Implement explicit conversions ops as specified in N2437.
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_dtor_call (tree, special_function_kind, int);
55 static tree build_field_list (tree, tree, int *);
56 static tree build_vtbl_address (tree);
57
58 /* We are about to generate some complex initialization code.
59 Conceptually, it is all a single expression. However, we may want
60 to include conditionals, loops, and other such statement-level
61 constructs. Therefore, we build the initialization code inside a
62 statement-expression. This function starts such an expression.
63 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
64 pass them back to finish_init_stmts when the expression is
65 complete. */
66
67 static bool
68 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
69 {
70 bool is_global = !building_stmt_tree ();
71
72 *stmt_expr_p = begin_stmt_expr ();
73 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
74
75 return is_global;
76 }
77
78 /* Finish out the statement-expression begun by the previous call to
79 begin_init_stmts. Returns the statement-expression itself. */
80
81 static tree
82 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
83 {
84 finish_compound_stmt (compound_stmt);
85
86 stmt_expr = finish_stmt_expr (stmt_expr, true);
87
88 gcc_assert (!building_stmt_tree () == is_global);
89
90 return stmt_expr;
91 }
92
93 /* Constructors */
94
95 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
96 which we want to initialize the vtable pointer for, DATA is
97 TREE_LIST whose TREE_VALUE is the this ptr expression. */
98
99 static tree
100 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
101 {
102 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
103 return dfs_skip_bases;
104
105 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
106 {
107 tree base_ptr = TREE_VALUE ((tree) data);
108
109 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
110
111 expand_virtual_init (binfo, base_ptr);
112 }
113
114 return NULL_TREE;
115 }
116
117 /* Initialize all the vtable pointers in the object pointed to by
118 ADDR. */
119
120 void
121 initialize_vtbl_ptrs (tree addr)
122 {
123 tree list;
124 tree type;
125
126 type = TREE_TYPE (TREE_TYPE (addr));
127 list = build_tree_list (type, addr);
128
129 /* Walk through the hierarchy, initializing the vptr in each base
130 class. We do these in pre-order because we can't find the virtual
131 bases for a class until we've initialized the vtbl for that
132 class. */
133 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
134 }
135
136 /* Return an expression for the zero-initialization of an object with
137 type T. This expression will either be a constant (in the case
138 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
139 aggregate), or NULL (in the case that T does not require
140 initialization). In either case, the value can be used as
141 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
142 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
143 is the number of elements in the array. If STATIC_STORAGE_P is
144 TRUE, initializers are only generated for entities for which
145 zero-initialization does not simply mean filling the storage with
146 zero bytes. */
147
148 tree
149 build_zero_init (tree type, tree nelts, bool static_storage_p)
150 {
151 tree init = NULL_TREE;
152
153 /* [dcl.init]
154
155 To zero-initialize an object of type T means:
156
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
159
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
162
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
165
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
168
169 -- if T is a reference type, no initialization is performed. */
170
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
172
173 if (type == error_mark_node)
174 ;
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
180 ;
181 else if (SCALAR_TYPE_P (type))
182 init = convert (type, integer_zero_node);
183 else if (CLASS_TYPE_P (type))
184 {
185 tree field;
186 VEC(constructor_elt,gc) *v = NULL;
187
188 /* Iterate over the fields, building initializations. */
189 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
190 {
191 if (TREE_CODE (field) != FIELD_DECL)
192 continue;
193
194 /* Note that for class types there will be FIELD_DECLs
195 corresponding to base classes as well. Thus, iterating
196 over TYPE_FIELDs will result in correct initialization of
197 all of the subobjects. */
198 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
199 {
200 tree value = build_zero_init (TREE_TYPE (field),
201 /*nelts=*/NULL_TREE,
202 static_storage_p);
203 if (value)
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
205 }
206
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
210 }
211
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
214 }
215 else if (TREE_CODE (type) == ARRAY_TYPE)
216 {
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
219
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
223 nelts, integer_one_node);
224 else
225 max_index = array_type_nelts (type);
226
227 /* If we have an error_mark here, we should just return error mark
228 as we don't know the size of the array yet. */
229 if (max_index == error_mark_node)
230 return error_mark_node;
231 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
232
233 /* A zero-sized array, which is accepted as an extension, will
234 have an upper bound of -1. */
235 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
236 {
237 constructor_elt *ce;
238
239 v = VEC_alloc (constructor_elt, gc, 1);
240 ce = VEC_quick_push (constructor_elt, v, NULL);
241
242 /* If this is a one element array, we just use a regular init. */
243 if (tree_int_cst_equal (size_zero_node, max_index))
244 ce->index = size_zero_node;
245 else
246 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
247 max_index);
248
249 ce->value = build_zero_init (TREE_TYPE (type),
250 /*nelts=*/NULL_TREE,
251 static_storage_p);
252 }
253
254 /* Build a constructor to contain the initializations. */
255 init = build_constructor (type, v);
256 }
257 else if (TREE_CODE (type) == VECTOR_TYPE)
258 init = fold_convert (type, integer_zero_node);
259 else
260 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
261
262 /* In all cases, the initializer is a constant. */
263 if (init)
264 TREE_CONSTANT (init) = 1;
265
266 return init;
267 }
268
269 /* Return a suitable initializer for value-initializing an object of type
270 TYPE, as described in [dcl.init]. */
271
272 tree
273 build_value_init (tree type)
274 {
275 /* [dcl.init]
276
277 To value-initialize an object of type T means:
278
279 - if T is a class type (clause 9) with a user-provided constructor
280 (12.1), then the default constructor for T is called (and the
281 initialization is ill-formed if T has no accessible default
282 constructor);
283
284 - if T is a non-union class type without a user-provided constructor,
285 then every non-static data member and base-class component of T is
286 value-initialized;92)
287
288 - if T is an array type, then each element is value-initialized;
289
290 - otherwise, the object is zero-initialized.
291
292 A program that calls for default-initialization or
293 value-initialization of an entity of reference type is ill-formed.
294
295 92) Value-initialization for such a class object may be implemented by
296 zero-initializing the object and then calling the default
297 constructor. */
298
299 if (CLASS_TYPE_P (type))
300 {
301 if (type_has_user_provided_constructor (type))
302 return build_aggr_init_expr
303 (type,
304 build_special_member_call (NULL_TREE, complete_ctor_identifier,
305 NULL_TREE, type, LOOKUP_NORMAL,
306 tf_warning_or_error));
307 else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
308 {
309 /* This is a class that needs constructing, but doesn't have
310 a user-provided constructor. So we need to zero-initialize
311 the object and then call the implicitly defined ctor.
312 This will be handled in simplify_aggr_init_expr. */
313 tree ctor = build_special_member_call
314 (NULL_TREE, complete_ctor_identifier,
315 NULL_TREE, type, LOOKUP_NORMAL, tf_warning_or_error);
316
317 ctor = build_aggr_init_expr (type, ctor);
318 AGGR_INIT_ZERO_FIRST (ctor) = 1;
319 return ctor;
320 }
321 }
322 return build_value_init_noctor (type);
323 }
324
325 /* Like build_value_init, but don't call the constructor for TYPE. Used
326 for base initializers. */
327
328 tree
329 build_value_init_noctor (tree type)
330 {
331 if (CLASS_TYPE_P (type))
332 {
333 gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
334
335 if (TREE_CODE (type) != UNION_TYPE)
336 {
337 tree field;
338 VEC(constructor_elt,gc) *v = NULL;
339
340 /* Iterate over the fields, building initializations. */
341 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
342 {
343 tree ftype, value;
344
345 if (TREE_CODE (field) != FIELD_DECL)
346 continue;
347
348 ftype = TREE_TYPE (field);
349
350 if (TREE_CODE (ftype) == REFERENCE_TYPE)
351 error ("value-initialization of reference");
352
353 /* We could skip vfields and fields of types with
354 user-defined constructors, but I think that won't improve
355 performance at all; it should be simpler in general just
356 to zero out the entire object than try to only zero the
357 bits that actually need it. */
358
359 /* Note that for class types there will be FIELD_DECLs
360 corresponding to base classes as well. Thus, iterating
361 over TYPE_FIELDs will result in correct initialization of
362 all of the subobjects. */
363 value = build_value_init (ftype);
364
365 if (value)
366 CONSTRUCTOR_APPEND_ELT(v, field, value);
367 }
368
369 /* Build a constructor to contain the zero- initializations. */
370 return build_constructor (type, v);
371 }
372 }
373 else if (TREE_CODE (type) == ARRAY_TYPE)
374 {
375 VEC(constructor_elt,gc) *v = NULL;
376
377 /* Iterate over the array elements, building initializations. */
378 tree max_index = array_type_nelts (type);
379
380 /* If we have an error_mark here, we should just return error mark
381 as we don't know the size of the array yet. */
382 if (max_index == error_mark_node)
383 return error_mark_node;
384 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
385
386 /* A zero-sized array, which is accepted as an extension, will
387 have an upper bound of -1. */
388 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
389 {
390 constructor_elt *ce;
391
392 v = VEC_alloc (constructor_elt, gc, 1);
393 ce = VEC_quick_push (constructor_elt, v, NULL);
394
395 /* If this is a one element array, we just use a regular init. */
396 if (tree_int_cst_equal (size_zero_node, max_index))
397 ce->index = size_zero_node;
398 else
399 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
400 max_index);
401
402 ce->value = build_value_init (TREE_TYPE (type));
403
404 /* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
405 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
406 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
407 }
408
409 /* Build a constructor to contain the initializations. */
410 return build_constructor (type, v);
411 }
412
413 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
414 }
415
416 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
417 arguments. If TREE_LIST is void_type_node, an empty initializer
418 list was given; if NULL_TREE no initializer was given. */
419
420 static void
421 perform_member_init (tree member, tree init)
422 {
423 tree decl;
424 tree type = TREE_TYPE (member);
425
426 /* Effective C++ rule 12 requires that all data members be
427 initialized. */
428 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
429 warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
430 "list", current_function_decl, member);
431
432 /* Get an lvalue for the data member. */
433 decl = build_class_member_access_expr (current_class_ref, member,
434 /*access_path=*/NULL_TREE,
435 /*preserve_reference=*/true,
436 tf_warning_or_error);
437 if (decl == error_mark_node)
438 return;
439
440 if (init == void_type_node)
441 {
442 /* mem() means value-initialization. */
443 if (TREE_CODE (type) == ARRAY_TYPE)
444 {
445 init = build_vec_init (decl, NULL_TREE, NULL_TREE,
446 /*explicit_value_init_p=*/true,
447 /* from_array=*/0,
448 tf_warning_or_error);
449 finish_expr_stmt (init);
450 }
451 else
452 {
453 if (TREE_CODE (type) == REFERENCE_TYPE)
454 permerror (input_location, "%Jvalue-initialization of %q#D, "
455 "which has reference type",
456 current_function_decl, member);
457 else
458 {
459 init = build2 (INIT_EXPR, type, decl, build_value_init (type));
460 finish_expr_stmt (init);
461 }
462 }
463 }
464 /* Deal with this here, as we will get confused if we try to call the
465 assignment op for an anonymous union. This can happen in a
466 synthesized copy constructor. */
467 else if (ANON_AGGR_TYPE_P (type))
468 {
469 if (init)
470 {
471 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
472 finish_expr_stmt (init);
473 }
474 }
475 else if (TYPE_NEEDS_CONSTRUCTING (type))
476 {
477 if (init != NULL_TREE
478 && TREE_CODE (type) == ARRAY_TYPE
479 && TREE_CHAIN (init) == NULL_TREE
480 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
481 {
482 /* Initialization of one array from another. */
483 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
484 /*explicit_value_init_p=*/false,
485 /* from_array=*/1,
486 tf_warning_or_error));
487 }
488 else
489 {
490 if (CP_TYPE_CONST_P (type)
491 && init == NULL_TREE
492 && !type_has_user_provided_default_constructor (type))
493 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
494 vtable; still give this diagnostic. */
495 permerror (input_location, "%Juninitialized member %qD with %<const%> type %qT",
496 current_function_decl, member, type);
497 finish_expr_stmt (build_aggr_init (decl, init, 0,
498 tf_warning_or_error));
499 }
500 }
501 else
502 {
503 if (init == NULL_TREE)
504 {
505 /* member traversal: note it leaves init NULL */
506 if (TREE_CODE (type) == REFERENCE_TYPE)
507 permerror (input_location, "%Juninitialized reference member %qD",
508 current_function_decl, member);
509 else if (CP_TYPE_CONST_P (type))
510 permerror (input_location, "%Juninitialized member %qD with %<const%> type %qT",
511 current_function_decl, member, type);
512 }
513 else if (TREE_CODE (init) == TREE_LIST)
514 /* There was an explicit member initialization. Do some work
515 in that case. */
516 init = build_x_compound_expr_from_list (init, "member initializer");
517
518 if (init)
519 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
520 tf_warning_or_error));
521 }
522
523 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
524 {
525 tree expr;
526
527 expr = build_class_member_access_expr (current_class_ref, member,
528 /*access_path=*/NULL_TREE,
529 /*preserve_reference=*/false,
530 tf_warning_or_error);
531 expr = build_delete (type, expr, sfk_complete_destructor,
532 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
533
534 if (expr != error_mark_node)
535 finish_eh_cleanup (expr);
536 }
537 }
538
539 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
540 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
541
542 static tree
543 build_field_list (tree t, tree list, int *uses_unions_p)
544 {
545 tree fields;
546
547 *uses_unions_p = 0;
548
549 /* Note whether or not T is a union. */
550 if (TREE_CODE (t) == UNION_TYPE)
551 *uses_unions_p = 1;
552
553 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
554 {
555 /* Skip CONST_DECLs for enumeration constants and so forth. */
556 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
557 continue;
558
559 /* Keep track of whether or not any fields are unions. */
560 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
561 *uses_unions_p = 1;
562
563 /* For an anonymous struct or union, we must recursively
564 consider the fields of the anonymous type. They can be
565 directly initialized from the constructor. */
566 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
567 {
568 /* Add this field itself. Synthesized copy constructors
569 initialize the entire aggregate. */
570 list = tree_cons (fields, NULL_TREE, list);
571 /* And now add the fields in the anonymous aggregate. */
572 list = build_field_list (TREE_TYPE (fields), list,
573 uses_unions_p);
574 }
575 /* Add this field. */
576 else if (DECL_NAME (fields))
577 list = tree_cons (fields, NULL_TREE, list);
578 }
579
580 return list;
581 }
582
583 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
584 a FIELD_DECL or BINFO in T that needs initialization. The
585 TREE_VALUE gives the initializer, or list of initializer arguments.
586
587 Return a TREE_LIST containing all of the initializations required
588 for T, in the order in which they should be performed. The output
589 list has the same format as the input. */
590
591 static tree
592 sort_mem_initializers (tree t, tree mem_inits)
593 {
594 tree init;
595 tree base, binfo, base_binfo;
596 tree sorted_inits;
597 tree next_subobject;
598 VEC(tree,gc) *vbases;
599 int i;
600 int uses_unions_p;
601
602 /* Build up a list of initializations. The TREE_PURPOSE of entry
603 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
604 TREE_VALUE will be the constructor arguments, or NULL if no
605 explicit initialization was provided. */
606 sorted_inits = NULL_TREE;
607
608 /* Process the virtual bases. */
609 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
610 VEC_iterate (tree, vbases, i, base); i++)
611 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
612
613 /* Process the direct bases. */
614 for (binfo = TYPE_BINFO (t), i = 0;
615 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
616 if (!BINFO_VIRTUAL_P (base_binfo))
617 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
618
619 /* Process the non-static data members. */
620 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
621 /* Reverse the entire list of initializations, so that they are in
622 the order that they will actually be performed. */
623 sorted_inits = nreverse (sorted_inits);
624
625 /* If the user presented the initializers in an order different from
626 that in which they will actually occur, we issue a warning. Keep
627 track of the next subobject which can be explicitly initialized
628 without issuing a warning. */
629 next_subobject = sorted_inits;
630
631 /* Go through the explicit initializers, filling in TREE_PURPOSE in
632 the SORTED_INITS. */
633 for (init = mem_inits; init; init = TREE_CHAIN (init))
634 {
635 tree subobject;
636 tree subobject_init;
637
638 subobject = TREE_PURPOSE (init);
639
640 /* If the explicit initializers are in sorted order, then
641 SUBOBJECT will be NEXT_SUBOBJECT, or something following
642 it. */
643 for (subobject_init = next_subobject;
644 subobject_init;
645 subobject_init = TREE_CHAIN (subobject_init))
646 if (TREE_PURPOSE (subobject_init) == subobject)
647 break;
648
649 /* Issue a warning if the explicit initializer order does not
650 match that which will actually occur.
651 ??? Are all these on the correct lines? */
652 if (warn_reorder && !subobject_init)
653 {
654 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
655 warning (OPT_Wreorder, "%q+D will be initialized after",
656 TREE_PURPOSE (next_subobject));
657 else
658 warning (OPT_Wreorder, "base %qT will be initialized after",
659 TREE_PURPOSE (next_subobject));
660 if (TREE_CODE (subobject) == FIELD_DECL)
661 warning (OPT_Wreorder, " %q+#D", subobject);
662 else
663 warning (OPT_Wreorder, " base %qT", subobject);
664 warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
665 }
666
667 /* Look again, from the beginning of the list. */
668 if (!subobject_init)
669 {
670 subobject_init = sorted_inits;
671 while (TREE_PURPOSE (subobject_init) != subobject)
672 subobject_init = TREE_CHAIN (subobject_init);
673 }
674
675 /* It is invalid to initialize the same subobject more than
676 once. */
677 if (TREE_VALUE (subobject_init))
678 {
679 if (TREE_CODE (subobject) == FIELD_DECL)
680 error ("%Jmultiple initializations given for %qD",
681 current_function_decl, subobject);
682 else
683 error ("%Jmultiple initializations given for base %qT",
684 current_function_decl, subobject);
685 }
686
687 /* Record the initialization. */
688 TREE_VALUE (subobject_init) = TREE_VALUE (init);
689 next_subobject = subobject_init;
690 }
691
692 /* [class.base.init]
693
694 If a ctor-initializer specifies more than one mem-initializer for
695 multiple members of the same union (including members of
696 anonymous unions), the ctor-initializer is ill-formed. */
697 if (uses_unions_p)
698 {
699 tree last_field = NULL_TREE;
700 for (init = sorted_inits; init; init = TREE_CHAIN (init))
701 {
702 tree field;
703 tree field_type;
704 int done;
705
706 /* Skip uninitialized members and base classes. */
707 if (!TREE_VALUE (init)
708 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
709 continue;
710 /* See if this field is a member of a union, or a member of a
711 structure contained in a union, etc. */
712 field = TREE_PURPOSE (init);
713 for (field_type = DECL_CONTEXT (field);
714 !same_type_p (field_type, t);
715 field_type = TYPE_CONTEXT (field_type))
716 if (TREE_CODE (field_type) == UNION_TYPE)
717 break;
718 /* If this field is not a member of a union, skip it. */
719 if (TREE_CODE (field_type) != UNION_TYPE)
720 continue;
721
722 /* It's only an error if we have two initializers for the same
723 union type. */
724 if (!last_field)
725 {
726 last_field = field;
727 continue;
728 }
729
730 /* See if LAST_FIELD and the field initialized by INIT are
731 members of the same union. If so, there's a problem,
732 unless they're actually members of the same structure
733 which is itself a member of a union. For example, given:
734
735 union { struct { int i; int j; }; };
736
737 initializing both `i' and `j' makes sense. */
738 field_type = DECL_CONTEXT (field);
739 done = 0;
740 do
741 {
742 tree last_field_type;
743
744 last_field_type = DECL_CONTEXT (last_field);
745 while (1)
746 {
747 if (same_type_p (last_field_type, field_type))
748 {
749 if (TREE_CODE (field_type) == UNION_TYPE)
750 error ("%Jinitializations for multiple members of %qT",
751 current_function_decl, last_field_type);
752 done = 1;
753 break;
754 }
755
756 if (same_type_p (last_field_type, t))
757 break;
758
759 last_field_type = TYPE_CONTEXT (last_field_type);
760 }
761
762 /* If we've reached the outermost class, then we're
763 done. */
764 if (same_type_p (field_type, t))
765 break;
766
767 field_type = TYPE_CONTEXT (field_type);
768 }
769 while (!done);
770
771 last_field = field;
772 }
773 }
774
775 return sorted_inits;
776 }
777
778 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
779 is a TREE_LIST giving the explicit mem-initializer-list for the
780 constructor. The TREE_PURPOSE of each entry is a subobject (a
781 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
782 is a TREE_LIST giving the arguments to the constructor or
783 void_type_node for an empty list of arguments. */
784
785 void
786 emit_mem_initializers (tree mem_inits)
787 {
788 /* We will already have issued an error message about the fact that
789 the type is incomplete. */
790 if (!COMPLETE_TYPE_P (current_class_type))
791 return;
792
793 /* Sort the mem-initializers into the order in which the
794 initializations should be performed. */
795 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
796
797 in_base_initializer = 1;
798
799 /* Initialize base classes. */
800 while (mem_inits
801 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
802 {
803 tree subobject = TREE_PURPOSE (mem_inits);
804 tree arguments = TREE_VALUE (mem_inits);
805
806 /* If these initializations are taking place in a copy constructor,
807 the base class should probably be explicitly initialized if there
808 is a user-defined constructor in the base class (other than the
809 default constructor, which will be called anyway). */
810 if (extra_warnings && !arguments
811 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
812 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
813 warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
814 "copy constructor",
815 current_function_decl, BINFO_TYPE (subobject));
816
817 /* Initialize the base. */
818 if (BINFO_VIRTUAL_P (subobject))
819 construct_virtual_base (subobject, arguments);
820 else
821 {
822 tree base_addr;
823
824 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
825 subobject, 1);
826 expand_aggr_init_1 (subobject, NULL_TREE,
827 cp_build_indirect_ref (base_addr, NULL,
828 tf_warning_or_error),
829 arguments,
830 LOOKUP_NORMAL,
831 tf_warning_or_error);
832 expand_cleanup_for_base (subobject, NULL_TREE);
833 }
834
835 mem_inits = TREE_CHAIN (mem_inits);
836 }
837 in_base_initializer = 0;
838
839 /* Initialize the vptrs. */
840 initialize_vtbl_ptrs (current_class_ptr);
841
842 /* Initialize the data members. */
843 while (mem_inits)
844 {
845 perform_member_init (TREE_PURPOSE (mem_inits),
846 TREE_VALUE (mem_inits));
847 mem_inits = TREE_CHAIN (mem_inits);
848 }
849 }
850
851 /* Returns the address of the vtable (i.e., the value that should be
852 assigned to the vptr) for BINFO. */
853
854 static tree
855 build_vtbl_address (tree binfo)
856 {
857 tree binfo_for = binfo;
858 tree vtbl;
859
860 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
861 /* If this is a virtual primary base, then the vtable we want to store
862 is that for the base this is being used as the primary base of. We
863 can't simply skip the initialization, because we may be expanding the
864 inits of a subobject constructor where the virtual base layout
865 can be different. */
866 while (BINFO_PRIMARY_P (binfo_for))
867 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
868
869 /* Figure out what vtable BINFO's vtable is based on, and mark it as
870 used. */
871 vtbl = get_vtbl_decl_for_binfo (binfo_for);
872 TREE_USED (vtbl) = 1;
873
874 /* Now compute the address to use when initializing the vptr. */
875 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
876 if (TREE_CODE (vtbl) == VAR_DECL)
877 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
878
879 return vtbl;
880 }
881
882 /* This code sets up the virtual function tables appropriate for
883 the pointer DECL. It is a one-ply initialization.
884
885 BINFO is the exact type that DECL is supposed to be. In
886 multiple inheritance, this might mean "C's A" if C : A, B. */
887
888 static void
889 expand_virtual_init (tree binfo, tree decl)
890 {
891 tree vtbl, vtbl_ptr;
892 tree vtt_index;
893
894 /* Compute the initializer for vptr. */
895 vtbl = build_vtbl_address (binfo);
896
897 /* We may get this vptr from a VTT, if this is a subobject
898 constructor or subobject destructor. */
899 vtt_index = BINFO_VPTR_INDEX (binfo);
900 if (vtt_index)
901 {
902 tree vtbl2;
903 tree vtt_parm;
904
905 /* Compute the value to use, when there's a VTT. */
906 vtt_parm = current_vtt_parm;
907 vtbl2 = build2 (POINTER_PLUS_EXPR,
908 TREE_TYPE (vtt_parm),
909 vtt_parm,
910 vtt_index);
911 vtbl2 = cp_build_indirect_ref (vtbl2, NULL, tf_warning_or_error);
912 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
913
914 /* The actual initializer is the VTT value only in the subobject
915 constructor. In maybe_clone_body we'll substitute NULL for
916 the vtt_parm in the case of the non-subobject constructor. */
917 vtbl = build3 (COND_EXPR,
918 TREE_TYPE (vtbl),
919 build2 (EQ_EXPR, boolean_type_node,
920 current_in_charge_parm, integer_zero_node),
921 vtbl2,
922 vtbl);
923 }
924
925 /* Compute the location of the vtpr. */
926 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, NULL,
927 tf_warning_or_error),
928 TREE_TYPE (binfo));
929 gcc_assert (vtbl_ptr != error_mark_node);
930
931 /* Assign the vtable to the vptr. */
932 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
933 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
934 tf_warning_or_error));
935 }
936
937 /* If an exception is thrown in a constructor, those base classes already
938 constructed must be destroyed. This function creates the cleanup
939 for BINFO, which has just been constructed. If FLAG is non-NULL,
940 it is a DECL which is nonzero when this base needs to be
941 destroyed. */
942
943 static void
944 expand_cleanup_for_base (tree binfo, tree flag)
945 {
946 tree expr;
947
948 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
949 return;
950
951 /* Call the destructor. */
952 expr = build_special_member_call (current_class_ref,
953 base_dtor_identifier,
954 NULL_TREE,
955 binfo,
956 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
957 tf_warning_or_error);
958 if (flag)
959 expr = fold_build3 (COND_EXPR, void_type_node,
960 c_common_truthvalue_conversion (input_location, flag),
961 expr, integer_zero_node);
962
963 finish_eh_cleanup (expr);
964 }
965
966 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
967 constructor. */
968
969 static void
970 construct_virtual_base (tree vbase, tree arguments)
971 {
972 tree inner_if_stmt;
973 tree exp;
974 tree flag;
975
976 /* If there are virtual base classes with destructors, we need to
977 emit cleanups to destroy them if an exception is thrown during
978 the construction process. These exception regions (i.e., the
979 period during which the cleanups must occur) begin from the time
980 the construction is complete to the end of the function. If we
981 create a conditional block in which to initialize the
982 base-classes, then the cleanup region for the virtual base begins
983 inside a block, and ends outside of that block. This situation
984 confuses the sjlj exception-handling code. Therefore, we do not
985 create a single conditional block, but one for each
986 initialization. (That way the cleanup regions always begin
987 in the outer block.) We trust the back end to figure out
988 that the FLAG will not change across initializations, and
989 avoid doing multiple tests. */
990 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
991 inner_if_stmt = begin_if_stmt ();
992 finish_if_stmt_cond (flag, inner_if_stmt);
993
994 /* Compute the location of the virtual base. If we're
995 constructing virtual bases, then we must be the most derived
996 class. Therefore, we don't have to look up the virtual base;
997 we already know where it is. */
998 exp = convert_to_base_statically (current_class_ref, vbase);
999
1000 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1001 LOOKUP_COMPLAIN, tf_warning_or_error);
1002 finish_then_clause (inner_if_stmt);
1003 finish_if_stmt (inner_if_stmt);
1004
1005 expand_cleanup_for_base (vbase, flag);
1006 }
1007
1008 /* Find the context in which this FIELD can be initialized. */
1009
1010 static tree
1011 initializing_context (tree field)
1012 {
1013 tree t = DECL_CONTEXT (field);
1014
1015 /* Anonymous union members can be initialized in the first enclosing
1016 non-anonymous union context. */
1017 while (t && ANON_AGGR_TYPE_P (t))
1018 t = TYPE_CONTEXT (t);
1019 return t;
1020 }
1021
1022 /* Function to give error message if member initialization specification
1023 is erroneous. FIELD is the member we decided to initialize.
1024 TYPE is the type for which the initialization is being performed.
1025 FIELD must be a member of TYPE.
1026
1027 MEMBER_NAME is the name of the member. */
1028
1029 static int
1030 member_init_ok_or_else (tree field, tree type, tree member_name)
1031 {
1032 if (field == error_mark_node)
1033 return 0;
1034 if (!field)
1035 {
1036 error ("class %qT does not have any field named %qD", type,
1037 member_name);
1038 return 0;
1039 }
1040 if (TREE_CODE (field) == VAR_DECL)
1041 {
1042 error ("%q#D is a static data member; it can only be "
1043 "initialized at its definition",
1044 field);
1045 return 0;
1046 }
1047 if (TREE_CODE (field) != FIELD_DECL)
1048 {
1049 error ("%q#D is not a non-static data member of %qT",
1050 field, type);
1051 return 0;
1052 }
1053 if (initializing_context (field) != type)
1054 {
1055 error ("class %qT does not have any field named %qD", type,
1056 member_name);
1057 return 0;
1058 }
1059
1060 return 1;
1061 }
1062
1063 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1064 is a _TYPE node or TYPE_DECL which names a base for that type.
1065 Check the validity of NAME, and return either the base _TYPE, base
1066 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1067 NULL_TREE and issue a diagnostic.
1068
1069 An old style unnamed direct single base construction is permitted,
1070 where NAME is NULL. */
1071
1072 tree
1073 expand_member_init (tree name)
1074 {
1075 tree basetype;
1076 tree field;
1077
1078 if (!current_class_ref)
1079 return NULL_TREE;
1080
1081 if (!name)
1082 {
1083 /* This is an obsolete unnamed base class initializer. The
1084 parser will already have warned about its use. */
1085 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1086 {
1087 case 0:
1088 error ("unnamed initializer for %qT, which has no base classes",
1089 current_class_type);
1090 return NULL_TREE;
1091 case 1:
1092 basetype = BINFO_TYPE
1093 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1094 break;
1095 default:
1096 error ("unnamed initializer for %qT, which uses multiple inheritance",
1097 current_class_type);
1098 return NULL_TREE;
1099 }
1100 }
1101 else if (TYPE_P (name))
1102 {
1103 basetype = TYPE_MAIN_VARIANT (name);
1104 name = TYPE_NAME (name);
1105 }
1106 else if (TREE_CODE (name) == TYPE_DECL)
1107 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1108 else
1109 basetype = NULL_TREE;
1110
1111 if (basetype)
1112 {
1113 tree class_binfo;
1114 tree direct_binfo;
1115 tree virtual_binfo;
1116 int i;
1117
1118 if (current_template_parms)
1119 return basetype;
1120
1121 class_binfo = TYPE_BINFO (current_class_type);
1122 direct_binfo = NULL_TREE;
1123 virtual_binfo = NULL_TREE;
1124
1125 /* Look for a direct base. */
1126 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1127 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1128 break;
1129
1130 /* Look for a virtual base -- unless the direct base is itself
1131 virtual. */
1132 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1133 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1134
1135 /* [class.base.init]
1136
1137 If a mem-initializer-id is ambiguous because it designates
1138 both a direct non-virtual base class and an inherited virtual
1139 base class, the mem-initializer is ill-formed. */
1140 if (direct_binfo && virtual_binfo)
1141 {
1142 error ("%qD is both a direct base and an indirect virtual base",
1143 basetype);
1144 return NULL_TREE;
1145 }
1146
1147 if (!direct_binfo && !virtual_binfo)
1148 {
1149 if (CLASSTYPE_VBASECLASSES (current_class_type))
1150 error ("type %qT is not a direct or virtual base of %qT",
1151 basetype, current_class_type);
1152 else
1153 error ("type %qT is not a direct base of %qT",
1154 basetype, current_class_type);
1155 return NULL_TREE;
1156 }
1157
1158 return direct_binfo ? direct_binfo : virtual_binfo;
1159 }
1160 else
1161 {
1162 if (TREE_CODE (name) == IDENTIFIER_NODE)
1163 field = lookup_field (current_class_type, name, 1, false);
1164 else
1165 field = name;
1166
1167 if (member_init_ok_or_else (field, current_class_type, name))
1168 return field;
1169 }
1170
1171 return NULL_TREE;
1172 }
1173
1174 /* This is like `expand_member_init', only it stores one aggregate
1175 value into another.
1176
1177 INIT comes in two flavors: it is either a value which
1178 is to be stored in EXP, or it is a parameter list
1179 to go to a constructor, which will operate on EXP.
1180 If INIT is not a parameter list for a constructor, then set
1181 LOOKUP_ONLYCONVERTING.
1182 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1183 the initializer, if FLAGS is 0, then it is the (init) form.
1184 If `init' is a CONSTRUCTOR, then we emit a warning message,
1185 explaining that such initializations are invalid.
1186
1187 If INIT resolves to a CALL_EXPR which happens to return
1188 something of the type we are looking for, then we know
1189 that we can safely use that call to perform the
1190 initialization.
1191
1192 The virtual function table pointer cannot be set up here, because
1193 we do not really know its type.
1194
1195 This never calls operator=().
1196
1197 When initializing, nothing is CONST.
1198
1199 A default copy constructor may have to be used to perform the
1200 initialization.
1201
1202 A constructor or a conversion operator may have to be used to
1203 perform the initialization, but not both, as it would be ambiguous. */
1204
1205 tree
1206 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1207 {
1208 tree stmt_expr;
1209 tree compound_stmt;
1210 int destroy_temps;
1211 tree type = TREE_TYPE (exp);
1212 int was_const = TREE_READONLY (exp);
1213 int was_volatile = TREE_THIS_VOLATILE (exp);
1214 int is_global;
1215
1216 if (init == error_mark_node)
1217 return error_mark_node;
1218
1219 TREE_READONLY (exp) = 0;
1220 TREE_THIS_VOLATILE (exp) = 0;
1221
1222 if (init && TREE_CODE (init) != TREE_LIST)
1223 flags |= LOOKUP_ONLYCONVERTING;
1224
1225 if (TREE_CODE (type) == ARRAY_TYPE)
1226 {
1227 tree itype;
1228
1229 /* An array may not be initialized use the parenthesized
1230 initialization form -- unless the initializer is "()". */
1231 if (init && TREE_CODE (init) == TREE_LIST)
1232 {
1233 if (complain & tf_error)
1234 error ("bad array initializer");
1235 return error_mark_node;
1236 }
1237 /* Must arrange to initialize each element of EXP
1238 from elements of INIT. */
1239 itype = init ? TREE_TYPE (init) : NULL_TREE;
1240 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1241 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1242 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1243 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1244 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1245 /*explicit_value_init_p=*/false,
1246 itype && same_type_p (itype,
1247 TREE_TYPE (exp)),
1248 complain);
1249 TREE_READONLY (exp) = was_const;
1250 TREE_THIS_VOLATILE (exp) = was_volatile;
1251 TREE_TYPE (exp) = type;
1252 if (init)
1253 TREE_TYPE (init) = itype;
1254 return stmt_expr;
1255 }
1256
1257 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1258 /* Just know that we've seen something for this node. */
1259 TREE_USED (exp) = 1;
1260
1261 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1262 destroy_temps = stmts_are_full_exprs_p ();
1263 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1264 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1265 init, LOOKUP_NORMAL|flags, complain);
1266 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1267 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1268 TREE_READONLY (exp) = was_const;
1269 TREE_THIS_VOLATILE (exp) = was_volatile;
1270
1271 return stmt_expr;
1272 }
1273
1274 static void
1275 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1276 tsubst_flags_t complain)
1277 {
1278 tree type = TREE_TYPE (exp);
1279 tree ctor_name;
1280
1281 /* It fails because there may not be a constructor which takes
1282 its own type as the first (or only parameter), but which does
1283 take other types via a conversion. So, if the thing initializing
1284 the expression is a unit element of type X, first try X(X&),
1285 followed by initialization by X. If neither of these work
1286 out, then look hard. */
1287 tree rval;
1288 tree parms;
1289
1290 if (init && TREE_CODE (init) != TREE_LIST
1291 && (flags & LOOKUP_ONLYCONVERTING))
1292 {
1293 /* Base subobjects should only get direct-initialization. */
1294 gcc_assert (true_exp == exp);
1295
1296 if (flags & DIRECT_BIND)
1297 /* Do nothing. We hit this in two cases: Reference initialization,
1298 where we aren't initializing a real variable, so we don't want
1299 to run a new constructor; and catching an exception, where we
1300 have already built up the constructor call so we could wrap it
1301 in an exception region. */;
1302 else if (BRACE_ENCLOSED_INITIALIZER_P (init)
1303 && CP_AGGREGATE_TYPE_P (type))
1304 {
1305 /* A brace-enclosed initializer for an aggregate. */
1306 init = digest_init (type, init);
1307 }
1308 else
1309 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1310
1311 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1312 /* We need to protect the initialization of a catch parm with a
1313 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1314 around the TARGET_EXPR for the copy constructor. See
1315 initialize_handler_parm. */
1316 {
1317 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1318 TREE_OPERAND (init, 0));
1319 TREE_TYPE (init) = void_type_node;
1320 }
1321 else
1322 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1323 TREE_SIDE_EFFECTS (init) = 1;
1324 finish_expr_stmt (init);
1325 return;
1326 }
1327
1328 if (init == NULL_TREE
1329 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1330 {
1331 parms = init;
1332 if (parms)
1333 init = TREE_VALUE (parms);
1334 }
1335 else
1336 parms = build_tree_list (NULL_TREE, init);
1337
1338 if (true_exp == exp)
1339 ctor_name = complete_ctor_identifier;
1340 else
1341 ctor_name = base_ctor_identifier;
1342
1343 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags,
1344 complain);
1345 if (TREE_SIDE_EFFECTS (rval))
1346 finish_expr_stmt (convert_to_void (rval, NULL, complain));
1347 }
1348
1349 /* This function is responsible for initializing EXP with INIT
1350 (if any).
1351
1352 BINFO is the binfo of the type for who we are performing the
1353 initialization. For example, if W is a virtual base class of A and B,
1354 and C : A, B.
1355 If we are initializing B, then W must contain B's W vtable, whereas
1356 were we initializing C, W must contain C's W vtable.
1357
1358 TRUE_EXP is nonzero if it is the true expression being initialized.
1359 In this case, it may be EXP, or may just contain EXP. The reason we
1360 need this is because if EXP is a base element of TRUE_EXP, we
1361 don't necessarily know by looking at EXP where its virtual
1362 baseclass fields should really be pointing. But we do know
1363 from TRUE_EXP. In constructors, we don't know anything about
1364 the value being initialized.
1365
1366 FLAGS is just passed to `build_new_method_call'. See that function
1367 for its description. */
1368
1369 static void
1370 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1371 tsubst_flags_t complain)
1372 {
1373 tree type = TREE_TYPE (exp);
1374
1375 gcc_assert (init != error_mark_node && type != error_mark_node);
1376 gcc_assert (building_stmt_tree ());
1377
1378 /* Use a function returning the desired type to initialize EXP for us.
1379 If the function is a constructor, and its first argument is
1380 NULL_TREE, know that it was meant for us--just slide exp on
1381 in and expand the constructor. Constructors now come
1382 as TARGET_EXPRs. */
1383
1384 if (init && TREE_CODE (exp) == VAR_DECL
1385 && COMPOUND_LITERAL_P (init))
1386 {
1387 /* If store_init_value returns NULL_TREE, the INIT has been
1388 recorded as the DECL_INITIAL for EXP. That means there's
1389 nothing more we have to do. */
1390 init = store_init_value (exp, init, flags);
1391 if (init)
1392 finish_expr_stmt (init);
1393 return;
1394 }
1395
1396 /* If an explicit -- but empty -- initializer list was present,
1397 that's value-initialization. */
1398 if (init == void_type_node)
1399 {
1400 /* If there's a user-provided constructor, we just call that. */
1401 if (type_has_user_provided_constructor (type))
1402 /* Fall through. */;
1403 /* If there isn't, but we still need to call the constructor,
1404 zero out the object first. */
1405 else if (TYPE_NEEDS_CONSTRUCTING (type))
1406 {
1407 init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
1408 init = build2 (INIT_EXPR, type, exp, init);
1409 finish_expr_stmt (init);
1410 /* And then call the constructor. */
1411 }
1412 /* If we don't need to mess with the constructor at all,
1413 then just zero out the object and we're done. */
1414 else
1415 {
1416 init = build2 (INIT_EXPR, type, exp, build_value_init_noctor (type));
1417 finish_expr_stmt (init);
1418 return;
1419 }
1420 init = NULL_TREE;
1421 }
1422
1423 /* We know that expand_default_init can handle everything we want
1424 at this point. */
1425 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1426 }
1427
1428 /* Report an error if TYPE is not a user-defined, class type. If
1429 OR_ELSE is nonzero, give an error message. */
1430
1431 int
1432 is_class_type (tree type, int or_else)
1433 {
1434 if (type == error_mark_node)
1435 return 0;
1436
1437 if (! CLASS_TYPE_P (type))
1438 {
1439 if (or_else)
1440 error ("%qT is not a class type", type);
1441 return 0;
1442 }
1443 return 1;
1444 }
1445
1446 tree
1447 get_type_value (tree name)
1448 {
1449 if (name == error_mark_node)
1450 return NULL_TREE;
1451
1452 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1453 return IDENTIFIER_TYPE_VALUE (name);
1454 else
1455 return NULL_TREE;
1456 }
1457
1458 /* Build a reference to a member of an aggregate. This is not a C++
1459 `&', but really something which can have its address taken, and
1460 then act as a pointer to member, for example TYPE :: FIELD can have
1461 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1462 this expression is the operand of "&".
1463
1464 @@ Prints out lousy diagnostics for operator <typename>
1465 @@ fields.
1466
1467 @@ This function should be rewritten and placed in search.c. */
1468
1469 tree
1470 build_offset_ref (tree type, tree member, bool address_p)
1471 {
1472 tree decl;
1473 tree basebinfo = NULL_TREE;
1474
1475 /* class templates can come in as TEMPLATE_DECLs here. */
1476 if (TREE_CODE (member) == TEMPLATE_DECL)
1477 return member;
1478
1479 if (dependent_type_p (type) || type_dependent_expression_p (member))
1480 return build_qualified_name (NULL_TREE, type, member,
1481 /*template_p=*/false);
1482
1483 gcc_assert (TYPE_P (type));
1484 if (! is_class_type (type, 1))
1485 return error_mark_node;
1486
1487 gcc_assert (DECL_P (member) || BASELINK_P (member));
1488 /* Callers should call mark_used before this point. */
1489 gcc_assert (!DECL_P (member) || TREE_USED (member));
1490
1491 if (!COMPLETE_TYPE_P (complete_type (type))
1492 && !TYPE_BEING_DEFINED (type))
1493 {
1494 error ("incomplete type %qT does not have member %qD", type, member);
1495 return error_mark_node;
1496 }
1497
1498 /* Entities other than non-static members need no further
1499 processing. */
1500 if (TREE_CODE (member) == TYPE_DECL)
1501 return member;
1502 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1503 return convert_from_reference (member);
1504
1505 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1506 {
1507 error ("invalid pointer to bit-field %qD", member);
1508 return error_mark_node;
1509 }
1510
1511 /* Set up BASEBINFO for member lookup. */
1512 decl = maybe_dummy_object (type, &basebinfo);
1513
1514 /* A lot of this logic is now handled in lookup_member. */
1515 if (BASELINK_P (member))
1516 {
1517 /* Go from the TREE_BASELINK to the member function info. */
1518 tree t = BASELINK_FUNCTIONS (member);
1519
1520 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1521 {
1522 /* Get rid of a potential OVERLOAD around it. */
1523 t = OVL_CURRENT (t);
1524
1525 /* Unique functions are handled easily. */
1526
1527 /* For non-static member of base class, we need a special rule
1528 for access checking [class.protected]:
1529
1530 If the access is to form a pointer to member, the
1531 nested-name-specifier shall name the derived class
1532 (or any class derived from that class). */
1533 if (address_p && DECL_P (t)
1534 && DECL_NONSTATIC_MEMBER_P (t))
1535 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1536 else
1537 perform_or_defer_access_check (basebinfo, t, t);
1538
1539 if (DECL_STATIC_FUNCTION_P (t))
1540 return t;
1541 member = t;
1542 }
1543 else
1544 TREE_TYPE (member) = unknown_type_node;
1545 }
1546 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1547 /* We need additional test besides the one in
1548 check_accessibility_of_qualified_id in case it is
1549 a pointer to non-static member. */
1550 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1551
1552 if (!address_p)
1553 {
1554 /* If MEMBER is non-static, then the program has fallen afoul of
1555 [expr.prim]:
1556
1557 An id-expression that denotes a nonstatic data member or
1558 nonstatic member function of a class can only be used:
1559
1560 -- as part of a class member access (_expr.ref_) in which the
1561 object-expression refers to the member's class or a class
1562 derived from that class, or
1563
1564 -- to form a pointer to member (_expr.unary.op_), or
1565
1566 -- in the body of a nonstatic member function of that class or
1567 of a class derived from that class (_class.mfct.nonstatic_), or
1568
1569 -- in a mem-initializer for a constructor for that class or for
1570 a class derived from that class (_class.base.init_). */
1571 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1572 {
1573 /* Build a representation of the qualified name suitable
1574 for use as the operand to "&" -- even though the "&" is
1575 not actually present. */
1576 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1577 /* In Microsoft mode, treat a non-static member function as if
1578 it were a pointer-to-member. */
1579 if (flag_ms_extensions)
1580 {
1581 PTRMEM_OK_P (member) = 1;
1582 return cp_build_unary_op (ADDR_EXPR, member, 0,
1583 tf_warning_or_error);
1584 }
1585 error ("invalid use of non-static member function %qD",
1586 TREE_OPERAND (member, 1));
1587 return error_mark_node;
1588 }
1589 else if (TREE_CODE (member) == FIELD_DECL)
1590 {
1591 error ("invalid use of non-static data member %qD", member);
1592 return error_mark_node;
1593 }
1594 return member;
1595 }
1596
1597 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1598 PTRMEM_OK_P (member) = 1;
1599 return member;
1600 }
1601
1602 /* If DECL is a scalar enumeration constant or variable with a
1603 constant initializer, return the initializer (or, its initializers,
1604 recursively); otherwise, return DECL. If INTEGRAL_P, the
1605 initializer is only returned if DECL is an integral
1606 constant-expression. */
1607
1608 static tree
1609 constant_value_1 (tree decl, bool integral_p)
1610 {
1611 while (TREE_CODE (decl) == CONST_DECL
1612 || (integral_p
1613 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1614 : (TREE_CODE (decl) == VAR_DECL
1615 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1616 {
1617 tree init;
1618 /* Static data members in template classes may have
1619 non-dependent initializers. References to such non-static
1620 data members are not value-dependent, so we must retrieve the
1621 initializer here. The DECL_INITIAL will have the right type,
1622 but will not have been folded because that would prevent us
1623 from performing all appropriate semantic checks at
1624 instantiation time. */
1625 if (DECL_CLASS_SCOPE_P (decl)
1626 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1627 && uses_template_parms (CLASSTYPE_TI_ARGS
1628 (DECL_CONTEXT (decl))))
1629 {
1630 ++processing_template_decl;
1631 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1632 --processing_template_decl;
1633 }
1634 else
1635 {
1636 /* If DECL is a static data member in a template
1637 specialization, we must instantiate it here. The
1638 initializer for the static data member is not processed
1639 until needed; we need it now. */
1640 mark_used (decl);
1641 init = DECL_INITIAL (decl);
1642 }
1643 if (init == error_mark_node)
1644 return decl;
1645 /* Initializers in templates are generally expanded during
1646 instantiation, so before that for const int i(2)
1647 INIT is a TREE_LIST with the actual initializer as
1648 TREE_VALUE. */
1649 if (processing_template_decl
1650 && init
1651 && TREE_CODE (init) == TREE_LIST
1652 && TREE_CHAIN (init) == NULL_TREE)
1653 init = TREE_VALUE (init);
1654 if (!init
1655 || !TREE_TYPE (init)
1656 || (integral_p
1657 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1658 : (!TREE_CONSTANT (init)
1659 /* Do not return an aggregate constant (of which
1660 string literals are a special case), as we do not
1661 want to make inadvertent copies of such entities,
1662 and we must be sure that their addresses are the
1663 same everywhere. */
1664 || TREE_CODE (init) == CONSTRUCTOR
1665 || TREE_CODE (init) == STRING_CST)))
1666 break;
1667 decl = unshare_expr (init);
1668 }
1669 return decl;
1670 }
1671
1672 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1673 constant of integral or enumeration type, then return that value.
1674 These are those variables permitted in constant expressions by
1675 [5.19/1]. */
1676
1677 tree
1678 integral_constant_value (tree decl)
1679 {
1680 return constant_value_1 (decl, /*integral_p=*/true);
1681 }
1682
1683 /* A more relaxed version of integral_constant_value, used by the
1684 common C/C++ code and by the C++ front end for optimization
1685 purposes. */
1686
1687 tree
1688 decl_constant_value (tree decl)
1689 {
1690 return constant_value_1 (decl,
1691 /*integral_p=*/processing_template_decl);
1692 }
1693 \f
1694 /* Common subroutines of build_new and build_vec_delete. */
1695
1696 /* Call the global __builtin_delete to delete ADDR. */
1697
1698 static tree
1699 build_builtin_delete_call (tree addr)
1700 {
1701 mark_used (global_delete_fndecl);
1702 return build_call_n (global_delete_fndecl, 1, addr);
1703 }
1704 \f
1705 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1706 the type of the object being allocated; otherwise, it's just TYPE.
1707 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1708 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1709 the TREE_LIST of arguments to be provided as arguments to a
1710 placement new operator. This routine performs no semantic checks;
1711 it just creates and returns a NEW_EXPR. */
1712
1713 static tree
1714 build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
1715 int use_global_new)
1716 {
1717 tree new_expr;
1718
1719 new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1720 nelts, init);
1721 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1722 TREE_SIDE_EFFECTS (new_expr) = 1;
1723
1724 return new_expr;
1725 }
1726
1727 /* Make sure that there are no aliasing issues with T, a placement new
1728 expression applied to PLACEMENT, by recording the change in dynamic
1729 type. If placement new is inlined, as it is with libstdc++, and if
1730 the type of the placement new differs from the type of the
1731 placement location itself, then alias analysis may think it is OK
1732 to interchange writes to the location from before the placement new
1733 and from after the placement new. We have to prevent type-based
1734 alias analysis from applying. PLACEMENT may be NULL, which means
1735 that we couldn't capture it in a temporary variable, in which case
1736 we use a memory clobber. */
1737
1738 static tree
1739 avoid_placement_new_aliasing (tree t, tree placement)
1740 {
1741 tree type_change;
1742
1743 if (processing_template_decl)
1744 return t;
1745
1746 /* If we are not using type based aliasing, we don't have to do
1747 anything. */
1748 if (!flag_strict_aliasing)
1749 return t;
1750
1751 /* If we have a pointer and a location, record the change in dynamic
1752 type. Otherwise we need a general memory clobber. */
1753 if (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE
1754 && placement != NULL_TREE
1755 && TREE_CODE (TREE_TYPE (placement)) == POINTER_TYPE)
1756 type_change = build_stmt (CHANGE_DYNAMIC_TYPE_EXPR,
1757 TREE_TYPE (t),
1758 placement);
1759 else
1760 {
1761 /* Build a memory clobber. */
1762 type_change = build_stmt (ASM_EXPR,
1763 build_string (0, ""),
1764 NULL_TREE,
1765 NULL_TREE,
1766 tree_cons (NULL_TREE,
1767 build_string (6, "memory"),
1768 NULL_TREE));
1769
1770 ASM_VOLATILE_P (type_change) = 1;
1771 }
1772
1773 return build2 (COMPOUND_EXPR, TREE_TYPE (t), type_change, t);
1774 }
1775
1776 /* Generate code for a new-expression, including calling the "operator
1777 new" function, initializing the object, and, if an exception occurs
1778 during construction, cleaning up. The arguments are as for
1779 build_raw_new_expr. */
1780
1781 static tree
1782 build_new_1 (tree placement, tree type, tree nelts, tree init,
1783 bool globally_qualified_p, tsubst_flags_t complain)
1784 {
1785 tree size, rval;
1786 /* True iff this is a call to "operator new[]" instead of just
1787 "operator new". */
1788 bool array_p = false;
1789 /* If ARRAY_P is true, the element type of the array. This is never
1790 an ARRAY_TYPE; for something like "new int[3][4]", the
1791 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1792 TYPE. */
1793 tree elt_type;
1794 /* The type of the new-expression. (This type is always a pointer
1795 type.) */
1796 tree pointer_type;
1797 tree outer_nelts = NULL_TREE;
1798 tree alloc_call, alloc_expr;
1799 /* The address returned by the call to "operator new". This node is
1800 a VAR_DECL and is therefore reusable. */
1801 tree alloc_node;
1802 tree alloc_fn;
1803 tree cookie_expr, init_expr;
1804 int nothrow, check_new;
1805 int use_java_new = 0;
1806 /* If non-NULL, the number of extra bytes to allocate at the
1807 beginning of the storage allocated for an array-new expression in
1808 order to store the number of elements. */
1809 tree cookie_size = NULL_TREE;
1810 tree placement_expr = NULL_TREE;
1811 /* True if the function we are calling is a placement allocation
1812 function. */
1813 bool placement_allocation_fn_p;
1814 tree args = NULL_TREE;
1815 /* True if the storage must be initialized, either by a constructor
1816 or due to an explicit new-initializer. */
1817 bool is_initialized;
1818 /* The address of the thing allocated, not including any cookie. In
1819 particular, if an array cookie is in use, DATA_ADDR is the
1820 address of the first array element. This node is a VAR_DECL, and
1821 is therefore reusable. */
1822 tree data_addr;
1823 tree init_preeval_expr = NULL_TREE;
1824
1825 if (nelts)
1826 {
1827 outer_nelts = nelts;
1828 array_p = true;
1829 }
1830 else if (TREE_CODE (type) == ARRAY_TYPE)
1831 {
1832 array_p = true;
1833 nelts = array_type_nelts_top (type);
1834 outer_nelts = nelts;
1835 type = TREE_TYPE (type);
1836 }
1837
1838 /* If our base type is an array, then make sure we know how many elements
1839 it has. */
1840 for (elt_type = type;
1841 TREE_CODE (elt_type) == ARRAY_TYPE;
1842 elt_type = TREE_TYPE (elt_type))
1843 nelts = cp_build_binary_op (input_location,
1844 MULT_EXPR, nelts,
1845 array_type_nelts_top (elt_type),
1846 complain);
1847
1848 if (TREE_CODE (elt_type) == VOID_TYPE)
1849 {
1850 if (complain & tf_error)
1851 error ("invalid type %<void%> for new");
1852 return error_mark_node;
1853 }
1854
1855 if (abstract_virtuals_error (NULL_TREE, elt_type))
1856 return error_mark_node;
1857
1858 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1859
1860 if (CP_TYPE_CONST_P (elt_type) && !init
1861 && !type_has_user_provided_default_constructor (elt_type))
1862 {
1863 if (complain & tf_error)
1864 error ("uninitialized const in %<new%> of %q#T", elt_type);
1865 return error_mark_node;
1866 }
1867
1868 size = size_in_bytes (elt_type);
1869 if (array_p)
1870 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1871
1872 alloc_fn = NULL_TREE;
1873
1874 /* Allocate the object. */
1875 if (! placement && TYPE_FOR_JAVA (elt_type))
1876 {
1877 tree class_addr;
1878 tree class_decl = build_java_class_ref (elt_type);
1879 static const char alloc_name[] = "_Jv_AllocObject";
1880
1881 if (class_decl == error_mark_node)
1882 return error_mark_node;
1883
1884 use_java_new = 1;
1885 if (!get_global_value_if_present (get_identifier (alloc_name),
1886 &alloc_fn))
1887 {
1888 if (complain & tf_error)
1889 error ("call to Java constructor with %qs undefined", alloc_name);
1890 return error_mark_node;
1891 }
1892 else if (really_overloaded_fn (alloc_fn))
1893 {
1894 if (complain & tf_error)
1895 error ("%qD should never be overloaded", alloc_fn);
1896 return error_mark_node;
1897 }
1898 alloc_fn = OVL_CURRENT (alloc_fn);
1899 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1900 alloc_call = (cp_build_function_call
1901 (alloc_fn,
1902 build_tree_list (NULL_TREE, class_addr),
1903 complain));
1904 }
1905 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
1906 {
1907 error ("Java class %q#T object allocated using placement new", elt_type);
1908 return error_mark_node;
1909 }
1910 else
1911 {
1912 tree fnname;
1913 tree fns;
1914
1915 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1916
1917 if (!globally_qualified_p
1918 && CLASS_TYPE_P (elt_type)
1919 && (array_p
1920 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1921 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1922 {
1923 /* Use a class-specific operator new. */
1924 /* If a cookie is required, add some extra space. */
1925 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1926 {
1927 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1928 size = size_binop (PLUS_EXPR, size, cookie_size);
1929 }
1930 /* Create the argument list. */
1931 args = tree_cons (NULL_TREE, size, placement);
1932 /* Do name-lookup to find the appropriate operator. */
1933 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1934 if (fns == NULL_TREE)
1935 {
1936 if (complain & tf_error)
1937 error ("no suitable %qD found in class %qT", fnname, elt_type);
1938 return error_mark_node;
1939 }
1940 if (TREE_CODE (fns) == TREE_LIST)
1941 {
1942 if (complain & tf_error)
1943 {
1944 error ("request for member %qD is ambiguous", fnname);
1945 print_candidates (fns);
1946 }
1947 return error_mark_node;
1948 }
1949 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1950 fns, args,
1951 /*conversion_path=*/NULL_TREE,
1952 LOOKUP_NORMAL,
1953 &alloc_fn,
1954 complain);
1955 }
1956 else
1957 {
1958 /* Use a global operator new. */
1959 /* See if a cookie might be required. */
1960 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1961 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1962 else
1963 cookie_size = NULL_TREE;
1964
1965 alloc_call = build_operator_new_call (fnname, placement,
1966 &size, &cookie_size,
1967 &alloc_fn);
1968 }
1969 }
1970
1971 if (alloc_call == error_mark_node)
1972 return error_mark_node;
1973
1974 gcc_assert (alloc_fn != NULL_TREE);
1975
1976 /* If PLACEMENT is a simple pointer type and is not passed by reference,
1977 then copy it into PLACEMENT_EXPR. */
1978 if (!processing_template_decl
1979 && placement != NULL_TREE
1980 && TREE_CHAIN (placement) == NULL_TREE
1981 && TREE_CODE (TREE_TYPE (TREE_VALUE (placement))) == POINTER_TYPE
1982 && TREE_CODE (alloc_call) == CALL_EXPR
1983 && call_expr_nargs (alloc_call) == 2
1984 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
1985 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
1986 {
1987 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
1988
1989 if (INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
1990 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
1991 {
1992 placement_expr = get_target_expr (TREE_VALUE (placement));
1993 CALL_EXPR_ARG (alloc_call, 1)
1994 = convert (TREE_TYPE (placement_arg), placement_expr);
1995 }
1996 }
1997
1998 /* In the simple case, we can stop now. */
1999 pointer_type = build_pointer_type (type);
2000 if (!cookie_size && !is_initialized)
2001 {
2002 rval = build_nop (pointer_type, alloc_call);
2003 if (placement != NULL)
2004 rval = avoid_placement_new_aliasing (rval, placement_expr);
2005 return rval;
2006 }
2007
2008 /* Store the result of the allocation call in a variable so that we can
2009 use it more than once. */
2010 alloc_expr = get_target_expr (alloc_call);
2011 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2012
2013 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2014 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2015 alloc_call = TREE_OPERAND (alloc_call, 1);
2016
2017 /* Now, check to see if this function is actually a placement
2018 allocation function. This can happen even when PLACEMENT is NULL
2019 because we might have something like:
2020
2021 struct S { void* operator new (size_t, int i = 0); };
2022
2023 A call to `new S' will get this allocation function, even though
2024 there is no explicit placement argument. If there is more than
2025 one argument, or there are variable arguments, then this is a
2026 placement allocation function. */
2027 placement_allocation_fn_p
2028 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2029 || varargs_function_p (alloc_fn));
2030
2031 /* Preevaluate the placement args so that we don't reevaluate them for a
2032 placement delete. */
2033 if (placement_allocation_fn_p)
2034 {
2035 tree inits;
2036 stabilize_call (alloc_call, &inits);
2037 if (inits)
2038 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2039 alloc_expr);
2040 }
2041
2042 /* unless an allocation function is declared with an empty excep-
2043 tion-specification (_except.spec_), throw(), it indicates failure to
2044 allocate storage by throwing a bad_alloc exception (clause _except_,
2045 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2046 cation function is declared with an empty exception-specification,
2047 throw(), it returns null to indicate failure to allocate storage and a
2048 non-null pointer otherwise.
2049
2050 So check for a null exception spec on the op new we just called. */
2051
2052 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2053 check_new = (flag_check_new || nothrow) && ! use_java_new;
2054
2055 if (cookie_size)
2056 {
2057 tree cookie;
2058 tree cookie_ptr;
2059 tree size_ptr_type;
2060
2061 /* Adjust so we're pointing to the start of the object. */
2062 data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2063 alloc_node, cookie_size);
2064
2065 /* Store the number of bytes allocated so that we can know how
2066 many elements to destroy later. We use the last sizeof
2067 (size_t) bytes to store the number of elements. */
2068 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2069 cookie_ptr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2070 alloc_node, cookie_ptr);
2071 size_ptr_type = build_pointer_type (sizetype);
2072 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2073 cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
2074
2075 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2076
2077 if (targetm.cxx.cookie_has_size ())
2078 {
2079 /* Also store the element size. */
2080 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
2081 fold_build1 (NEGATE_EXPR, sizetype,
2082 size_in_bytes (sizetype)));
2083
2084 cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
2085 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2086 size_in_bytes (elt_type));
2087 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2088 cookie, cookie_expr);
2089 }
2090 }
2091 else
2092 {
2093 cookie_expr = NULL_TREE;
2094 data_addr = alloc_node;
2095 }
2096
2097 /* Now use a pointer to the type we've actually allocated. */
2098 data_addr = fold_convert (pointer_type, data_addr);
2099 /* Any further uses of alloc_node will want this type, too. */
2100 alloc_node = fold_convert (pointer_type, alloc_node);
2101
2102 /* Now initialize the allocated object. Note that we preevaluate the
2103 initialization expression, apart from the actual constructor call or
2104 assignment--we do this because we want to delay the allocation as long
2105 as possible in order to minimize the size of the exception region for
2106 placement delete. */
2107 if (is_initialized)
2108 {
2109 bool stable;
2110 bool explicit_value_init_p = false;
2111
2112 if (init == void_zero_node)
2113 {
2114 init = NULL_TREE;
2115 explicit_value_init_p = true;
2116 }
2117
2118 if (array_p)
2119 {
2120 if (init)
2121 {
2122 if (complain & tf_error)
2123 permerror (input_location, "ISO C++ forbids initialization in array new");
2124 else
2125 return error_mark_node;
2126 }
2127 init_expr
2128 = build_vec_init (data_addr,
2129 cp_build_binary_op (input_location,
2130 MINUS_EXPR, outer_nelts,
2131 integer_one_node,
2132 complain),
2133 init,
2134 explicit_value_init_p,
2135 /*from_array=*/0,
2136 complain);
2137
2138 /* An array initialization is stable because the initialization
2139 of each element is a full-expression, so the temporaries don't
2140 leak out. */
2141 stable = true;
2142 }
2143 else
2144 {
2145 init_expr = cp_build_indirect_ref (data_addr, NULL, complain);
2146
2147 if (TYPE_NEEDS_CONSTRUCTING (type) && !explicit_value_init_p)
2148 {
2149 init_expr = build_special_member_call (init_expr,
2150 complete_ctor_identifier,
2151 init, elt_type,
2152 LOOKUP_NORMAL,
2153 complain);
2154 }
2155 else if (explicit_value_init_p)
2156 {
2157 /* Something like `new int()'. */
2158 init_expr = build2 (INIT_EXPR, type,
2159 init_expr, build_value_init (type));
2160 }
2161 else
2162 {
2163 /* We are processing something like `new int (10)', which
2164 means allocate an int, and initialize it with 10. */
2165
2166 if (TREE_CODE (init) == TREE_LIST)
2167 init = build_x_compound_expr_from_list (init,
2168 "new initializer");
2169 else
2170 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
2171 || TREE_TYPE (init) != NULL_TREE);
2172
2173 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, init,
2174 complain);
2175 }
2176 stable = stabilize_init (init_expr, &init_preeval_expr);
2177 }
2178
2179 if (init_expr == error_mark_node)
2180 return error_mark_node;
2181
2182 /* If any part of the object initialization terminates by throwing an
2183 exception and a suitable deallocation function can be found, the
2184 deallocation function is called to free the memory in which the
2185 object was being constructed, after which the exception continues
2186 to propagate in the context of the new-expression. If no
2187 unambiguous matching deallocation function can be found,
2188 propagating the exception does not cause the object's memory to be
2189 freed. */
2190 if (flag_exceptions && ! use_java_new)
2191 {
2192 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2193 tree cleanup;
2194
2195 /* The Standard is unclear here, but the right thing to do
2196 is to use the same method for finding deallocation
2197 functions that we use for finding allocation functions. */
2198 cleanup = (build_op_delete_call
2199 (dcode,
2200 alloc_node,
2201 size,
2202 globally_qualified_p,
2203 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2204 alloc_fn));
2205
2206 if (!cleanup)
2207 /* We're done. */;
2208 else if (stable)
2209 /* This is much simpler if we were able to preevaluate all of
2210 the arguments to the constructor call. */
2211 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2212 init_expr, cleanup);
2213 else
2214 /* Ack! First we allocate the memory. Then we set our sentry
2215 variable to true, and expand a cleanup that deletes the
2216 memory if sentry is true. Then we run the constructor, and
2217 finally clear the sentry.
2218
2219 We need to do this because we allocate the space first, so
2220 if there are any temporaries with cleanups in the
2221 constructor args and we weren't able to preevaluate them, we
2222 need this EH region to extend until end of full-expression
2223 to preserve nesting. */
2224 {
2225 tree end, sentry, begin;
2226
2227 begin = get_target_expr (boolean_true_node);
2228 CLEANUP_EH_ONLY (begin) = 1;
2229
2230 sentry = TARGET_EXPR_SLOT (begin);
2231
2232 TARGET_EXPR_CLEANUP (begin)
2233 = build3 (COND_EXPR, void_type_node, sentry,
2234 cleanup, void_zero_node);
2235
2236 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2237 sentry, boolean_false_node);
2238
2239 init_expr
2240 = build2 (COMPOUND_EXPR, void_type_node, begin,
2241 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2242 end));
2243 }
2244
2245 }
2246 }
2247 else
2248 init_expr = NULL_TREE;
2249
2250 /* Now build up the return value in reverse order. */
2251
2252 rval = data_addr;
2253
2254 if (init_expr)
2255 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2256 if (cookie_expr)
2257 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2258
2259 if (rval == data_addr)
2260 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2261 and return the call (which doesn't need to be adjusted). */
2262 rval = TARGET_EXPR_INITIAL (alloc_expr);
2263 else
2264 {
2265 if (check_new)
2266 {
2267 tree ifexp = cp_build_binary_op (input_location,
2268 NE_EXPR, alloc_node,
2269 integer_zero_node,
2270 complain);
2271 rval = build_conditional_expr (ifexp, rval, alloc_node,
2272 complain);
2273 }
2274
2275 /* Perform the allocation before anything else, so that ALLOC_NODE
2276 has been initialized before we start using it. */
2277 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2278 }
2279
2280 if (init_preeval_expr)
2281 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2282
2283 /* A new-expression is never an lvalue. */
2284 gcc_assert (!lvalue_p (rval));
2285
2286 if (placement != NULL)
2287 rval = avoid_placement_new_aliasing (rval, placement_expr);
2288
2289 return rval;
2290 }
2291
2292 /* Generate a representation for a C++ "new" expression. PLACEMENT is
2293 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
2294 NELTS is NULL, TYPE is the type of the storage to be allocated. If
2295 NELTS is not NULL, then this is an array-new allocation; TYPE is
2296 the type of the elements in the array and NELTS is the number of
2297 elements in the array. INIT, if non-NULL, is the initializer for
2298 the new object, or void_zero_node to indicate an initializer of
2299 "()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
2300 "::new" rather than just "new". */
2301
2302 tree
2303 build_new (tree placement, tree type, tree nelts, tree init,
2304 int use_global_new, tsubst_flags_t complain)
2305 {
2306 tree rval;
2307 tree orig_placement;
2308 tree orig_nelts;
2309 tree orig_init;
2310
2311 if (placement == error_mark_node || type == error_mark_node
2312 || init == error_mark_node)
2313 return error_mark_node;
2314
2315 orig_placement = placement;
2316 orig_nelts = nelts;
2317 orig_init = init;
2318
2319 if (nelts == NULL_TREE && init != void_zero_node && list_length (init) == 1)
2320 {
2321 tree auto_node = type_uses_auto (type);
2322 if (auto_node && describable_type (TREE_VALUE (init)))
2323 type = do_auto_deduction (type, TREE_VALUE (init), auto_node);
2324 }
2325
2326 if (processing_template_decl)
2327 {
2328 if (dependent_type_p (type)
2329 || any_type_dependent_arguments_p (placement)
2330 || (nelts && type_dependent_expression_p (nelts))
2331 || (init != void_zero_node
2332 && any_type_dependent_arguments_p (init)))
2333 return build_raw_new_expr (placement, type, nelts, init,
2334 use_global_new);
2335 placement = build_non_dependent_args (placement);
2336 if (nelts)
2337 nelts = build_non_dependent_expr (nelts);
2338 if (init != void_zero_node)
2339 init = build_non_dependent_args (init);
2340 }
2341
2342 if (nelts)
2343 {
2344 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2345 {
2346 if (complain & tf_error)
2347 permerror (input_location, "size in array new must have integral type");
2348 else
2349 return error_mark_node;
2350 }
2351 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2352 }
2353
2354 /* ``A reference cannot be created by the new operator. A reference
2355 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2356 returned by new.'' ARM 5.3.3 */
2357 if (TREE_CODE (type) == REFERENCE_TYPE)
2358 {
2359 if (complain & tf_error)
2360 error ("new cannot be applied to a reference type");
2361 else
2362 return error_mark_node;
2363 type = TREE_TYPE (type);
2364 }
2365
2366 if (TREE_CODE (type) == FUNCTION_TYPE)
2367 {
2368 if (complain & tf_error)
2369 error ("new cannot be applied to a function type");
2370 return error_mark_node;
2371 }
2372
2373 /* The type allocated must be complete. If the new-type-id was
2374 "T[N]" then we are just checking that "T" is complete here, but
2375 that is equivalent, since the value of "N" doesn't matter. */
2376 if (!complete_type_or_else (type, NULL_TREE))
2377 return error_mark_node;
2378
2379 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2380 if (rval == error_mark_node)
2381 return error_mark_node;
2382
2383 if (processing_template_decl)
2384 return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
2385 use_global_new);
2386
2387 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2388 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2389 TREE_NO_WARNING (rval) = 1;
2390
2391 return rval;
2392 }
2393
2394 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2395
2396 tree
2397 build_java_class_ref (tree type)
2398 {
2399 tree name = NULL_TREE, class_decl;
2400 static tree CL_suffix = NULL_TREE;
2401 if (CL_suffix == NULL_TREE)
2402 CL_suffix = get_identifier("class$");
2403 if (jclass_node == NULL_TREE)
2404 {
2405 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2406 if (jclass_node == NULL_TREE)
2407 {
2408 error ("call to Java constructor, while %<jclass%> undefined");
2409 return error_mark_node;
2410 }
2411 jclass_node = TREE_TYPE (jclass_node);
2412 }
2413
2414 /* Mangle the class$ field. */
2415 {
2416 tree field;
2417 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2418 if (DECL_NAME (field) == CL_suffix)
2419 {
2420 mangle_decl (field);
2421 name = DECL_ASSEMBLER_NAME (field);
2422 break;
2423 }
2424 if (!field)
2425 {
2426 error ("can't find %<class$%> in %qT", type);
2427 return error_mark_node;
2428 }
2429 }
2430
2431 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2432 if (class_decl == NULL_TREE)
2433 {
2434 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2435 TREE_STATIC (class_decl) = 1;
2436 DECL_EXTERNAL (class_decl) = 1;
2437 TREE_PUBLIC (class_decl) = 1;
2438 DECL_ARTIFICIAL (class_decl) = 1;
2439 DECL_IGNORED_P (class_decl) = 1;
2440 pushdecl_top_level (class_decl);
2441 make_decl_rtl (class_decl);
2442 }
2443 return class_decl;
2444 }
2445 \f
2446 static tree
2447 build_vec_delete_1 (tree base, tree maxindex, tree type,
2448 special_function_kind auto_delete_vec, int use_global_delete)
2449 {
2450 tree virtual_size;
2451 tree ptype = build_pointer_type (type = complete_type (type));
2452 tree size_exp = size_in_bytes (type);
2453
2454 /* Temporary variables used by the loop. */
2455 tree tbase, tbase_init;
2456
2457 /* This is the body of the loop that implements the deletion of a
2458 single element, and moves temp variables to next elements. */
2459 tree body;
2460
2461 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2462 tree loop = 0;
2463
2464 /* This is the thing that governs what to do after the loop has run. */
2465 tree deallocate_expr = 0;
2466
2467 /* This is the BIND_EXPR which holds the outermost iterator of the
2468 loop. It is convenient to set this variable up and test it before
2469 executing any other code in the loop.
2470 This is also the containing expression returned by this function. */
2471 tree controller = NULL_TREE;
2472 tree tmp;
2473
2474 /* We should only have 1-D arrays here. */
2475 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2476
2477 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2478 goto no_destructor;
2479
2480 /* The below is short by the cookie size. */
2481 virtual_size = size_binop (MULT_EXPR, size_exp,
2482 convert (sizetype, maxindex));
2483
2484 tbase = create_temporary_var (ptype);
2485 tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
2486 fold_build2 (POINTER_PLUS_EXPR, ptype,
2487 fold_convert (ptype, base),
2488 virtual_size),
2489 tf_warning_or_error);
2490 DECL_REGISTER (tbase) = 1;
2491 controller = build3 (BIND_EXPR, void_type_node, tbase,
2492 NULL_TREE, NULL_TREE);
2493 TREE_SIDE_EFFECTS (controller) = 1;
2494
2495 body = build1 (EXIT_EXPR, void_type_node,
2496 build2 (EQ_EXPR, boolean_type_node, tbase,
2497 fold_convert (ptype, base)));
2498 tmp = fold_build1 (NEGATE_EXPR, sizetype, size_exp);
2499 body = build_compound_expr
2500 (body, cp_build_modify_expr (tbase, NOP_EXPR,
2501 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
2502 tf_warning_or_error));
2503 body = build_compound_expr
2504 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2505 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2506
2507 loop = build1 (LOOP_EXPR, void_type_node, body);
2508 loop = build_compound_expr (tbase_init, loop);
2509
2510 no_destructor:
2511 /* If the delete flag is one, or anything else with the low bit set,
2512 delete the storage. */
2513 if (auto_delete_vec != sfk_base_destructor)
2514 {
2515 tree base_tbd;
2516
2517 /* The below is short by the cookie size. */
2518 virtual_size = size_binop (MULT_EXPR, size_exp,
2519 convert (sizetype, maxindex));
2520
2521 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2522 /* no header */
2523 base_tbd = base;
2524 else
2525 {
2526 tree cookie_size;
2527
2528 cookie_size = targetm.cxx.get_cookie_size (type);
2529 base_tbd
2530 = cp_convert (ptype,
2531 cp_build_binary_op (input_location,
2532 MINUS_EXPR,
2533 cp_convert (string_type_node,
2534 base),
2535 cookie_size,
2536 tf_warning_or_error));
2537 /* True size with header. */
2538 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2539 }
2540
2541 if (auto_delete_vec == sfk_deleting_destructor)
2542 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2543 base_tbd, virtual_size,
2544 use_global_delete & 1,
2545 /*placement=*/NULL_TREE,
2546 /*alloc_fn=*/NULL_TREE);
2547 }
2548
2549 body = loop;
2550 if (!deallocate_expr)
2551 ;
2552 else if (!body)
2553 body = deallocate_expr;
2554 else
2555 body = build_compound_expr (body, deallocate_expr);
2556
2557 if (!body)
2558 body = integer_zero_node;
2559
2560 /* Outermost wrapper: If pointer is null, punt. */
2561 body = fold_build3 (COND_EXPR, void_type_node,
2562 fold_build2 (NE_EXPR, boolean_type_node, base,
2563 convert (TREE_TYPE (base),
2564 integer_zero_node)),
2565 body, integer_zero_node);
2566 body = build1 (NOP_EXPR, void_type_node, body);
2567
2568 if (controller)
2569 {
2570 TREE_OPERAND (controller, 1) = body;
2571 body = controller;
2572 }
2573
2574 if (TREE_CODE (base) == SAVE_EXPR)
2575 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2576 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2577
2578 return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
2579 }
2580
2581 /* Create an unnamed variable of the indicated TYPE. */
2582
2583 tree
2584 create_temporary_var (tree type)
2585 {
2586 tree decl;
2587
2588 decl = build_decl (VAR_DECL, NULL_TREE, type);
2589 TREE_USED (decl) = 1;
2590 DECL_ARTIFICIAL (decl) = 1;
2591 DECL_IGNORED_P (decl) = 1;
2592 DECL_SOURCE_LOCATION (decl) = input_location;
2593 DECL_CONTEXT (decl) = current_function_decl;
2594
2595 return decl;
2596 }
2597
2598 /* Create a new temporary variable of the indicated TYPE, initialized
2599 to INIT.
2600
2601 It is not entered into current_binding_level, because that breaks
2602 things when it comes time to do final cleanups (which take place
2603 "outside" the binding contour of the function). */
2604
2605 static tree
2606 get_temp_regvar (tree type, tree init)
2607 {
2608 tree decl;
2609
2610 decl = create_temporary_var (type);
2611 add_decl_expr (decl);
2612
2613 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
2614 tf_warning_or_error));
2615
2616 return decl;
2617 }
2618
2619 /* `build_vec_init' returns tree structure that performs
2620 initialization of a vector of aggregate types.
2621
2622 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
2623 to the first element, of POINTER_TYPE.
2624 MAXINDEX is the maximum index of the array (one less than the
2625 number of elements). It is only used if BASE is a pointer or
2626 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2627
2628 INIT is the (possibly NULL) initializer.
2629
2630 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
2631 elements in the array are value-initialized.
2632
2633 FROM_ARRAY is 0 if we should init everything with INIT
2634 (i.e., every element initialized from INIT).
2635 FROM_ARRAY is 1 if we should index into INIT in parallel
2636 with initialization of DECL.
2637 FROM_ARRAY is 2 if we should index into INIT in parallel,
2638 but use assignment instead of initialization. */
2639
2640 tree
2641 build_vec_init (tree base, tree maxindex, tree init,
2642 bool explicit_value_init_p,
2643 int from_array, tsubst_flags_t complain)
2644 {
2645 tree rval;
2646 tree base2 = NULL_TREE;
2647 tree size;
2648 tree itype = NULL_TREE;
2649 tree iterator;
2650 /* The type of BASE. */
2651 tree atype = TREE_TYPE (base);
2652 /* The type of an element in the array. */
2653 tree type = TREE_TYPE (atype);
2654 /* The element type reached after removing all outer array
2655 types. */
2656 tree inner_elt_type;
2657 /* The type of a pointer to an element in the array. */
2658 tree ptype;
2659 tree stmt_expr;
2660 tree compound_stmt;
2661 int destroy_temps;
2662 tree try_block = NULL_TREE;
2663 int num_initialized_elts = 0;
2664 bool is_global;
2665
2666 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
2667 maxindex = array_type_nelts (atype);
2668
2669 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2670 return error_mark_node;
2671
2672 if (explicit_value_init_p)
2673 gcc_assert (!init);
2674
2675 inner_elt_type = strip_array_types (type);
2676 if (init
2677 && (from_array == 2
2678 ? (!CLASS_TYPE_P (inner_elt_type)
2679 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2680 : !TYPE_NEEDS_CONSTRUCTING (type))
2681 && ((TREE_CODE (init) == CONSTRUCTOR
2682 /* Don't do this if the CONSTRUCTOR might contain something
2683 that might throw and require us to clean up. */
2684 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2685 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2686 || from_array))
2687 {
2688 /* Do non-default initialization of POD arrays resulting from
2689 brace-enclosed initializers. In this case, digest_init and
2690 store_constructor will handle the semantics for us. */
2691
2692 gcc_assert (TREE_CODE (atype) == ARRAY_TYPE);
2693 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2694 return stmt_expr;
2695 }
2696
2697 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2698 size = size_in_bytes (type);
2699 if (TREE_CODE (atype) == ARRAY_TYPE)
2700 {
2701 ptype = build_pointer_type (type);
2702 base = cp_convert (ptype, decay_conversion (base));
2703 }
2704 else
2705 ptype = atype;
2706
2707 /* The code we are generating looks like:
2708 ({
2709 T* t1 = (T*) base;
2710 T* rval = t1;
2711 ptrdiff_t iterator = maxindex;
2712 try {
2713 for (; iterator != -1; --iterator) {
2714 ... initialize *t1 ...
2715 ++t1;
2716 }
2717 } catch (...) {
2718 ... destroy elements that were constructed ...
2719 }
2720 rval;
2721 })
2722
2723 We can omit the try and catch blocks if we know that the
2724 initialization will never throw an exception, or if the array
2725 elements do not have destructors. We can omit the loop completely if
2726 the elements of the array do not have constructors.
2727
2728 We actually wrap the entire body of the above in a STMT_EXPR, for
2729 tidiness.
2730
2731 When copying from array to another, when the array elements have
2732 only trivial copy constructors, we should use __builtin_memcpy
2733 rather than generating a loop. That way, we could take advantage
2734 of whatever cleverness the back end has for dealing with copies
2735 of blocks of memory. */
2736
2737 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2738 destroy_temps = stmts_are_full_exprs_p ();
2739 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2740 rval = get_temp_regvar (ptype, base);
2741 base = get_temp_regvar (ptype, rval);
2742 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2743
2744 /* Protect the entire array initialization so that we can destroy
2745 the partially constructed array if an exception is thrown.
2746 But don't do this if we're assigning. */
2747 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2748 && from_array != 2)
2749 {
2750 try_block = begin_try_block ();
2751 }
2752
2753 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2754 {
2755 /* Do non-default initialization of non-POD arrays resulting from
2756 brace-enclosed initializers. */
2757 unsigned HOST_WIDE_INT idx;
2758 tree elt;
2759 from_array = 0;
2760
2761 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2762 {
2763 tree baseref = build1 (INDIRECT_REF, type, base);
2764
2765 num_initialized_elts++;
2766
2767 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2768 if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
2769 finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
2770 else
2771 finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
2772 elt, complain));
2773 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2774
2775 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2776 complain));
2777 finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2778 complain));
2779 }
2780
2781 /* Clear out INIT so that we don't get confused below. */
2782 init = NULL_TREE;
2783 }
2784 else if (from_array)
2785 {
2786 /* If initializing one array from another, initialize element by
2787 element. We rely upon the below calls the do argument
2788 checking. */
2789 if (init)
2790 {
2791 base2 = decay_conversion (init);
2792 itype = TREE_TYPE (base2);
2793 base2 = get_temp_regvar (itype, base2);
2794 itype = TREE_TYPE (itype);
2795 }
2796 else if (TYPE_LANG_SPECIFIC (type)
2797 && TYPE_NEEDS_CONSTRUCTING (type)
2798 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2799 {
2800 if (complain & tf_error)
2801 error ("initializer ends prematurely");
2802 return error_mark_node;
2803 }
2804 }
2805
2806 /* Now, default-initialize any remaining elements. We don't need to
2807 do that if a) the type does not need constructing, or b) we've
2808 already initialized all the elements.
2809
2810 We do need to keep going if we're copying an array. */
2811
2812 if (from_array
2813 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
2814 && ! (host_integerp (maxindex, 0)
2815 && (num_initialized_elts
2816 == tree_low_cst (maxindex, 0) + 1))))
2817 {
2818 /* If the ITERATOR is equal to -1, then we don't have to loop;
2819 we've already initialized all the elements. */
2820 tree for_stmt;
2821 tree elt_init;
2822 tree to;
2823
2824 for_stmt = begin_for_stmt ();
2825 finish_for_init_stmt (for_stmt);
2826 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2827 build_int_cst (TREE_TYPE (iterator), -1)),
2828 for_stmt);
2829 finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2830 complain),
2831 for_stmt);
2832
2833 to = build1 (INDIRECT_REF, type, base);
2834
2835 if (from_array)
2836 {
2837 tree from;
2838
2839 if (base2)
2840 from = build1 (INDIRECT_REF, itype, base2);
2841 else
2842 from = NULL_TREE;
2843
2844 if (from_array == 2)
2845 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2846 complain);
2847 else if (TYPE_NEEDS_CONSTRUCTING (type))
2848 elt_init = build_aggr_init (to, from, 0, complain);
2849 else if (from)
2850 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2851 complain);
2852 else
2853 gcc_unreachable ();
2854 }
2855 else if (TREE_CODE (type) == ARRAY_TYPE)
2856 {
2857 if (init != 0)
2858 sorry
2859 ("cannot initialize multi-dimensional array with initializer");
2860 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2861 0, 0,
2862 explicit_value_init_p,
2863 0, complain);
2864 }
2865 else if (explicit_value_init_p)
2866 elt_init = build2 (INIT_EXPR, type, to,
2867 build_value_init (type));
2868 else
2869 {
2870 gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
2871 elt_init = build_aggr_init (to, init, 0, complain);
2872 }
2873
2874 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2875 finish_expr_stmt (elt_init);
2876 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2877
2878 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2879 complain));
2880 if (base2)
2881 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
2882 complain));
2883
2884 finish_for_stmt (for_stmt);
2885 }
2886
2887 /* Make sure to cleanup any partially constructed elements. */
2888 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2889 && from_array != 2)
2890 {
2891 tree e;
2892 tree m = cp_build_binary_op (input_location,
2893 MINUS_EXPR, maxindex, iterator,
2894 complain);
2895
2896 /* Flatten multi-dimensional array since build_vec_delete only
2897 expects one-dimensional array. */
2898 if (TREE_CODE (type) == ARRAY_TYPE)
2899 m = cp_build_binary_op (input_location,
2900 MULT_EXPR, m,
2901 array_type_nelts_total (type),
2902 complain);
2903
2904 finish_cleanup_try_block (try_block);
2905 e = build_vec_delete_1 (rval, m,
2906 inner_elt_type, sfk_base_destructor,
2907 /*use_global_delete=*/0);
2908 finish_cleanup (e, try_block);
2909 }
2910
2911 /* The value of the array initialization is the array itself, RVAL
2912 is a pointer to the first element. */
2913 finish_stmt_expr_expr (rval, stmt_expr);
2914
2915 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2916
2917 /* Now make the result have the correct type. */
2918 if (TREE_CODE (atype) == ARRAY_TYPE)
2919 {
2920 atype = build_pointer_type (atype);
2921 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2922 stmt_expr = cp_build_indirect_ref (stmt_expr, NULL, complain);
2923 TREE_NO_WARNING (stmt_expr) = 1;
2924 }
2925
2926 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2927 return stmt_expr;
2928 }
2929
2930 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2931 build_delete. */
2932
2933 static tree
2934 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2935 {
2936 tree name;
2937 tree fn;
2938 switch (dtor_kind)
2939 {
2940 case sfk_complete_destructor:
2941 name = complete_dtor_identifier;
2942 break;
2943
2944 case sfk_base_destructor:
2945 name = base_dtor_identifier;
2946 break;
2947
2948 case sfk_deleting_destructor:
2949 name = deleting_dtor_identifier;
2950 break;
2951
2952 default:
2953 gcc_unreachable ();
2954 }
2955 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2956 return build_new_method_call (exp, fn,
2957 /*args=*/NULL_TREE,
2958 /*conversion_path=*/NULL_TREE,
2959 flags,
2960 /*fn_p=*/NULL,
2961 tf_warning_or_error);
2962 }
2963
2964 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2965 ADDR is an expression which yields the store to be destroyed.
2966 AUTO_DELETE is the name of the destructor to call, i.e., either
2967 sfk_complete_destructor, sfk_base_destructor, or
2968 sfk_deleting_destructor.
2969
2970 FLAGS is the logical disjunction of zero or more LOOKUP_
2971 flags. See cp-tree.h for more info. */
2972
2973 tree
2974 build_delete (tree type, tree addr, special_function_kind auto_delete,
2975 int flags, int use_global_delete)
2976 {
2977 tree expr;
2978
2979 if (addr == error_mark_node)
2980 return error_mark_node;
2981
2982 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2983 set to `error_mark_node' before it gets properly cleaned up. */
2984 if (type == error_mark_node)
2985 return error_mark_node;
2986
2987 type = TYPE_MAIN_VARIANT (type);
2988
2989 if (TREE_CODE (type) == POINTER_TYPE)
2990 {
2991 bool complete_p = true;
2992
2993 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2994 if (TREE_CODE (type) == ARRAY_TYPE)
2995 goto handle_array;
2996
2997 /* We don't want to warn about delete of void*, only other
2998 incomplete types. Deleting other incomplete types
2999 invokes undefined behavior, but it is not ill-formed, so
3000 compile to something that would even do The Right Thing
3001 (TM) should the type have a trivial dtor and no delete
3002 operator. */
3003 if (!VOID_TYPE_P (type))
3004 {
3005 complete_type (type);
3006 if (!COMPLETE_TYPE_P (type))
3007 {
3008 if (warning (0, "possible problem detected in invocation of "
3009 "delete operator:"))
3010 {
3011 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3012 inform (input_location, "neither the destructor nor the class-specific "
3013 "operator delete will be called, even if they are "
3014 "declared when the class is defined.");
3015 }
3016 complete_p = false;
3017 }
3018 }
3019 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3020 /* Call the builtin operator delete. */
3021 return build_builtin_delete_call (addr);
3022 if (TREE_SIDE_EFFECTS (addr))
3023 addr = save_expr (addr);
3024
3025 /* Throw away const and volatile on target type of addr. */
3026 addr = convert_force (build_pointer_type (type), addr, 0);
3027 }
3028 else if (TREE_CODE (type) == ARRAY_TYPE)
3029 {
3030 handle_array:
3031
3032 if (TYPE_DOMAIN (type) == NULL_TREE)
3033 {
3034 error ("unknown array size in delete");
3035 return error_mark_node;
3036 }
3037 return build_vec_delete (addr, array_type_nelts (type),
3038 auto_delete, use_global_delete);
3039 }
3040 else
3041 {
3042 /* Don't check PROTECT here; leave that decision to the
3043 destructor. If the destructor is accessible, call it,
3044 else report error. */
3045 addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
3046 if (TREE_SIDE_EFFECTS (addr))
3047 addr = save_expr (addr);
3048
3049 addr = convert_force (build_pointer_type (type), addr, 0);
3050 }
3051
3052 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3053
3054 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3055 {
3056 if (auto_delete != sfk_deleting_destructor)
3057 return void_zero_node;
3058
3059 return build_op_delete_call (DELETE_EXPR, addr,
3060 cxx_sizeof_nowarn (type),
3061 use_global_delete,
3062 /*placement=*/NULL_TREE,
3063 /*alloc_fn=*/NULL_TREE);
3064 }
3065 else
3066 {
3067 tree head = NULL_TREE;
3068 tree do_delete = NULL_TREE;
3069 tree ifexp;
3070
3071 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3072 lazily_declare_fn (sfk_destructor, type);
3073
3074 /* For `::delete x', we must not use the deleting destructor
3075 since then we would not be sure to get the global `operator
3076 delete'. */
3077 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3078 {
3079 /* We will use ADDR multiple times so we must save it. */
3080 addr = save_expr (addr);
3081 head = get_target_expr (build_headof (addr));
3082 /* Delete the object. */
3083 do_delete = build_builtin_delete_call (head);
3084 /* Otherwise, treat this like a complete object destructor
3085 call. */
3086 auto_delete = sfk_complete_destructor;
3087 }
3088 /* If the destructor is non-virtual, there is no deleting
3089 variant. Instead, we must explicitly call the appropriate
3090 `operator delete' here. */
3091 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3092 && auto_delete == sfk_deleting_destructor)
3093 {
3094 /* We will use ADDR multiple times so we must save it. */
3095 addr = save_expr (addr);
3096 /* Build the call. */
3097 do_delete = build_op_delete_call (DELETE_EXPR,
3098 addr,
3099 cxx_sizeof_nowarn (type),
3100 /*global_p=*/false,
3101 /*placement=*/NULL_TREE,
3102 /*alloc_fn=*/NULL_TREE);
3103 /* Call the complete object destructor. */
3104 auto_delete = sfk_complete_destructor;
3105 }
3106 else if (auto_delete == sfk_deleting_destructor
3107 && TYPE_GETS_REG_DELETE (type))
3108 {
3109 /* Make sure we have access to the member op delete, even though
3110 we'll actually be calling it from the destructor. */
3111 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3112 /*global_p=*/false,
3113 /*placement=*/NULL_TREE,
3114 /*alloc_fn=*/NULL_TREE);
3115 }
3116
3117 expr = build_dtor_call (cp_build_indirect_ref (addr, NULL,
3118 tf_warning_or_error),
3119 auto_delete, flags);
3120 if (do_delete)
3121 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3122
3123 /* We need to calculate this before the dtor changes the vptr. */
3124 if (head)
3125 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3126
3127 if (flags & LOOKUP_DESTRUCTOR)
3128 /* Explicit destructor call; don't check for null pointer. */
3129 ifexp = integer_one_node;
3130 else
3131 /* Handle deleting a null pointer. */
3132 ifexp = fold (cp_build_binary_op (input_location,
3133 NE_EXPR, addr, integer_zero_node,
3134 tf_warning_or_error));
3135
3136 if (ifexp != integer_one_node)
3137 expr = build3 (COND_EXPR, void_type_node,
3138 ifexp, expr, void_zero_node);
3139
3140 return expr;
3141 }
3142 }
3143
3144 /* At the beginning of a destructor, push cleanups that will call the
3145 destructors for our base classes and members.
3146
3147 Called from begin_destructor_body. */
3148
3149 void
3150 push_base_cleanups (void)
3151 {
3152 tree binfo, base_binfo;
3153 int i;
3154 tree member;
3155 tree expr;
3156 VEC(tree,gc) *vbases;
3157
3158 /* Run destructors for all virtual baseclasses. */
3159 if (CLASSTYPE_VBASECLASSES (current_class_type))
3160 {
3161 tree cond = (condition_conversion
3162 (build2 (BIT_AND_EXPR, integer_type_node,
3163 current_in_charge_parm,
3164 integer_two_node)));
3165
3166 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3167 order, which is also the right order for pushing cleanups. */
3168 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3169 VEC_iterate (tree, vbases, i, base_binfo); i++)
3170 {
3171 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3172 {
3173 expr = build_special_member_call (current_class_ref,
3174 base_dtor_identifier,
3175 NULL_TREE,
3176 base_binfo,
3177 (LOOKUP_NORMAL
3178 | LOOKUP_NONVIRTUAL),
3179 tf_warning_or_error);
3180 expr = build3 (COND_EXPR, void_type_node, cond,
3181 expr, void_zero_node);
3182 finish_decl_cleanup (NULL_TREE, expr);
3183 }
3184 }
3185 }
3186
3187 /* Take care of the remaining baseclasses. */
3188 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3189 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3190 {
3191 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3192 || BINFO_VIRTUAL_P (base_binfo))
3193 continue;
3194
3195 expr = build_special_member_call (current_class_ref,
3196 base_dtor_identifier,
3197 NULL_TREE, base_binfo,
3198 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3199 tf_warning_or_error);
3200 finish_decl_cleanup (NULL_TREE, expr);
3201 }
3202
3203 for (member = TYPE_FIELDS (current_class_type); member;
3204 member = TREE_CHAIN (member))
3205 {
3206 if (TREE_TYPE (member) == error_mark_node
3207 || TREE_CODE (member) != FIELD_DECL
3208 || DECL_ARTIFICIAL (member))
3209 continue;
3210 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3211 {
3212 tree this_member = (build_class_member_access_expr
3213 (current_class_ref, member,
3214 /*access_path=*/NULL_TREE,
3215 /*preserve_reference=*/false,
3216 tf_warning_or_error));
3217 tree this_type = TREE_TYPE (member);
3218 expr = build_delete (this_type, this_member,
3219 sfk_complete_destructor,
3220 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3221 0);
3222 finish_decl_cleanup (NULL_TREE, expr);
3223 }
3224 }
3225 }
3226
3227 /* Build a C++ vector delete expression.
3228 MAXINDEX is the number of elements to be deleted.
3229 ELT_SIZE is the nominal size of each element in the vector.
3230 BASE is the expression that should yield the store to be deleted.
3231 This function expands (or synthesizes) these calls itself.
3232 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3233
3234 This also calls delete for virtual baseclasses of elements of the vector.
3235
3236 Update: MAXINDEX is no longer needed. The size can be extracted from the
3237 start of the vector for pointers, and from the type for arrays. We still
3238 use MAXINDEX for arrays because it happens to already have one of the
3239 values we'd have to extract. (We could use MAXINDEX with pointers to
3240 confirm the size, and trap if the numbers differ; not clear that it'd
3241 be worth bothering.) */
3242
3243 tree
3244 build_vec_delete (tree base, tree maxindex,
3245 special_function_kind auto_delete_vec, int use_global_delete)
3246 {
3247 tree type;
3248 tree rval;
3249 tree base_init = NULL_TREE;
3250
3251 type = TREE_TYPE (base);
3252
3253 if (TREE_CODE (type) == POINTER_TYPE)
3254 {
3255 /* Step back one from start of vector, and read dimension. */
3256 tree cookie_addr;
3257 tree size_ptr_type = build_pointer_type (sizetype);
3258
3259 if (TREE_SIDE_EFFECTS (base))
3260 {
3261 base_init = get_target_expr (base);
3262 base = TARGET_EXPR_SLOT (base_init);
3263 }
3264 type = strip_array_types (TREE_TYPE (type));
3265 cookie_addr = fold_build1 (NEGATE_EXPR, sizetype, TYPE_SIZE_UNIT (sizetype));
3266 cookie_addr = build2 (POINTER_PLUS_EXPR,
3267 size_ptr_type,
3268 fold_convert (size_ptr_type, base),
3269 cookie_addr);
3270 maxindex = cp_build_indirect_ref (cookie_addr, NULL, tf_warning_or_error);
3271 }
3272 else if (TREE_CODE (type) == ARRAY_TYPE)
3273 {
3274 /* Get the total number of things in the array, maxindex is a
3275 bad name. */
3276 maxindex = array_type_nelts_total (type);
3277 type = strip_array_types (type);
3278 base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
3279 if (TREE_SIDE_EFFECTS (base))
3280 {
3281 base_init = get_target_expr (base);
3282 base = TARGET_EXPR_SLOT (base_init);
3283 }
3284 }
3285 else
3286 {
3287 if (base != error_mark_node)
3288 error ("type to vector delete is neither pointer or array type");
3289 return error_mark_node;
3290 }
3291
3292 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3293 use_global_delete);
3294 if (base_init)
3295 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3296
3297 return rval;
3298 }