t;
5709 if (TYPE_PACKED (t))
5710 DECL_PACKED (field) = 1;
5711
5712 TYPE_VFIELD (t) = field;
5713
5714 /* This class is non-empty. */
5715 CLASSTYPE_EMPTY_P (t) = 0;
5716
5717 return field;
5718 }
5719
5720 return NULL_TREE;
5721 }
5722
5723 /* Add OFFSET to all base types of BINFO which is a base in the
5724 hierarchy dominated by T.
5725
5726 OFFSET, which is a type offset, is number of bytes. */
5727
5728 static void
5729 propagate_binfo_offsets (tree binfo, tree offset)
5730 {
5731 int i;
5732 tree primary_binfo;
5733 tree base_binfo;
5734
5735 /* Update BINFO's offset. */
5736 BINFO_OFFSET (binfo)
5737 = convert (sizetype,
5738 size_binop (PLUS_EXPR,
5739 convert (ssizetype, BINFO_OFFSET (binfo)),
5740 offset));
5741
5742 /* Find the primary base class. */
5743 primary_binfo = get_primary_binfo (binfo);
5744
5745 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5746 propagate_binfo_offsets (primary_binfo, offset);
5747
5748 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5749 downwards. */
5750 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5751 {
5752 /* Don't do the primary base twice. */
5753 if (base_binfo == primary_binfo)
5754 continue;
5755
5756 if (BINFO_VIRTUAL_P (base_binfo))
5757 continue;
5758
5759 propagate_binfo_offsets (base_binfo, offset);
5760 }
5761 }
5762
5763 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5764 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5765 empty subobjects of T. */
5766
5767 static void
5768 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5769 {
5770 tree vbase;
5771 tree t = rli->t;
5772 tree *next_field;
5773
5774 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5775 return;
5776
5777 /* Find the last field. The artificial fields created for virtual
5778 bases will go after the last extant field to date. */
5779 next_field = &TYPE_FIELDS (t);
5780 while (*next_field)
5781 next_field = &DECL_CHAIN (*next_field);
5782
5783 /* Go through the virtual bases, allocating space for each virtual
5784 base that is not already a primary base class. These are
5785 allocated in inheritance graph order. */
5786 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5787 {
5788 if (!BINFO_VIRTUAL_P (vbase))
5789 continue;
5790
5791 if (!BINFO_PRIMARY_P (vbase))
5792 {
5793 /* This virtual base is not a primary base of any class in the
5794 hierarchy, so we have to add space for it. */
5795 next_field = build_base_field (rli, vbase,
5796 offsets, next_field);
5797 }
5798 }
5799 }
5800
5801 /* Returns the offset of the byte just past the end of the base class
5802 BINFO. */
5803
5804 static tree
5805 end_of_base (tree binfo)
5806 {
5807 tree size;
5808
5809 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5810 size = TYPE_SIZE_UNIT (char_type_node);
5811 else if (is_empty_class (BINFO_TYPE (binfo)))
5812 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5813 allocate some space for it. It cannot have virtual bases, so
5814 TYPE_SIZE_UNIT is fine. */
5815 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5816 else
5817 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5818
5819 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5820 }
5821
5822 /* Returns the offset of the byte just past the end of the base class
5823 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5824 only non-virtual bases are included. */
5825
5826 static tree
5827 end_of_class (tree t, int include_virtuals_p)
5828 {
5829 tree result = size_zero_node;
5830 vec<tree, va_gc> *vbases;
5831 tree binfo;
5832 tree base_binfo;
5833 tree offset;
5834 int i;
5835
5836 for (binfo = TYPE_BINFO (t), i = 0;
5837 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5838 {
5839 if (!include_virtuals_p
5840 && BINFO_VIRTUAL_P (base_binfo)
5841 && (!BINFO_PRIMARY_P (base_binfo)
5842 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5843 continue;
5844
5845 offset = end_of_base (base_binfo);
5846 if (tree_int_cst_lt (result, offset))
5847 result = offset;
5848 }
5849
5850 if (include_virtuals_p)
5851 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5852 vec_safe_iterate (vbases, i, &base_binfo); i++)
5853 {
5854 offset = end_of_base (base_binfo);
5855 if (tree_int_cst_lt (result, offset))
5856 result = offset;
5857 }
5858
5859 return result;
5860 }
5861
5862 /* Warn about bases of T that are inaccessible because they are
5863 ambiguous. For example:
5864
5865 struct S {};
5866 struct T : public S {};
5867 struct U : public S, public T {};
5868
5869 Here, `(S*) new U' is not allowed because there are two `S'
5870 subobjects of U. */
5871
5872 static void
5873 warn_about_ambiguous_bases (tree t)
5874 {
5875 int i;
5876 vec<tree, va_gc> *vbases;
5877 tree basetype;
5878 tree binfo;
5879 tree base_binfo;
5880
5881 /* If there are no repeated bases, nothing can be ambiguous. */
5882 if (!CLASSTYPE_REPEATED_BASE_P (t))
5883 return;
5884
5885 /* Check direct bases. */
5886 for (binfo = TYPE_BINFO (t), i = 0;
5887 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5888 {
5889 basetype = BINFO_TYPE (base_binfo);
5890
5891 if (!uniquely_derived_from_p (basetype, t))
5892 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5893 basetype, t);
5894 }
5895
5896 /* Check for ambiguous virtual bases. */
5897 if (extra_warnings)
5898 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5899 vec_safe_iterate (vbases, i, &binfo); i++)
5900 {
5901 basetype = BINFO_TYPE (binfo);
5902
5903 if (!uniquely_derived_from_p (basetype, t))
5904 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5905 "to ambiguity", basetype, t);
5906 }
5907 }
5908
5909 /* Compare two INTEGER_CSTs K1 and K2. */
5910
5911 static int
5912 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5913 {
5914 return tree_int_cst_compare ((tree) k1, (tree) k2);
5915 }
5916
5917 /* Increase the size indicated in RLI to account for empty classes
5918 that are "off the end" of the class. */
5919
5920 static void
5921 include_empty_classes (record_layout_info rli)
5922 {
5923 tree eoc;
5924 tree rli_size;
5925
5926 /* It might be the case that we grew the class to allocate a
5927 zero-sized base class. That won't be reflected in RLI, yet,
5928 because we are willing to overlay multiple bases at the same
5929 offset. However, now we need to make sure that RLI is big enough
5930 to reflect the entire class. */
5931 eoc = end_of_class (rli->t,
5932 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5933 rli_size = rli_size_unit_so_far (rli);
5934 if (TREE_CODE (rli_size) == INTEGER_CST
5935 && tree_int_cst_lt (rli_size, eoc))
5936 {
5937 /* The size should have been rounded to a whole byte. */
5938 gcc_assert (tree_int_cst_equal
5939 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5940 rli->bitpos
5941 = size_binop (PLUS_EXPR,
5942 rli->bitpos,
5943 size_binop (MULT_EXPR,
5944 convert (bitsizetype,
5945 size_binop (MINUS_EXPR,
5946 eoc, rli_size)),
5947 bitsize_int (BITS_PER_UNIT)));
5948 normalize_rli (rli);
5949 }
5950 }
5951
5952 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5953 BINFO_OFFSETs for all of the base-classes. Position the vtable
5954 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5955
5956 static void
5957 layout_class_type (tree t, tree *virtuals_p)
5958 {
5959 tree non_static_data_members;
5960 tree field;
5961 tree vptr;
5962 record_layout_info rli;
5963 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
5964 types that appear at that offset. */
5965 splay_tree empty_base_offsets;
5966 /* True if the last field laid out was a bit-field. */
5967 bool last_field_was_bitfield = false;
5968 /* The location at which the next field should be inserted. */
5969 tree *next_field;
5970 /* T, as a base class. */
5971 tree base_t;
5972
5973 /* Keep track of the first non-static data member. */
5974 non_static_data_members = TYPE_FIELDS (t);
5975
5976 /* Start laying out the record. */
5977 rli = start_record_layout (t);
5978
5979 /* Mark all the primary bases in the hierarchy. */
5980 determine_primary_bases (t);
5981
5982 /* Create a pointer to our virtual function table. */
5983 vptr = create_vtable_ptr (t, virtuals_p);
5984
5985 /* The vptr is always the first thing in the class. */
5986 if (vptr)
5987 {
5988 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
5989 TYPE_FIELDS (t) = vptr;
5990 next_field = &DECL_CHAIN (vptr);
5991 place_field (rli, vptr);
5992 }
5993 else
5994 next_field = &TYPE_FIELDS (t);
5995
5996 /* Build FIELD_DECLs for all of the non-virtual base-types. */
5997 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5998 NULL, NULL);
5999 build_base_fields (rli, empty_base_offsets, next_field);
6000
6001 /* Layout the non-static data members. */
6002 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
6003 {
6004 tree type;
6005 tree padding;
6006
6007 /* We still pass things that aren't non-static data members to
6008 the back end, in case it wants to do something with them. */
6009 if (TREE_CODE (field) != FIELD_DECL)
6010 {
6011 place_field (rli, field);
6012 /* If the static data member has incomplete type, keep track
6013 of it so that it can be completed later. (The handling
6014 of pending statics in finish_record_layout is
6015 insufficient; consider:
6016
6017 struct S1;
6018 struct S2 { static S1 s1; };
6019
6020 At this point, finish_record_layout will be called, but
6021 S1 is still incomplete.) */
6022 if (VAR_P (field))
6023 {
6024 maybe_register_incomplete_var (field);
6025 /* The visibility of static data members is determined
6026 at their point of declaration, not their point of
6027 definition. */
6028 determine_visibility (field);
6029 }
6030 continue;
6031 }
6032
6033 type = TREE_TYPE (field);
6034 if (type == error_mark_node)
6035 continue;
6036
6037 padding = NULL_TREE;
6038
6039 /* If this field is a bit-field whose width is greater than its
6040 type, then there are some special rules for allocating
6041 it. */
6042 if (DECL_C_BIT_FIELD (field)
6043 && tree_int_cst_lt (TYPE_SIZE (type), DECL_SIZE (field)))
6044 {
6045 unsigned int itk;
6046 tree integer_type;
6047 bool was_unnamed_p = false;
6048 /* We must allocate the bits as if suitably aligned for the
6049 longest integer type that fits in this many bits. type
6050 of the field. Then, we are supposed to use the left over
6051 bits as additional padding. */
6052 for (itk = itk_char; itk != itk_none; ++itk)
6053 if (integer_types[itk] != NULL_TREE
6054 && (tree_int_cst_lt (size_int (MAX_FIXED_MODE_SIZE),
6055 TYPE_SIZE (integer_types[itk]))
6056 || tree_int_cst_lt (DECL_SIZE (field),
6057 TYPE_SIZE (integer_types[itk]))))
6058 break;
6059
6060 /* ITK now indicates a type that is too large for the
6061 field. We have to back up by one to find the largest
6062 type that fits. */
6063 do
6064 {
6065 --itk;
6066 integer_type = integer_types[itk];
6067 } while (itk > 0 && integer_type == NULL_TREE);
6068
6069 /* Figure out how much additional padding is required. */
6070 if (tree_int_cst_lt (TYPE_SIZE (integer_type), DECL_SIZE (field)))
6071 {
6072 if (TREE_CODE (t) == UNION_TYPE)
6073 /* In a union, the padding field must have the full width
6074 of the bit-field; all fields start at offset zero. */
6075 padding = DECL_SIZE (field);
6076 else
6077 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
6078 TYPE_SIZE (integer_type));
6079 }
6080 #ifdef PCC_BITFIELD_TYPE_MATTERS
6081 /* An unnamed bitfield does not normally affect the
6082 alignment of the containing class on a target where
6083 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
6084 make any exceptions for unnamed bitfields when the
6085 bitfields are longer than their types. Therefore, we
6086 temporarily give the field a name. */
6087 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
6088 {
6089 was_unnamed_p = true;
6090 DECL_NAME (field) = make_anon_name ();
6091 }
6092 #endif
6093 DECL_SIZE (field) = TYPE_SIZE (integer_type);
6094 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
6095 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
6096 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6097 empty_base_offsets);
6098 if (was_unnamed_p)
6099 DECL_NAME (field) = NULL_TREE;
6100 /* Now that layout has been performed, set the size of the
6101 field to the size of its declared type; the rest of the
6102 field is effectively invisible. */
6103 DECL_SIZE (field) = TYPE_SIZE (type);
6104 /* We must also reset the DECL_MODE of the field. */
6105 DECL_MODE (field) = TYPE_MODE (type);
6106 }
6107 else
6108 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6109 empty_base_offsets);
6110
6111 /* Remember the location of any empty classes in FIELD. */
6112 record_subobject_offsets (TREE_TYPE (field),
6113 byte_position(field),
6114 empty_base_offsets,
6115 /*is_data_member=*/true);
6116
6117 /* If a bit-field does not immediately follow another bit-field,
6118 and yet it starts in the middle of a byte, we have failed to
6119 comply with the ABI. */
6120 if (warn_abi
6121 && DECL_C_BIT_FIELD (field)
6122 /* The TREE_NO_WARNING flag gets set by Objective-C when
6123 laying out an Objective-C class. The ObjC ABI differs
6124 from the C++ ABI, and so we do not want a warning
6125 here. */
6126 && !TREE_NO_WARNING (field)
6127 && !last_field_was_bitfield
6128 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6129 DECL_FIELD_BIT_OFFSET (field),
6130 bitsize_unit_node)))
6131 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
6132 "change in a future version of GCC", field);
6133
6134 /* The middle end uses the type of expressions to determine the
6135 possible range of expression values. In order to optimize
6136 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6137 must be made aware of the width of "i", via its type.
6138
6139 Because C++ does not have integer types of arbitrary width,
6140 we must (for the purposes of the front end) convert from the
6141 type assigned here to the declared type of the bitfield
6142 whenever a bitfield expression is used as an rvalue.
6143 Similarly, when assigning a value to a bitfield, the value
6144 must be converted to the type given the bitfield here. */
6145 if (DECL_C_BIT_FIELD (field))
6146 {
6147 unsigned HOST_WIDE_INT width;
6148 tree ftype = TREE_TYPE (field);
6149 width = tree_to_uhwi (DECL_SIZE (field));
6150 if (width != TYPE_PRECISION (ftype))
6151 {
6152 TREE_TYPE (field)
6153 = c_build_bitfield_integer_type (width,
6154 TYPE_UNSIGNED (ftype));
6155 TREE_TYPE (field)
6156 = cp_build_qualified_type (TREE_TYPE (field),
6157 cp_type_quals (ftype));
6158 }
6159 }
6160
6161 /* If we needed additional padding after this field, add it
6162 now. */
6163 if (padding)
6164 {
6165 tree padding_field;
6166
6167 padding_field = build_decl (input_location,
6168 FIELD_DECL,
6169 NULL_TREE,
6170 char_type_node);
6171 DECL_BIT_FIELD (padding_field) = 1;
6172 DECL_SIZE (padding_field) = padding;
6173 DECL_CONTEXT (padding_field) = t;
6174 DECL_ARTIFICIAL (padding_field) = 1;
6175 DECL_IGNORED_P (padding_field) = 1;
6176 layout_nonempty_base_or_field (rli, padding_field,
6177 NULL_TREE,
6178 empty_base_offsets);
6179 }
6180
6181 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6182 }
6183
6184 if (!integer_zerop (rli->bitpos))
6185 {
6186 /* Make sure that we are on a byte boundary so that the size of
6187 the class without virtual bases will always be a round number
6188 of bytes. */
6189 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6190 normalize_rli (rli);
6191 }
6192
6193 /* Delete all zero-width bit-fields from the list of fields. Now
6194 that the type is laid out they are no longer important. */
6195 remove_zero_width_bit_fields (t);
6196
6197 /* Create the version of T used for virtual bases. We do not use
6198 make_class_type for this version; this is an artificial type. For
6199 a POD type, we just reuse T. */
6200 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6201 {
6202 base_t = make_node (TREE_CODE (t));
6203
6204 /* Set the size and alignment for the new type. */
6205 tree eoc;
6206
6207 /* If the ABI version is not at least two, and the last
6208 field was a bit-field, RLI may not be on a byte
6209 boundary. In particular, rli_size_unit_so_far might
6210 indicate the last complete byte, while rli_size_so_far
6211 indicates the total number of bits used. Therefore,
6212 rli_size_so_far, rather than rli_size_unit_so_far, is
6213 used to compute TYPE_SIZE_UNIT. */
6214 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6215 TYPE_SIZE_UNIT (base_t)
6216 = size_binop (MAX_EXPR,
6217 convert (sizetype,
6218 size_binop (CEIL_DIV_EXPR,
6219 rli_size_so_far (rli),
6220 bitsize_int (BITS_PER_UNIT))),
6221 eoc);
6222 TYPE_SIZE (base_t)
6223 = size_binop (MAX_EXPR,
6224 rli_size_so_far (rli),
6225 size_binop (MULT_EXPR,
6226 convert (bitsizetype, eoc),
6227 bitsize_int (BITS_PER_UNIT)));
6228 TYPE_ALIGN (base_t) = rli->record_align;
6229 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6230
6231 /* Copy the fields from T. */
6232 next_field = &TYPE_FIELDS (base_t);
6233 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6234 if (TREE_CODE (field) == FIELD_DECL)
6235 {
6236 *next_field = build_decl (input_location,
6237 FIELD_DECL,
6238 DECL_NAME (field),
6239 TREE_TYPE (field));
6240 DECL_CONTEXT (*next_field) = base_t;
6241 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6242 DECL_FIELD_BIT_OFFSET (*next_field)
6243 = DECL_FIELD_BIT_OFFSET (field);
6244 DECL_SIZE (*next_field) = DECL_SIZE (field);
6245 DECL_MODE (*next_field) = DECL_MODE (field);
6246 next_field = &DECL_CHAIN (*next_field);
6247 }
6248
6249 /* Record the base version of the type. */
6250 CLASSTYPE_AS_BASE (t) = base_t;
6251 TYPE_CONTEXT (base_t) = t;
6252 }
6253 else
6254 CLASSTYPE_AS_BASE (t) = t;
6255
6256 /* Every empty class contains an empty class. */
6257 if (CLASSTYPE_EMPTY_P (t))
6258 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6259
6260 /* Set the TYPE_DECL for this type to contain the right
6261 value for DECL_OFFSET, so that we can use it as part
6262 of a COMPONENT_REF for multiple inheritance. */
6263 layout_decl (TYPE_MAIN_DECL (t), 0);
6264
6265 /* Now fix up any virtual base class types that we left lying
6266 around. We must get these done before we try to lay out the
6267 virtual function table. As a side-effect, this will remove the
6268 base subobject fields. */
6269 layout_virtual_bases (rli, empty_base_offsets);
6270
6271 /* Make sure that empty classes are reflected in RLI at this
6272 point. */
6273 include_empty_classes(rli);
6274
6275 /* Make sure not to create any structures with zero size. */
6276 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6277 place_field (rli,
6278 build_decl (input_location,
6279 FIELD_DECL, NULL_TREE, char_type_node));
6280
6281 /* If this is a non-POD, declaring it packed makes a difference to how it
6282 can be used as a field; don't let finalize_record_size undo it. */
6283 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6284 rli->packed_maybe_necessary = true;
6285
6286 /* Let the back end lay out the type. */
6287 finish_record_layout (rli, /*free_p=*/true);
6288
6289 if (TYPE_SIZE_UNIT (t)
6290 && TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST
6291 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t))
6292 && !valid_constant_size_p (TYPE_SIZE_UNIT (t)))
6293 error ("type %qT is too large", t);
6294
6295 /* Warn about bases that can't be talked about due to ambiguity. */
6296 warn_about_ambiguous_bases (t);
6297
6298 /* Now that we're done with layout, give the base fields the real types. */
6299 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6300 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6301 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6302
6303 /* Clean up. */
6304 splay_tree_delete (empty_base_offsets);
6305
6306 if (CLASSTYPE_EMPTY_P (t)
6307 && tree_int_cst_lt (sizeof_biggest_empty_class,
6308 TYPE_SIZE_UNIT (t)))
6309 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6310 }
6311
6312 /* Determine the "key method" for the class type indicated by TYPE,
6313 and set CLASSTYPE_KEY_METHOD accordingly. */
6314
6315 void
6316 determine_key_method (tree type)
6317 {
6318 tree method;
6319
6320 if (TYPE_FOR_JAVA (type)
6321 || processing_template_decl
6322 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6323 || CLASSTYPE_INTERFACE_KNOWN (type))
6324 return;
6325
6326 /* The key method is the first non-pure virtual function that is not
6327 inline at the point of class definition. On some targets the
6328 key function may not be inline; those targets should not call
6329 this function until the end of the translation unit. */
6330 for (method = TYPE_METHODS (type); method != NULL_TREE;
6331 method = DECL_CHAIN (method))
6332 if (TREE_CODE (method) == FUNCTION_DECL
6333 && DECL_VINDEX (method) != NULL_TREE
6334 && ! DECL_DECLARED_INLINE_P (method)
6335 && ! DECL_PURE_VIRTUAL_P (method))
6336 {
6337 CLASSTYPE_KEY_METHOD (type) = method;
6338 break;
6339 }
6340
6341 return;
6342 }
6343
6344
6345 /* Allocate and return an instance of struct sorted_fields_type with
6346 N fields. */
6347
6348 static struct sorted_fields_type *
6349 sorted_fields_type_new (int n)
6350 {
6351 struct sorted_fields_type *sft;
6352 sft = (sorted_fields_type *) ggc_internal_alloc (sizeof (sorted_fields_type)
6353 + n * sizeof (tree));
6354 sft->len = n;
6355
6356 return sft;
6357 }
6358
6359
6360 /* Perform processing required when the definition of T (a class type)
6361 is complete. */
6362
6363 void
6364 finish_struct_1 (tree t)
6365 {
6366 tree x;
6367 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6368 tree virtuals = NULL_TREE;
6369
6370 if (COMPLETE_TYPE_P (t))
6371 {
6372 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6373 error ("redefinition of %q#T", t);
6374 popclass ();
6375 return;
6376 }
6377
6378 /* If this type was previously laid out as a forward reference,
6379 make sure we lay it out again. */
6380 TYPE_SIZE (t) = NULL_TREE;
6381 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6382
6383 /* Make assumptions about the class; we'll reset the flags if
6384 necessary. */
6385 CLASSTYPE_EMPTY_P (t) = 1;
6386 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6387 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6388 CLASSTYPE_LITERAL_P (t) = true;
6389
6390 /* Do end-of-class semantic processing: checking the validity of the
6391 bases and members and add implicitly generated methods. */
6392 check_bases_and_members (t);
6393
6394 /* Find the key method. */
6395 if (TYPE_CONTAINS_VPTR_P (t))
6396 {
6397 /* The Itanium C++ ABI permits the key method to be chosen when
6398 the class is defined -- even though the key method so
6399 selected may later turn out to be an inline function. On
6400 some systems (such as ARM Symbian OS) the key method cannot
6401 be determined until the end of the translation unit. On such
6402 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6403 will cause the class to be added to KEYED_CLASSES. Then, in
6404 finish_file we will determine the key method. */
6405 if (targetm.cxx.key_method_may_be_inline ())
6406 determine_key_method (t);
6407
6408 /* If a polymorphic class has no key method, we may emit the vtable
6409 in every translation unit where the class definition appears. If
6410 we're devirtualizing, we can look into the vtable even if we
6411 aren't emitting it. */
6412 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6413 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6414 }
6415
6416 /* Layout the class itself. */
6417 layout_class_type (t, &virtuals);
6418 if (CLASSTYPE_AS_BASE (t) != t)
6419 /* We use the base type for trivial assignments, and hence it
6420 needs a mode. */
6421 compute_record_mode (CLASSTYPE_AS_BASE (t));
6422
6423 virtuals = modify_all_vtables (t, nreverse (virtuals));
6424
6425 /* If necessary, create the primary vtable for this class. */
6426 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6427 {
6428 /* We must enter these virtuals into the table. */
6429 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6430 build_primary_vtable (NULL_TREE, t);
6431 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6432 /* Here we know enough to change the type of our virtual
6433 function table, but we will wait until later this function. */
6434 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6435
6436 /* If we're warning about ABI tags, check the types of the new
6437 virtual functions. */
6438 if (warn_abi_tag)
6439 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6440 check_abi_tags (t, TREE_VALUE (v));
6441 }
6442
6443 if (TYPE_CONTAINS_VPTR_P (t))
6444 {
6445 int vindex;
6446 tree fn;
6447
6448 if (BINFO_VTABLE (TYPE_BINFO (t)))
6449 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6450 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6451 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6452
6453 /* Add entries for virtual functions introduced by this class. */
6454 BINFO_VIRTUALS (TYPE_BINFO (t))
6455 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6456
6457 /* Set DECL_VINDEX for all functions declared in this class. */
6458 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6459 fn;
6460 fn = TREE_CHAIN (fn),
6461 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6462 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6463 {
6464 tree fndecl = BV_FN (fn);
6465
6466 if (DECL_THUNK_P (fndecl))
6467 /* A thunk. We should never be calling this entry directly
6468 from this vtable -- we'd use the entry for the non
6469 thunk base function. */
6470 DECL_VINDEX (fndecl) = NULL_TREE;
6471 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6472 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6473 }
6474 }
6475
6476 finish_struct_bits (t);
6477 set_method_tm_attributes (t);
6478
6479 /* Complete the rtl for any static member objects of the type we're
6480 working on. */
6481 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6482 if (VAR_P (x) && TREE_STATIC (x)
6483 && TREE_TYPE (x) != error_mark_node
6484 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6485 DECL_MODE (x) = TYPE_MODE (t);
6486
6487 /* Done with FIELDS...now decide whether to sort these for
6488 faster lookups later.
6489
6490 We use a small number because most searches fail (succeeding
6491 ultimately as the search bores through the inheritance
6492 hierarchy), and we want this failure to occur quickly. */
6493
6494 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6495
6496 /* Complain if one of the field types requires lower visibility. */
6497 constrain_class_visibility (t);
6498
6499 /* Make the rtl for any new vtables we have created, and unmark
6500 the base types we marked. */
6501 finish_vtbls (t);
6502
6503 /* Build the VTT for T. */
6504 build_vtt (t);
6505
6506 /* This warning does not make sense for Java classes, since they
6507 cannot have destructors. */
6508 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor
6509 && TYPE_POLYMORPHIC_P (t) && accessible_nvdtor_p (t))
6510 warning (OPT_Wnon_virtual_dtor,
6511 "%q#T has virtual functions and accessible"
6512 " non-virtual destructor", t);
6513
6514 complete_vars (t);
6515
6516 if (warn_overloaded_virtual)
6517 warn_hidden (t);
6518
6519 /* Class layout, assignment of virtual table slots, etc., is now
6520 complete. Give the back end a chance to tweak the visibility of
6521 the class or perform any other required target modifications. */
6522 targetm.cxx.adjust_class_at_definition (t);
6523
6524 maybe_suppress_debug_info (t);
6525
6526 if (flag_vtable_verify)
6527 vtv_save_class_info (t);
6528
6529 dump_class_hierarchy (t);
6530
6531 /* Finish debugging output for this type. */
6532 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6533
6534 if (TYPE_TRANSPARENT_AGGR (t))
6535 {
6536 tree field = first_field (t);
6537 if (field == NULL_TREE || error_operand_p (field))
6538 {
6539 error ("type transparent %q#T does not have any fields", t);
6540 TYPE_TRANSPARENT_AGGR (t) = 0;
6541 }
6542 else if (DECL_ARTIFICIAL (field))
6543 {
6544 if (DECL_FIELD_IS_BASE (field))
6545 error ("type transparent class %qT has base classes", t);
6546 else
6547 {
6548 gcc_checking_assert (DECL_VIRTUAL_P (field));
6549 error ("type transparent class %qT has virtual functions", t);
6550 }
6551 TYPE_TRANSPARENT_AGGR (t) = 0;
6552 }
6553 else if (TYPE_MODE (t) != DECL_MODE (field))
6554 {
6555 error ("type transparent %q#T cannot be made transparent because "
6556 "the type of the first field has a different ABI from the "
6557 "class overall", t);
6558 TYPE_TRANSPARENT_AGGR (t) = 0;
6559 }
6560 }
6561 }
6562
6563 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6564 equal to THRESHOLD or greater than THRESHOLD. */
6565
6566 static void
6567 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6568 {
6569 int n_fields = count_fields (fields);
6570 if (n_fields >= threshold)
6571 {
6572 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6573 add_fields_to_record_type (fields, field_vec, 0);
6574 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6575 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6576 }
6577 }
6578
6579 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6580
6581 void
6582 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6583 {
6584 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6585 if (sorted_fields)
6586 {
6587 int i;
6588 int n_fields
6589 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6590 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6591
6592 for (i = 0; i < sorted_fields->len; ++i)
6593 field_vec->elts[i] = sorted_fields->elts[i];
6594
6595 add_enum_fields_to_record_type (enumtype, field_vec,
6596 sorted_fields->len);
6597 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6598 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6599 }
6600 }
6601
6602 /* When T was built up, the member declarations were added in reverse
6603 order. Rearrange them to declaration order. */
6604
6605 void
6606 unreverse_member_declarations (tree t)
6607 {
6608 tree next;
6609 tree prev;
6610 tree x;
6611
6612 /* The following lists are all in reverse order. Put them in
6613 declaration order now. */
6614 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6615 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6616
6617 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6618 reverse order, so we can't just use nreverse. */
6619 prev = NULL_TREE;
6620 for (x = TYPE_FIELDS (t);
6621 x && TREE_CODE (x) != TYPE_DECL;
6622 x = next)
6623 {
6624 next = DECL_CHAIN (x);
6625 DECL_CHAIN (x) = prev;
6626 prev = x;
6627 }
6628 if (prev)
6629 {
6630 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6631 if (prev)
6632 TYPE_FIELDS (t) = prev;
6633 }
6634 }
6635
6636 tree
6637 finish_struct (tree t, tree attributes)
6638 {
6639 location_t saved_loc = input_location;
6640
6641 /* Now that we've got all the field declarations, reverse everything
6642 as necessary. */
6643 unreverse_member_declarations (t);
6644
6645 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6646
6647 /* Nadger the current location so that diagnostics point to the start of
6648 the struct, not the end. */
6649 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6650
6651 if (processing_template_decl)
6652 {
6653 tree x;
6654
6655 finish_struct_methods (t);
6656 TYPE_SIZE (t) = bitsize_zero_node;
6657 TYPE_SIZE_UNIT (t) = size_zero_node;
6658
6659 /* We need to emit an error message if this type was used as a parameter
6660 and it is an abstract type, even if it is a template. We construct
6661 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6662 account and we call complete_vars with this type, which will check
6663 the PARM_DECLS. Note that while the type is being defined,
6664 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6665 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6666 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6667 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6668 if (DECL_PURE_VIRTUAL_P (x))
6669 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6670 complete_vars (t);
6671 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6672 an enclosing scope is a template class, so that this function be
6673 found by lookup_fnfields_1 when the using declaration is not
6674 instantiated yet. */
6675 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6676 if (TREE_CODE (x) == USING_DECL)
6677 {
6678 tree fn = strip_using_decl (x);
6679 if (is_overloaded_fn (fn))
6680 for (; fn; fn = OVL_NEXT (fn))
6681 add_method (t, OVL_CURRENT (fn), x);
6682 }
6683
6684 /* Remember current #pragma pack value. */
6685 TYPE_PRECISION (t) = maximum_field_alignment;
6686
6687 /* Fix up any variants we've already built. */
6688 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6689 {
6690 TYPE_SIZE (x) = TYPE_SIZE (t);
6691 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6692 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6693 TYPE_METHODS (x) = TYPE_METHODS (t);
6694 }
6695 }
6696 else
6697 finish_struct_1 (t);
6698
6699 if (is_std_init_list (t))
6700 {
6701 /* People keep complaining that the compiler crashes on an invalid
6702 definition of initializer_list, so I guess we should explicitly
6703 reject it. What the compiler internals care about is that it's a
6704 template and has a pointer field followed by an integer field. */
6705 bool ok = false;
6706 if (processing_template_decl)
6707 {
6708 tree f = next_initializable_field (TYPE_FIELDS (t));
6709 if (f && TREE_CODE (TREE_TYPE (f)) == POINTER_TYPE)
6710 {
6711 f = next_initializable_field (DECL_CHAIN (f));
6712 if (f && TREE_CODE (TREE_TYPE (f)) == INTEGER_TYPE)
6713 ok = true;
6714 }
6715 }
6716 if (!ok)
6717 fatal_error ("definition of std::initializer_list does not match "
6718 "#include <initializer_list>");
6719 }
6720
6721 input_location = saved_loc;
6722
6723 TYPE_BEING_DEFINED (t) = 0;
6724
6725 if (current_class_type)
6726 popclass ();
6727 else
6728 error ("trying to finish struct, but kicked out due to previous parse errors");
6729
6730 if (processing_template_decl && at_function_scope_p ()
6731 /* Lambdas are defined by the LAMBDA_EXPR. */
6732 && !LAMBDA_TYPE_P (t))
6733 add_stmt (build_min (TAG_DEFN, t));
6734
6735 return t;
6736 }
6737 \f
6738 /* Hash table to avoid endless recursion when handling references. */
6739 static hash_table<pointer_hash<tree_node> > *fixed_type_or_null_ref_ht;
6740
6741 /* Return the dynamic type of INSTANCE, if known.
6742 Used to determine whether the virtual function table is needed
6743 or not.
6744
6745 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6746 of our knowledge of its type. *NONNULL should be initialized
6747 before this function is called. */
6748
6749 static tree
6750 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6751 {
6752 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6753
6754 switch (TREE_CODE (instance))
6755 {
6756 case INDIRECT_REF:
6757 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6758 return NULL_TREE;
6759 else
6760 return RECUR (TREE_OPERAND (instance, 0));
6761
6762 case CALL_EXPR:
6763 /* This is a call to a constructor, hence it's never zero. */
6764 if (TREE_HAS_CONSTRUCTOR (instance))
6765 {
6766 if (nonnull)
6767 *nonnull = 1;
6768 return TREE_TYPE (instance);
6769 }
6770 return NULL_TREE;
6771
6772 case SAVE_EXPR:
6773 /* This is a call to a constructor, hence it's never zero. */
6774 if (TREE_HAS_CONSTRUCTOR (instance))
6775 {
6776 if (nonnull)
6777 *nonnull = 1;
6778 return TREE_TYPE (instance);
6779 }
6780 return RECUR (TREE_OPERAND (instance, 0));
6781
6782 case POINTER_PLUS_EXPR:
6783 case PLUS_EXPR:
6784 case MINUS_EXPR:
6785 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6786 return RECUR (TREE_OPERAND (instance, 0));
6787 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6788 /* Propagate nonnull. */
6789 return RECUR (TREE_OPERAND (instance, 0));
6790
6791 return NULL_TREE;
6792
6793 CASE_CONVERT:
6794 return RECUR (TREE_OPERAND (instance, 0));
6795
6796 case ADDR_EXPR:
6797 instance = TREE_OPERAND (instance, 0);
6798 if (nonnull)
6799 {
6800 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6801 with a real object -- given &p->f, p can still be null. */
6802 tree t = get_base_address (instance);
6803 /* ??? Probably should check DECL_WEAK here. */
6804 if (t && DECL_P (t))
6805 *nonnull = 1;
6806 }
6807 return RECUR (instance);
6808
6809 case COMPONENT_REF:
6810 /* If this component is really a base class reference, then the field
6811 itself isn't definitive. */
6812 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6813 return RECUR (TREE_OPERAND (instance, 0));
6814 return RECUR (TREE_OPERAND (instance, 1));
6815
6816 case VAR_DECL:
6817 case FIELD_DECL:
6818 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6819 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6820 {
6821 if (nonnull)
6822 *nonnull = 1;
6823 return TREE_TYPE (TREE_TYPE (instance));
6824 }
6825 /* fall through... */
6826 case TARGET_EXPR:
6827 case PARM_DECL:
6828 case RESULT_DECL:
6829 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6830 {
6831 if (nonnull)
6832 *nonnull = 1;
6833 return TREE_TYPE (instance);
6834 }
6835 else if (instance == current_class_ptr)
6836 {
6837 if (nonnull)
6838 *nonnull = 1;
6839
6840 /* if we're in a ctor or dtor, we know our type. If
6841 current_class_ptr is set but we aren't in a function, we're in
6842 an NSDMI (and therefore a constructor). */
6843 if (current_scope () != current_function_decl
6844 || (DECL_LANG_SPECIFIC (current_function_decl)
6845 && (DECL_CONSTRUCTOR_P (current_function_decl)
6846 || DECL_DESTRUCTOR_P (current_function_decl))))
6847 {
6848 if (cdtorp)
6849 *cdtorp = 1;
6850 return TREE_TYPE (TREE_TYPE (instance));
6851 }
6852 }
6853 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6854 {
6855 /* We only need one hash table because it is always left empty. */
6856 if (!fixed_type_or_null_ref_ht)
6857 fixed_type_or_null_ref_ht
6858 = new hash_table<pointer_hash<tree_node> > (37);
6859
6860 /* Reference variables should be references to objects. */
6861 if (nonnull)
6862 *nonnull = 1;
6863
6864 /* Enter the INSTANCE in a table to prevent recursion; a
6865 variable's initializer may refer to the variable
6866 itself. */
6867 if (VAR_P (instance)
6868 && DECL_INITIAL (instance)
6869 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6870 && !fixed_type_or_null_ref_ht->find (instance))
6871 {
6872 tree type;
6873 tree_node **slot;
6874
6875 slot = fixed_type_or_null_ref_ht->find_slot (instance, INSERT);
6876 *slot = instance;
6877 type = RECUR (DECL_INITIAL (instance));
6878 fixed_type_or_null_ref_ht->remove_elt (instance);
6879
6880 return type;
6881 }
6882 }
6883 return NULL_TREE;
6884
6885 default:
6886 return NULL_TREE;
6887 }
6888 #undef RECUR
6889 }
6890
6891 /* Return nonzero if the dynamic type of INSTANCE is known, and
6892 equivalent to the static type. We also handle the case where
6893 INSTANCE is really a pointer. Return negative if this is a
6894 ctor/dtor. There the dynamic type is known, but this might not be
6895 the most derived base of the original object, and hence virtual
6896 bases may not be laid out according to this type.
6897
6898 Used to determine whether the virtual function table is needed
6899 or not.
6900
6901 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6902 of our knowledge of its type. *NONNULL should be initialized
6903 before this function is called. */
6904
6905 int
6906 resolves_to_fixed_type_p (tree instance, int* nonnull)
6907 {
6908 tree t = TREE_TYPE (instance);
6909 int cdtorp = 0;
6910 tree fixed;
6911
6912 /* processing_template_decl can be false in a template if we're in
6913 fold_non_dependent_expr, but we still want to suppress this check. */
6914 if (in_template_function ())
6915 {
6916 /* In a template we only care about the type of the result. */
6917 if (nonnull)
6918 *nonnull = true;
6919 return true;
6920 }
6921
6922 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6923 if (fixed == NULL_TREE)
6924 return 0;
6925 if (POINTER_TYPE_P (t))
6926 t = TREE_TYPE (t);
6927 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6928 return 0;
6929 return cdtorp ? -1 : 1;
6930 }
6931
6932 \f
6933 void
6934 init_class_processing (void)
6935 {
6936 current_class_depth = 0;
6937 current_class_stack_size = 10;
6938 current_class_stack
6939 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6940 vec_alloc (local_classes, 8);
6941 sizeof_biggest_empty_class = size_zero_node;
6942
6943 ridpointers[(int) RID_PUBLIC] = access_public_node;
6944 ridpointers[(int) RID_PRIVATE] = access_private_node;
6945 ridpointers[(int) RID_PROTECTED] = access_protected_node;
6946 }
6947
6948 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
6949
6950 static void
6951 restore_class_cache (void)
6952 {
6953 tree type;
6954
6955 /* We are re-entering the same class we just left, so we don't
6956 have to search the whole inheritance matrix to find all the
6957 decls to bind again. Instead, we install the cached
6958 class_shadowed list and walk through it binding names. */
6959 push_binding_level (previous_class_level);
6960 class_binding_level = previous_class_level;
6961 /* Restore IDENTIFIER_TYPE_VALUE. */
6962 for (type = class_binding_level->type_shadowed;
6963 type;
6964 type = TREE_CHAIN (type))
6965 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
6966 }
6967
6968 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
6969 appropriate for TYPE.
6970
6971 So that we may avoid calls to lookup_name, we cache the _TYPE
6972 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
6973
6974 For multiple inheritance, we perform a two-pass depth-first search
6975 of the type lattice. */
6976
6977 void
6978 pushclass (tree type)
6979 {
6980 class_stack_node_t csn;
6981
6982 type = TYPE_MAIN_VARIANT (type);
6983
6984 /* Make sure there is enough room for the new entry on the stack. */
6985 if (current_class_depth + 1 >= current_class_stack_size)
6986 {
6987 current_class_stack_size *= 2;
6988 current_class_stack
6989 = XRESIZEVEC (struct class_stack_node, current_class_stack,
6990 current_class_stack_size);
6991 }
6992
6993 /* Insert a new entry on the class stack. */
6994 csn = current_class_stack + current_class_depth;
6995 csn->name = current_class_name;
6996 csn->type = current_class_type;
6997 csn->access = current_access_specifier;
6998 csn->names_used = 0;
6999 csn->hidden = 0;
7000 current_class_depth++;
7001
7002 /* Now set up the new type. */
7003 current_class_name = TYPE_NAME (type);
7004 if (TREE_CODE (current_class_name) == TYPE_DECL)
7005 current_class_name = DECL_NAME (current_class_name);
7006 current_class_type = type;
7007
7008 /* By default, things in classes are private, while things in
7009 structures or unions are public. */
7010 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
7011 ? access_private_node
7012 : access_public_node);
7013
7014 if (previous_class_level
7015 && type != previous_class_level->this_entity
7016 && current_class_depth == 1)
7017 {
7018 /* Forcibly remove any old class remnants. */
7019 invalidate_class_lookup_cache ();
7020 }
7021
7022 if (!previous_class_level
7023 || type != previous_class_level->this_entity
7024 || current_class_depth > 1)
7025 pushlevel_class ();
7026 else
7027 restore_class_cache ();
7028 }
7029
7030 /* When we exit a toplevel class scope, we save its binding level so
7031 that we can restore it quickly. Here, we've entered some other
7032 class, so we must invalidate our cache. */
7033
7034 void
7035 invalidate_class_lookup_cache (void)
7036 {
7037 previous_class_level = NULL;
7038 }
7039
7040 /* Get out of the current class scope. If we were in a class scope
7041 previously, that is the one popped to. */
7042
7043 void
7044 popclass (void)
7045 {
7046 poplevel_class ();
7047
7048 current_class_depth--;
7049 current_class_name = current_class_stack[current_class_depth].name;
7050 current_class_type = current_class_stack[current_class_depth].type;
7051 current_access_specifier = current_class_stack[current_class_depth].access;
7052 if (current_class_stack[current_class_depth].names_used)
7053 splay_tree_delete (current_class_stack[current_class_depth].names_used);
7054 }
7055
7056 /* Mark the top of the class stack as hidden. */
7057
7058 void
7059 push_class_stack (void)
7060 {
7061 if (current_class_depth)
7062 ++current_class_stack[current_class_depth - 1].hidden;
7063 }
7064
7065 /* Mark the top of the class stack as un-hidden. */
7066
7067 void
7068 pop_class_stack (void)
7069 {
7070 if (current_class_depth)
7071 --current_class_stack[current_class_depth - 1].hidden;
7072 }
7073
7074 /* Returns 1 if the class type currently being defined is either T or
7075 a nested type of T. */
7076
7077 bool
7078 currently_open_class (tree t)
7079 {
7080 int i;
7081
7082 if (!CLASS_TYPE_P (t))
7083 return false;
7084
7085 t = TYPE_MAIN_VARIANT (t);
7086
7087 /* We start looking from 1 because entry 0 is from global scope,
7088 and has no type. */
7089 for (i = current_class_depth; i > 0; --i)
7090 {
7091 tree c;
7092 if (i == current_class_depth)
7093 c = current_class_type;
7094 else
7095 {
7096 if (current_class_stack[i].hidden)
7097 break;
7098 c = current_class_stack[i].type;
7099 }
7100 if (!c)
7101 continue;
7102 if (same_type_p (c, t))
7103 return true;
7104 }
7105 return false;
7106 }
7107
7108 /* If either current_class_type or one of its enclosing classes are derived
7109 from T, return the appropriate type. Used to determine how we found
7110 something via unqualified lookup. */
7111
7112 tree
7113 currently_open_derived_class (tree t)
7114 {
7115 int i;
7116
7117 /* The bases of a dependent type are unknown. */
7118 if (dependent_type_p (t))
7119 return NULL_TREE;
7120
7121 if (!current_class_type)
7122 return NULL_TREE;
7123
7124 if (DERIVED_FROM_P (t, current_class_type))
7125 return current_class_type;
7126
7127 for (i = current_class_depth - 1; i > 0; --i)
7128 {
7129 if (current_class_stack[i].hidden)
7130 break;
7131 if (DERIVED_FROM_P (t, current_class_stack[i].type))
7132 return current_class_stack[i].type;
7133 }
7134
7135 return NULL_TREE;
7136 }
7137
7138 /* Return the outermost enclosing class type that is still open, or
7139 NULL_TREE. */
7140
7141 tree
7142 outermost_open_class (void)
7143 {
7144 if (!current_class_type)
7145 return NULL_TREE;
7146 tree r = NULL_TREE;
7147 if (TYPE_BEING_DEFINED (current_class_type))
7148 r = current_class_type;
7149 for (int i = current_class_depth - 1; i > 0; --i)
7150 {
7151 if (current_class_stack[i].hidden)
7152 break;
7153 tree t = current_class_stack[i].type;
7154 if (!TYPE_BEING_DEFINED (t))
7155 break;
7156 r = t;
7157 }
7158 return r;
7159 }
7160
7161 /* Returns the innermost class type which is not a lambda closure type. */
7162
7163 tree
7164 current_nonlambda_class_type (void)
7165 {
7166 int i;
7167
7168 /* We start looking from 1 because entry 0 is from global scope,
7169 and has no type. */
7170 for (i = current_class_depth; i > 0; --i)
7171 {
7172 tree c;
7173 if (i == current_class_depth)
7174 c = current_class_type;
7175 else
7176 {
7177 if (current_class_stack[i].hidden)
7178 break;
7179 c = current_class_stack[i].type;
7180 }
7181 if (!c)
7182 continue;
7183 if (!LAMBDA_TYPE_P (c))
7184 return c;
7185 }
7186 return NULL_TREE;
7187 }
7188
7189 /* When entering a class scope, all enclosing class scopes' names with
7190 static meaning (static variables, static functions, types and
7191 enumerators) have to be visible. This recursive function calls
7192 pushclass for all enclosing class contexts until global or a local
7193 scope is reached. TYPE is the enclosed class. */
7194
7195 void
7196 push_nested_class (tree type)
7197 {
7198 /* A namespace might be passed in error cases, like A::B:C. */
7199 if (type == NULL_TREE
7200 || !CLASS_TYPE_P (type))
7201 return;
7202
7203 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7204
7205 pushclass (type);
7206 }
7207
7208 /* Undoes a push_nested_class call. */
7209
7210 void
7211 pop_nested_class (void)
7212 {
7213 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7214
7215 popclass ();
7216 if (context && CLASS_TYPE_P (context))
7217 pop_nested_class ();
7218 }
7219
7220 /* Returns the number of extern "LANG" blocks we are nested within. */
7221
7222 int
7223 current_lang_depth (void)
7224 {
7225 return vec_safe_length (current_lang_base);
7226 }
7227
7228 /* Set global variables CURRENT_LANG_NAME to appropriate value
7229 so that behavior of name-mangling machinery is correct. */
7230
7231 void
7232 push_lang_context (tree name)
7233 {
7234 vec_safe_push (current_lang_base, current_lang_name);
7235
7236 if (name == lang_name_cplusplus)
7237 {
7238 current_lang_name = name;
7239 }
7240 else if (name == lang_name_java)
7241 {
7242 current_lang_name = name;
7243 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7244 (See record_builtin_java_type in decl.c.) However, that causes
7245 incorrect debug entries if these types are actually used.
7246 So we re-enable debug output after extern "Java". */
7247 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7248 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7249 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7250 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7251 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7252 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7253 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7254 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7255 }
7256 else if (name == lang_name_c)
7257 {
7258 current_lang_name = name;
7259 }
7260 else
7261 error ("language string %<\"%E\"%> not recognized", name);
7262 }
7263
7264 /* Get out of the current language scope. */
7265
7266 void
7267 pop_lang_context (void)
7268 {
7269 current_lang_name = current_lang_base->pop ();
7270 }
7271 \f
7272 /* Type instantiation routines. */
7273
7274 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7275 matches the TARGET_TYPE. If there is no satisfactory match, return
7276 error_mark_node, and issue an error & warning messages under
7277 control of FLAGS. Permit pointers to member function if FLAGS
7278 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7279 a template-id, and EXPLICIT_TARGS are the explicitly provided
7280 template arguments.
7281
7282 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7283 is the base path used to reference those member functions. If
7284 the address is resolved to a member function, access checks will be
7285 performed and errors issued if appropriate. */
7286
7287 static tree
7288 resolve_address_of_overloaded_function (tree target_type,
7289 tree overload,
7290 tsubst_flags_t flags,
7291 bool template_only,
7292 tree explicit_targs,
7293 tree access_path)
7294 {
7295 /* Here's what the standard says:
7296
7297 [over.over]
7298
7299 If the name is a function template, template argument deduction
7300 is done, and if the argument deduction succeeds, the deduced
7301 arguments are used to generate a single template function, which
7302 is added to the set of overloaded functions considered.
7303
7304 Non-member functions and static member functions match targets of
7305 type "pointer-to-function" or "reference-to-function." Nonstatic
7306 member functions match targets of type "pointer-to-member
7307 function;" the function type of the pointer to member is used to
7308 select the member function from the set of overloaded member
7309 functions. If a nonstatic member function is selected, the
7310 reference to the overloaded function name is required to have the
7311 form of a pointer to member as described in 5.3.1.
7312
7313 If more than one function is selected, any template functions in
7314 the set are eliminated if the set also contains a non-template
7315 function, and any given template function is eliminated if the
7316 set contains a second template function that is more specialized
7317 than the first according to the partial ordering rules 14.5.5.2.
7318 After such eliminations, if any, there shall remain exactly one
7319 selected function. */
7320
7321 int is_ptrmem = 0;
7322 /* We store the matches in a TREE_LIST rooted here. The functions
7323 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7324 interoperability with most_specialized_instantiation. */
7325 tree matches = NULL_TREE;
7326 tree fn;
7327 tree target_fn_type;
7328
7329 /* By the time we get here, we should be seeing only real
7330 pointer-to-member types, not the internal POINTER_TYPE to
7331 METHOD_TYPE representation. */
7332 gcc_assert (!TYPE_PTR_P (target_type)
7333 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7334
7335 gcc_assert (is_overloaded_fn (overload));
7336
7337 /* Check that the TARGET_TYPE is reasonable. */
7338 if (TYPE_PTRFN_P (target_type)
7339 || TYPE_REFFN_P (target_type))
7340 /* This is OK. */;
7341 else if (TYPE_PTRMEMFUNC_P (target_type))
7342 /* This is OK, too. */
7343 is_ptrmem = 1;
7344 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7345 /* This is OK, too. This comes from a conversion to reference
7346 type. */
7347 target_type = build_reference_type (target_type);
7348 else
7349 {
7350 if (flags & tf_error)
7351 error ("cannot resolve overloaded function %qD based on"
7352 " conversion to type %qT",
7353 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7354 return error_mark_node;
7355 }
7356
7357 /* Non-member functions and static member functions match targets of type
7358 "pointer-to-function" or "reference-to-function." Nonstatic member
7359 functions match targets of type "pointer-to-member-function;" the
7360 function type of the pointer to member is used to select the member
7361 function from the set of overloaded member functions.
7362
7363 So figure out the FUNCTION_TYPE that we want to match against. */
7364 target_fn_type = static_fn_type (target_type);
7365
7366 /* If we can find a non-template function that matches, we can just
7367 use it. There's no point in generating template instantiations
7368 if we're just going to throw them out anyhow. But, of course, we
7369 can only do this when we don't *need* a template function. */
7370 if (!template_only)
7371 {
7372 tree fns;
7373
7374 for (fns = overload; fns; fns = OVL_NEXT (fns))
7375 {
7376 tree fn = OVL_CURRENT (fns);
7377
7378 if (TREE_CODE (fn) == TEMPLATE_DECL)
7379 /* We're not looking for templates just yet. */
7380 continue;
7381
7382 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7383 != is_ptrmem)
7384 /* We're looking for a non-static member, and this isn't
7385 one, or vice versa. */
7386 continue;
7387
7388 /* Ignore functions which haven't been explicitly
7389 declared. */
7390 if (DECL_ANTICIPATED (fn))
7391 continue;
7392
7393 /* See if there's a match. */
7394 if (same_type_p (target_fn_type, static_fn_type (fn)))
7395 matches = tree_cons (fn, NULL_TREE, matches);
7396 }
7397 }
7398
7399 /* Now, if we've already got a match (or matches), there's no need
7400 to proceed to the template functions. But, if we don't have a
7401 match we need to look at them, too. */
7402 if (!matches)
7403 {
7404 tree target_arg_types;
7405 tree target_ret_type;
7406 tree fns;
7407 tree *args;
7408 unsigned int nargs, ia;
7409 tree arg;
7410
7411 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7412 target_ret_type = TREE_TYPE (target_fn_type);
7413
7414 nargs = list_length (target_arg_types);
7415 args = XALLOCAVEC (tree, nargs);
7416 for (arg = target_arg_types, ia = 0;
7417 arg != NULL_TREE && arg != void_list_node;
7418 arg = TREE_CHAIN (arg), ++ia)
7419 args[ia] = TREE_VALUE (arg);
7420 nargs = ia;
7421
7422 for (fns = overload; fns; fns = OVL_NEXT (fns))
7423 {
7424 tree fn = OVL_CURRENT (fns);
7425 tree instantiation;
7426 tree targs;
7427
7428 if (TREE_CODE (fn) != TEMPLATE_DECL)
7429 /* We're only looking for templates. */
7430 continue;
7431
7432 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7433 != is_ptrmem)
7434 /* We're not looking for a non-static member, and this is
7435 one, or vice versa. */
7436 continue;
7437
7438 tree ret = target_ret_type;
7439
7440 /* If the template has a deduced return type, don't expose it to
7441 template argument deduction. */
7442 if (undeduced_auto_decl (fn))
7443 ret = NULL_TREE;
7444
7445 /* Try to do argument deduction. */
7446 targs = make_tree_vec (DECL_NTPARMS (fn));
7447 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7448 nargs, ret,
7449 DEDUCE_EXACT, LOOKUP_NORMAL,
7450 false, false);
7451 if (instantiation == error_mark_node)
7452 /* Instantiation failed. */
7453 continue;
7454
7455 /* And now force instantiation to do return type deduction. */
7456 if (undeduced_auto_decl (instantiation))
7457 {
7458 ++function_depth;
7459 instantiate_decl (instantiation, /*defer*/false, /*class*/false);
7460 --function_depth;
7461
7462 require_deduced_type (instantiation);
7463 }
7464
7465 /* See if there's a match. */
7466 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7467 matches = tree_cons (instantiation, fn, matches);
7468 }
7469
7470 /* Now, remove all but the most specialized of the matches. */
7471 if (matches)
7472 {
7473 tree match = most_specialized_instantiation (matches);
7474
7475 if (match != error_mark_node)
7476 matches = tree_cons (TREE_PURPOSE (match),
7477 NULL_TREE,
7478 NULL_TREE);
7479 }
7480 }
7481
7482 /* Now we should have exactly one function in MATCHES. */
7483 if (matches == NULL_TREE)
7484 {
7485 /* There were *no* matches. */
7486 if (flags & tf_error)
7487 {
7488 error ("no matches converting function %qD to type %q#T",
7489 DECL_NAME (OVL_CURRENT (overload)),
7490 target_type);
7491
7492 print_candidates (overload);
7493 }
7494 return error_mark_node;
7495 }
7496 else if (TREE_CHAIN (matches))
7497 {
7498 /* There were too many matches. First check if they're all
7499 the same function. */
7500 tree match = NULL_TREE;
7501
7502 fn = TREE_PURPOSE (matches);
7503
7504 /* For multi-versioned functions, more than one match is just fine and
7505 decls_match will return false as they are different. */
7506 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7507 if (!decls_match (fn, TREE_PURPOSE (match))
7508 && !targetm.target_option.function_versions
7509 (fn, TREE_PURPOSE (match)))
7510 break;
7511
7512 if (match)
7513 {
7514 if (flags & tf_error)
7515 {
7516 error ("converting overloaded function %qD to type %q#T is ambiguous",
7517 DECL_NAME (OVL_FUNCTION (overload)),
7518 target_type);
7519
7520 /* Since print_candidates expects the functions in the
7521 TREE_VALUE slot, we flip them here. */
7522 for (match = matches; match; match = TREE_CHAIN (match))
7523 TREE_VALUE (match) = TREE_PURPOSE (match);
7524
7525 print_candidates (matches);
7526 }
7527
7528 return error_mark_node;
7529 }
7530 }
7531
7532 /* Good, exactly one match. Now, convert it to the correct type. */
7533 fn = TREE_PURPOSE (matches);
7534
7535 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7536 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7537 {
7538 static int explained;
7539
7540 if (!(flags & tf_error))
7541 return error_mark_node;
7542
7543 permerror (input_location, "assuming pointer to member %qD", fn);
7544 if (!explained)
7545 {
7546 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7547 explained = 1;
7548 }
7549 }
7550
7551 /* If a pointer to a function that is multi-versioned is requested, the
7552 pointer to the dispatcher function is returned instead. This works
7553 well because indirectly calling the function will dispatch the right
7554 function version at run-time. */
7555 if (DECL_FUNCTION_VERSIONED (fn))
7556 {
7557 fn = get_function_version_dispatcher (fn);
7558 if (fn == NULL)
7559 return error_mark_node;
7560 /* Mark all the versions corresponding to the dispatcher as used. */
7561 if (!(flags & tf_conv))
7562 mark_versions_used (fn);
7563 }
7564
7565 /* If we're doing overload resolution purely for the purpose of
7566 determining conversion sequences, we should not consider the
7567 function used. If this conversion sequence is selected, the
7568 function will be marked as used at this point. */
7569 if (!(flags & tf_conv))
7570 {
7571 /* Make =delete work with SFINAE. */
7572 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7573 return error_mark_node;
7574
7575 mark_used (fn);
7576 }
7577
7578 /* We could not check access to member functions when this
7579 expression was originally created since we did not know at that
7580 time to which function the expression referred. */
7581 if (DECL_FUNCTION_MEMBER_P (fn))
7582 {
7583 gcc_assert (access_path);
7584 perform_or_defer_access_check (access_path, fn, fn, flags);
7585 }
7586
7587 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7588 return cp_build_addr_expr (fn, flags);
7589 else
7590 {
7591 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7592 will mark the function as addressed, but here we must do it
7593 explicitly. */
7594 cxx_mark_addressable (fn);
7595
7596 return fn;
7597 }
7598 }
7599
7600 /* This function will instantiate the type of the expression given in
7601 RHS to match the type of LHSTYPE. If errors exist, then return
7602 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7603 we complain on errors. If we are not complaining, never modify rhs,
7604 as overload resolution wants to try many possible instantiations, in
7605 the hope that at least one will work.
7606
7607 For non-recursive calls, LHSTYPE should be a function, pointer to
7608 function, or a pointer to member function. */
7609
7610 tree
7611 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7612 {
7613 tsubst_flags_t flags_in = flags;
7614 tree access_path = NULL_TREE;
7615
7616 flags &= ~tf_ptrmem_ok;
7617
7618 if (lhstype == unknown_type_node)
7619 {
7620 if (flags & tf_error)
7621 error ("not enough type information");
7622 return error_mark_node;
7623 }
7624
7625 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7626 {
7627 tree fntype = non_reference (lhstype);
7628 if (same_type_p (fntype, TREE_TYPE (rhs)))
7629 return rhs;
7630 if (flag_ms_extensions
7631 && TYPE_PTRMEMFUNC_P (fntype)
7632 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7633 /* Microsoft allows `A::f' to be resolved to a
7634 pointer-to-member. */
7635 ;
7636 else
7637 {
7638 if (flags & tf_error)
7639 error ("cannot convert %qE from type %qT to type %qT",
7640 rhs, TREE_TYPE (rhs), fntype);
7641 return error_mark_node;
7642 }
7643 }
7644
7645 if (BASELINK_P (rhs))
7646 {
7647 access_path = BASELINK_ACCESS_BINFO (rhs);
7648 rhs = BASELINK_FUNCTIONS (rhs);
7649 }
7650
7651 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7652 deduce any type information. */
7653 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7654 {
7655 if (flags & tf_error)
7656 error ("not enough type information");
7657 return error_mark_node;
7658 }
7659
7660 /* There only a few kinds of expressions that may have a type
7661 dependent on overload resolution. */
7662 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7663 || TREE_CODE (rhs) == COMPONENT_REF
7664 || is_overloaded_fn (rhs)
7665 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7666
7667 /* This should really only be used when attempting to distinguish
7668 what sort of a pointer to function we have. For now, any
7669 arithmetic operation which is not supported on pointers
7670 is rejected as an error. */
7671
7672 switch (TREE_CODE (rhs))
7673 {
7674 case COMPONENT_REF:
7675 {
7676 tree member = TREE_OPERAND (rhs, 1);
7677
7678 member = instantiate_type (lhstype, member, flags);
7679 if (member != error_mark_node
7680 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7681 /* Do not lose object's side effects. */
7682 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7683 TREE_OPERAND (rhs, 0), member);
7684 return member;
7685 }
7686
7687 case OFFSET_REF:
7688 rhs = TREE_OPERAND (rhs, 1);
7689 if (BASELINK_P (rhs))
7690 return instantiate_type (lhstype, rhs, flags_in);
7691
7692 /* This can happen if we are forming a pointer-to-member for a
7693 member template. */
7694 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7695
7696 /* Fall through. */
7697
7698 case TEMPLATE_ID_EXPR:
7699 {
7700 tree fns = TREE_OPERAND (rhs, 0);
7701 tree args = TREE_OPERAND (rhs, 1);
7702
7703 return
7704 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7705 /*template_only=*/true,
7706 args, access_path);
7707 }
7708
7709 case OVERLOAD:
7710 case FUNCTION_DECL:
7711 return
7712 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7713 /*template_only=*/false,
7714 /*explicit_targs=*/NULL_TREE,
7715 access_path);
7716
7717 case ADDR_EXPR:
7718 {
7719 if (PTRMEM_OK_P (rhs))
7720 flags |= tf_ptrmem_ok;
7721
7722 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7723 }
7724
7725 case ERROR_MARK:
7726 return error_mark_node;
7727
7728 default:
7729 gcc_unreachable ();
7730 }
7731 return error_mark_node;
7732 }
7733 \f
7734 /* Return the name of the virtual function pointer field
7735 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7736 this may have to look back through base types to find the
7737 ultimate field name. (For single inheritance, these could
7738 all be the same name. Who knows for multiple inheritance). */
7739
7740 static tree
7741 get_vfield_name (tree type)
7742 {
7743 tree binfo, base_binfo;
7744 char *buf;
7745
7746 for (binfo = TYPE_BINFO (type);
7747 BINFO_N_BASE_BINFOS (binfo);
7748 binfo = base_binfo)
7749 {
7750 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7751
7752 if (BINFO_VIRTUAL_P (base_binfo)
7753 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7754 break;
7755 }
7756
7757 type = BINFO_TYPE (binfo);
7758 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7759 + TYPE_NAME_LENGTH (type) + 2);
7760 sprintf (buf, VFIELD_NAME_FORMAT,
7761 IDENTIFIER_POINTER (constructor_name (type)));
7762 return get_identifier (buf);
7763 }
7764
7765 void
7766 print_class_statistics (void)
7767 {
7768 if (! GATHER_STATISTICS)
7769 return;
7770
7771 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7772 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7773 if (n_vtables)
7774 {
7775 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7776 n_vtables, n_vtable_searches);
7777 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7778 n_vtable_entries, n_vtable_elems);
7779 }
7780 }
7781
7782 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7783 according to [class]:
7784 The class-name is also inserted
7785 into the scope of the class itself. For purposes of access checking,
7786 the inserted class name is treated as if it were a public member name. */
7787
7788 void
7789 build_self_reference (void)
7790 {
7791 tree name = constructor_name (current_class_type);
7792 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7793 tree saved_cas;
7794
7795 DECL_NONLOCAL (value) = 1;
7796 DECL_CONTEXT (value) = current_class_type;
7797 DECL_ARTIFICIAL (value) = 1;
7798 SET_DECL_SELF_REFERENCE_P (value);
7799 set_underlying_type (value);
7800
7801 if (processing_template_decl)
7802 value = push_template_decl (value);
7803
7804 saved_cas = current_access_specifier;
7805 current_access_specifier = access_public_node;
7806 finish_member_declaration (value);
7807 current_access_specifier = saved_cas;
7808 }
7809
7810 /* Returns 1 if TYPE contains only padding bytes. */
7811
7812 int
7813 is_empty_class (tree type)
7814 {
7815 if (type == error_mark_node)
7816 return 0;
7817
7818 if (! CLASS_TYPE_P (type))
7819 return 0;
7820
7821 return CLASSTYPE_EMPTY_P (type);
7822 }
7823
7824 /* Returns true if TYPE contains no actual data, just various
7825 possible combinations of empty classes and possibly a vptr. */
7826
7827 bool
7828 is_really_empty_class (tree type)
7829 {
7830 if (CLASS_TYPE_P (type))
7831 {
7832 tree field;
7833 tree binfo;
7834 tree base_binfo;
7835 int i;
7836
7837 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7838 out, but we'd like to be able to check this before then. */
7839 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7840 return true;
7841
7842 for (binfo = TYPE_BINFO (type), i = 0;
7843 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7844 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7845 return false;
7846 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7847 if (TREE_CODE (field) == FIELD_DECL
7848 && !DECL_ARTIFICIAL (field)
7849 && !is_really_empty_class (TREE_TYPE (field)))
7850 return false;
7851 return true;
7852 }
7853 else if (TREE_CODE (type) == ARRAY_TYPE)
7854 return is_really_empty_class (TREE_TYPE (type));
7855 return false;
7856 }
7857
7858 /* Note that NAME was looked up while the current class was being
7859 defined and that the result of that lookup was DECL. */
7860
7861 void
7862 maybe_note_name_used_in_class (tree name, tree decl)
7863 {
7864 splay_tree names_used;
7865
7866 /* If we're not defining a class, there's nothing to do. */
7867 if (!(innermost_scope_kind() == sk_class
7868 && TYPE_BEING_DEFINED (current_class_type)
7869 && !LAMBDA_TYPE_P (current_class_type)))
7870 return;
7871
7872 /* If there's already a binding for this NAME, then we don't have
7873 anything to worry about. */
7874 if (lookup_member (current_class_type, name,
7875 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7876 return;
7877
7878 if (!current_class_stack[current_class_depth - 1].names_used)
7879 current_class_stack[current_class_depth - 1].names_used
7880 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7881 names_used = current_class_stack[current_class_depth - 1].names_used;
7882
7883 splay_tree_insert (names_used,
7884 (splay_tree_key) name,
7885 (splay_tree_value) decl);
7886 }
7887
7888 /* Note that NAME was declared (as DECL) in the current class. Check
7889 to see that the declaration is valid. */
7890
7891 void
7892 note_name_declared_in_class (tree name, tree decl)
7893 {
7894 splay_tree names_used;
7895 splay_tree_node n;
7896
7897 /* Look to see if we ever used this name. */
7898 names_used
7899 = current_class_stack[current_class_depth - 1].names_used;
7900 if (!names_used)
7901 return;
7902 /* The C language allows members to be declared with a type of the same
7903 name, and the C++ standard says this diagnostic is not required. So
7904 allow it in extern "C" blocks unless predantic is specified.
7905 Allow it in all cases if -ms-extensions is specified. */
7906 if ((!pedantic && current_lang_name == lang_name_c)
7907 || flag_ms_extensions)
7908 return;
7909 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7910 if (n)
7911 {
7912 /* [basic.scope.class]
7913
7914 A name N used in a class S shall refer to the same declaration
7915 in its context and when re-evaluated in the completed scope of
7916 S. */
7917 permerror (input_location, "declaration of %q#D", decl);
7918 permerror (input_location, "changes meaning of %qD from %q+#D",
7919 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7920 }
7921 }
7922
7923 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7924 Secondary vtables are merged with primary vtables; this function
7925 will return the VAR_DECL for the primary vtable. */
7926
7927 tree
7928 get_vtbl_decl_for_binfo (tree binfo)
7929 {
7930 tree decl;
7931
7932 decl = BINFO_VTABLE (binfo);
7933 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7934 {
7935 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7936 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7937 }
7938 if (decl)
7939 gcc_assert (VAR_P (decl));
7940 return decl;
7941 }
7942
7943
7944 /* Returns the binfo for the primary base of BINFO. If the resulting
7945 BINFO is a virtual base, and it is inherited elsewhere in the
7946 hierarchy, then the returned binfo might not be the primary base of
7947 BINFO in the complete object. Check BINFO_PRIMARY_P or
7948 BINFO_LOST_PRIMARY_P to be sure. */
7949
7950 static tree
7951 get_primary_binfo (tree binfo)
7952 {
7953 tree primary_base;
7954
7955 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
7956 if (!primary_base)
7957 return NULL_TREE;
7958
7959 return copied_binfo (primary_base, binfo);
7960 }
7961
7962 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
7963
7964 static int
7965 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
7966 {
7967 if (!indented_p)
7968 fprintf (stream, "%*s", indent, "");
7969 return 1;
7970 }
7971
7972 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
7973 INDENT should be zero when called from the top level; it is
7974 incremented recursively. IGO indicates the next expected BINFO in
7975 inheritance graph ordering. */
7976
7977 static tree
7978 dump_class_hierarchy_r (FILE *stream,
7979 int flags,
7980 tree binfo,
7981 tree igo,
7982 int indent)
7983 {
7984 int indented = 0;
7985 tree base_binfo;
7986 int i;
7987
7988 indented = maybe_indent_hierarchy (stream, indent, 0);
7989 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
7990 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
7991 (HOST_WIDE_INT) (uintptr_t) binfo);
7992 if (binfo != igo)
7993 {
7994 fprintf (stream, "alternative-path\n");
7995 return igo;
7996 }
7997 igo = TREE_CHAIN (binfo);
7998
7999 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
8000 tree_to_shwi (BINFO_OFFSET (binfo)));
8001 if (is_empty_class (BINFO_TYPE (binfo)))
8002 fprintf (stream, " empty");
8003 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
8004 fprintf (stream, " nearly-empty");
8005 if (BINFO_VIRTUAL_P (binfo))
8006 fprintf (stream, " virtual");
8007 fprintf (stream, "\n");
8008
8009 indented = 0;
8010 if (BINFO_PRIMARY_P (binfo))
8011 {
8012 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8013 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
8014 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
8015 TFF_PLAIN_IDENTIFIER),
8016 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
8017 }
8018 if (BINFO_LOST_PRIMARY_P (binfo))
8019 {
8020 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8021 fprintf (stream, " lost-primary");
8022 }
8023 if (indented)
8024 fprintf (stream, "\n");
8025
8026 if (!(flags & TDF_SLIM))
8027 {
8028 int indented = 0;
8029
8030 if (BINFO_SUBVTT_INDEX (binfo))
8031 {
8032 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8033 fprintf (stream, " subvttidx=%s",
8034 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
8035 TFF_PLAIN_IDENTIFIER));
8036 }
8037 if (BINFO_VPTR_INDEX (binfo))
8038 {
8039 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8040 fprintf (stream, " vptridx=%s",
8041 expr_as_string (BINFO_VPTR_INDEX (binfo),
8042 TFF_PLAIN_IDENTIFIER));
8043 }
8044 if (BINFO_VPTR_FIELD (binfo))
8045 {
8046 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8047 fprintf (stream, " vbaseoffset=%s",
8048 expr_as_string (BINFO_VPTR_FIELD (binfo),
8049 TFF_PLAIN_IDENTIFIER));
8050 }
8051 if (BINFO_VTABLE (binfo))
8052 {
8053 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8054 fprintf (stream, " vptr=%s",
8055 expr_as_string (BINFO_VTABLE (binfo),
8056 TFF_PLAIN_IDENTIFIER));
8057 }
8058
8059 if (indented)
8060 fprintf (stream, "\n");
8061 }
8062
8063 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
8064 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
8065
8066 return igo;
8067 }
8068
8069 /* Dump the BINFO hierarchy for T. */
8070
8071 static void
8072 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
8073 {
8074 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8075 fprintf (stream, " size=%lu align=%lu\n",
8076 (unsigned long)(tree_to_shwi (TYPE_SIZE (t)) / BITS_PER_UNIT),
8077 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
8078 fprintf (stream, " base size=%lu base align=%lu\n",
8079 (unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t)))
8080 / BITS_PER_UNIT),
8081 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
8082 / BITS_PER_UNIT));
8083 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
8084 fprintf (stream, "\n");
8085 }
8086
8087 /* Debug interface to hierarchy dumping. */
8088
8089 void
8090 debug_class (tree t)
8091 {
8092 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
8093 }
8094
8095 static void
8096 dump_class_hierarchy (tree t)
8097 {
8098 int flags;
8099 FILE *stream = get_dump_info (TDI_class, &flags);
8100
8101 if (stream)
8102 {
8103 dump_class_hierarchy_1 (stream, flags, t);
8104 }
8105 }
8106
8107 static void
8108 dump_array (FILE * stream, tree decl)
8109 {
8110 tree value;
8111 unsigned HOST_WIDE_INT ix;
8112 HOST_WIDE_INT elt;
8113 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8114
8115 elt = (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))))
8116 / BITS_PER_UNIT);
8117 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8118 fprintf (stream, " %s entries",
8119 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8120 TFF_PLAIN_IDENTIFIER));
8121 fprintf (stream, "\n");
8122
8123 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8124 ix, value)
8125 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
8126 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8127 }
8128
8129 static void
8130 dump_vtable (tree t, tree binfo, tree vtable)
8131 {
8132 int flags;
8133 FILE *stream = get_dump_info (TDI_class, &flags);
8134
8135 if (!stream)
8136 return;
8137
8138 if (!(flags & TDF_SLIM))
8139 {
8140 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8141
8142 fprintf (stream, "%s for %s",
8143 ctor_vtbl_p ? "Construction vtable" : "Vtable",
8144 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8145 if (ctor_vtbl_p)
8146 {
8147 if (!BINFO_VIRTUAL_P (binfo))
8148 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8149 (HOST_WIDE_INT) (uintptr_t) binfo);
8150 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8151 }
8152 fprintf (stream, "\n");
8153 dump_array (stream, vtable);
8154 fprintf (stream, "\n");
8155 }
8156 }
8157
8158 static void
8159 dump_vtt (tree t, tree vtt)
8160 {
8161 int flags;
8162 FILE *stream = get_dump_info (TDI_class, &flags);
8163
8164 if (!stream)
8165 return;
8166
8167 if (!(flags & TDF_SLIM))
8168 {
8169 fprintf (stream, "VTT for %s\n",
8170 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8171 dump_array (stream, vtt);
8172 fprintf (stream, "\n");
8173 }
8174 }
8175
8176 /* Dump a function or thunk and its thunkees. */
8177
8178 static void
8179 dump_thunk (FILE *stream, int indent, tree thunk)
8180 {
8181 static const char spaces[] = " ";
8182 tree name = DECL_NAME (thunk);
8183 tree thunks;
8184
8185 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8186 (void *)thunk,
8187 !DECL_THUNK_P (thunk) ? "function"
8188 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8189 name ? IDENTIFIER_POINTER (name) : "<unset>");
8190 if (DECL_THUNK_P (thunk))
8191 {
8192 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8193 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8194
8195 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8196 if (!virtual_adjust)
8197 /*NOP*/;
8198 else if (DECL_THIS_THUNK_P (thunk))
8199 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8200 tree_to_shwi (virtual_adjust));
8201 else
8202 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8203 tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust)),
8204 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8205 if (THUNK_ALIAS (thunk))
8206 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8207 }
8208 fprintf (stream, "\n");
8209 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8210 dump_thunk (stream, indent + 2, thunks);
8211 }
8212
8213 /* Dump the thunks for FN. */
8214
8215 void
8216 debug_thunks (tree fn)
8217 {
8218 dump_thunk (stderr, 0, fn);
8219 }
8220
8221 /* Virtual function table initialization. */
8222
8223 /* Create all the necessary vtables for T and its base classes. */
8224
8225 static void
8226 finish_vtbls (tree t)
8227 {
8228 tree vbase;
8229 vec<constructor_elt, va_gc> *v = NULL;
8230 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8231
8232 /* We lay out the primary and secondary vtables in one contiguous
8233 vtable. The primary vtable is first, followed by the non-virtual
8234 secondary vtables in inheritance graph order. */
8235 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8236 vtable, t, &v);
8237
8238 /* Then come the virtual bases, also in inheritance graph order. */
8239 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8240 {
8241 if (!BINFO_VIRTUAL_P (vbase))
8242 continue;
8243 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8244 }
8245
8246 if (BINFO_VTABLE (TYPE_BINFO (t)))
8247 initialize_vtable (TYPE_BINFO (t), v);
8248 }
8249
8250 /* Initialize the vtable for BINFO with the INITS. */
8251
8252 static void
8253 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8254 {
8255 tree decl;
8256
8257 layout_vtable_decl (binfo, vec_safe_length (inits));
8258 decl = get_vtbl_decl_for_binfo (binfo);
8259 initialize_artificial_var (decl, inits);
8260 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8261 }
8262
8263 /* Build the VTT (virtual table table) for T.
8264 A class requires a VTT if it has virtual bases.
8265
8266 This holds
8267 1 - primary virtual pointer for complete object T
8268 2 - secondary VTTs for each direct non-virtual base of T which requires a
8269 VTT
8270 3 - secondary virtual pointers for each direct or indirect base of T which
8271 has virtual bases or is reachable via a virtual path from T.
8272 4 - secondary VTTs for each direct or indirect virtual base of T.
8273
8274 Secondary VTTs look like complete object VTTs without part 4. */
8275
8276 static void
8277 build_vtt (tree t)
8278 {
8279 tree type;
8280 tree vtt;
8281 tree index;
8282 vec<constructor_elt, va_gc> *inits;
8283
8284 /* Build up the initializers for the VTT. */
8285 inits = NULL;
8286 index = size_zero_node;
8287 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8288
8289 /* If we didn't need a VTT, we're done. */
8290 if (!inits)
8291 return;
8292
8293 /* Figure out the type of the VTT. */
8294 type = build_array_of_n_type (const_ptr_type_node,
8295 inits->length ());
8296
8297 /* Now, build the VTT object itself. */
8298 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8299 initialize_artificial_var (vtt, inits);
8300 /* Add the VTT to the vtables list. */
8301 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8302 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8303
8304 dump_vtt (t, vtt);
8305 }
8306
8307 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8308 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8309 and CHAIN the vtable pointer for this binfo after construction is
8310 complete. VALUE can also be another BINFO, in which case we recurse. */
8311
8312 static tree
8313 binfo_ctor_vtable (tree binfo)
8314 {
8315 tree vt;
8316
8317 while (1)
8318 {
8319 vt = BINFO_VTABLE (binfo);
8320 if (TREE_CODE (vt) == TREE_LIST)
8321 vt = TREE_VALUE (vt);
8322 if (TREE_CODE (vt) == TREE_BINFO)
8323 binfo = vt;
8324 else
8325 break;
8326 }
8327
8328 return vt;
8329 }
8330
8331 /* Data for secondary VTT initialization. */
8332 typedef struct secondary_vptr_vtt_init_data_s
8333 {
8334 /* Is this the primary VTT? */
8335 bool top_level_p;
8336
8337 /* Current index into the VTT. */
8338 tree index;
8339
8340 /* Vector of initializers built up. */
8341 vec<constructor_elt, va_gc> *inits;
8342
8343 /* The type being constructed by this secondary VTT. */
8344 tree type_being_constructed;
8345 } secondary_vptr_vtt_init_data;
8346
8347 /* Recursively build the VTT-initializer for BINFO (which is in the
8348 hierarchy dominated by T). INITS points to the end of the initializer
8349 list to date. INDEX is the VTT index where the next element will be
8350 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8351 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8352 for virtual bases of T. When it is not so, we build the constructor
8353 vtables for the BINFO-in-T variant. */
8354
8355 static void
8356 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8357 tree *index)
8358 {
8359 int i;
8360 tree b;
8361 tree init;
8362 secondary_vptr_vtt_init_data data;
8363 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8364
8365 /* We only need VTTs for subobjects with virtual bases. */
8366 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8367 return;
8368
8369 /* We need to use a construction vtable if this is not the primary
8370 VTT. */
8371 if (!top_level_p)
8372 {
8373 build_ctor_vtbl_group (binfo, t);
8374
8375 /* Record the offset in the VTT where this sub-VTT can be found. */
8376 BINFO_SUBVTT_INDEX (binfo) = *index;
8377 }
8378
8379 /* Add the address of the primary vtable for the complete object. */
8380 init = binfo_ctor_vtable (binfo);
8381 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8382 if (top_level_p)
8383 {
8384 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8385 BINFO_VPTR_INDEX (binfo) = *index;
8386 }
8387 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8388
8389 /* Recursively add the secondary VTTs for non-virtual bases. */
8390 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8391 if (!BINFO_VIRTUAL_P (b))
8392 build_vtt_inits (b, t, inits, index);
8393
8394 /* Add secondary virtual pointers for all subobjects of BINFO with
8395 either virtual bases or reachable along a virtual path, except
8396 subobjects that are non-virtual primary bases. */
8397 data.top_level_p = top_level_p;
8398 data.index = *index;
8399 data.inits = *inits;
8400 data.type_being_constructed = BINFO_TYPE (binfo);
8401
8402 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8403
8404 *index = data.index;
8405
8406 /* data.inits might have grown as we added secondary virtual pointers.
8407 Make sure our caller knows about the new vector. */
8408 *inits = data.inits;
8409
8410 if (top_level_p)
8411 /* Add the secondary VTTs for virtual bases in inheritance graph
8412 order. */
8413 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8414 {
8415 if (!BINFO_VIRTUAL_P (b))
8416 continue;
8417
8418 build_vtt_inits (b, t, inits, index);
8419 }
8420 else
8421 /* Remove the ctor vtables we created. */
8422 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8423 }
8424
8425 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8426 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8427
8428 static tree
8429 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8430 {
8431 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8432
8433 /* We don't care about bases that don't have vtables. */
8434 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8435 return dfs_skip_bases;
8436
8437 /* We're only interested in proper subobjects of the type being
8438 constructed. */
8439 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8440 return NULL_TREE;
8441
8442 /* We're only interested in bases with virtual bases or reachable
8443 via a virtual path from the type being constructed. */
8444 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8445 || binfo_via_virtual (binfo, data->type_being_constructed)))
8446 return dfs_skip_bases;
8447
8448 /* We're not interested in non-virtual primary bases. */
8449 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8450 return NULL_TREE;
8451
8452 /* Record the index where this secondary vptr can be found. */
8453 if (data->top_level_p)
8454 {
8455 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8456 BINFO_VPTR_INDEX (binfo) = data->index;
8457
8458 if (BINFO_VIRTUAL_P (binfo))
8459 {
8460 /* It's a primary virtual base, and this is not a
8461 construction vtable. Find the base this is primary of in
8462 the inheritance graph, and use that base's vtable
8463 now. */
8464 while (BINFO_PRIMARY_P (binfo))
8465 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8466 }
8467 }
8468
8469 /* Add the initializer for the secondary vptr itself. */
8470 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8471
8472 /* Advance the vtt index. */
8473 data->index = size_binop (PLUS_EXPR, data->index,
8474 TYPE_SIZE_UNIT (ptr_type_node));
8475
8476 return NULL_TREE;
8477 }
8478
8479 /* Called from build_vtt_inits via dfs_walk. After building
8480 constructor vtables and generating the sub-vtt from them, we need
8481 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8482 binfo of the base whose sub vtt was generated. */
8483
8484 static tree
8485 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8486 {
8487 tree vtable = BINFO_VTABLE (binfo);
8488
8489 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8490 /* If this class has no vtable, none of its bases do. */
8491 return dfs_skip_bases;
8492
8493 if (!vtable)
8494 /* This might be a primary base, so have no vtable in this
8495 hierarchy. */
8496 return NULL_TREE;
8497
8498 /* If we scribbled the construction vtable vptr into BINFO, clear it
8499 out now. */
8500 if (TREE_CODE (vtable) == TREE_LIST
8501 && (TREE_PURPOSE (vtable) == (tree) data))
8502 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8503
8504 return NULL_TREE;
8505 }
8506
8507 /* Build the construction vtable group for BINFO which is in the
8508 hierarchy dominated by T. */
8509
8510 static void
8511 build_ctor_vtbl_group (tree binfo, tree t)
8512 {
8513 tree type;
8514 tree vtbl;
8515 tree id;
8516 tree vbase;
8517 vec<constructor_elt, va_gc> *v;
8518
8519 /* See if we've already created this construction vtable group. */
8520 id = mangle_ctor_vtbl_for_type (t, binfo);
8521 if (IDENTIFIER_GLOBAL_VALUE (id))
8522 return;
8523
8524 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8525 /* Build a version of VTBL (with the wrong type) for use in
8526 constructing the addresses of secondary vtables in the
8527 construction vtable group. */
8528 vtbl = build_vtable (t, id, ptr_type_node);
8529 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8530 /* Don't export construction vtables from shared libraries. Even on
8531 targets that don't support hidden visibility, this tells
8532 can_refer_decl_in_current_unit_p not to assume that it's safe to
8533 access from a different compilation unit (bz 54314). */
8534 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8535 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8536
8537 v = NULL;
8538 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8539 binfo, vtbl, t, &v);
8540
8541 /* Add the vtables for each of our virtual bases using the vbase in T
8542 binfo. */
8543 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8544 vbase;
8545 vbase = TREE_CHAIN (vbase))
8546 {
8547 tree b;
8548
8549 if (!BINFO_VIRTUAL_P (vbase))
8550 continue;
8551 b = copied_binfo (vbase, binfo);
8552
8553 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8554 }
8555
8556 /* Figure out the type of the construction vtable. */
8557 type = build_array_of_n_type (vtable_entry_type, v->length ());
8558 layout_type (type);
8559 TREE_TYPE (vtbl) = type;
8560 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8561 layout_decl (vtbl, 0);
8562
8563 /* Initialize the construction vtable. */
8564 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8565 initialize_artificial_var (vtbl, v);
8566 dump_vtable (t, binfo, vtbl);
8567 }
8568
8569 /* Add the vtbl initializers for BINFO (and its bases other than
8570 non-virtual primaries) to the list of INITS. BINFO is in the
8571 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8572 the constructor the vtbl inits should be accumulated for. (If this
8573 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8574 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8575 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8576 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8577 but are not necessarily the same in terms of layout. */
8578
8579 static void
8580 accumulate_vtbl_inits (tree binfo,
8581 tree orig_binfo,
8582 tree rtti_binfo,
8583 tree vtbl,
8584 tree t,
8585 vec<constructor_elt, va_gc> **inits)
8586 {
8587 int i;
8588 tree base_binfo;
8589 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8590
8591 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8592
8593 /* If it doesn't have a vptr, we don't do anything. */
8594 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8595 return;
8596
8597 /* If we're building a construction vtable, we're not interested in
8598 subobjects that don't require construction vtables. */
8599 if (ctor_vtbl_p
8600 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8601 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8602 return;
8603
8604 /* Build the initializers for the BINFO-in-T vtable. */
8605 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8606
8607 /* Walk the BINFO and its bases. We walk in preorder so that as we
8608 initialize each vtable we can figure out at what offset the
8609 secondary vtable lies from the primary vtable. We can't use
8610 dfs_walk here because we need to iterate through bases of BINFO
8611 and RTTI_BINFO simultaneously. */
8612 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8613 {
8614 /* Skip virtual bases. */
8615 if (BINFO_VIRTUAL_P (base_binfo))
8616 continue;
8617 accumulate_vtbl_inits (base_binfo,
8618 BINFO_BASE_BINFO (orig_binfo, i),
8619 rtti_binfo, vtbl, t,
8620 inits);
8621 }
8622 }
8623
8624 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8625 BINFO vtable to L. */
8626
8627 static void
8628 dfs_accumulate_vtbl_inits (tree binfo,
8629 tree orig_binfo,
8630 tree rtti_binfo,
8631 tree orig_vtbl,
8632 tree t,
8633 vec<constructor_elt, va_gc> **l)
8634 {
8635 tree vtbl = NULL_TREE;
8636 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8637 int n_inits;
8638
8639 if (ctor_vtbl_p
8640 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8641 {
8642 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8643 primary virtual base. If it is not the same primary in
8644 the hierarchy of T, we'll need to generate a ctor vtable
8645 for it, to place at its location in T. If it is the same
8646 primary, we still need a VTT entry for the vtable, but it
8647 should point to the ctor vtable for the base it is a
8648 primary for within the sub-hierarchy of RTTI_BINFO.
8649
8650 There are three possible cases:
8651
8652 1) We are in the same place.
8653 2) We are a primary base within a lost primary virtual base of
8654 RTTI_BINFO.
8655 3) We are primary to something not a base of RTTI_BINFO. */
8656
8657 tree b;
8658 tree last = NULL_TREE;
8659
8660 /* First, look through the bases we are primary to for RTTI_BINFO
8661 or a virtual base. */
8662 b = binfo;
8663 while (BINFO_PRIMARY_P (b))
8664 {
8665 b = BINFO_INHERITANCE_CHAIN (b);
8666 last = b;
8667 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8668 goto found;
8669 }
8670 /* If we run out of primary links, keep looking down our
8671 inheritance chain; we might be an indirect primary. */
8672 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8673 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8674 break;
8675 found:
8676
8677 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8678 base B and it is a base of RTTI_BINFO, this is case 2. In
8679 either case, we share our vtable with LAST, i.e. the
8680 derived-most base within B of which we are a primary. */
8681 if (b == rtti_binfo
8682 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8683 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8684 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8685 binfo_ctor_vtable after everything's been set up. */
8686 vtbl = last;
8687
8688 /* Otherwise, this is case 3 and we get our own. */
8689 }
8690 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8691 return;
8692
8693 n_inits = vec_safe_length (*l);
8694
8695 if (!vtbl)
8696 {
8697 tree index;
8698 int non_fn_entries;
8699
8700 /* Add the initializer for this vtable. */
8701 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8702 &non_fn_entries, l);
8703
8704 /* Figure out the position to which the VPTR should point. */
8705 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8706 index = size_binop (MULT_EXPR,
8707 TYPE_SIZE_UNIT (vtable_entry_type),
8708 size_int (non_fn_entries + n_inits));
8709 vtbl = fold_build_pointer_plus (vtbl, index);
8710 }
8711
8712 if (ctor_vtbl_p)
8713 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8714 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8715 straighten this out. */
8716 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8717 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8718 /* Throw away any unneeded intializers. */
8719 (*l)->truncate (n_inits);
8720 else
8721 /* For an ordinary vtable, set BINFO_VTABLE. */
8722 BINFO_VTABLE (binfo) = vtbl;
8723 }
8724
8725 static GTY(()) tree abort_fndecl_addr;
8726
8727 /* Construct the initializer for BINFO's virtual function table. BINFO
8728 is part of the hierarchy dominated by T. If we're building a
8729 construction vtable, the ORIG_BINFO is the binfo we should use to
8730 find the actual function pointers to put in the vtable - but they
8731 can be overridden on the path to most-derived in the graph that
8732 ORIG_BINFO belongs. Otherwise,
8733 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8734 BINFO that should be indicated by the RTTI information in the
8735 vtable; it will be a base class of T, rather than T itself, if we
8736 are building a construction vtable.
8737
8738 The value returned is a TREE_LIST suitable for wrapping in a
8739 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8740 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8741 number of non-function entries in the vtable.
8742
8743 It might seem that this function should never be called with a
8744 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8745 base is always subsumed by a derived class vtable. However, when
8746 we are building construction vtables, we do build vtables for
8747 primary bases; we need these while the primary base is being
8748 constructed. */
8749
8750 static void
8751 build_vtbl_initializer (tree binfo,
8752 tree orig_binfo,
8753 tree t,
8754 tree rtti_binfo,
8755 int* non_fn_entries_p,
8756 vec<constructor_elt, va_gc> **inits)
8757 {
8758 tree v;
8759 vtbl_init_data vid;
8760 unsigned ix, jx;
8761 tree vbinfo;
8762 vec<tree, va_gc> *vbases;
8763 constructor_elt *e;
8764
8765 /* Initialize VID. */
8766 memset (&vid, 0, sizeof (vid));
8767 vid.binfo = binfo;
8768 vid.derived = t;
8769 vid.rtti_binfo = rtti_binfo;
8770 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8771 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8772 vid.generate_vcall_entries = true;
8773 /* The first vbase or vcall offset is at index -3 in the vtable. */
8774 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8775
8776 /* Add entries to the vtable for RTTI. */
8777 build_rtti_vtbl_entries (binfo, &vid);
8778
8779 /* Create an array for keeping track of the functions we've
8780 processed. When we see multiple functions with the same
8781 signature, we share the vcall offsets. */
8782 vec_alloc (vid.fns, 32);
8783 /* Add the vcall and vbase offset entries. */
8784 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8785
8786 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8787 build_vbase_offset_vtbl_entries. */
8788 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8789 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8790 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8791
8792 /* If the target requires padding between data entries, add that now. */
8793 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8794 {
8795 int n_entries = vec_safe_length (vid.inits);
8796
8797 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8798
8799 /* Move data entries into their new positions and add padding
8800 after the new positions. Iterate backwards so we don't
8801 overwrite entries that we would need to process later. */
8802 for (ix = n_entries - 1;
8803 vid.inits->iterate (ix, &e);
8804 ix--)
8805 {
8806 int j;
8807 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8808 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8809
8810 (*vid.inits)[new_position] = *e;
8811
8812 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8813 {
8814 constructor_elt *f = &(*vid.inits)[new_position - j];
8815 f->index = NULL_TREE;
8816 f->value = build1 (NOP_EXPR, vtable_entry_type,
8817 null_pointer_node);
8818 }
8819 }
8820 }
8821
8822 if (non_fn_entries_p)
8823 *non_fn_entries_p = vec_safe_length (vid.inits);
8824
8825 /* The initializers for virtual functions were built up in reverse
8826 order. Straighten them out and add them to the running list in one
8827 step. */
8828 jx = vec_safe_length (*inits);
8829 vec_safe_grow (*inits, jx + vid.inits->length ());
8830
8831 for (ix = vid.inits->length () - 1;
8832 vid.inits->iterate (ix, &e);
8833 ix--, jx++)
8834 (**inits)[jx] = *e;
8835
8836 /* Go through all the ordinary virtual functions, building up
8837 initializers. */
8838 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8839 {
8840 tree delta;
8841 tree vcall_index;
8842 tree fn, fn_original;
8843 tree init = NULL_TREE;
8844
8845 fn = BV_FN (v);
8846 fn_original = fn;
8847 if (DECL_THUNK_P (fn))
8848 {
8849 if (!DECL_NAME (fn))
8850 finish_thunk (fn);
8851 if (THUNK_ALIAS (fn))
8852 {
8853 fn = THUNK_ALIAS (fn);
8854 BV_FN (v) = fn;
8855 }
8856 fn_original = THUNK_TARGET (fn);
8857 }
8858
8859 /* If the only definition of this function signature along our
8860 primary base chain is from a lost primary, this vtable slot will
8861 never be used, so just zero it out. This is important to avoid
8862 requiring extra thunks which cannot be generated with the function.
8863
8864 We first check this in update_vtable_entry_for_fn, so we handle
8865 restored primary bases properly; we also need to do it here so we
8866 zero out unused slots in ctor vtables, rather than filling them
8867 with erroneous values (though harmless, apart from relocation
8868 costs). */
8869 if (BV_LOST_PRIMARY (v))
8870 init = size_zero_node;
8871
8872 if (! init)
8873 {
8874 /* Pull the offset for `this', and the function to call, out of
8875 the list. */
8876 delta = BV_DELTA (v);
8877 vcall_index = BV_VCALL_INDEX (v);
8878
8879 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8880 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8881
8882 /* You can't call an abstract virtual function; it's abstract.
8883 So, we replace these functions with __pure_virtual. */
8884 if (DECL_PURE_VIRTUAL_P (fn_original))
8885 {
8886 fn = abort_fndecl;
8887 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8888 {
8889 if (abort_fndecl_addr == NULL)
8890 abort_fndecl_addr
8891 = fold_convert (vfunc_ptr_type_node,
8892 build_fold_addr_expr (fn));
8893 init = abort_fndecl_addr;
8894 }
8895 }
8896 /* Likewise for deleted virtuals. */
8897 else if (DECL_DELETED_FN (fn_original))
8898 {
8899 fn = get_identifier ("__cxa_deleted_virtual");
8900 if (!get_global_value_if_present (fn, &fn))
8901 fn = push_library_fn (fn, (build_function_type_list
8902 (void_type_node, NULL_TREE)),
8903 NULL_TREE, ECF_NORETURN);
8904 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8905 init = fold_convert (vfunc_ptr_type_node,
8906 build_fold_addr_expr (fn));
8907 }
8908 else
8909 {
8910 if (!integer_zerop (delta) || vcall_index)
8911 {
8912 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8913 if (!DECL_NAME (fn))
8914 finish_thunk (fn);
8915 }
8916 /* Take the address of the function, considering it to be of an
8917 appropriate generic type. */
8918 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8919 init = fold_convert (vfunc_ptr_type_node,
8920 build_fold_addr_expr (fn));
8921 /* Don't refer to a virtual destructor from a constructor
8922 vtable or a vtable for an abstract class, since destroying
8923 an object under construction is undefined behavior and we
8924 don't want it to be considered a candidate for speculative
8925 devirtualization. But do create the thunk for ABI
8926 compliance. */
8927 if (DECL_DESTRUCTOR_P (fn_original)
8928 && (CLASSTYPE_PURE_VIRTUALS (DECL_CONTEXT (fn_original))
8929 || orig_binfo != binfo))
8930 init = size_zero_node;
8931 }
8932 }
8933
8934 /* And add it to the chain of initializers. */
8935 if (TARGET_VTABLE_USES_DESCRIPTORS)
8936 {
8937 int i;
8938 if (init == size_zero_node)
8939 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8940 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8941 else
8942 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8943 {
8944 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
8945 fn, build_int_cst (NULL_TREE, i));
8946 TREE_CONSTANT (fdesc) = 1;
8947
8948 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
8949 }
8950 }
8951 else
8952 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8953 }
8954 }
8955
8956 /* Adds to vid->inits the initializers for the vbase and vcall
8957 offsets in BINFO, which is in the hierarchy dominated by T. */
8958
8959 static void
8960 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
8961 {
8962 tree b;
8963
8964 /* If this is a derived class, we must first create entries
8965 corresponding to the primary base class. */
8966 b = get_primary_binfo (binfo);
8967 if (b)
8968 build_vcall_and_vbase_vtbl_entries (b, vid);
8969
8970 /* Add the vbase entries for this base. */
8971 build_vbase_offset_vtbl_entries (binfo, vid);
8972 /* Add the vcall entries for this base. */
8973 build_vcall_offset_vtbl_entries (binfo, vid);
8974 }
8975
8976 /* Returns the initializers for the vbase offset entries in the vtable
8977 for BINFO (which is part of the class hierarchy dominated by T), in
8978 reverse order. VBASE_OFFSET_INDEX gives the vtable index
8979 where the next vbase offset will go. */
8980
8981 static void
8982 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8983 {
8984 tree vbase;
8985 tree t;
8986 tree non_primary_binfo;
8987
8988 /* If there are no virtual baseclasses, then there is nothing to
8989 do. */
8990 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8991 return;
8992
8993 t = vid->derived;
8994
8995 /* We might be a primary base class. Go up the inheritance hierarchy
8996 until we find the most derived class of which we are a primary base:
8997 it is the offset of that which we need to use. */
8998 non_primary_binfo = binfo;
8999 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9000 {
9001 tree b;
9002
9003 /* If we have reached a virtual base, then it must be a primary
9004 base (possibly multi-level) of vid->binfo, or we wouldn't
9005 have called build_vcall_and_vbase_vtbl_entries for it. But it
9006 might be a lost primary, so just skip down to vid->binfo. */
9007 if (BINFO_VIRTUAL_P (non_primary_binfo))
9008 {
9009 non_primary_binfo = vid->binfo;
9010 break;
9011 }
9012
9013 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9014 if (get_primary_binfo (b) != non_primary_binfo)
9015 break;
9016 non_primary_binfo = b;
9017 }
9018
9019 /* Go through the virtual bases, adding the offsets. */
9020 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
9021 vbase;
9022 vbase = TREE_CHAIN (vbase))
9023 {
9024 tree b;
9025 tree delta;
9026
9027 if (!BINFO_VIRTUAL_P (vbase))
9028 continue;
9029
9030 /* Find the instance of this virtual base in the complete
9031 object. */
9032 b = copied_binfo (vbase, binfo);
9033
9034 /* If we've already got an offset for this virtual base, we
9035 don't need another one. */
9036 if (BINFO_VTABLE_PATH_MARKED (b))
9037 continue;
9038 BINFO_VTABLE_PATH_MARKED (b) = 1;
9039
9040 /* Figure out where we can find this vbase offset. */
9041 delta = size_binop (MULT_EXPR,
9042 vid->index,
9043 convert (ssizetype,
9044 TYPE_SIZE_UNIT (vtable_entry_type)));
9045 if (vid->primary_vtbl_p)
9046 BINFO_VPTR_FIELD (b) = delta;
9047
9048 if (binfo != TYPE_BINFO (t))
9049 /* The vbase offset had better be the same. */
9050 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
9051
9052 /* The next vbase will come at a more negative offset. */
9053 vid->index = size_binop (MINUS_EXPR, vid->index,
9054 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9055
9056 /* The initializer is the delta from BINFO to this virtual base.
9057 The vbase offsets go in reverse inheritance-graph order, and
9058 we are walking in inheritance graph order so these end up in
9059 the right order. */
9060 delta = size_diffop_loc (input_location,
9061 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
9062
9063 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
9064 fold_build1_loc (input_location, NOP_EXPR,
9065 vtable_entry_type, delta));
9066 }
9067 }
9068
9069 /* Adds the initializers for the vcall offset entries in the vtable
9070 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9071 to VID->INITS. */
9072
9073 static void
9074 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9075 {
9076 /* We only need these entries if this base is a virtual base. We
9077 compute the indices -- but do not add to the vtable -- when
9078 building the main vtable for a class. */
9079 if (binfo == TYPE_BINFO (vid->derived)
9080 || (BINFO_VIRTUAL_P (binfo)
9081 /* If BINFO is RTTI_BINFO, then (since BINFO does not
9082 correspond to VID->DERIVED), we are building a primary
9083 construction virtual table. Since this is a primary
9084 virtual table, we do not need the vcall offsets for
9085 BINFO. */
9086 && binfo != vid->rtti_binfo))
9087 {
9088 /* We need a vcall offset for each of the virtual functions in this
9089 vtable. For example:
9090
9091 class A { virtual void f (); };
9092 class B1 : virtual public A { virtual void f (); };
9093 class B2 : virtual public A { virtual void f (); };
9094 class C: public B1, public B2 { virtual void f (); };
9095
9096 A C object has a primary base of B1, which has a primary base of A. A
9097 C also has a secondary base of B2, which no longer has a primary base
9098 of A. So the B2-in-C construction vtable needs a secondary vtable for
9099 A, which will adjust the A* to a B2* to call f. We have no way of
9100 knowing what (or even whether) this offset will be when we define B2,
9101 so we store this "vcall offset" in the A sub-vtable and look it up in
9102 a "virtual thunk" for B2::f.
9103
9104 We need entries for all the functions in our primary vtable and
9105 in our non-virtual bases' secondary vtables. */
9106 vid->vbase = binfo;
9107 /* If we are just computing the vcall indices -- but do not need
9108 the actual entries -- not that. */
9109 if (!BINFO_VIRTUAL_P (binfo))
9110 vid->generate_vcall_entries = false;
9111 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9112 add_vcall_offset_vtbl_entries_r (binfo, vid);
9113 }
9114 }
9115
9116 /* Build vcall offsets, starting with those for BINFO. */
9117
9118 static void
9119 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9120 {
9121 int i;
9122 tree primary_binfo;
9123 tree base_binfo;
9124
9125 /* Don't walk into virtual bases -- except, of course, for the
9126 virtual base for which we are building vcall offsets. Any
9127 primary virtual base will have already had its offsets generated
9128 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9129 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9130 return;
9131
9132 /* If BINFO has a primary base, process it first. */
9133 primary_binfo = get_primary_binfo (binfo);
9134 if (primary_binfo)
9135 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9136
9137 /* Add BINFO itself to the list. */
9138 add_vcall_offset_vtbl_entries_1 (binfo, vid);
9139
9140 /* Scan the non-primary bases of BINFO. */
9141 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9142 if (base_binfo != primary_binfo)
9143 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9144 }
9145
9146 /* Called from build_vcall_offset_vtbl_entries_r. */
9147
9148 static void
9149 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9150 {
9151 /* Make entries for the rest of the virtuals. */
9152 tree orig_fn;
9153
9154 /* The ABI requires that the methods be processed in declaration
9155 order. */
9156 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
9157 orig_fn;
9158 orig_fn = DECL_CHAIN (orig_fn))
9159 if (TREE_CODE (orig_fn) == FUNCTION_DECL && DECL_VINDEX (orig_fn))
9160 add_vcall_offset (orig_fn, binfo, vid);
9161 }
9162
9163 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9164
9165 static void
9166 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9167 {
9168 size_t i;
9169 tree vcall_offset;
9170 tree derived_entry;
9171
9172 /* If there is already an entry for a function with the same
9173 signature as FN, then we do not need a second vcall offset.
9174 Check the list of functions already present in the derived
9175 class vtable. */
9176 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9177 {
9178 if (same_signature_p (derived_entry, orig_fn)
9179 /* We only use one vcall offset for virtual destructors,
9180 even though there are two virtual table entries. */
9181 || (DECL_DESTRUCTOR_P (derived_entry)
9182 && DECL_DESTRUCTOR_P (orig_fn)))
9183 return;
9184 }
9185
9186 /* If we are building these vcall offsets as part of building
9187 the vtable for the most derived class, remember the vcall
9188 offset. */
9189 if (vid->binfo == TYPE_BINFO (vid->derived))
9190 {
9191 tree_pair_s elt = {orig_fn, vid->index};
9192 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9193 }
9194
9195 /* The next vcall offset will be found at a more negative
9196 offset. */
9197 vid->index = size_binop (MINUS_EXPR, vid->index,
9198 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9199
9200 /* Keep track of this function. */
9201 vec_safe_push (vid->fns, orig_fn);
9202
9203 if (vid->generate_vcall_entries)
9204 {
9205 tree base;
9206 tree fn;
9207
9208 /* Find the overriding function. */
9209 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9210 if (fn == error_mark_node)
9211 vcall_offset = build_zero_cst (vtable_entry_type);
9212 else
9213 {
9214 base = TREE_VALUE (fn);
9215
9216 /* The vbase we're working on is a primary base of
9217 vid->binfo. But it might be a lost primary, so its
9218 BINFO_OFFSET might be wrong, so we just use the
9219 BINFO_OFFSET from vid->binfo. */
9220 vcall_offset = size_diffop_loc (input_location,
9221 BINFO_OFFSET (base),
9222 BINFO_OFFSET (vid->binfo));
9223 vcall_offset = fold_build1_loc (input_location,
9224 NOP_EXPR, vtable_entry_type,
9225 vcall_offset);
9226 }
9227 /* Add the initializer to the vtable. */
9228 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9229 }
9230 }
9231
9232 /* Return vtbl initializers for the RTTI entries corresponding to the
9233 BINFO's vtable. The RTTI entries should indicate the object given
9234 by VID->rtti_binfo. */
9235
9236 static void
9237 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9238 {
9239 tree b;
9240 tree t;
9241 tree offset;
9242 tree decl;
9243 tree init;
9244
9245 t = BINFO_TYPE (vid->rtti_binfo);
9246
9247 /* To find the complete object, we will first convert to our most
9248 primary base, and then add the offset in the vtbl to that value. */
9249 b = binfo;
9250 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9251 && !BINFO_LOST_PRIMARY_P (b))
9252 {
9253 tree primary_base;
9254
9255 primary_base = get_primary_binfo (b);
9256 gcc_assert (BINFO_PRIMARY_P (primary_base)
9257 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9258 b = primary_base;
9259 }
9260 offset = size_diffop_loc (input_location,
9261 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9262
9263 /* The second entry is the address of the typeinfo object. */
9264 if (flag_rtti)
9265 decl = build_address (get_tinfo_decl (t));
9266 else
9267 decl = integer_zero_node;
9268
9269 /* Convert the declaration to a type that can be stored in the
9270 vtable. */
9271 init = build_nop (vfunc_ptr_type_node, decl);
9272 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9273
9274 /* Add the offset-to-top entry. It comes earlier in the vtable than
9275 the typeinfo entry. Convert the offset to look like a
9276 function pointer, so that we can put it in the vtable. */
9277 init = build_nop (vfunc_ptr_type_node, offset);
9278 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9279 }
9280
9281 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9282 accessibility. */
9283
9284 bool
9285 uniquely_derived_from_p (tree parent, tree type)
9286 {
9287 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9288 return base && base != error_mark_node;
9289 }
9290
9291 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9292
9293 bool
9294 publicly_uniquely_derived_p (tree parent, tree type)
9295 {
9296 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9297 NULL, tf_none);
9298 return base && base != error_mark_node;
9299 }
9300
9301 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9302 class between them, if any. */
9303
9304 tree
9305 common_enclosing_class (tree ctx1, tree ctx2)
9306 {
9307 if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
9308 return NULL_TREE;
9309 gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
9310 && ctx2 == TYPE_MAIN_VARIANT (ctx2));
9311 if (ctx1 == ctx2)
9312 return ctx1;
9313 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9314 TYPE_MARKED_P (t) = true;
9315 tree found = NULL_TREE;
9316 for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
9317 if (TYPE_MARKED_P (t))
9318 {
9319 found = t;
9320 break;
9321 }
9322 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9323 TYPE_MARKED_P (t) = false;
9324 return found;
9325 }
9326
9327 #include "gt-cp-class.h"