3083412786e2c870a2cd07371bdaf818ff6819cf
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37
38 static void construct_virtual_base (tree, tree);
39 static void expand_aggr_init_1 PARAMS ((tree, tree, tree, tree, int));
40 static void expand_default_init PARAMS ((tree, tree, tree, tree, int));
41 static tree build_vec_delete_1 PARAMS ((tree, tree, tree, special_function_kind, int));
42 static void perform_member_init (tree, tree);
43 static tree build_builtin_delete_call PARAMS ((tree));
44 static int member_init_ok_or_else PARAMS ((tree, tree, tree));
45 static void expand_virtual_init PARAMS ((tree, tree));
46 static tree sort_mem_initializers (tree, tree);
47 static tree initializing_context PARAMS ((tree));
48 static void expand_cleanup_for_base PARAMS ((tree, tree));
49 static tree get_temp_regvar PARAMS ((tree, tree));
50 static tree dfs_initialize_vtbl_ptrs PARAMS ((tree, void *));
51 static tree build_default_init PARAMS ((tree, tree));
52 static tree build_new_1 PARAMS ((tree));
53 static tree get_cookie_size PARAMS ((tree));
54 static tree build_dtor_call PARAMS ((tree, special_function_kind, int));
55 static tree build_field_list PARAMS ((tree, tree, int *));
56 static tree build_vtbl_address PARAMS ((tree));
57
58 /* We are about to generate some complex initialization code.
59 Conceptually, it is all a single expression. However, we may want
60 to include conditionals, loops, and other such statement-level
61 constructs. Therefore, we build the initialization code inside a
62 statement-expression. This function starts such an expression.
63 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
64 pass them back to finish_init_stmts when the expression is
65 complete. */
66
67 void
68 begin_init_stmts (stmt_expr_p, compound_stmt_p)
69 tree *stmt_expr_p;
70 tree *compound_stmt_p;
71 {
72 if (building_stmt_tree ())
73 *stmt_expr_p = begin_stmt_expr ();
74 else
75 *stmt_expr_p = begin_global_stmt_expr ();
76
77 if (building_stmt_tree ())
78 *compound_stmt_p = begin_compound_stmt (/*has_no_scope=*/1);
79 }
80
81 /* Finish out the statement-expression begun by the previous call to
82 begin_init_stmts. Returns the statement-expression itself. */
83
84 tree
85 finish_init_stmts (stmt_expr, compound_stmt)
86 tree stmt_expr;
87 tree compound_stmt;
88
89 {
90 if (building_stmt_tree ())
91 finish_compound_stmt (/*has_no_scope=*/1, compound_stmt);
92
93 if (building_stmt_tree ())
94 {
95 stmt_expr = finish_stmt_expr (stmt_expr);
96 STMT_EXPR_NO_SCOPE (stmt_expr) = true;
97 }
98 else
99 stmt_expr = finish_global_stmt_expr (stmt_expr);
100
101 /* To avoid spurious warnings about unused values, we set
102 TREE_USED. */
103 if (stmt_expr)
104 TREE_USED (stmt_expr) = 1;
105
106 return stmt_expr;
107 }
108
109 /* Constructors */
110
111 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
112 which we want to initialize the vtable pointer for, DATA is
113 TREE_LIST whose TREE_VALUE is the this ptr expression. */
114
115 static tree
116 dfs_initialize_vtbl_ptrs (binfo, data)
117 tree binfo;
118 void *data;
119 {
120 if ((!BINFO_PRIMARY_P (binfo) || TREE_VIA_VIRTUAL (binfo))
121 && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
122 {
123 tree base_ptr = TREE_VALUE ((tree) data);
124
125 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
126
127 expand_virtual_init (binfo, base_ptr);
128 }
129
130 BINFO_MARKED (binfo) = 1;
131
132 return NULL_TREE;
133 }
134
135 /* Initialize all the vtable pointers in the object pointed to by
136 ADDR. */
137
138 void
139 initialize_vtbl_ptrs (addr)
140 tree addr;
141 {
142 tree list;
143 tree type;
144
145 type = TREE_TYPE (TREE_TYPE (addr));
146 list = build_tree_list (type, addr);
147
148 /* Walk through the hierarchy, initializing the vptr in each base
149 class. We do these in pre-order because we can't find the virtual
150 bases for a class until we've initialized the vtbl for that
151 class. */
152 dfs_walk_real (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs,
153 NULL, unmarkedp, list);
154 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
155 }
156
157 /* Return an expression for the zero-initialization of an object with
158 type T. This expression will either be a constant (in the case
159 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
160 aggregate). In either case, the value can be used as DECL_INITIAL
161 for a decl of the indicated TYPE; it is a valid static initializer.
162 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
163 number of elements in the array. If STATIC_STORAGE_P is TRUE,
164 initializers are only generated for entities for which
165 zero-initialization does not simply mean filling the storage with
166 zero bytes. */
167
168 tree
169 build_zero_init (tree type, tree nelts, bool static_storage_p)
170 {
171 tree init = NULL_TREE;
172
173 /* [dcl.init]
174
175 To zero-initialization storage for an object of type T means:
176
177 -- if T is a scalar type, the storage is set to the value of zero
178 converted to T.
179
180 -- if T is a non-union class type, the storage for each nonstatic
181 data member and each base-class subobject is zero-initialized.
182
183 -- if T is a union type, the storage for its first data member is
184 zero-initialized.
185
186 -- if T is an array type, the storage for each element is
187 zero-initialized.
188
189 -- if T is a reference type, no initialization is performed. */
190
191 if (type == error_mark_node)
192 ;
193 else if (static_storage_p && zero_init_p (type))
194 /* In order to save space, we do not explicitly build initializers
195 for items that do not need them. GCC's semantics are that
196 items with static storage duration that are not otherwise
197 initialized are initialized to zero. */
198 ;
199 else if (SCALAR_TYPE_P (type))
200 init = convert (type, integer_zero_node);
201 else if (CLASS_TYPE_P (type))
202 {
203 tree field;
204 tree inits;
205
206 /* Build a constructor to contain the initializations. */
207 init = build_constructor (type, NULL_TREE);
208 /* Iterate over the fields, building initializations. */
209 inits = NULL_TREE;
210 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
211 {
212 if (TREE_CODE (field) != FIELD_DECL)
213 continue;
214
215 /* Note that for class types there will be FIELD_DECLs
216 corresponding to base classes as well. Thus, iterating
217 over TYPE_FIELDs will result in correct initialization of
218 all of the subobjects. */
219 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
220 inits = tree_cons (field,
221 build_zero_init (TREE_TYPE (field),
222 /*nelts=*/NULL_TREE,
223 static_storage_p),
224 inits);
225
226 /* For unions, only the first field is initialized. */
227 if (TREE_CODE (type) == UNION_TYPE)
228 break;
229 }
230 CONSTRUCTOR_ELTS (init) = nreverse (inits);
231 }
232 else if (TREE_CODE (type) == ARRAY_TYPE)
233 {
234 tree index;
235 tree max_index;
236 tree inits;
237
238 /* Build a constructor to contain the initializations. */
239 init = build_constructor (type, NULL_TREE);
240 /* Iterate over the array elements, building initializations. */
241 inits = NULL_TREE;
242 max_index = nelts ? nelts : array_type_nelts (type);
243 for (index = size_zero_node;
244 !tree_int_cst_lt (max_index, index);
245 index = size_binop (PLUS_EXPR, index, size_one_node))
246 inits = tree_cons (index,
247 build_zero_init (TREE_TYPE (type),
248 /*nelts=*/NULL_TREE,
249 static_storage_p),
250 inits);
251 CONSTRUCTOR_ELTS (init) = nreverse (inits);
252 }
253 else if (TREE_CODE (type) == REFERENCE_TYPE)
254 ;
255 else
256 abort ();
257
258 /* In all cases, the initializer is a constant. */
259 if (init)
260 TREE_CONSTANT (init) = 1;
261
262 return init;
263 }
264
265 /* Build an expression for the default-initialization of an object of
266 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
267 ARRAY_TYPE, NELTS is the number of elements in the array. If
268 initialization of TYPE requires calling constructors, this function
269 returns NULL_TREE; the caller is responsible for arranging for the
270 constructors to be called. */
271
272 static tree
273 build_default_init (type, nelts)
274 tree type;
275 tree nelts;
276 {
277 /* [dcl.init]:
278
279 To default-initialize an object of type T means:
280
281 --if T is a non-POD class type (clause _class_), the default construc-
282 tor for T is called (and the initialization is ill-formed if T has
283 no accessible default constructor);
284
285 --if T is an array type, each element is default-initialized;
286
287 --otherwise, the storage for the object is zero-initialized.
288
289 A program that calls for default-initialization of an entity of refer-
290 ence type is ill-formed. */
291
292 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
293 performing the initialization. This is confusing in that some
294 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
295 a class with a pointer-to-data member as a non-static data member
296 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
297 passing non-PODs to build_zero_init below, which is contrary to
298 the semantics quoted above from [dcl.init].
299
300 It happens, however, that the behavior of the constructor the
301 standard says we should have generated would be precisely the
302 same as that obtained by calling build_zero_init below, so things
303 work out OK. */
304 if (TYPE_NEEDS_CONSTRUCTING (type))
305 return NULL_TREE;
306
307 /* At this point, TYPE is either a POD class type, an array of POD
308 classes, or something even more inoccuous. */
309 return build_zero_init (type, nelts, /*static_storage_p=*/false);
310 }
311
312 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
313 arguments. If TREE_LIST is void_type_node, an empty initializer
314 list was given; if NULL_TREE no initializer was given. */
315
316 static void
317 perform_member_init (tree member, tree init)
318 {
319 tree decl;
320 tree type = TREE_TYPE (member);
321 bool explicit;
322
323 explicit = (init != NULL_TREE);
324
325 /* Effective C++ rule 12 requires that all data members be
326 initialized. */
327 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
328 warning ("`%D' should be initialized in the member initialization "
329 "list",
330 member);
331
332 if (init == void_type_node)
333 init = NULL_TREE;
334
335 /* Get an lvalue for the data member. */
336 decl = build_class_member_access_expr (current_class_ref, member,
337 /*access_path=*/NULL_TREE,
338 /*preserve_reference=*/true);
339 if (decl == error_mark_node)
340 return;
341
342 /* Deal with this here, as we will get confused if we try to call the
343 assignment op for an anonymous union. This can happen in a
344 synthesized copy constructor. */
345 if (ANON_AGGR_TYPE_P (type))
346 {
347 if (init)
348 {
349 init = build (INIT_EXPR, type, decl, TREE_VALUE (init));
350 finish_expr_stmt (init);
351 }
352 }
353 else if (TYPE_NEEDS_CONSTRUCTING (type)
354 || (init && TYPE_HAS_CONSTRUCTOR (type)))
355 {
356 if (explicit
357 && TREE_CODE (type) == ARRAY_TYPE
358 && init != NULL_TREE
359 && TREE_CHAIN (init) == NULL_TREE
360 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
361 {
362 /* Initialization of one array from another. */
363 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
364 /* from_array=*/1));
365 }
366 else
367 finish_expr_stmt (build_aggr_init (decl, init, 0));
368 }
369 else
370 {
371 if (init == NULL_TREE)
372 {
373 if (explicit)
374 {
375 init = build_default_init (type, /*nelts=*/NULL_TREE);
376 if (TREE_CODE (type) == REFERENCE_TYPE)
377 warning
378 ("default-initialization of `%#D', which has reference type",
379 member);
380 }
381 /* member traversal: note it leaves init NULL */
382 else if (TREE_CODE (type) == REFERENCE_TYPE)
383 pedwarn ("uninitialized reference member `%D'", member);
384 }
385 else if (TREE_CODE (init) == TREE_LIST)
386 {
387 /* There was an explicit member initialization. Do some
388 work in that case. */
389 if (TREE_CHAIN (init))
390 {
391 warning ("initializer list treated as compound expression");
392 init = build_compound_expr (init);
393 }
394 else
395 init = TREE_VALUE (init);
396 }
397
398 if (init)
399 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
400 }
401
402 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
403 {
404 tree expr;
405
406 expr = build_class_member_access_expr (current_class_ref, member,
407 /*access_path=*/NULL_TREE,
408 /*preserve_reference=*/false);
409 expr = build_delete (type, expr, sfk_complete_destructor,
410 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
411
412 if (expr != error_mark_node)
413 finish_eh_cleanup (expr);
414 }
415 }
416
417 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
418 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
419
420 static tree
421 build_field_list (t, list, uses_unions_p)
422 tree t;
423 tree list;
424 int *uses_unions_p;
425 {
426 tree fields;
427
428 *uses_unions_p = 0;
429
430 /* Note whether or not T is a union. */
431 if (TREE_CODE (t) == UNION_TYPE)
432 *uses_unions_p = 1;
433
434 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
435 {
436 /* Skip CONST_DECLs for enumeration constants and so forth. */
437 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
438 continue;
439
440 /* Keep track of whether or not any fields are unions. */
441 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
442 *uses_unions_p = 1;
443
444 /* For an anonymous struct or union, we must recursively
445 consider the fields of the anonymous type. They can be
446 directly initialized from the constructor. */
447 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
448 {
449 /* Add this field itself. Synthesized copy constructors
450 initialize the entire aggregate. */
451 list = tree_cons (fields, NULL_TREE, list);
452 /* And now add the fields in the anonymous aggregate. */
453 list = build_field_list (TREE_TYPE (fields), list,
454 uses_unions_p);
455 }
456 /* Add this field. */
457 else if (DECL_NAME (fields))
458 list = tree_cons (fields, NULL_TREE, list);
459 }
460
461 return list;
462 }
463
464 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
465 a FIELD_DECL or BINFO in T that needs initialization. The
466 TREE_VALUE gives the initializer, or list of initializer arguments.
467
468 Return a TREE_LIST containing all of the initializations required
469 for T, in the order in which they should be performed. The output
470 list has the same format as the input. */
471
472 static tree
473 sort_mem_initializers (tree t, tree mem_inits)
474 {
475 tree init;
476 tree base;
477 tree sorted_inits;
478 tree next_subobject;
479 int i;
480 int uses_unions_p;
481
482 /* Build up a list of initializations. The TREE_PURPOSE of entry
483 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
484 TREE_VALUE will be the constructor arguments, or NULL if no
485 explicit initialization was provided. */
486 sorted_inits = NULL_TREE;
487 /* Process the virtual bases. */
488 for (base = CLASSTYPE_VBASECLASSES (t); base; base = TREE_CHAIN (base))
489 sorted_inits = tree_cons (TREE_VALUE (base), NULL_TREE, sorted_inits);
490 /* Process the direct bases. */
491 for (i = 0; i < CLASSTYPE_N_BASECLASSES (t); ++i)
492 {
493 base = BINFO_BASETYPE (TYPE_BINFO (t), i);
494 if (!TREE_VIA_VIRTUAL (base))
495 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
496 }
497 /* Process the non-static data members. */
498 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
499 /* Reverse the entire list of initializations, so that they are in
500 the order that they will actually be performed. */
501 sorted_inits = nreverse (sorted_inits);
502
503 /* If the user presented the initializers in an order different from
504 that in which they will actually occur, we issue a warning. Keep
505 track of the next subobject which can be explicitly initialized
506 without issuing a warning. */
507 next_subobject = sorted_inits;
508
509 /* Go through the explicit initializers, filling in TREE_PURPOSE in
510 the SORTED_INITS. */
511 for (init = mem_inits; init; init = TREE_CHAIN (init))
512 {
513 tree subobject;
514 tree subobject_init;
515
516 subobject = TREE_PURPOSE (init);
517
518 /* If the explicit initializers are in sorted order, then
519 SUBOBJECT will be NEXT_SUBOBJECT, or something following
520 it. */
521 for (subobject_init = next_subobject;
522 subobject_init;
523 subobject_init = TREE_CHAIN (subobject_init))
524 if (TREE_PURPOSE (subobject_init) == subobject)
525 break;
526
527 /* Issue a warning if the explicit initializer order does not
528 match that which will actually occur. */
529 if (warn_reorder && !subobject_init)
530 {
531 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
532 cp_warning_at ("`%D' will be initialized after",
533 TREE_PURPOSE (next_subobject));
534 else
535 warning ("base `%T' will be initialized after",
536 TREE_PURPOSE (next_subobject));
537 if (TREE_CODE (subobject) == FIELD_DECL)
538 cp_warning_at (" `%#D'", subobject);
539 else
540 warning (" base `%T'", subobject);
541 }
542
543 /* Look again, from the beginning of the list. */
544 if (!subobject_init)
545 {
546 subobject_init = sorted_inits;
547 while (TREE_PURPOSE (subobject_init) != subobject)
548 subobject_init = TREE_CHAIN (subobject_init);
549 }
550
551 /* It is invalid to initialize the same subobject more than
552 once. */
553 if (TREE_VALUE (subobject_init))
554 {
555 if (TREE_CODE (subobject) == FIELD_DECL)
556 error ("multiple initializations given for `%D'", subobject);
557 else
558 error ("multiple initializations given for base `%T'",
559 subobject);
560 }
561
562 /* Record the initialization. */
563 TREE_VALUE (subobject_init) = TREE_VALUE (init);
564 next_subobject = subobject_init;
565 }
566
567 /* [class.base.init]
568
569 If a ctor-initializer specifies more than one mem-initializer for
570 multiple members of the same union (including members of
571 anonymous unions), the ctor-initializer is ill-formed. */
572 if (uses_unions_p)
573 {
574 tree last_field = NULL_TREE;
575 for (init = sorted_inits; init; init = TREE_CHAIN (init))
576 {
577 tree field;
578 tree field_type;
579 int done;
580
581 /* Skip uninitialized members and base classes. */
582 if (!TREE_VALUE (init)
583 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
584 continue;
585 /* See if this field is a member of a union, or a member of a
586 structure contained in a union, etc. */
587 field = TREE_PURPOSE (init);
588 for (field_type = DECL_CONTEXT (field);
589 !same_type_p (field_type, t);
590 field_type = TYPE_CONTEXT (field_type))
591 if (TREE_CODE (field_type) == UNION_TYPE)
592 break;
593 /* If this field is not a member of a union, skip it. */
594 if (TREE_CODE (field_type) != UNION_TYPE)
595 continue;
596
597 /* It's only an error if we have two initializers for the same
598 union type. */
599 if (!last_field)
600 {
601 last_field = field;
602 continue;
603 }
604
605 /* See if LAST_FIELD and the field initialized by INIT are
606 members of the same union. If so, there's a problem,
607 unless they're actually members of the same structure
608 which is itself a member of a union. For example, given:
609
610 union { struct { int i; int j; }; };
611
612 initializing both `i' and `j' makes sense. */
613 field_type = DECL_CONTEXT (field);
614 done = 0;
615 do
616 {
617 tree last_field_type;
618
619 last_field_type = DECL_CONTEXT (last_field);
620 while (1)
621 {
622 if (same_type_p (last_field_type, field_type))
623 {
624 if (TREE_CODE (field_type) == UNION_TYPE)
625 error ("initializations for multiple members of `%T'",
626 last_field_type);
627 done = 1;
628 break;
629 }
630
631 if (same_type_p (last_field_type, t))
632 break;
633
634 last_field_type = TYPE_CONTEXT (last_field_type);
635 }
636
637 /* If we've reached the outermost class, then we're
638 done. */
639 if (same_type_p (field_type, t))
640 break;
641
642 field_type = TYPE_CONTEXT (field_type);
643 }
644 while (!done);
645
646 last_field = field;
647 }
648 }
649
650 return sorted_inits;
651 }
652
653 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
654 is a TREE_LIST giving the explicit mem-initializer-list for the
655 constructor. The TREE_PURPOSE of each entry is a subobject (a
656 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
657 is a TREE_LIST giving the arguments to the constructor or
658 void_type_node for an empty list of arguments. */
659
660 void
661 emit_mem_initializers (tree mem_inits)
662 {
663 /* Sort the mem-initializers into the order in which the
664 initializations should be performed. */
665 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
666
667 in_base_initializer = 1;
668
669 /* Initialize base classes. */
670 while (mem_inits
671 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
672 {
673 tree subobject = TREE_PURPOSE (mem_inits);
674 tree arguments = TREE_VALUE (mem_inits);
675
676 /* If these initializations are taking place in a copy
677 constructor, the base class should probably be explicitly
678 initialized. */
679 if (extra_warnings && !arguments
680 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
681 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
682 warning ("base class `%#T' should be explicitly initialized in the "
683 "copy constructor",
684 BINFO_TYPE (subobject));
685
686 /* If an explicit -- but empty -- initializer list was present,
687 treat it just like default initialization at this point. */
688 if (arguments == void_type_node)
689 arguments = NULL_TREE;
690
691 /* Initialize the base. */
692 if (TREE_VIA_VIRTUAL (subobject))
693 construct_virtual_base (subobject, arguments);
694 else
695 {
696 tree base_addr;
697
698 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
699 subobject, 1);
700 expand_aggr_init_1 (subobject, NULL_TREE,
701 build_indirect_ref (base_addr, NULL),
702 arguments,
703 LOOKUP_NORMAL);
704 expand_cleanup_for_base (subobject, NULL_TREE);
705 }
706
707 mem_inits = TREE_CHAIN (mem_inits);
708 }
709 in_base_initializer = 0;
710
711 /* Initialize the vptrs. */
712 initialize_vtbl_ptrs (current_class_ptr);
713
714 /* Initialize the data members. */
715 while (mem_inits)
716 {
717 perform_member_init (TREE_PURPOSE (mem_inits),
718 TREE_VALUE (mem_inits));
719 mem_inits = TREE_CHAIN (mem_inits);
720 }
721 }
722
723 /* Returns the address of the vtable (i.e., the value that should be
724 assigned to the vptr) for BINFO. */
725
726 static tree
727 build_vtbl_address (binfo)
728 tree binfo;
729 {
730 tree binfo_for = binfo;
731 tree vtbl;
732
733 if (BINFO_VPTR_INDEX (binfo) && TREE_VIA_VIRTUAL (binfo)
734 && BINFO_PRIMARY_P (binfo))
735 /* If this is a virtual primary base, then the vtable we want to store
736 is that for the base this is being used as the primary base of. We
737 can't simply skip the initialization, because we may be expanding the
738 inits of a subobject constructor where the virtual base layout
739 can be different. */
740 while (BINFO_PRIMARY_BASE_OF (binfo_for))
741 binfo_for = BINFO_PRIMARY_BASE_OF (binfo_for);
742
743 /* Figure out what vtable BINFO's vtable is based on, and mark it as
744 used. */
745 vtbl = get_vtbl_decl_for_binfo (binfo_for);
746 assemble_external (vtbl);
747 TREE_USED (vtbl) = 1;
748
749 /* Now compute the address to use when initializing the vptr. */
750 vtbl = BINFO_VTABLE (binfo_for);
751 if (TREE_CODE (vtbl) == VAR_DECL)
752 {
753 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
754 TREE_CONSTANT (vtbl) = 1;
755 }
756
757 return vtbl;
758 }
759
760 /* This code sets up the virtual function tables appropriate for
761 the pointer DECL. It is a one-ply initialization.
762
763 BINFO is the exact type that DECL is supposed to be. In
764 multiple inheritance, this might mean "C's A" if C : A, B. */
765
766 static void
767 expand_virtual_init (binfo, decl)
768 tree binfo, decl;
769 {
770 tree vtbl, vtbl_ptr;
771 tree vtt_index;
772
773 /* Compute the initializer for vptr. */
774 vtbl = build_vtbl_address (binfo);
775
776 /* We may get this vptr from a VTT, if this is a subobject
777 constructor or subobject destructor. */
778 vtt_index = BINFO_VPTR_INDEX (binfo);
779 if (vtt_index)
780 {
781 tree vtbl2;
782 tree vtt_parm;
783
784 /* Compute the value to use, when there's a VTT. */
785 vtt_parm = current_vtt_parm;
786 vtbl2 = build (PLUS_EXPR,
787 TREE_TYPE (vtt_parm),
788 vtt_parm,
789 vtt_index);
790 vtbl2 = build1 (INDIRECT_REF, TREE_TYPE (vtbl), vtbl2);
791
792 /* The actual initializer is the VTT value only in the subobject
793 constructor. In maybe_clone_body we'll substitute NULL for
794 the vtt_parm in the case of the non-subobject constructor. */
795 vtbl = build (COND_EXPR,
796 TREE_TYPE (vtbl),
797 build (EQ_EXPR, boolean_type_node,
798 current_in_charge_parm, integer_zero_node),
799 vtbl2,
800 vtbl);
801 }
802
803 /* Compute the location of the vtpr. */
804 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
805 TREE_TYPE (binfo));
806 my_friendly_assert (vtbl_ptr != error_mark_node, 20010730);
807
808 /* Assign the vtable to the vptr. */
809 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
810 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
811 }
812
813 /* If an exception is thrown in a constructor, those base classes already
814 constructed must be destroyed. This function creates the cleanup
815 for BINFO, which has just been constructed. If FLAG is non-NULL,
816 it is a DECL which is nonzero when this base needs to be
817 destroyed. */
818
819 static void
820 expand_cleanup_for_base (binfo, flag)
821 tree binfo;
822 tree flag;
823 {
824 tree expr;
825
826 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
827 return;
828
829 /* Call the destructor. */
830 expr = build_special_member_call (current_class_ref,
831 base_dtor_identifier,
832 NULL_TREE,
833 binfo,
834 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
835 if (flag)
836 expr = fold (build (COND_EXPR, void_type_node,
837 c_common_truthvalue_conversion (flag),
838 expr, integer_zero_node));
839
840 finish_eh_cleanup (expr);
841 }
842
843 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
844 constructor. */
845
846 static void
847 construct_virtual_base (tree vbase, tree arguments)
848 {
849 tree inner_if_stmt;
850 tree compound_stmt;
851 tree exp;
852 tree flag;
853
854 /* If there are virtual base classes with destructors, we need to
855 emit cleanups to destroy them if an exception is thrown during
856 the construction process. These exception regions (i.e., the
857 period during which the cleanups must occur) begin from the time
858 the construction is complete to the end of the function. If we
859 create a conditional block in which to initialize the
860 base-classes, then the cleanup region for the virtual base begins
861 inside a block, and ends outside of that block. This situation
862 confuses the sjlj exception-handling code. Therefore, we do not
863 create a single conditional block, but one for each
864 initialization. (That way the cleanup regions always begin
865 in the outer block.) We trust the back-end to figure out
866 that the FLAG will not change across initializations, and
867 avoid doing multiple tests. */
868 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
869 inner_if_stmt = begin_if_stmt ();
870 finish_if_stmt_cond (flag, inner_if_stmt);
871 compound_stmt = begin_compound_stmt (/*has_no_scope=*/1);
872
873 /* Compute the location of the virtual base. If we're
874 constructing virtual bases, then we must be the most derived
875 class. Therefore, we don't have to look up the virtual base;
876 we already know where it is. */
877 exp = build (PLUS_EXPR,
878 TREE_TYPE (current_class_ptr),
879 current_class_ptr,
880 fold (build1 (NOP_EXPR, TREE_TYPE (current_class_ptr),
881 BINFO_OFFSET (vbase))));
882 exp = build1 (NOP_EXPR,
883 build_pointer_type (BINFO_TYPE (vbase)),
884 exp);
885 exp = build1 (INDIRECT_REF, BINFO_TYPE (vbase), exp);
886
887 expand_aggr_init_1 (vbase, current_class_ref, exp,
888 arguments, LOOKUP_COMPLAIN);
889 finish_compound_stmt (/*has_no_scope=*/1, compound_stmt);
890 finish_then_clause (inner_if_stmt);
891 finish_if_stmt ();
892
893 expand_cleanup_for_base (vbase, flag);
894 }
895
896 /* Find the context in which this FIELD can be initialized. */
897
898 static tree
899 initializing_context (field)
900 tree field;
901 {
902 tree t = DECL_CONTEXT (field);
903
904 /* Anonymous union members can be initialized in the first enclosing
905 non-anonymous union context. */
906 while (t && ANON_AGGR_TYPE_P (t))
907 t = TYPE_CONTEXT (t);
908 return t;
909 }
910
911 /* Function to give error message if member initialization specification
912 is erroneous. FIELD is the member we decided to initialize.
913 TYPE is the type for which the initialization is being performed.
914 FIELD must be a member of TYPE.
915
916 MEMBER_NAME is the name of the member. */
917
918 static int
919 member_init_ok_or_else (field, type, member_name)
920 tree field;
921 tree type;
922 tree member_name;
923 {
924 if (field == error_mark_node)
925 return 0;
926 if (!field)
927 {
928 error ("class `%T' does not have any field named `%D'", type,
929 member_name);
930 return 0;
931 }
932 if (TREE_CODE (field) == VAR_DECL)
933 {
934 error ("`%#D' is a static data member; it can only be "
935 "initialized at its definition",
936 field);
937 return 0;
938 }
939 if (TREE_CODE (field) != FIELD_DECL)
940 {
941 error ("`%#D' is not a non-static data member of `%T'",
942 field, type);
943 return 0;
944 }
945 if (initializing_context (field) != type)
946 {
947 error ("class `%T' does not have any field named `%D'", type,
948 member_name);
949 return 0;
950 }
951
952 return 1;
953 }
954
955 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
956 is a _TYPE node or TYPE_DECL which names a base for that type.
957 Check the validity of NAME, and return either the base _TYPE, base
958 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
959 NULL_TREE and issue a diagnostic.
960
961 An old style unnamed direct single base construction is permitted,
962 where NAME is NULL. */
963
964 tree
965 expand_member_init (tree name)
966 {
967 tree basetype;
968 tree field;
969
970 if (!current_class_ref)
971 return NULL_TREE;
972
973 if (!name)
974 {
975 /* This is an obsolete unnamed base class initializer. The
976 parser will already have warned about its use. */
977 switch (CLASSTYPE_N_BASECLASSES (current_class_type))
978 {
979 case 0:
980 error ("unnamed initializer for `%T', which has no base classes",
981 current_class_type);
982 return NULL_TREE;
983 case 1:
984 basetype = TYPE_BINFO_BASETYPE (current_class_type, 0);
985 break;
986 default:
987 error ("unnamed initializer for `%T', which uses multiple inheritance",
988 current_class_type);
989 return NULL_TREE;
990 }
991 }
992 else if (TYPE_P (name))
993 {
994 basetype = TYPE_MAIN_VARIANT (name);
995 name = TYPE_NAME (name);
996 }
997 else if (TREE_CODE (name) == TYPE_DECL)
998 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
999 else
1000 basetype = NULL_TREE;
1001
1002 if (basetype)
1003 {
1004 tree binfo;
1005
1006 if (current_template_parms)
1007 return basetype;
1008
1009 binfo = lookup_base (current_class_type, basetype,
1010 ba_ignore, NULL);
1011 if (!binfo || (!TREE_VIA_VIRTUAL (binfo)
1012 && (BINFO_INHERITANCE_CHAIN (binfo)
1013 != TYPE_BINFO (current_class_type))))
1014 {
1015 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
1016 error ("type `%D' is not a direct or virtual base of `%T'",
1017 name, current_class_type);
1018 else
1019 error ("type `%D' is not a direct base of `%T'",
1020 name, current_class_type);
1021 return NULL_TREE;
1022 }
1023 return binfo;
1024 }
1025 else
1026 {
1027 if (TREE_CODE (name) == IDENTIFIER_NODE)
1028 field = lookup_field (current_class_type, name, 1, false);
1029 else
1030 field = name;
1031
1032 if (member_init_ok_or_else (field, current_class_type, name))
1033 return field;
1034 }
1035
1036 return NULL_TREE;
1037 }
1038
1039 /* This is like `expand_member_init', only it stores one aggregate
1040 value into another.
1041
1042 INIT comes in two flavors: it is either a value which
1043 is to be stored in EXP, or it is a parameter list
1044 to go to a constructor, which will operate on EXP.
1045 If INIT is not a parameter list for a constructor, then set
1046 LOOKUP_ONLYCONVERTING.
1047 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1048 the initializer, if FLAGS is 0, then it is the (init) form.
1049 If `init' is a CONSTRUCTOR, then we emit a warning message,
1050 explaining that such initializations are invalid.
1051
1052 If INIT resolves to a CALL_EXPR which happens to return
1053 something of the type we are looking for, then we know
1054 that we can safely use that call to perform the
1055 initialization.
1056
1057 The virtual function table pointer cannot be set up here, because
1058 we do not really know its type.
1059
1060 This never calls operator=().
1061
1062 When initializing, nothing is CONST.
1063
1064 A default copy constructor may have to be used to perform the
1065 initialization.
1066
1067 A constructor or a conversion operator may have to be used to
1068 perform the initialization, but not both, as it would be ambiguous. */
1069
1070 tree
1071 build_aggr_init (exp, init, flags)
1072 tree exp, init;
1073 int flags;
1074 {
1075 tree stmt_expr;
1076 tree compound_stmt;
1077 int destroy_temps;
1078 tree type = TREE_TYPE (exp);
1079 int was_const = TREE_READONLY (exp);
1080 int was_volatile = TREE_THIS_VOLATILE (exp);
1081
1082 if (init == error_mark_node)
1083 return error_mark_node;
1084
1085 TREE_READONLY (exp) = 0;
1086 TREE_THIS_VOLATILE (exp) = 0;
1087
1088 if (init && TREE_CODE (init) != TREE_LIST)
1089 flags |= LOOKUP_ONLYCONVERTING;
1090
1091 if (TREE_CODE (type) == ARRAY_TYPE)
1092 {
1093 /* Must arrange to initialize each element of EXP
1094 from elements of INIT. */
1095 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1096
1097 if (init && !itype)
1098 {
1099 /* Handle bad initializers like:
1100 class COMPLEX {
1101 public:
1102 double re, im;
1103 COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;};
1104 ~COMPLEX() {};
1105 };
1106
1107 int main(int argc, char **argv) {
1108 COMPLEX zees(1.0, 0.0)[10];
1109 }
1110 */
1111 error ("bad array initializer");
1112 return error_mark_node;
1113 }
1114 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1115 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1116 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1117 TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1118 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1119 init && same_type_p (TREE_TYPE (init),
1120 TREE_TYPE (exp)));
1121 TREE_READONLY (exp) = was_const;
1122 TREE_THIS_VOLATILE (exp) = was_volatile;
1123 TREE_TYPE (exp) = type;
1124 if (init)
1125 TREE_TYPE (init) = itype;
1126 return stmt_expr;
1127 }
1128
1129 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1130 /* just know that we've seen something for this node */
1131 TREE_USED (exp) = 1;
1132
1133 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1134 begin_init_stmts (&stmt_expr, &compound_stmt);
1135 destroy_temps = stmts_are_full_exprs_p ();
1136 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1137 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1138 init, LOOKUP_NORMAL|flags);
1139 stmt_expr = finish_init_stmts (stmt_expr, compound_stmt);
1140 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1141 TREE_TYPE (exp) = type;
1142 TREE_READONLY (exp) = was_const;
1143 TREE_THIS_VOLATILE (exp) = was_volatile;
1144
1145 return stmt_expr;
1146 }
1147
1148 /* Like build_aggr_init, but not just for aggregates. */
1149
1150 tree
1151 build_init (decl, init, flags)
1152 tree decl, init;
1153 int flags;
1154 {
1155 tree expr;
1156
1157 if (IS_AGGR_TYPE (TREE_TYPE (decl))
1158 || TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1159 expr = build_aggr_init (decl, init, flags);
1160 else
1161 expr = build (INIT_EXPR, TREE_TYPE (decl), decl, init);
1162
1163 return expr;
1164 }
1165
1166 static void
1167 expand_default_init (binfo, true_exp, exp, init, flags)
1168 tree binfo;
1169 tree true_exp, exp;
1170 tree init;
1171 int flags;
1172 {
1173 tree type = TREE_TYPE (exp);
1174 tree ctor_name;
1175
1176 /* It fails because there may not be a constructor which takes
1177 its own type as the first (or only parameter), but which does
1178 take other types via a conversion. So, if the thing initializing
1179 the expression is a unit element of type X, first try X(X&),
1180 followed by initialization by X. If neither of these work
1181 out, then look hard. */
1182 tree rval;
1183 tree parms;
1184
1185 if (init && TREE_CODE (init) != TREE_LIST
1186 && (flags & LOOKUP_ONLYCONVERTING))
1187 {
1188 /* Base subobjects should only get direct-initialization. */
1189 if (true_exp != exp)
1190 abort ();
1191
1192 if (flags & DIRECT_BIND)
1193 /* Do nothing. We hit this in two cases: Reference initialization,
1194 where we aren't initializing a real variable, so we don't want
1195 to run a new constructor; and catching an exception, where we
1196 have already built up the constructor call so we could wrap it
1197 in an exception region. */;
1198 else if (TREE_CODE (init) == CONSTRUCTOR
1199 && TREE_HAS_CONSTRUCTOR (init))
1200 {
1201 /* A brace-enclosed initializer for an aggregate. */
1202 my_friendly_assert (CP_AGGREGATE_TYPE_P (type), 20021016);
1203 init = digest_init (type, init, (tree *)NULL);
1204 }
1205 else
1206 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1207
1208 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1209 /* We need to protect the initialization of a catch parm with a
1210 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1211 around the TARGET_EXPR for the copy constructor. See
1212 initialize_handler_parm. */
1213 {
1214 TREE_OPERAND (init, 0) = build (INIT_EXPR, TREE_TYPE (exp), exp,
1215 TREE_OPERAND (init, 0));
1216 TREE_TYPE (init) = void_type_node;
1217 }
1218 else
1219 init = build (INIT_EXPR, TREE_TYPE (exp), exp, init);
1220 TREE_SIDE_EFFECTS (init) = 1;
1221 finish_expr_stmt (init);
1222 return;
1223 }
1224
1225 if (init == NULL_TREE
1226 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1227 {
1228 parms = init;
1229 if (parms)
1230 init = TREE_VALUE (parms);
1231 }
1232 else
1233 parms = build_tree_list (NULL_TREE, init);
1234
1235 if (true_exp == exp)
1236 ctor_name = complete_ctor_identifier;
1237 else
1238 ctor_name = base_ctor_identifier;
1239
1240 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1241 if (TREE_SIDE_EFFECTS (rval))
1242 {
1243 if (building_stmt_tree ())
1244 finish_expr_stmt (rval);
1245 else
1246 genrtl_expr_stmt (rval);
1247 }
1248 }
1249
1250 /* This function is responsible for initializing EXP with INIT
1251 (if any).
1252
1253 BINFO is the binfo of the type for who we are performing the
1254 initialization. For example, if W is a virtual base class of A and B,
1255 and C : A, B.
1256 If we are initializing B, then W must contain B's W vtable, whereas
1257 were we initializing C, W must contain C's W vtable.
1258
1259 TRUE_EXP is nonzero if it is the true expression being initialized.
1260 In this case, it may be EXP, or may just contain EXP. The reason we
1261 need this is because if EXP is a base element of TRUE_EXP, we
1262 don't necessarily know by looking at EXP where its virtual
1263 baseclass fields should really be pointing. But we do know
1264 from TRUE_EXP. In constructors, we don't know anything about
1265 the value being initialized.
1266
1267 FLAGS is just passes to `build_method_call'. See that function for
1268 its description. */
1269
1270 static void
1271 expand_aggr_init_1 (binfo, true_exp, exp, init, flags)
1272 tree binfo;
1273 tree true_exp, exp;
1274 tree init;
1275 int flags;
1276 {
1277 tree type = TREE_TYPE (exp);
1278
1279 my_friendly_assert (init != error_mark_node && type != error_mark_node, 211);
1280 my_friendly_assert (building_stmt_tree (), 20021010);
1281
1282 /* Use a function returning the desired type to initialize EXP for us.
1283 If the function is a constructor, and its first argument is
1284 NULL_TREE, know that it was meant for us--just slide exp on
1285 in and expand the constructor. Constructors now come
1286 as TARGET_EXPRs. */
1287
1288 if (init && TREE_CODE (exp) == VAR_DECL
1289 && TREE_CODE (init) == CONSTRUCTOR
1290 && TREE_HAS_CONSTRUCTOR (init))
1291 {
1292 /* If store_init_value returns NULL_TREE, the INIT has been
1293 record in the DECL_INITIAL for EXP. That means there's
1294 nothing more we have to do. */
1295 if (store_init_value (exp, init))
1296 finish_expr_stmt (build (INIT_EXPR, type, exp, init));
1297 return;
1298 }
1299
1300 /* We know that expand_default_init can handle everything we want
1301 at this point. */
1302 expand_default_init (binfo, true_exp, exp, init, flags);
1303 }
1304
1305 /* Report an error if TYPE is not a user-defined, aggregate type. If
1306 OR_ELSE is nonzero, give an error message. */
1307
1308 int
1309 is_aggr_type (type, or_else)
1310 tree type;
1311 int or_else;
1312 {
1313 if (type == error_mark_node)
1314 return 0;
1315
1316 if (! IS_AGGR_TYPE (type)
1317 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1318 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1319 {
1320 if (or_else)
1321 error ("`%T' is not an aggregate type", type);
1322 return 0;
1323 }
1324 return 1;
1325 }
1326
1327 /* Like is_aggr_typedef, but returns typedef if successful. */
1328
1329 tree
1330 get_aggr_from_typedef (name, or_else)
1331 tree name;
1332 int or_else;
1333 {
1334 tree type;
1335
1336 if (name == error_mark_node)
1337 return NULL_TREE;
1338
1339 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1340 type = IDENTIFIER_TYPE_VALUE (name);
1341 else
1342 {
1343 if (or_else)
1344 error ("`%T' fails to be an aggregate typedef", name);
1345 return NULL_TREE;
1346 }
1347
1348 if (! IS_AGGR_TYPE (type)
1349 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1350 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1351 {
1352 if (or_else)
1353 error ("type `%T' is of non-aggregate type", type);
1354 return NULL_TREE;
1355 }
1356 return type;
1357 }
1358
1359 tree
1360 get_type_value (name)
1361 tree name;
1362 {
1363 if (name == error_mark_node)
1364 return NULL_TREE;
1365
1366 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1367 return IDENTIFIER_TYPE_VALUE (name);
1368 else
1369 return NULL_TREE;
1370 }
1371
1372 \f
1373 /* This code could just as well go in `class.c', but is placed here for
1374 modularity. */
1375
1376 /* For an expression of the form TYPE :: NAME (PARMLIST), build
1377 the appropriate function call. */
1378
1379 tree
1380 build_member_call (type, name, parmlist)
1381 tree type, name, parmlist;
1382 {
1383 tree t;
1384 tree method_name;
1385 tree fns;
1386 int dtor = 0;
1387 tree basetype_path, decl;
1388
1389 if (TREE_CODE (name) == TEMPLATE_ID_EXPR
1390 && TREE_CODE (type) == NAMESPACE_DECL)
1391 {
1392 /* 'name' already refers to the decls from the namespace, since we
1393 hit do_identifier for template_ids. */
1394 method_name = TREE_OPERAND (name, 0);
1395 /* FIXME: Since we don't do independent names right yet, the
1396 name might also be a LOOKUP_EXPR. Once we resolve this to a
1397 real decl earlier, this can go. This may happen during
1398 tsubst'ing. */
1399 if (TREE_CODE (method_name) == LOOKUP_EXPR)
1400 {
1401 method_name = lookup_namespace_name
1402 (type, TREE_OPERAND (method_name, 0));
1403 TREE_OPERAND (name, 0) = method_name;
1404 }
1405 my_friendly_assert (is_overloaded_fn (method_name), 980519);
1406 return finish_call_expr (name, parmlist, /*disallow_virtual=*/true);
1407 }
1408
1409 if (DECL_P (name))
1410 name = DECL_NAME (name);
1411
1412 if (TREE_CODE (type) == NAMESPACE_DECL)
1413 return finish_call_expr (lookup_namespace_name (type, name),
1414 parmlist,
1415 /*disallow_virtual=*/true);
1416
1417 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1418 {
1419 method_name = TREE_OPERAND (name, 0);
1420 if (TREE_CODE (method_name) == COMPONENT_REF)
1421 method_name = TREE_OPERAND (method_name, 1);
1422 if (is_overloaded_fn (method_name))
1423 method_name = DECL_NAME (OVL_CURRENT (method_name));
1424 TREE_OPERAND (name, 0) = method_name;
1425 }
1426 else
1427 method_name = name;
1428
1429 if (TREE_CODE (method_name) == BIT_NOT_EXPR)
1430 {
1431 method_name = TREE_OPERAND (method_name, 0);
1432 dtor = 1;
1433 }
1434
1435 /* This shouldn't be here, and build_member_call shouldn't appear in
1436 parse.y! (mrs) */
1437 if (type && TREE_CODE (type) == IDENTIFIER_NODE
1438 && get_aggr_from_typedef (type, 0) == 0)
1439 {
1440 tree ns = lookup_name (type, 0);
1441 if (ns && TREE_CODE (ns) == NAMESPACE_DECL)
1442 return finish_call_expr (lookup_namespace_name (ns, name),
1443 parmlist,
1444 /*disallow_virtual=*/true);
1445 }
1446
1447 if (type == NULL_TREE || ! is_aggr_type (type, 1))
1448 return error_mark_node;
1449
1450 /* An operator we did not like. */
1451 if (name == NULL_TREE)
1452 return error_mark_node;
1453
1454 if (dtor)
1455 {
1456 error ("cannot call destructor `%T::~%T' without object", type,
1457 method_name);
1458 return error_mark_node;
1459 }
1460
1461 decl = maybe_dummy_object (type, &basetype_path);
1462
1463 fns = lookup_fnfields (basetype_path, method_name, 0);
1464 if (fns)
1465 {
1466 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1467 BASELINK_FUNCTIONS (fns) = build_nt (TEMPLATE_ID_EXPR,
1468 BASELINK_FUNCTIONS (fns),
1469 TREE_OPERAND (name, 1));
1470 return build_new_method_call (decl, fns, parmlist,
1471 /*conversion_path=*/NULL_TREE,
1472 LOOKUP_NORMAL|LOOKUP_NONVIRTUAL);
1473 }
1474
1475 /* Convert 'this' to the specified type to disambiguate conversion
1476 to the function's context. */
1477 if (decl == current_class_ref
1478 /* ??? this is wrong, but if this conversion is invalid we need to
1479 defer it until we know whether we are calling a static or
1480 non-static member function. Be conservative for now. */
1481 && ACCESSIBLY_UNIQUELY_DERIVED_P (type, current_class_type))
1482 {
1483 basetype_path = NULL_TREE;
1484 decl = build_scoped_ref (decl, type, &basetype_path);
1485 if (decl == error_mark_node)
1486 return error_mark_node;
1487 }
1488
1489 if (constructor_name_p (method_name, type))
1490 return build_functional_cast (type, parmlist);
1491 if (TREE_CODE (name) == IDENTIFIER_NODE
1492 && ((t = lookup_field (TYPE_BINFO (type), name, 1, false))))
1493 {
1494 if (t == error_mark_node)
1495 return error_mark_node;
1496 if (TREE_CODE (t) == FIELD_DECL)
1497 {
1498 if (is_dummy_object (decl))
1499 {
1500 error ("invalid use of non-static field `%D'", t);
1501 return error_mark_node;
1502 }
1503 decl = build (COMPONENT_REF, TREE_TYPE (t), decl, t);
1504 }
1505 else if (TREE_CODE (t) == VAR_DECL)
1506 decl = t;
1507 else
1508 {
1509 error ("invalid use of member `%D'", t);
1510 return error_mark_node;
1511 }
1512 if (TYPE_LANG_SPECIFIC (TREE_TYPE (decl)))
1513 return build_new_op (CALL_EXPR, LOOKUP_NORMAL, decl,
1514 parmlist, NULL_TREE);
1515 return build_function_call (decl, parmlist);
1516 }
1517 else
1518 {
1519 error ("no method `%T::%D'", type, name);
1520 return error_mark_node;
1521 }
1522 }
1523
1524 /* Build a reference to a member of an aggregate. This is not a
1525 C++ `&', but really something which can have its address taken,
1526 and then act as a pointer to member, for example TYPE :: FIELD
1527 can have its address taken by saying & TYPE :: FIELD.
1528
1529 @@ Prints out lousy diagnostics for operator <typename>
1530 @@ fields.
1531
1532 @@ This function should be rewritten and placed in search.c. */
1533
1534 tree
1535 build_offset_ref (type, name)
1536 tree type, name;
1537 {
1538 tree decl, t = error_mark_node;
1539 tree member;
1540 tree basebinfo = NULL_TREE;
1541 tree orig_name = name;
1542
1543 /* class templates can come in as TEMPLATE_DECLs here. */
1544 if (TREE_CODE (name) == TEMPLATE_DECL)
1545 return name;
1546
1547 if (processing_template_decl || uses_template_parms (type))
1548 return build_min_nt (SCOPE_REF, type, name);
1549
1550 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1551 {
1552 /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1553 something like `a.template f<int>' or the like. For the most
1554 part, we treat this just like a.f. We do remember, however,
1555 the template-id that was used. */
1556 name = TREE_OPERAND (orig_name, 0);
1557
1558 if (DECL_P (name))
1559 name = DECL_NAME (name);
1560 else
1561 {
1562 if (TREE_CODE (name) == LOOKUP_EXPR)
1563 /* This can happen during tsubst'ing. */
1564 name = TREE_OPERAND (name, 0);
1565 else
1566 {
1567 if (TREE_CODE (name) == COMPONENT_REF)
1568 name = TREE_OPERAND (name, 1);
1569 if (TREE_CODE (name) == OVERLOAD)
1570 name = DECL_NAME (OVL_CURRENT (name));
1571 }
1572 }
1573
1574 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 0);
1575 }
1576
1577 if (type == NULL_TREE)
1578 return error_mark_node;
1579
1580 /* Handle namespace names fully here. */
1581 if (TREE_CODE (type) == NAMESPACE_DECL)
1582 {
1583 t = lookup_namespace_name (type, name);
1584 if (t == error_mark_node)
1585 return t;
1586 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1587 /* Reconstruct the TEMPLATE_ID_EXPR. */
1588 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t),
1589 t, TREE_OPERAND (orig_name, 1));
1590 if (! type_unknown_p (t))
1591 {
1592 mark_used (t);
1593 t = convert_from_reference (t);
1594 }
1595 return t;
1596 }
1597
1598 if (! is_aggr_type (type, 1))
1599 return error_mark_node;
1600
1601 if (TREE_CODE (name) == BIT_NOT_EXPR)
1602 {
1603 if (! check_dtor_name (type, name))
1604 error ("qualified type `%T' does not match destructor name `~%T'",
1605 type, TREE_OPERAND (name, 0));
1606 name = dtor_identifier;
1607 }
1608
1609 if (!COMPLETE_TYPE_P (complete_type (type))
1610 && !TYPE_BEING_DEFINED (type))
1611 {
1612 error ("incomplete type `%T' does not have member `%D'", type,
1613 name);
1614 return error_mark_node;
1615 }
1616
1617 decl = maybe_dummy_object (type, &basebinfo);
1618
1619 if (BASELINK_P (name) || DECL_P (name))
1620 member = name;
1621 else
1622 {
1623 member = lookup_member (basebinfo, name, 1, 0);
1624
1625 if (member == error_mark_node)
1626 return error_mark_node;
1627 }
1628
1629 /* A lot of this logic is now handled in lookup_member. */
1630 if (member && BASELINK_P (member))
1631 {
1632 /* Go from the TREE_BASELINK to the member function info. */
1633 tree fnfields = member;
1634 t = BASELINK_FUNCTIONS (fnfields);
1635
1636 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1637 {
1638 /* The FNFIELDS are going to contain functions that aren't
1639 necessarily templates, and templates that don't
1640 necessarily match the explicit template parameters. We
1641 save all the functions, and the explicit parameters, and
1642 then figure out exactly what to instantiate with what
1643 arguments in instantiate_type. */
1644
1645 if (TREE_CODE (t) != OVERLOAD)
1646 /* The code in instantiate_type which will process this
1647 expects to encounter OVERLOADs, not raw functions. */
1648 t = ovl_cons (t, NULL_TREE);
1649
1650 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
1651 TREE_OPERAND (orig_name, 1));
1652 t = build (OFFSET_REF, unknown_type_node, decl, t);
1653
1654 PTRMEM_OK_P (t) = 1;
1655
1656 return t;
1657 }
1658
1659 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1660 {
1661 /* Get rid of a potential OVERLOAD around it */
1662 t = OVL_CURRENT (t);
1663
1664 /* unique functions are handled easily. */
1665 if (!enforce_access (basebinfo, t))
1666 return error_mark_node;
1667 mark_used (t);
1668 if (DECL_STATIC_FUNCTION_P (t))
1669 return t;
1670 t = build (OFFSET_REF, TREE_TYPE (t), decl, t);
1671 PTRMEM_OK_P (t) = 1;
1672 return t;
1673 }
1674
1675 TREE_TYPE (fnfields) = unknown_type_node;
1676
1677 t = build (OFFSET_REF, unknown_type_node, decl, fnfields);
1678 PTRMEM_OK_P (t) = 1;
1679 return t;
1680 }
1681
1682 t = member;
1683
1684 if (t == NULL_TREE)
1685 {
1686 error ("`%D' is not a member of type `%T'", name, type);
1687 return error_mark_node;
1688 }
1689
1690 if (TREE_CODE (t) == TYPE_DECL)
1691 {
1692 TREE_USED (t) = 1;
1693 return t;
1694 }
1695 /* static class members and class-specific enum
1696 values can be returned without further ado. */
1697 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == CONST_DECL)
1698 {
1699 mark_used (t);
1700 return convert_from_reference (t);
1701 }
1702
1703 if (TREE_CODE (t) == FIELD_DECL && DECL_C_BIT_FIELD (t))
1704 {
1705 error ("invalid pointer to bit-field `%D'", t);
1706 return error_mark_node;
1707 }
1708
1709 /* static class functions too. */
1710 if (TREE_CODE (t) == FUNCTION_DECL
1711 && TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
1712 abort ();
1713
1714 /* In member functions, the form `type::name' is no longer
1715 equivalent to `this->type::name', at least not until
1716 resolve_offset_ref. */
1717 t = build (OFFSET_REF, build_offset_type (type, TREE_TYPE (t)), decl, t);
1718 PTRMEM_OK_P (t) = 1;
1719 return t;
1720 }
1721
1722 /* If a OFFSET_REF made it through to here, then it did
1723 not have its address taken. */
1724
1725 tree
1726 resolve_offset_ref (exp)
1727 tree exp;
1728 {
1729 tree type = TREE_TYPE (exp);
1730 tree base = NULL_TREE;
1731 tree member;
1732 tree basetype, addr;
1733
1734 if (TREE_CODE (exp) == OFFSET_REF)
1735 {
1736 member = TREE_OPERAND (exp, 1);
1737 base = TREE_OPERAND (exp, 0);
1738 }
1739 else
1740 {
1741 my_friendly_assert (TREE_CODE (type) == OFFSET_TYPE, 214);
1742 if (TYPE_OFFSET_BASETYPE (type) != current_class_type)
1743 {
1744 error ("object missing in use of pointer-to-member construct");
1745 return error_mark_node;
1746 }
1747 member = exp;
1748 type = TREE_TYPE (type);
1749 base = current_class_ref;
1750 }
1751
1752 if (BASELINK_P (member) || TREE_CODE (member) == TEMPLATE_ID_EXPR)
1753 return build_unary_op (ADDR_EXPR, exp, 0);
1754
1755 if (TREE_CODE (TREE_TYPE (member)) == METHOD_TYPE)
1756 {
1757 if (!flag_ms_extensions)
1758 /* A single non-static member, make sure we don't allow a
1759 pointer-to-member. */
1760 exp = ovl_cons (member, NULL_TREE);
1761
1762 return build_unary_op (ADDR_EXPR, exp, 0);
1763 }
1764
1765 if ((TREE_CODE (member) == VAR_DECL
1766 && ! TYPE_PTRMEMFUNC_P (TREE_TYPE (member))
1767 && ! TYPE_PTRMEM_P (TREE_TYPE (member)))
1768 || TREE_CODE (TREE_TYPE (member)) == FUNCTION_TYPE)
1769 {
1770 /* These were static members. */
1771 if (!cxx_mark_addressable (member))
1772 return error_mark_node;
1773 return member;
1774 }
1775
1776 if (TREE_CODE (TREE_TYPE (member)) == POINTER_TYPE
1777 && TREE_CODE (TREE_TYPE (TREE_TYPE (member))) == METHOD_TYPE)
1778 return member;
1779
1780 /* Syntax error can cause a member which should
1781 have been seen as static to be grok'd as non-static. */
1782 if (TREE_CODE (member) == FIELD_DECL && current_class_ref == NULL_TREE)
1783 {
1784 cp_error_at ("member `%D' is non-static but referenced as a static member",
1785 member);
1786 error ("at this point in file");
1787 return error_mark_node;
1788 }
1789
1790 /* The first case is really just a reference to a member of `this'. */
1791 if (TREE_CODE (member) == FIELD_DECL
1792 && (base == current_class_ref || is_dummy_object (base)))
1793 {
1794 tree binfo = NULL_TREE;
1795
1796 /* Try to get to basetype from 'this'; if that doesn't work,
1797 nothing will. */
1798 base = current_class_ref;
1799
1800 /* First convert to the intermediate base specified, if appropriate. */
1801 if (TREE_CODE (exp) == OFFSET_REF && TREE_CODE (type) == OFFSET_TYPE)
1802 base = build_scoped_ref (base, TYPE_OFFSET_BASETYPE (type), &binfo);
1803
1804 return build_class_member_access_expr (base, member,
1805 /*access_path=*/NULL_TREE,
1806 /*preserve_reference=*/false);
1807 }
1808
1809 /* Ensure that we have an object. */
1810 if (is_dummy_object (base))
1811 addr = error_mark_node;
1812 else
1813 /* If this is a reference to a member function, then return the
1814 address of the member function (which may involve going
1815 through the object's vtable), otherwise, return an expression
1816 for the dereferenced pointer-to-member construct. */
1817 addr = build_unary_op (ADDR_EXPR, base, 0);
1818
1819 if (TYPE_PTRMEM_P (TREE_TYPE (member)))
1820 {
1821 if (addr == error_mark_node)
1822 {
1823 error ("object missing in `%E'", exp);
1824 return error_mark_node;
1825 }
1826
1827 basetype = TYPE_OFFSET_BASETYPE (TREE_TYPE (TREE_TYPE (member)));
1828 basetype = lookup_base (TREE_TYPE (TREE_TYPE (addr)),
1829 basetype, ba_check, NULL);
1830 addr = build_base_path (PLUS_EXPR, addr, basetype, 1);
1831
1832 member = cp_convert (ptrdiff_type_node, member);
1833
1834 addr = build (PLUS_EXPR, build_pointer_type (type), addr, member);
1835 return build_indirect_ref (addr, 0);
1836 }
1837 else if (TYPE_PTRMEMFUNC_P (TREE_TYPE (member)))
1838 {
1839 return get_member_function_from_ptrfunc (&addr, member);
1840 }
1841 abort ();
1842 /* NOTREACHED */
1843 return NULL_TREE;
1844 }
1845
1846 /* If DECL is a `const' declaration, and its value is a known
1847 constant, then return that value. */
1848
1849 tree
1850 decl_constant_value (decl)
1851 tree decl;
1852 {
1853 if (TREE_READONLY_DECL_P (decl)
1854 && ! TREE_THIS_VOLATILE (decl)
1855 && DECL_INITIAL (decl)
1856 && DECL_INITIAL (decl) != error_mark_node
1857 /* This is invalid if initial value is not constant.
1858 If it has either a function call, a memory reference,
1859 or a variable, then re-evaluating it could give different results. */
1860 && TREE_CONSTANT (DECL_INITIAL (decl))
1861 /* Check for cases where this is sub-optimal, even though valid. */
1862 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1863 return DECL_INITIAL (decl);
1864 return decl;
1865 }
1866 \f
1867 /* Common subroutines of build_new and build_vec_delete. */
1868
1869 /* Call the global __builtin_delete to delete ADDR. */
1870
1871 static tree
1872 build_builtin_delete_call (addr)
1873 tree addr;
1874 {
1875 mark_used (global_delete_fndecl);
1876 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1877 }
1878 \f
1879 /* Generate a C++ "new" expression. DECL is either a TREE_LIST
1880 (which needs to go through some sort of groktypename) or it
1881 is the name of the class we are newing. INIT is an initialization value.
1882 It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
1883 If INIT is void_type_node, it means do *not* call a constructor
1884 for this instance.
1885
1886 For types with constructors, the data returned is initialized
1887 by the appropriate constructor.
1888
1889 Whether the type has a constructor or not, if it has a pointer
1890 to a virtual function table, then that pointer is set up
1891 here.
1892
1893 Unless I am mistaken, a call to new () will return initialized
1894 data regardless of whether the constructor itself is private or
1895 not. NOPE; new fails if the constructor is private (jcm).
1896
1897 Note that build_new does nothing to assure that any special
1898 alignment requirements of the type are met. Rather, it leaves
1899 it up to malloc to do the right thing. Otherwise, folding to
1900 the right alignment cal cause problems if the user tries to later
1901 free the memory returned by `new'.
1902
1903 PLACEMENT is the `placement' list for user-defined operator new (). */
1904
1905 tree
1906 build_new (placement, decl, init, use_global_new)
1907 tree placement;
1908 tree decl, init;
1909 int use_global_new;
1910 {
1911 tree type, rval;
1912 tree nelts = NULL_TREE, t;
1913 int has_array = 0;
1914
1915 if (decl == error_mark_node)
1916 return error_mark_node;
1917
1918 if (TREE_CODE (decl) == TREE_LIST)
1919 {
1920 tree absdcl = TREE_VALUE (decl);
1921 tree last_absdcl = NULL_TREE;
1922
1923 if (current_function_decl
1924 && DECL_CONSTRUCTOR_P (current_function_decl))
1925 my_friendly_assert (immediate_size_expand == 0, 19990926);
1926
1927 nelts = integer_one_node;
1928
1929 if (absdcl && TREE_CODE (absdcl) == CALL_EXPR)
1930 abort ();
1931 while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF)
1932 {
1933 last_absdcl = absdcl;
1934 absdcl = TREE_OPERAND (absdcl, 0);
1935 }
1936
1937 if (absdcl && TREE_CODE (absdcl) == ARRAY_REF)
1938 {
1939 /* probably meant to be a vec new */
1940 tree this_nelts;
1941
1942 while (TREE_OPERAND (absdcl, 0)
1943 && TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF)
1944 {
1945 last_absdcl = absdcl;
1946 absdcl = TREE_OPERAND (absdcl, 0);
1947 }
1948
1949 has_array = 1;
1950 this_nelts = TREE_OPERAND (absdcl, 1);
1951 if (this_nelts != error_mark_node)
1952 {
1953 if (this_nelts == NULL_TREE)
1954 error ("new of array type fails to specify size");
1955 else if (processing_template_decl)
1956 {
1957 nelts = this_nelts;
1958 absdcl = TREE_OPERAND (absdcl, 0);
1959 }
1960 else
1961 {
1962 if (build_expr_type_conversion (WANT_INT | WANT_ENUM,
1963 this_nelts, false)
1964 == NULL_TREE)
1965 pedwarn ("size in array new must have integral type");
1966
1967 this_nelts = save_expr (cp_convert (sizetype, this_nelts));
1968 absdcl = TREE_OPERAND (absdcl, 0);
1969 if (this_nelts == integer_zero_node)
1970 {
1971 warning ("zero size array reserves no space");
1972 nelts = integer_zero_node;
1973 }
1974 else
1975 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
1976 }
1977 }
1978 else
1979 nelts = integer_zero_node;
1980 }
1981
1982 if (last_absdcl)
1983 TREE_OPERAND (last_absdcl, 0) = absdcl;
1984 else
1985 TREE_VALUE (decl) = absdcl;
1986
1987 type = groktypename (decl);
1988 if (! type || type == error_mark_node)
1989 return error_mark_node;
1990 }
1991 else if (TREE_CODE (decl) == IDENTIFIER_NODE)
1992 {
1993 if (IDENTIFIER_HAS_TYPE_VALUE (decl))
1994 {
1995 /* An aggregate type. */
1996 type = IDENTIFIER_TYPE_VALUE (decl);
1997 decl = TYPE_MAIN_DECL (type);
1998 }
1999 else
2000 {
2001 /* A builtin type. */
2002 decl = lookup_name (decl, 1);
2003 my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215);
2004 type = TREE_TYPE (decl);
2005 }
2006 }
2007 else if (TREE_CODE (decl) == TYPE_DECL)
2008 {
2009 type = TREE_TYPE (decl);
2010 }
2011 else
2012 {
2013 type = decl;
2014 decl = TYPE_MAIN_DECL (type);
2015 }
2016
2017 if (processing_template_decl)
2018 {
2019 if (has_array)
2020 t = tree_cons (tree_cons (NULL_TREE, type, NULL_TREE),
2021 build_min_nt (ARRAY_REF, NULL_TREE, nelts),
2022 NULL_TREE);
2023 else
2024 t = type;
2025
2026 rval = build_min (NEW_EXPR, build_pointer_type (type),
2027 placement, t, init);
2028 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
2029 return rval;
2030 }
2031
2032 /* ``A reference cannot be created by the new operator. A reference
2033 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2034 returned by new.'' ARM 5.3.3 */
2035 if (TREE_CODE (type) == REFERENCE_TYPE)
2036 {
2037 error ("new cannot be applied to a reference type");
2038 type = TREE_TYPE (type);
2039 }
2040
2041 if (TREE_CODE (type) == FUNCTION_TYPE)
2042 {
2043 error ("new cannot be applied to a function type");
2044 return error_mark_node;
2045 }
2046
2047 /* When the object being created is an array, the new-expression yields a
2048 pointer to the initial element (if any) of the array. For example,
2049 both new int and new int[10] return an int*. 5.3.4. */
2050 if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0)
2051 {
2052 nelts = array_type_nelts_top (type);
2053 has_array = 1;
2054 type = TREE_TYPE (type);
2055 }
2056
2057 if (has_array)
2058 t = build_nt (ARRAY_REF, type, nelts);
2059 else
2060 t = type;
2061
2062 rval = build (NEW_EXPR, build_pointer_type (type), placement, t, init);
2063 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
2064 TREE_SIDE_EFFECTS (rval) = 1;
2065 rval = build_new_1 (rval);
2066 if (rval == error_mark_node)
2067 return error_mark_node;
2068
2069 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2070 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2071 TREE_NO_UNUSED_WARNING (rval) = 1;
2072
2073 return rval;
2074 }
2075
2076 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2077
2078 tree
2079 build_java_class_ref (type)
2080 tree type;
2081 {
2082 tree name = NULL_TREE, class_decl;
2083 static tree CL_suffix = NULL_TREE;
2084 if (CL_suffix == NULL_TREE)
2085 CL_suffix = get_identifier("class$");
2086 if (jclass_node == NULL_TREE)
2087 {
2088 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2089 if (jclass_node == NULL_TREE)
2090 fatal_error ("call to Java constructor, while `jclass' undefined");
2091
2092 jclass_node = TREE_TYPE (jclass_node);
2093 }
2094
2095 /* Mangle the class$ field */
2096 {
2097 tree field;
2098 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2099 if (DECL_NAME (field) == CL_suffix)
2100 {
2101 mangle_decl (field);
2102 name = DECL_ASSEMBLER_NAME (field);
2103 break;
2104 }
2105 if (!field)
2106 internal_error ("can't find class$");
2107 }
2108
2109 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2110 if (class_decl == NULL_TREE)
2111 {
2112 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2113 TREE_STATIC (class_decl) = 1;
2114 DECL_EXTERNAL (class_decl) = 1;
2115 TREE_PUBLIC (class_decl) = 1;
2116 DECL_ARTIFICIAL (class_decl) = 1;
2117 DECL_IGNORED_P (class_decl) = 1;
2118 pushdecl_top_level (class_decl);
2119 make_decl_rtl (class_decl, NULL);
2120 }
2121 return class_decl;
2122 }
2123
2124 /* Returns the size of the cookie to use when allocating an array
2125 whose elements have the indicated TYPE. Assumes that it is already
2126 known that a cookie is needed. */
2127
2128 static tree
2129 get_cookie_size (type)
2130 tree type;
2131 {
2132 tree cookie_size;
2133
2134 /* We need to allocate an additional max (sizeof (size_t), alignof
2135 (true_type)) bytes. */
2136 tree sizetype_size;
2137 tree type_align;
2138
2139 sizetype_size = size_in_bytes (sizetype);
2140 type_align = size_int (TYPE_ALIGN_UNIT (type));
2141 if (INT_CST_LT_UNSIGNED (type_align, sizetype_size))
2142 cookie_size = sizetype_size;
2143 else
2144 cookie_size = type_align;
2145
2146 return cookie_size;
2147 }
2148
2149 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
2150 value is immediately handed to expand_expr. */
2151
2152 static tree
2153 build_new_1 (exp)
2154 tree exp;
2155 {
2156 tree placement, init;
2157 tree type, true_type, size, rval, t;
2158 tree full_type;
2159 tree outer_nelts = NULL_TREE;
2160 tree nelts = NULL_TREE;
2161 tree alloc_call, alloc_expr, alloc_node;
2162 tree alloc_fn;
2163 tree cookie_expr, init_expr;
2164 int has_array = 0;
2165 enum tree_code code;
2166 int nothrow, check_new;
2167 /* Nonzero if the user wrote `::new' rather than just `new'. */
2168 int globally_qualified_p;
2169 int use_java_new = 0;
2170 /* If non-NULL, the number of extra bytes to allocate at the
2171 beginning of the storage allocated for an array-new expression in
2172 order to store the number of elements. */
2173 tree cookie_size = NULL_TREE;
2174 /* True if the function we are calling is a placement allocation
2175 function. */
2176 bool placement_allocation_fn_p;
2177 tree args = NULL_TREE;
2178
2179 placement = TREE_OPERAND (exp, 0);
2180 type = TREE_OPERAND (exp, 1);
2181 init = TREE_OPERAND (exp, 2);
2182 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
2183
2184 if (TREE_CODE (type) == ARRAY_REF)
2185 {
2186 has_array = 1;
2187 nelts = outer_nelts = TREE_OPERAND (type, 1);
2188 type = TREE_OPERAND (type, 0);
2189
2190 /* Use an incomplete array type to avoid VLA headaches. */
2191 full_type = build_cplus_array_type (type, NULL_TREE);
2192 }
2193 else
2194 full_type = type;
2195
2196 true_type = type;
2197
2198 code = has_array ? VEC_NEW_EXPR : NEW_EXPR;
2199
2200 /* If our base type is an array, then make sure we know how many elements
2201 it has. */
2202 while (TREE_CODE (true_type) == ARRAY_TYPE)
2203 {
2204 tree this_nelts = array_type_nelts_top (true_type);
2205 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
2206 true_type = TREE_TYPE (true_type);
2207 }
2208
2209 if (!complete_type_or_else (true_type, exp))
2210 return error_mark_node;
2211
2212 if (TREE_CODE (true_type) == VOID_TYPE)
2213 {
2214 error ("invalid type `void' for new");
2215 return error_mark_node;
2216 }
2217
2218 if (abstract_virtuals_error (NULL_TREE, true_type))
2219 return error_mark_node;
2220
2221 size = size_in_bytes (true_type);
2222 if (has_array)
2223 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2224
2225 /* Allocate the object. */
2226 if (! placement && TYPE_FOR_JAVA (true_type))
2227 {
2228 tree class_addr, alloc_decl;
2229 tree class_decl = build_java_class_ref (true_type);
2230 tree class_size = size_in_bytes (true_type);
2231 static const char alloc_name[] = "_Jv_AllocObject";
2232 use_java_new = 1;
2233 alloc_decl = IDENTIFIER_GLOBAL_VALUE (get_identifier (alloc_name));
2234 if (alloc_decl == NULL_TREE)
2235 fatal_error ("call to Java constructor with `%s' undefined",
2236 alloc_name);
2237
2238 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2239 alloc_call = (build_function_call
2240 (alloc_decl,
2241 tree_cons (NULL_TREE, class_addr,
2242 build_tree_list (NULL_TREE, class_size))));
2243 }
2244 else
2245 {
2246 tree fnname;
2247
2248 fnname = ansi_opname (code);
2249
2250 if (!globally_qualified_p
2251 && CLASS_TYPE_P (true_type)
2252 && (has_array
2253 ? TYPE_HAS_ARRAY_NEW_OPERATOR (true_type)
2254 : TYPE_HAS_NEW_OPERATOR (true_type)))
2255 {
2256 /* Use a class-specific operator new. */
2257 /* If a cookie is required, add some extra space. */
2258 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
2259 {
2260 cookie_size = get_cookie_size (true_type);
2261 size = size_binop (PLUS_EXPR, size, cookie_size);
2262 }
2263 /* Create the argument list. */
2264 args = tree_cons (NULL_TREE, size, placement);
2265 /* Call the function. */
2266 alloc_call = build_method_call (build_dummy_object (true_type),
2267 fnname, args,
2268 TYPE_BINFO (true_type),
2269 LOOKUP_NORMAL);
2270 }
2271 else
2272 {
2273 /* Use a global operator new. */
2274 /* See if a cookie might be required. */
2275 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
2276 cookie_size = get_cookie_size (true_type);
2277 else
2278 cookie_size = NULL_TREE;
2279
2280 alloc_call = build_operator_new_call (fnname, placement,
2281 &size, &cookie_size);
2282 }
2283 }
2284
2285 if (alloc_call == error_mark_node)
2286 return error_mark_node;
2287
2288 /* The ALLOC_CALL should be a CALL_EXPR -- or a COMPOUND_EXPR whose
2289 right-hand-side is ultimately a CALL_EXPR -- and the first
2290 operand should be the address of a known FUNCTION_DECL. */
2291 t = alloc_call;
2292 while (TREE_CODE (t) == COMPOUND_EXPR)
2293 t = TREE_OPERAND (t, 1);
2294 alloc_fn = get_callee_fndecl (t);
2295 my_friendly_assert (alloc_fn != NULL_TREE, 20020325);
2296
2297 /* Now, check to see if this function is actually a placement
2298 allocation function. This can happen even when PLACEMENT is NULL
2299 because we might have something like:
2300
2301 struct S { void* operator new (size_t, int i = 0); };
2302
2303 A call to `new S' will get this allocation function, even though
2304 there is no explicit placement argument. If there is more than
2305 one argument, or there are variable arguments, then this is a
2306 placement allocation function. */
2307 placement_allocation_fn_p
2308 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2309 || varargs_function_p (alloc_fn));
2310
2311 /* unless an allocation function is declared with an empty excep-
2312 tion-specification (_except.spec_), throw(), it indicates failure to
2313 allocate storage by throwing a bad_alloc exception (clause _except_,
2314 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2315 cation function is declared with an empty exception-specification,
2316 throw(), it returns null to indicate failure to allocate storage and a
2317 non-null pointer otherwise.
2318
2319 So check for a null exception spec on the op new we just called. */
2320
2321 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2322 check_new = (flag_check_new || nothrow) && ! use_java_new;
2323
2324 alloc_expr = alloc_call;
2325
2326 if (cookie_size)
2327 /* Adjust so we're pointing to the start of the object. */
2328 alloc_expr = build (PLUS_EXPR, TREE_TYPE (alloc_expr),
2329 alloc_expr, cookie_size);
2330
2331 /* While we're working, use a pointer to the type we've actually
2332 allocated. */
2333 alloc_expr = convert (build_pointer_type (full_type), alloc_expr);
2334
2335 /* Now save the allocation expression so we only evaluate it once. */
2336 alloc_expr = get_target_expr (alloc_expr);
2337 alloc_node = TREE_OPERAND (alloc_expr, 0);
2338
2339 /* Now initialize the cookie. */
2340 if (cookie_size)
2341 {
2342 tree cookie;
2343
2344 /* Store the number of bytes allocated so that we can know how
2345 many elements to destroy later. We use the last sizeof
2346 (size_t) bytes to store the number of elements. */
2347 cookie = build (MINUS_EXPR, build_pointer_type (sizetype),
2348 alloc_node, size_in_bytes (sizetype));
2349 cookie = build_indirect_ref (cookie, NULL);
2350
2351 cookie_expr = build (MODIFY_EXPR, void_type_node, cookie, nelts);
2352 TREE_SIDE_EFFECTS (cookie_expr) = 1;
2353 }
2354 else
2355 cookie_expr = NULL_TREE;
2356
2357 /* Now initialize the allocated object. */
2358 init_expr = NULL_TREE;
2359 if (TYPE_NEEDS_CONSTRUCTING (type) || init)
2360 {
2361 init_expr = build_indirect_ref (alloc_node, NULL);
2362
2363 if (init == void_zero_node)
2364 init = build_default_init (full_type, nelts);
2365 else if (init && pedantic && has_array)
2366 pedwarn ("ISO C++ forbids initialization in array new");
2367
2368 if (has_array)
2369 init_expr
2370 = build_vec_init (init_expr,
2371 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2372 integer_one_node),
2373 init, /*from_array=*/0);
2374 else if (TYPE_NEEDS_CONSTRUCTING (type))
2375 init_expr = build_special_member_call (init_expr,
2376 complete_ctor_identifier,
2377 init, TYPE_BINFO (true_type),
2378 LOOKUP_NORMAL);
2379 else
2380 {
2381 /* We are processing something like `new int (10)', which
2382 means allocate an int, and initialize it with 10. */
2383
2384 if (TREE_CODE (init) == TREE_LIST)
2385 {
2386 if (TREE_CHAIN (init) != NULL_TREE)
2387 pedwarn
2388 ("initializer list being treated as compound expression");
2389 init = build_compound_expr (init);
2390 }
2391 else if (TREE_CODE (init) == CONSTRUCTOR
2392 && TREE_TYPE (init) == NULL_TREE)
2393 {
2394 pedwarn ("ISO C++ forbids aggregate initializer to new");
2395 init = digest_init (type, init, 0);
2396 }
2397
2398 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2399 }
2400
2401 if (init_expr == error_mark_node)
2402 return error_mark_node;
2403
2404 /* If any part of the object initialization terminates by throwing an
2405 exception and a suitable deallocation function can be found, the
2406 deallocation function is called to free the memory in which the
2407 object was being constructed, after which the exception continues
2408 to propagate in the context of the new-expression. If no
2409 unambiguous matching deallocation function can be found,
2410 propagating the exception does not cause the object's memory to be
2411 freed. */
2412 if (flag_exceptions && ! use_java_new)
2413 {
2414 enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
2415 tree cleanup;
2416 int flags = (LOOKUP_NORMAL
2417 | (globally_qualified_p * LOOKUP_GLOBAL));
2418 tree delete_node;
2419
2420 if (cookie_size)
2421 /* Subtract the padding back out to get to the pointer returned
2422 from operator new. */
2423 delete_node = fold (build (MINUS_EXPR, TREE_TYPE (alloc_node),
2424 alloc_node, cookie_size));
2425 else
2426 delete_node = alloc_node;
2427
2428 /* The Standard is unclear here, but the right thing to do
2429 is to use the same method for finding deallocation
2430 functions that we use for finding allocation functions. */
2431 flags |= LOOKUP_SPECULATIVELY;
2432
2433 cleanup = build_op_delete_call (dcode, delete_node, size, flags,
2434 (placement_allocation_fn_p
2435 ? alloc_call : NULL_TREE));
2436
2437 /* Ack! First we allocate the memory. Then we set our sentry
2438 variable to true, and expand a cleanup that deletes the memory
2439 if sentry is true. Then we run the constructor, and finally
2440 clear the sentry.
2441
2442 It would be nice to be able to handle this without the sentry
2443 variable, perhaps with a TRY_CATCH_EXPR, but this doesn't
2444 work. We allocate the space first, so if there are any
2445 temporaries with cleanups in the constructor args we need this
2446 EH region to extend until end of full-expression to preserve
2447 nesting.
2448
2449 If the backend had some mechanism so that we could force the
2450 allocation to be expanded after all the other args to the
2451 constructor, that would fix the nesting problem and we could
2452 do away with this complexity. But that would complicate other
2453 things; in particular, it would make it difficult to bail out
2454 if the allocation function returns null. Er, no, it wouldn't;
2455 we just don't run the constructor. The standard says it's
2456 unspecified whether or not the args are evaluated.
2457
2458 FIXME FIXME FIXME inline invisible refs as refs. That way we
2459 can preevaluate value parameters. */
2460
2461 if (cleanup)
2462 {
2463 tree end, sentry, begin;
2464
2465 begin = get_target_expr (boolean_true_node);
2466 CLEANUP_EH_ONLY (begin) = 1;
2467
2468 sentry = TARGET_EXPR_SLOT (begin);
2469
2470 TARGET_EXPR_CLEANUP (begin)
2471 = build (COND_EXPR, void_type_node, sentry,
2472 cleanup, void_zero_node);
2473
2474 end = build (MODIFY_EXPR, TREE_TYPE (sentry),
2475 sentry, boolean_false_node);
2476
2477 init_expr
2478 = build (COMPOUND_EXPR, void_type_node, begin,
2479 build (COMPOUND_EXPR, void_type_node, init_expr,
2480 end));
2481 }
2482 }
2483 }
2484 else if (CP_TYPE_CONST_P (true_type))
2485 error ("uninitialized const in `new' of `%#T'", true_type);
2486
2487 /* Now build up the return value in reverse order. */
2488
2489 rval = alloc_node;
2490
2491 if (init_expr)
2492 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2493 if (cookie_expr)
2494 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2495
2496 if (rval == alloc_node)
2497 /* If we didn't modify anything, strip the TARGET_EXPR and return the
2498 (adjusted) call. */
2499 rval = TREE_OPERAND (alloc_expr, 1);
2500 else
2501 {
2502 if (check_new)
2503 {
2504 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2505 integer_zero_node);
2506 rval = build_conditional_expr (ifexp, rval, alloc_node);
2507 }
2508
2509 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2510 }
2511
2512 /* Now strip the outer ARRAY_TYPE, so we return a pointer to the first
2513 element. */
2514 rval = convert (build_pointer_type (type), rval);
2515
2516 return rval;
2517 }
2518 \f
2519 static tree
2520 build_vec_delete_1 (base, maxindex, type, auto_delete_vec, use_global_delete)
2521 tree base, maxindex, type;
2522 special_function_kind auto_delete_vec;
2523 int use_global_delete;
2524 {
2525 tree virtual_size;
2526 tree ptype = build_pointer_type (type = complete_type (type));
2527 tree size_exp = size_in_bytes (type);
2528
2529 /* Temporary variables used by the loop. */
2530 tree tbase, tbase_init;
2531
2532 /* This is the body of the loop that implements the deletion of a
2533 single element, and moves temp variables to next elements. */
2534 tree body;
2535
2536 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2537 tree loop;
2538
2539 /* This is the thing that governs what to do after the loop has run. */
2540 tree deallocate_expr = 0;
2541
2542 /* This is the BIND_EXPR which holds the outermost iterator of the
2543 loop. It is convenient to set this variable up and test it before
2544 executing any other code in the loop.
2545 This is also the containing expression returned by this function. */
2546 tree controller = NULL_TREE;
2547
2548 /* We should only have 1-D arrays here. */
2549 if (TREE_CODE (type) == ARRAY_TYPE)
2550 abort ();
2551
2552 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2553 {
2554 loop = integer_zero_node;
2555 goto no_destructor;
2556 }
2557
2558 /* The below is short by the cookie size. */
2559 virtual_size = size_binop (MULT_EXPR, size_exp,
2560 convert (sizetype, maxindex));
2561
2562 tbase = create_temporary_var (ptype);
2563 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2564 fold (build (PLUS_EXPR, ptype,
2565 base,
2566 virtual_size)));
2567 DECL_REGISTER (tbase) = 1;
2568 controller = build (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
2569 TREE_SIDE_EFFECTS (controller) = 1;
2570
2571 body = NULL_TREE;
2572
2573 body = tree_cons (NULL_TREE,
2574 build_delete (ptype, tbase, sfk_complete_destructor,
2575 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1),
2576 body);
2577
2578 body = tree_cons (NULL_TREE,
2579 build_modify_expr (tbase, NOP_EXPR, build (MINUS_EXPR, ptype, tbase, size_exp)),
2580 body);
2581
2582 body = tree_cons (NULL_TREE,
2583 build (EXIT_EXPR, void_type_node,
2584 build (EQ_EXPR, boolean_type_node, base, tbase)),
2585 body);
2586
2587 loop = build (LOOP_EXPR, void_type_node, build_compound_expr (body));
2588
2589 loop = tree_cons (NULL_TREE, tbase_init,
2590 tree_cons (NULL_TREE, loop, NULL_TREE));
2591 loop = build_compound_expr (loop);
2592
2593 no_destructor:
2594 /* If the delete flag is one, or anything else with the low bit set,
2595 delete the storage. */
2596 deallocate_expr = integer_zero_node;
2597 if (auto_delete_vec != sfk_base_destructor)
2598 {
2599 tree base_tbd;
2600
2601 /* The below is short by the cookie size. */
2602 virtual_size = size_binop (MULT_EXPR, size_exp,
2603 convert (sizetype, maxindex));
2604
2605 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2606 /* no header */
2607 base_tbd = base;
2608 else
2609 {
2610 tree cookie_size;
2611
2612 cookie_size = get_cookie_size (type);
2613 base_tbd
2614 = cp_convert (ptype,
2615 cp_build_binary_op (MINUS_EXPR,
2616 cp_convert (string_type_node,
2617 base),
2618 cookie_size));
2619 /* True size with header. */
2620 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2621 }
2622
2623 if (auto_delete_vec == sfk_deleting_destructor)
2624 deallocate_expr = build_x_delete (base_tbd,
2625 2 | use_global_delete,
2626 virtual_size);
2627 }
2628
2629 if (loop && deallocate_expr != integer_zero_node)
2630 {
2631 body = tree_cons (NULL_TREE, loop,
2632 tree_cons (NULL_TREE, deallocate_expr, NULL_TREE));
2633 body = build_compound_expr (body);
2634 }
2635 else
2636 body = loop;
2637
2638 /* Outermost wrapper: If pointer is null, punt. */
2639 body = fold (build (COND_EXPR, void_type_node,
2640 fold (build (NE_EXPR, boolean_type_node, base,
2641 integer_zero_node)),
2642 body, integer_zero_node));
2643 body = build1 (NOP_EXPR, void_type_node, body);
2644
2645 if (controller)
2646 {
2647 TREE_OPERAND (controller, 1) = body;
2648 body = controller;
2649 }
2650
2651 if (TREE_CODE (base) == SAVE_EXPR)
2652 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2653 body = build (COMPOUND_EXPR, void_type_node, base, body);
2654
2655 return cp_convert (void_type_node, body);
2656 }
2657
2658 /* Create an unnamed variable of the indicated TYPE. */
2659
2660 tree
2661 create_temporary_var (type)
2662 tree type;
2663 {
2664 tree decl;
2665
2666 decl = build_decl (VAR_DECL, NULL_TREE, type);
2667 TREE_USED (decl) = 1;
2668 DECL_ARTIFICIAL (decl) = 1;
2669 DECL_SOURCE_FILE (decl) = input_filename;
2670 DECL_SOURCE_LINE (decl) = lineno;
2671 DECL_IGNORED_P (decl) = 1;
2672 DECL_CONTEXT (decl) = current_function_decl;
2673
2674 return decl;
2675 }
2676
2677 /* Create a new temporary variable of the indicated TYPE, initialized
2678 to INIT.
2679
2680 It is not entered into current_binding_level, because that breaks
2681 things when it comes time to do final cleanups (which take place
2682 "outside" the binding contour of the function). */
2683
2684 static tree
2685 get_temp_regvar (type, init)
2686 tree type, init;
2687 {
2688 tree decl;
2689
2690 decl = create_temporary_var (type);
2691 if (building_stmt_tree ())
2692 add_decl_stmt (decl);
2693 else
2694 SET_DECL_RTL (decl, assign_temp (type, 2, 0, 1));
2695 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2696
2697 return decl;
2698 }
2699
2700 /* `build_vec_init' returns tree structure that performs
2701 initialization of a vector of aggregate types.
2702
2703 BASE is a reference to the vector, of ARRAY_TYPE.
2704 MAXINDEX is the maximum index of the array (one less than the
2705 number of elements). It is only used if
2706 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2707 INIT is the (possibly NULL) initializer.
2708
2709 FROM_ARRAY is 0 if we should init everything with INIT
2710 (i.e., every element initialized from INIT).
2711 FROM_ARRAY is 1 if we should index into INIT in parallel
2712 with initialization of DECL.
2713 FROM_ARRAY is 2 if we should index into INIT in parallel,
2714 but use assignment instead of initialization. */
2715
2716 tree
2717 build_vec_init (base, maxindex, init, from_array)
2718 tree base, init, maxindex;
2719 int from_array;
2720 {
2721 tree rval;
2722 tree base2 = NULL_TREE;
2723 tree size;
2724 tree itype = NULL_TREE;
2725 tree iterator;
2726 /* The type of the array. */
2727 tree atype = TREE_TYPE (base);
2728 /* The type of an element in the array. */
2729 tree type = TREE_TYPE (atype);
2730 /* The type of a pointer to an element in the array. */
2731 tree ptype;
2732 tree stmt_expr;
2733 tree compound_stmt;
2734 int destroy_temps;
2735 tree try_block = NULL_TREE;
2736 tree try_body = NULL_TREE;
2737 int num_initialized_elts = 0;
2738
2739 if (TYPE_DOMAIN (atype))
2740 maxindex = array_type_nelts (atype);
2741
2742 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2743 return error_mark_node;
2744
2745 if (init
2746 && (from_array == 2
2747 ? (!CLASS_TYPE_P (type) || !TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2748 : !TYPE_NEEDS_CONSTRUCTING (type))
2749 && ((TREE_CODE (init) == CONSTRUCTOR
2750 /* Don't do this if the CONSTRUCTOR might contain something
2751 that might throw and require us to clean up. */
2752 && (CONSTRUCTOR_ELTS (init) == NULL_TREE
2753 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (target_type (type))))
2754 || from_array))
2755 {
2756 /* Do non-default initialization of POD arrays resulting from
2757 brace-enclosed initializers. In this case, digest_init and
2758 store_constructor will handle the semantics for us. */
2759
2760 stmt_expr = build (INIT_EXPR, atype, base, init);
2761 return stmt_expr;
2762 }
2763
2764 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2765 ptype = build_pointer_type (type);
2766 size = size_in_bytes (type);
2767 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2768 base = cp_convert (ptype, default_conversion (base));
2769
2770 /* The code we are generating looks like:
2771
2772 T* t1 = (T*) base;
2773 T* rval = t1;
2774 ptrdiff_t iterator = maxindex;
2775 try {
2776 for (; iterator != -1; --iterator) {
2777 ... initialize *t1 ...
2778 ++t1;
2779 }
2780 } catch (...) {
2781 ... destroy elements that were constructed ...
2782 }
2783 return rval;
2784
2785 We can omit the try and catch blocks if we know that the
2786 initialization will never throw an exception, or if the array
2787 elements do not have destructors. We can omit the loop completely if
2788 the elements of the array do not have constructors.
2789
2790 We actually wrap the entire body of the above in a STMT_EXPR, for
2791 tidiness.
2792
2793 When copying from array to another, when the array elements have
2794 only trivial copy constructors, we should use __builtin_memcpy
2795 rather than generating a loop. That way, we could take advantage
2796 of whatever cleverness the back-end has for dealing with copies
2797 of blocks of memory. */
2798
2799 begin_init_stmts (&stmt_expr, &compound_stmt);
2800 destroy_temps = stmts_are_full_exprs_p ();
2801 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2802 rval = get_temp_regvar (ptype, base);
2803 base = get_temp_regvar (ptype, rval);
2804 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2805
2806 /* Protect the entire array initialization so that we can destroy
2807 the partially constructed array if an exception is thrown.
2808 But don't do this if we're assigning. */
2809 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2810 && from_array != 2)
2811 {
2812 try_block = begin_try_block ();
2813 try_body = begin_compound_stmt (/*has_no_scope=*/1);
2814 }
2815
2816 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2817 {
2818 /* Do non-default initialization of non-POD arrays resulting from
2819 brace-enclosed initializers. */
2820
2821 tree elts;
2822 from_array = 0;
2823
2824 for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
2825 {
2826 tree elt = TREE_VALUE (elts);
2827 tree baseref = build1 (INDIRECT_REF, type, base);
2828
2829 num_initialized_elts++;
2830
2831 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2832 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2833 else
2834 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2835 elt));
2836
2837 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2838 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2839 }
2840
2841 /* Clear out INIT so that we don't get confused below. */
2842 init = NULL_TREE;
2843 }
2844 else if (from_array)
2845 {
2846 /* If initializing one array from another, initialize element by
2847 element. We rely upon the below calls the do argument
2848 checking. */
2849 if (init)
2850 {
2851 base2 = default_conversion (init);
2852 itype = TREE_TYPE (base2);
2853 base2 = get_temp_regvar (itype, base2);
2854 itype = TREE_TYPE (itype);
2855 }
2856 else if (TYPE_LANG_SPECIFIC (type)
2857 && TYPE_NEEDS_CONSTRUCTING (type)
2858 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2859 {
2860 error ("initializer ends prematurely");
2861 return error_mark_node;
2862 }
2863 }
2864
2865 /* Now, default-initialize any remaining elements. We don't need to
2866 do that if a) the type does not need constructing, or b) we've
2867 already initialized all the elements.
2868
2869 We do need to keep going if we're copying an array. */
2870
2871 if (from_array
2872 || (TYPE_NEEDS_CONSTRUCTING (type)
2873 && ! (host_integerp (maxindex, 0)
2874 && (num_initialized_elts
2875 == tree_low_cst (maxindex, 0) + 1))))
2876 {
2877 /* If the ITERATOR is equal to -1, then we don't have to loop;
2878 we've already initialized all the elements. */
2879 tree for_stmt;
2880 tree for_body;
2881 tree elt_init;
2882
2883 for_stmt = begin_for_stmt ();
2884 finish_for_init_stmt (for_stmt);
2885 finish_for_cond (build (NE_EXPR, boolean_type_node,
2886 iterator, integer_minus_one_node),
2887 for_stmt);
2888 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2889 for_stmt);
2890
2891 /* Otherwise, loop through the elements. */
2892 for_body = begin_compound_stmt (/*has_no_scope=*/1);
2893
2894 /* When we're not building a statement-tree, things are a little
2895 complicated. If, when we recursively call build_aggr_init,
2896 an expression containing a TARGET_EXPR is expanded, then it
2897 may get a cleanup. Then, the result of that expression is
2898 passed to finish_expr_stmt, which will call
2899 expand_start_target_temps/expand_end_target_temps. However,
2900 the latter call will not cause the cleanup to run because
2901 that block will still be on the block stack. So, we call
2902 expand_start_target_temps here manually; the corresponding
2903 call to expand_end_target_temps below will cause the cleanup
2904 to be performed. */
2905 if (!building_stmt_tree ())
2906 expand_start_target_temps ();
2907
2908 if (from_array)
2909 {
2910 tree to = build1 (INDIRECT_REF, type, base);
2911 tree from;
2912
2913 if (base2)
2914 from = build1 (INDIRECT_REF, itype, base2);
2915 else
2916 from = NULL_TREE;
2917
2918 if (from_array == 2)
2919 elt_init = build_modify_expr (to, NOP_EXPR, from);
2920 else if (TYPE_NEEDS_CONSTRUCTING (type))
2921 elt_init = build_aggr_init (to, from, 0);
2922 else if (from)
2923 elt_init = build_modify_expr (to, NOP_EXPR, from);
2924 else
2925 abort ();
2926 }
2927 else if (TREE_CODE (type) == ARRAY_TYPE)
2928 {
2929 if (init != 0)
2930 sorry
2931 ("cannot initialize multi-dimensional array with initializer");
2932 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2933 0, 0, 0);
2934 }
2935 else
2936 elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
2937 init, 0);
2938
2939 /* The initialization of each array element is a
2940 full-expression, as per core issue 124. */
2941 if (!building_stmt_tree ())
2942 {
2943 genrtl_expr_stmt (elt_init);
2944 expand_end_target_temps ();
2945 }
2946 else
2947 {
2948 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2949 finish_expr_stmt (elt_init);
2950 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2951 }
2952
2953 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2954 if (base2)
2955 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2956
2957 finish_compound_stmt (/*has_no_scope=*/1, for_body);
2958 finish_for_stmt (for_stmt);
2959 }
2960
2961 /* Make sure to cleanup any partially constructed elements. */
2962 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2963 && from_array != 2)
2964 {
2965 tree e;
2966 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2967
2968 /* Flatten multi-dimensional array since build_vec_delete only
2969 expects one-dimensional array. */
2970 if (TREE_CODE (type) == ARRAY_TYPE)
2971 {
2972 m = cp_build_binary_op (MULT_EXPR, m,
2973 array_type_nelts_total (type));
2974 type = strip_array_types (type);
2975 }
2976
2977 finish_compound_stmt (/*has_no_scope=*/1, try_body);
2978 finish_cleanup_try_block (try_block);
2979 e = build_vec_delete_1 (rval, m,
2980 type,
2981 sfk_base_destructor,
2982 /*use_global_delete=*/0);
2983 finish_cleanup (e, try_block);
2984 }
2985
2986 /* The value of the array initialization is the address of the
2987 first element in the array. */
2988 finish_expr_stmt (rval);
2989
2990 stmt_expr = finish_init_stmts (stmt_expr, compound_stmt);
2991 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2992 return stmt_expr;
2993 }
2994
2995 /* Free up storage of type TYPE, at address ADDR.
2996
2997 TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
2998 of pointer.
2999
3000 VIRTUAL_SIZE is the amount of storage that was allocated, and is
3001 used as the second argument to operator delete. It can include
3002 things like padding and magic size cookies. It has virtual in it,
3003 because if you have a base pointer and you delete through a virtual
3004 destructor, it should be the size of the dynamic object, not the
3005 static object, see Free Store 12.5 ISO C++.
3006
3007 This does not call any destructors. */
3008
3009 tree
3010 build_x_delete (addr, which_delete, virtual_size)
3011 tree addr;
3012 int which_delete;
3013 tree virtual_size;
3014 {
3015 int use_global_delete = which_delete & 1;
3016 int use_vec_delete = !!(which_delete & 2);
3017 enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
3018 int flags = LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL);
3019
3020 return build_op_delete_call (code, addr, virtual_size, flags, NULL_TREE);
3021 }
3022
3023 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3024 build_delete. */
3025
3026 static tree
3027 build_dtor_call (exp, dtor_kind, flags)
3028 tree exp;
3029 special_function_kind dtor_kind;
3030 int flags;
3031 {
3032 tree name;
3033
3034 switch (dtor_kind)
3035 {
3036 case sfk_complete_destructor:
3037 name = complete_dtor_identifier;
3038 break;
3039
3040 case sfk_base_destructor:
3041 name = base_dtor_identifier;
3042 break;
3043
3044 case sfk_deleting_destructor:
3045 name = deleting_dtor_identifier;
3046 break;
3047
3048 default:
3049 abort ();
3050 }
3051 return build_method_call (exp, name, NULL_TREE,
3052 TYPE_BINFO (TREE_TYPE (exp)), flags);
3053 }
3054
3055 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3056 ADDR is an expression which yields the store to be destroyed.
3057 AUTO_DELETE is the name of the destructor to call, i.e., either
3058 sfk_complete_destructor, sfk_base_destructor, or
3059 sfk_deleting_destructor.
3060
3061 FLAGS is the logical disjunction of zero or more LOOKUP_
3062 flags. See cp-tree.h for more info. */
3063
3064 tree
3065 build_delete (type, addr, auto_delete, flags, use_global_delete)
3066 tree type, addr;
3067 special_function_kind auto_delete;
3068 int flags;
3069 int use_global_delete;
3070 {
3071 tree expr;
3072
3073 if (addr == error_mark_node)
3074 return error_mark_node;
3075
3076 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3077 set to `error_mark_node' before it gets properly cleaned up. */
3078 if (type == error_mark_node)
3079 return error_mark_node;
3080
3081 type = TYPE_MAIN_VARIANT (type);
3082
3083 if (TREE_CODE (type) == POINTER_TYPE)
3084 {
3085 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3086 if (TREE_CODE (type) == ARRAY_TYPE)
3087 goto handle_array;
3088
3089 if (VOID_TYPE_P (type)
3090 /* We don't want to warn about delete of void*, only other
3091 incomplete types. Deleting other incomplete types
3092 invokes undefined behavior, but it is not ill-formed, so
3093 compile to something that would even do The Right Thing
3094 (TM) should the type have a trivial dtor and no delete
3095 operator. */
3096 || !complete_type_or_diagnostic (type, addr, 1)
3097 || !IS_AGGR_TYPE (type))
3098 {
3099 /* Call the builtin operator delete. */
3100 return build_builtin_delete_call (addr);
3101 }
3102 if (TREE_SIDE_EFFECTS (addr))
3103 addr = save_expr (addr);
3104
3105 /* throw away const and volatile on target type of addr */
3106 addr = convert_force (build_pointer_type (type), addr, 0);
3107 }
3108 else if (TREE_CODE (type) == ARRAY_TYPE)
3109 {
3110 handle_array:
3111
3112 if (TYPE_DOMAIN (type) == NULL_TREE)
3113 {
3114 error ("unknown array size in delete");
3115 return error_mark_node;
3116 }
3117 return build_vec_delete (addr, array_type_nelts (type),
3118 auto_delete, use_global_delete);
3119 }
3120 else
3121 {
3122 /* Don't check PROTECT here; leave that decision to the
3123 destructor. If the destructor is accessible, call it,
3124 else report error. */
3125 addr = build_unary_op (ADDR_EXPR, addr, 0);
3126 if (TREE_SIDE_EFFECTS (addr))
3127 addr = save_expr (addr);
3128
3129 addr = convert_force (build_pointer_type (type), addr, 0);
3130 }
3131
3132 my_friendly_assert (IS_AGGR_TYPE (type), 220);
3133
3134 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3135 {
3136 if (auto_delete != sfk_deleting_destructor)
3137 return void_zero_node;
3138
3139 return build_op_delete_call
3140 (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3141 LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL),
3142 NULL_TREE);
3143 }
3144 else
3145 {
3146 tree do_delete = NULL_TREE;
3147 tree ifexp;
3148
3149 my_friendly_assert (TYPE_HAS_DESTRUCTOR (type), 20011213);
3150
3151 /* For `::delete x', we must not use the deleting destructor
3152 since then we would not be sure to get the global `operator
3153 delete'. */
3154 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3155 {
3156 /* We will use ADDR multiple times so we must save it. */
3157 addr = save_expr (addr);
3158 /* Delete the object. */
3159 do_delete = build_builtin_delete_call (addr);
3160 /* Otherwise, treat this like a complete object destructor
3161 call. */
3162 auto_delete = sfk_complete_destructor;
3163 }
3164 /* If the destructor is non-virtual, there is no deleting
3165 variant. Instead, we must explicitly call the appropriate
3166 `operator delete' here. */
3167 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3168 && auto_delete == sfk_deleting_destructor)
3169 {
3170 /* We will use ADDR multiple times so we must save it. */
3171 addr = save_expr (addr);
3172 /* Build the call. */
3173 do_delete = build_op_delete_call (DELETE_EXPR,
3174 addr,
3175 cxx_sizeof_nowarn (type),
3176 LOOKUP_NORMAL,
3177 NULL_TREE);
3178 /* Call the complete object destructor. */
3179 auto_delete = sfk_complete_destructor;
3180 }
3181 else if (auto_delete == sfk_deleting_destructor
3182 && TYPE_GETS_REG_DELETE (type))
3183 {
3184 /* Make sure we have access to the member op delete, even though
3185 we'll actually be calling it from the destructor. */
3186 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3187 LOOKUP_NORMAL, NULL_TREE);
3188 }
3189
3190 expr = build_dtor_call (build_indirect_ref (addr, NULL),
3191 auto_delete, flags);
3192 if (do_delete)
3193 expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
3194
3195 if (flags & LOOKUP_DESTRUCTOR)
3196 /* Explicit destructor call; don't check for null pointer. */
3197 ifexp = integer_one_node;
3198 else
3199 /* Handle deleting a null pointer. */
3200 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
3201
3202 if (ifexp != integer_one_node)
3203 expr = build (COND_EXPR, void_type_node,
3204 ifexp, expr, void_zero_node);
3205
3206 return expr;
3207 }
3208 }
3209
3210 /* At the beginning of a destructor, push cleanups that will call the
3211 destructors for our base classes and members.
3212
3213 Called from begin_destructor_body. */
3214
3215 void
3216 push_base_cleanups ()
3217 {
3218 tree binfos;
3219 int i, n_baseclasses;
3220 tree member;
3221 tree expr;
3222
3223 /* Run destructors for all virtual baseclasses. */
3224 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
3225 {
3226 tree vbases;
3227 tree cond = (condition_conversion
3228 (build (BIT_AND_EXPR, integer_type_node,
3229 current_in_charge_parm,
3230 integer_two_node)));
3231
3232 vbases = CLASSTYPE_VBASECLASSES (current_class_type);
3233 /* The CLASSTYPE_VBASECLASSES list is in initialization
3234 order, which is also the right order for pushing cleanups. */
3235 for (; vbases;
3236 vbases = TREE_CHAIN (vbases))
3237 {
3238 tree vbase = TREE_VALUE (vbases);
3239 tree base_type = BINFO_TYPE (vbase);
3240
3241 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (base_type))
3242 {
3243 expr = build_special_member_call (current_class_ref,
3244 base_dtor_identifier,
3245 NULL_TREE,
3246 vbase,
3247 (LOOKUP_NORMAL
3248 | LOOKUP_NONVIRTUAL));
3249 expr = build (COND_EXPR, void_type_node, cond,
3250 expr, void_zero_node);
3251 finish_decl_cleanup (NULL_TREE, expr);
3252 }
3253 }
3254 }
3255
3256 binfos = BINFO_BASETYPES (TYPE_BINFO (current_class_type));
3257 n_baseclasses = CLASSTYPE_N_BASECLASSES (current_class_type);
3258
3259 /* Take care of the remaining baseclasses. */
3260 for (i = 0; i < n_baseclasses; i++)
3261 {
3262 tree base_binfo = TREE_VEC_ELT (binfos, i);
3263 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3264 || TREE_VIA_VIRTUAL (base_binfo))
3265 continue;
3266
3267 expr = build_special_member_call (current_class_ref,
3268 base_dtor_identifier,
3269 NULL_TREE, base_binfo,
3270 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
3271 finish_decl_cleanup (NULL_TREE, expr);
3272 }
3273
3274 for (member = TYPE_FIELDS (current_class_type); member;
3275 member = TREE_CHAIN (member))
3276 {
3277 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
3278 continue;
3279 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3280 {
3281 tree this_member = (build_class_member_access_expr
3282 (current_class_ref, member,
3283 /*access_path=*/NULL_TREE,
3284 /*preserve_reference=*/false));
3285 tree this_type = TREE_TYPE (member);
3286 expr = build_delete (this_type, this_member,
3287 sfk_complete_destructor,
3288 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3289 0);
3290 finish_decl_cleanup (NULL_TREE, expr);
3291 }
3292 }
3293 }
3294
3295 /* For type TYPE, delete the virtual baseclass objects of DECL. */
3296
3297 tree
3298 build_vbase_delete (type, decl)
3299 tree type, decl;
3300 {
3301 tree vbases = CLASSTYPE_VBASECLASSES (type);
3302 tree result = NULL_TREE;
3303 tree addr = build_unary_op (ADDR_EXPR, decl, 0);
3304
3305 my_friendly_assert (addr != error_mark_node, 222);
3306
3307 while (vbases)
3308 {
3309 tree this_addr
3310 = convert_force (build_pointer_type (BINFO_TYPE (TREE_VALUE (vbases))),
3311 addr, 0);
3312 result = tree_cons (NULL_TREE,
3313 build_delete (TREE_TYPE (this_addr), this_addr,
3314 sfk_base_destructor,
3315 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0),
3316 result);
3317 vbases = TREE_CHAIN (vbases);
3318 }
3319 return build_compound_expr (nreverse (result));
3320 }
3321
3322 /* Build a C++ vector delete expression.
3323 MAXINDEX is the number of elements to be deleted.
3324 ELT_SIZE is the nominal size of each element in the vector.
3325 BASE is the expression that should yield the store to be deleted.
3326 This function expands (or synthesizes) these calls itself.
3327 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3328
3329 This also calls delete for virtual baseclasses of elements of the vector.
3330
3331 Update: MAXINDEX is no longer needed. The size can be extracted from the
3332 start of the vector for pointers, and from the type for arrays. We still
3333 use MAXINDEX for arrays because it happens to already have one of the
3334 values we'd have to extract. (We could use MAXINDEX with pointers to
3335 confirm the size, and trap if the numbers differ; not clear that it'd
3336 be worth bothering.) */
3337
3338 tree
3339 build_vec_delete (base, maxindex, auto_delete_vec, use_global_delete)
3340 tree base, maxindex;
3341 special_function_kind auto_delete_vec;
3342 int use_global_delete;
3343 {
3344 tree type;
3345
3346 if (TREE_CODE (base) == OFFSET_REF)
3347 base = resolve_offset_ref (base);
3348
3349 type = TREE_TYPE (base);
3350
3351 base = stabilize_reference (base);
3352
3353 if (TREE_CODE (type) == POINTER_TYPE)
3354 {
3355 /* Step back one from start of vector, and read dimension. */
3356 tree cookie_addr;
3357
3358 if (TREE_SIDE_EFFECTS (base))
3359 base = save_expr (base);
3360 type = strip_array_types (TREE_TYPE (type));
3361 cookie_addr = build (MINUS_EXPR,
3362 build_pointer_type (sizetype),
3363 base,
3364 TYPE_SIZE_UNIT (sizetype));
3365 maxindex = build_indirect_ref (cookie_addr, NULL);
3366 }
3367 else if (TREE_CODE (type) == ARRAY_TYPE)
3368 {
3369 /* get the total number of things in the array, maxindex is a bad name */
3370 maxindex = array_type_nelts_total (type);
3371 type = strip_array_types (type);
3372 base = build_unary_op (ADDR_EXPR, base, 1);
3373 if (TREE_SIDE_EFFECTS (base))
3374 base = save_expr (base);
3375 }
3376 else
3377 {
3378 if (base != error_mark_node)
3379 error ("type to vector delete is neither pointer or array type");
3380 return error_mark_node;
3381 }
3382
3383 return build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3384 use_global_delete);
3385 }